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SUMMARY

The maintenance of pipelines for the production of oil or gas is usually done with a pig
(Pipeline Inspection Gauge), which is a cylindrical device that just fits the pipe and prop-
agates through the pipe along with the transport of fluids. While a conventional pig com-
pletely seals the pipeline and travels with the same velocity as the production fluids, a
by-pass pig has an opening which allows the fluids to partially by-pass the pig. The pur-
pose of the present study is to get a better understanding of the physics of the pigging of
a pipeline with multiphase flow transport. The focus is on pigs with by-pass.

An important factor in determining the ultimate travel velocity of a by-pass pig is the
pressure drop over the by-pass pig, which is characterized by a pressure loss coefficient.
We investigate the pressure loss coefficient of three frequently used by-pass pig geome-
tries in a single phase pipeline with Computational Fluid Dynamics (CFD). We present a
building block approach for systematic modelling of the pressure loss through the by-pass
pigs, which takes the geometry and size of the by-pass opening into account. The CFD
results are used to validate the simple building block approach for systematic modelling
of the pressure loss through a by-pass pig. It is shown that the models for the pressure loss
closely resemble the CFD results for each of the three pig geometries.
In addition to the pressure loss coefficient, we investigate the frictional force which is

acting between the pig and the pipe wall. Two complementary experimental setups have
been designed and used to study the sealing disc of a pig, which is responsible for the
frictional force between the pig and the pipe wall. Six 12′′ standard sealing discs from
two different vendors have been used. The first setup is a static setup in which the sealing
disc is subjected to a normal wall force and a tangential friction force. A unique feature
of the setup is that the ratio between the friction force and the wall force can be readily
adjusted. This allows to experimentally determine the force ratio which is directly related
to the Coulomb friction coefficient, which is often a difficult parameter to predict. Fur-
thermore, the static setup is used to systematically study the effect of oversize, thickness,
and Young’s modulus of the sealing disc on the frictional force. A direct comparison with
Finite Element (FE) calculations is made. The second experimental facility consists of a
dynamic setup in which a sealing disc is pulled through a vertical 1.7 m long pipe. The
effect of possible lubrication on the frictional force is studied by applying water to the slid-
ing contact and comparing the results with dry pull tests for different sliding velocities.
The corresponding difference in the Coulomb friction coefficient was quantified using
FE calculations, which were successfully verified with the static setup. The sensitivity of
possible wear of the sealing disc on the frictional force was also considered.
Furthermore, we have obtained experimental and numerical results for by-pass pigging

under low-pressure conditions. These are meant to help the design of a speed-controlled

ix
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pig; this is a pig in which the by-pass area is controlled during its propagation to maintain
a desired velocity. Our study was carried out using air as working fluid at atmospheric
pressure in a 52 mm diameter pipe with a length of 62 m. The experimental results have
been used to validate simplified 1D models commonly used in the oil and gas industry to
model transient pig behaviour. Due to the low-pressure conditions oscillatory behaviour
is observed in the pig speed, which results in high pig velocity excursions. The oscillatory
motion is described with a simplified model which is used to design a simple controller
aimed at minimizing these oscillations. The controller relies on dynamically adjusting
the by-pass area, which allows to release part of the excess pressure which builds up in
the gas pocket upstream of the pig when the motion of the pig is arrested. Subsequently,
the control algorithm is tested by a 1D transient numerical model, which was shown to
successfully reduce the pig velocity excursions.

In order to accurately solve the time dependent 1D two-fluid equations for multiphase
flow in pipelines, either with or without a pig, different time integration schemes have
been investigated. The BDF2 method (Backward Differentiation Formula using 2 levels)
is proposed as the preferred method to simulate transient compressible multiphase flow in
pipelines. Compared to the prevailing Backward Euler method, the BDF2 scheme has a
significantly better accuracy (second order) while retaining the important property of un-
conditional linear stability (A-stability). In addition, it is capable of damping unresolved
frequencies such as acoustic waves present in the compressible model (L-stability), op-
posite to the commonly used Crank–Nicolson method. A method for performing an au-
tomatic von Neumann stability analysis is proposed that obtains the growth rate of the
discretization methods without requiring symbolic manipulations and that can be applied
without detailed knowledge of the source code. The strong performance of BDF2 is il-
lustrated via several test cases related to the Kelvin–Helmholtz instability. A novel con-
cept called Discrete Flow Pattern Map (DFPM) is introduced, which describes the effec-
tive well-posed unstable flow regime as determined by the discretization method. BDF2
accurately identifies the stability boundary, and reveals that in the nonlinear regime ill-
posedness can occur when starting from well-posed unstable solutions. The well-posed
unstable regime obtained in nonlinear simulations is therefore in practice much smaller
than the theoretical one, which might severely limit the application of the two-fluid model
for simulating the transition from stratified flow to slug flow.
The 1D code has been subsequently extended to model the propagation of a by-pass

pig in a two-phase pipeline. The liquid slug that is accumulated in front of the pig, the
so-called pig-generated slug, has been modelled and characterized. Under the assumption
of a stratified flow, the academic case of liquid slug accumulation where we neglect the
viscosity of the fluids has been analyzed. We also consider the more realistic case that
includes the viscosity of the fluid. Finally, the effect of the presence of a by-pass in the
pig on the accumulated liquid slug is investigated and compared to a simplified model.
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SAMENVATT ING

Voor het onderhoud van pijpleidingen in de olie- en gasindustie wordt normaliter gebruik
gemaakt van een pig (pipeline inspection gauge), een cilindrisch instrument dat exact in
de pijpleiding past en door de pijpleiding heen gaat samen met de productie van gas en/of
vloeistoffen. In tegenstelling tot de conventionele pig – die de pijpleiding compleet afsluit
en voortbeweegt met dezelfde snelheid als de geproduceerde gas/vloeistoffen – heeft een
by-pass pig een opening die het mogelijk maakt om een deel van het gas of de vloeistof
door de by-pass heen te laten stromen. Het doel van het huidige onderzoek is om een beter
inzicht te krijgen in de fysica van het piggen van een pijpleiding in een meerfasenstroming,
waarbij de nadruk van het onderzoek ligt op pigs met een by-pass.

Een belangrijke factor voor het bepalen van de uiteindelijke voortbewegingssnelheid
van de by-pass pig is de drukval over de by-pass pig, die gekarakteriseerd wordt door
de drukvalcoëfficiënt. We onderzoeken de drukvalcoëfficiënt voor drie veelgebruikte by-
pass geometrieën in een één-fasepijpleiding door gebruik te maken van Computational
Fluid Dynamics (CFD). We presenteren een modulair opgebouwd systematisch model
van de drukval over de by-pass pig, dat rekening houdt met de geometrie en afmeting
van de opening van de by-pass. De CFD-resultaten worden gebruikt om de eenvoudige,
modulaire aanpak voor het systematisch modelleren van de drukval over de by-pass pig
te valideren. Er wordt aangetoond dat de modellen voor de drukval goed overeenkomen
met de CFD-resultaten van elk van de drie by-passgeometrieën.
Naast de drukvalcoëfficiënt doen we ook onderzoek naar de wrijvingskracht tussen de

pig en de pijpwand. Hiervoor zijn twee complementaire experimentele opstellingen ont-
worpen om de afsluitschijf van de pig, die verantwoordelijk is voor de wrijvingskracht
tussen de pig en de pijpwand, te bestuderen. Hierbij is gebruik gemaakt van een zestal
standaard 12′′ afsluitschijven, afkomstig van twee verschillende leveranciers. De eerste
experimentele opstelling is een statische opstelling, waarbij de afsluitschijf van de pig
is onderworpen aan een normale wandkracht en een tangentiële wrijvingskracht. Een
uniek kenmerk van deze opstelling is de mogelijkheid om de verhouding tussen de wrijv-
ingskracht en de wandkracht eenvoudig bij te stellen. Dit maakt het mogelijk om exper-
imenteel de krachtenverhouding te bepalen welke direct gerelateerd is aan de Coulomb
wrijvingscoëfficiënt – een parameter die normaliter lastig te voorspellen is. Verder wordt
de statische opstelling gebruikt om op systematische wijze het effect van de overmaat,
dikte en Young’s modulus van de afsluitschijf op de wrijvingskracht te bestuderen. Hierbij
wordt een directe vergelijking met eindige elementen berekeningen gemaakt. De tweede
experimentele opstelling is een dynamische opstelling, waarbij de afsluitschijf door een
pijpleiding (met een lengte van 1.7 m) wordt getrokken. Het effect van mogelijke smering
op de wrijvingskracht is bestudeerd door water aan te brengen op het schuivende contact

xi
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en door de testresultaten te vergelijken met de droge trekproef voor verschillende treksnel-
heden. Het gevonden verschil in de Coulombwrijving is gekwantificeerd door gebruik te
maken van de eindige elementen berekeningen, die succesvol waren geverifieerd door de
statische opstelling. Hierbij is de gevoeligheid van mogelijke slijtage van de afsluitschijf
op de wrijvingskracht ook in beschouwing genomen.

Verder hebben we experimentele en numerieke resultaten voor by-pass pigging on-
der lagedrukcondities verkregen. Deze resultaten zijn bedoeld om te helpen bij het ont-
werp van een pig met snelheidsregeling; dit is een pig waarbij de opening van de by-pass
geregeld wordt gedurende de voortbeweging door de pijpleiding om een gewenste snel-
heid te blijven houden. De studie is uitgevoerd met lucht op atmosferische druk in een
pijpleiding met een diameter van 52 mm en een lengte van 62 m. De experimentele resul-
taten zijn gebruikt voor het valideren van vereenvoudigde 1D-modellen die typisch in de
olie- en gasindustrie gebruikt worden. Door de lagedrukcondities wordt een oscillerend
gedrag van de pigsnelheid waargenomen, wat resulteert in uitschieters in pigsnelheid. De
oscillerende beweging is beschreven door middel van een vereenvoudigd model dat ge-
bruik maakt van een simpele regelaar gericht op het verminderen van deze oscillaties. De
regelaar zorgt voor de dynamische aanpassing van de by-passopening, waarbij een deel
van de opgebouwde overdruk in het gas aan de stroomopwaartse zijde van de pig kan
worden vrijgelaten. Vervolgens is het regelalgoritme getoetst door middel van een tijd-
safhankelijk 1D numeriek model, waarbij is aangetoond dat dit algoritme met succes de
uitschieters in de pigsnelheid kan verminderen.
Om de tijdsafhankelijke 1D vergelijkingen voor twee fluida bij meerfasenstroming in

pijpleidingen op te lossen, zowel met als zonder pig, zijn er verschillende tijdsintegrati-
eschema’s onderzocht. De BDF2-methode (Backward Differentiation Formula, gebruik-
makende van 2 niveaus) is voorgesteld als de voorkeursmethode om de dynamische com-
pressibele meerfasenstroming in pijpleidingen te simuleren. In vergelijking met de gang-
bare Backward-Euler methode heeft het BFD2-schema een aanzienlijk betere nauwkeurig-
heid (tweede orde) terwijl dit schema het belangrijke kenmerk van onvoorwaardelijke lin-
eaire stabiliteit (A-stabiliteit) behoudt. Ook is het schema, in tegenstelling tot de veelge-
bruikte Cranck-Nicolson methode, in staat om onopgeloste frequenties, zoals geluidsgol-
ven in het compressibele model (L-stabiliteit), te dempen. Een methode voor het uitvo-
eren van een automatische von Neumann-stabiliteitsanalyse is voorgesteld, waarbij het
groeipercentage van de discretisatiemethode wordt gevonden zonder dat symbolische ma-
nipulaties zijn vereist. Deze methode kan worden toegepast zonder gedetailleerde kennis
van de broncode. De sterke prestatie van BFD2 is gedemonstreerd door middel van ver-
schillende simulaties gerelateerd aan de Kelvin-Helmholtz instabiliteit. Een nieuw con-
cept genaamd Discrete Flow Pattern Map (DFPM) is geïntroduceerd, dat het effectieve
goedgestelde onstabiele stromingsregime beschrijft zoals bepaald door de discretisatieme-
thode. BDF2 geeft een nauwkeurige bepaling van de stabiliteitsgrens en laat zien dat in
het niet-lineaire regime slechtgesteldheid kan optreden wanneer gestart wordt vanuit goed-
gestelde onstabiele oplossingen. Het goedgestelde onstabiele regime in niet-lineaire simu-
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laties is om die reden in de praktijk velemalen kleiner dan het theoretische regime, hetgeen
de toepassing van het twee fluida model voor de simulatie van de gelaagde stroming naar
zogenaamde "slug" stroming mogelijk ernstig beperkt.
De 1D code is vervolgens uitgebreid om de voortbeweging van een by-pass pig in een

tweefasenpijpleiding te modelleren. De vloeistof die zich ophoopt voor de pig, de zoge-
noemde pig-gegenereerde slug, is gemodelleerd en gekarakteriseerd. Met de aanname
van een gelaagde stroming is de academische casus geanalyseerd van de vloeistofophop-
ing onder verwaarlozing van wrijving. We hebben ook de meer realistische casus, die
rekening houdt met wrijving, in beschouwing genomen. Tenslotte is het effect van de aan-
wezigheid van een by-pass in de pig op de vloeistofophoping onderzocht en vergeleken
met een vereenvoudigd model.
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1.1 multiphase flow transport in pipelines

Onshore or offshore pipelines provide an economic solution to the transport of fluids in the
oil and gas industry. Offshore pipelines can transport the fluids from the reservoir and well
to an offshore production platform or to an onshore separator or slug catcher. Particularly
gas-condensate pipelines (or trunklines) can have a large diameter (typically 30′′ to 42′′)
and they can be long, with existing examples between 100 and 200 km [15]. Depending
on the gas production rate, significant amounts of condensate and water can accumulate
in the pipeline (so-called liquid holdup). Therefore, the flow through these pipelines is
typically characterized as multiphase flow. This means that gas, oil (or condensate), and
water (possibly accompanied by solids) are transported simultaneously through the same
pipeline.
Pipelines need regular maintenance. This is often by the use of so-called pigs. A pig (the

term is sometimes seen as an abbreviation for Pipeline Inspection Gauge) is a device that
is launched at the inlet of the pipeline and is received back in the pig trap, located at the
outlet of the pipeline. The pig is propelled by the production fluids that are transported
in the pipe. The pig can serve multiple maintenance purposes, which include: cleaning
the inner pipe wall, removing liquids, distribution of corrosion inhibitor along the pipe
wall, and pipe wall inspection. Figure 1.1a shows a schematic of a pig inside a multiphase
pipeline.

Figure 1.1: (a) Conventional pig. (b) By-pass pig. Adapted from [21].

During the time that the pig resides in the pipeline it collects liquid in front of it, see
figure 1.1. This gives the so-called pig-generated volume. When this liquid arrives at the
outlet of the pipeline (i.e. just before the pig is received back in the trap), the liquid surge
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will be stored in the downstream slug catcher. This pig-generated volume is about equal
to the liquid holdup in the pipeline (present at the moment that the pig is launched) minus
the product of the normal liquid outflow rate with the pig residence time. As the onshore
gas plant requires an uninterrupted supply of gas, a storage unit is needed onshore (down-
stream of the pipeline and upstream of the plant) to temporarily park the liquid slug. An
example of such a slug catcher is given in figure 1.2. The slug catcher consists of an inlet
header and splitter, which distribute the liquid over a number of bottles, whereas the gas
leaves the bottles at the upstream end through vertical gas legs. Liquid is drained at the
downstream liquid header. When a liquid slug arrives, the gas is displaced from the bot-
tles and replaced by liquid. This guarantees uninterrupted supply of gas to the plant. The
design of the slug catcher size needs to be such that the pig-generated slug can indeed be
stored in the bottles. Therefore the size can easily become as large as 5000 m3. These slug
catchers can be costly (50 to 150 million dollars) and require a significant plot space.

Figure 1.2: Example of a slug catcher with 5000 m3 liquid storage volume. Adapted from [39].

In an effort to reduce the pig-generated volume, so-called by-pass pigs have been designed.
Whereas a conventional pig completely seals the pipeline, a by-pass pig has holes in the
pig body which allows the gas to flow through (i.e. by-pass) the pig body. Figure 1.1b
shows a schematic of a by-pass pig. As a result of the by-pass, the travel velocity of the
by-pass pig will be lower as compared to a conventional pig. The longer residence time of
the by-pass pig results in more time to drain the liquid slug from the slug catcher, which
will in turn result in a smaller pig-generated volume that needs to be stored in the slug
catcher. In addition, the gas which flows through the by-pass pig drags the liquid in front
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of the pig, which results in a more elongated liquid slug and thus a smaller pig-generated
volume, see figure 1.1b. In the most optimum situation the by-pass area is such large that
the pig velocity is equal to the liquid velocity. In that case the pig-generated volume will
be reduced to zero. The typical size of the by-pass area ranges up to about 15% of the total
cross-sectional area of the pipe.

1.2 a brief history of pipelines and pigs

Pipes have been in use over many centuries. The Eqyptians used clay pipes for drainage
purposes as early as 4000 B.C. [56]. The Romans used lead and ceramic pipelines in their
famous aqueducts more than 2000 years ago. The use of iron pipelines dates back to the
18th century, which were used to transport water and gas. The subsequent advent of steel
pipes in the 19th century allowed for much longer pipelines, as the steel could sustain
much higher pressures than the iron pipelines. The discovery of oil in Pennsylvania in
1859 was followed by the construction of the first long-distance steel pipeline in 1879.
The pipeline had a diameter of 6′′ and a length of 109 miles. A major improvement in
the construction of steel pipelines occurred in the late 1920s with the introduction of
electric arc welding, which allowed for leakproof connections of (large) pipe diameter
segments [56]. The pipeline network has since then expanded rapidly in the U.S. and
counts a total of 2.23million kilometer in length and is thereby the most extensive pipeline
network of any country in the world [1]. The Netherlands has a total length around 20
thousand kilometer of pipelines [1].
An inevitable consequence of the operation of pipelines that transport large amounts

of fluids is appropriate internal maintenance. This was noted shortly after the first oil
pipelines were taken into service in the 1870s. Higher pumping pressures and decreased
overall efficiency reflected internal flow restriction due to build-up of wax and other debris
in the line [17]. The first pigs, which consisted of nothing more than a bundle of rags tied
together, were then used and resulted in immediate flow improvement. Later the rags were
replaced by bundles of leather which were stronger and could absorb the fluids and thereby
swell, which guaranteed a good seal between the pig and the inner pipe wall. Later on
pigs were more purposefully built, consisting of a steel body with urethane cups or discs,
possibly equipped with brushes and scrapers. In the 1960s the polyurethane foam pig
was introduced. Many other industries also adapted the use of foam pigs, including the
water and processing industry. From the late 1960s onwards pigs became instrumented
with various sensors which can inspect the condition of the inner pipe wall while the pig
is travelling through the pipe [17]. These developments have lead to so-called smart (or
intelligent) pigs.
It is unclear where the term ’pig’ is originating from. As mentioned some people refer

to pig as an abbreviation of Pipeline Inspection Gauge [15]. But as pigs were initially not
used for inspection purposes, this is unlikely. A more accepted explanation is that the term
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pig is attributed to the screeching sound that the pig can make when it moves inside the
pipeline [15, 17, 74].

1.3 pig types

Pigs were originally developed to remove deposits which could obstruct or retard the flow
through a pipeline. Today pigs are widely used during all phases in the life of a pipeline
for many different reasons in various industries, including water, oil, food, and chemi-
cals. While there are more than 350 different pig types [15], three main categories can be
distinguished:

• Cleaning/maintenance pigs.These are used to clean the pipeline to ensure continu-
ous flow andmaintain operational efficiency or to prepare the pipeline for intelligent
inspection.

• Intelligent inspection tools. These are used to inspect the pipeline, to provide in-
formation on the condition of the line and to assess the extent and location of any
integrity concerns.

• Gel pigs. These are pumpable liquid gels sealed between two cleaning/maintenance
pigs to remove the solid debris or water from the pipeline.

A pig that enters a pipeline is driven forward by the higher pressure of the fluid behind it,
which pushes the pig from one end to the other end of the pipeline. During its residence
in the pipeline, the pig sweeps out the entire content of the pipeline. Some of the reasons
to send a pig through a pipeline are:

• Corrosion management. To reduce the corrosion rate of the pipeline, a pig can
remove corrosion products, stagnant water, and corrosion causing microbes in the
low spots. Pigging can also help to more uniformly distribute the corrosion inhibitor
throughout the pipeline, such as to enable wetting of the top pipewall with corrosion
inhibitor in the liquid. When using a by-pass pig for corrosion distribution in wet
gas pipelines, one needs tomake sure that the flow regime ahead of the pig still gives
top-of-line wetting; this is ensured by the liquid slug created ahead of the pig if a
standard pig is used (no by-pass), but this will depend on the rate of the by-passing
gas flow if a by-pass pig is used.

• Removal of solids. These solids can be for example wax or scale sticking to the
inside of the pipeline or sand or corrosion products that have accumulated in the
pipeline.

• Removal of liquids. The build-up of liquid in a pipeline to reach the steady-state liq-
uid hold-up can take days or weeks. By pigging at regular intervals, and thus through
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regular liquid removal, one can keep the liquid hold-up below the steady-state equi-
librium liquid hold-up, for example to ensure that the liquids in the pipeline can
always fit within the slug catcher.

• Pipeline inspection to determine the integrity. A pig equipped with special mea-
suring equipment like ultrasonic transducers or Magnetic Flux Leakage (MFL)
can determine the integrity of the pipeline by measuring the remaining wall thick-
ness [27].

In a multiphase flow pipeline, gas travels on average faster than liquid. A conventional
pig (i.e. a pig without by-pass) travels at the mixture velocity through the pipeline, as no
fluid can by-pass the pig. This mixture velocity is in between the gas and liquid velocity. A
conventional pig travels thus faster than the liquid. The pig will collect the liquid in front of
it as it moves faster than the liquid velocity, see figure 1.1. Behind the pig, there will only
be gas present, as liquid is travelling slower than the pig and the liquid is staying behind
to re-establish the steady-state liquid hold-up in the pipeline. As explained in section 1.1,
a by-pass pig travels at a lower velocity compared to a conventional pig. The by-pass
area can be created in various ways. Figure 1.3 shows two examples of a by-pass pig. The
first example (figure 1.3a) shows a by-pass pig with a concentric by-pass area in the centre,
whereas in the second example (figure 1.3b) a deflector plate is included at the downstream
side of the by-pass. The small space between the pig body and the plate creates the by-pass.
The main function of the deflector plate is providing a pulling force, which is especially
needed when the pig is launched [96].

Figure 1.3: (a) By-pass pig with by-pass in the centre (taken from [53]). (b) By-pass pig with a
deflector disc (taken from [96]).

Many other by-pass configurations do exist. The advantage of using a by-pass pig com-
pared to a conventional pig is not only the reduction of the pig-generated volume (as
explained in section 1.1). Also for the removal of solids, which may be attached to the
wall in liquid pipelines, the use of a by-pass pig can be beneficial: due to the flow through
the by-pass liquid jets can emerge, which help to remove the solids from the wall and
transport them as a slurry further downstream. The lower travel speed of a by-pass pig is
also beneficial for intelligent pigs. The inspection of the pipe wall, which is carried out
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by the intelligent pig, is much more accurate at a lower travel speed, and may even be
impossible in case no by-pass is present and the pig travels at the mixture velocity. For
example, a high velocity of the inspection pig can cause low pipe wall thickness locations
to be missed.
Although the advantages of using a by-pass pig are clear, the use of a by-pass pig

does not come without any risks. The most important risk is that, due to the by-pass
area, not enough differential pressure across the pig is generated and the pig gets stuck
in the pipeline. The costs associated with locating and removing a stuck pig in combi-
nation with the production deferment caused by such an event are high. This makes the
choice of the by-pass area, which needs to be made upfront of carrying out the pigging
run, a challenging task. The main uncertainty for calculating the right by-pass opening
is the friction between the pig and the pipe wall. To overcome this problem, inspection
pigs have been designed that have an adjustable by-pass area to regulate the pig speed
through the pipeline to a constant velocity [63, 89]. These so-called speed-controlled pigs
have an onboard controller, which reacts on the changes in the friction between the pig
and the pipe wall along the pipeline, as this leads to a change in the pig velocity. For
example, a local increase in friction could cause the pig to slow down. The by-pass open-
ing is then reduced by the control algorithm and as a result the pressure drop across the
pig increases and therefore the pig velocity increases as well. Speed-controlled pigs have
normally been applied in single-phase pipelines, but there are also some first field appli-
cations to use them under multiphase flow conditions. So far speed-controlled by-pass
pigging has been mainly found on intelligent pigs in order to improve inspection quality.
But there is a potential to apply similar technology to other pig types as well.

1.4 pigging simulations

As explained in the previous section, it is important to have a proper design of the pigging
operation before carrying out the actual pigging run. Some typical questions that could
be addressed during such a design phase are:

• What will be the additional pressure drop in the pipeline as a result of the presence
of a pig?

• What will be the size of the pig-generated liquid slug, and at what time will it arrive
at the slug catcher?

• What is the optimal size of the by-pass area?

• At what travel speed will the pig traverse the pipeline?

In almost all cases the most important question is: Will the pig arrive at the outlet of the
pipe at all? In an attempt to answer these questions the industry uses various simplified
models. We will outline a few of the existing modelling approaches below.
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In order to estimate the friction of the pig with the pipe wall (or equivalently: the driving
differential pressure that is needed to overcome the frictional force), the following empir-
ical relationship has been proposed by Cordell [14]: ∆Ppig(bar) = K

Dnom(in) . Here
∆Ppig is the required differential pressure (in bar unit) needed to drive the pig,Dnom is
the nominal pipeline diameter (in inch unit), and K is an empirical constant. Figure 1.4 de-
picts different K-values for different pig types. For example: a value of K = 1 corresponds
to a foam pig, a value of K = 19 corresponds to an ultrasonic technique in line inspection
tool, whereas K = 24 would correspond to a magnetic flux leakage (MFL) in line inspec-
tion tool. It is clear that the K-values are indicative only. Many pigs have a sealing disc
that guarantees a tight seal between the pig and the inner pipe wall, see figure 1.3b. It is
this sealing disc that is responsible for the frictional force. No information on the material
properties nor on the size of the sealing disc is present in the aforementioned model.

Figure 1.4: Proportionality factor to calculate the differential pressure that is required to drive
various types of pigs. Adapted from [14].

In many cases the precise value of the friction is not very important for conventional
pigs (i.e. no by-pass) as usually the pressure drop across the pig (a few bar maximum) is
much smaller than the total pressure drop along the pipeline. However, when a by-pass
pig is used it is an important factor, as the pressure drop that is generated as a result of
the by-passing fluids must overcome the frictional force. When the by-pass is too large
not enough pressure drop is generated, and the pig stalls. It is this balance between the
driving pressure force and the frictional force that ultimately determines the travel velocity
of a by-pass pig. Not many models exist for predicting the pressure drop due to the by-
passing fluids across a by-pass pig, and often a simple geometry, like the one presented in
figure 1.3a, is assumed [68, 82].
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In order to model the pig trajectory through the pipe, the industry frequently uses one-
dimensional transient pipelinemodels to simulate themultiphase flowwith the pigging op-
eration. Two examples of commercial simulation tools are OLGA [8] and LedaFlow [28].
These tools solve the conservation equations for mass, momentum, and energy for each of
the phases. The equations have been averaged over the cross-sectional area of the pipeline,
which means that the 3D spatial equations are converted into 1D spatial equations. The
averaging leads to closure relations for the wall friction and for the interfacial stress be-
tween the phases. The 1Dmodels also include empirical correlations for the different mul-
tiphase flow regimes (e.g. stratified flow, hydrodynamic slug flow, bubbly flow, or annular
dispersed flow). The pipeline is split up in a number of spatial grid cells, and a numerical
time step has to be chosen. The propagation of the pig can also be simulated with these
1D tools. User input is required for the friction between the pig and the pipe wall (both for
conventional pigs and for by-pass pigs) and for the pressure loss due to by-passing fluid
(for the case with by-pass pigs). The precise details on how the conservation equations are
numerically solved, as well as how the fluid-pig interaction is handled, are proprietary to
the vendors of these commercial tools. Academic codes do exist, but are often limited to
single-phase flow. Only a few consider two-phase flow [47, 50, 61, 97], but among those
only a pig without by-pass is considered.

1.5 research questions

The purpose of the present PhD project is to get a better fundamental understanding of
the physics of pigging of a pipeline with multiphase flow transport in order to improve
engineering models used in the industry for pigging operations. Although pigs have been
used for decades in the industry, by-pass pigs are relatively new, and the use of pigs with
speed control has emerged just recently. As explained, many empirical relations exist but
some fundamental knowledge about the physics is lacking. The emphasis in our research
will be on by-pass pigs, either without or with speed control. The results can be used
for implementation in the engineering design tools that are used to prepare a pigging
operation. In this way a better design can be made for by-pass pigs, either without or
with speed control. This reduces the risk that something will go wrong with the actual
operation of the pig, such as serious oscillations in the pig movement or a stalled pig. In
case of speed-controlled by-pass pigs this will also help to determine the range of the by-
pass opening that should be available for control. The reduced, or eliminated, operational
risks of by-pass pigging will help to safely reduce the size of the required slug catcher that
would be required for conventional pigging.

The focus will be on various aspects which are important for the motion of a by-pass
pig in a single phase or multiphase pipeline:

1. Fluid flow aspects. The flow will be calculated with both a 1D approach, using a
newly developed numerical-physical model, and with 2D and 3D Computational
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Fluid Dynamics (using the existing third-party tool Fluent). Lab experiments were
carried out in the water/air flow loop at the Delft University of Technology.

2. Friction between the pig and the pipe wall. Finite element simulations were car-
ried out for the deformation of the oversized discs that are part of the by-pass pig
configuration. Also pull tests with such discs were carried out in a newly built set-up
at the Shell Technology Centre Amsterdam (STCA).

3. Control of the by-pass opening to obtain the desired pig velocity. Some small-
scale tests with pigs were carried out in the water/air flow loop at the Delft Univer-
sity of Technology. In parallel simulations were carried out with the 1D model.

The results of the study are described in 5 technical chapters. These chapters are based on
publications that appeared either in conference proceedings or in journals.

Chapter 2. CFD simulations with Fluent to obtain the pressure loss coefficient for the
by-pass fluid through the by-pass area. The effect of different by-pass configurations is
studied in singple phase flow. The work was carried with the support of two Master stu-
dents [4, 54], and theworkwas presented at a conference and published in a journal [5, 35].

Chapter 3. Experiments and modelling for the friction between the pig and the wall. The
work was carried out with the support from two Master students [29, 32]. This included
experiments at STCA (both steady state and dynamic pull tests, with dry gas, and with
lubrication using water and air). The forces and disc deformation as measured were com-
pared with Finite Element simulations for the stresses and deformations. The results were
presented at a conference and published in a journal [34, 58].

Chapter 4. Lab experiments in water/air 2”, 130 m flow loop at the Delft University of
Technology. The work was carried out with the support from a Master student [44] and
from a team of 4 undergraduate students. The pressure drop over the pig and its velocity
were measured using air only at atmospheric pressure. Various configurations (without
and with by-pass) were measured, and the observed slip-stick behaviour (that is typical
for low pressure pigging) was reproduced with a simple analytical model. The results were
presented at a conference and published in a journal [36, 37].

Chapter 5. Numerical modelling of two-phase pipe flow (still without the presence of
a pig). An accurate spatial and temporal finite volume scheme to solve the 1D two-fluid
model was developed and tested in Matlab. Simulations were carried out for the stability
of stratified gas-liquid flow. The growth of roll waves and slugs was simulated. A numer-
ical flow pattern map could be established. Part of the results have been published in a
journal [80].

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



chapter
1

1.5 research questions 11

Chapter 6. Numerical modelling of pigs with the help of an accurate two-fluid model.
Thereto the newly developed finite volume code was extended with the propagation of
pigs. The results from the other parts of the study (such as the pressure loss coefficient
determined with CFD for the by-passing fluid, and the friction between the pig and the
pipe wall) were used as input correlations to the pigging model in the 1D numerical model.
The results have been published at a conference [38].

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



chapter
2

2
CHARACTER IZAT ION OF THE PRESSURE LOSS
COEFF IC I ENT US ING A BU ILD ING BLOCK APPROACH

This chapter is adopted from M. H. W. Hendrix, X. Liang, W.-P. Breugem, and R. A. W. M. Henkes, "Char-
acterization of the pressure loss coefficient using a building block approach with application to by-pass pigs".
In: Journal of Petroleum Science and Engineering 150 (2017), pp. 13-21.

13

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



14 characterization of the pressure loss coefficient using a building block approach

ch
ap

te
r

2

2.1 introduction

In the oil and gas industry, pipeline networks are used to transport production fluids from
wells to production plants. During normal operation, these pipelines need regular clean-
ing and inspection. Ideally, this pipeline maintenance should interrupt the production as
little as possible. Typically, pipeline maintenance is done with a pig (Pipeline Inspection
Gauge). This is a cylindrical or spherical device that is launched at the inlet of the pipe
and subsequently travels through the pipeline while being propelled by the production of
fluids. The pig is trapped in a receiver at the end of the pipeline. While a conventional pig
completely seals the pipeline and travels with the same velocity as the production fluids,
a by-pass pig has an opening hole which allows the production fluids to partially flow
through the pig body. Figure 2.1a shows an example of a by-pass pig. A by-pass pig will
typically travel with a lower pig velocity compared to a conventional pig that completely
seals the pipeline, as the velocity of the by-pass pig is not dictated by the velocity of the
production fluids anymore, but depends on the overall force balance for the pig. In steady
state this means that the driving pressure force Fp of the production fluids balances with
the frictional force Ffric of the pig with the pipe wall, see figure 2.1b. The driving pressure
force Fp depends on the pressure drop∆p over the pig and is expressed as Fp = ∆pApig,
where Apig is the frontal area of the pig (which is equal to the cross sectional area of the
pipe).
The reduction of the pig velocity has proven to be beneficial for both inspection and

cleaning purposes [63, 96]. In addition, a lower pig velocity is necessary for safe operation,
as a too high pig velocity may damage the insides of the pipe or the pig itself. As the
travel velocity of the by-pass pig is important for the efficiency and safety of the pigging
operation, detailed knowledge of the pressure drop ∆p over the pig is needed in order to
predict its velocity. This study focuses on quantifying the pressure drop ∆p over various
types of by-pass pigs which is characterized by a pressure loss coefficient K, defined as:

K =
∆P

1
2ρU

2
bp

, (2.1)

where ρ is the density of the fluid and Ubp is the fluid velocity in the horizontal by-pass
region relative to the pig motion, see figure 2.1. The pressure loss coefficientK depends on
the size of the by-pass opening as well as on the design of the by-pass geometry, whichmay
vary depending on the application of the pig. A good description ofK is not only important
for a steady state calculation of the pig velocity, but is also a relevant input parameter for
1D transient tools. Examples include 1D codes which are described in [22, 47, 69, 91]
and commercial tools such as OLGA [8] or LedaFlow [28], which are commonly used in
the oil and gas industry. In these transient tools the trajectory of the pig through a pipeline
can be monitored, and a relation for K needs to be known in advance. So far reliable
correlations for K are missing, and the present study is aimed at providing one.
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Figure 2.1: (a) A bi-directional by-pass pig, taken from [53]. (b) A schematic of the forces on a
by-pass pig in a horizontal pipeline. In steady state the driving force Fp due to the
by-passing fluids is balanced by the frictional force Ffric of the pig with the pipe wall.
In this schematicD indicates the pipe diameter, d the diameter of the by-pass hole, U
the upstream bulk velocity, and Upig the pig velocity.
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Flow

Adjustable

by-pass valve

Figure 2.2: (a) A by-pass pig with a deflector disk, taken from [96]. (b) Schematic of a by-pass pig
with speed control. The by-pass valve can be adjusted to regulate the by-pass area.

As the geometry of a pig varies depending on its application, a building block approach
is used in order to provide a general framework for determining the corresponding pressure
loss coefficient. The building block approach relies on a geometrical decomposition of
the by-pass pig, and accounts for the contribution of the individual components of the by-
pass pig geometry to the overall pressure loss. It is thus assumed that the flow patterns are
uncorrelated between building blocks, i.e. the local flow pattern within a building block
depends solely on geometrical characteristics of that building block. In order to validate
the building block approach a CFD (Computational Fluid Dynamics) approach is applied
to model fully turbulent single phase flow through various types of by-pass pigs. The bulk
Reynolds number is fixed at Re = UD/ν = 107, where ν is the kinematic viscosity of the
fluid, U is the average velocity, and D is the pipe diameter. A similar Reynolds number
has been used in a previous CFD study on by-pass pigs [82], which allows for a direct
comparison of the new results obtained in this work. From the CFD results the pressure
loss coefficient K can be extracted.
The building block approach is tested on three different by-pass pig geometries encoun-

tered in the industry. First the relatively simple design of the bi-directional by-pass pig is
revisited, which is shown in figure 2.1a. Furthermore, the by-pass pig shown in figure 2.2a
is considered, which is referred to as the disk pig. This pig has a deflector plate, or disk,
added at the exit of the by-pass pig. The deflector plate helps to get the pig into motion
when the pressure drop over the pig is relatively small [96]. Finally, a by-pass pig design
which is shown in figure 2.2b is considered. This by-pass pig has an adjustable by-pass
area by making use of a rotatable valve. The angular position of the valve determines the
opening of the by-pass holes. The adjustable by-pass enables control of the pressure drop
over the pig and thus control of the speed of the pig. This by-pass pig is therefore referred
to as the speed controlled pig. Examples of speed controlled pigs can be found in [63, 89].
The structure of the paper is as follows. In section 2.2 a literature review is given on

theory and correlations for by-pass pig geometries and the building block approach is ex-
plained. Section 2.3 describes the numerical setup which is used for the CFD calculations.
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Results obtained from the CFD simulations are discussed in section 2.4. A summary of
the results and possibilities for future research are given in section 2.5.

2.2 building block approach

In previous research the pressure loss coefficient of a bi-directional by-pass pig, Kbidi,
was studied using CFD [82]. It was found that Kbidi can be successfully described by
the Idelchik correlation for a thick orifice, as the bi-directional by-pass pig has a shape
comparable with a thick orifice, see figure 2.1. For sufficiently thick orifices (Lpigd > 3)
the Idelchik correlation for a thick orifice reads [45]:

Kbidi = 0.5
(
1−

A0
A1

)0.75

+
4fLpig

d
+

(
1−

A0
A1

)2
, (2.2)

where A0 = 1
4πd

2 is the cross-sectional area of the by-pass and A1 = 1
4πD

2 is the
cross-sectional area of the pipe. The length of the pig is denoted by Lpig and f is the
Fanning friction coefficient, which is determined by the Churchill relation [13] using the
Reynolds number defined in the horizontal by-pass area, that is f = f(Ubpd/ν). Here it
is assumed that the walls of the by-pass area are hydrodynamically smooth, which implies
that the friction factor is not a function of the wall roughness. This correlation for a thick
orifice can be regarded as a linear combination of the loss associated with the inlet of the
pig (contraction loss), the by-pass area of the pig (wall friction), and the outlet of the pig
(expansion loss), see figure 2.3.

Figure 2.3: Break down of the pressure loss coefficient of a bi-directional by-pass pig in a round
pipe. Symbols are explained in the text.

The use of this ’building block’ approach to model the pressure loss coefficient of a
by-pass pig has been suggested in previous work [67, 68], and was validated recently with
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CFD for a bi-directional by-pass pig [5, 82]. In this study it is attempted to use this building
block approach for a more general class of by-pass pigs, namely the disk pig and the speed
controlled pig, as depicted in figure 2.2. In order to model these more complex shaped
pigs it is suggested to modify the last term of equation 2.4. This last term is associated
with the pressure loss of a sudden expansion, which is also known as the Borda-Carnot
equation. This equation holds very well for a fully turbulent flow [60, 87]. It is important
to note that the Borda-Carnot equation, along with the other contributions in equation 2.2,
is associated with irreversible losses. It thus describes the change in total pressure Pt:

∆Pt =
1

2
ρU2bpKbidi (2.3)

As the pipe area is considered constant, the dynamic pressures upstream and downstream
of the pig are equal. Therefore, the static pressure drop ∆P over the pig can be considered
equal to the total pressure drop ∆Pt.
The fact that for both the disk pig and the speed controlled pig the exit of the pig can no

longer be regarded as a sudden expansion emphasizes the need for a different correlation
than equation 2.2. A new correlation for the disk pig and the speed controlled pig is now
suggested.

2.2.1 disk pig

In order to replace the last term in the original Idelchik correlation 2.2 the geometry of a
disk valve depicted in figure 2.4a is considered first.

Figure 2.4: (a) Disk valve geometry, adopted from [45] (b) Schematic of the disk pig.

The geometry is taken from [45], in which the following correlation for the pressure
loss coefficient of this geometry is proposed:

Kdv =
2H

d
+
0.155d2

h2
− 1.85. (2.4)
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This equation is reported to be valid within the range:

0.1 <
h

d
< 0.25, (2.5)

and

1.2 <
H

d
< 1.5. (2.6)

The validity of equation 2.4 outside this range has not been established. Kdv is associated
with the velocity scale Ubp, see figure 2.4a. A schematic of the disk pig shown in fig-
ure 2.2a is depicted in figure 2.4b. The outlet of the disk pig can be represented by a disk
valve as shown in figure 2.4a. The by-pass area of the disk pig Adv, which is defined by
the smallest by-pass area of the pig, is given by:

Adv = πdh. (2.7)

Replacing the last term of equation 2.2 with the loss coefficient of a disk valve, equa-
tion 2.4, the following correlation for the pressure loss coefficient of a disk pig Kdp is
proposed:

Kdp = 0.5
(
1−

A0
A1

)0.75

+
4fLpig

d
+

(
2H

d
+
0.155d2

h2
− 1.85

)
. (2.8)

Note that the thickness of the disk t is not appearing in the proposed correlation. It is
assumed that the flow is separating from the edge of the disk and will not reattach to the
disk. This implies that the thickness is sufficiently small to neglect its influence on the
flow.

2.2.2 speed controlled pig

The speed controlled pig with a by-pass regulating valve as shown in figure 2.2b is mod-
elled as a valve consisting of a disk with four adjustable opening slots, see figure 2.5a. The
angle ω defines the opening angle of the slots in degrees. In figure 2.5b a cross-section
of the speed controlled pig is shown.

The smallest by-pass area of the speed controlled pig Asp is defined as:

Asp = πHih
nω

360
, (2.9)
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Figure 2.5: (a) 3D schematic of the speed controlled pig. (b) Schematic of a cross-section of the
speed controlled pig.

where n=4 is the number of slots. No explicit relation for the pressure drop of such a
geometry was found in the literature. As the speed controlled by-pass pig still resembles
features of the geometry of the disk pig, the following correlation for the speed controlled
pig is proposed:

Ksp = 0.5
(
1−

A0
A1

)0.75

+
4fLpig

d
+

(
2H

d
+
0.155d2

h2eqv
− 1.85

)
. (2.10)

Here heqv is the equivalent disk-to-pig distance such that the by-pass area of the speed
controlled pig equals the by-pass area of a disk pig given by equation 2.7:

heqv = H
∗h

d

nω

360
, (2.11)

whereH∗ is the diameter of the slots, which can be taken as the inner diameter,H∗ = Hi,
or as the outer diameterH∗ = H, see figure 2.5. Although this difference may be small in
practice, these two approaches will both be treated and the result will be compared.

2.3 numerical setup

This section deals with the numerical setup of the by-pass pig CFDmodel. In this research,
all the CFD simulations are performed with ANSYS Fluent (version 14.5). The pig is
modelled for operation at steady state with a constant pig velocityUpig. To solve the flow
around the pig the Reynolds-AveragedNavier-Stokes (RANS) equations are used. To close
the RANS equations the realizable k-ε model is used. This turbulence model was tested
in previous work and was found suitable to predict the re-attachment length of the flow
in the wake of backward facing step [82] as well as the pressure loss contribution of the
different building blocks of the bi-directional pig [5]. Since the Reynolds number is high
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(Re = 107) in the CFD calculations, standard wall functions are applied for the near wall
region treatment. The effect of wall roughness is neglected. It is thus assumed that the
walls are hydrodynamically smooth.

OutletInlet

Figure 2.6: Numerical setup. The inlet is located at the left. The equations are solved in a refer-
ence frame that moves with the pig. As a result, the pipe wall moves with a velocity
Uwall = −Upig.

Figure 2.6 shows a schematic of the numerical setup. The RANS equations are solved
in a moving reference frame of the pig [5, 82]. This means that the walls have a nonzero
velocity Uwall equal to Uwall = −Upig. A User Defined Function (UDF) is applied at
the inlet to prescribe a fully developed turbulent pipe flow profile. At the outlet a constant
value for the static pressure is prescribed. In figure 2.7 the mesh that is used is shown. A
structured mesh for all the simulations is employed which is constructed by dividing the
domain in different sub-domains with a controlled number of nodes on each edge. This
way the number and shape of the computational cells in each region can be controlled.
Figure 2.7b shows the mesh in the cross-sectional plane indicated by the dashed black
line in figure 2.7a. An enlargement of the region within the white square in shown in
figure 2.7c. The black arrow indicates a region of mesh refinement. The location of this
mesh refinement corresponds to the radius of the horizontal by-pass area in order to refine
the grid near the wall of the by-pass area. The same procedure is applied to the mesh at
the inner pipe wall. The typical maximum value of y+ in the simulation is around 4500,
which is well within the range 30 < y+ < 20000 for which the flow is in the logarithmic
layer, and standard wall function can be used to predict the velocity profile, see [24, 51].

2.4 results

In this section the CFD results for the disk pig are discussed first. The obtained values for
the pressure loss coefficientK are compared with the correlation suggested in equation 2.8.
Next, the CFD results for the speed controlled pig are discussed. The obtained K values
will be compared with equation 2.10. For the disk pig axi-symmetry is assumed and the

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



22 characterization of the pressure loss coefficient using a building block approach

ch
ap

te
r

2

x/D (-)

0 0.1 0.2

y
/D

 (
-)

0

0.1

0.2

x/D (-)

-0.4 -0.2 0 0.2 0.4

y
/D

 (
-)

-0.4

-0.2

0

0.2

0.4

Figure 2.7: (a) Blocks that represent different regions in streamwise direction. (b) Details of the
mesh on the cross-sectional plane indicated by the dashed line in panel a. (c) Enlarge-
ment of the area indicated by the white square.
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CFD simulation is 2D, but for the speed controlled pig no axi-symmetry exists and the
CFD simulation is 3D.

2.4.1 disk pig

The flow around a disk pig has already been studied by Korban et al. [5]. In their study,
the relation between the pressure loss coefficient K and the parameters which govern the
disk pig model, was investigated. The K value of the disk pig was found to be around
2 to 3 times higher than the typical value that is found for a bi-directional pig (without
disk). However, a general correlation to predict the pressure loss coefficient K for a disk
pig was not given. Thus, in the present research, the flow around the disk pig is further
investigated. Table 2.1 summarizes the key parameters which define a base case for the
disk pig simulations. These parameters are based on a realistic scenario, which can be
found in [96]. The parameters will be varied through using the following dimensionless
numbers which define the disk pig geometry:

• Horizontal by-pass area fraction: (
d

D
)2

• Dimensionless disk height:
H

D

• Disk by-pass area fraction:
4dh

D2

As discussed in section 2.2, the effect of the dimensionless disk thickness t/D as well
as the dimensionless pig length Lpig/D are not studied here.
First of all, the flow features of the disk pig are presented. Interestingly, two different

types of flow behaviour around the disk pig have been observed in the simulation results.
Secondly, various parameter studies are carried out, in order to study the relation between
the pressure loss coefficient K and the governing parameters of the disk pig model.

2.4.1.1 Flow features of disk pig

Figure 2.8 shows the streamlines that represent the mean flow around the disk pig. The
fluid enters the pig through a sudden contraction. The flow behaviour in this region is sim-
ilar to that of the conventional bi-directional pig [5]. After the horizontal by-pass region,
the flow moves around the disk. In the disk by-pass region, the flow expands radially out-
ward and has a jet-like structure. The flow subsequently detaches from the disk creating a
recirculation zone downstream of the pig. To give insight in the pressure loss for the disk
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Table 2.1: Key parameters that govern the disk pig study.

Parameter Value
Bulk velocity U 2.87m/s
Horizontal by-pass area (%) 10%
Disk by-pass area (%) 8%
Pipe diameter D 1.16m
By-pass pig diameter d 0.3668m
Upstream pipe length Lup 5D
Downstream pipe length Ldown 20D
Pig length Lpig 2m
Pig velocity 2m/s
Distance between the pig body and the disk h 0.06303D
Disk diameter H 0.396D
Disk thickness t 0.00862D
Density ρ 68 kg/m3

Viscosity µ 2.264 E-5 kg/ms
Reynolds number Re 1 E+7

pig, the streamlines in figure 2.8 are colour coded with the local value of the total pressure
coefficient Ctp. Here Ctp is defined as:

Ctp =
Pt − Pt∞
1
2ρU

2
bp

, (2.12)

where Pt is the local total pressure and Pt∞ is the total pressure downstream of the pig.
As the total pressure is the sum of the static pressure and the dynamic pressure, Ctp can
be associated with the irreversible losses in the system. As can be seen in figure 2.8, the
recirculation zone is associated with dissipation in the flow, which is reflected in the low
value of the total pressure coefficient Ctp after the flow has detached from the pig.

In general, two different types of flow behaviour are found. Figure 2.8a shows the first
flow behaviour. A jet is formed in the disk by-pass region. After the jet has moved away
from the disk by-pass region, it first contacts the pig wall. Then, the jet moves along the pig
wall towards the pipe wall. There is a small recirculation zone between the jet and the pig
wall upstream of the disk. Another large recirculation zone is observed downstream of the
disk. Figure 2.8b shows the second flow behaviour around the disk pig. After the disk by-
pass region, the jet does not first contact the pig wall, but it contacts the downstream pipe
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Figure 2.8: (a) Flow behaviour A. (b) Flow behaviour B. The streamlines are colour coded by the
value of the total pressure coefficient.

wall directly. Thus, the recirculation zone between the pig body and the jet is located in the
corner of the pig wall and the downstream pipe wall. The main recirculation zone is still
located downstream of the pig. In this research, the flow behaviours shown in Figure 2.8a
and Figure 2.8b are referred to as “flow behaviour A”and “flow behaviour B”, respectively.
Most importantly, the pressure drop across the disk pig is strongly dependent on the flow
behaviour around it, which is reflected in the higher value of Ctp upstream of the pig for
flow behaviour B compared to flow behaviour A.
Interestingly, the two flow solutions depicted in figure 2.8 are found for the same ge-

ometrical by-pass pig model subjected to the same boundary and inlet conditions. The
equations thus allow for multiple steady state solutions. The applied parameters are as
summarized in Table 2.1 but with a horizontal by-pass of 9% instead of 10%. The differ-
ence in steady state flow behaviour is caused, however, by a difference in initial condition.
Flow behaviour A is part of the converged iterative solution of the steady state equations
that are solved in Fluent using the default initialization scheme. Also another approach
was taken in which the transient solver was used to reach steady state. In this case flow be-
haviour B was found. This solution was verified to indeed obey the steady state equations
by initializing the steady state solver with flow behaviour B obtained from the transient
simulation. Thus, for a disk pig model with certain governing parameters, two completely
different numerical solutions can be achieved, and both solutions are in steady state. More
details for the two solution region are provided in A. Multiple stable solutions for flow
over a confined axisymmetric sudden expansion have been observed before, see for ex-
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ample [81]. The direct attachment of the jet (behaviour A) can be induced by the Coanda
effect and can cause hysteresis in the flow behaviour [92, 93]. According to the literature,
it is also possible that an emerging jet in a confinement shows persistent oscillatory be-
haviour, instead of the two distinct steady states [77]. This oscillation, however, was not
observed in the current study.

2.4.2 parameter study

In this section the parameters which govern the disk pig model are varied to investigate
the effect on the pressure loss coefficient K. Figure 2.9a shows the value of Ctp along
the centreline of the disk pig shown in figure 2.8. The pressure loss coefficient K can now
readily be determined:

K = Ctp,up −Ctp,down, (2.13)

whereCtp,up andCtp,down are the total pressure coefficients upstream and downstream
of the pig, respectively. As was already shown in the previous section, flow behaviour B
is associated with a higher loss coefficient compared to flow behaviour A, which amounts
to a difference of 30%. The effect of the dimensionless parameter (d/D)2 on the two
solutions and on K is also investigated by changing (d/D)2 from 5% to 12.5%. This
result is shown in figure 2.9b. The two solution region was found to be in the region:

7.8% < (
d

D
)2 < 11.3%. (2.14)

More details on the exploration of the two solution region can be found in A. Furthermore,
the values of K obtained from the CFD simulations are compared with the correlation
given by Equation 2.8. Good agreement between the correlation for the disk pig and the
CFD values was found, provided that the flow exhibits behaviour B.

Next, the effect of the disk diameter H is investigated through changing the dimen-
sionless number H/D from 0.325 to 0.55, while keeping the other parameters fixed. Fig-
ure 2.9c shows that when the disk has a relatively small disk height (when H/D < 0.35),
the flow around the disk pig has behaviour B, while for H/D > 0.375, the flow around
the disk pig has behaviour A.
The obtained CFD results are again compared with Equation 2.8 (the latter is repre-

sented by the black solid line in figure 2.9c). Similar as was found for the parametric
study of the horizontal by-pass area it can be concluded that Equation 2.8 describes Kdp
accurately if the flow around the disk pig has behaviour B.WhenH/D is larger than 0.375
and when the flow around the disk pig exhibits behaviour A, the pressure loss coefficient
is found to have a constant value around Kdp = 3.83.
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Figure 2.9: (a) Total pressure coefficient along the centerline. (b) Pressure loss coefficient as func-
tion of the horizontal by-pass area (d/D)2. (c) Pressure loss coefficient as function of
H/D (d) Pressure loss coefficient as function of the disk by-pass area 4dh/D2. Values
between the vertical dashed lines in b-d indicate the validity of Equation 2.8.

Finally, the parameter study of the disk by-pass area fraction 4dh/D2 is carried out. In
this parameter study, the parameters are again kept fixed as shown in table 2.1, and change
the distance between the pig body and the disk h, in order to change the dimensionless
parameter disk by-pass area 4dh/D2 from 6% to 20%. Figure 2.9d shows the result of
the obtained loss coefficient Kdp as a function of the disk pig by-pass area 4dh/D2. It
is found that when the parameter h is relative small (when 4dh/D2 < 8%), the flow
around the disk pig has behaviour A, and when 4dh/D2 > 10%, it changes to behaviour
B. Equation 2.8 is represented by the black solid line. Similar as found in the two previous
parameter studies, Equation 2.8 can predict Kdp accurately if the flow around the disk pig
has behaviour B. Even though the points with flow behaviour B are partially out of the
range for which Equation 2.8 is reported to be valid, good agreement with the CFD results
is found.
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Table 2.2: Key parameters that govern the speed controlled pig study.

Parameter Geometry 1 Geometry 2
Horizontal by-pass area (%) 10% 30%
By-pass pig diameter d 0.3668m 0.6354m
Upstream pipe length Lup 2D 2D
Distance between the pig body and the disk h 0.1118D 0.2236D
Disk diameter H 0.4835D 0.7071D
Inner diameter holes Hi 0.4472D 0.4472D
Disk thickness t 0.07071D 0.07071D
Number of holes n 4 4

2.4.3 speed controlled pig

This section is focused on the pressure drop coefficient of the speed controlled pig with the
geometry depicted in figure 2.5. For the speed controlled pig four by-pass adjusting holes
are generated to represent the by-pass adjusting device (which gives the dimensionless
parameter n = 4). The angle of the by-pass adjusting holesω is changed to represent the
speed control process. Through changing ω the dimensionless number 4hHi(nω/360)

D2

is changed. This number represents the by-pass area fraction of the holes of the speed
controlled pig. This dimensionless number is additional to the ones which already have
been studied for the disk pig in the previous section. The effect of this dimensionless
number on the pressure loss coefficient of the speed controlled pig is studied for two base
geometries: one with a horizontal by-pass area of 10% and one with a horizontal by-pass
area of 30%. The specific parameters of these two models are summarized in Table 2.2.
The other parameters used in the simulation are unchanged with respect to the ones used
in the previous section and can be found in Table 2.1. The maximum opening angle of the
by-pass holes is 45 degrees. This means that the total opening with 4 holes is 180 degrees
which is the maximum that can be achieved with a rotating valve. The distance of the disk
to the pig body is matched in such a way that for an opening angle ω = 45 degrees the
by-pass area of the holes is equal to the horizontal by-pass area. When the holes close, the
by-pass area of the holes decrease, and will be smaller than the horizontal by-pass area.
This ensures that the main pressure drop occurs through the holes, which enables control
over the pressure loss as intended. As a consequence the maximum velocity in the system
will always be located at the by-pass holes.

Figure 2.10 shows a typical result obtained for the flow around the speed controlled pig.
This model has a horizontal by-pass area of 30% and the opening angle of the holes ω
is 45 degrees. As can be seen from Figure 2.10a, the jets formed in the by-pass adjusting
holes contact the pipe wall directly, and there is a recirculation zone both at the corner of
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Figure 2.10: (a) Streamlines around the speed controlled pig. (b) Streamlines in the region of the
by-pass holes. The dashed black line indicates the same position in both panels.

the pig body and at the pipe wall. This is thus similar to flow behaviour B for the disk pig.
This flow behaviour is observed for all the cases which were investigated for the speed
controlled pig. This is mainly due to the location of the disk, which is typically placed at
a larger distance from the pig body for the speed controlled pig compared to the disk pig.
The main recirculation zone is in the downstream pipe and is much more complex than
in the disk pig case. This is because there are four three-dimensional main jets formed in
the four by-pass adjusting holes, and when the jets bend around the disk, the jet-like flow
mixes again in the downstream pipe. A close up of the jets emerging from the by-pass
holes is depicted in figure 2.10b. Similar to the disk pig, the main pressure drop occurs
at the exit of the by-pass pig, which is shown by the streamlines which are colour coded
with the value of the total pressure coefficient.

Next, a parameter variation of the two by-pass geometries listed in table 2.2 is carried
out. As the maximum velocity is always located in the holes it is intuitive to use this veloc-
ity to scale the pressure drop coefficient. Note that until now, the velocity in the horizontal
by-pass areaUbp has been used to scale the pressure drop. Therefore, a modified pressure
loss coefficient K′ is defined which uses the velocity in the holes as a velocity scale. K′
can thus be related to K as:

K′ =

[
4hHi(nω/360)

d2

]2
K. (2.15)

The parametric study is carried out by choosing the following values forω: 11.25◦, 22.5◦,
37.75◦ and 45◦. The results are depicted in figure 2.11.
It is noted that for ω = 45◦ the by-pass area of the holes is equal to the horizontal by-

pass area. In addition, the proposed correlation Equation 2.10 is included. This correlation
is based on treating the speed controlled pig as an effective disk pig, as explained in sec-
tion 2.2. The proposed correlation, despite the simplified approach, is able to predict the
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Figure 2.11: (a) Pressure loss coefficient as function of the by-pass area fraction of the holes for a
horizontal by-pass area fraction of 0.1. (b) Pressure loss coefficient as function of the
by-pass area fraction of the holes for a horizontal by-pass area fraction of 0.3.

right trend that is given by the CFD results. However, especially for lower values of the
by-pass area, the suggested correlation overpredicts the results. Nonetheless the correla-
tion can help to give a first estimation of the pressure loss coefficient of a speed controlled
pig with a geometry as approximated by the schematic as shown in figure 2.5.

2.5 conclusions

In this chapter a building block approach was applied to describe the pressure loss coeffi-
cient K of various by-pass pig geometries. First of all, K of the conventional bi-directional
by-pass pig has been revisited. Subsequently, new correlations for more complex geome-
tries have been proposed and compared with CFD simulations using the building block
approach. This building block approach allowed to construct correlations and for the disk
pig geometry and the speed controlled pig geometery. A two solution region was found
for the disk pig geometry, which means that there are two stable flow behaviours (type A
and type B) within the RANS framework of the current study. Good agreement was found
between the proposed correlation for the disk pig and the CFD results, provided that the
flow exhibits flow behaviour B. In addition, the pressure loss coefficient of the speed con-
trolled pig was characterized. It was found that a correlation based on an equivalent disk
pig gives qualitatively the right trend, but deviates quantitatively for small opening angles
of the holes of the speed controlled pig. Further research is needed to predict K also for
small opening angles of the holes. It is also of interest to further investigate the two solu-
tion region that was found for the disk pig. The boundary of the two solution region may
be sensitive to the parameters of the RANS model, most notably the turbulence model.
It would also be interesting to investigate the existence and stability of the two solution
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region experimentally in order to further verify the CFD modelling. The proposed build-
ing block approach has been successfully applied to describe the pressure loss coefficient
of various by-pass pig geometries, and may also be applied to systematically model the
pressure loss coefficient of complex flow geometries in general.
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This chapter is adopted from M.H.W. Hendrix, C.M. Graafland, and R. van Ostayen, "Frictional forces for
disc-type pigging of pipelines". In: Journal of Petroleum Science and Engineering 171 (2018), pp. 905-918.
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3.1 introduction

Pipelines that are used for the transport of fluids represent significant costs and need reg-
ular maintenance [78, 79]. In the oil and gas industry this is usually done by sending
so-called pigs through the pipeline, see Figure 3.1a. Such a pig travels along with the
production fluids through the pipe and can serve multiple maintenance purposes. For ex-
ample pigs are used to remove wax particles that may have been deposited at the pipe
wall [74, 85, 94, 95] or to sweep out unwanted liquid accumulation in a pipeline that is
used for multiphase gas-liquid transport [21, 96]. Apart from cleaning purposes, pigs can
be equipped with sensors which inspect the condition of the pipe wall. This is also referred
to as intelligent pigging [63, 74]. For a detailed overview of pigging applications and pig
types, the reader is referred to [15, 90]. In any case the pig is driven by the production
fluids which are transported through the pipeline. This means that the pressure difference
that is generated over the pig has to overcome the frictional force between the pig and the
pipe wall. To ensure a safe and effective pigging operation it is thus required to know the
frictional force in order to prevent too high pressures in the system.

Figure 3.1: (a) A pig travelling inside a pipeline (b) Undeformed sealing disc. (c) Deformed sealing
disc.

A conventional pig completely seals the pipeline with a flexible sealing disc, see Fig-
ure 3.1. The radius of the sealing disc usually has an oversize compared to the inner pipe
radius, which ensures a tight seal between the pig and the pipe wall. The travel velocity
of a conventional pig through a pipeline is therefore equal to the mixture velocity of the
upstream fluids. In some cases it is desired to lower the travel velocity of the pig, as it may
cause damage to the pipeline or the pig itself. Also for cleaning, liquid removal, and in-
spection purposes it is beneficial to reduce the pig velocity [12, 63, 91, 96]. A solution to
achieve a lower pig velocity without causing production loss is the use of by-pass pigs [96].
By-pass pigs have a by-pass hole which allows the production fluids to flow through the
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pig. As a result the pig velocity is not dictated by the upstream mixture velocity anymore,
but it is, in a horizontal pipe, determined by a balance of the by-passing fluid force and
the frictional force of the pig with the pipe wall. The force on a by-pass pig due to the by-
passing fluids has been previously studied for various by-pass pig configurations, see [35,
82]. The main focus of the current study is on the frictional forces which are encountered
during pipeline pigging. As the pig contacts the pipe wall through the sealing disc, the
effect of the properties of the sealing disc on the frictional force is of interest. The exter-
nal force of the pipe wall on the sealing disc is distributed along the circumference and
has unit Newton per meter circumference. The distributed force can be decomposed in a
distributed friction force (F ′fric) oriented parallel to the direction of movement of the pig
and a distributed wall normal force (F ′wall), as shown in Figure 3.1c. At the onset of sliding
the ratio of these two distributed forces gives the local Coulomb friction coefficient.
Almost no models are available to estimate the frictional force during pipeline pigging:

predictions often rely on empirical findings and on field experience [14, 22]. For example
Cordell [14] presents a diagram in which the driving pressure that is needed to overcome
the frictional force is solely dependent on what type of pig is used (e.g. a cleaning pig
versus an inspection pig). However, no information on the geometrical or material proper-
ties of the sealing disc is present in this approach. O’Donoghue [70] presents a simplified
model which does include geometrical and material properties of the sealing disc into a
friction model. This model assumes that the deformed sealing disc adopts the shape of
an circular arc and subsequently evaluates the internal stresses in the sealing disc which
can be used to predict the frictional force. Despite that the model contains more physics
than for example Cordell’s model, it is known to systematically underpredict the friction
force [34, 70]. Rather than relying on a simplified model, another approach is to perform
a full Finite Element (FE) calculation of the sealing disc, which has recently been un-
dertaken in [99, 100]. Clearly, an axisymmetric 2D or even full 3D FE approach has the
advantage that it contains more physics than for example a simplified axisymmetric 1D
approach, such as for example the model of O’Donoghue [70]. On the other hand, it is
more difficult to embed case specific FE calculations in already existing tools.
Two types of laboratory approaches to experimentally study the frictional force of a

sealing disc have been found in the literature. One approach consists of a pull test in which
a sealing disc/pig is pulled through a pipe while monitoring the pulling force [100, 101].
An advantage is that in steady state motion this pull force can be directly related to the
friction force. A disadvantage is that the wall normal force is not directly measured, and
therefore the Coulomb friction coefficient is unknown. Another approach relies on fixating
the sealing disc while pressing it against a rotating steel plate which mimics the pipe wall,
see [86] in which this setup was used to study wax removal from a pipe wall. Such a setup
can be used as a tribometer in which the load and friction force can be simultaneously
measured which enables to measure the friction coefficient for various contacts [52, 84].
While the Coulomb friction coefficient can be carefully characterized with such a setup,
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a disadvantage is that the friction force of a sealing disc in a confining pipe geometry is
not directly measured.

In the present research a static experimental setup is presented which is used to simul-
taneously measure the friction force and the wall normal force acting on a sealing disc
in a confining pipe geometry. The static setup is a modified and improved version of the
setup described in [34], which will be explained in the Section 3.2. Six 12′′ off the shelf
sealing discs from two different vendors have been used in the experiment. A flexible
hull is wrapped around the sealing disc and F ′wall is subsequently generated by reducing
the diameter of that hull. F ′fric is generated by pulling the disc in the axial direction. The
forces are recorded in static equilibrium. The forces that are applied in static equilibrium
are the same as for a sealing disc that moves in steady state motion through a pipeline.
By changing the force ratio between the friction force and the wall force the Coulomb
friction coefficient which would apply to a sealing disc which moves at steady state is
thus mimicked. The experimental setup thus allows to study the effect of the friction co-
efficient which is difficult to study in a dynamic experiment in which a sealing disc is
pulled through a pipe and the wall force is generally unknown. The results from the static
setup, which is referred to as static pig pull facility, are captured by 2D axisymmetric FE
calculations for which appropriate boundary conditions are formulated. A detailed com-
parison is made for both the involved forces as well as the shape of the deformed sealing
disc. Apart from the friction coefficient, the effect of the oversize, the thickness, and the
Young’s modulus of the sealing disc on the friction force are investigated.

Next to the static pig pull facility, a new dynamic pig pull experiment is designed which
is used to present a case example of how the results of the static pig pull facility can be re-
lated to a dynamic pull test. In this dynamic experiment the sealing disc is pulled through
a 1.7 meter vertical pipe while monitoring the pull force. The effect of possible lubri-
cation by applying water at the sliding contact is investigated. The difference in friction
coefficient between a dry and wet contact is quantified.
The outline of this chapter is as follows. In Section 3.2 the experimental setup of the

static and the dynamic pig pull facility and the applied measurement procedure are ex-
plained. At the end of the section the numerical setup for the FE calculations and the
applied boundary conditions are discussed. Section 3.3 presents the results from the static
pig pull facility and a direct comparison with the FE calculations is made. Subsequently
the results from the dynamic pig pull facility are presented and linked to the results of the
static experiments. Section 3.4 concludes and discusses possibilities for future research.
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3.2 methods

Inspecting Figure 3.1b we can identify two dimensionless numbers pertaining to the un-
deformed geometry of the sealing disc. There is a dimensionless thickness t ′ and a dimen-
sionless clamping ratio r ′p, which are defined as:

t ′ =
t

rs − rp
, (3.1)

r ′p =
rp

rs
. (3.2)

Here t is the thickness of the sealing disc, rs is the outer radius of the sealing disc, and rp
is radius of the spacer discs which are used to attach the sealing disc to the pig body. A
third geometrical dimensionless number could take the presence of a possible chamfer into
account, see Figure 3.1b. The dimensionless chamfer height can be for instance defined
as c ′ = c/t, where c is the length of the chamfer which is for simplicity assumed to
be under an angle of 45 degrees. The effect of a variation in chamfer size is discussed
in Section 3.3.4. Two additional dimensionless numbers can be introduced for the sealing
disc which is deformed due to the confinement of the pipe wall, see Figure 3.1c. We define
the oversize parameter ∆ and the force ratio µ as follows:

∆ =
rs − R

R
× 100%, (3.3)

µ =
F ′fric
F ′wall

. (3.4)

Here R is the inner pipe radius, F ′fric is the distributed friction force and F ′wall is the dis-
tributed wall normal force. Most sealing discs are made of polyurethane. This elastomer
has a high abrasion resistance, tear strength and resistance to hydrocarbons [70]. The
chemical composition of the sealing disc is proprietary to the manufacturer of the pig and
it influences the Young’s modulus of the material, which is also referred to as E-modulus.
The E-modulus is usually an input parameter for deformation models. Unfortunately, man-
ufacturers do not specify the E-modulus of their product. Instead they specify the Shore A
hardness, which is a measure of the resistance of a material to indentation. Typical values
for the Shore A hardness of sealing discs are in the range of 60 - 85 [15].
In this study a total of six sealing discs have been studied, see Table 3.1. These discs

have been obtained from two different pigging vendors, here anonymously named X and
Y. The discs from both vendors are intended for pigging of 12′′ pipelines. From vendor X,
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Table 3.1: Overview of the sealing discs used in this study. Both the geometry
and the material properties of the discs are listed. One set of spacer
discs is used for all experiments (rp= 86 mm).

Disc A Disc B Disc C Disc D Disc E Disc F
Batch X1 Y X2 X2 X2 X3
rs (mm) 163.3 161.2 155.2 155.0 154.7 155.4
t (mm) 15.9 15.2 13.6 15.5 17.4 15.4
r ′p (-) 0.527 0.533 0.554 0.555 0.556 0.553

t ′ (-) 0.203 0.202 0.197 0.224 0.254 0.221
Shore A hardness 75 (75.6)b 75 (79.6)b 75 75 75 65
E-modulus (MPa) 8.5 13.7 10.1a 10.1 10.1a 6.0
a The E-modulus of this disc is not obtained in a test, but assumed to be equal to the
E-modulus of disc D. This disc is from the same batch as disc D, and only has a
different thickness.

b Values as measured according to ASTM D2240, see Appendix B.

three different batches were obtained: X1, X2, and X3. The Shore hardness as specified
by the manufacturer is listed. As the E-modulus was not specified it was determined by
material tests. These tests consisted of a stress strain analysis using representative dog
bone samples from the disc. In addition to the stress strain tests, the Shore hardness of
disc A and disc B was determined. A value of respectively 75.6 and 79.6 was found, which
are put in between brackets in Table 3.1. The value of disc A is within the specification
of the manufacturer, but the value of disc B is slightly higher. The details of the material
tests can be found in Appendix B. In any case it is clear that the value of the specified
Shore hardness cannot be used to deduce the E-modulus, for example by using the Gent
equation [26], as discs with the same specified Shore hardness turn out to have different
values for the E-modulus. The radius of the spacer discs is kept constant in the experiments
and is equal to 86 mm. All experiments have been performed at room temperature.
Disc A and disc B are the main discs that are used in our experiments. They have similar

properties except that they come from a different vendor and have a different E-modulus.
Disc C, D, and E are from the same vendor and from the same batch. They have similar
properties, except for the variation in the thickness of the discs. These discs are used to
study the effect of the thickness on the friction force. Discs C and disc F have similar
properties except for the E-modulus. These discs are thus used to study the effect of the E-
modulus on the friction. The effect of the oversize ∆ and of force ratio µ are investigated
for all the discs, as the experimental setup is designed to easily vary these parameters,
which will be explained in the next section.
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3.2.1 static pig pull facility

Deformation of the sealing disc is caused by the external forces F ′wall and F
′
fric. In static

equilibrium these forces are balanced by internal stresses in the polyurethane disc. The
ratio of the external forces F ′fric and F ′wall gives the force ratio µ, see equation 3.4. This
force ratio would be equal to the Coulomb friction coefficient of a sealing disc which
moves at steady state through a pipeline on which the same forces act. The friction coef-
ficient is a difficult parameter to predict, since it depends on both the material properties
of the sealing disc and the local conditions of the inner pipe wall. Furthermore, it also de-
pends on the type of fluids that are being transported, as these fluids may act as lubricant
which can decrease the friction coefficient [72, 84]. Instead of trying to predict this force
ratio, an experiment is designed in which the force ratio can be imposed, see Figure 3.2.
The experimental setup is a modified version of the setup presented in [34] and works as
follows.
The setup consists of a flexible hull which is wrapped around the sealing disc, see

Figure 3.2a. By applying a force F1 on the hull, the diameter of the hull will be reduced.
As a result the sealing disc will deform and the corresponding force F1 is recorded by
a force sensor. The diameter reduction of the hull mimics the confinement of the pipe
wall which determines the oversize parameter ∆, see equation 3.3. The oversize can thus
be easily varied by changing the diameter of the hull. We define the magnitude of the
distributed wall force and friction force integrated along the edge of the pipe as Fwall and
Ffric respectively:

Fwall = 2πR
∣∣F ′wall

∣∣ , (3.5)

Ffric = 2πR
∣∣F ′fric

∣∣ . (3.6)

The unit of Fwall and Ffric is Newton. By applying the principle of virtual work, Fwall can
be related to the circumferential force F1:

Fwalldr = F12πdr

Fwall = 2πF1.
(3.7)

Here r represents the radial coordinate. A second force F2 is generated by displacing the
centre of the disc in axial direction, see Figure 3.2a/b. The force sensor which records F2
is located at the back of the setup. This force is equal to the friction force Ffric in the axial
direction between the hull and the sealing disc:

Ffric = F2. (3.8)
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Figure 3.2: (a) Schematic of the setup. (b) Front view of the setup. (c) Side view of the setup. (d)
Close-up of the steel ring and roller bearing.

The force ratio can now be expressed in terms of F1 and F2:

µ =
Ffric

Fwall
=

F2
2πF1

. (3.9)

By changing F2 and F1 the force ratio can be readily varied. In order to be able to obtain
higher values of the force ratio as compared to [34], a 2 mm steel ring has been welded
onto the hull in the circumferential direction, see Figure 3.2d. This ring prevents that the
disc slides in the axial direction when F2 is increased.
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A side view of the setup is shown in Figure 3.2c. Here it is visible that the back of the
flexible hull is supported by roller bearings which are mounted on the frame. Figure 3.2d
shows a close-up of one of the six roller bearings which are used. The addition of roller
bearings is an improvement compared the setup as presented in [34]. The roller bearings
ensure that very little friction exists between the hull and the frame. This is especially
important when the axial force F2 is increased, which effectively pushes the hull against
the roller bearings. Without the roller bearings a friction force between the hull and the
frame could exist which would result in an under prediction in the value of F1. The setup
is operated in such a way that static equilibrium is reached. The corresponding values for
Ffric and Fwall in this static situation represent the same force balance that would apply to
a sealing disc on a pig that moves in steady state motion in a pipeline.

Figure 3.3: (a) Profile comb. (b) Deformation extracted from the profile comb.

Next to the forces that act on the sealing disc also the deformation of the sealing disc is
measured. This is done by mounting a profile comb on the spacer disc, see Figure 3.3. The
profile comb is subsequently pressed against the sealing disc in order to measure the shape.
The rotation of the profile comb can be adjusted which allows to measure the deformation
at different positions. Deformation measurements in addition to force measurements pro-
vide a more complete set of results compared to force measurements alone, as was done
in [34]. Figure 3.3a shows the profile comb in a 3 o’clock position, but also the 12 o’clock
and 6 o’clock position have been employed. These different positions allow to verify if
the deformation of the sealing disc is axisymmeteric. A camera holder is used to take a
photo in the same plane as the profile comb. Subsequently the deformation is obtained by
extracting the position of the pins using image processing. The detected location of the
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pins is shown by the red dots in Figure 3.3b. Even though this study focuses on pigs with
a sealing disc, the experimental setup could be used to study other types of pigs, such as
pigs with cups or foam pigs [74]. In case of foam pigs it however makes less sense to at-
tempt to measure any deformation in axial direction, as a foam pig is mainly compressed
in radial direction. In the next section the measurement procedure and a typical result
obtained from the force sensors are discussed.

3.2.1.1 Measurement procedure

The measurements were performed with two 24-bit GSV-2TSD-DI data acquisition de-
vices connected to a 1 kN and 2 kN load cell (KD40S, ME-Systeme) which record the
circumferential force F1 and the axial force F2, respectively. The measurements were per-
formed at a sample frequency of 10 Hz and logged onto a computer. The procedure of
a typical measurement is as follows. First, the disc is brought to a specific oversize by
applying a force F1 which reduces the diameter of the hull. The oversize is kept fixed
within one experiment. Subsequently, the disc is step-wise displaced in axial direction re-
sulting in a force F2. One step corresponds to a rotation of the screw that can be seen in
Figure 3.2b. The lead of the screw is 1.5 mm. One rotation is made in approximately 30
seconds to maintain static equilibrium. The axial force F2 is increased up to a predeter-
mined maximumwhich is just below the value which would result in the disc moving over
the steel ring, see Figure 3.2d. After reaching a maximum value, F2 is decreased in steps
to come back at a value of 0 N. This procedure is repeated three times per measurement.
Figure 3.4a shows one typical time series of measurement data which were obtained by
applying the procedure to disc B subjected to an oversize ∆ = 4%.
Figure 3.4a clearly shows the stepwise behaviour in the forces, which corresponds to

the stepwise adjustment of F2 as explained above. It is noted that an increase in F2 corre-
sponds to a decrease in F1 and vice versa. This is expected as the disc is not only deformed
by a wall normal force (related to F1), but also by a friction force (equal to F2). The cor-
responding value of the force ratio µ according to equation 3.9 is included in Figure 3.4a.
For the axial force F2 three zones can be distinguished: a rise zone, where F2 increases, a
rest zone, where F2 does not change and a relax zone, where F2 decreases. The rest zone
lasts longer and is noisier compared to when F2 is increasing, because here the profile
comb is used to determine the deformation at three different positions on the sealing disc:
12 o’clock, 3 o’clock and 6 o’clock.

Figure 3.4b shows an alternative way of plotting the same data. The forces F1 and F2
are now plotted as function of µ. The data are colour coded to distinguish between the
rise, relax, and rest zones. In this plot now all three time series of the measurement are
included. The inset in Figure 3.4b shows a close up of the data. The data from the three
data sets are very close to each other, which thus confirms the excellent reproducibility
of the experiment. It can also be seen that the data from the relax zone, as shown in blue,
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Figure 3.4: (a) Time series of typical force data and corresponding force ratio as obtained in the
experiment. (b) Force data plotted as function of the force ratio µ. A close-up of the
data between µ equal to 0.29 and 0.31 is included.

differ from the data from the rise zone, which points out that a small hysteresis is present
in the experiment.
A total of six different sealing discs have been used in the experiments as listed in

table 3.1. Disc A and disc B were tested at four oversizes: 1%, 2%, 3% and 4%. Deforma-
tions were measured for disc A and disc B. Similar sets of experiments are conducted for
disc C till disc F at oversizes of 3% and 4%. Deformations are not measured for these discs.
Comparing the results for disc C, D and E will show how the thickness affects the friction
force at different µ values, as the discs are identical except for their thickness. Comparing
the results of disc D and disc F will show how the E-modulus affects the friction force at
different µ values, as these discs are identical except for their E-modulus. The results of
the static measurements will be presented and discussed in Sections 3.3.1 and 3.3.2.
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3.2.2 dynamic pig pull facility

To study the dynamic friction force a new dynamic pig pull facility has been designed,
see Figure 3.5. The setup consists of a 1.7 m vertical carbon steel pipe through which a
sealing disc can be pulled at a preset velocity using a linear actuator. The inner radius of
the pipe is 157 mm. The linear actuator (Thomson, ECT130) is connected to a brushless
AC servomotor (AKM63), which is located at the top end of the pipe. The actuator is able
to translate a spindle which has a total length of 2 m and a lead of 20 mm. At the lower
end of the spindle a 5 kN load cell (AXH Scaime) is connected to which the sealing disc is
attached, see Figure 3.5a/b. The load cell is able to directly measure the propulsive force
which is needed to pull the sealing disc through the pipe. Simultaneously the position,
velocity and acceleration are monitored with a logging frequency of 200 Hz. The speed
of the sealing disc can be varied between 5 and 300mm/s. The pipeline is placed vertically
which makes it possible to add liquids uniformly on top of the sealing disc, see Figure 3.5a.
Herewith the effect of possible lubrication on the frictional force caused by the presence
of a liquid can be investigated. For a sealing disc moving in an upwards direction in the
pipe, the steady state force balance reads:

Fm = Ffric + Fg, (3.10)

where Fm is the propulsive force of the servomotor, Ffric is the friction force between the
sealing disc and the pipe wall and Fg is the gravitational force. In dry experiments Fg is
due to the mass of the sealing disc and of the spacer discs. In wet experiments also the
mass of the lubricant supply on top of the disc has to be taken into account.
A by-pass is created by drilling three holes in the spacer discs, see Figure 3.5a. For the

wet experiments, this allows the lubricant to flow through the disc into the leakage tray
when the liquid level equals the height of the upper spacer disc. With a minimum amount
of lubricant a wet sliding contact can be obtained.

3.2.3 measurement procedure

Rather than a parameter study, as is conducted with the static pig pull facility, only one
disc (disc A) is used in the dynamic pig pull experiments as case study. A measurement
commences with the spindle in its most extended position with the sealing disc mounted
on it (approximately 30 cm below the pipe), see Figure 3.5b. This is called the home
position of the disc. From here the sealing disc is pulled slowly at a velocity of 5 mm/s to
the initial position, which is 50 mm into the pipe. The disc is kept in this position for 60
seconds to make sure that possible settling effects are no longer present. After this delay
time the actual pull test begins and the disc accelerates, moves up through the pipe at the
preset velocity, and then decelerates until rest in its final position at the top of the pipe.
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Figure 3.5: (a) Schematic of the dynamic pig pull facility (b) Photograph of the dynamic pig pull
facility

Three preset velocities have been used: 100, 200, and 300 mm/s. The spindle acceleration
and deacceleration are set to 100 mm/s2. When the disc is moving up, both the motion
(position, velocity, and acceleration) and the propulsive force are monitored. No data are
logged when the disc moves back down, as only pull tests are considered in this study.
In the wet experiments an additional step is added to the procedure. After the disc is

positioned in the start position, water is inserted from a small tap at the top of the pipeline
until it starts leaking through the by-pass holes, see Figure 3.5a. The top part of the sealing
disc and the adjacent pipe wall are now wetted. Subsequently, the tap is closed and the
leakage tray is emptied before it is put back under the pipe. The pull test can now begin.
When the disc is moving upwards the water leaking past the sealing disc or through the
by-pass holes is negligible. In this way it is thus possible to create a wet contact between
the pipe wall and the sealing disc. At the end of the pull test the disc is returned back to its
start position. When the disc starts moving down it buckles to the opposite side and as a
result the water flows through the by-pass holes and is collected into the leakage tray. The
mass of the water (approximately 1 litre in volume) is determined and used in the force
balance, see Equation 3.10. In this study only water is used as lubricant.
The two spacer discs are separated by a small length of tube, and this tube therefore

determines how tight the sealing disc is clamped between the spacer discs. Three config-
urations are created by selecting three values for the length L of the tube which is shown
Figure 3.5b. To the best knowledge of the authors the effect of this parameter on the fric-
tional force of a sealing disc of a pig has not been reported in previous studies. As will
become clear in Section 3.3.3 the length L of the tube influences the outer diameter of the
sealing disc, and therefore the oversize, due to the nearly incompressible behaviour of the
polyurethane. For all three configurations wet and dry experiments are conducted at vary-
ing speeds. Each separate experiment is repeated five times for reproducibility purposes;
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the first two runs are used to mitigate any settling effects of the disc and the last three runs
are used in the actual analysis. Next to the varation of L the disc is placed in both a face
up and face down orientation to investigate the presence of any possible asymmetries.

3.2.4 finite element model

Comsol Multiphysics (version 5.2) is used in this study for the Finite Element (FE) analy-
sis. We solve the structural mechanics problem in which we solve for the deformation of
the sealing disc which is caused by the wall force and the friction force which act on the
chamfer of the sealing disc, see Figure 3.6. We consider static equilibrium, in which case
Newton’s second law reads:

∇ · σ = 0. (3.11)

Here σ is the Cauchy stress tensor. The stresses are calculated using a linear isotropic
material model. The E-modulus which is used has been determined by material tests and
can be found in Table 3.1. The Poisson’s ratio ν is taken equal to 0.49. Since the typical
deformation which occurs can be in the order of a few times the thickness of the sealing
disc, a nonlinear geometry model is used. We assume an axisymmetric geometric model.
Figure 3.6 shows the typical mesh which is used for the calculations. Second order

quadratic elements are used. The meshing is adapted on the thickness of the disc to guar-
antee appropriate meshing for both thick and for thin discs. In the thickness direction the
size of the element is controlled between a minimum size of t/6 and a maximum size of 1.2
times t/6. In the radial direction the edges have a length equal to the edges in the thickness
direction multiplied by a factor 1.5. The mesh consists of approximately 400 elements,
which was verified to be sufficiently fine by making a comparison with simulation results
with a smaller number of elements.

The green lines in Figure 3.6 represent roller boundary conditions on both sides of the
sealing disc between r = 0 and r = rp, due to the spacer discs. Here the sealing disc is
constrained to move in the normal direction, but it is allowed to move parallel to the spacer
discs. The freedom to move, however, is limited, due to the axisymmetric geometry. It was
found that this boundary condition is appropriate to model the confinement of the spacer
discs, even though a finite, non-zero clamping force of the spacer discs on the sealing
disc exists. An alternative boundary condition could be a completely clamped boundary
condition [69], which would prohibit any movement of the disc in the region of the spacer
discs. This was found to be unsuitable, as a finite deformation was observed in the region
of the spacer discs, which will become clear in Section 3.3. The blue square represents
the chamfer of the disc, where the wall force and the friction force act. The chamfer size
c is set to 1.4 mm, as measured from the sealing disc. The remaining edges have a free
boundary condition.
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Figure 3.6: Geometry and boundary conditions of the finite element model. (a) Initial geometry.
(b) Deformed geometry. (c) Typical simulation result.

For low µ values high wall forces are involved when a sealing disc is confined inside a
pipe. In reality and in the experiments in this study a sealing disc automatically buckles
backwards with respect to the moving direction. To ensure that in the FE model the disc
buckles to the correct side the FE model is solved in multiple steps. First the friction force
is added and then the wall force is increased in steps to its final value. Within the solution
process, the result of the previous calculation step is used as an initial condition for the
next calculation step. This helps to buckle the disc in the direction of the friction force.
Figure 3.6c shows a typical simulation result of disc A subjected to a wall force Fwall =
400 N and a friction force Ffric = 200 N. The interior of the disc is color coded by the von
Mises stress. High stress points typically occur near the outer edge of the spacer discs.

3.3 results

In this section the results are presented which are obtained by the methods described in
the previous Section 3.2. First the results from the static experiment are presented. In
Section 3.3.1 the deformations obtained in the experiments and the deformations found
using the FE model are compared for disc A and disc B, see Table 3.1. In Section 3.3.2 the
friction force as a function of µ and oversize is shown, both for disc A and for disc B. In
addition, Section 3.3.2 shows the friction force for different values of the E-modulus and
the thickness of the disc. For this purpose discs C to F are used. Section 3.3.3 present the
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results which are obtained with the dynamic pig pull experiment. Section 3.3.4 discusses
how the results from the static and dynamic pig pull experiments are related.

3.3.1 shape comparison

We have obtained the shape of the sealing disc using the deformation device as described
in Section 3.2.1. Figure 3.7 shows the results for disc A subjected to 3% oversize. In
Figure 3.7a a time series is shown, where the blue line denotes the wall force Fwall and
the red line denotes the friction force Ffric. In the first five rest zones, where the forces
are constant, the deformation of the disc is measured. To show how the measured shapes
compare with the FE model, data from the last three rest zones are shown in Figure 3.7b-d.
The last three rest zones which correspond to sub-figure b-d are indicated in Figure 3.7a.

Figure 3.7: Experimental results for disc A at 3% oversize. The black dotted shape in sub-figures
b-d represents the FE model. (a) A time series showing the wall force and the friction
force. Deformations are measured in the rest zones labeled b-d. (b) Fwall = 1908 N and
Ffric = 266 N. (c) Fwall = 1429 N and Ffric = 439 N. (d) Fwall = 977 N and Ffric = 620
N.

It can be seen that the FE results, which are shown by the black dots, agree very well
with the average measured deformation. The FE results were obtained by applying the
forces that were measured in the experiment to the chamfer of the disc in the FE model,
as described in Section 3.2.4. It can also be noted from the measured data that the sealing
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disc does not deform perfectly axisymmetrically in the hull. The largest deflection occurs
when the deformation device is at 6 o’clock, followed by 3 o’clock and 12 o’clock. This
is a consequence of the position of the tensioning mechanism located at 6 o’clock, see
Figure 3.2a. This breaks the axisymmetry of the hull, resulting in a slightly non perfect
circular shape. No attempt has been made to correct this, since adding new forces to the
system was not desired. The gravity force is assumed to play a minor role as it is only a
small fraction of the encountered wall forces.
In Figure 3.7b-d the force ratio µ varies from 0.14 to 0.64 which corresponds to a

substantial variation in Fwall and Ffric, see Figure 3.7a. The deformation of the disc during
this process, however, only changes slightly. Both the measured data from the deformation
device and the FE model show this behaviour. This means that there exists approximately
one axisymmetric shape of the sealing disc which is fitted in a pipe, and that the effect of
µ on the final shape is only minor. As was discussed in Section 3.2.4 a roller boundary
condition was chosen to represent the confinement of the spacer discs. It can be clearly
seen that the angle of deformation is not zero at the radius of the spacer disc r = rp,
which supports the choice of a roller boundary condition over a fully clamped boundary
condition.
The deformation results for disc A at 3% oversize were shown in Figure 3.7 as case

example. The deformations results of disc A for all oversizes 1%, 2%, 3%, and 4% are
presented in Figure 3.8a. Here the maximum deformationwmax, which occurs at the tip
of the disc is selected, see Figure 3.7d, and is plotted as function of µ.
The experimental data in Figure 3.8a are plotted as error bars in different colours which

correspond to different oversizes. The lower and upper limit of the error bar represent
the deformation measurements at 12 o’clock and 6 o’clock, respectively, while the main
data point (open circle) of the error bar represents 3 o’clock, see Figure 3.7. The green
error bars connected with the black line in Figure 3.8a link to the deformation results
in Figure 3.7, as here an oversize of 3% was shown. The black line shows that wmax
only increases by a few millimetres while µ increases significantly. At every oversize the
experiment was conducted three times. The fact that the three corresponding error bars
are lying on top of each other indicates that the experiment is reproducible. The same
procedure was applied to disc B. These results are summarized in Figure 3.8b. It can
be concluded that the FE model is able to predict the shapes and wmax obtained in the
experiment. Only for small µ no FE data are plotted. Here the FE model returns a solution
buckled to the other side. In general it is found that µ does not have a large effect on how
the disc is fitted in the pipeline. It is evident that the oversize does have a large effect on
the shape, as a larger oversize means that the disc has to deform more to fit in the pipe.
The length of the error bars in Figure 3.8b is longer, indicating that there is a larger spread
between the deformation measurements at 3, 6 and 12 o’clock. This can be explained by
the larger E-modulus of disc B, as this stiffer disc is more sensitive to any asymmetries
in the setup. The results in Figure 3.7 and Figure 3.8 are obtained without using a fitting
parameter for the E-modulus. The E-modulus used in the FE model is shown in Table 3.1
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Figure 3.8: Comparison of wmax in the experiments and in the FE model for different oversizes.
(a) Disc A. (b) Disc B.

and is obtained in stress and strain tests as described in Table 3.1. In the next section
various parametric studies are described, in which also the effect of a variation in the
E-modulus on the friction force is discussed.

3.3.2 parameter study

Figure 3.9 shows the friction force in the rise and rest zones as function of the force ratio
µ for the four oversizes for disc A and disc B. The corresponding wall force Fwall can be
obtained as the ratio of Ffric and µ.
A first inspection of Figure 3.9 shows that the friction force of disc B is overall higher

than the friction force of disc A. This is a consequence of the higher E-modulus of disc
B compared to disc A, see Table 3.1. The maximum µ values obtained differ per oversize
and per disc, indicating that the discs start to move over the steel ring (Figure 3.2) at a

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



chapter
3

3.3 results 51

Figure 3.9: (a) Friction force as a function of µ for different oversizes for disc A (b) Idem disc B.
(c) The friction force as a function of the oversize for disc A (d) Idem disc B.

different critical value of µ. The generic trends observed for all oversizes are similar for
both discs. We focus on the µ regime between 0.2 and 0.6.
In the chosen µ regime also FE simulation results are shown in black. The black lines

are fitted through 10 data points. For these data points at different µ the friction force (and
thus the wall force as µ is fixed) is increased until the FE model reaches the same oversize
(1-4%) as in the experiment. The shaded regions around the black lines show the results
of a variation by ±5% of the E-modulus used in the FE model.

The friction forces necessary to bring the disc in the desired oversize in the FE model
correspond very well to the experiments. Both the trend and the actual magnitudes are
captured accurately by the FE model. Figure 3.9a shows that the experimental results
and the FE results agree very well for disc A with oversizes 2% and 3%. The FE model
predicts a lower friction force to bring the disc in 4% oversize. The maximum deviation at
4% oversize is only 9.3%. At 1% oversize no experimental data are available in the chosen
µ regime. For disc B, shown in Figure 3.9b, the results are in agreement for the 1% and
2% oversizes. For the 3% and 4% oversizes the FE model underpredicts the friction force,
with a maximum underprediction by 5.2% and 11.6%, respectively.
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Both Figure 3.9a and Figure 3.9b show that the experimental friction force data are
approximately evenly spaced when the oversize increases from 1% to 4%. For the FE
data the increase in friction force seems to decrease as the oversize increases. A reason
for this difference in behaviour might be that the wall force is incorrectly captured at
higher oversizes (and thus higher friction forces) in the experiments. To capture the wall
force correctly six ball bearings were added to the setup, see Section 3.2.1. This was to
make sure that no undesired forces were added in the plane of the hull, affecting F1. For
high friction forces the contact between the hull and the ball bearings connected to the
frame may still not be completely frictionless. Undesired friction between the hull and
the frame is difficult to prevent completely. Therefore the force sensor monitoring F1 may
overpredict the wall force. This means thatµ is underpredicted for the experimental data in
Figure 3.9. There is no reason to assume that the experiment does not capture the friction
force correctly. When this hypothesis is true the experimental data would shift to the right
for high friction forces. Intuitively, the FE data make sense as one may expect that it is
easier to increase the oversize from 3% to 4% than from 1% to 2%. This is also what has
been observed in other research [69, 100]. To directly see the effect of the oversize on the
friction three values of µ have been highlighted in Figure 3.9a and b. Along these lines
of constant µ experimental data have been gathered in a range between µ + 0.002 and
µ− 0.002. The error bar represents the standard deviation of the data within this range.
Disc D and disc F are tested to see how the friction force behaves as a function of the E-

modulus. Figure 3.10a shows the results when the disc is at 3% oversize and Figure 3.10b
for 4% oversize. The discs have similar specifications except for the Shore hardness and
the E-modulus, see Table 3.1. The thickness and the sealing disc radius are not exactly the
same; therefore in the FE model the average thickness and radius are selected. The results
are shown for three different values for µ. For the disc with the lower Shore hardness
and E-modulus (disc F) the experimental data agree very well with the FE data for all
three values of µ. The maximum deviation in friction force between the FE results and
the experiments equals 6.5%. The results of the experiments with the stiffer disc show
higher friction forces than predicted by the FE model, especially at 4% oversize. The
maximum deviation in friction force between the FE results and the experiments equals
14.7%. This is in line with the observation in the previous section that Fwall is not captured
correctly in the experiment for high friction forces. When Fwall is overpredicted, µ is
underpredicted. Figure 3.10 shows that lower µ values would correspond to a smaller
gradient in the experimental data. It is worthmentioning that the experimental setup which
is designed can actually serve as a tool to predict the E-modulus of a sealing disc in a non
destructive way by fitting the experimental data on the FE results.
Disc C, disc D and disc E are tested to see how the friction force behaves as a function

of the disc thickness. The discs have the same manufacturer and are from the same batch.
Only the thickness of the discs is different, see Table 3.1. Therefore the E-modulus of disc
C and disc E have not been obtained in a stress and strain test, but are assumed to be equal
to the E-modulus of disc D. Figure 3.10c shows the friction force with µ being equal to
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Figure 3.10: The black line represents results from FE calculations. (a) The friction force as a
function of the E-modulus at 3% oversize. (b) The friction force as a function of the
E-modulus at 4% oversize. The experimental results are compared to the FE results at
three µ values: 0.24, 0.42 and 0.6. (c) The friction force as a function of the thickness
at µ equal to 0.42. (d) The friction force as a function of the thickness at µ equal
to 0.6. Disc C, disc D and disc E are tested at 3% and 4% oversize. The FE results
correspond to, from top to bottom, 4%, 3%, 2% and 1% oversize.

0.42. Experimental data are shown at 3% and 4% oversize. The FE model is shown for an
oversize of 1%, 2%, 3% and 4%. The maximum deviation in friction force between the FE
results and the experiments equals 18.1%. This deviation occurs for disc C at 4% oversize.
Figure 3.10d shows similar data with µ equal to 0.6. Here the maximum deviation in
friction force between the FE results and the experiments equals 11.2%, also occurring
for disc C at 4% oversize. For the two thicker discs the FE model agrees very closely with
the experimental data while the friction forces for the thinnest disc are underpredicted.

3.3.3 results from dynamic pig pull experiments

In this section the experimental results from the dynamic pig pull experiments are pre-
sented. All experiments are conducted with disc A. As was discussed in Section 3.2.3
the length of the tubes L which defines the distance between the spacer discs was varied.
Thereby the clamping force of the spacer discs which squeezes the sealing disc is varied.
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The reduction in the length compared to the original length when the clamping force is
zero is defined L ′. Three values for L ′ have been studied: 0, 1, and 2 mm. As the original
thickness of disc A is equal to 15.9 mm (see Table 3.1), values of L ′ equal to 0,1, and 2mm
correspond to a compression of 0%, 6%, and 13% respectively. The compression in the
axial direction causes the disc to expand in radial direction, due to the nearly incompress-
ible behaviour of polyurethane. As a result the outer diameter increases. This has been
quantified, see Table 3.2. Here it can be seen that for L ′ = 0 the original radius of the disc
equals rs = 162.2 mm. As the inner radius of the pipe is 157 mm, this corresponds to an
oversize of ∆ = 3.33%. Upon increasing the clamping force by increasing L ′ the radius
and corresponding oversize thus increase.

Table 3.2: Oversizes before and after a first pull test.

L ′ [mm] Before pull test After pull test
rs [mm] ∆ [-] rs [mm] ∆ [-]

0 162.2 3.33 162.2 3.33
1 162.7 3.64 162.9 3.74
2 163.3 4.04 163.7 4.24

For the tubes that squeezed the disc by 1 mm or 2 mm the disc oversizes were slightly
higher after a first pull test, compared to the oversize measured directly after assembling
the spacer discs on the sealing disc. For the tubes that were not squeezing the disc (L ′ =
0 mm) this phenomenon was not observed. This indicates that a small settling effect is
present which can be explained by the forces that occur in the experiment that are able to
pull the disc radially outward. When the clamping force is zero (L ′ = 0) the disc is able
to retract to its original position, but with a non zero clamping force (L ′ = 1 and L ′ = 2)
the disc remains radially extended. This settling effect is not investigated further in this
work.

The effect of L ′ on the frictional force is investigated for various disc speeds. Also the
effect of a dry versus a wet contact is investigated, as described in Section 3.2.3. The
experiments and corresponding parameters are summarized in Table 3.3. Here it is also
shown that also a face up and face down orientation of the disc is distinguished. The
average values of the force data are listed as found when the disc is moving at constant
velocity, as described in Section 3.2.3. The sequence of the experimental runs can be
deducted from the table: first the runs without squeezing are conducted, followed by the
runs with 1 mm and 2 mm squeezing. For one set of tubes we start with the dry runs: first
five runs at 100 mm/s followed by five runs at 200 mm/s and 300 mm/s. After this, the dry
face down, wet face down and wet face up runs are performed. Before the experiments
with the next set of tubes are conducted, the setup is left for an entire day to dry. The
experiments in Table 3.3 correspond to approximately 600 m of pipeline pigging (three
sets of tubes, four configurations, three speeds, five repetitions, 3.2 m between subsequent
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pull tests). The values in Table 3.3 are average values based on the last three runs from
each set of five runs, as the first two runs are done to mitigate any settling effects.

Table 3.3: Experiments performed with three sets of tubes: 0 mm (no squeezing), 1 mm
and 2 mm. The mean values of the force data are tabulated, averaged over three
runs and as found when the disc is moving at constant velocity. In addition, the
standard deviation for this period is added between brackets. In total the runs
correspond to 600 m of pigging distance.

L ′ [mm] Speed [mm/s] Friction force [N]
Dry, face up Dry, face down Wet, face down Wet, face up

0
100 819 (1.2) 815 (1.9) 680 (9.7) 702 (3.9)
200 824b(1.4) 814 (1.3) 682 (5.3) 710b(2.3)
300 830 (1.2) 815 (1.0) 685 (1.2) 713 (2.1)

1
100 843 (2.4) 828 (3.1) 701 (3.6) 717 (1.8)
200 845b(2.2) 828 (1.7) 700 (2.0) 722b(3.0)
300 844 (1.3) 830 (1.0) 700 (1.9) 720 (2.6)

2
100 836a(2.6) 817a(3.4) 705 (4.8) 733 (3.6)
200 839ab(2.4) 822a(4.1) 716 (3.6) 739b(4.5)
300 842a(1.6) 827a(2.6) 718 (2.7) 738 (3.0)

a Figure 3.11 shows one of the three time series on which this value is based.
b Figure 3.12a shows the three time series on which this value is based.

Figure 3.11: Friction force during dry, dynamic tests in two orientations (face up, face down) as
function of disc position for L ′ = 2mm at three pull velocities: 100 mm/s, 200 mm/s,
and 300 mm/s. The zoomed section shows the velocity dependence of the friction
force; a higher friction corresponds to a higher velocity.

We will now highlight some results from Table 3.3 by looking at the time series on which
the values in the table are based. Figure 3.11 compares the dry face up and dry face down
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experiments for different velocities. The tubes that are squeezing the disc by 2 mm are
used. The black dotted vertical lines indicate the range in which the discs are moving at
constant speed. A slight velocity dependence is observed in the friction force. The zoomed
section shows that higher velocities correspond to higher friction forces. The increase was,
however, not significant. A maximum increase by 1.7% between 100 mm/s and 300 mm/s
is found when looking at all experiments in Table 3.3. This means that in this parameter
regime the value for the sliding friction can be regarded as approximately constant. At
higher velocities, however, this may not be the case, as the friction coefficient will be
dependent on the relative velocity of the sliding interfaces [20]. Figure 3.11 and Table 3.3
show that higher friction forces are measured with the face up configurations, compared
to the face down configurations. In the dry experiments the friction forces are higher by
0.5%-2.5%, while in the wet experiments the increase is 2.3%-3.9%. The difference in
friction forces when comparing the face down and face up configurations can possibly
be explained by a different chamfer on both sides of the sealing disc which introduces a
asymmetry. Small changes in the size of the chamfer can have a significant effect on the
force, as will be discussed in Section 3.3.4.

Figure 3.12a shows the results for the dry and wet experiments (both with a face up con-
figuration) at 200 mm/s for the three values of L ′: 0, 1, and 2 mm. The effect of lubrication
is clearly visible as the measured friction force for all the wet experiments is lower than
for the dry experiments. Looking at the columns with the dry and the wet experiments in
Table 3.3, the friction forces decrease between 12% and 16% in the wet experiments com-
pared to the dry experiments. When focusing on the three curves of the wet experiments in
Figure 3.12a we note the following trend. An increase by 1.8% for the friction force is ob-
served with 1 mm squeezing compared to the case without squeezing. A further increase
by 2.4% is found when the squeezing is increased from 1 mm to 2 mm. This is equivalent
to a total increase by 4.2% when the squeezing is increased from no squeezing to 2 mm
squeezing in the wet runs at 200 mm/s. This leads to the conclusion that the increase in
oversize caused by the clamping force, see Table 3.2, does increase the friction force.
When focusing on the dry experiments in Figure 3.12a we observe an increase in fric-

tion force by 2.6% for the dry runs with 1 mm squeezing compared to the dry runs without
squeezing. When increasing the squeezing from 1 mm to 2 mm in the dry runs, however,
a slight decrease in friction force by 0.6% is observed. This is not expected as the increase
in oversize due to the increase in L ′ is expected to increase the friction force further. This
leads to the hypothesis that wear of the sealing disc was not negligible during the course of
taking experiments with the different sets of tubes (equivalent to 600/3=200m of pigging).
The effect of wear is expected to decrease the friction force, which would oppose the in-
crease in friction force due to increasing L ′. To test this hypothesis an additional set of dry
experiments is performed, in which the runs are performed directly after each other. All
runs were conducted at a velocity of 200 mm/s; first five runs without squeezing, followed
by five runs with 1 mm and 2 mm squeezing. The results are shown in Figure 3.12b and in
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Figure 3.12: (a) Friction force for three different pre-squeeze values and for two lubrication condi-
tions. The pull velocity is 200 mm/s. (b) Friction force for three different pre-squeeze
values; the experiments have been conducted directly after each other. The pull veloc-
ity is 200 mm/s.

Table 3.4. The inset in Figure 3.12b reveals the individual three time series on which the
value in Table 3.4 is based. This shows excellent reproducibility for the subsequent runs.
Indeed the friction force increases when the disc is squeezed. An increase by 1.6% is
observed with 1 mm squeezing compared to no squeezing and an increase by 1.7% for
2 mm squeezing compared to 1 mm squeezing. Thus a total increase by 3.3% with 2
mm squeezing compared to no squeezing. This confirms the hypothesis that wear is not
negligible during the course of taking experiments with the different sets of tubes. Wear
can only be approximately ignored when the runs are conducted directly after each other.
Indeed, wear is clearly visible upon inspecting the sealing disc. In Figure 3.13 disc A
is shown before using it in the dynamic experiments and after all experiments were con-
ducted. It can be seen that the disc is fabricated with a certain chamfer on both sides. After
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Table 3.4: Dry runs performed with the three sets of tubes: 0 mm (no squeezing), 1 mm and 2
mm. The mean values of the force data are tabulated, averaged over the five runs and
as found when the disc is moving at a constant velocity of 200 mm/s. Every run is
repeated five times, corresponding to 50 m of pigging distance. Figure 3.12b shows all
force measurements.

L ′ [mm] Friction force [N]
0 813
1 826
2 840

Figure 3.13: The chamfers of disc A are shown. Disc A on the left is not used in the dynamic
experiments and reveals the chamfer of approximately 1.4 mm as built-in by the man-
ufacturer. On the right disc A is shown which is used in the dynamic experiments.
The wear is clearly visible and the chamfer is 4 mm.

completing all experiments, which means that the disc was used over a distance of approx-
imately 1500 m, the chamfer has increased significantly to a length of 4 mm. In the next
section the results of the dynamic experiments will be related to the static experiments
as described in Section 3.3.2. The effect of the size chamfer in the translation from static
experiments to the dynamic experiments will be discussed.

3.3.4 relation between static and dynamic results

In Section 3.3.2 we have seen that the FE model is able to capture the results obtained
in the static setup, using the E-moduli obtained in stress and strain tests without the use
of any fitting parameters. It is however not possible to investigate the effect of a possible
liquid film between the disc and the pipe wall on the friction factor with this setup, since
the experiment is static. In the dynamic experiment it is however possible to investigate
the presence of a liquid, as was shown in section 3.3.3. The next step is to relate the static
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results to the dynamic experiments. Both experiments measure the friction force, although
the wall normal force cannot be measured in the dynamic experiments. We therefore need
to deduce µ for the dynamic experiments, using the results from the static experiments.
Figure 3.14 shows the FE prediction of µ for the dynamic experiments, using three

values of the chamfer length c. Here the results of the FE model are shown in a similar
way as in Section 3.3.2, but now for an oversize of 4.04%. In the static experiments with
disc A the tubes were not yet used, but the circumference of the disc after clamping was
measured. This circumference corresponds exactly to the circumference of disc A when
squeezed by 2 mm in the dynamic experiments. Therefore this oversize was chosen, see
Table 3.2.

Figure 3.14: Prediction of the µ values in the dynamic experiment, using three values of the cham-
fer length c. Using the FE results, the force data from the dynamic experiments are
translated into µ values. µ is predicted between 0.97 and 1.30 in the dry runs and
between 0.68 and 0.83 in the wet runs.

When averaging the friction force for the different speeds for the dry experiments with
L ′ = 2 mm (Table 3.3), a value of 839 N is found. Based on this value a corresponding
µ value can be determined using the FE model. Wear was observed during the course of
performing the dynamic experiments and it was found to increase the chamfer length c,
see Figure 3.13. To investigate the sensitivity of the chamfer size on the frictional force the
FE calculations were performed with three different chamfer lengths: the original chamfer
length c = 1.4mm, the final chamfer length c = 4mm, and an intermediate chamfer length
c = 2.7 mm. It can be observed that the friction force decreases when the chamfer length
increases, as it is easier to subject the sealing disc to 4.04% oversize when the chamfer is
larger. This is in line with other research and a consequence is that the required driving
pressure needed to propel the pig decreases throughout the course of a pigging run [98].
When we focus on a fixed value of 839 N for the friction force in the dry experiments, we
thus find differentµ values, ranging betweenµ = 0.97 andµ = 1.30. Thewet experiments
correspond to lower friction values, see Section 3.3.3, and therefore lower corresponding

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



60 frictional forces for disc-type pigging of pipelines

ch
ap

te
r

3

Table 3.5: Force ratio µ versus the chamfer length c.
c [mm] µ [-], dry µ [-], wet
1.4 0.97 0.68
2.7 1.11 0.75
4.0 1.30 0.83

µ values are found, see Figure 3.13. The results are summarized in Table 3.5. In the wet
contact µ decreases by approximately 30%. An interesting follow-up experiment could be
to use a biological or mineral oil as lubricant in the dynamic pig pull experiments.

3.4 conclusions

A static and dynamic experimental setup have been designed to investigate the frictional
behaviour of a sealing disc of a pipeline pig. The static setup has been used to systemati-
cally study the effect of various parameters including the oversize, force ratio, thickness
and E-modulus. In this way the study contributes to the fundamental knowledge on pa-
rameters influencing the friction force in pigging applications. Being able to test sealing
disc configurations for different values of the force ratio µ is important for the industry as
µ is often unknown and may vary a quite substantially.

A finite element (FE) model was built which was able to accurately capture the be-
haviour of the experiments. The finite element model was able to accurately describe the
static experiments, by using E-moduli obtained in stress and strain tests and without using
any fitting parameters. When similar forces as measured in the experiment are acting on
the chamfer in the finite element model, the maximum deformation varies by less than 2
mm for µ values larger than 0.25. Furthermore, the shapes obtained in the experiments
agree very well with the shapes obtained with the finite element model. In the current
experiment and FE model axisymmetry applies. For future research it could be interest-
ing to investigate the effect of gravity which would break the axisymmetry. This effect is
expected to become important when the gravitational forces become comparable with the
forces which are purely caused by confining the sealing discs in the pipe.
When the disc is brought to a specific oversize between 1% and 4% in the finite ele-

ment model, the required forces agree very well with the experimental force data. The
maximum deviations for disc A and B occurred at 4% oversize. Here the finite element
model underpredicts the friction force by a maximum of 5.2% and 11.6%, respectively. It
is hypothesized that this underprediction is explained by undesired friction between the
hull and the frame in the experimental setup, which is especially observed at high frictions
forces. To test if this hypothesis is correct a setup could be designed which has more roller
bearings between the hull and the frame which would result in even less friction.
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The dynamic pig pull facility has been used to test the frictional behaviour during a
dynamic pull test through a 1.7 meter pipe for both a dry and a wet contact. This dynamic
setup is complementary to the static pig pull facility. The influence of the clamping force
of the spacer discs on the sealing disc diameter and frictional force has been investigated. It
was found that by increasing the clamping force the diameter, and therefore the oversize, of
the sealing disc increases. As a result the frictional force was found to increase during the
dynamic pull tests. The largest difference in friction force is observed when comparing the
dry and the wet experiments. Lubrication was clearly visible in the force measurements.
Using water as a lubricant resulted in a decrease in the friction force by between 12%
and 16% for the experiments conducted. This decrease in friction force is attributed to
a difference in friction coefficient, which has been quantified using FE calculations. The
sensitivity of the size of the chamfer in this analysis has been taken into account. This has
led to a prediction of the friction coefficient of between 0.97 and 1.30 for a dry contact and
of values between 0.68 and 0.83 for a wet contact. Only water has been used as lubricant
in the experiments. It is suggested for future research to study also other lubricants, such
as for example mineral oil.
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4
EXPER IMENTS AND MODELL ING OF BY- PASS P IGG ING
UNDER LOW PRESSURE COND IT IONS

This chapter is adopted from M.H.W. Hendrix, H.P. IJsseldijk, W.-P. Breugem, and R.A.W.M. Henkes, "Ex-
periments and modelling of by-pass pigging under low pressure conditions". In: Journal of Process Control
71 (2018), pp. 1-13.
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4.1 introduction

Pipelines are used in many industries as a means of transporting fluids. Such fluids can
consist of gases, liquids, or combinations of gases, liquids and solids. An inevitable con-
sequence is the internal maintenance of those pipelines. In the oil and gas industry this is
done by using a pig (Pipeline Inspection Gauge). This is a cylindrical device which travels
through the pipeline driven by the fluid flow, see for example figure 4.1. Pigs have a wide
range of applicability, including cleaning the inside of a pipeline, removing excessive liq-
uid from a liquid-gas pipeline, or distribution of corrosion inhibitor [15, 74, 94, 96]. Pigs
can also be equipped with intelligent sensors which can inspect the inner pipe wall [75],
for example. There is a wide variety of pigs to perform these tasks. An example of three
common utility pigs are (1) the mandrel pig, (2) the solid cast pig and (3) the foam pig,
which are shown in figure 4.1 [74]. A mandrel pig consists of a metal core with elements
mounted on this core. It depends on the purpose of the pigging operation which elements
are mounted. Typical elements are scrapers for cleaning, guiding discs to ensure a proper
alignment with the pipe and sealing elements to seal the pipe. These elements are nor-
mally made from polyurethane. A solid cast pig differs from a mandrel pig in the sense
that it is made out of one material, often also polyurethane. A foam pig is made of softer
material and has a larger volume. The pigging purpose and the costs determine which of
the types is most appropriate to perform a pigging operation.

Figure 4.1: Several pig types: (a) Mandrel pig. (b) Solid cast pig. (c) Foam pig. (d) By-pass pig.
Adapted from [74] and [53].

It is desirable that the product flow, which is driving the pigs through the pipeline, is in-
terrupted as little as possible during the pigging operation. Conventional pigs, such as the
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ones displayed in figure 4.1a-c, typically completely seal the pipeline. As a consequence
the speed of the device will be equal to the velocity of the product flow. However, often
a lower travel speed is desired, as a too high pig velocity may damage the pig or pipeline.
In addition, it has been shown that a lower pig velocity is also beneficial for the cleaning
and inspection performance of the pig [63, 96]. A solution to achieve a lower pig velocity
while avoiding production deferment is the use of a by-pass pig, which does not seal the
complete pipeline. Instead, a by-pass pig has a hole, or by-pass area, which allows fluid to
by-pass the pig while it is moving inside the pipeline, see figure 4.1d. The presence of a
by-pass will cause that the pig velocity is not dictated by the velocity of the product flow.
Instead the pig velocity will be lower and it is now determined from a balance between the
driving pressure force and the friction force between the pig and the pipe wall [82]. The
risk, however, of using a by-pass pig is that the driving force on the pig becomes too low to
overcome the wall friction force, which will result in a pig being stuck in the pipeline. To
mitigate the risk of a stuck pig, so-called speed controlled pigs have been designed which
have an adjustable by-pass area which provides the right amount of by-pass such that the
velocity of the pig is lowered, while the pig does not get stuck [63]. Detailed mechanisms
on how such a control system should be designed are only scarcely found in literature [62,
68].
In this study we consider the movement of a pig in a low pressure gas-filled pipeline.

Pigging of such low pressure gas-filled pipelines in actual field operation can lead to large
oscillations in the pig velocity due to the compressibility of the gas, see for example [67,
90]. This is because compressed gas pockets may build up at the upstream side of the
pig when it is moving slower due to locally increased friction caused by for example
irregularities in the inner pipe diameter. When the pressure in such a pocket has been
sufficiently built-up, it is able to catapult the pig, resulting in large pig velocity excursions.
This can lead to an unsafe and inefficient pigging operation. The effect described above
gets more pronounced when the operating pressure or the flow velocity in the pipe is low.
It can even result in a so-called ‘stick-slip motion’, where the pig slows down completely
after a period of high velocity. This stick-slipmotion of the pig is generally undesired in the
industry. However, when a pig is equipped with appropriate speed control, the occurrence
of high pig velocities in low pressure gas filled pipelinesmay be suppressed, which enables
safe and effective pigging of these pipelines.
This chapter is built up as follows. In section 4.2 we first discuss the force balance on

a (by-pass) pig. In addition we derive a simplified model which describes the motion of a
pig in a low pressure system. The simplified model gives insights into the basic physical
mechanisms which are key to unsteady pig motion due to low pressure conditions in gas
filled pipelines. The simplified model relies on some assumptions, most notably the as-
sumption that the pressure upstream of the pig is directly determined by the volume that
the gas occupies upstream of the pig. In reality the pressure upstream of the pig will change
as result of a transient pressure wave, rather than a instantaneous response to the change
in volume. We therefore also include a more complete approach which models the motion
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of the pig in a transient 1D pipe model. In section 4.3 we describe the experimental setup
that has been used to perform pigging experiments. The experimental setup has been used
in a previous work to test a prototype of a speed controlled pig [36, 44]. In this work we
more systematically study the behaviour of by-pass pigs with constant by-pass area which,
in combination with the developed models, is expected to improve the design of such a
speed controlled pig. In section 4.4 a comparison will be made between the experimental
results and the various models. The proposed models and experiments are subsequently
used for the design of a PD controller in order to reduce pig velocity excursions through
dynamically adjusting the size of the by-pass. Section 4.5 gives conclusions and discusses
possibilities for future research.

4.2 models

Whereas the pig velocity Upig of a conventional pig in a pipeline is dictated by the bulk
velocity U upstream of the pig, the pig velocity of a by-pass pig will be lower because
part of the fluid is able to flow through the by-pass pig, see figure 4.2.

Figure 4.2: (a) Schematic motion of: (a) a conventional pig (b) a by-pass pig.

The motion of a by-pass pig in a horizontal pipeline is determined from a force balance
between the driving pressure force Fp and frictional force Ffric. By applying a control
volume analysis over the whole pig (including the by-pass area), Fp can be expressed as
Fp = ∆pA where ∆p is the pressure drop over the pig and A is the pipe cross-sectional
area. The pressure drop is usually characterized by a pressure loss coefficient K defined
as [45]:

K =
∆p

1
2ρbpU

2
bp

. (4.1)

Here ρbp is the density of the fluid in the by-pass (which is taken as the density down-
stream of the pig) and Ubp is defined as the fluid velocity in the by-pass region taken
relative to the pig velocity, see [35, 82]. A mass balance taking into account a higher den-
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sity upstream of the pig ρup due to compressibility of the fluid thus yields the following
expression for Ubp:

Ubp =
D2

d2
ρup

ρbp
(U−Upig). (4.2)

Here D is the pipe diameter and d the diameter of the by-pass hole. Substituting this
expression for Ubp into equation 4.1 and applying a steady state force balance on the pig
(∆pA = Ffric) results in an equation for the velocity of the by-pass pig [30, 82]:

Upig = U−
d2

D2
ρbp

ρup

√
Ffric

K12ρbpA
. (4.3)

When the by-pass area fraction d2/D2 goes to zero, equation 4.3 returns a pig velocity
equal to the bulk velocity, as is the case for a conventional pig. When d2/D2 is not equal
to zero, detailed knowledge of both K and Ffric are needed in order to accurately predict
the pig velocity. The pig geometry in this research can be regarded as a thick orifice, for
which the following correlation for the pressure loss coefficient has been proposed by
Idelchik [45]:

K = 0.5
(
1−

d2

D2

)0.75

+
4fLpig

d
+

(
1−

d2

D2

)2
. (4.4)

Here Lpig denotes the length of the pig, and f is the Fanning friction coefficient which has
been calculated using the Churchill correlation [13]. Equation 4.4 can be recognized as a
combination of the loss associated with a sudden compression (first term), frictional loss
in the by-pass (second term), and a sudden expansion (third term). This correlation has
been extensively verifiedwith simulations using CFD (Computational FluidDynamics) [5,
82]. The loss coefficient for a by-pass pig that has a design different from a thick orifice
geometry has been studied in [35]. Regarding the friction force Ffric, two main types of
friction can be distinguished: (1) dry friction and (2) lubricated friction [72]. In case of
lubricated friction (which obviously is only possible for twophase gas-liquid flow), a thin
liquid layer is formed in between the two solids that is said to lubricate the relative motion.
Such a lubrication layer normally reduces the friction coefficient considerably [84]. Our
experiments are, however, carried out in a dry pipeline using air as working fluid. We
model the dry sliding friction between the pig and the pipe wall with a constant coefficient.
The proposed models of K and Ffric will be compared with experimental results which
are described in section 4.3. With Fp and Ffric in place, the equation of motion of the pig
follows as:

m
d2s
dt2

= Fp − Ffric. (4.5)
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Herem and s are the mass and the position of the pig, respectively.
We will now describe a simplified model and a more complete numerical model to

describe the motion of a pig in a low pressure pipeline.

4.2.1 simplified model

The simplified model considers the motion of the pig by modelling Fp as the force that
results from the pressure in the gas pockets on both sides of the pig. It is assumed that
the pressure in these pockets is uniform and adapts instantaneously to any changes in the
volume that they occupy. The pressure upstream pup of the pig thus reads

pup =
p∗

ρ∗
ρup =

p∗

ρ∗
Mtot

As
=
p∗

ρ∗
M0 + Ṁt

As
. (4.6)

Here the ideal gas law is used to relate the pressure in the upstream pocket to the up-
stream density ρup, using p∗ = 101 kPa and ρ∗ = 1.2 kg/m3 as reference values for
air. Furthermore,Mtot denotes the total mass in the upstream pocket,A is the pipe cross-
sectional area, and s is the location of the pig as measured from the inlet. The total mass
Mtot is a sum of the initial massM0 at t = 0 and the (constant) mass flux at the inlet Ṁ
multiplied by the time t.

Figure 4.3: (a) Schematic motion of simplified pig model.

Applying the same approach to the downstream side of the pig leads to a constant pres-
sure pdown = pout for the downstream gas pocket. This approach effectively neglects
frictional pressure losses. Substituting Fp = A(pup − pdown) into equation 4.5 yields:

m
d2s
dt2

=
p∗

ρ∗
M0 + Ṁt

s
−Apout − Ffric. (4.7)

The equilibrium position s(t) = seq(t) can be found by setting the left hand side of
equation 4.7 equal to zero, which gives:

seq(t) =
p∗

ρ∗
M0 + Ṁt

Apout + Ffric
. (4.8)
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The equilibrium velocity veq can be found by differentiating equation 4.8, which yields:

veq =
p∗

ρ∗
Ṁ

Apout + Ffric
. (4.9)

We now define s(t) = seq(t) + δs(t). Dividing equation 4.7 by Apout + Ffric and
substituting the decomposition of s into equation 4.7 yields

m

Apout + Ffric

d2δs
dt2

=
seq(t)

seq(t) + δs
− 1. (4.10)

Assuming that the perturbations of δs are small (δs� seq) we can expand the first term
on the right hand side of equation 4.10:

m

Apout + Ffric

d2δs
dt2

= −
δs

seq(t)
. (4.11)

Equation 4.11 can be solved analytically (see Appendix C), yielding an explicit expression
for δs(t):

δs(t) = C1kJ1(2k) −C2kY1(2k). (4.12)

Here J1 is the Bessel function of the first kind with order 1 and Y1 is the Bessel function
of the second kind with order 1. Futhermore k(t) is given by:

k(t) = ω(t)

(
M0

Ṁ
+ t

)
, (4.13)

whereω(t) is given by:

ω(t) =

√
(Apout + Ffric)

seq(t)m
. (4.14)

Differentiating equation 4.12 yields an expression for the perturbed velocity δv (see Ap-
pendix C):

δv(t) = ω2(t)

(
M0

Ṁ
+ t

)
(C1J0(2k) −C2Y0(2k)) . (4.15)

C1 andC2 are integration constants (with unit length) which can be found from the initial
conditions for δs and δv. This approximate analytic expression will be compared with
numerical integration of equation 4.7 in section 4.4.3.
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4.2.1.1 Local analysis

When fixating the value for seq, Equation 4.11 can be recognized as the equation which
describes a harmonic oscillator, for which the solution is given as:

δs(t) = C3 sin(ωt+C4). (4.16)

Here ω is the local frequency of the solution for a given seq, as given by equation 4.14,
and C3 and C4 are integration constants. The maximum value for δvmax can be found
by differentiating Equation 4.16 and determining the maximum which gives:

δvmax = C3ω. (4.17)

The value ofC3 (andC4) is determined by the initial conditions for δs(t = 0) and δv(t =
0), which we denote δs0 and δv0 respectively. C3 can then be determined as:

C3 =

√
ω2δs20 + δv

2
0

ω
. (4.18)

Substituting this expression for C3 into equation 4.17 gives:

δvmax =

√
ω2δs20 + δv

2
0 =

√
Apout + Ffric

seqm
δs20 + δv

2
0. (4.19)

In order to determine δs0 and δv0 and seq we now consider a pig which moves in a stick-
slip fashion and just enters the slip phase. In this analysis we introduce the static friction
force Ffric,s, which is usually higher than the value of the sliding dynamic friction force
Ffric. We now consider a pig that sticks at a location L = seq + δs0. Just at the point
before the pig starts slipping (t = 0) a force balance can be constructed which reads:

(pup − pout)A =

(
p∗

ρ∗
M0

AL
− pout

)
A = Ffric,s (4.20)

This equation can be solved forM0 and the result can be substituted into Equation 4.8 to
yield an expression for the equilibrium position seq:

seq =
L(Ffric,s + PoutA)

Ffric + PoutA
. (4.21)
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Using δs0 = L − seq and δv0 = −veq and substituting these expressions into Equa-
tion 4.19 gives the following expression for the maximum velocity vmax which occurs
during the stick-slip cycle:

vmax = veq + δvmax = veq +

√
L(Ffric,s − Ffric)2

m(Ffric,s + PoutA)
+ v2eq. (4.22)

We note that if the static friction force Ffric,s equals the dynamic friction force Ffric the
maximum velocity is simply equal to twice the upstream equilibrium velocity veq.

4.2.2 full numerical model

The full numerical model discretizes the fluid domain into multiple finite volumes, rather
than describing the fluid upstream and downstream of the pig as one pocket as was done
in the model described in section 4.2.1. The resulting model is a one-dimensional (1D)
transient model, which solves for cross-sectionally averaged quantities such as pressure
and velocity as function of the pipe coordinate s, which runs along the pipe, and time t.
Examples of 1D transient tools which are used in the oil and gas industry to model pig
motion in a pipeline include OLGA and LedaFlow [8, 28]. The current 1D model relies
on the 1D extended Euler equations from which the cross-sectionally averaged mass and
momentum equation read:

∂

∂t
(ρA) +

∂

∂s
(ρuA) = 0, (4.23)

∂

∂t
(ρuA) +

∂

∂s
(ρu2A+ pA) = −τ(πD). (4.24)

Here τ is the wall shear stress which is calculated as:

τ =
1

2
ρu2f, (4.25)

where f is the Fanning friction coefficient calculated using the Churchill relation [13].
As in the simplified model, we calculate ρ = ρ(p) through the ideal gas law, that is
ρ = (ρ∗/p∗)p. Equations 4.23 and 4.24 form a closed system of equations which is
discretized using the finite volume method on a staggered grid, see figure 4.4.
Conservation of mass (equation 4.23) is discretized on the p-volume Ωp, in which p is
defined at the center of the volume:

d
dt
(
ρiΩ

p
i

)
+ ρi+1/2ui+1/2A− ρi−1/2ui−1/2A = 0 (4.26)
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Figure 4.4: Staggered grid layout in the full numerical model.

HereΩpi = A∆si = A(si+1/2− si−1/2) is the size of the finite p-volume. Conservation
of momentum (equation 4.24) is discretized in a similar way:

d
dt

(
ρi+1/2ui+1/2Ω

u
i+1/2

)
+ρi+1(ui+1)

2A−ρi(ui)
2A = −τi+1/2(πD)∆si+1/2

(4.27)

Here Ωui+1/2 = A∆si+1/2 = A(si+1 − si) is the size of the finite u-volume. Some
terms in equation 4.26 and 4.27 require interpolation. If the term is part of a convective
term a flux limiter is used, otherwise central interpolation is used. The system is inte-
grated in time using the second order BDF2 scheme. For more details on the numerical
implementation, the reader is referred to chapter 6.

4.3 experimental setup

A schematic of the flow loop in which the laboratory experiments are conducted is de-
picted in figure 4.5a. The loop consists of a horizontal transparent perspex pipe with a
length of 62 meter and an internal diameter of 52 millimeter. The experiment is operated
in single phase using air as working fluid. The flow loop is equipped with a pig launcher
located at the inlet of the loop that allows to insert a pig into the system, see figure 4.5b. By
placing the pig in the launcher and subsequently redirecting the air through the launcher
the pig will be inserted into the pipe. After traversing along the pipe the pig is trapped at
the outlet and can be retrieved. Figure 4.5c shows a close-up of one of the pigs that is used
in the experiments.
The air that is used as working fluid in the experiment is tapped from an air supply

system which is kept at a pressure of 8 bar. A pressure reducing valve brings this down to
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Figure 4.5: (a) Overview of the flow loop. (b) Close-up of the pig launcher. (c) Drawing of the pig.

2 bar. The air then passes through a gas flowmeter (Bronkhorst - MASS-STREAM Series
D-6300) where the air mass flux can be controlled. The flow loop is equipped with two
pressure sensors (Validyne DP15), see figure 4.5a. The average pig velocity is computed
as the total length divided by the residence time. For the length, the distance between the
upstream pressure transducer and the pig receiver (i.e. the flow loop exit) is used, which
amounts a distance of 62m. The residence time is the time difference found by studying the
pressure increase and decrease measured by the upstream pressure transducer. In addition,
the pressure drop that is measured over the pig allows to determine the frictional force of
the pig with the pipe wall, since in steady state the driving pressure force and the frictional
force must balance, see equation 4.5. Three synchronized high speed cameras (GoPro
HERO4) located at about 41.5 meter downstream of the first pressure sensor allow for the
local dynamics of the pig to be analyzed, see figure 4.5a. The cameras are operated at a
framerate of 120 frames per second at a resolution of 720p. The cameras are separated
in such a way that their field of views partly overlap. The three images of each camera
are stitched together during post-processing using a cross-correlation algorithm in order
to construct one single image. The total field of view thus obtained is 7.5 meter. The
cameras are synchronized in time by using a flash light as reference point which is visible
on all three cameras at the beginning of a measurement.

The pigs are custom-made and have a flexible modular design which allows for the by-
pass area and sealing disks to be easily interchanged. The sealing disk makes sure that no
fluid leaks between the pig and the pipe wall, and that the only fluid that flows through
the pig goes through the by-pass area, see figure 4.5c. The by-pass area is formed by a
concentric hole in the centre of the pig body and ranges from 0% to 4% of the total cross-
sectional area in the current experiment.
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Two pig configurations have been tested: configuration 1 and configuration 2, see fig-
ure 4.6a and figure 4.6b respectively. Both configurations have a sealing disk with a
slightly larger diameter than the inner pipe diameter. The difference in the diameters, or
the oversize, ensures that the pig properly seals the pipeline and that no leakage occurs
between the pig and the pipe wall [74].

Figure 4.6: (a) Schematic of pig configuration 1. (b) Schematic of pig configuration 2. (c) Detailed
geometry of pig configuration 1. (d) Detailed geometry of pig configuration 2.

The two pig configurations have a different sealing disk compression behaviour. The
seals in configuration 1 are compressed in the radial direction. For industrial pigs, seal-
ing disks deformed in a similar way are referred to as scraper disks [74]. Since the used
material of our small-scale pigs is rather flexible, the variation in friction due to diameter
variations is limited. Furthermore, the clamping disks can be relatively large which pre-
vents tilting of the pig. A downside of the flexible seals is that severe wear of the sealing
disks can occur. In the current experiment they were therefore replaced after roughly every
6 runs. The seals in configuration 2 have more space to bend compared to configuration
1. This is comparable with what in industry is referred to as cone disks [74]. The sealing
disk material of configuration 2 is much harder and shows very good wear properties. A
downside is that more space is required for the seals to bend, which increases the chance
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that the pig is being tilted. The dimensions of pig configurations 1 and 2 are displayed in
figure 4.6c and in figure 4.6d, respectively. More details on the material and sizes of the
sealing disks are listed in table 4.1. To build up sufficient pressure, it is essential that the
pig properly seals the pipe. Cell rubber (EPDM) with a closed cell structure is chosen for
configuration 1 to guarantee that the sealing disk is impermeable. Para rubber is used for
configuration 2, which has very good wear properties.

Table 4.1: Properties of pig configurations.

Property Configuration 1 Configuration 2 Unit
Material sealing disk 1 EPDM Para rubber -
Hardness sealing disk 1 35 * 45 Shore A

Outer diameter sealing disk 1 57 57 mm

Thickness sealing disk 1 4 2 mm

Material sealing disk 2 EPDM EPDM -
Hardness sealing disk 2 35 35 Shore

Outer diameter sealing disk 2 55 48 mm

Thickness sealing disk 2 4 4 mm

Average friction 25.68 41.3 N
* The hardness is measured according Shore 00 standards. A comparable Shore A value is given
here to compare with the other material

From the pressure measurements during the pigging runs an estimation of the friction
was obtained for both configurations, see table 4.2. This table will be explained in more
detail in the next section.

4.4 results

This section starts with some overall results from the various pigging runs that have been
conducted in the lab facility. In total 72 runs were used in the analysis of configuration
1, and 60 runs were performed with configuration 2. The overall quantities include the
average pig velocity and the required driving pressure for various by-pass pigs. These
results are important for verifying steady state by-pass pigging models which can be used
to predict the pig velocity. In addition, the results are relevant for 1D transient models in
which the trajectory of the pig can be monitored [8, 28]. These 1D transient models rely on
accurate correlations to model the pig dynamics. Subsequently, section 4.4.2 presents an
analysis of the local pig dynamics which gives insight in the oscillatory behaviour of the
pig motion due to the low pressure conditions. A comparison with the models developed
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in section 4.2 will be made. The results for the local behaviour of the pig motion are used
in section 4.4.3 to design a simple PD controller to reduce the velocity excursions of the
pig by dynamically adjusting the by-pass area.

4.4.1 overall behaviour

For each pigging run the pressure from the upstream and downstream pressure sensors is
recorded. Figure 4.7a shows a typical signal that is obtained. Here the mass inflow rate
is Ṁ = 0.0089 kg/s, and the pig has configuration 2 with 0% by-pass. When the pig
traverses along the upstream pressure sensor the excess pressure increases to about 20
kPa. After traversing 41.5 meter the pig reaches the downstream pressure sensor, which
is clearly visible by the uptake of the signal at around 16 seconds. When the pig reaches
the outlet of the pipe both signals drop because the pressure that was built up behind the
pig is now released.

Figure 4.7: (a) Pressure signal for configuration 2 with 0% by-pass. (b) Average driving pressures
for the configuration 1 pigging runs. (c) Average driving pressures for the configuration
2 pigging runs. The symbols in (b) and (c) denote various by-pass ratios.
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From the time difference between the instant that the pig reaches the upstream pressure
sensor and the outlet, the average pig velocity can be obtained. In addition, the average
driving pressure force needed to propel the pig can be deduced from the measurements,
which in steady state balances the friction force between the pig and the pipe wall. Fig-
ure 4.7b and 4.7c show the average driving pressures (pup − pdown) as function of the
pig velocity for configuration 1 and for configuration 2, respectively. The measurement
corresponding to the pressure signal displayed in figure 4.7a is indicated by the black ar-
row in figure 4.7c. The different pig velocities have been obtained by varying both the
upstream bulk velocity of the air as well as the by-pass area, as will be explained in more
detail below. When inspecting figures 4.7b and 4.7c, we note that the driving pressure
is not a function of the pig velocity. This substantiates our earlier modeling assumption
that the friction of the pig can indeed be approximated by a constant (dry) friction force
within the current parameter range. It is important to note that this can be different when
the transported fluid is a liquid instead of a gas or when there is two-phase gas-liquid flow,
due to the effect of possible lubrication. From the data presented in figure 4.7 the overall
average friction force for each by-pass pig (0,1,2, and 4%) for the two configurations can
be obtained. These average friction values, with the standard deviation, are summarized
in table 4.2. As can be noted from both figure 4.7 and table 4.2 no runs for a by-pass of
4% were performed for configuration 2. The reason is that the friction of this pig with 4%
by-pass is too high which results in a stalled pig.

Table 4.2: Properties of pig configurations.

By-pass area ratio(%)
0 1 2 4

Configuration 1
Average friction (N) 27.1 ± 6.5 25.5 ± 3.0 23.9 ± 5.0 26.5 ± 4.5
Configuration 2
Average friction (N) 40.3 ± 1.5 44.4 ± 2.9 39.5 ± 2.5 NA

One of the main reasons for using by-pass pigs is the ability to reduce the pig velocity. The
flow velocity can be kept at the nominal production rate whereas the pig travels through
the pipeline at a lower velocity. The reduction in the pig velocity depends on the by-pass
ratio, see equation 4.3. Figure 4.8 shows the pig velocity versus the flow velocity for both
configurations 1 and 2. Different colours and symbols are used for different by-pass area
ratios.
The red circles represent the pigging runs with zero by-pass. These pig velocities should
be equal to the upstream bulk velocity, which is indicated by the 45 degree line in gray.
The results for both configurations indeed follow this line. The other markers represent
the pig velocity for a specific by-pass ratio. As can be noted an increase in by-pass area
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Figure 4.8: Pig velocity as function of upstream bulk velocity (a) Configuration 1, (b) Configura-
tion 2. The dashed lines denote the standard deviation in the calculated pig velocity.

does indeed result in a reduction of the pig velocity. It can be deducted from figure 4.8
that the reduction in pig velocity is around 1 m/s for each percentage of by-pass area that
is added relative to the zero by-pass case. For a more quantitative comparison with theory
we compare the experimental results with the velocity predicted by equation 4.3, which
is shown by the black line. In this equation the friction force Ffric is taken equal to the
average measured value of the friction, see table 4.2. The value for K in equation 4.3 is
modeled by the Idelchik relation (equation 4.4) to model the pressure drop. Therefore the
solid line effectively plots the predicted travel velocity based on the Idelchik relation and
a constant predetermined friction. In addition the velocity calculated based on plus and
minus the standard deviation of the friction force are included as black dashed lines. As
was already shown in table 4.2, the spread is higher for configuration 1. Figure 4.8 shows
very good agreement between the measurements and the values based on the Idelchik
relation. During the pigging runs oscillatory motion of the pig was observed, which will
be discussed in the next section. These results show that even though equation 4.3 is based
on a steady state balance it can be applied to unsteady pig motion from which an average
pig velocity is extracted.
We further note that the point where the black line intersects the horizontal axis indi-

cates a minimum average bulk velocity which is needed to propel the by-pass pig. Below
this bulk velocity not enough driving pressure is generated to overcome the average fric-
tion force of the pig with the pipe wall. Note that in practice the minimum required bulk
velocity may be higher as the black line is based on an average friction. A local increase
in friction, for example due to irregularities in the pipe diameter, may cause a pig to stall
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even above this velocity. In the next section we will discuss the local behaviour which is
observed by analyzing detailed dynamics of the pig motion as well as time series of the
upstream pressure.

4.4.2 local behaviour

We now focus on the local behaviour of the pig motion. As was mentioned in the previous
section stick-slip motion was observed in the experiment. The oscillatory signal of the
pressure (figure 4.7a) indicates that the pressure upstream of the pig is indeed not con-
stant as would be expected in case the pig would move at a constant steady state velocity.
Figure 4.9 shows the upstream pressure signal which is displayed in figure 4.7a together
with a prediction from the simplified model, as described in section 4.2.1. The model is
initiated at two time instances: t1 = 3.04 and t2 = 12.20 seconds. These instances are
selected as case examples in the time series of the upstream pressure, as a clear oscillatory
signal is visible, see figure 4.9. In order to evaluate the simplified model to predict the up-
stream pressure, equation 4.6 is used. To evaluate equation 4.6 the initial position of the
pig needs to be known. Clearly, the pig is located further downstream at t = t2 than at
t = t1. To determine the initial pig positions for these two cases, the equilibrium velocity
(Equation 4.9) is multiplied by the traveling time t1 and t2. Furthermore, the dynamic
friction force Ffric and the static friction force Ffric,s are input parameters to the model.
Ffric has been estimated by determining the mean driving pressure which is needed to
propel the pig multiplied by the pipe area, as has been described in 4.4.1. Ffric,s is esti-
mated at 1.5 times the standard deviation of the pressure signal of the upstream pressure
sensor multiplied by the pipe area. This leads to Ffric = 40.80 N and Ffric,s = 43.87 N.
The pressure values which are needed to balance the friction forces Ffric and Ffric,s are
indicated with a dashed and a dotted line respectively, see figure 4.9.
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Figure 4.9: Pressure signal for configuration 2 with 0% by-pass compared with the simplified
model. The horizontal dashed lines represent the average pressure plus and minus 1.5
times the standard deviation of the pressure multiplied by the pipe area.
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Figure 4.9 shows qualitatively good agreement between the measured upstream pressure
and the value obtained with the simplified model. Both the model and the measurements
show that the frequency of the oscillation decreases when the pig moves further through
the pipeline. This is in line with equation 4.14, which describes the local frequency of the
oscillation. It must be noted that the simplified model idealizes the model of the friction
in the sense that it assumes one value of the static friction Ffric,s and one value of the
dynamic friction Ffric. In reality the value of Ffric,s may vary due to for example irreg-
ularities in the inner pipe diameter. Nonetheless it can be observed that the frequency of
oscillations of the pig motion can be captured by the model by estimating constant values
for Ffric and Ffric,s.
The oscillation in pressure which was discussed above is directly connected to oscilla-

tions in the pig velocity. We now use the images from the high speed cameras, which are
located around 41.5 meter downstream of the upstream pressure sensor (see figure 4.5),
to investigate the maximum pig velocity that occurs. The maximum velocity is found
from the video recordings by tracking the location of the pig using image processing, as
discussed in section 4.3. The experiments performed with configuration 2 are selected,
because the spread in average friction is smaller compared to configuration 1, see sec-
tion 4.4.1. The results are shown in figure 4.10a. The coloured symbols represent the
different by-pass pigs that are used in the experiment. In addition the maximum velocity
as predicted by the simplified model, equation 4.22, is shown. Here the dynamic friction
Ffric is taken equal to the value of the 0% by-pass pig, which is 40.3 N, see table 4.2.
The static friction Ffric,s is taken equal to 40.3 N, 44 N, and 48 N, as shown by the solid,
dashed, and dotted line, respectively. It is clear from figure 4.10a that a higher value of
Ffric,s promotes a higher maximum pig velocity. This is explained by the higher pres-
sure in the gas pocket upstream of the pig corresponding to the higher value of the static
friction force Ffric,s. The black solid line represents the maximum pig velocity in case
Ffric,s is equal to Ffric. According to equation 4.22 this corresponds to a maximum pig
velocity which is twice the average pig velocity. From the measurements it is clear that
the maximum pig velocity is indeed significantly higher than the average travel velocity
of the pig as most of the measurements are located at the left of the solid line. In addition
to the measurements and the simplified model, the results of the full numerical model
as explained in section 4.2.2 are included for the three different values of Ffric,s (lines
with solid black circles). The by-pass in this simulation is set equal to 0%. The maximum
pig velocity has been obtained from a simulation in which the pig is inserted 40 meter
downstream. This location ensures that the maximum velocity occurs within the location
corresponding to the field of view of the cameras in the experiment. Grid converged solu-
tions were typically obtained when using a total of 200 finite volumes, which corresponds
to a computational cell length of about 0.34 meter, and a timestep of 0.0025 seconds.
When comparing the results of the simplified model with the full numerical model and

the experimental data we note that the simplified model overpredicts the maximum veloc-
ity. This is due to the assumption in the simplified model that the influence of pressure
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Figure 4.10: Maximum pig velocity versus average pig velocity: (a) Experimental conditions (b)
Higher friction (10 times) compared to experimental conditions.
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waves due to the acceleration of the fluid around the pig are negligible. The full numerical
model does incorparate this, and therefore predicts a lower maximum velocity within this
parameter range. The effect of these pressure waves compared to the overall pressure drop
over the pig becomes less important if the friction force of the pig is larger. To test this
hypothesis we run the same simulation, but now increase the value of Ffric by a factor
10 to Ffric = 403 N. Again three values of Ffric,s have been chosen as 403 N, 422 N,
and 440 N. We also increased the pig mass by a factor 10. We now see that the agreement
between the simplified model and the full numerical model is much closer. Therefore we
conclude that the simplified model can be used to estimate the maximum velocity if the
magnitude of the pressure waves that occur in the fluid due to the acceleration of the pig
are negligible compared to the pressure drop over the pig.
Figure 4.10a shows the simplified model (lines) and the full numerical model (lines

with solid black circles) evaluated for the 0% by-pass case. The experimental results per-
formed with the 1% and 2% by-pass pigs are superimposed in the plot. Although the travel
velocity of the by-pass pigs is lower, it can be noted that the results with 1% and 2% by-
pass follow the trend of the results with 0% by-pass and thus have a significantly higher
maximum velocity than the average travel velocity. We also have evaluated the simplified
model by incorporating a by-pass. To make the simplified model suitable for by-pass pigs,
equation 4.7 is modified to take into account the mass leakage that occurs through the
by-pass:

m
d2s
dt2

=
p∗

ρ∗
M0 + Ṁt−

∫
Ṁβdt

s
−Apout − Ffric, (4.28)

where Ṁβ is the mass flux through the by-pass given by

Ṁβ = (U−Upig)Aρup. (4.29)

Here U can be solved from equation 4.3 for a given mean pig velocity Upig. Instead of
constructing an analytical solution, which was possible for 0% by-pass case, equation 4.28
is solved numerically. As an example the results for Ffric,s = 48 N are included in fig-
ure 4.10a with with white squares and white triangles for 1% and 2% by-pass respectively.
These symbols closely follow the line of the simplified model corresponding to 0% by-
pass. It can thus be concluded that a fixed by-pass area does not reduce the velocity excur-
sion of the pig. This is also confirmed by the experimental results as shown in figure 4.10:
although the average speed of the by-pass pigs is lower, the maximum velocity is still sig-
nificantly higher than the average pig velocity. However when the by-pass area is not fixed,
but instead is adjusted dynamically, the maximum pig velocity can be reduced, which will
be discussed in the next section.
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4.4.3 control

In the previous sections themechanism behind oscillatorymotion of a pig in a low pressure
pipeline has been explained and described. Due to stick-slip behaviour it was found that
the maximum pig velocity is significantly higher than the average pig velocity for both
conventional pigs (i.e. no by-pass) as well as pigs with by-pass. We now propose a control
mechanism which relies on actively regulating the size of the by-pass, such that part of the
pressure in the gas pocket upstream of the pig can be released. This would result in a lower
maximum pig velocity, as the driving upstream pressure is reduced during the acceleration
of the pig. It is important to note that if the by-pass stays open too short or too little, not
enough pressure is released and the pig still accelerates to a high velocity. On the other
hand, if the by-pass stays opens too long, too much pressure is released and instead of
mitigating the spike in pig velocity, a new stick-slip cycle is promoted. The ideal by-pass
opening can be determined by an appropriate control algorithm. The time scale on which
the controller should act is given by 2π/ω, whereω is the local angular frequency of the
oscillation, given by equation 4.14. We will now demonstrate a simple controller based on
the physical models that have been formulated, which set some minimum requirements
for the design of a controller. Therefore we again consider a pig that sticks at location L
at t = 0. When defining s̃ = s− L and ṽ = ds̃/dt we can write equation 4.28 as:

m
d2s̃
dt2

=
p∗

ρ∗
M0 +Mu

s̃+ L
−Apout − Ffric. (4.30)

HereMu =
∫t
0(Ṁ− Ṁβ)dt is the upstreammass that has been added after the pig starts

moving. We can put equation 4.30 in state space form by selectingMu as control variable
and linearizing around the point s̃ = 0, ṽ = 0,Mu = 0:

[
˙̃s
˙̃v

]
=

[
0 1

− p∗M0

ρ∗L2m
0

][
s̃

ṽ

]
+

[
0
p∗

ρ∗Lm

]
Mu =

[
0 1

−ω2 0

][
s̃

ṽ

]
+

[
0

veqω
2

Ṁ

]
Mu

(4.31)

v =
[
0 1

] [s̃
ṽ

]
. (4.32)

In the final step in obtaining equation 4.31 above we assumed for simplicity, without loss
of generality, that Ffric,s = Ffric. The corresponding transfer function P(σ) of the state
space model reads:

P(σ) =
σ
veqω

2

Ṁ

σ2 +ω2
. (4.33)
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Here σ denotes the complex frequency variable. A feedback loop with a linear controller
C(σ) may be constructed as shown in figure 4.11a.

Figure 4.11: (a) Feedback loop (b) Equivalent feedback loop with closed loop transfer function
T(σ).

The goal is to have no excursion in the pig velocity, and prefably it is equal or close to
a preset reference velocity vref. Perhaps the simplest controller which would meet these
requirements is a PD-controller:

C(σ) = Kp +Kdσ (4.34)

The closed loop transfer function T as displayed in the equivalent blockdiagram in fig-
ure 4.11b then follows as:

T(σ) =

veqω
2

Ṁ

σ2 +ω2 +
veqω2

Ṁ
(Kp +Kdσ)

(4.35)

We now again consider the example case which has been discussed in section 4.4.2. For
this case we have Ṁ = 0.0089 kg/s and Ffric = 40.80 N. This yields a value of veq =

2.94 m/s and ω = 6.21 rad/s, see equation 4.9 and equation 4.14 respectively. The open
loop response of the linear system to a mass influx Ṁ at t = 0 is marginally stable
and is shown by the black line in figure 4.12a. Indeed when performing the numerical
integration of equation 4.30 the pig velocity shows persisting oscillations, as shown by
the red squares in figure 4.12a. We note that these numerical results for the 0% by-pass
case are well captured by using the analytical approximation of equation 4.15, as shown
by the red solid line. We now focus on damping the oscillation. The damping ratio of the
second order system (equation 4.35) can be identified as:

ζ =

veqω
2

Ṁ
Kd

2

√
ω2 +

veqω2

Ṁ
Kp

. (4.36)
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Furthermore, we note that a constraint on the controller is that Ṁβ has a maximum equal
to Ṁ. The typical error in the velocity ẽ can be estimated as −veq, which is equal to the
error in the beginning of a slip phase, as the actual pig velocity is still zero at that point. In
a similar fashion, we estimate dẽ/dt as 2veqω/π, which is the average acceleration from
0 to 2veq in the time period π/ω. Using these estimations of ẽ and dẽ/dt the following
requirement can then be formulated:

Kpẽ+Kd
dẽ
dt

= −Kpveq +Kd
2veq

πω
= Ṁ. (4.37)

Kp and Kd can now be solved from equation 4.36 and equation 4.37 and expressed as:

Kp =
Ṁ(16ζ2 − π2)

veqπ2
kg/m (4.38)

Kd =
Ṁ8ζ2

veqωπ
kg s/m. (4.39)

Oscillations will be damped when ζ > 1. We choose a value of ζ = 1.2, which yields
Kp = 0.0041 kg/m and Kd = 0.0018 kg s/m. The result of this closed loop system is
shown in figure 4.12c/d. The linear response of the closed loop system (black solid line),
as well as numerical integration (red squares) indeed show that the pig velocity does not
overshoot but now approaches the reference velocity (dashed black line), which has been
set just below veq at a value equal to 2.75m/s. In order to obtain this pig velocity trajectory,
Mβ and the corresponding by-pass opening have been increased for a short time period to
release the excess pressure of the upstream gas pocket. This is shown by the black triangles
in figure 4.12d and the blue triangles in figure 4.12c respectively.
The simplified model relies on various assumptions, most notably the assumption that
the pressure in the gas pocket upstream and downstream of the pig is instantaneously
determined by the volume that the gas pocket occupies. The 1D full numerical model
as described in section 4.2.2, however, contains more physics and does not rely on this
assumption. We now apply the controller derived from the simplified model directly on
the full numerical model. The result is shown by the black circles in figure 4.12c. Although
some oscillations are still present, the maximum pig velocity also in this case is clearly
diminished. In very long pipelines the assumption of an instantaneous pressure response
in the simplified model will not hold. It is therefore recommended for future research to
further investigate the applicability of the simplified model in long pipelines. Instead of
selecting the upstream massMu as a control parameter, a local pressure analysis around
the pig may be more appropriate in this case.
The above example illustrates some minimum requirements on a controller which can

be used to reduce pig velocity excursions in low pressure pipelines. In order to realize
this in practice, the pig needs to be able to track at least the following quantities: pig
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Figure 4.12: (a) Pig velocity and by-pass opening without control. (b) Mass flow rate without con-
trol. (c) Pig velocity and by-pass opening with control. (d) Pig velocity and by-pass
opening with control.

velocity, pig acceleration, and the pressure upstream of the pig. Clearly the pig velocity
needs to bemeasured in order to evaluate the error e compared to a preset desired reference
velocity. The pig velocity is usually measured by odometer wheels attached to the pig
which touch the inner pipe wall and thereby record the velocity, see for example [63]. The
acceleration needs to be measured to evaluate de/dt to anticipate on a possible velocity
excursion of the pig as soon as it starts moving. The acceleration can be measured with an
accelerometer.Measurement of the upstream pressure will help to determineM0, which is
especially relevant when the local static friction Ffric,s is larger than the dynamic friction
Ffric.
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4.5 conclusions

The motion of by-pass pigs in a horizontal low pressure gas pipeline has been studied on
a laboratory scale. The effect of the by-pass area and of the upstream bulk velocity was
analyzed by means of an extensive experimental parameter study.
It was found that the average pig velocity can be well predicted by modelling the pres-

sure loss through the by-pass with the Idelchik correlation and the friction between the
pig and the pipe wall with a constant value. The use of the Idelchik correlation has been
verified through previous CFD calculations, and is now confirmed experimentally. It was
shown that under low pressure conditions the pig motion shows oscillatory motion with
high pig velocity excursions due to gas accumulation that may build up behind the pig.
The frequency and amplitude of this oscillatory motion have been described with a sim-

plified model which has been verified against experimental data. Based on the simplified
model a PD controller has been formulated in order to reduce the pig velocity excursions.
The controller was tested both in the simplified model as well as in a full numerical 1D
transient model. In both cases it was shown that the pig velocity excursions are success-
fully mitigated by the controller. The case example which was used to test the controller
thereby demonstrates minimum requirements for the design of a speed controlled pig in a
low pressure pipeline.
For further research it is suggested to test a controller based on the simplified model in a

laboratory environment while comparing the results with a 1D transient tool, as often these
tools are used to predict the motion of a pig in a pipeline upfront. It is thus important that
these 1D transient tools are able to capture the essential dynamics of a speed controlled pig
in a low pressure pipeline. Based on these findings the controller can be further developed
to take into account more physics, such as possible changes in friction while the pig is
accelerating. In addition, themeasurement of the pig velocity will in reality always contain
a certain amount of noise. It is therefore recommended to investigate the sensitivity of the
controller to a certain level of noise in a model environment first, before carrying out the
experiment.
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ANALYS I S OF T IME INTEGRAT ION METHODS FOR THE
COMPRESS IBLE TWO-FLU ID MODEL

This chapter covers a part of the joined journal publication by B. Sanderse, I. E. Smith, andM. H.W. Hendrix.
“Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations.” In:
International Journal of Multiphase Flow 95 (2017), pp. 155–174.
This chapter contains all the simulation data and figures that have been prepared by M.H.W. Hendrix.
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5.1 introduction

In the petroleum industry multiphase flow occurs when transporting oil and gas through
longmultiphase pipeline systems. The behaviour of the flow can take many forms, depend-
ing on parameters like fluid velocities, pipe properties and fluid properties. An important
flow regime is (hydrodynamic) slug flow, in which liquid pockets, separated by gas bub-
bles, propagate in an alternating fashion with high speed along the pipeline. Such slugs
have a large influence on the sizing of receiving and downstream facilities, such as the
mechanical supports of the pipeline system, separators (or slug catchers), compressors,
pumps, and heat exchangers. The industry uses various flow models for simulating slug
flow, but there is a need for increased accuracy. A promising approach is using so-called
slug capturing, through the accurate numerical solution of the one-dimensional two-fluid
model. Although this two-fluid model can become ill-posed, this approach is believed
to be capable of describing the transition from stratified flow to slug flow, see e.g. [46].
The use of the compressible two-fluid model is necessary to generate slugs at the right
frequency [46].

For the time integration of the two-fluid model, the workhorse in both industrial and
academic codes has been the first order Backward Euler method, due to its stability and
damping properties [8, 16, 46, 64]. The large numerical diffusion, however, requires small
time steps; the CFL number based on the liquid velocity is not on the order of 1 but has
to be much smaller [46, 55]. Only a few studies mention higher order time integration
methods for the two-fluid model [9, 49, 102].
The purpose of the present study is to analyse different time integration methods for

the compressible two-fluid model in terms of accuracy, stability and damping properties,
and to use them to construct so-called discrete flow pattern maps. In particular, we show
that BDF2 is preferred over Backward Euler and Crank-Nicolson because it combines
second-order accuracy with L-stability (filtering of acoustic waves at large time steps).
This chapter is organized as follows: first, in section 5.2 the two-fluidmodel is explained

in terms of eigenvalues, stability and flow pattern maps. Section 5.3 describes the spatial
(central, upwind) and temporal (Backward Euler, Crank-Nicolson, BDF2) discretizations
used in this work. Section 5.4 presents a vonNeumann analysis applied to the fully discrete
problem and a novel method to assess the stability without requiring symbolic manipu-
lations. Section 5.5 presents two test cases: linear and nonlinear wave growth based on
Kelvin-Helmholtz instabilities. Section 5.6 provides concluding remarks.
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5.2 governing equations and characteristics

5.2.1 compressible two-fluid model

The two-fluid model can be derived by considering mass and momentum balances for
the stratified flow of oil and gas in a pipeline. The major assumption in the derivation is
that of one-dimensional, stratified flow, with the transverse hydrostatic pressure variation
introduced via level gradient terms. Furthermore, we assume isothermal flow so that no
energy equation is required, and we neglect surface tension. In contrast to the incompress-
ible model, which is commonly discussed in the literature, we allow the gas phase to be
compressible (the extension to compressible liquid is straightforward). This leads to the
presence of acoustic waves in the solution, which in turn has an effect on the choice of
the time integration method, as will become clear later. With these assumptions, the two
fluid model consists of the conservation equations for mass and momentum for the gas
and liquid phase, reading:

∂

∂t
(ρgAg) +

∂

∂s
(ρgugAg) = 0, (5.1)

∂

∂t
(ρlAl) +

∂

∂s
(ρlulAl) = 0, (5.2)

∂

∂t
(ρgugAg) +

∂

∂s
(ρgu

2
gAg) = −

∂p

∂s
Ag + LGg − τglPgl − τgPg

− ρgAggs + FbodyAg,
(5.3)

∂

∂t
(ρlulAl) +

∂

∂s
(ρlu

2
lAl) = −

∂p

∂s
Al + LGl + τglPgl − τlPl

− ρlAlgs + FbodyAl,
(5.4)

supplemented with the volume equation:

Ag +Al = A. (5.5)

s is the spatial coordinate along the centreline of the pipe. The driving pressure force
Fbody = −

dpbody
ds in the gas and liquid momentum equations is required for the simulations

that involve periodic boundary conditions. The friction models are described in appendix
D.2. The level gradient (LG) terms differ from the incompressible case and were derived
and reported by us in [103]; a similar form was presented in [59]:

LGg =
∂HGg
∂s

, HGg = ρggn

[
(R− h)Ag +

1

12
P3gl

]
, (5.6)

LGl =
∂HGl
∂s

, HGl = ρlgn
[
(R− h)Al −

1

12
P3gl

]
. (5.7)

In eq. (5.1) to eq. (5.7), the subscript β denotes the phase, either gas (β = g) or liguid
(β = l), ρβ denotes the density of phase β (either liquid or gas), Aβ the cross-sectional
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area occupied by phase β (which will also be referred to as the liquid holdup or the gas
holdup), R the pipe radius, h the height of the liquid layer measured from the bottom of
the pipe, uβ the phase velocity, p the pressure at the interface, τβ the shear stress (with
the wall or at the interface), g the gravitational constant, ϕ the local inclination of the
pipeline with respect to the horizontal, gn = g cosϕ and gs = g sinϕ. Al (or Ag)
and h are related by a nonlinear algebraic expression since the pipeline has a circular
cross-section (for channel flow one simply has h = Al/w, where w is the width of the
channel). Similarly, the wetted and interfacial perimeters Pg, Pl and Pgl can be expressed
in terms of the hold-up or the interface height (see appendix D.1 for more details). As a
result, the two-fluid model features five equations with five unknowns (Ag, Al, ug, ul,
p). Depending on the velocity difference between the phases, the two-fluid model is well-
posed or ill-posed [7, 57, 83], as will be discussed in the next section.

5.2.2 characteristics

The governing equations of the two-fluid model can be written in quasi-linear form in
terms of the primitive variablesW ∈ Rq (q = 4),

W =


Al

ul

ug

p

 , (5.8)

reading

A(W)
∂W

∂t
+B(W)

∂W

∂s
+C(W) = 0. (5.9)

The eigenvalues can be found by substituting wave-like solutions in the homogeneous part
of the equations [19, 40] (so neglecting the third term of eq. (5.9)), i.e.W = ŴeI(nss+ntt),
leading to

det(ntA+nsB) = 0. (5.10)

By letting λ = −nt/ns (= ds
dt ) this can be seen as the generalized eigenvalue problem

det(B− λA) = 0. (5.11)

When considering an incompressible liquid and a compressible gas, while neglecting the
hydraulic gradient term in the gas phase and using the ‘incompressible’ form of the hy-
draulic gradient of the liquid phase, a simple expression for the characteristic equation
can be obtained (see also [23]):

Ag(c
2
g − (λ− ug)

2)

(
∂HGl
∂Al

+ ρl(λ− ul)
2

)
+Alc

2
gρg(λ− ug)

2 = 0. (5.12)

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



chapter
5

5.2 governing equations and characteristics 93

Here cg is the speed of sound of the gas phase (ρg = p/c2g). The characteristic equa-
tion can be converted to a limit for the velocity difference ∆UIKH = ug − ul between
the phases for which the eigenvalues are real. This is also referred to as the ’inviscid
Kelvin-Helmholtz’ limit (IKH), see [55]. In our simulations we continuously check the
well-posedness of the model by computing the eigenvalues from a quartic that is similar
to eq. (5.12), but which includes all compressibility and hydraulic gradient effects. This
quartic is evaluated at all gridpoints of the computational domain. When complex eigen-
values are encountered at any location in the domain, the simulation is stopped, since we
take the view of Drew and Passman [19] that the original initial boundary-value problem
has become meaningless.

5.2.3 stability

To investigate the stability of the equations of the two-fluid model we take the following
approach [64, 76]: linearization of the governing equations around a reference state, as-
suming a travelling-wave solution for the perturbations, and determining the dispersion
relation to identify the stability. A similar approach is taken in Liao et al. [55] and Fullmer
et al. [25].
We linearize the governing equations by writingW =W0 + W̃ (where W̃ �W0),

using the fact that the reference state (indicated by (.)0) satisfies the equations, and ne-
glecting products of disturbances. The linearized equations then read:

A0
∂W̃

∂t
+B0

∂W̃

∂s
= C0W̃, (5.13)

where A0 = A(W0), B0 = B(W0), and C0 =
(
∂C
∂W

)
0
. It is cumbersome to determine

C0 analytically due to the presence of the friction factors, see equation eq. (D.7), and in
general we determine it numerically.
The perturbation is assumed to be of a wave like form: W̃ = εeI(ωt−ks), withω being

the angular frequency and k the wave number. This leads to

(A0 · (Iω) −B0 · (Ik) −C0) εeI(ωt−ks) = 0. (5.14)

For non-trivial solutions we need

det (A0 · (Iω) −B0 · (Ik) −C0) = 0. (5.15)

This yields the dispersion relation ω(k). In the absence of source terms (C0 = 0), the
condition for stability (Im(ω) = 0) is equivalent to the IKHwell-posedness limit obtained
from the eigenvalue analysis in the preceding section. When source terms are included,
the stability condition differs from the well-posedness criterion and the stability limit is
commonly known as the viscous Kelvin-Helmholtz (VKH) stability limit.
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5.2.4 flow pattern map

An example of the IKH and VKH stability boundaries will be given here for the com-
pressible equations in terms of a flow pattern map. We consider the Kelvin-Helmholtz
instability problem, at the same conditions as proposed and analyzed by Liao et al. [55].
A horizontal pipe with a length of one meter is taken (ϕ = 0) and its diameter is 78 mm.
The density of the gas is given by a perfect gas relation,

ρg =
p

c2g
, (5.16)

where cg is taken such that for p = p0 we have ρg = 1.1614 kg/m3. The density of
the liquid is constant (incompressible). The superficial liquid velocity is set at 0.5 m/s,
and the superficial gas velocity at usg = 6.908 m/s. The liquid hold-up, gas velocity,
liquid velocity and pressure gradient follow from the steady state momentum balance and
are given, together with other parameters, in table 5.1. Note that ε is the hydraulic wall
roughness, and µ is the fluid viscosity.

Table 5.1: Parameter values used in the example of the Kelvin-Helmholtz problem.

parameter value unit

αl 0.5 [-]
ug 13.815 m/s

ul 1 m/s

ρl 1000 kg/m3

R 0.039 m

p0 105 N/m2

cg 293.43 m/s

g 9.8 m/s2

µg 1.8 · 10−5 Pa s

µl 8.9 · 10−4 Pa s

ε 10−8 m

Fbody 74.225 Pa/m

Liao et al. [55] report that the stability limit for the incompressible model is ∆UIKH =

16.0768 m/s. In the compressible model the stability limit slightly changes to ∆UIKH =

16.0355 m/s. Since at the current conditions ∆U = 12.815 m/s, the model is well-
posed and stable. Note that we have employed Biberg’s approximate relation for αl(h),
see equation eq. (D.5), which leads to a small difference in the stability limit compared to
the nonlinear relation.
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We consider a single wave with k = 2π on a domain s ∈ [0, 1] m. The dispersion
analysis, equation eq. (5.14), then leads to 4 waves with the following eigenvalues and
angular frequencies:

λ =


−279.80

0.69

1.34

307.40

m/s, ω =


−1758.05

4.27

8.48

1931.47

+


4.51I

0.59I

−0.35I

4.71I

 1/s. (5.17)

The fact that all eigenvalues are real indicates that the initial condition is indeed well-
posed, with λ1,4 close to the speed of sound of the gas and λ2,3 close to the liquid velocity.
The angular frequencies indicate that out of the four waves there is one unstable mode,ω3,
which will grow in time.

When repeating this analysis for different superficial liquid and gas velocities the neutral
IKH and VKH stability boundaries can be constructed according to Im(ω) = 0 - see
figure 5.1. These neutral stability boundaries are independent of the wave number k [7, 73].
This is in contrast with an analysis which does include the effect of surface tension [18],
which has been neglected in the current study. In between the inviscid and viscous stability
curves we have a well-posed, unstable solution of the two-fluid model, in which transition
from stratified flow to slug flow can possibly occur. The conditions given in table 5.1 are
indicated by ‘current conditions’ and they are in this well-posed, unstable regime. Lines
of constant hold-up are indicated by dashes in figure 5.1. The resulting flow pattern map
and lines are similar to those of [6].

Figure 5.1: Flow pattern map based on Kelvin-Helmholtz instabilities.
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5.3 spatial and temporal discretization

5.3.1 finite volume method on a staggered grid

As mentioned in the introduction of this chapter, many options are available for the spatial
discretization of the two-fluid model, such as finite difference methods [25, 55], pseudo-
spectral methods [41], and characteristics methods [3]. We discretize the two-fluid model,
eq. (5.1) to eq. (5.4), by using a finite volume method on a staggered grid. As indicated in
figure 5.2, the staggered grid consists of both p-volumes,Ωp, and u-volumes,Ωu. Each
volume consists of a liquid and a gas phase:Ω = Ωl ∪Ωg, for both u- and p-volumes.

Figure 5.2: Staggered grid layout

We start with conservation of mass for a phase β (β is liquid or gas). Integration of
equation eq. (5.1) in s-direction over a p-volume gives:

d
dt
(
ρβ,iΩβ,i

)
+
(
ρβAβ

)
i+1/2

uβ,i+1/2−
(
ρβAβ

)
β,i−1/2 uβ,i−1/2 = 0, (5.18)

with the finite volume size given by

Ωβ,i = Aβ,i∆si. (5.19)
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The term (ρβAβ)i+1/2 requires interpolation from neighbouring values, which is de-
scribed below. For conservation of momentum we proceed in a similar way. Integration
of eq. (5.3) in s-direction over a u-volume gives:

d
dt
(
ρβ,i+1/2uβ,i+1/2Ωβ,i+1/2

)
+
(
ρβAβ

)
i+1

(uβ,i+1)
2−
(
ρβAβ

)
i
(uβ,i)

2 =

−Aβ,i+1/2 (pi+1 − pi) + LGβ,i+1/2 − ρβ,i+1/2Ωβ,i+1/2gs−∑
γ∈{L,G,W}
γ 6=β

τβγ,i+1/2Pβγ,i+1/2∆si+1/2 +Aβ,i+1/2Fbody∆si+1/2, (5.20)

where

Ωβ,i+1/2 = Aβ,i+1/2∆si+1/2, (5.21)

and the level gradient terms for the gas and liquid are given by (+ for gas, - for liquid)

LGβ,i+1/2 = g cos(ϕ)
((
hAβ ±

1

12
P3gl

)
i

−

(
hAβ ±

1

12
P3gl

)
i−1

)
, (5.22)

Several terms in eq. (5.18) and eq. (5.20) require approximation. All terms that are not
part of the convective terms are interpolated using a central scheme, e.g. Aβ,i+1/2 =
1
2(Aβ,i +Aβ,i+1). The convective terms, on the other hand, require more care in order
to prevent numerical oscillations. Since the system under consideration is (conditionally)
hyperbolic, the wave directions have to be taken into account in the differencing scheme,
e.g. by using a Roe method [3, 65]. In this work the focus is on the time integration method
and we employ standard spatial discretization methods for the convective quantities: first
order upwind or second-order central. The central scheme is accurate and stable in our
computations since the solutions to the test cases are sufficiently smooth, i.e. we are not
simulating discontinuities or flow transitions.
The spatial discretization presented in this section leads to a semi-discrete system, only

depending on time, which can be written as

dU
dt

= F(U), (5.23)

where U = U(t) ∈ RqN is the vector of conserved variables. For periodic boundary
conditions, which we will consider, it reads

U =

[
(ρgAg∆s)1...N, (ρlAl∆s)1...N,

(ρgAgug∆s)1/2...N−1/2, (ρlAlul∆s)1/2...N−1/2

]T
. (5.24)

We useU instead ofW in a discrete setting to ensure discrete conservation properties.
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5.3.2 temporal discretization

Equation eq. (5.23) forms a system of ordinary differential equations which can be in-
tegrated in time with many different time integration methods [11, 31]. A common dis-
tinction is between multi-stage methods (Runge-Kutta) and multi-step methods (Adams,
Backward Differentiation Formula (BDF)). Within both classes there is a distinction be-
tween explicit and implicit methods. Due to the strong time step restriction for explicit
methods (caused by the acoustic speeds λ1 and λ4), we consider implicit methods. For
the two-fluid model, the Backward Euler method is widely applied because of its uncon-
ditional numerical stability characteristics, although it has the disadvantage of being only
first-order accurate, which introduces a significant amount of numerical diffusion. To con-
struct a second-order method that keeps good stability properties, we consider the Crank-
Nicolson and BDF2 methods, which are both second-order accurate and unconditionally
stable. Backward Euler, Crank-Nicolson and BDF2 can all be gathered under the following
expression:

a0U
n+1 + a1U

n + a2U
n−1

∆t
= θF(Un+1, tn+1) + (1− θ)F(Un, tn). (5.25)

with the parameter values given in table 5.2.

Table 5.2: Parameter values for time integration methods.

scheme a0 a1 a2 θ

Backward Euler 1 −1 0 1

BDF2 3
2 −2 1

2 1

Crank-Nicolson 1 −1 0 1
2

Equation eq. (5.25) is a system of nonlinear equations and application of Newton’s
method leads to the following linear system that is solved at each time step:[

a0
∆t
I− θ

(
∂F

∂U

)m]
∆U =

−
[a0Um + a1U

n + a2U
n−1

∆t
− θF(Um, tn+1) − (1− θ)F(Un, tn)

]
,

(5.26)

wherem is the iteration counter. If the direct evaluation of F in terms ofU is not possible
- for example in the case of a nonlinear equation of state, when the pressure cannot easily
be obtained from the density - we solve equation eq. (5.26) in terms ofW, which requires
the evaluation of an additional Jacobian. Solving system eq. (5.26) has roughly the same
computational cost for Backward Euler, Crank-Nicolson and BDF2. This is because the
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evaluation of the Jacobian is the most expensive part, which is the same for all methods
since they are all implicit in time. From an implementation point of view, BDF2 can be
implemented relatively easily in an existing code that uses Backward Euler, because the
only extra required variable isUn−1.

The BDF2 method suffers from a start-up problem: Un−1 is not available at the first
time step, which is therefore computed with Backward Euler. Note that for variable time
steps the coefficients of the BDF2 method become dependent on the time step ratio. An-
other issue of BDF2 is the fact that it is not unconditionally monotone (neither is Crank-
Nicolson), and therefore under- or overshoots can appear near discontinuities [43, 102].
Adaptive time stepping or locally using Backward Euler are possible solutions to this issue.
In the test cases reported here this was not required.

5.4 von neumann analysis on the fully discrete equations

5.4.1 introduction

In the previous sections the eigenvalues of the continuous and semi-discrete equations
were discussed. In the fully discrete case a stability analysis can be performed that is
very similar to the one applied to the continuous case (section 5.2.3). This is known as
von Neumann stability analysis [66], which can be seen as the discrete counterpart of the
Kelvin-Helmholtz stability analysis [2]. It is applicable in case of linear, constant coeffi-
cient partial differential equations with periodic boundary conditions. We employ there-
fore the linearized equations in order to be able to apply the von Neumann analysis. As
an example, we first consider the equations that result from applying the Backward Euler
method:

Ũn+1 − Ũn

∆t
= JŨn+1, (5.27)

where Ũ contains the conservative variables defined on the staggered grid as shown in
figure 5.2.

In the von Neumann analysis, which is essentially a discrete Fourier analysis [66], the
solution is assumed to consist of a finite sum of discrete waves, each with a different wave
number:

Ũni =
∑
m

(Vni )m, (5.28)

(Vni )m = eIkmsi vnm = eIkmsi Gnm v̂m, (5.29)

where m indicates the mode number, km the wave number of mode m, G ∈ Cq×q the
amplification matrix of mode m, and v̂m ∈ Cq the Fourier coefficients of mode m of
the initial condition. q = 4 is the dimension of the problem. The fact that we employ
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an amplification matrix is similar to the approach followed by Fullmer et al. [25], but
slightly different from the scalar amplification factor considered by Liao et al. [55]. We
will comment later on the relation between the two.

Since equation eq. (5.27) is linear it suffices to consider a single mode (Vni )m (consist-
ing of solution components at grid points i and i+ 1/2 due to the staggering) to analyse
the stability properties of the discretization method:

V1,i

V2,i

V3,i+1/2

V4,i+1/2


n+1

m

−


V1,i

V2,i

V3,i+1/2

V4,i+1/2


n

m

= ∆t

N∑
j=1

Jij


V1,j

V2,j

V3,j+1/2

V4,j+1/2


n+1

m

. (5.30)

Since J contains the spatial discretization it is very sparse. Substituting the Fourier ex-
pansion eq. (5.29) into equation eq. (5.30), omitting the subscript m, and dividing each
equation by the complex exponential in space, yields the compact expression

v1,i

v2,i

v3,i+1/2

v4,i+1/2


n+1

−


v1,i

v2,i

v3,i+1/2

v4,i+1/2


n

= ∆tM(eIkmsi)


v1,i

v2,i

v3,i+1/2

v4,i+1/2


n+1

. (5.31)

The full matrix is similar to the one presented by Liao et al. [55], but much more elaborate
due to the fact that we employ a 4× 4 system including compressibility effects. In section
5.4.3 a method will be proposed which circumvents the explicit formulation of this matrix.
We write equation eq. (5.31) in the following generic form, using a notation similar to
Fullmer et al. [25]:

Nvn+1 = Ovn, or vn+1 = N−1Ovn, (5.32)

where for Backward Euler:N = I−∆tM, andO = I. The amplification matrix is given
by

G = N−1O. (5.33)

Stability depends on the spectral radius ofG, i.e. the maximum absolute value of the (com-
plex) eigenvalues λG ofG. These eigenvalues λG follow from the eigenvalue problem

det(NλG −O) = 0, (5.34)

and a scalar amplification factor can be defined as G = maxi |λG,i|. The amplification
matrix G is the one used by Fullmer et al. [25], whereas the amplification factor λG is
used by Liao et al. [55]. G contains the growth and frequency components of all waves,
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which allows the reconstruction of the full solution, which is not possible with λG. In
section 5.4.3 we will obtain the amplification factors from simulation data only, and this
requires the use of the fullG.

Once the amplification matrix G and the Fourier coefficients v of the initial condition
are known, the solution at a time instance tn in terms of Fourier coefficients is obtained
from

vnm = Gnm v̂m, or vn+1m = Gm v
n
m. (5.35)

G contains information about the growth of the solution (diffusive errors), and about the
shift (dispersive errors) of the solution in time.

5.4.2 extension to bdf2 and crank-nicolson

For the BDF2 scheme, equation eq. (5.31) becomes

Nvn+1 +Ovn +Pvn−1 = 0, (5.36)

whereN = a0I−∆tM,O = a1I, P = a2I. This equation can be written as(
a0I−∆tM 0

0 I

)(
vn+1

vn

)
=(

−a1I −a2I

I 0

)(
vn

vn−1

)
, or: N̂wn+1 = Ôwn, (5.37)

from which the definition ofG follows:

G = N̂−1Ô =

(
−a1(a0I+M)−1 −a2(a0I+M)−1

I 0

)
. (5.38)

This is a particular case of the more generic linear multistep methods analysed in [43].
The eigenvalues ofG follow from the determinant equation

det(N̂λG − Ô) = det((a0I−∆tM)λ2G + a1λGI+ a2I) = 0. (5.39)

When including the Crank-Nicolson method this can be generalized to

det
(
a0 + a1G

−1 + a2G
−2

∆t
I−

(
θM+ (1− θ)MG−1

))
= 0, (5.40)

where we write G instead of λG.
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5.4.3 amplification factor from simulation data

In this section we propose an alternative, novel method to obtain the von Neumann am-
plification factors without the need of doing symbolic manipulations, as this can be cum-
bersome for nonlinear models with elaborate closure relations, such as in the case of the
two-fluid model. The idea is to perform a simulation with a small-amplitude harmonic
as initial condition and to derive the amplification matrix by comparing the Fourier trans-
form of the solution at a certain time level to the Fourier transform of solutions at previous
time levels. We call this the automatic von Neumann analysis, in contrast to the classical
symbolic von Neumann analysis that uses symbolic manipulations. First, the Fourier co-
efficients vm of mode m are determined from the numerical solution V by a discrete
Fourier transform, similar to equation eq. (5.29):

vnm =
∑
i

Vni e
Ikmsi∆si. (5.41)

Given the solutions vn+1 and vn, the coefficients of the matrix cannot be determined
from eq. (5.35), since we have q equations for q2 unknowns. We therefore perform q

time steps and writevn+1m vnm . . . vn+2−qm

 = G̃m

vnm vn−1m . . . vn+1−qm

 , (5.42)

or

Qn+1m = G̃mQ
n
m, (5.43)

from which the matrix G̃m can be readily determined:

G̃m = Qn+1m (Qnm)−1. (5.44)

We write G̃ instead of G to distinguish between the symbolic and the automatic von
Neumann analysis. For the BDF2 scheme, G̃ ∈ C2q×2q, and the system of equations is
extended to

vn+1m vnm . . . vn+2−2qm

vnm vn−1m . . . vn+1−2qm


= G̃m



vnm vn−1m . . . vn+1−2qm

vn−1m vn−2m . . . vn−2qm


. (5.45)
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In order to construct Qn+1m and Qnm, it suffices to take 2q time steps and to store the
Fourier coefficients at each time step (of course, one can also store the entire solution and
calculate the Fourier coefficients afterwards). Once G̃ is determined, the absolute value
of its eigenvalues can be investigated. This has to be done for all wavenumbers, either by
rerunning the simulation with an initial condition for each different wave, or performing
one simulation with a single initial condition composed of all wavenumbers. This is a
simple and fast procedure given that only 2q = 8 time steps are necessary to reconstruct
G̃. In practice, we have noted that due to the high condition number of Qn inaccurate
results are sometimes obtained. This can be resolved by increasing the number of time
instances in the analysis to for example 4q, which works well in our simulations. The
matricesQn andQn+1 then become non-square and the solution of eq. (5.45) should be
interpreted in a least-squares sense.

To summarize, in this section we have explained two techniques, symbolic and auto-
matic von Neumann analysis. This will be demonstrated for the Kelvin-Helmholtz insta-
bility case in section 5.5.1. The first is the classic analysis: substitution of a Fourier series
in the discretization matrix and investigating the resulting amplification matrix and its
eigenvalues. We have done this by using the symbolic toolbox of Matlab and by direct sub-
stitution of the complex exponentials into our code to arrive at symbolic expressions for
the amplification matrix. The second technique is based on substituting sinusoidal wave
perturbations in the initial conditions, and running the code for several time steps. This
can be used to check the outcome of the first technique, but also to obtain amplification
matrices for black-box solvers (for instance commercial codes).

5.5 results for various test cases

In this section we report the results of three test cases. The first two are related to the
Kelvin-Helmholtz instability: the first one considers steady state flow with a small but un-
stable perturbation in a single wave to validate the linear stability (von Neumann) and ac-
curacy of the time integration methods. The second case considers the same instability but
with a much larger perturbation to study the nonlinear wave growth and the identification
of ill-posedness. Lastly, in the third test case the propagation of a hold-up wave is investi-
gated, and all the previously investigated concepts of stability, accuracy, ill-posedness are
considered. The four cases will be referred to as A, B, C, and D, respectively.
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5.5.1 kelvin-helmholtz: linear wave growth

5.5.1.1 Modified wave number analysis

We consider the Kelvin-Helmholtz instability for the test problem described in section
5.2.4 and with the conditions given in table 5.1. The exact solution to the linearized system
of equations eq. (5.13) is given by

W(s, t) =W0 +
∑
j

Re
[
εje

I(ωjt−ks)
]

. (5.46)

The initial condition is obtained by a small perturbation in the liquid hold-up: α̃l = 10−6.
The perturbation vector ε3 is taken to be the eigenvector associated to the angular fre-
quencyω3 [55]:

ε3 = 10
−4


1 · 10−2

7.005 · 10−3 − 1.1025 · 10−3I
2.497 · 10−1 + 1.186 · 10−3I

−3.619− 6.550 · 10−1I

 . (5.47)

Firstly, we perform a consistency check: simultaneous grid and time step refinement for
a fixed wave number k = 2π with

Cl ≈ 1→ ∆t ≈ ∆s = 1

N
, (5.48)

where C is the dimensionless time step, similar to the CFL number (which strictly is a
stability condition). k = 2π is the smallest wave number that can presented on our pe-
riodic simulation domain. The exact growth rate, Im(ω3) = −0.35, is compared to the
numerically computed growth rates as obtained from the symbolic and the automatic von
Neumann analysis:

ωvN =
ln (min (Im (λ(Gm))))

∆t
, ω̃vN =

ln
(
min

(
Im
(
λ(G̃m)

)))
∆t

. (5.49)

Even though only a single wave is triggered due to the initial perturbation in ε3, the dis-
crete amplification matrix G still has four eigenvalues. This is because the Fourier trans-
form of the initial condition does not consist of a single wave, but of four waves. We are
interested in the one that is largest in magnitude, since it indicates whether the numerical
solution is stable or not. However, in contrast to the classical von Neumann analysis, in
this study unstable solutions are not necessarily unwanted, since the differential equation
itself has an unstable behaviour [25], which might be associated to slug flow.
Figure 5.3 shows the comparison of ω3 to ωvN and ω̃vN, for different grids and dis-

cretization schemes. Figure 5.3a shows that all time discretization methods converge to
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the exact growth rate upon grid refinement. However, for coarse grids, the Backward Eu-
ler method predicts a positiveω (damped solutions), whereas BDF2 and Crank-Nicolson
correctly predict growing solutions (albeit with a reduced growth rate). In figure 5.3b this
is made more quantitative by computing the error of the discrete models compared to the
exact value:

η = |ω3 −ωvN|. (5.50)

It is clear that the use of Backward Euler or the use of the first order upwind scheme limits
the accuracy to first order. Figure 5.3b also indicates that for very fine meshes there is a
slight discrepancy between the symbolic and automatic von Neumann analysis. This is
related to the matrix inversion required for the reconstruction eq. (5.44) in the automatic
von Neumann analysis, which can suffer from numerical inaccuracies. For the main pur-
pose of the von Neumann analysis, namely investigating the behaviour of the numerical
growth rate or dispersion error as function of phase angle (φ = k∆s), this is not an issue.

Secondly, we investigate howwaves grow in time, depending on the wave number k and
the spatial and temporal discretization. The number of grid points is fixed (∆s = 1/160

m). The shortest wavelength that can be represented on the grid is 2∆s (Nyquist limit),
corresponding to the wavenumber k = π/∆s, and phase angle φ = π. The wave number
analysis provides insight into how well waves of different frequency are resolved by the
time integrationmethod. It is similar to the analysis for spatial discretizationmethods done
by Liao et al. [55]. Figure 5.4a shows the growth rate G = max |λ(G)| which compares
well with the results of [55]. In addition, figure 5.4b shows the growth rateωvN instead of
the amplification factor, which includes the exact solution (denoted by the black dashed
line). It is perhaps not surprising to see that Crank-Nicolson (‘central in time’) with a
central scheme in space leads to an accurate prediction of G. In fact, when performing
the analysis without friction terms (in the well-posed stable regime), the Crank-Nicolson /
central combination leads toG = 1 independent of the wavenumber. This is a well-known
result for advection equations and also holds for the two-fluid model without source terms.
However, the presence of source terms leads to unstable solutions; their growth rate can
be captured by the numerical scheme though, with the accuracy of the time integration
method. Furthermore, G = 1 does not mean that the numerical is exact, but that there are
only dispersive errors and no diffusive errors.
For each wavenumber k the corresponding growth rate ω3 is negative. This agrees

with the stability-hyperbolicity theorem [73] which says that the neutral stability limit is
independent of the wavenumber. The case of k = 2π from figure 5.3 is highlighted as
the black vertical line in figure 5.4. For φ < 10−2 all numerical methods perform well -
this corresponds to long, low frequency waves which are well resolved. For larger φ the
numerical damping of all methods becomes apparent. The kinks in the amplification factor
and the growth rate are due to the fact that a different eigenvalue (see equation eq. (5.49))
becomes dominant.
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(a) Growth rate. (b) Error in growth rate.

Figure 5.3: Comparison of the growth rate and the error in the growth rate for different discretiza-
tion methods as a function of the grid size. Squares: automatic von Neumann analysis,
lines: symbolic von Neumann analysis. Dashed lines: first order upwind, solid lines:
second-order central.

(a) Amplification factor. (b) Growth rate.

Figure 5.4: Comparison of the growth rate and the error in the growth rate for different discretiza-
tion methods as as a function of the wave number. Dashed lines: first order upwind,
solid lines: second-order central.
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5.5.1.2 Linearized discrete flow pattern map prediction

In this section we propose a novel way for displaying the performance of numerical meth-
ods, which we call ‘Discrete Flow Pattern Maps’ (DFPM), that uses the growth rate deter-
mination method developed for the automatic von Neumann analysis (equation eq. (5.44)).
Whereas traditional flow pattern maps, such as the one in figure 5.1, display stable and
unstable regimes based on the properties of the differential equations, the DFPM displays
the effective stability regions that result when the discrete equations are solved, with a
certain numerical method and a certain grid and time resolution. Such a map is of crucial
importance as an indication whether a discretization method is able to correctly capture
the well-posed unstable regime (and the potential transition to slug flow) or whether nu-
merical diffusion overwhelms the physical growth of instabilities.
The DFPM can be constructed in the sameway in which we constructed the flow pattern

map in figure 5.1. We employ a sequence of superficial liquid and gas velocities, solve the
discrete equations with a small perturbation as initial condition and determine the growth
rate ω̃vN from eq. (5.44) and eq. (5.49). The stability boundary is given by Im(ω̃vN) = 0.
Figure 5.5a shows the VKH stability boundary for Backward Euler and BDF2 for two
different grids (and associated time steps). It can be seen that BDF2 captures the exact
stability boundary very accurately on all grids. On the other hand, the effective stability
region given by Backward Euler is much larger (note the log scale) than the actual stability
region of the differential equations, due to the large amount of artificial diffusion added
by Backward Euler. For example, for N = 40, and at a superficial gas velocity of usg =

10 m/s, the two-fluid model predicts growing waves at a superficial liquid velocity of
usl = 0.15 m/s, but with Backward Euler the wave growth is only apparent when the
superficial liquid is increased to usl = 0.6 m/s (already at the ill-posed boundary).

Any simulation starting above the ill-posedness boundary will directly be marked as ill-
posed, because our ill-posedness indicator is based on the evaluation of the eigenvalues
of the differential equations, see equation eq. (5.12). However, it is possible that, due to
nonlinear effects, simulations that start in the well-posed unstable regime grow into the
ill-posed regime. This is investigated in the next section.

5.5.2 kelvin-helmholtz: nonlinear wave growth

In this section the simulation from section 5.5.1 is repeated, but with a larger perturbation:
α̃l = 10−2, and ε̃3 = 104ε3. This causes the simulation to quickly enter the nonlinear
regime, where waves steepen, possibly leading to slug formation but potentially also to ill-
posedness. Based on the results of the previous section, we select BDF2 with N = 80 to
assess the growth of initial perturbations into the nonlinear regime and whether this leads
to ill-posed results. Note that this is different from a previous study [33], in which we
have assessed the ‘time to ill-posedness’ as a metric to compare different time integration
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methods. In the present study the focus is on whether well-posed unstable solutions can
be obtained for long time integration periods.

Similar to the linear case, we perform simulations with the two-fluid model with a cen-
tral discretization for a range of superficial gas and liquid velocities but now until t = 100
s and only with a central discretization of the convective terms. Ill-posedness is investi-
gated by checking if the eigenvalues of the differential equation are real or complex at the
conditions predicted by the numerical simulation. If a complex eigenvalue occurs at any
point in space or time the corresponding point in the flow pattern map is marked ill-posed.
Figure 5.5b shows that the resulting numerical ill-posedness boundary has shifted signifi-
cantly into the well-posed unstable regime as compared to the ill-posedness boundary of
the differential equations (indicated by IKH in figure 5.5b). It appears that a large part
of the well-posed unstable regime of the flow pattern map gives ill-posed solutions when
actual numerical simulations are performed. An example of a simulation which turns
ill-posed is case A in figure 5.5b, which corresponds to the conditions studied in section
5.5.1 for linear perturbations. The nonlinear behaviour of the hold-up fraction αl in space
and time is shown in figure 5.6 for this case. The solution becomes ill-posed already after
approximately 5 seconds. The liquid hold-up fraction as a function of time at s = 1 m is
shown in figure 5.7a.
In addition to case A, three other cases (B, C, and D) are indicated in figure 5.5b which

exhibit qualitatively different solution behaviour. Case B in figure 5.7b starts in the well-
posed unstable regime, like case A, but after initial growth (as predicted by linear theory)
stabilizes and forms a wave with a constant amplitude and frequency. Its shape and posi-
tion in the flow pattern map indicate that this could be a so-called continuous ‘roll wave’:
a particular solution to the two-fluid model which is constant in a reference frame moving
with the flow [6, 41, 48]. To check that this is not a numerical artefact, we have confirmed
the roll wave presence with a simulation on a much finer grid (N = 640). Case C and
D are both in the well-posed stable regime, where initial perturbations are damped ac-
cording to the linear theory. This happens indeed for case D. However, for case C, the
damping is very small (Im(ω3) = 0.01) and nonlinear effects lead to wave growth and
the appearance of new harmonics. The oscillation frequency is now lower because the real
part ofω3 has decreased. Within the time period of 100 seconds displayed in the plot it is
unclear if the wave damps out. Continued simulation until 1000 seconds reveals that the
wave eventually damps out, like in case D.

We note that the current simulation results are obtained based on a number of simplifi-
cations compared to pipeline simulations on actual geometries. First, we employed initial
perturbations according to the eigenvector ε3. This means that the perturbations immedi-
ately grow according to linear theory until nonlinear effects take over. Second, we used a
single wave with wavenumber k = 2π. Other wavenumbers will have different frequen-
cies and growth rates and can lead to qualitatively different behaviour (although the VKH
and IKH boundaries are independent of wavenumber). Furthermore, the periodic bound-
ary conditions and size of the domain limit the frequencies that can be represented on the
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domain. Lastly, we note the black region in figure 5.5b, which indicates the region where
the liquid reaches the top of the pipeline. This is not necessarily ill-posed, but outside the
scope of our investigation.

(a) Effect of time integration methods and reso-
lution.

(b) Effect of nonlinear growth.

Figure 5.5: Discrete flow pattern maps (DFPM).
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Figure 5.6: Solution in space and time for case A, simulated with BDF2: well-posed unstable so-
lution becoming ill-posed (indicated in red). The blue curve is shown in figure 5.7a.
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(a) Case A: Well-posed unstable solution turns ill-posed. usg = 6.91 m/s, usl = 0.5 m/s,
ω3 = 8.48− 0.35I.
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(b) Case B: Well-posed unstable solution becomes stationary (roll waves). usg = 21.16 m/s,
usl = 0.07 m/s,ω3 = 8.32− 0.14I.
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(c) Case C:Well-posed stable solution grows, encounters nonlinear effects and then damps. usg =

0.23 m/s, usl = 0.015 m/s,ω3 = 3.73+ 0.01I.
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(d) Case D: Well-posed stable solution damps in time. usg = 13.28 m/s, usl = 0.033 m/s,
ω3 = 5.35+ 0.18I.

Figure 5.7: Numerical solutions for cases A-D as indicated in figure 5.5b, simulated using BDF2.
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5.6 conclusions

In this chapter we have analysed several time integration methods for the compressible
two-fluid model with the goal to simulate stratified wavy flow and slug flow in pipelines
in a so-called ‘slug capturing’ approach. The study was focussed on obtaining insight into
the numerical pitfalls and requirements. Thereto a theoretical analysis on the differential
equations and the discretized equations was given, in particular with respect to their sta-
bility properties. The analysis has been demonstrated for a number of test cases.
We conclude that the BDF2 method is a robust time integrator for the two-fluid model

and it outperforms the commonly used Backward Euler method and the second-order
Crank-Nicolson method. This is due to a combination of its second-order accuracy, A-
stability and L-stability. These properties make that BDF2 can be used for the time inte-
gration of unsteady problems with a CFL number of 1 based on the liquid velocity, while
not suffering from numerical oscillations that arise from acoustic wave propagation.
To facilitate the comparison and understanding of the time integration methods, sev-

eral techniques have been proposed which have not been applied to the two-fluid model
before. First, a new automatic von Neumann analysis technique has been developed as tool
for direct evaluation of the stability of the discrete models by running a computer code
without requiring symbolic manipulations. This makes it very flexible since it can be di-
rectly applied when more physics (e.g. surface tension or axial diffusion) or other spatial
discretization methods are included. Second, we have proposed the use of Discrete Flow
Pattern Maps (DFPM) to indicate to what extent discretization methods (for a certain
choice of the number of grid points and the size of the time step) are able to reproduce the
flow pattern maps that are based on the stability of the differential equations. The Discrete
Flow Pattern Map reveals that the effective well-posed unstable region is well captured by
BDF2 but completely missed by Backward Euler, at least for the considered grid and time
step resolutions. Simulations in the nonlinear regime furthermore have indicated that ill-
posedness can occur when starting from the unstable regime. The implication is that the
actual well-posed unstable regime for nonlinear simulations can be much smaller than the
theoretical one, which can limit the application of the two-fluid model for simulating the
stratified-slug flow transition.
We note that the DFPM as presented here is based on simulations in an idealized set-

ting, with a simple geometry, initial conditions, and boundary conditions. In future work
we plan to employ the BDF2 method to further study the formation of slug flow and ill-
posedness issues under actual pipeline conditions.
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This chapter is adopted fromM.H.W. Hendrix, H.P. IJsseldijk, W.-P. Breugem, and R.A.W.M. Henkes, "Sim-
ulation of slug propagation for by-pass pigging in two-phase stratified pipe flow". In: 19th International
Conference on Multiphase Technology (2019), pp. 317-330.
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6.1 introduction

Several efforts have been made in the past to model the trajectory of a pig, which is pro-
pelled by the fluids in a pipeline. These efforts often rely on a 1D cross-sectional descrip-
tion of the fluid, while the pig is modelled as a point mass. The reason for this simplified
approach is the high aspect ratio of the problem, which leads to an approach which only
considers variations in the direction of the curvilinear coordinate s that runs along the
pipeline. Such a 1D approach for the motion of two fluids in a pipeline has been described
in chapter 5. The incorporation of a pig in a 1D approach for single phase flow has been
briefly discussed in chapter 4. In this chapter we provide more details of the numerical
implementation, and focus on the development of a 1D numerical model for pig motion
in two-phase flow.
Kohda et al. [50] were among the first to present a numerical method for the motion

of a pig in two-phase pipe flow. A separate coordinate system is used for the pig and the
fluid. Their simulation results appeared to be in good agreement with experimental data.
However, no details were provided on how the two used coordinate systems are coupled.
The incorporation of a by-pass in the pig body using a 1D transient single-phase pigging
model has been proposed by Nguyen et al. [67], who employed a method of characteristics
(MOC) to solve the hyperbolic partial differential equations. Esmaeilzadeh et al. [22] used
a MOC approach to model pig motion in a single phase pipeline, while comparing the
modeling results to field data. Nieckele et al. [69] and Hosseinalipour et al. [42] used a
finite difference technique to model the motion of a by-pass pig in a single-phase pipeline.
Both studies address the necessity of regridding the numerical grid by using an adaptive
mesh as the pig moves through the pipe, but it is not clear whether the approaches are mass
conservative. Most of the studies for 1D pig modelling in a pipeline focus on single-phase
flow, only a few consider the presence of a second phase [47, 50, 61, 97]. Among these
studies that considered two-phase flow, only pigs without by-pass are considered.
This chapter describes the development of an accurate 1D numerical method to solve

the motion of a pig with and without by-pass in a two-phase pipeline. The pig is imple-
mented as a moving border of the numerical grid on which the two-fluid model is solved
using a finite-volumemethod. The two-fluid model has been described in chapter 5 for use
cases with periodic boundary conditions. This is clearly not applicable for monitoring the
trajectory of a pig through a pipeline: we will need appropriate boundary conditions at the
inlet and outlet of the pipe. We propose the use of characteristic boundary conditions [71,
88]. A similar approach is used to handle the boundary conditions on both sides of the pig.
As the pig traverses through the pipe, it is necessary to regrid the finite volumes around
the pig, to ensure that the finite-volume sizes do neither get too large nor too small.
The structure of this chapter is as follows. The numericalmethod covering the discretiza-

tion and boundary treatment is discussed in section 6.2. The pig motion is described by
Newton’s second law. To account for different types of friction (static vs. dynamic), a
smooth function is designed which addresses the different types of friction. Some mod-
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elling results have already been shown in chapter 4, but more details on the numerical
implementation are given in 6.3. Test cases considering two-phase flow will be given in
section 6.4. Section 6.5 gives conclusions and discusses possibilities for further research.

6.2 numerical method

The two-fluid model which is used to model the simultaneous transport of a liquid and
a gas through a pipeline has been discussed in chapter 5. In that chapter only periodic
boundary conditions have been considered, and a body force Fbody was needed in the
momentum equations to keep the flow going (see eq. 5.1 - 5.4). In this chapter we consider
the presence of a pig which moves through a (horizontal) pipeline, so instead of periodic
boundary conditions, appropriate inlet and outlet conditions are needed. We therefore
drop the body forces, and the two-fluid equations read:

∂

∂t
(ρgAg) +

∂

∂s
(ρgugAg) = 0, (6.1)

∂

∂t
(ρlAl) +

∂

∂s
(ρlulAl) = 0, (6.2)

∂

∂t
(ρgugAg) +

∂

∂s
(ρgu

2
gAg) = −

∂p

∂s
Ag +

∂HGg
∂s

+
(
−τglPgl − τgPg

)︸ ︷︷ ︸
Sg

,

(6.3)
∂

∂t
(ρlulAl) +

∂

∂s
(ρlu

2
lAl) = −

∂p

∂s
Al +

∂HGl
∂s

+
(
τglPgl − τlPl

)︸ ︷︷ ︸
Sl

. (6.4)

Here Ag and Al represent the hold-up of the gas and the liquid phase, respectively. The
gas and liquid hold-up makeup the total pipe area, A = Ag +Al. The phase velocities
for the gas and the liquid are respectively denoted ug and ul. The density of the liquid,
ρl, is taken constant, whereas the density of the gas, ρg = ρg(p), is given by the ideal
gas law (eq. 5.16). Here p is the pressure. HGg and HGl denote the hydraulic gradient
terms, which are given by eq. 5.6 and eq. 5.7 respectively. The last two terms of Eq. 6.3
and Eq. 6.4 represent an expression for the interfacial friction and wall friction. The shear
stress of the gas with the pipe wall is denoted as τg and the shear stress of the liquid with
the pipe wall is denoted as τl. They are expressed by the Fanning friction factor, which
is calculated using the Churchill relation, see appendix D.2. The interfacial shear stress
τgl is calculated according to [55]. Pg and Pl denote the wetted perimeters, whereas Pgl
represents the length of the gas/liquid interface within the pipe cross-sectional area, see
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appendix D.1. The friction terms do not include derivatives of unknown quantities and
are identified as source terms Sg and Sl:

Sg = −τglPgl − τgPg, (6.5)
Sl = τglPgl − τlPl. (6.6)

6.2.1 spatial discretization

The two-fluid model (Eq. 6.1 - 6.4) is discretized using the finite volume method on a
staggered grid, see figure 6.1. The pig is incorporated as amoving border of a finite volume.
As a consequence, the discretization of the equations on the finite volumes adjacent to the
pig needs to be adjusted. The pig heremoves from left to right as a result of a gas and liquid
mass influx at the left boundary which are equal to ρgugAg and ρlulAl evaluated on
the left boundary, and are denoted Ṁg and Ṁl respectively. The right boundary consists
of a pressure outlet condition pout.

Figure 6.1: Staggered grid layout incorporating the presence of a pig.

The discretization of the mass and momentum equations on finite volumes which lay in
the interior of the domain (and thus have no moving boundaries), such asΩpi andΩ

u
i+1/2

as shown in figure 6.1, has been discussed in section 5.3 and is given by:

d
dt
(
ρβΩβ

)
i
+
(
ρβAβ

)
i+1/2

uβ,i+1/2 −
(
ρβAβ

)
β,i−1/2 uβ,i−1/2 = 0, (6.7)
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d
dt
(
ρβuβΩβ

)
i+1/2

+
(
ρβAβu

2
β

)
i+1

−
(
ρβAβu

2
β

)
i
=

−Aβ,i+1/2 (pi+1 − pi) +
(
HGβ,i+1 −HGβ,i

)
+ Sβ,i+1/2, (6.8)

where

Ωβ,i = Aβ,i∆si. (6.9)

Here ∆si =
(
si+1/2 − si−1/2

)
is the length of the finite volume. We now focus on the

discretization of finite volumes adjacent to the pig, such as Ωpi−1 and Ωui−3/2. For the
moment we assume that no by-pass is present in the pig body. As a result, the discretiza-
tion of the convective term results in a zero contribution from the left cell face of the
finite volume. The spatial discretization of the mass equation for phase β (where β = g

represent gas, and β = l represents liquid) onΩpi−1 then reads:

d
dt
(
ρβΩβ

)
i−1

+
(
ρβAβ

)
i−1/2

uβ,i−1/2 = 0, (6.10)

HereΩβ,i−1 is a function of time. Similarly, the discretization of the momentum equation
on the finite volumeΩui−3/2 reads:

d
dt
(
ρβuβΩβ

)
i−3/2

+
(
ρβAβ

)
i−1

u2β,i−1 =

−Aβ,i−3/2 (pi−1 − pi−2) +
(
HGβ,i−1 −HGβ,i−2

)
+ Sβ,i−3/2. (6.11)

Note thatpi−2 is the pressure at the downstream side of the pig. This pressure follows from
appropriate boundary conditions, which are explained in section 6.2.3. The discretization
of the finite volumes which are located on the left side of the pig are adjusted in a similar
way.

6.2.2 regridding

As the pig traverses through the pipe, the finite volume in front of the pig will reduce in
size and the finite volume at the back of the pig will increase in size. We solve our system
of equations in conservative form (see also section 5.3), which means that we solve for the
total mass Umass,i = ρβ,iΩ

p
i and total momentum Umom,i+1/2 =

(
ρβuβΩ

u
)
i+1/2

.
Since the size of the finite volume is part of the conservative variable Umass,i and
Umom,i+1/2, the change of the size of the finite volume due to the motion of the pig is
naturally captured. The pig motion is solved by applying Newton’s second law, which we
will discuss in more detail in section 6.3. The pig position and pig velocity are appended
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to the vector of unknowns which contains Umass,i and Umom,i+1/2 for each finite vol-
ume. The resulting system of equations is solved in a monolithic fashion. Since the pig
position and pig velocity are part of the solution, there always exists a mapping of Ui to
the primitive variables uβ,i, ρβ,i and Aβ,i.
As a result of the current approach, the finite volume in front of the pig will at some

point become too small, whereas the finite volume at the back of the pig will become too
large. Therefore, the grid has to be regularly regenerated as the pig traverses through the
pipe. We perform the grid regeneration as follows. When the finite-volume cell in front of
the pig gets smaller than half the size of a cell as found in the interior, it will be merged
with its neighbouring cell. Similarly, if the cell at the back of the pig gets larger than 1.5
the size of a cell as found in the interior, it will be split up in two cells, see figure 6.2.
The conservative variableUi will be reconstructed accordingly. The massU∗mass,i of the
volume in front of the pig after regeneration is determined by the sum of the masses of
the cells before merging:

U∗mass,i+1 = Umass,i +Umass,i+1 (6.12)

The mass of the cells at the back of the pig is distributed proportionally to the length of
the newly created cells (which are denoted ∆s∗i−1 and ∆s∗i ):

U∗mass,i−1 =
∆s∗i−1Umass,i−1

∆si−1
(6.13)

U∗mass,i =
∆s∗iUmass,i−1

∆si−1
(6.14)

The approach is mass conservative, as ∆s∗i−1 +∆s∗i = ∆si, which will be demonstrated
in section 6.4.1. The merging and splitting of momentum cellsUmom,i+1/2 is performed
in the same way.
We integrate the system of equations in time using the BDF2 scheme, see section 5.3.2.

Before performing a new time step, the grid is regenerated if necessary. As a result of the
regridding procedure as described above, we do not have the solution at the previous time
step which exists on the new grid. We therefore change the time integration scheme to
Backward Euler for the first time step after regridding for all unknowns, as BDF2 cannot
be used since it needs the solution at the previous time step. After having performed the
first time step following a regridding procedure, we switch back to the higher order BDF2
scheme.
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Figure 6.2: Grid regeneration. (a) Grid before regeneration. (b) Grid after regeneration.

6.2.3 boundary conditions

Boundary conditions are implemented using a characteristic boundary treatment [71, 88].
We first write eq. 6.1- 6.4 at a boundary point in vector form:

∂U

∂t
+
∂F0
∂s

+D0
∂W

∂s
= S. (6.15)

HereU = [ρgAg, ρlAl, ρgugAg, ρlulAl]T is the vector containing the conserved vari-
ables andW = [Al,p,ug,ul]T contains the primitive variables. The source terms Sg
and Sl are collected in the vector S = [0, 0,Sg,Sl]T . We have collected the conservative
flux contributions into the second term of eq. 6.15. Here F0 is given by:

F0 =


ρgugAg

ρlulAl

ρgu
2
gAg −HGg

ρlu
2
lAl −HGl

 . (6.16)

The non-conservative flux contributions are collected into the third term of eq. 6.15. Here
D0 is given by:

D0 =


0 0 0 0

0 0 0 0

0 Ag 0 0

0 Al 0 0

 . (6.17)
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We now put eq. 6.15 in quasi-linear form by defining Jacobian matrix A0 = ∂U
∂W and

J0 = ∂F0
∂W :

A0
∂W

∂t
+ J0

∂W

∂s
+D0

∂W

∂s
= A0

∂W

∂t
+B0

∂W

∂s
= S. (6.18)

Here B0 = J0 +D0, and is given as follows:

B0 =


−ugρg Agug

∂ρg
∂p Agρg 0

ulρl 0 0 Alρl

−u2gρg −
∂HGg
∂Al

Ag(u
2
g
∂ρg
∂p + 1) −

∂HGg
∂p 2Agugρg 0

u2lρl −
∂HGl
∂Al

Al 0 2Alulρl

 . (6.19)

We now multiply eq. 6.18 with A−1
0 to obtain:

∂W

∂t
+Q

∂W

∂s
= A−1

0 S. (6.20)

HereQ = A−1
0 B0 is given by:

Q =



ul 0 0 Al

−
ρg(ug−ul)

Ag
∂ρg
∂p

ug
ρg
∂ρg
∂p

Alρg

Ag
∂ρg
∂p

−
∂HGg
∂Al

Agρg
Ag −

∂HGg
∂p

Agρg
ug 0

−
∂HGl
∂Al

Alρl
1
ρl

0 ul


. (6.21)

To derive characteristic equations, from which time dependent equations for the boundary
points can be obtained, we determine the eigendecomposition ofQ, that isQ = RΛR−1.
HereΛ contains the eigenvalues [λ1, λ2, λ3, λ4]T on the diagonal andR contains the right
eigenvectors ofQ:

∂W

∂t
+RΛR−1∂W

∂s
= A−1

0 S. (6.22)

The eigenvalues and eigenvectors can be computed analytically with the help of a com-
puter algebra system (in this case Matlab version 2016b has been used). However, the
expressions which are obtained are long, so we will not reproduce them here. Now we
define the vector L = ΛR−1 ∂W

∂s and rewrite eq. 6.22 as follows:

∂W

∂t
+RL = A−1

0 S. (6.23)
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Here the components of L = [L1,L2,L3,L4]T are associated to the eigenvalues
[λ1, λ2, λ3, λ4]T . The four eigenvalues of the compressible two-fluid model, assuming
subsonic flow, contain one negative and one positive eigenvalue close to the speed of
sound, say λ1 and λ4 respectively. The magnitude of the other two eigenvalues, λ2 and
λ3 are in the order of the phase velocities and their sign depends on the local flow con-
ditions [23, 80]. We thus consider the following three possibilities: λ2 and λ3 are both
positive, λ2 and λ3 are both negative, and λ2 is negative while λ3 is positive. We use the
sign of the eigenvalues to determine the number of incoming and outgoing waves at the
boundary. By solving eq. 6.23 we can then formulate time dependent equations for the so-
lution at the boundary points. For example, we consider the right boundary point, which
corresponds to the outlet of the domain for the cases considered in this work. Figure 6.3
shows the grid layout near the right boundary point.

Figure 6.3: Schematic of the grid layout near the right boundary point.

The eigenvalues can be calculated at the boundary point as function of the current solution
at the boundary point. A possible outcome could be that λ2 and λ3 are both positive, which
would imply we have three positive eigenvalues and one negative eigenvalue (since λ1 and
λ4 are negative and positive respectively). Since we consider the right boundary, three
positive eigenvalues correspond to three outgoing waves. This means that the components
L2, L3 and L4 of vector L which feature ∂W∂s can be calculated by using finite differences
which are evaluated using the interior of the domain. L1 should not be calculated in this
case, since it corresponds to an ingoingwave, and no information is available in the interior
of the domain. Instead information should be given by supplying an appropriate boundary
condition by providing an expression for one of the entries vector ∂W∂t . A typical boundary
condition for an outlet used in this work is an outlet condition for the pressure. A constant
outlet pressure corresponds to ∂p∂t = 0. Eq. 6.23 can now be completely solved since
we have 4 unknowns (L1 and the remaining three unknown entries of vector ∂W∂t ) and
4 equations. The result is an expression for the full vector ∂W∂t at the boundary point,
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which can be integrated together with the interior using the BDF2 scheme. For the left
boundary of the domain and the pig boundaries we employ the same technique. For the
pig boundaries this results in a boundary condition for the fluid velocity from which the
liquid hold-up and pressure can be calculated. For some boundary conditions it may be
more convenient to express the boundary equations in terms of conserved variables U
instead of primitive variablesW. For example, at the inlet of the domain one would rather
supply boundary conditions in terms of the gas and liquid mass inflow than in terms of
gas and liquid velocity. To derive boundary equations in terms ofU, eq. 6.23 is multiplied
by Jacobian A0.

6.3 pig motion

The pig motion follows from Newton’s second law:

ds
dt

= v, (6.24)

m
dv
dt

= Fp − Ffric. (6.25)

Here s and v are the pig position velocity respectively. Fp = ∆pA is the driving force
generated by the pressure drop∆p over the pig and Ffric is the friction force which the pig
experiences with the inner pipe wall. Whereas Fp can be evaluated by using the pressure
upstream and downstream of the pig, Ffric needs to be modelled. We make a distinction
between the static friction Ffric,s which is valid when the pig is notmoving, and a dynamic
friction Ffric,d when the pig is moving. Ffric can thus be described by the following
equation:

Ffric =

{
min{Fp, Ffric,s} if v = 0
sgn(v)Ffric,d if v 6= 0.

(6.26)

Usually, Ffric,s > Ffric,d, see chapter 4, where the effect of Ffric,s on the maximum pig
velocity of a pig undergoing stick-slip motion was discussed. Eq. 6.26 is discontinuous
around v = 0, which poses a challenge when solving the pig motion numerically. Since we
solve the two-fluid equations and the pig motion in a monolithic fashion using Newton’s
method (see Eq. 5.26), we approximate eq. 6.26 with a smooth function which will aid
convergence of the solver. We will explain the construction of this smooth function in
more detail in the next section.
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6.3.1 a smooth function for the pig friction with the pipe wall

In order to design a smooth function which approximates eq. 6.26 we introduce the fol-
lowing functions:

H1(c1, c2,w1, s1, x) = c1 +
c2 − c1
2

(
tanh

(
4
x− s1
w1

)
+ 1

)
, (6.27)

H2(c1, c2,w1, s1,y) = s1 +
w1
π

(
arcsin

(
2
y− c1
c2 − c1

− 1

))
, (6.28)

H3(c1, c2,w1, s1, x) =
c1 if x− s1 <

−w1
2

c1 +
c2 − c1
2

(
sin
(
π
x− s1
w1

)
+ 1

)
if |x− s1| 6

w1
2

c2 if x− s1 >
w1
2

.

(6.29)

We now define an expression for the friction in three zones: a zone inwhich the pig velocity
is negative, a zone in which the the pig velocity is positive, and a zone in which the pig
velocity is near zero. The friction in these three zones is defined respectively:

Ffric,1 = H1(−Ffric,d,−Ffric,s,
vtrans

2
,−vtrans, v), (6.30)

Ffric,2 = H1(Ffric,s, Ffric,d,
vtrans

2
, vtrans, v), (6.31)

Ffric,3 = H3(−Ffric,s, Ffric,s,
vtrans

2
, s2, v). (6.32)

Here s2 is defined as:

s2 = H2(Ffric,s,−Ffric,s,
vtrans

2
, 0, Fp). (6.33)

Furthermore, vtrans is a constant and is used to determine the pig velocity range over
which the friction changes from zone to zone. In order to arrive at an expression for Ffric
which connects the friction as defined in each of the zones, we now define two switching
functions:

S1 = H1(1, 0,
vtrans

2
,−
vtrans

2
, v), (6.34)

S2 = H1(0, 1,
vtrans

2
,
vtrans

2
, v). (6.35)
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We can then construct a smooth approximation of eq. 6.26, Ffric,sm, as follows:

Ffric,sm = S1Ffric,1 + S2Ffric,2 + (1− S1)(1− S2)Ffric,3. (6.36)

Figure 6.4 shows eq. 6.36 evaluated as function of the pig velocity v and the driving force
Fp. Here we took Ffric,s = 40.3 N, and Ffric,s = 48 N, which represent values as used
in section 4.4.2. Furthermore, we took vtrans = 0.5. This means that transition from
Ffric,s to Ffric,d occurs around v = 0.5 m/s, see Figure 6.4b. For visualization purposes
we here chose the value of vtrans rather big. In practice it is desired that vtrans is small,
such that the discontinuity in eq. 6.36 is more accurately approximated. In simulations we
typically use a value of vtrans = 0.01.

Figure 6.4: (a) A smooth function for the friction force of the pig with the pipe wall. (b) Friction
force as function of pig velocity for Fp = 0. (c) Friction force as function of Fp for
v = 0.
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6.4 test cases

In this section we discuss two test cases that were performed using the method described
in the previous sections. In these test cases we focus on the liquid slug that is accumulated
in front of the pig, see figure 6.5. In describing the liquid slugwemake use of the definition
of the liquid hold-up fraction:

α =
Al
A

. (6.37)

Due to the movement of the pig an increased liquid hold-up fraction αs exists in this
pig-generated slug when compared to the hold-up fraction further downstream, which we
denoteα0. We also define the velocity of the transient that travels ahead of the pig,Vfront.
This front separates two regions: the region downstream of the front, where the flow is
still unaffected by the pig motion, and the region upstream of the front where the flow is
affected as a result of the pig motion. We first discuss a test case which considers a pig
without by-pass. We then move to a test case for pigs with by-pass.

Figure 6.5: Schematic of liquid slug accumulation in front of a moving pig.

6.4.1 pig-generated slug for pigs without by-pass

As a first step in understanding the liquid slug, which is propelled by a pig in two-phase
stratified pipe flow, we assume inviscid flow and a preset pig velocity. In addition, we
neglect the pressure gradient ∂p∂s , which means that we only consider pressure variations
due to the hydraulic gradient term. We can then simplify the liquid mass equation 6.2 and
the liquid momentum equation 6.4. When applying a mass and momentum balance over
the liquid front in a reference frame that moves with the liquid front we can then write the
following steady state balance:

(Vpig − Vfront)αsA = (−Vfront)α0A (6.38)

(Vpig − Vfront)
2αsA−HGl,α=αs = (−Vfront)

2α0A−HGl,α=α0 (6.39)
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Here HGl,α=αs is the hydraulic gradient term (see eq. 5.7) evaluated in the slug region in
front of the pig, whereas HGl,α=α0 is the hydraulic gradient term evaluated downstream
of the liquid front. Inspecting eq. 6.38 and 6.39we identify two unknowns that characterize
the pig-generated slug:αs andVfront.We solve forαs andVfront and compare the result
with numerical simulations of the full two-fluid model (eq. 6.1- 6.4), see figure 6.6.

Figure 6.6: Pig generated slug for inviscid flow. (a) Solution at t = 23 s. The spatial coordinate s
is normalized by pipe diameterD. (b) Solution at t = 2102 s. (c) Solution at t = 4150
s. (d) Vfront as function of pig velocity. (e) αs as function of pig velocity.

The simulations were carried out by considering a pipeline with initial hold-up of α0 =

0.1, with the fluid being at rest. At time t = 0 s, a pig is inserted at s = 0 m, which is
visible in figure 6.6a as a vertical black line. The pig is given a constant preset velocity
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Vpig = 0.4m/s, and as a result liquid is accumulated in front of the pig, see figure 6.6b/c.
We use the properties of water for the liquid phase, whereas we use the properties of air
for the gas phase. We further adopt the same pipe diameter D as in [50]. The length of
the pipe L is chosen equal to 3840 m. This length is found to be sufficiently long for the
holdup waves that are generated to be fully developed. The simulation parameters are
summarized in table 6.1.

Table 6.1: Simulation parameters.

Parameter Value Unit

Liquid density ρl 998 kg/m3

Gas speed of sound cg 289 m/s

Liquid viscosity µl 1.0 · 10−3 Pa s

Gas viscosity µg 1.8 · 10−5 Pa s

Pipe diameter D 0.105 m

Pipe length L 3840 m

Pipe wall roughness ε 5 · 10−6 m

Acceleration of gravity g 9.8 m/s2

Outlet pressure pout 105 N/m2

Number of finite volumes N 200

Mesh size ∆s 19.2 m

Time step ∆t 2.56 s

From the simulation results αs and Vfront can be extracted, see figure 6.6d/e in which
the results for various pig velocities are summarized. A good agreement is found when
comparing the simulation result to the theoretical solution for αs and Vfront, which is
obtained from solving eqs. 6.38 and 6.39.
In order to verify mass conversation of the method, we evaluate the mass error εβ

according to the BDF2 scheme:

εβ =

(
3

2
Mn+1β − 2Mn−1β +

1

2
Mnβ
)
+∆t

(
Fβ,out − Fβ,in

)
. (6.40)

HereMβ is the total mass of phaseβwhich resides in the domain.Mβ is simply obtained
by summing the mass of the individual finite volumes. Fβ,out and Fβ,in are the outward
and inward mass fluxes at the border of the domain respectively. Figure 6.7 shows the
evolution of εβ in time, which indeed confirms that the method is mass conserving.
As a next step we consider the same test case, but we include the viscosity of the fluid. The
viscosity of the liquid phase will generate an increasing amount of friction with the pipe

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



128 modelling of by-pass pigging in two-phase stratified pipe flow

ch
ap

te
r

6

0 1000 2000 3000 4000

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5
10-11

Gas mass

Liquid mass

Figure 6.7: Error in liquid and gas mass.

wall. As a result, the liquid hold-up αs in the pig-generated slug keeps increasing until it
hits the top of the pipe, see figure 6.8. For this simulation Vpig = 1.0 m/s. The time step
is taken as ∆t = 0.02 s, whereas the number of volumes is 200. The domain length is
120 m, which results in a mesh size of ∆s = 0.6 m. As a consequence of the liquid that
hits the top of the pipe for pigs without by-pass, an initial full-bore liquid slug is formed,
which finally can result in a large liquid surge that must be managed by the receiving
facilities [21]. The use of a by-pass pig can help to smooth out the liquid surge [21]. This
will be the topic of the next section.

6.4.2 pig-generated slug for pigs with by-pass

The presence of a by-pass in the pig body has two effects on the pig-generated slug. First
of all, a by-pass pig will a have lower travel velocity compared to a conventional pig. The
steady-state velocity of a by-pass pig in a horizontal pipe can be expressed as follows [37,
82]:

Vpig = Vmix −
d2

D2
ρbp

ρup

√
Ffric

K12ρbpA
. (6.41)

Here Vmix = (ugAg + ulAl)/A is the upstream mixture velocity, d is the diameter
of the by-pass hole, ρbp is the density of the fluid in the by-pass (which is taken as the
downstream gas density), ρup is the upstream density of the gas, Ffric is the friction of
the pig with the inner pipe wall, and K is the pressure loss coefficient of the by-pass pig.
We use the Idelchik relation to calculate K, in which we assume single-phase gas flow
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Figure 6.8: Pig-generated slug for viscous flow. (a) Solution at t = 5 s. (b) Solution at t = 55 s. (c)
Solution at t = 94 s.

around the by-pass pig [37, 45, 82]. The pig length for calculating K is taken equal to
two times the pipe diameter D. Furthermore, we take a value of Ffric = 10 N. When the
by-pass area fraction d2

D2
goes to zero, one retrieves a pig velocity equal to the upstream

mixture velocity. As a result of the lower pig velocity due to the by-pass, the liquid in front
of the pig will also adopt a lower velocity.

A second effect of the presence of a by-pass is that the gas that by-passes will result in
a liquid hold-up αs in front of the pig, which is not equal to one, i.e. the liquid will not
reach the top of the pipe. Instead, αs will reach an equilibrium hold-up; see the results in
figure 6.9 for different by-pass ratios. As an initial condition the hold-up fraction has again
been settled at 0.1, which was achieved by setting Ṁl = 0.051 kg/s and Ṁg = 0.010
kg/s at the inlet and solving the steady-state limit of equations 6.3 and 6.4 whereby spatial
derivatives (except for the pressure gradient) have been neglected, see also equation 6.44.
We carried out a simulation for a pig with a by-pass area fraction of 0.02, which results
in Vpig = 0.3427 m/s (eq. 6.41). The other simulation parameters are as summarized in
table 6.1. To avoid additional transients due to initial acceleration of the pig, we directly set
the pig velocity equal to the steady-state pig velocity, as given by eq. 6.41. The equilibrium
hold-up αs is extracted when the hold-up in front of the pig has settled to a steady-state
value, see figure 6.9c.

We now proceed to estimate αs by a simplified model. We therefore again consider
the region just downstream of the pig, where α = αs. As a first step we aim to have an
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Figure 6.9: Pig-generated slug for a by-pass pig. (a) Solution condition at t = 509 s. The by-pass
area fraction is equal to 0.02. (b) Solution at t = 4605 s. (c) Solution at t = 7677 s. (d)
αs and pig velocity (eq. 6.41) as a function of the by-pass area fraction.
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expression for the liquid and gasmass flow in this region, denoted Ṁl,α=αs and Ṁg,α=αs .
As the liquid velocity has adopted the pig velocity, Ṁl,α=αs can be calculated as follows:

Ṁl,α=αs = ρlVpigαsA. (6.42)

The gas mass flow at this location is determined by the amount of gas that goes through
the by-pass pig. It can be calculated by applying a mass balance:

Ṁg,α=αs = ρup(Vmix − Vpig)A. (6.43)

We next use the steady-state limit of the momentum equations 6.3 and 6.4 where we ne-
glect spatial derivatives (except for the pressure gradient), to derive the following point
model:

τglPgl

(
1

1−αs
+
1

αs

)
+
τgPg

1−αs
−
τlPl
αs

= 0. (6.44)

Here the shear stresses are a function of αs as well as the gas and liquid mass flow, which
are given by eq. 6.42 and 6.43. Asαs is the only unknown in equation 6.44, it can be solved,
see figure 6.9d. This simplified approach shows good agreement with the numerical sim-
ulations, which thus gives insight in characterizing the liquid slug which is propelled by
a by-pass pig under the assumption of stratified flow conditions.

6.5 conclusions

In this chapter we have discussed the numerical implementation of the pig motion in strati-
fied two-phase pipe flow using amass conserving two-fluidmodel. The pig has been imple-
mented as a moving border of a finite volume. A new mass- and momentum-conserving
regridding strategy has been proposed and a new implementation of the boundary con-
dition treatment has been realized. Test cases were used to characterize the liquid slug
accumulation in front of the pig for both frictionless and frictional flow. The effect of a
by-pass in the pig body on the liquid slug has been quantified. Good agreement between
the simplified approach and the 1D transient simulations was found.
The current study has been carried out assuming stratified flow. This assumption may

not always hold, especially not for the flow just in front of the pig, which may depend on
the details of the shape of the pig and of the by-pass holes. A 1D pipe flow model will
in general not be able to predict the complex 3D flow close to the by-pass pig. Therefore,
it is recommended to carry out two-phase CFD simulations to help developing reliable
two-phase correlations which characterize the flow just in front of the by-pass pig. The
correlations will serve as input to the 1D model, such as the model presented in this study.

[ January 15, 2020 at 7:46 – classicthesis version 2.2 ]



132 modelling of by-pass pigging in two-phase stratified pipe flow

ch
ap

te
r

6

The pig velocity in this study was given the preset steady-state velocity from the start of
the simulation. A next step is to test if the assumptions of the simplified model will still
hold when startup transients of the pig and the surrounding fluid are included in the full
1D simulation.
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The research purpose of the present studywas to get a better fundamental understanding of
the physics of the pigging of a pipeline with multiphase flow transport in order to improve
engineering models used in the industry for pigging operations. The results presented in
this thesis show that significant progress has been made.

In particular knowledge was lacking on the two user parameters required for running en-
gineering pipeline models with pigs in the industry, which are the pressure loss coefficient
due to the by-passing fluid and the friction between the pig and the pipe wall. By using
dedicated lab experiments and different simulation approaches (both 1D, 2D, and 3D) we
were able to provide clarity on the fluid flow physics of pigging (particularly by-pass pig-
ging, either without or with speed control) as well as on the frictional force of the pig with
the inner pipe wall. The implementation of by-pass pigging in a 1D two-fluid model has
been detailed out. After implementation of these new insights in the engineering simula-
tions tools, the industry will obtain more reliable simulation results, which will reduce
the risk of operational problems during pigging in the field. This will lead to safer opera-
tion, and also to lower operational costs (as there will be less or no production during the
pigging event) and lower capital costs (as the size of the slug catcher can be significantly
reduced).
The conclusions of the present study and recommendations for future research are given

in the two sections below.

7.1 conclusions

7.1.1 pressure loss due to by-passing fluid

In chapter 2 a building block approach was applied to describe the pressure loss coefficient
K due to the by-passing single-phase fluid in various by-pass pigging geometries. First of
all K of the conventional bi-directional by-pass pig has been revisited. Subsequently, new
correlations for more complex geometries had been proposed and compared with CFD
simulations using the building block approach. This building block approach allowed to
construct correlations both for the disk pig geometry and for the speed-controlled pig
geometry. A two-solution region was found for the disk pig geometry, which means that
there are two stable flow behaviours (type A and type B) within the RANS framework
of the current study. Good agreement was found between the proposed correlation for the
disk pig and the CFD results, provided that the flow exhibits flow behaviour B. In addition,
the pressure loss coefficient of the speed-controlled pig was characterized. It was found
that a correlation based on an equivalent disk pig gives qualitatively the right trend, but
deviates quantitatively for small opening angles of the holes of the speed-controlled pig.
Further research is needed to predict K also for small opening angles of the holes. The
obtained correlation for K can be applied in the 1D engineering computer codes that are
used in the industry for pigging simulations in multiphase pipelines.
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7.1.2 friction between the pig and the pipe wall

Static and dynamic experimental setups have been designed to investigate the frictional
behaviour of a sealing disc of a pipeline pig. The results were described in chapter 3. The
static setup has been used to systematically study the effect of various parameters includ-
ing the oversize, force ratio, thickness and E-modulus. In this way the study contributes
to the fundamental knowledge on parameters influencing the friction force in pigging ap-
plications. Being able to test sealing disc configurations for different values of the force
ratio µ is important for the industry as this ratio is often unknown and may vary quite
substantially. A finite element (FE) model was built that was able to accurately capture
the behaviour of the experiments. The finite element model accurately describes the static
experiments, by using E-moduli obtained in stress and strain tests and without using any
fitting parameters. When similar forces as measured in the experiment are acting on the
chamfer in the finite element model, the maximum deformation varies by less than 2 mm
for µ values larger than 0.25. Furthermore, the shapes obtained in the experiments agree
very well with the shapes obtained with the finite element model. In the current experi-
ment and FE model axisymmetry applies. For future research it could be interesting to
investigate the effect of gravity which would break the axisymmetry. This effect is ex-
pected to become important when the gravitational forces become comparable with the
forces which are purely caused by confining the sealing discs in the pipe.
When the disc is brought to a specific oversize between 1% and 4% in the finite ele-

ment model, the required forces agree very well with the experimental force data. The
maximum deviations for disc A and B occurred at 4% oversize. Here the finite element
model underpredicts the friction force by a maximum of 5% and 12%, respectively. It is
hypothesized that this underprediction is explained by undesired friction between the hull
and the frame in the experimental setup, which is especially observed at high frictions
forces. To test if this hypothesis is correct a setup could be designed that has more roller
bearings between the hull and the frame which would result in even less friction.
The dynamic pig pull facility has been used to test the frictional behaviour during a

dynamic pull test through a 1.7-meter pipe for both a dry and a wet contact. This dynamic
setup is complementary to the static pig pull facility. The influence of the clamping force
of the spacer discs on the sealing disc diameter and frictional force has been investigated.
It was found that by increasing the clamping force, the diameter, and therefore the oversize,
of the sealing disc increases. As a result, the frictional force was found to increase during
the dynamic pull tests. The largest difference in friction force is observed when comparing
the dry and thewet experiments. Lubricationwas clearly visible in the forcemeasurements.
Using water as a lubricant resulted in a decrease in the friction force by between 12%
and 16% for the experiments conducted. This decrease in friction force is attributed to
a difference in friction coefficient, which has been quantified using FE calculations. The
sensitivity of the size of the chamfer in this analysis has been taken into account. This has
led to a prediction of the friction coefficient of between 0.97 and 1.30 for a dry contact and
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of values between 0.68 and 0.83 for a wet contact. Only water has been used as lubricant
in the experiments.

7.1.3 lab-scale pigging experiments

The motion of by-pass pigs in a horizontal low-pressure gas pipeline has been studied on
a laboratory scale, as described in chapter 4. The effect of the by-pass area and of the
upstream bulk velocity was analyzed by means of an extensive experimental parameter
study. It was found that the average pig velocity can be well predicted by modelling the
pressure loss through the by-pass with the Idelchik correlation and the friction between the
pig and the pipe wall with a constant value. The use of the Idelchik correlation has been
verified through CFD calculations and is also confirmed experimentally. It was shown
that under low-pressure conditions the pig motion shows oscillatory motion with high pig
velocity excursions due to gas accumulation that may build up behind the pig.

The frequency and amplitude of this oscillatory motion have been described with a sim-
plified model which has been verified against experimental data. Based on the simplified
model a PD controller has been formulated in order to reduce the pig velocity excursions.
The controller was tested both in the simplified model as well as in a full numerical 1D
transient model. In both cases it was shown that the pig velocity excursions are success-
fully mitigated by the controller. The case example which was used to test the controller
thereby demonstrates minimum requirements for the design of a speed-controlled pig in
a low-pressure pipeline.

7.1.4 numerical method for the 1d two-fluid model

In chapter 5 we have analysed several time integration methods for the compressible two-
fluid model with the goal to simulate stratified wavy flow and slug flow in pipelines in a
so-called ‘slug capturing’ approach. The study was focussed on obtaining insight into the
numerical pitfalls and requirements. Thereto a theoretical analysis on the differential equa-
tions and the discretized equations was given, in particular with respect to their stability
properties. The analysis has been demonstrated for a number of test cases.
We conclude that the BDF2 method is a robust time integrator for the two-fluid model

and it outperforms the commonly used Backward Euler method and the second order
Crank-Nicolson method. This is due to a combination of its second order accuracy, A-
stability and L-stability. These properties make that the second order BDF2 scheme is
suitable for the time integration of unsteady problems, while not suffering from numerical
oscillations that arise from acoustic wave propagation.
To facilitate the comparison and understanding of the time integration methods, several

techniques have been proposed. First, a new automatic von Neumann analysis technique
has been developed as tool for direct evaluation of the stability of the discrete models by
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running a computer code without requiring symbolic manipulations. This makes it very
flexible since it can be directly applied when more physics (e.g. surface tension or axial
diffusion) or other spatial discretization methods are included. Second, we have proposed
the use of Discrete Flow Pattern Maps (DFPM) to indicate to what extent discretization
methods (for a certain choice of the number of grid points and the size of the time step) are
able to reproduce the flow pattern maps that are based on the stability of the differential
equations. The Discrete Flow Pattern Map reveals that the effective well-posed unstable
region is well captured by BDF2 but completely missed by Backward Euler, at least for
the considered grid and time step resolutions. Simulations in the nonlinear regime further-
more have indicated that ill-posedness can occur when starting from the unstable regime.
The implication is that the actual well-posed unstable regime for nonlinear simulations can
be much smaller than the theoretical one, which can limit the application of the two-fluid
model for simulating the stratified-slug flow transition.

7.1.5 pig simulation with the 1d two-fluid model

In chapter 6 we have discussed the numerical implementation of the pig motion in strati-
fied two-phase pipe flow using a mass conserving two-fluid model. The pig has been im-
plemented as amoving border of a finite volume. A newmass- andmomentum-conserving
regridding strategy has been proposed and the implementation of the boundary condition
treatment has been detailed out. Test cases were used to characterize the liquid slug accu-
mulation in front of the pig for both inviscid and viscous flow. The effect of a by-pass in the
pig body on the liquid slug has been quantified. Good agreement between the simplified
approach and the 1D transient simulations was found.

7.2 recommendations for further research

7.2.1 numerical simulations

CFD simulations were carried out for single-phase fluid that is flowing through the by-
pass area of different pigging configurations. For some conditions two different solutions
were found, with hysteresis to move from one branch of solutions to the other branch. It
is of interest to further investigate the two-solution region that was found for the disk pig.
The boundary of the two-solution region may be sensitive to the parameters of the RANS
model, most notably the turbulence model. It would also be interesting to investigate the
existence and stability of the two-solution region experimentally in order to further verify
the CFD modelling.
It is also recommended to carry out CFD simulations for by-passing with two-phase

flow. This will show how the liquid ahead of the pig is being accumulated as a result of the
pig propagation. These results can be used for further validation of the 1D pipeline model.
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Two-phase simulations, however, are much more complex than single-phase simulations.
This is because with two-phase flow a significant pipe length needs to be included in
the CFD geometry, whereas for single-phase flow only a small section (with an observer
sitting on the pig) is sufficient. In addition, there will be no axi-symmetry, and it may
require significant simulation time to reach steady state two-phase flow.

In the 1D by-pass pigging simulations as carried out with the new numerical model, we
have assumed stratified flow. This assumption may not always hold, especially not for the
flow just in front of the pig, which may depend on the details of the shape of the pig and of
the by-pass holes. A 1D pipe flow model will in general not be able to predict the complex
3D flow close to the by-pass pig. Here two-phase CFD simulations can help to develop
reliable two-phase correlations which characterize the flow just in front of the by-pass pig.
The correlations will serve as input to the 1D model, to improve e.g. the relation for the
pressure loss coefficient. The pig velocity in this study was given the preset steady-state
velocity from the start of the simulation. A next step is to test if the assumptions of the
simplified model will still hold when startup transients of the pig and the surrounding
fluid are included in the full 1D simulation.

7.2.2 lab experiments and field data

Pull tests for oversized pigs were carried out with air and with water. It is recommended
to perform similar pull tests also with other lubricants, such as with mineral oil.
It is also recommended to carry out further lab tests with a small-scale speed-controlled

pig, using different controller algorithms. It is suggested to test a controller based on the
simplified model in a laboratory environment while comparing the results with a 1D tran-
sient tool, as often these tools are used to predict the motion of a pig in a pipeline upfront.
It is thus important that these 1D transient tools are able to capture the essential dynamics
of a speed-controlled pig in a low-pressure pipeline. Based on these findings the controller
can be further developed to take into account more physics, such as possible changes in
friction while the pig is accelerating. In addition, the measurement of the pig velocity in
reality will always contain a certain amount of noise. It is therefore recommended to in-
vestigate the sensitivity of the controller to a certain level of noise in a model environment
first, before carrying out the experiment.
It would also be highly desirable to use field data for the validation of the model predic-

tions of by-pass pigging. Dedicated campaigns would be required, in which a data logger
is attached to the pig. That data logger can measure and register parameters like the local
pig velocity, pressure, temperature, rotation and acceleration.
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7.2.3 implementation of new results

Some work is still needed to make the results obtained in the present study available to the
flow assurance engineer, process engineer, or pipeline engineer that is involved in prepar-
ing and supporting the pigging operations in the field. In particular the calculation of the
friction between the pig and the pipe wall needs to be captured in a design protocol. The
single disc deformation as simulated in the present study needs to be repeated for the mul-
tiple discs that are part of the actual pig configuration. This will provide the normal force
on each of the (oversized) discs. The Coulomb friction coefficient (as obtained from the
pull tests with lubrication) applied to the normal forces will provide the total friction force
between the pig and the pipe wall. That value can be specified as input for the engineering
pipeline simulations.
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TWO SOLUT ION REG ION

The two solution region as found in the Fluent CFD results described in chapter 2 is
explored by varying the initialization of the solver. Two different approaches are employed.
In the first approach the steady state solver is initialized by the default initialization scheme
in Fluent [24]. The second approach relies on running a transient simulation until steady
state is reached. After the steady state is reached, this solution is used to initialize the
transient simulation. In this way it can be verified that the steady state is stable. When
these two approaches are applied within the two solution region, the first approach will
trigger flow behaviour A, while the second approach will trigger flow behaviour B. This
is shown in figure A.1, in which the results from figure 2.9b are taken as an example.
The two solution region is indicated by the dashed lines. Figure A.1a shows that outside
the two solution region the steady state approach yields the same result as the transient
approach.
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Figure A.1: Pressure loss coefficient. (a) Comparison between steady state and transient approach.
(b) Comparison between flow behaviour A and B.
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MATER IAL TESTS

The Shore hardness is a sealing disc material property. It is a measure of the resistance
of a material to indentation. For sealing discs the ASTM D2240 type A scale is used to
measure the Shore hardness. Typical values of the Shore hardness A of a sealing disc are
in the range: 60 - 85 ([15]). The discs used in chapter 3 are specified by a Shore hardness
of 75. The results are shown in Table B.1. The hardness tests were performed on the inner
and outer diameters of the discs at ten different positions. The results for the disc A are
within the specifications of the manufacturer, but the results for disc B are slightly higher.

An important input parameter for the deformation models discussed in this report is the
Young’s modulus, also called the elastic modulus or E-modulus; vendors of sealing discs
do not specify the E-modulus. There are ways to obtain the E-modulus from the Shore
hardness, for example by using Gent’s relation. In this research, however, it was chosen to
determine the E-modulus by stress-strain tests. From the sealing discs a dog bone is cut
using a bandsaw. Each dog bone was tested five times with a universal testing machine,
see Figure B.1. One test consists of the following steps:

1. Uniform extension of 10 mm in two minutes

2. Two minutes rest in extended position

3. Uniform compression of 10 mm in two minutes to starting position

During a test the tensile force F and the displacement ∆L are recorded with a frequency
of 10 Hz. Using F and ∆L, the stress σ and strain ε are determined:

σ =
F

A
, (B.1)

ε =
∆L

L
, (B.2)

where A is the cross-sectional area in the thin region where the dog bone will stretch
mostly and L is the starting length of the dog bone between the specimen holding jaws
(here 11.2 cm). The E-modulus is determined by using Hooke’s law:

E =
∆σ

∆ε
(B.3)
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Table B.1: Measured values of the Shore hardness A.
Disc A Disc B

Sample # Inner diameter Outer diameter Inner diameter Outer diameter
1 75 76 81.5 81
2 75 75 80.5 79.5
3 74.5 74 80.5 79.5
4 74.5 74 80.5 79
5 74 74.5 80 78
6 76.5 75.5 79 80.5
7 76 75.5 79 79.5
8 75.5 75 79 79
9 75 74.5 79 78.5
10 75.5 75 79 79
Avg. 75.2 74.9 79.8 79.4
Std. Deviation 0.75 0.66 0.92 0.88

Figure B.1: Universal testing machine. (a) Dog bone disc A. (b) Dog bone disc B.

Figure B.2 shows the E-modulus as function of the tensile strain for disc A and disc B,
respectively. The E-modulus of the disc B is significantly higher than that of disc A. Both
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Figure B.2: The E-modulus as a function of the tensile strain. (a) Disc A. (b) Disc B.

materials show a non-linear behaviour and the E-modulus decreases as the strain increases.
This non-linearity is most apparent for the disc B when the strains exceed 0.04 mm/mm.

The E-modulus is used as input parameter in the finite element model; it will be a
constant, which is equal to the average value of the E-moduli obtained in the five stress-
strain tests per dog bone. In our stress-strain tests the displacement increases to 9% of the
starting length as higher strains are unlikely to be encountered.
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When substituting in the equation for seq (equation 4.8) into equation 4.11 we find:

p∗

ρ∗
m

(Apout + Ffric)2
d2δs
dt2

= −
δs

M0 + Ṁt
. (C.1)

When defining a1 and a2 as:

a1 =
p∗

ρ∗
m

(Apout + Ffric)2
M0, (C.2)

a2 =
p∗

ρ∗
m

(Apout + Ffric)2
Ṁ, (C.3)

we can cast equation C.1 in a more general form:

d2δs
dt2

= −
δs

a1 + a2t
. (C.4)

A solution to equation C.4 can be found by using Bessel functions:

δs(t) = C1kJ1(2k) −C2kY1(2k), (C.5)

with

k(t) =

√
a1 + a2t

a22
. (C.6)

Here J1 is the Bessel function of the first kind with order 1 and Y1 is the Bessel function
of the second kind with order 1.C1 andC2 are integration constants. A solution for δv(t)
can be obtained by differentiating equation C.5:

δv(t) =
1

a2
(C1J0(2k) −C2Y0(2k)) . (C.7)
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Here J0 is the Bessel function of the first kind with order 0 and Y0 is the Bessel function of
the second kind with order 0. We now substitute the values of a1 and a2 into equation C.6
to obtain:

k(t) =

√
a1 + a2t

a22
=

√
1

a1 + a2t

(
a1
a2

+ t

)
=

√
(Apout + Ffric)2

p∗

ρ∗m(M0 + Ṁt)

(
M0

Ṁ
+ t

)
.

(C.8)

When using the definition for seq, equation 4.8, and subsequently the definition of the
local angular frequencyω, equation 4.14, we can further simplify equation C.8 and arrive
at equation 4.13:

k(t) =

√
(Apout + Ffric)

seq(t)m

(
M0

Ṁ
+ t

)
= ω(t)

(
M0

Ṁ
+ t

)
. (C.9)

Similarly, we can rewrite equation C.7 to obtain equation 4.15:

δv(t) =
1

a1 + a2t

a1 + a2t

a2
(C1J0(2k) −C2Y0(2k))

= ω2(t)

(
M0

Ṁ
+ t

)
(C1J0(2k) −C2Y0(2k)) . (C.10)
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TWO-FLU ID MODEL DETA ILS

d.1 geometry

Referring to the simulations described in chapter 5 and 6, the following geometric iden-
tities are used to express the wall perimeters, interfacial perimeter, and liquid height in
terms of the wetted angle γl:

Pgl = D sinγl, (D.1)
Pl = Dγl, (D.2)
Pg = D (π− γl) , (D.3)

h =
1

2
D (1− cosγl) . (D.4)

We use Biberg’s approximation [10] to express αl in terms of γl (this avoids the iterative
solution of a nonlinear equation):

γl = παl +

(
3π

2

) 1
3
(
1− 2αl +α

1
3

l −α
1
3
g

)
. (D.5)

Figure D.1: Stratified flow layout and definitions.
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d.2 friction models

The wall (subscript w) and interfacial (subscript gl) shear stress are expressed by the
Fanning friction factor definition:

τ =


1

2
fβρβuβ|uβ| wall

1

2
fglρg(uβ − uγ)|uβ − uγ| interfacial

(D.6)

The friction factor fβ of phase βwith the pipe wall is modeled with the Churchill relation
[13]:

fβ = 2

((
8

Reβ

)12
+ (A+B)−1.5

) 1
12

, (D.7)

A =

2.457 ln

(( 7

Reβ

)0.9

+ 0.27
ε

Dhβ

)−1
16, (D.8)

B =

(
37530

Reβ

)16
. (D.9)

Here ε is the hydraulic pipe roughness, Reβ is the Reynolds number,

Reβ =
ρβuβDhβ

µβ
, (D.10)

and Dhβ is the hydraulic diameter:

Dhβ =


4Al
Plw

if β = l

4Ag

Pgw + Pgl
if β = g

(D.11)

The interfacial friction factor fgl is calculated by [55]:

fgl = max{ fg, 0.014}. (D.12)
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