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Capital letters were always the best way of dealing with things you
didn’t have a good answer to.

Douglas Adams, “Dirk Gently’s Holistic Detective Agency”





SUMMARY

There is increasing attention for the effects of anthropogenic underwater radiated noise
(URN) on marine fauna. This is expected to lead to regulations with respect to the max-
imum permitted sound emissions of ships. It is known that cavitating tip vortices, gen-
erated by ship propellers, are some of the key contributors to URN. Consequently, there
is a need to evaluate propeller designs with respect to noise generation in a design stage.
Computational fluid dynamics (CFD) has the potential to offer detailed insights into
cavitating vortex dynamics and noise sources, at a reasonable cost. URN can be effi-
ciently estimated using CFD in combination with an acoustic analogy. In order to use
such predictions in a design process, it is essential to understand and quantify the errors
associated with the numerical predictions of noise sources. This thesis investigates the
reliability of such evaluations and aims to reduce occurring modelling errors.

To compute noise sources, it is necessary to simulate cavitation dynamics using scale-
resolving simulations (SRS). Here, part of the turbulence kinetic energy spectrum is re-
solved in space and time, as opposed to being modelled using Reynolds averaged Navier-
Stokes (RANS). The SRS method of choice in this work is the partially averaged Navier-
Stokes (PANS) method. Bridging models, such as PANS, exhibit a smooth transition and
absence of commutation errors between RANS and large eddy simulation (LES) zones,
in contrast to hybrid models such as detached eddy simulation (DES). The formulation
allows for a theoretical decoupling of the discretisation and modelling errors, thereby
enabling verification and validation processes.

PANS allows the user to select the ratios of resolved-to-total turbulence kinetic en-
ergy and dissipation (rate). Appropriate settings and methods to estimate these settings
a priori are investigated. Furthermore, a new PANS closure is developed, which offers
improved convergence behaviour compared to more commonly used models, and is
better suited to application for multiphase flows.

It has been shown repeatedly in literature that SRS should be accompanied by phys-
ical inflow boundary conditions, where time-varying fluctuations, resembling turbu-
lence, should be inserted upstream of the object of interest, to prevent laminar solutions.
However, from literature it is clear that for maritime applications this is often neglected.
To the knowledge of the author, there is no previous application of such an inflow in
combination with cavitation. In this PhD thesis, a synthetic inflow turbulence generator
(ITG) is implemented, and tested for several test cases in wetted and cavitating condi-
tions. For these cases, the numerical errors, consisting of discretisation, iterative and
statistical errors are evaluated.

Firstly, the results when using the ITG are compared against recycling flow results for
a turbulent channel flow, using different SRS methods. It was shown that the ITG can
deliver a resolved turbulent inflow at lower computational cost. Secondly, the effect of
neglecting such an inflow was tested for the Delft Twist 11 hydrofoil, where it was shown
that simulating such a flow with a low ratio of resolved-to-total turbulence kinetic energy
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can lead to flow separation at the wing leading edge. This is in contrast to experimentally
observed behaviour. The inclusion of the ITG can reduce this modelling error, although
the sheet cavity dynamics remain largely unaffected. Finally, an elliptical wing with a
cavitating tip vortex is simulated. The observed vortex dynamics are compared against a
semi-analytical model from literature. To obtain vortex dynamics, the ITG was shown to
be necessary. The far-field noise generated by the vortex is quantified and related to the
cavity dynamics.

Some of the main contributions of this research are improved insight in the use of
SRS in cavitating conditions, in simulating cavity dynamics and in using an ITG to obtain
flow fields representative of experimental conditions. In this way it has enhanced our
understanding of the ability and limitations in the prediction of acoustic sources due to
cavitation. To improve predictions of cavitation dynamics it is recommended to address
the cavitation model and the method which describes the cavity interface, to reduce the
discrepancy in average cavity size between simulations and experimental observations.



SAMENVATTING

Er is steeds meer aandacht voor de effecten van antropogeen onderwater uitgestraald
geluid (URN) op mariene fauna. De verwachting is dat dit leidt tot regelgeving met be-
trekking tot de maximaal toegestane geluidsuitstoot van schepen. Het is bekend dat
caviterende tipwervels gegenereerd door scheepsschroeven enkele van de belangrijkste
oorzaken van URN zijn. Dit leidt tot de noodzaak om schroefontwerpen in een ont-
werpfase te evalueren met betrekking tot de geluidsproductie. Numerieke stromingsleer
(CFD) biedt de kans om, tegen een redelijke prijs, gedetailleerde inzichten te bieden in
caviterende vortexdynamica en geluidsbronnen. URN kan efficient worden ingeschat
met gebruik van CFD in combinatie met een akoestische analogie. Om dergelijke voor-
spellingen in een ontwerpprocess te gebruiken is het noodzakelijk om de fouten geas-
socieerd met numerieke voorspellingen van geluidsbronnen te begrijpen en te kwantifi-
ceren. Dit proefschrift onderzoekt de betrouwbaarheid van dergelijke voorspellingen en
heeft als doel om hierbij optredende modelleringsfouten te verminderen.

Om geluidsbronnen te berekenen is het noodzakelijk om cavitatiedynamica te simu-
leren met behulp van schaaloplossende simulaties (SRS). Hierbij wordt een deel van het
turbulente kinetische energiespectrum wordt opgelost in de tijd en ruimte, dit in tegen-
stelling tot gemodelleerd middels Reynolds averaged Navier-Stokes (RANS). De SRS me-
thode die de voorkeur heeft in dit onderzoek is partially averaged Navier-Stokes (PANS).
Eigenschappen van bridging modellen, zoals PANS, zijn een soepele overgang and af-
wezigheid van commutatiefouten tussen RANS en large eddy simulation (LES) zones, in
tegenstelling to hybride modellen zoals detached eddy simulation (DES). De formulering
zorgt voor een theoretische ontkoppeling van discretizatiefouten en modelleringsfou-
ten, wat verificatie en validatie mogelijk maakt.

Bij PANS kan de gebruiker de ratio van opgeloste-tot-totale turbulente kinetische
energie en turbulentiedissipatie kiezen. Geschikte instellingen, en methodes on deze
instellingen a priori in te schatten zijn onderzocht. Tot slot is er een nieuw PANS-KSKL
model ontwikkeld. Dit model vertoont verbeterd convergentiegedrag vergeleken met
andere veelgebruikte modellen, en is meer geschikt voor meer-phase stromingen.

In de literatuur is herhaaldelijk aangetoond dat SRS gepaard moet gaan met fysieke
instroomrandvoorwaarden, waarbij stroomopwaarts in de tijd variërende fluctuaties,
die lijken op turbulentie, moeten worden toegevoegd om laminaire oplossingen te voor-
komen. Echter, het is duidelijk uit literatuur dat dit voor maritieme toepassingen meestal
niet gedaan wordt. Voor zover bekend bij de auteur is er geen eerdere toepassing van een
dergelijk instroming in combinatie met cavitatie. In dit proefschrift is een synthetische
instroomturbulentiegenerator (ITG) geïmplementeerd en getest voor verschillende ca-
sussen in stromingen met en zonder cavitatie. Voor deze casussen zijn de numerieke
fouten, bestaande uit discretizatie, iterative en statistische fouten geëvalueerd.

Ten eerste worden de resultaten, verkregen met ITG, vergeleken met de resultaten
verkregen via het recirculeren van de stroming voor een turbulente kanaalstroom, waar-
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bij verschillende SRS methoden gebruikt worden. Er is aangetoond dat de ITG een turbu-
lente instroming kan leveren tegen lagere rekenkosten. Ten tweede is het effect van het
verwaarlozen van een turbulente instroming getest voor de Delft Twist 11 vleugel, waar-
bij is aangetoond dat het simuleren van een dergelijke stroming met een lage opgeloste-
tot-totale turbulente kinetische energie ratio kan leiden tot loslating van de stroming bij
de voorrand van de vleugel. Dit in tegenstelling tot het experimenteel geobserveerde
gedrag. Het gebruik van de ITG kan deze modelleringsfout verminderen, hoewel de
vliescaviteitdynamiek grotendeels onbeïnvloed blijft. Tot slot is een elliptische vleugel
met een caviterende tipwervel gesimuleerd. De hierbij geobserveerde vortexdynamica is
vergeleken met een semi-analytisch model uit de literatuur. Om de vortexdynamica te
verkrijgen is de ITG noodzakelijk gebleken. Het verre-veldgeluid, gegenereerd door de
vortex, is gekwantificeerd en gerelateerd aan de caviteitsdynamiek.

Enkele van de belangrijkste bijdragen van dit onderzoek zijn een verbeterd inzicht
in het gebruik van SRS in caviterende condities, in het simuleren van caviteitsdynamiek
en in het gebruik van een ITG om stromingen te simuleren die representatief zijn voor
experimentele condities. Hierdoor is ons begrip van de mogelijkheden en beperkingen
van het voorspellen van akoestische bronnen door cavitatie, vergroot. Om voorspellin-
gen van cavitateitsdynamiek te verbeteren wordt het aanbevolen om cavitatiemodellen
en de methodes die de het caviteitsoppervlak beschrijven te modificeren, om de discre-
pantie in formaat van de gemiddelde cavitateit tussen simulaties and en experimentele
observaties te verkleinen.
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WALE wall adaptive local eddy-viscosity
WMLES wall modelled large eddy simulation

XLES extra large eddy simulation





1
INTRODUCTION

This chapter provides the motivation, objectives and structure of the research study.

1.1. MOTIVATION
There is an increasing awareness of the harmful environmental impact of anthropogenic
underwater radiated noise (URN) generated by marine traffic [1–5], as well as more strin-
gent requirements for comfort on board ships [6]. It is estimated that, in the last fifty
years, the power level of background noise increased by a factor 30 [5], and it is predicted
that shipping noise, when unaddressed, will almost double by 2030 [7], highlighting the
need for action. Currently, there are few regulations relating to URN, but these are ex-
pected to arrive in the near future (see e.g. [8–10]). Cavitating tip vortices are known to
be one of the main contributors to ship noise, due to their dynamic behaviour and dis-
tinct broadband sound spectrum [11]. It is known that full scale ships produce sound in
the range 5−100,000 Hz, and that shipping contributes significantly to the total ambi-
ent sound level in the 10−1000 Hz frequency range [4, 12]. These pressure fluctuations,
at frequencies higher than the blade passage frequency, occur when the cavity pattern
on the propeller blade is dominated by tip-vortex cavitation [13]. To minimise URN, it is
therefore desirable to predict – during the design process – the occurrence and dynamics
of tip vortex cavitation, and its noise generation [13, 14].

Presently, URN is commonly evaluated by performing full scale measurements, where
a ship passes an array of hydrophones and the generated noise is recorded [15]. This
method suffers from a limited accuracy [16–18], while also being too expensive and im-
practical to apply to each new ship design. Semi-empirical prediction methods, such as
the empirical (cavitating) tip vortex (ETV) method by [13], have the advantages of being
easy to use and cheap, but are not necessarily accurate in all cases, e.g. cases with both
vortex and sheet cavitation [13]. Alternatively, model scale tests are performed in cavi-
tation tunnels or specialized towing tanks [19]. Model scale testing is cheaper than full
scale, but is still associated with significant costs and also suffers from limited availabil-
ity, when compared to the total number of new ship designs per year. Additional difficul-
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ties arise when the near-field measured noise must be scaled to full scale, far-field, radi-
ated noise [20]. Next to the cost and difficulties in measuring URN, there is also the issue
of the limited understanding of noise generating mechanisms which can be extracted
from experimental measurements, making it difficult to improve propeller designs. Nu-
merical analysis, such as computational fluid dynamics (CFD), offers the potential to
gain additional insight into the details of the flow at reasonable cost. When using CFD,
acoustic methods, such as acoustic analogies, can be used to estimate the far-field URN.
Acoustic analogies were traditionally designed with aerospace applications in mind, but
they are being used more and more in the context of predicting URN, such as in [21, 22].
However, knowledge regarding the prediction of the dynamics of tip vortex cavitation is
still insufficient to obtain reliable numerical results for vortex dynamics, leading to un-
reliable noise predictions [23–25]. Therefore, this thesis focusses on the prediction of tip
vortex dynamics, to estimate the URN. Underwater radiated noise modelling using CFD
depends on turbulence, cavitation, acoustic modelling. and their interaction. The em-
phasis of this thesis is on resolving and/or modelling of turbulence using scale-resolving
simulations (SRS).

In SRS the larger scales of turbulence are resolved, with the smaller scales modelled
(until the limit of direct numerical simulation (DNS), where the full turbulence spectrum
is resolved). This is in contrast to the current workhorse of maritime CFD, Reynolds
averaged Navier-Stokes (RANS), where the full turbulence spectrum is modelled. The
increase in available computational power during the last decades makes the use of SRS
possible for high Reynolds number flows. The added physical resolution should lead
to a more accurate description of the flow and a reduction of the modelling error at a
reasonable cost. However, the increased physical resolution necessitates higher spatial
and temporal resolutions, and leads to an increase in importance of other numerical
errors sources, such as statistical and iterative errors. These errors need to be evaluated
to assess the reliability of such numerical predictions.

Linked to the increased physics in SRS, is the requirement of increased physics in the
inflow boundary conditions, compared to RANS. In a typical RANS simulation the in-
flow prescribes the velocity, and an eddy-viscosity or time-averaged turbulence kinetic
energy. For SRS of attached turbulent flows, it is necessary that the inflow contains time-
varying stochastic velocity fluctuations that resemble turbulence. It has been repeatedly
shown that the results of large eddy simulations (LES) or DNS can be dependent on in-
flow conditions, e.g. [26–28]. If this is not addressed, laminar solutions can be obtained,
and consequently integral quantities, such as mean forces, can be underpredicted [29].
Nevertheless, a review of the literature studying cavitation for maritime applications re-
veals a lack of attention for this aspect, potentially leading to large modelling errors.

1.2. BACKGROUND

1.2.1. CAVITATION IN MARITIME APPLICATIONS

Cavitation is the phase change of liquid to vapour due to low pressure [30, 31]. Inception
of cavitation occurs at the location of a nucleus, such as a bubble, a particle or imper-
fection at a wall. In liquids such as seawater, plenty of nuclei are available, leading to
the simplified inception criterion that cavitation starts when local pressure drops below
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the vapour pressure. For an extensive description of cavitation the reader is referred to
textbooks such as [30–33].

Cavitation can be divided into three categories: bubble, sheet, and vortex cavitation
[13]. These types of cavitation are illustrated for a ship propellers in Fig. 1.1, the occur-
rence of each type depends on the propeller geometry and loading, see e.g. [34].

Figure 1.1: Illustration of possible cavitation patterns on ship propellers. Reproduced from Bosschers [13],
adapted from [35].

Cavitation is associated with a reduction in delivered thrust, erosion damage to the
propeller blades, and noise and vibration hindrance. While cavitation was observed as
long ago as the 1850s, the main focus for a long time was on predicting or reducing cav-
itation erosion. Consequently, vortex cavitation has received less attention than bubble
and shedding sheet cavitation, since those lead to the largest erosion damage. Tip vortex
cavitation is almost unavoidable for propellers, since thrust is generated by the pressure
difference over the blades of a propeller. Due to the finite span of a blade, this pressure
difference inherently forms a tip vortex when flow moves from the high pressure side to
the low pressure side at the tip of the blade. Fig. 1.2 shows model scale observations of
a cavitating tip vortex. Usually the lowest pressure in the flow field is located in this tip
vortex due to the high azimuthal velocity. Therefore, tip vortex cavitation is one of the
first cavitation patterns to occur, especially for highly loaded propellers. It is expected to
be a major source of broadband pressure fluctuations [11, 13, 36].

1.2.2. CAVITATION UNDERWATER RADIATED NOISE
Traditionally, noise and vibration hindrance were of interest from the point of view of
passenger comfort. An early example is Cunard’s Lusitania (1907), where during the sea
trials at high speeds the stern vibrated to such an extent as to render the accommo-
dation above the stern uninhabitable, necessitating extensive structural reinforcements
and modifications [37]. URN was traditionally mainly of interest for military applica-
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Figure 1.2: Model scale propeller exhibiting sheet and tip vortex cavitation operating in the wake of a ship hull
mounted in the cavitation tunnel of MARIN. Flow from left to right. Note the additional vortex dynamics in the
top position, as the blade passes through the hull wake field. Reproduced from Bosschers [13].

tions, where maintaining a low signature is important, as well as for research vessels
operating acoustic sensors [38]. A newer concern is the negative effects of URN on un-
derwater wildlife. It affects the behaviour of marine mammals and fish, and masks the
sound the marine fauna produces and relies on for navigation, finding prey, mating and
reproducing and resting [38, 39]. URN by anthropogenic sources has increased signif-
icantly over the last 50 years, due to the increase in number of ships as well as their
size and installed power [1]. An extensive overview of research into this field is given by
Duarte et al. [5].

Fig. 1.3 shows a typical sound spectrum generated by a ship. Traditionally, cavita-
tion hindrance investigations focussed on low-frequency hull pressure fluctuations at
the blade passage frequency and its harmonics, mostly caused by sheet cavitation to en-
sure acceptable vibration levels on board. URN however, is usually characterised by a
broadband ‘hump’ at higher frequencies (between B3 and B6 in Fig. 1.3), which occurs
when the cavity pattern on the propeller blade exhibits tip vortex cavitation [13]. A lit-
erature review shows that vortex cavitation research often focusses on inception, but to
predict URN sound levels, it is necessary to predict dynamics of developed vortex cavi-
tation.

Vortex cavitation dynamics have been investigated experimentally (e.g. [13, 36, 40,
41]), although obtained results suffer from scale effects, such as lower Reynolds num-
bers and inception problems. Also high costs are involved, making experiments less
suitable for design purposes. CFD offers the potential to gain additional insight into the
details of the flow, and far-field URN at reasonable cost. To predict URN, it is necessary
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to predict higher frequency dynamics. Such dynamics are governed by the natural vibra-
tion frequencies of the vortex, which is excited by the wake field in which the propeller
operates. A purely periodic excitation would result in tonal noise at the blade passage
frequency, and its harmonics. However, due to variations in the wake field by e.g. turbu-
lence, the spectrum shows a so-called broadband hump, of which the centre frequency is
hypothesised to be due to tip vortex cavity resonance [13, 42, 43]. To simulate correctly
the turbulence scales ruling this phenomenon, industrial standard Reynolds averaged
Navier-Stokes (RANS) CFD methods might not be sufficient. Instead, we must resort to
scale resolving simulations with a resolved turbulent inflow.

Figure 1.3: Source level spectra of a typical containership at 20.4 knots with developed cavitation on the pro-
peller. Reproduced from Gassmann et al. [44]. The different colours correspond to different measurement
locations. The harmonics of the propeller blade rate and main engine cylinder firing rate are indicated in by
letters B and F, respectively. The fundamental blade rate (B1) is at 8 Hz.

1.2.3. SCALE-RESOLVING SIMULATIONS
The application of CFD in the maritime sector is moving towards more complex prob-
lems, such as massively separated flows, blunt bodies, off-design conditions, cavitation
and noise predictions (see e.g. [45]). For such cases, the assumptions in traditional (un-
steady) RANS approaches are too limiting, leading to an underprediction or absence of
unsteady flow phenomena due to excessive levels of eddy-viscosity. Resolving the full
spectrum of turbulence by means of direct numerical simulation (DNS) remains out of
reach due to excessive computational cost. In DNS fluid motion must be resolved from
the largest integral length scale up to the length scales at which the motion dissipates
into heat (the Kolmogorov length scales). This property requires for fine computational
grids and small timesteps, thereby massively increasing the computational cost. Since
this cost is unaffordable for high Reynolds number flows, CFD for industrial flows has
focussed on scale-resolving simulations (SRS). Here the larger scales are resolved, with
the smaller scales modelled, as shown schematically in Fig. 1.4. The decrease in mod-
elling error, due to resolving a large part of the turbulence spectrum instead of modelling
it, leads to an increase in importance of numerical errors, thereby making error analysis
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even more relevant. In literature it is often seen that these errors are entangled and not
quantified, thereby affecting the reliability of such numerical predictions.

logκ

logE
Overlap region

Cut-off

Resolved
spectrum

Modelled
spectrum

Figure 1.4: Schematic SRS wavenumber energy spectrum, showing the overlap between resolved and modelled
velocity scales. E indicates the energy, and κ the wavenumber. Based on Reyes et al. [46].

SRS can be divided into three main categories: (i) Large Eddy Simulation (LES) [47],
for which a filter is applied throughout the computational domain, resulting in scales
larger than the filter being resolved and smaller scales being modelled using a ‘sub-
filter’ model. The need to resolve a substantial part of the turbulence spectrum leads to
stringent grid requirements in near wall regions. This implies often excessive computa-
tional cost for industrial flow problems, which typically involve complex geometries and
Reynolds numbers often exceeding 106 in hydrodynamic applications [48]. The cost can
be reduced through the use of wall modelled LES (WMLES) [49], although the definition
of the interface between wall model and resolved flow is difficult for complex geome-
tries. This has led to the rise of two alternative approaches: (ii) ‘hybrid’ methods, such as
detached eddy simulation (DES) [50], where LES is zonally combined with RANS, which
is applied in regions where the grid cannot support LES resolution; and (iii) ‘bridging’
methods, such as partially averaged Navier-Stokes (PANS) [51]. Bridging methods con-
sist of a blending of RANS and DNS, but, in contrast to hybrid methods, the blending is
not location dependent. Instead, it depends on user defined settings, such as the ratio
of modelled-to-total turbulence kinetic energy and dissipation.

In all these approaches the ratio between resolved and modelled turbulence depends
on a filter length. For LES and hybrid models, this filter length is implicitly defined by the
grid, i.e. refining the grid reduces the influence of the sub-filter model [52]. Non-zonal
hybrid models have the additional property that the blending function between LES and
RANS depends on the local grid density [50, 53, 54]. Consequently, with grid refinement,
not only the effect of the LES sub-filter model reduces in the LES region, but also a larger
region of the flow is solved using LES. The modelling error is therefore entangled with
– and for implicit LES (ILES) dependent on – the discretisation error, leading to a large
grid sensitivity [55]. These properties make estimating the discretisation error impos-
sible, and grid refinement studies to verify the results difficult [56, 57]. Both of these
are essential to enable verification and validation processes, which are needed to as-
sess the credibility of industrial CFD calculations [56]. An advantage of bridging models
is that the filter length is set explicitly, thereby theoretically decoupling the discretisa-
tion and modelling errors [57]. Secondly, since the blend between RANS and DNS is not
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location dependent, there is a smoother transition between the turbulence modelling
approaches. Thirdly, bridging methods with a constant ratio of modelled-to-total turbu-
lence kinetic energy do not suffer from commutation errors, which affect hybrid meth-
ods due to the flow switching from RANS to LES regions [50, 58–60]. It was also recently
shown by Pereira et al. [61] that PANS with a low ratio of modelled-to-total turbulence
kinetic energy can obtain comparable results to DNS at lower computational cost. Due
to these properties, bridging models are becoming attractive for industrial CFD, where
extensive grid refinement studies are often unaffordable while an estimate of the numer-
ical error is still required [62, 63]. In the current thesis, and within the user community of
the CFD solver used in this work, ReFRESCO [64], there is a preference for using bridging
models, i.e. PANS, over LES.

1.2.4. MULTI-PHASE MODELLING

In this work, multiphase flows are handled with the current standard method in CFD
for the maritime world: volume of fluid (VOF) [65]. In VOF a single set of mass and
momentum equations is solved, which a convected scalar field describing the fraction
of a cell filled with one of the fluids. The fluid properties are interpolated based on this
fraction. This method is known for, while satisfying mass conservation, not being able
to keep a sharp interface, making the identification of the exact location of the interface
difficult (see e.g. [66–73]). General consensus is that cavitation the best comparison with
experimental visualizations can be observed for a vapour volume fraction of 10% vapour
[74, 75], but the absence of a clear interface can potentially affect the observed vortex
cavitation dynamics.

To close the set of equations a cavitation model is needed to prescribe the source
term defining the phase change. A range of models, often named mass transfer models,
have arisen over the years. In this thesis, one of the widely used cavitation models is
employed (see e.g. [72, 74–79]), the Schnerr-Sauer model [80].

1.2.5. ACOUSTIC MODELLING

Sound can be defined as a fluctuating pressure wave moving through a compressible
fluid [81]. To numerically predict acoustic pressures, compressible solvers can be used
to either predict URN directly. Alternatively, incompressible solvers can be used in con-
nection with an acoustic analogy. For an extensive overview into different methods, the
reader is referred to [21, 22]. Due to the associated cost of compressible solvers, incom-
pressible solvers are used almost exclusively in the maritime field, necessitating the use
of an acoustic analogy. Following the literature on acoustics for marine noise, such as
[21, 22, 82, 83], the Ffowcs Williams-Hawkings (FWH) analogy [84] is used to extract URN
from the simulations. The FWH allows for a separation between sound generation and
propagation. In this thesis, the porous formulation, derived by Di Francescantonio [85],
is employed. In this formulation, the FWH equations are reformulated to solve the in-
tegrals on a fictitious permeable surface surrounding the noise sources. Sound propa-
gation is assumed to be linear outside this surface, allowing this methodology to obtain
the radiated sound at any arbitrary location [86].
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1.3. RESEARCH OBJECTIVES
The main objective of the thesis is to develop an accurate, verified and validated numer-
ical method for the prediction of cavitation noise sources using CFD. The CFD solver
in this work is ReFRESCO [64]. The work focuses on resolving, rather than modelling,
the influence of turbulence on cavitation dynamics using SRS, due to the considerable
uncertainties and limitations associated with traditional modelling strategies, such as
RANS. For verification and validation, both cavitating and non-cavitating conditions are
considered, which allows assessment of turbulence modelling separately from cavitation
modelling. The thesis aims to deliver a numerical framework that will:

1. resolve tip vortex cavitation dynamics to deliver insight in the noise generating
mechanisms;

2. give insight into the numerical (iterative, discretisation, and statistical) errors and
modelling errors associated with the results, by means of verifying and validating
the numerical simulations;

3. reduce the modelling error of SRS by using synthetic inflow turbulence;

4. indicate the limitations of ‘standard’ mixture-based cavitation models within a
VOF method for predicting cavitation dynamics and URN.

Next to that, the thesis aims to give guidelines for simulating turbulence and cavitation.
While it is known that turbulence and cavitation models interact, this thesis focusses
on the influence of different approaches for simulating turbulence. Different cavitation
modelling approaches are beyond the scope of this work.

To reach the proposed research aims, several steps were necessary:

1. implement and verify a synthetic inflow turbulence generator (ITG) to enable a
realistic, resolved turbulent, inflow to reduce modelling errors when using SRS,
and to trigger cavitation dynamics;

2. evaluate, verify and validate various turbulence simulation approaches for cavi-
tating flows, such as RANS, LES, RANS-LES hybrid and PANS;

3. apply an acoustic analogy to extract acoustic sources from the simulation and
evaluate far-field pressure fluctuations;

4. develop an post-processing method to extract cavitation dynamics from a simu-
lation, compare these with experimentally observed and theoretically predicted
dynamics, and correlate these with far-field radiated noise;

5. combine the application of inflow turbulence, SRS, cavitation and FWH in a single
simulation, to simulate vortex cavitation dynamics and predict the URN.

Objectives 1 and 2 are addressed in Chapters 5 and 6, while objectives 3,4 and 5 are ad-
dressed in Chapter 7. Objective 5 is relevant for industrial use of the employed in this
thesis.
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1.4. STRUCTURE OF THE THESIS
In this thesis, Chapter 2 describes all the mathematical models employed to simulate
physical phenomena. The chapter starts from the general Navier-Stokes equations de-
scribing fluid flow, followed by a description of the numerical methods employed and
giving a detailed overview of the different approaches for solving and/or modelling tur-
bulence. Methods to generate a resolved turbulent inflow, which are essential to the cur-
rent work, are described next. The approach to solve multi-phase flows is described in
conjunction with cavitation modelling, followed by the acoustic analogy used to predict
URN.

The methods employed for verifying and validating the numerical results are de-
scribed in Chapter 3. Chapter 4 investigates different approaches to specify the ratio
of modelled-to-total turbulence kinetic energy and dissipation, and derives a new PANS
closure based on the KSKL model.

The remaining chapters apply the aforementioned methodologies to different test
cases, namely a turbulent channel flow at Reτ = 395, the Delft Twist 11 Hydrofoil, a cir-
cular cylinder at Re = 3900, and an elliptical wing. Each of these chapters addresses
different aspects of the applied methodologies. Chapter 5 focusses on the differences
between several SRS methodologies, both with and without synthetic inflow turbulence.
Chapter 6 applies the ITG, developed and tested in the previous chapter to a test case
including cavitation. The errors occurring when a laminar inflow is applied are inves-
tigated for wetted flow conditions, and the effect the resolved turbulent inflow has on
the cavitation behaviour is quantified. Finally Chapter 7 combines cavitation, inflow
turbulence, and acoustics for a case representative of a simplified propeller. The defor-
mations of a cavitating tip vortex are investigated and compared to experiments and a
semi-analytical dispersion relation.

The thesis is concluded by Chapter 8, where the main findings and recommenda-
tions are summarised.





2
METHODOLOGY

An overview is given of the mathematical models employed in this work. Starting from
the governing equations, some details concerning the CFD solver and implementation are
given. The chapter focuses on the physical models relevant in this thesis, namely meth-
ods to simulate turbulence, to generate synthetic turbulence, multiphase flows including
phase change, acoustic models. This overview is largely based on literature, and it is in-
cluded for completeness.

2.1. GOVERNING EQUATIONS
Fluid motion is governed by conservation of mass and conservation of momentum. Con-
servation of mass, also known as the continuity equation [87],

∂ρ

∂t
+ ∂

(
ρUi

)
∂xi

= 0, (2.1)

implies that mass can neither be destroyed, nor created. In this equation Ui denotes the
velocity components and ρ the density. The conservation of momentum, also known as
the Navier-Stokes equation, reads for a Newtonian fluid [87]

∂
(
ρUi

)
∂t

+ ∂

∂x j
· (ρUiU j

)=− ∂P

∂xi
+ ∂

∂x j

[
µ

(
∂Ui

∂x j
+ ∂U j

∂xi
− 2

3

∂Um

∂xm
δi j

)]
+ρgi . (2.2)

with P the pressure, µ the dynamic viscosity (with µ= ρν, where ν is the kinematic vis-
cosity), δi j the Kronecker delta and gi external sources, such as gravity. Since no general
analytical solution exists for these equations, we resort to numerical methods.

2.2. CFD SOLVER
The CFD code used in this thesis is ReFRESCO [64], developed at the Maritime Research
Institute Netherlands (MARIN) in collaboration with organizations and universities around
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the world. ReFRESCO solves (unsteady) viscous flows based on the Navier-Stokes equa-
tions, together with turbulence models, cavitation models and volume-fraction trans-
port equations for multiple phases [64, 88].

The equations are discretised in conservative form using a finite-volume method [89,
90] with all variables co-located in the cell centres. To obtain the variables at the surface
of the control volume, i.e. the cell faces, interpolation is used. The integrals are approx-
imated by using the values at the cell faces. Time integration is performed implicitly
using first- or second-order schemes that support variable step sizes. In this thesis all
simulations are performed with a second-order accurate time-integration.

The system of mass and momentum equations is linearised with Picard’s method
and solved either with a segregated or a coupled method, based on the Semi-Implicit
Method for Pressure Linked Equations (SIMPLE) [91, 92] correction algorithm. In this
thesis the pressure-velocity coupling is solved in a segregated manner. The use of SIM-
PLE allows the usage of larger time-steps (Courant numbers U∆t/∆x [93] larger than one
are permitted, this in contrast to the Pressure-Implicit Splitting of Operators (PISO) [94]
algorithm). Nevertheless, timesteps for most of the considered SRS and cavitating flow
simulations are limited by the physics which is attempted to be resolved. Fig. 2.1 shows
schematically how the SIMPLE algorithm works, for more details the reader is referred
to [89, 90]. All remaining equations are solved with a segregated method. The imple-
mentation is face-based permitting the use of structured and unstructured meshes with
arbitrary elements. For a more extensive CFD background, the reader is referred to [89,
90], while more details concerning the implementation in ReFRESCO can be found in
e.g. [88, 95–99].

2.3. APPROACHES FOR SIMULATING TURBULENCE

In this work several approaches for simulating turbulence are applied. These meth-
ods include Reynolds averaged Navier-Stokes (RANS), large eddy simulation (LES), hy-
brid methods, such as detached eddy simulation (DES), and bridging methods, such as
partially averaged Navier-Stokes (PANS). This section provides a summary of these ap-
proaches, using a consistent notation. This section is based on the overview given by
Pereira [100] which concerns single-phase flows without phase transition; the present
section is a generalisation for two-phase flows with a variable density, including cavi-
tation source terms. The main equations are described in this section, with full model
details given in Appendix B.

For all approaches considered, the instantaneous quantities,Φ, are decomposed into
a resolved, 〈Φ〉, and a modelled (unresolved) component, φ, according to Φ = 〈Φ〉 +φ
[101]. Applying this decomposition to the unsteady mass conservation and incompress-
ible, Newtonian, Navier-Stokes equations including phase change, while neglecting ex-
ternal forces, leads to

∂〈Ui 〉
∂xi

= ṁ

ρv
, (2.3)
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Figure 2.1: SIMPLE algorithm flow chart. The inflow turbulence generator (ITG) (see Sec. 2.4) is indicated in
red. Figure based on Ferziger et al. [90].

and

∂
(
ρ〈Ui 〉

)
∂t

+ ∂

∂x j
· (ρ〈Ui 〉〈U j 〉

)=− ∂P

∂xi
+ ∂

∂x j

[
µ

(
∂〈Ui 〉
∂x j

+ ∂〈U j 〉
∂xi

− 2

3

∂〈Um〉
∂xm

δi j

)]
+ ∂τi j

∂x j
.

(2.4)

See Appendix A for the derivation of the Navier-Stokes equations including the cavitation
source term.

In these equations the subscripts l and v indicate liquid and vapour respectively,
while symbols without subscript refer to the mixture. ṁ is the source term due to the
cavitation model (see Sec. 2.5.2), and τi j the sub-filter stress tensor which is computed
according to [90]

τi j

ρ
= 〈UiU j 〉−〈Ui 〉〈U j 〉 = 2νt 〈Si j 〉− 2

3
kδi j −ai j k, (2.5)

with νt the eddy-viscosity, k the modelled turbulence kinetic energy and 〈Si j 〉 the re-
solved strain-rate tensor, defined as

〈Si j 〉 = 1

2

(
∂〈Ui 〉
∂x j

+ ∂〈U j 〉
∂xi

)
. (2.6)

ai j is the anisotropic part of the Reynolds stress tensor. For isotropic models, ai j = 0,
such that Eq. 2.5 reduces to the Boussinesq hypothesis.
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The difference between the respective approaches lies in the definition of the filter-
ing operator 〈·〉, which is temporal in the case of RANS and spatial for LES and PANS.
Consequently, the sub-filter stress tensor is modelled differently by employing different
expressions for νt and k.

2.3.1. REYNOLDS AVERAGED NAVIER-STOKES
In unsteady RANS, all turbulent time scales and motions are modelled, and a scale sep-
aration between deterministic and stochastic scales is assumed. In this work several
commonly used two-equation RANS approaches are employed (SST and KSKL).

k −ω SST
The k −ω Shear Stress Transport (SST) model (2003 version) is a blend of a k −ω model
in the wall region and a k −ε model in the far-field [102]. The transport equations are

∂
(
ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −ρβ∗ωk + ∂

∂x j

((
µ+µtσk

) ∂k

∂x j

)
, (2.7)

∂
(
ρω

)
∂t

+ ∂

∂x j
·(ρω〈U j 〉

)= α

νt
Pk −βρω2+ ∂

∂x j

[(
µ+µtσω

) ∂ω
∂x j

]
+2ρ (1−F1)

σω2

ω

∂k

∂x j

∂ω

∂x j
.

(2.8)
The other relevant expressions are

Pk = min
(
ρνt 〈S〉,10ρβ∗kω

)
and νt = a1k

max(a1ω,〈S〉F2)
. (2.9)

Here 〈S〉 is the magnitude of the resolved strain-rate tensor. The transport equations
make use of two blending functions, F1 and F2, and two limiters. For details of these
functions and the model constants see Sec. B.1.1.

KSKL

The k −p
kL (KSKL) model [103] introduces an additional length scale, the von Kármán

length scale (LvK ), and exhibits a reduced eddy-viscosity. The model is also accom-
panied by improved iterative convergence compared to the SST model. The transport
equations are defined as:

∂
(
ρk

)
∂t

+ ∂

∂xi
· (ρk〈Ui 〉

)= Pk −Dk +
∂

∂x j

[(
µ+ µt

σk

)
∂k

∂x j

]
, (2.10)
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−ζ3ρk + ∂

∂x j
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µ+ µt

σp
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)
∂

(p
kL

)
∂x j

−6ν

p
kL

d 2 fpkL ,

(2.11)
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with d denoting the distance to the closest wall, and fpkL acting as a viscous sublayer
model [103]. In these equations, the eddy-viscosity and von Kármán length scale are
defined as,

νt =C 1/4
µ

kLp
k

and LvK = κ |U ′|
|U ′′| , (2.12)

with κ being the von Kármán constant and

|U ′| =
√
∂〈Ui 〉
∂x j

∂〈Ui 〉
∂x j

and |U ′′| =
√
∂2〈Ui 〉
∂x j∂x j

∂2〈Ui 〉
∂xk∂xk

. (2.13)

The production and destruction terms are

Pk = ρνt 〈S〉2, (2.14)

Dk =C 3/4
µ ρ

k3/2

L
. (2.15)

For the model constants see Sec. B.1.2.

2.3.2. HYBRID MODELS
Hybrid models combine LES and RANS in a zonal manner. The aim is to employ LES
away from the wall, but using RANS closer to the wall, to obtain a methodology which
combines both accuracy and cost for high Reynolds number flows.

DDES
Delayed detached eddy simulation (DDES) [53] is an adaptation of the detached eddy
simulation (DES) [50] model. In the current work, in the RANS region the SST model is
used, while a sub-filter model is employed in the LES region. The switch between RANS
and LES is based on the turbulent length scale lt and a shielding function fd . The k
transport equation becomes

∂
(
ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −
k3/2

lt
+ ∂

∂x j

((
µ+µtσk

) ∂k

∂x j

)
, (2.16)

including the turbulent length scale

lt = l R AN S
t − fd max

(
l R AN S

t − l SRS
t ,0

)
. (2.17)

The RANS and SRS length scales are defined as

l R AN S
t =

p
k

β∗ω
and l SRS

t =CDDES∆, (2.18)

in which ∆ is the maximum cell length. The inclusion of the turbulent length scale re-
duces the eddy-viscosity in LES regions, allowing instabilities to develop. The coeffi-
cients and additional shielding function are given in Sec. B.2.1.
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IDDES
In DDES the transition from RANS to LES inside a wall boundary layer is prohibited,
which leads to a lack of resolved velocity fluctuations close to the wall. This can suppress
dynamics in flow phenomena close to the wall, such as sheet cavitation. A different hy-
brid model is improved delayed detached eddy simulation (IDDES) [54], which aims to
use DES as a Wall-Modelled LES (WMLES), while employing RANS in the near wall re-
gion instead of an analytical expression. Consequently IDDES is better able to handle
separating flows, since LES is also allowed inside the boundary layer. A wall-normal res-
olution y+ = uτy/ν< 1 at the wall is still required. In IDDES the blending is achieved by
a different shielding function fd t . Note that due to the different formulation, the model
is prohibited to switch to RANS in the boundary layer and far-field. This can therefore
deteriorate the results on a coarse grid or in the far-field. The coefficients and auxiliary
functions are given in Sec. B.2.2.

XLES
The final hybrid model considered in this thesis is extra-large eddy simulation (XLES)
[104]. It is similar to DDES and IDDES, but with a switching function which is not depen-
dent on the wall distance. Furthermore, in LES mode a different sub-filter stress model
to DES is used (the KSGS model, see Sec. 2.3.4). The difference between RANS and LES
modes lies in the definition of the eddy-viscosity and dissipation. For RANS these are
given as

νt = l
p

k and ε=βk
k

3
2

l
, (2.19)

with l =p
k/ω, while for the LES sub-filter model

νt =C1∆
p

k and ε=C2
k

3
2

∆
, (2.20)

with ∆ defined as the maximum cell length. The RANS model is closed with a modified
equation for ω, based on the k −ω TNT model [105],

∂
(
ρω

)
∂t

+ ∂

∂x j
· (ρω〈U j 〉

)= Pω−βωρω2 + σd

ω
ρmax

(
∂k

∂xi

∂ω

∂xi
,0

)
+ ∂

∂x j

((
µ+σωµt

) ∂ω
∂x j

)
,

(2.21)
with a production term

Pω = ραω〈S〉2. (2.22)

The switch between RANS and LES modes is made using a composite length scale l̃ de-
fined as

l̃ = min(l ,C1∆) . (2.23)

The coefficients and auxiliary functions are given in Sec. B.2.3.

2.3.3. BRIDGING MODEL
The combination of RANS with LES in hybrid models improves accuracy but may lead
to commutation errors in the transition between the RANS and LES zones. An approach
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without commutation errors is the bridging family of models, such as the Partially Av-
eraged Navier-Stokes (PANS) model [51, 106]. The PANS model is based on spatially fil-
tering the Navier-Stokes equations, where the sub-filter stress tensor is modelled using a
set of reformulated RANS equations including the modelled-to-total ratio of turbulence
kinetic energy and dissipation,

fk = k

K
and fε = ε

E
. (2.24)

In PANS, the closure is viscosity-based (the sub-filter viscosity is a function of the mod-
elled flow field (k,ω)), whereas in LES the closure is grid-based (sub-filter viscosity is a
function of the cut-off length scale (∆)) [46]. Consequently, in contrast to LES, the cut-off
length scale of the resolved flow is not predetermined in PANS. The physical resolution
is only determined by the settings, which leads to an overlap between the PANS resolved
and modelled spectra [46]. Since the grid remains fixed, computations with an fk smaller
than what the grid allows are comparable to an explicitly filtered LES (although based on
a different modelling framework). Computations with a very low fk value are effectively
an implicit LES (under-resolved DNS).

Two PANS models are used in this thesis, one based on the k −ω SST model and a
newly derived model based on the KSKL model.

PANS-SST
The k −ω SST PANS model [57, 102] utilizes the modelled-to-total ratio of turbulence
kinetic energy and dissipation rate,

fω = ω

Ω
= fε

fk
. (2.25)

The transport equations are formulated as
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(2.27)

with

P ′ = αβ∗ρk

νt
and νt = a1k

max(a1ω,〈S〉F2)
. (2.28)

For the auxiliary functions and constants see Sec. B.3.1.

PANS-KSKL

The k −p
kL (KSKL) PANS model (see Chapter 4) utilizes the modelled-to-total ratio of

turbulence kinetic energy and turbulent length scale,

fl =
l

L
=

f 3/2
k

fε
. (2.29)



2

18 2. METHODOLOGY

It is known from RANS modelling that k −ω models suffer from a lack of iterative con-
vergence, especially for multiphase flows, such as cavitation and free-surface flows. The
KSKL model exhibits improved iterative convergence, lower eddy-viscosity levels, better
defined boundary conditions and a lower dependency on the size of the first near-wall
cell (y+) [107]. When combining PANS with KSKL, the desirable features of PANS-SST
are maintained, but with the improved iterative convergence of the KSKL model. The
transport equations of the KSKL model are
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ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −Dk +
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∂x j

[(
µ+ µt

σk
√

fk fl

)
∂k
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(2.30)
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(2.31)

with

Pk = ρνt 〈S〉2 and νt = min

(
C 1/4
µ

p
kl ;

a1k

〈S〉
)

. (2.32)

For the auxiliary functions and constants see Sec. B.3.2, for the full derivation see the
Appendix C. The properties of the model are investigated in detail in Sec. 4.3.

2.3.4. LARGE EDDY SIMULATION
Large Eddy Simulation (LES) is founded on the principle that the larger scales of turbu-
lence are resolved, while the smaller scales are modelled since they are more indepen-
dent of geometry and boundary conditions. In order to enable this, the filtering opera-
tion is performed spatially; either explicitly or implicitly (on the grid). To relate the sub-
filter stress to the filtered strain rate, a number of models can be employed. In this work,
a selection is made based on the most common models found in the open literature.

SMAGORINSKY

The Smagorinsky model [47] models the eddy-viscosity as

νt = (Cs∆)2 〈S〉, (2.33)

with 〈S〉 = √
2〈Si j 〉〈Si j 〉 and a model constant Cs . The model constant depends on the

flow and in literature values in the range 0.065−0.23 are found. In this work a value of
0.10 is applied. The filtering is done implicitly, using the filter as defined by Smagorinsky:

∆= (
∆x ·∆y ·∆z

)1/3 . (2.34)

In the case of highly anisotropic cells, which occur often near walls, this filter is too opti-
mistic leading to an underpredicted eddy-viscosity.
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LILLY

To circumvent difficulties in obtaining a general constant for the Smagorinsky model and
to improve behaviour near walls, Germano et al. [108] suggested using a constant which
varies in time and space, thereby adapting to the resolved scales. Lilly [109] applied a
least-squares estimate to obtain the constant, known as the Lilly or dynamic Smagorin-
sky model. In this approach, next to the spatial filter, a second, coarser, filter is applied.
This filter, known as the ‘test’ filter, indicated by ·̂, is usually defined as ∆̂ = 2∆. The
sub-test filter stress, Ti j , is defined analogously to the sub-filter stress, that is

Ti j − 1

3
δi j Tkk = 2

(
Cs∆̂

)2 �〈|S|〉�〈Si j 〉. (2.35)

The model constant is obtained using

Cs = 1

2

Li j Mi j

Mi j Mi j
, (2.36)

in which the error between the resolved scales of motion Li j and the local closure Mi j is
minimized. Li j is defined as the difference between the sub-filter stress on the normal
filter (τi j ) and on the test-filter level, Ti j ,

Li j = Ti j − τ̂i j =−�ui u j +〈̂ui 〉�〈u j 〉, (2.37)

and Mi j is defined as

Mi j = ∆̂2�〈|S|〉�〈Si j 〉−∆2〈|S|〉〈Si j 〉
∧

. (2.38)

A downside of this model is that the model requires spatial averaging of the constant to
reduce the variability in space and time, else the value of Cs can become either negative
or unphysically large [110]. Since this is often not possible for industrial flow cases due
to the absence of flow homogeneity, the constant is bounded between 0 and 10 times the
upper limit of the Smagorinsky constant as found in literature, so Cs ∈ [0,2.3].

WALE
The wall adaptive local eddy-viscosity (WALE) model by Nicoud and Ducros [111] was
proposed for LES in complex geometries to account for the effects of the strain and ro-
tation rate of the smallest resolved velocity fluctuations. It should also recover proper
near-wall scaling for the eddy-viscosity without dynamic procedures. The sub-filter vis-
cosity is determined as

νt = L2
s

(
Sd

i j Sd
i j

)3/2

(〈Si j 〉〈Si j 〉
)5/2 +

(
Sd

i j Sd
i j

)5/4
, (2.39)

based on the square of the velocity gradient tensor

Sd
i j =

1

2

(〈gi j 〉2 +〈g j i 〉2)− 1

3
δi j 〈gkk〉2 (2.40)
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with

〈gi j 〉 = ∂〈Ui 〉
∂x j

. (2.41)

The length scale is given as
Ls = min(κd ,Cs∆) (2.42)

in which d indicates the wall distance and κ the von Kármán constant (κ= 0.41).

KSGS
The final sub-filter model is the k sub-grid stress (KSGS) model [112], for which a trans-
port equation for the sub-filter turbulence kinetic energy (Eq. 2.7) is solved, with the
production term and eddy-viscosity defined as

Pk =µt 〈S〉2 and νt =C1∆
p

k, (2.43)

with C1 = 0.05.

ILES
An alternative approach is known as implicit LES (ILES) [113]. Instead of explicitly apply-
ing a sub-filter model, it is assumed that the added numerical diffusion due to the use
of coarse(r) grids and specialised (often low order) convection schemes acts as a sub-
filter model. Whilst an attractive approach due to low computational cost (no sub-filter
model is required), caution is needed in employing this approach, especially in resolv-
ing structures near the presumed cut-off scale [55]. Due to the absence of a sub-filter
model, the only contributing factor in the ratio of modelled-to-total kinetic energy is the
grid. As a consequence making a proper grid becomes even more important than usual;
the reliability of ILES for industrial flow cases on highly non-uniform, anisotropic grids
can lead to large errors. The filter length varies significantly in the domain, and due to
the anisotropic cells, the numerical dissipation due to the convection scheme varies in
different directions. Secondly, the application of low order (upwinding) methods using
coarse grids can lead to too much added dissipation, thereby not capturing finer struc-
tures [55]. Finally, the results are even more grid dependent than for normal LES, which
makes proper solution verification impossible. Nevertheless, it is a widely employed ap-
proach.

In this thesis, simulations without a turbulence model are considered to be ILES.

2.3.5. REMARKS
In all approaches, the ratio between resolved and modelled turbulence depends on a fil-
ter length. In LES and hybrid models this filter length is implicitly defined by the grid,
i.e. refining the grid reduces the influence of the sub-filter model. Non-zonal hybrid
models have the additional issue that the blending function between LES and RANS de-
pends on the local grid density. Consequently, with grid refinement not only the effect of
the LES sub-filter model reduces in the LES region, but also a larger region of the flow is
solved using LES. The modelling error is therefore entangled with, and for ILES even de-
pendent on, the discretisation error, leading to a large grid sensitivity. These properties
make estimating the discretisation error impossible, and grid refinement studies to ver-
ify the results difficult. Both of these are essential to enable verification and validation
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processes which are needed to assess the credibility of industrial CFD calculations. This
is especially relevant for SRS methods, which are still seen as immature for industrial use.
In bridging models the filter length is set explicitly, thereby theoretically decoupling the
discretisation and modelling errors. Of course, when performing a computation with a
high physical resolution on a coarse grid, the discretisation error will become dominant.
Also the blend between RANS and DNS is not location dependent but depends on user
defined settings, allowing for a smooth transition between the turbulence modelling ap-
proaches. Bridging methods with a constant physical resolution, also do not suffer from
commutation errors, which affect hybrid methods due to the flow switching from RANS
to LES regions [50, 58, 60]. Due to these properties, in the current thesis and within the
ReFRESCO user community there is a preference for using bridging models, i.e. PANS.

Several questions remains concerning the usage of PANS. One concerns selecting
a proper value for fε, in literature fε = 1.0 (known as the ’high Reynolds number’ ap-
proach) is used almost exclusively. It is however not clear where the threshold of a high
Reynolds number lies, nor what are the effects when reducing fε when fk is below unity.
Secondly, there is the discussion on how to select fk . It can vary both in time or space to
optimally use the computational grid, but thereby losing the error separation; or be kept
constant. For all approaches, it is necessary to have a a priori estimate of fk based on the
grid and flow case, however no consensus exists how to do this. Chapter 4 investigates
these questions in detail.

2.4. SYNTHETIC TURBULENCE GENERATOR
Traditional turbulence inflow quantities in RANS are either constant in time, or vary on
a time-scale significantly larger than the timestep. For scale-resolving simulations (SRS)
such as PANS or LES, the solved variables contain a time-varying component with a time
scale in the order of the turbulent time scales. Therefore, for cases without flow separa-
tion or large vortical structures, the inflow must also be time-dependent; it must contain
fluctuations which resemble realistic turbulence [28]. If this is not done, LES or DNS re-
sults can become unreliable due to their tendency to predict natural laminar flow over
a significant portion of the object of interest, due to the lack of external flow instabilities
that would encourage transition of the boundary layer [26, 27, 29]. This behaviour is also
investigated in this thesis, see Chapter 6.

In hybrid methods, such as DDES and IDDES, it can also be necessary to generate
these fluctuations in the region where the solver transitions from RANS to LES. In this
case, turbulence in the flow needs to be transferred from a modelled to a resolved re-
gion (this is sometimes referred to as ‘the grey area’ issue [114]). The modelled averaged
quantities need to be used in order to introduce artificial fluctuations in the LES region.

For both of these problems, methods to generate turbulence are necessary. Require-
ments for such methods were formulated by Tabor and Baba-Ahmadi [28], who stated
that the boundary condition should: (i) be stochastically varying, (ii) be varying on scales
down to the filter scale (spatially and temporally), (iii) be compatible with the Navier-
Stokes equations, in the sense that the introduced fluctuations are not instantly dissi-
pated by the solver, (iv) ‘look’ like turbulence, so it must possess a similar structure with
coherent eddies across a range of spatial scales down to the Kolmogorov scale which
interact with each other in a physical manner, (v) allow easy specification of turbulent
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properties (turbulence intensities, length scales, etc.), (vi) be easy to implement and to
adjust to new inlet conditions. An important demand with respect to acoustic predic-
tions is that the turbulence generation methods should be divergence-free to eliminate
spurious pressure fluctuations in the numerical domain (see e.g. [114, 115]).

Turbulence generation methods discussed in the literature can generally be divided
into precursor methods or synthetic turbulence methods [28], conceptually visualised
in Fig. 2.2. Each of the methods spanning the two categories offers potential advantages
and disadvantages, which may be judged against the overall inflow turbulence generator
(ITG) requirements within this thesis:

• it should be applicable for a range of SRS turbulence models (DES, LES, PANS,
DNS);

• it should allow anisotropic Reynolds stresses and length scales;

• it should allow inhomogeneous turbulence;

• developed structures should look like real turbulence in terms of length scales and
time scales;

• the method ought to be usable in an industrial, parallelised, unstructured CFD
code, for a range of test cases;

• the approach should be robust and ‘cheap’ to use;

• the developed fluctuations should be divergence free.

Flow recycling Insert turbulence

Figure 2.2: Schematic representation of precursor (left) and synthetic (right) turbulence generation methods.

2.4.1. SYNTHETIC METHODS
The generation of synthetic inflow turbulence can be done in several manners; see Tabor
and Baba-Ahmadi [28] for a full overview.

The simplest method to introduce fluctuations is to apply random white noise to the
velocity field. However, random noise does not contain any spatial or temporal correla-
tions and is therefore almost immediately dissipated by the Navier-Stokes solver [116–
118]. In addition, due to its lack of compatibility with the governing flow equations, it
is expected that the white noise method might lead to numerical issues and lack of con-
vergence.

Fourier methods make use of an inverse Fourier decomposition of turbulence to gen-
erate turbulence [119]. It is easily applicable to simple (rectangular) inlet domains, but
can be more complex for difficult geometries. Secondly, it is difficult to apply the Fourier
method systematically for general flows due to the requirement of a previous realisation
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of the flow that is needed for the Fourier decomposition [26, 120]. If this is not available,
the amplitude and phase coefficients for a specific flow are unknown.

A similar approach, applicable for arbitrary domains, is Principal Orthogonal De-
composition method, where turbulence is decomposed into basis functions. Often only
a limited number of basis functions are necessary in order to achieve a satisfactory fit to
real data [121, 122]. Again, it is difficult to apply for general flows since detailed spatial
and temporal data is needed in order to obtain the coefficients [21, 26].

Digital filters make use of random noise which is then filtered to obtain the desired
statistical properties [28]. As for the two previous methods, the information concerning
the correlation method can be a limiting factor. The filter coefficients are derived from a
relationship between desired first and second-order statistics [21]. On a plane near the
inlet where random turbulence is inserted the flow solver is used to correct the velocity
field to be divergence free.

Synthetic Eddy Methods [123] create 2D vortices with a certain vorticity distribution
on a plane near the inlet and advect them into the flow. To generate the velocity compo-
nents the vorticity equation is used. An advantage compared to other synthetic methods
is a reduced development length to achieve realistic turbulence [28].

2.4.2. PRECURSOR METHODS
Other general approaches are precursor methods [28], where the turbulence is obtained
from a separate (precursor) calculation of an equilibrium flow. The turbulence is then in-
troduced at the inlet of the main computation. In this method the turbulence is obtained
from a full simulation, and therefore contains the appropriate characteristics and corre-
lations. The precursor simulation does not have to be at the same turbulent Reynolds
number, since the main goal of the precursor simulation is to develop realistic small tur-
bulent scales, which are in general problem independent. When these are introduced
into the main simulation, they develop into the eddies related to the main flow. The pre-
cursor simulation can be run beforehand, or concurrently with the main simulation. The
precursor simulation can consist for instance of a periodic box of turbulence or a cyclic
channel flow [28]. Care must be taken when designing the numerical grid for precur-
sor methods in order to prevent interpolation errors which can potentially destroy the
divergence-free flow properties. It is therefore preferable, if not necessary, to have the
same grid in the plane perpendicular to the flow in the precursor and in the main do-
main. This can lead to practical difficulties. For instance, in the case of a channel flow as
precursor for the flow around a wing in a wind tunnel; the precursor grid requires wall-
refinement towards the wind tunnel walls, which is not necessary for the wing. So either
interpolation occurs, or the flow near the walls of the test section for the wing must also
be resolved, which adds computational cost.

2.4.3. SYNTHETIC VERSUS PRECURSOR METHODS
In light of the foreseen cases utilized in this thesis, precursor methods suffer too much
from the lack of general applicability and from increased computational costs and dif-
ficulties in tuning the turbulence quantities. A synthetic method is preferable, also due
to the ability to introduce it at any arbitrary location and likely reduced computational
costs. The divergence-free condition in combination with the preference for a method
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without the need for accurate flow data beforehand leads to two possible candidates: the
digital filter approach by Y. Kim et al. [124], and the synthetic eddy method by Kröger and
Kornev [125]. Lloyd [21] presented a comparison between these methods for a planar jet
and a channel flow. The conclusion of that study was that the method by Kröger and
Kornev [125] provided better turbulence statistics in the case of homogeneous isotropic
turbulence. In the case of anisotropic inhomogeneous boundary layers, the method of
Y. Kim et al. [124] performed better in matching DNS data, while still requiring a long de-
velopment length. It must be remarked that the outcome of such a comparison as done
by Lloyd [21] could be case or flow specific. The method by Kröger and Kornev [125]
may include inhomogeneous profiles in order to achieve accelerated turbulence devel-
opment but at the cost of losing the divergence-free property and therefore leading to
spurious pressure fluctuations. With the aim of acoustic simulations in mind, while de-
siring a method both applicable in free-stream and in wall-bounded flows, the method
by Y. Kim et al. [124] is here considered the most appropriate choice to implement in
ReFRESCO. Within the project, the original method was modified in several aspects. The
results of a precursor and this synthetic method are compared in Chapter 5.

2.4.4. IMPLEMENTED DIGITAL FILTERING METHOD

In this thesis, synthetic turbulence is generated using a modified version of the digital
filter method by Z.-T. Xie and Castro [126]. First proposed by Klein et al. [27], the method
is easily adaptable to experimental data in order to obtain the proper length scales and
statistics. However, the velocity field is not divergence free. A more efficient method was
proposed by Z.-T. Xie and Castro [126] who changed the Gaussian temporal correlation
function to an exponential function. It filters two-, rather than three-, dimensional data,
and therefore may also yield results that are not divergence free. The length scales, spec-
tra, mean velocity, and Reynolds stresses are reported to yield satisfactory agreement
with measurements. Y. Kim et al. [124] extended this method to be divergence free. At
the inlet a velocity profile for the bulk velocity is introduced in the domain. On a plane
near the inlet random turbulence is inserted, where the flow solver is used to correct the
velocity field to be divergence free. The random fluctuations are therefore used as an
intermediate velocity. The corrected velocities are advected into the domain. Negligi-
ble additional CPU time is said to be required for this correction step [126]. It is shown
that the variances and power spectra of the pressure fluctuations are only accurately
predicted with the divergence-free inlet condition [126]. However, the formulation used
Z.-T. Xie and Castro [126] modifies the velocity in the first non-linear PISO loop, neces-
sitating modifications when implementing the method in ReFRESCO. This section de-
scribes the formulation of Z.-T. Xie and Castro [126], the modifications are addressed in
Sec. 2.4.5.

In the current implementation the method is able to generate anisotropic, inhomo-
geneous turbulence, which is sufficient for most industrial applications, such as the flow
around wings, propellers, ship hulls, etc. In the method random numbers, rm,l ,i , with
zero mean and unit variance, are generated on a Cartesian grid at each time step. Here
m, l indicate the position indices and i the velocity component. These numbers are spa-
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tially correlated using [126]

ψm,l ,i =
N∑

j=−N

N∑
k=−N

b j bk rm+ j ,l+k,i , (2.44)

after which they are temporally correlated with the numbers generated at the previous
time step using [126]

Ψi (t ) =Ψi (t −∆t )exp

(
−π∆t

2T

)
+ψi (t )

[
1−exp

(
−π∆t

2T

)]
. (2.45)

Here T = Ii /Ui is the Lagrangian time scale and b j and bk are filter coefficients used to
generate spatial correlations, and are defined as [126]

b j =
b′

j

N j∑
l=−N j

b′2
l

and bk = b′
k

Nk∑
m=−Nk

b′2
m

, (2.46)

with [126]

b′
j = exp

(
−π| j |

2n

)
and b′

k = exp

(
−π|k|

2n

)
. (2.47)

The spatially and temporally correlated numbers are transformed to velocity fluctua-
tions using

U ′
i = ai j ·Ψi (2.48)

in which ai j indicates the Lund transformation matrix, which is based on a Cholesky
decomposition of the Reynolds stress tensor Ri j [29],

ai j =


p

R11 0 0

R11/a11

√
R22 −a2

21 0

R31/a11 (R32 −a21a31)/a22

√
R33 −a2

31 −a2
32

 . (2.49)

For more details the reader is referred to Z.-T. Xie and Castro [126] and Y. Kim et al. [124].

2.4.5. MODIFICATIONS TO THE ORIGINAL DIGITAL FILTERING METHOD
In the formulation in literature the velocity is modified directly inside the first non-linear
PISO loop, either at the inflow, or in the domain. In the current work, the method is used
together with the SIMPLE algorithm (see Fig. 2.1), which necessitates changes in the
method. The increased number of outer iterations (which can be up to O = 102−103) in-
troduces the risk of dissipating the introduced velocity fluctuations. Also, modifying the
velocity field directly can introduce numerical error and spurious pressure oscillations
which can affect noise predictions. To address these issues, the velocity fluctuations
are transformed to a body-force term in the momentum equations, explicitly added on
the right hand side of the equations. The use of body-force terms is less intrusive than
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modifying the velocity directly, thereby improving iterative convergence and mass con-
servation.

The transformation of velocity fluctuations to body-forces is achieved using

Fb,i =
(
Ui ,i n f l ow +U ′

i −Ui
)
ρUi

Lt g
b (2.50)

where Ui ,i n f l ow is the mean velocity as defined at the ITG plane, U ′
i comes from Eq. 2.48

and Ui is the instantaneous velocity in a cell, obtained from the solver at the current non-
linear loop. Lt g indicates the distance in the flow direction over which the body-force
term is applied, and b is an arbitrary multiplication factor to increase the convergence
of the velocity towards the desired fluctuations. Notice that this body-force term goes to
zero when the local velocity equals the desired mean (inflow) velocity plus fluctuation.

Even with the use of Eq. 2.50, the residuals still stagnate in the cells affected by the
ITG (see Sec. 5.5). Therefore, from Chapter 6 onwards, a divergence-free velocity field
is enforced by adding a source term, St g , to the mass and momentum equations every
non-linear loop. This source term is computed by integrating the flux, fi , through each
face i for every cell of the ITG,

fi =
ˆ

S
(〈Ui 〉 ·ni )dS. (2.51)

and adding this over the N f faces of the i − th cell to obtain the source term

St g (i ) =−
N f∑
i=1

fi . (2.52)

The benefits of these modifications are shown in Fig. 2.3, which presents the resid-
uals during a single timestep. The residuals depict almost identical trends irrespective
of the prescribed inflow turbulence levels, indicating that the body-force approach for
introducing inflow turbulence has no adverse effects on convergence. Additionally, the
number of outer loops per time step remains approximately the same, highlighting the
low computational overhead of the ITG. In comparison to the approach without this
source term (see Sec. 5.5), it is clear that this is a significant improvement.

2.5. MULTI-PHASE MODELLING
Multiphase flows are widespread phenomenon with a range of applications such a free-
surface flows, bubbles in a fluid or cavitation. To solve such flows numerically, several
methods are available in literature. Within this work there is a focus on the properties
relevant for cavitation. A distinction can be made between approaches formulated in
a Lagrangian framework, where the individual particles or vapour bubbles are tracked
explicitly, or in an Eulerian framework, where the grid describes both the fluid flow and
the cavitation [22]. Lagrangian methods are often limited to cases where the mass of
dispersed phase and the particles or bubbles are small [22]. For larger mass loadings,
due to the required computational effort, Eulerian methods (two-fluid models) are nec-
essary [90]. Alternatively, the two approaches can be combined, the so-called Eulerian-
Lagrangian methods, where the fluid flow and large vapour regions are solved on the
grid, but bubbles smaller than the cell size are tracked explicitly [22, 128].
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Figure 2.3: Effect of ITG on the L∞ norm of the residuals of the momentum (〈U 〉, 〈V 〉 and 〈W 〉), pressure (〈P〉)
and turbulence equations (k andω), for a single timestep. The number of outer loops Nouter is also indicated.
Results from three simulations with increasing inflow turbulence levels and a reference simulation without
resolved inflow turbulence. The residuals are normalised using the diagonal of the matrix on the left-hand
side of the linearised system of equations. Figure adapted from Lidtke et al. [127].

There are several types of Eulerian methods, such as level-set, marked particles, in-
homogenous and volume of fluid (VOF). Within the maritime world, including ReFRESCO,
Eulerian methods with VOF are currently the most common approach, consequently the
current description will focus on this method. In VOF a single set of mass and momen-
tum equations is solved. A scalar field is convected, which describes the fraction of a cell
filled with one of the fluids. The fluid properties are interpolated based on this fraction.
While this method shows reliable mass conservation, it is known for not being able to
keep a sharp interface, making the identification of the exact location of the interface
difficult (see e.g. [66–73]).

2.5.1. VOLUME OF FLUID
The volume of fluid (VOF) [65] approach solves a single set of mass and momentum
equations for the homogeneous mixture, with the fluid properties defined by the vapour
volume fraction. For two phases, with cavitation, and when neglecting non-condensible
gas, the vapour volume fraction is defined as

αv = Vv

Vv +Vl
(2.53)

with V indicating the phase volume. Subscripts l and v refer to the liquid and vapour
respectively. From αv the mixture properties can be calculated using

ρ =αvρv + (1−αv )ρl (2.54)

µ=αvµv + (1−αv )µl (2.55)

under the condition that

αl +αv = 1. (2.56)



2

28 2. METHODOLOGY

From this definition it follows thatαv = 1.0 indicates a cell completely filled with vapour,
while αv = 0.0 indicates pure liquid. Commonly a cavity interface of αv = 0.1 is used for
comparison with experimental visualizations [74, 75]. The vapour volume fraction is a
scalar field, and is described by an additional transport equation, formulated as [129]

∂
(
ραv

)
∂t

+ ∂

∂xi
· (ραv 〈Ui 〉

)= ṁ

ρv
. (2.57)

The source term on the right hand side defines the phase change, and also affects the
mass equation (Eq. 2.3). To model this source term a closure model is needed, i.e. the
cavitation model.

2.5.2. CAVITATION MODELS
The function of the cavitation model is to prescribe the source term defining the phase
change in Eq. 2.57 and Eq. 2.3. A range of models, often named mass transfer models,
have arisen over the years. Models include those by Kubota et al. [66], Kunz et al. [67],
Singhal et al. [69], Schnerr and Sauer [80], Merkle et al. [130], Iben [131], Frobenius et
al. [132], Saito et al. [133], Zwart et al. [134], Senocak and Shyy [135], J. Wu et al. [136],
Merkle et al. [137], Huang and G. Wang [138], and Goncalvès [139] and Konstantinov et al.
[140]. Most of these formulations are based on the Rayleigh-Plesset equation for bubble
dynamics, while differences concern which physics are included, the dependence on
empirical parameters, and which higher-order terms are included. Niedźwiedzka et al.
[141] gives a detailed overview and compares different formulations.

In this thesis, the cavitation model of choice is the Schnerr-Sauer model [80], due to
its widespread usage and reasonable results obtained in literature [72, 74–79].

2.5.3. SCHNERR-SAUER MODEL
The Schnerr-Sauer cavitation model [80] is based on the Rayleigh-Plesset equation for
bubble dynamics. It is based on the physical assumptions that: (i) cavitation is modelled
as growth and collapse process of vapour bubbles, (ii) bubbles originate from nuclei in
the flow that can grow or collapse based on the local pressure and temperature, and (iv)
slip between vapour and liquid is negligible. For details on the current implementation
the reader is referred to [129].

The source term is defined as

ṁ

ρv
=

4πR2
bnb(1−αv )

√
2
3
|pv−p|
ρl

, if p < pv ;

− 3αv
Rb

√
2
3
|pv−p|
ρl

, if p > pv .
(2.58)

Here nb is the bubble concentration per unit volume of pure liquid; this couples the
number of nuclei to the water volume in a cell. This satisfies the conservation of the
number of bubbles: if the bubbles grow the water volume in a cell decreases and there-
fore the number of bubbles in a cell decreases. A volume of water contains a number
Nb = nb ·Vl of bubbles, with a radius Rb . For the bubble growth the Rayleigh-Plesset
equation is used, which is valid under the assumption that bubbles remain spherical
and no bubble-bubble interactions and bubble coalescence are taken into account.



2.6. ACOUSTIC MODELLING

2

29

2.6. ACOUSTIC MODELLING
Sound can be defined as a fluctuating pressure wave moving through a compressible
fluid [81]. The fluctuating components of density and pressure are responsible for sound
generation. In a similar way as for the turbulence models (see Sec. 2.3) density and pres-
sure can be decomposed into a fluctuating, and mean, or undisturbed, value ρ0 and p0,
according to

p = p0 +p ′ (2.59)

ρ = ρ0 +ρ′. (2.60)

Here both p0 and ρ0 are a function of time and space, although temporal variations are
on a time-scale significantly larger than variations due to sound. The propagation of
sound due to an arbitrary source F

(
y , t

)
(which can be a monopole, dipole or quadrupole)

can be described by an inhomogeneous wave equation [142]

∂
(
ρui

)
∂t

+ c2
0∇ρ = F

(
y , t

)
(2.61)

and
∂2ρ′

∂t 2 − c2
0∇2ρ′ = F

(
y , t

)
(2.62)

which is derived from a linearised form (by assuming p = c2
0ρ) of the compressible mo-

mentum equation, with c0 as the speed of sound in the considered medium. When com-
paring the linearised momentum equation with the compressible Navier-Stokes equa-
tions, the acoustic analogy can be obtained [21, 143]. This gives a more accurate descrip-
tion of the sound generated by an arbitrary source [143]. When the sound generated by
viscosity is neglected, Lighthills analogy is formulated as

∂
(
ρui

)
∂t

+ c2
0∇2ρ =−∂Ti j

∂xi
(2.63)

and
∂2ρ′

∂t 2 − c2
0∇2ρ′ = ∂2Ti j

∂xi∂x j
(2.64)

with Ti j the Lighthill stress tensor, which describes the volumetric distribution of noise
sources through turbulent stresses in the fluid,

Ti j = ρui u j +
(
p − c2

0ρ
′)δi j . (2.65)

To take the presence of stationary solid boundaries into account (where U · n̂ = 0), Curle
and Lighthill [142] modified Eq. 2.64 to obtain

∂2ρ′

∂t 2 − c2
0∇2ρ′ = ∂2Ti j

∂xi∂x j
+ ∂

(
p ·n

)
∂xi

. (2.66)

Finally Ffowcs Williams and Hawkings [84] derived a generalised inhomogeneous wave
equation to obtain the sound generated by a surface S moving with a velocity vi . A func-
tion f is defined such that f < 0 inside S, and f > 0 outside S. Assuming that S is imper-
meable and rigid, and neglecting sound generated due to viscosity, the analogy can be
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formulated as:

∂2ρ′

∂t 2 H( f )− c2
0∇2ρ′H( f ) = ∂2Ti j

∂xi∂x j
H( f )+ ∂

(
ρ0vi

)
∂t

δ( f )
∂ f

∂xi
. (2.67)

H( f ) is the Heaviside function equal to 1 outside of the surface S, and 0 within the sur-
face. δ( f ) is the Dirac delta, equal to ∞ for f = 0 and 0 for f 6= 0.

Following the literature on acoustics for marine noise, such as [21, 22, 82, 83], the
FWH acoustic analogy is used. Advantages of this methodology include its possible ap-
plication to rotating geometries [82, 144, 145], and its validity when the integration sur-
face is placed in a non-linear flow region, such as the wake [146]. Consequently smaller
domains are permitted, leading to reduced computational cost. The FWH analogy has
been used for the purpose of cavitation sound predictions within an incompressible
code (e.g. [22]).

In this work, the porous formulation, derived by Di Francescantonio [85], is em-
ployed. Here, the FWH equations are reformulated to solve the integrals on a fictitious
surface surrounding the noise sources, thereby removing the need for solving expen-
sive volume integrals, while mitigating the risks of solving volume integrals in cavitating
regions. It also circumvents the need to know the precise location of acoustic sources,
which for the foreseen test cases are located both in the flow and on the boundaries. The
contributions of all these sources can be included within the porous FWH. The formula-
tion is explained in more detail in the following section.

2.6.1. FWH IN POROUS FORMULATION
In the porous formulation, a fictitious permeable surface, also known as the porous data
surface (PDS), is defined around the object of interest, inside of which the noise sources
are located. During the simulation the data is interpolated to the surface, representing
acoustic sources. Sound propagation is assumed to be linear outside the surface, allow-
ing this methodology to obtain the radiated sound at any arbitrary location [86]. Fig. 2.4
gives a schematic overview of the procedure. In this section the formulation is given, for
the full derivation the reader is referred to Brentner and Farassat [147].

The flow quantities required on the PDS are pressure, velocity, and density distur-
bances. When assuming a free-field propagation, negligible density fluctuations and a
stationary porous data surface, the solution can be written as a summation of five terms,
which yields the total pressure at the receiver, [148]

4πp ′(x, t )H( f ) =
ˆ

S

ρ0U̇n

|r |
∣∣∣∣
τ

dS(y)︸ ︷︷ ︸
monopole, p ′

0

+
ˆ

S

pn̂ · ṙ

|r |2
∣∣∣∣
τ

dS(y)︸ ︷︷ ︸
nearfield dipole, p ′

1

+
ˆ

S

ρ0UnUr

|r |2
∣∣∣∣
τ

dS(y)︸ ︷︷ ︸
nearfield non-linear, p ′

2

+
ˆ

S

ṗn̂ · r̂

c0|r |
∣∣∣∣
τ

dS(y)︸ ︷︷ ︸
far-field dipole, p ′

3

+
ˆ

S

ρ0 ˙(UnUr )

c0|r |
∣∣∣∣
τ

dS(y)︸ ︷︷ ︸
far-field non-linear, p ′

4

+ p ′
Q (x , t )︸ ︷︷ ︸

quadrupole volume integral outside of PDS

.

(2.68)
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Figure 2.4: FWH concept illustrated for a marine propeller. Figure adapted from Lidtke et al. [148].

In this equation, c0 is the speed of sound, r is the vector between the source y and re-
ceiver x, and n the surface-normal vector. Theˆdenotes a unit vector. r is the distance
between source and receiver, the dot notation refers to a source time derivative.

´
S [...]dS

indicates integration over the PDS, subscripts r and n refer to the dot product with the
normal unit vector along either radial (r̂ ) or surface normal (n̂) directions, respectively.
Each term is evaluated at the retarded time, denoted by [...]τ. This accounts for the time
needed for the sound to propagate from the different sources on the surface to the re-
ceiver. The contribution of a source located at y(τ) at the emission (retarded) time τ will
reach the receiver at x(t ) at time [148]

t = τ+ |x(t )− y(τ)|
c0

. (2.69)

The inclusion of retarded time ensures the appropriate phase differences between pres-
sure waves of different sources, and thereby prevents artificial amplification or cancella-
tion of pressure waves [148].

Due to the associated computational overhead, the quadrupole volume term p ′
Q (x , t )

is ignored [82, 148]. This assumption is valid if the PDS encompasses all noise sources.
For more information on the implementation the reader is referred to Lidtke et al. [148].

2.7. CONCLUSIONS
The main numerical methods and models that are used in this thesis have been sum-
marised. A number of the assumptions made in the use of these methods will be ad-
dressed in subsequent chapters, together with the approach taken to verify and validate
the outcomes of computations based on these methods.





3
VERIFICATION AND VALIDATION

Errors and uncertainties are inherently associated with numerical predictions. To assess
the errors, their causes and effects must be understood. A decomposition of errors is given,
and several methods to assess the magnitude of these errors are discussed. It will be dis-
cussed which errors are dominating in the current context.

3.1. INTRODUCTION
The process of solving differential equations numerically gives rise to numerical errors.
To be able to reliable use CFD in for practical problems, it is necessary to understand
the source, and know the magnitude of, the associated errors. The difference between
the exact solution and the numerical solution defines the error, however for most flows
of practical interest no exact solutions are available. For such cases, it is necessary to
obtain an uncertainty interval U (φ), which contains the exact solution with a certain
degree of confidence. U (φ) defines an interval, and does not possess a sign, while the
error E(φ) does.

In this context, verification relates to whether the equations are solved correctly,
while validation indicates whether the correct equations are solved. Verification is there-
fore a purely numerical exercise, while validation requires some external, more trust-
worthy, solution to compare against. Such solutions can include experimental measure-
ments, theory or higher fidelity computations.

This chapter gives an overview of the error sources in numerical predictions, and
describes methods to compute the numerical uncertainty associated with predicted re-
sults.

3.2. NUMERICAL ERROR
The difference between the exact numerical solution φ0 and the observed numerical
solution φ equals the total numerical error [149]

En(φ) =φ−φ0. (3.1)

33
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It is generally accepted that numerical errors can be divided into input, round-off, iter-
ative, discretisation, and, in the case of unsteady computations, statistical errors [149],
according to

En(φ) = Ei (φ)+Er (φ)+Ei t (φ)+Ed (φ)+Es (φ), (3.2)

where Ei (φ) is the input error, Er (φ) the round-off error, Ei t (φ) the iterative error, Ed (φ)
the discretisation error and Es (φ) the statistical error. By definition, the numerical un-
certainty Un(φ) consists of the same components given in Eq. 3.2.

3.2.1. INPUT ERROR

Input errors result from differences between the simulated setup and it’s real life coun-
terpart [150]. Usually these relate to the boundary conditions, and can be either caused
by insufficient or incorrect experimental information, or by the need to reduce the com-
putational cost. In the current thesis, an attempt was made to match the numerical
setup to the desired flow. Nevertheless, several sources of input error remain. For the
channel flow computations, an error arises due to the finite domain dimensions; while
for all computations resembling the test section in a cavitation tunnel, errors occur due
to unavailable information about turbulence statistics in the inflow, potential errors the
calibration of the velocity sensor in the experiments, only simulating the test section
instead of the full cavitation tunnel, and not resolving the boundary layer flow on the
tunnel walls. The effect of these error sources will be elaborated upon, together with the
results, in Chapters 5, 6, and 7.

Methods exist to estimate the input error, often based on systematically varying input
quantities, either by converging towards the experimental value (when available), or by
making a control surface as function of the input variables (for instance in the work by
Katsuno et al. [151]). However, such exercises are currently still unaffordable for SRS,
and consequently in this thesis input errors are not quantified.

3.2.2. ROUND-OFF ERROR

All computations are performed using double-precision arithmetic, it commonly as-
sumed that this leads to a negligible round-off error compared to the other error sources
[56]. Consequently, it is not addressed in the current work. Nevertheless, it should be
noted that with an increasing shift towards resolving smaller and smaller turbulent fluc-
tuations, on finer grids with reduced timesteps, the effects of round-off error increase,
especially since such errors propagate throughout the computation. In time, this might
mean that double-precision arithmetic will no longer suffice, and CFD software will need
to resort to quadruple arithmetic to further reduce round-off errors (see e.g. [152, 153]).

3.2.3. ITERATIVE ERROR

The system of non-linear discretised equations (F (x) = b) describing the fluid motion is
solved iteratively each timestep. When all equations are converged until machine preci-
sion (L∞ ≈ 10−17 for double precision) this equation holds and there is a negligible itera-
tive error. Problems arise when the solution to this equation is not fully converged, lead-
ing to an associated iterative error which is proportional to the residuals r es = b −F (x).
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Residuals are often reported using the L2 and L∞ norms

L2
(
∆φ

)= 1

Nc

√√√√ Nc∑
i=1

(|∆φi |
)2 and L∞

(
∆φ

)= max
(|∆φi |

)
(3.3)

with 1 ≤ i ≤ Nc where Nc is the number of cells. In this work, all residuals are normalised
by the diagonal element of the left-hand-side matrix of the linearised system of equa-
tions. In the case of transient (unsteady) problems, the residuals are determined for
each timestep. In practice, for flows of engineering interest it is usually not affordable, or
even not possible, to reach machine precision, leading to a need to quantify the iterative
error. A method to do this is to run several computations with varying convergence crite-
ria, and check whether the results converge [154]. However, as with the input error, this
is often prohibited by excessive computational cost. Also, it is sometimes not possible
to converge the equations. A common example is lack of iterative convergence of the ω
equation, especially in conjunction with multi-phase flows.

In the current work, where possible the iterative error is assessed. The reached con-
vergence levels are always reported based on the L2 and L∞ norms typically obtained
during each timestep, or the decay of the residuals is averaged over the different timesteps
(designated as the time-averaged iterative convergence).

3.2.4. DISCRETISATION ERROR
The transformation of the continuous partial differential equations describing fluid mo-
tion into a system of algebraic equations using a finite grid, timestep (in the case of un-
steady calculations), and discretisation schemes introduces discretisation errors. Dis-
cretisation error due to the grid is related to the grid quality, number of cells and grid
arrangement; temporal discretisation error depends on the timestep size; while discreti-
sation error caused by the schemes is related to their order in space and/or in time.

In practise, the discretisation error is usually one of the largest error sources, imply-
ing that its evaluation is essential. However this also means that often this is the only
error source evaluated, thereby losing sight of the other errors. In the context of SRS, it
is often assumed that the application of grids with LES/DNS guidelines in terms of wall
resolution, in conjunction with second-order schemes, leads to negligible discretisation
errors; and that therefore the errors do not have to be assessed. However, such LES/DNS
guidelines are often obtained from codes with higher-order schemes. Since discretisa-
tion errors depend on both the number of cells and the accuracy of the schemes em-
ployed, an assessment of these errors is always necessary.

One method to quantify this error source is to perform a systematic spatial and tem-
poral grid refinement study [56, 150, 155–158] to estimate the exact solution, order of
grid convergence, and discretisation error. One method is the procedure by Eça and
Hoekstra [56], which relies on a (truncated) power series expansion,

Ed (φ) ≈βs

(
hi

h1

)qs

+βt

(
ti

t1

)qt

, (3.4)

where hi /h1 and ti /t1 are the spatial (grid) and temporal (timestep) refinement levels,
the indices s and t the spatial and temporal components, β the constants to be de-
termined, and q the observed orders of grid convergence. To increase robustness, q
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and β are determined using a least-square fitting requiring at least four grids and four
timesteps for time-resolved simulations, and four grids for steady simulations. This error
is translated to a discretisation uncertainty Ud (φ) as reported by [56]. Often to simplify
the procedure and reduce costs, temporal and spatial resolution is coupled, assuming
that qs = qt . From the discretisation error Ed (φ), the associated uncertainty Ud (φ) can
be computed, which then defines an interval containing the exact solution φ0 with 95%
coverage, according to

φ−Ud (φ) ≤φ0 ≤φ+Ud (φ). (3.5)

For full details on how to compute βs , βt , qs , qt , Ed (φ) and Ud (φ) the reader is referred
to Eça and Hoekstra [56].

For this approach at least four grids and timesteps are required to estimate the error.
Ideally, these grids and timesteps should be of sufficient resolution to resolve the flow
dynamics. Under such conditions, the grids are in the so-called asymptotic range, i.e.
the solutions obtained when refining the grids, converge to a single result. In this case
qs and qt can be accurately estimated. This does imply that the coarsest grid should
already be sufficiently fine, which due to computational cost is not always achievable,
leading to an overpredicted Ud (φ) [100]. In those cases the approach of Pereira, Vaz, Eça,
and Girimaji [57] is followed, where the discretisation error, Ed (φ), is estimated using a
power series expansion

Ed (φ) =φ1 −φ0 = φi+1 −φ1

hq
i+1 −1

. (3.6)

where φ0 indicates the estimated solution for zero discretisation error. Since it is not
possible to obtain an accurate estimation of based on the data q , both a value of 1.0 and
2.0 are used. q = 1.0 leads to a conservative estimate, Ed ,max whereas q = 2.0 yields a
lower value, Ed ,mi n , which may not fulfil the 95% confidence interval condition. Both
procedures are illustrated for a set of steady simulations in in Fig. 3.1.

To investigate the effect of the discretisation scheme in the equations, several con-
vection schemes are compared. Due to the usage of a unstructured finite volume CFD
code, the simulations are limited to second-order accurate schemes. The outcomes of
this investigation are detailed in Sec. 5.3.3.

3.2.5. STATISTICAL ERROR
The statistical error results from the finite simulated physical time, and the dependency
of the result on the initial conditions. In unsteady and especially turbulence resolving
simulations, the statistical error can be one of the dominating error sources. A simple
procedure to estimate the start-up time and statistical errors is compute the statistics
with increasingly larger sampling periods, as applied by Pereira [100].

In the current work, a more extensive method is used: the Transient Scanning Tech-
nique (TST) by Brouwer et al. [159]. In the TST the standard deviation of the time signal
is compared to the theoretically expected trend for a stochastic stationary process in or-
der to determine how many timesteps can be used for calculating flow statistics and the
associated statistical uncertainty [160]. The uncertainty is expanded to obtain a 95%
confidence interval.

The procedure is illustrated in Fig. 3.2. The input can be any time-dependent input
variable, the output is the TST graph. The region where the TST graph is parallel to the
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Figure 3.1: Visualisation of the discretisation error assessment. Example of a steady simulation, using Eq. 3.4
(left) and Eq. 3.6 (right) with q = 2.0.

−1 slopes (indicated in grey), is the stationary region, which can be used to compute
the average. The uncertainty of this average can be seen on the vertical axis. The sud-
den increase in the TST graph at the right-side of the figure is called the hockey-stick
effect, and corresponds to the start-up effect. To estimate the average this part should
be removed. In CFD computations, in contrast to experimental measurements, no end
effects occur and only the start-up effect is of interest. For details on the procedure the
reader is referred to Brouwer et al. [159].
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Figure 3.2: Visualisation of the TST procedure. Example signal (left) and TST result (right). Orange lines indi-
cate the start-up effect, visible as what is known as the ‘hockey-stick’ in the TST graph. Graphs obtained with
[161].

3.2.6. DOMINATING ERROR SOURCE

As mentioned at the beginning of this section, numerical error consists of input, round-
off, iterative, discretisation and numerical error (Eq. 3.2). Traditionally (in the context
of steady RANS computations), discretisation errors due to the grid and timestep are
assumed to be dominating [56]. This has lead to a focus in literature on assessing the
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discretisation error, and by extent

En(φ) ≈ Ed (φ). (3.7)

However, in the context of SRS this is not necessarily true. While nobody is claiming
that there are no discretisation errors (even DNS computations suffer from discretisation
errors, although those are often not investigated due to the associated cost), the balance
between different error sources varies. To resolve the desired turbulent flow physics, the
employed spatial and temporal resolutions are such that the influence of iterative and
statistical errors increases. This is especially a concern when looking at small scales and
structures, which might be of an order of magnitude similar to the errors.

Investigating the statistical error is possible while running the computation, and can
be computed based on a single computation, making it relatively affordable. It does of-
ten require an increase in simulated time. In contrast, properly assessing the iterative
error is in most SRS cases either unaffordable or inpossible. Not only are several com-
putations are required, each with a successively lower (i.e. more expensive) iterative
convergence criterion, but also in the estimation procedure it is assumed that with an
increase in outerloops, a lower convergence criterion will be reached. In practise this
is often not the case, and the convergence of such computations stagnates at a certain
level. Again, a well-known example of this are the ω equation in simulations including
free-surface flows or cavitation. At the time of writing, it is hard to quantify the iterative
error associated with such stagnated residuals.

To conclude, in the context of SRS it is crucial that all error sources are examined,
even though some of these examinations are expensive or difficult. It is also important
when validation against for instance experiments is attempted, that the total numerical
error is used, and not only the discretisation error.

3.3. MODELLING ERROR
The modelling error Em(φ) for a quantity φ, with a 95% confidence, lies in the interval
defined as [150]

Ec (φ)−Uv (φ) ≤ Em(φ) ≤ Ec (φ)+Uv (φ) (3.8)

with the comparison error being

Ec (φ) =φ−φe , (3.9)

i.e. the difference between the computed results φ and the experimentally obtained φe

[162]. When it is assumed that uncertainties are uncorrelated, the validation uncertainty
Uv (φ) can be computed from the input Ui (φ), numerical Un(φ) and experimental un-
certainties Uexp (φ) according to

Uv (φ) =
√

Ui (φ)2 +Un(φ)2 +Uexp (φ)2. (3.10)

Here Un(φ) is the root sum squared of the iterative, discretisation and statistical uncer-
tainty.
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3.4. CONCLUSIONS
Errors and uncertainties are inherently associated with numerical predictions. A decom-
position of errors is given, and several methods to assess the magnitude of these errors
were discussed.

In the context of the current work it is important to recognise that with an increase of
physics in simulations, and hence a reduction of modelling errors, the estimation of nu-
merical errors becomes more important. Also, the traditional, RANS based, assumption
that discretisation errors are dominant is no longer valid in the context of SRS.

With respect to validation, an increase in physics in the computation also leads to in-
creased demands on experimental datasets. Reduced errors in the results are a must, but
also more information is needed about the experimental setup, to reduce input errors.
In the following chapters these methods are applied to several flow cases, and causes of
input error are identified.





4
INVESTIGATING THE USE OF PANS

Several aspects of the PANS method are investigated. First, different approaches for spec-
ifying the ratio of modelled-to-total dissipation (fε) are evaluated for different ratios of
the modelled-to-total kinetic energy, fk . Secondly, different approaches for specifying fk

(constant, spatially-varying or spatially- and temporally-varying) are investigated. Dif-
ferent fk estimates found in literature are evaluated for two test cases: a circular cylinder
at Re = 3900 and a turbulent channel flow at Reτ = 395. Finally, a new PANS closure is de-
rived based on the KSKL model. The aim of this new model is to incorporate the desirable
features of the KSKL model, compared to the SST model, into the PANS framework.

4.1. LOW VERSUS HIGH REYNOLDS NUMBER APPROACH
In literature, the PANS model is applied almost exclusively using fk ¿ 1 and fε = 1.0
(known as the ‘high Reynolds number’ approach), an exception being the work of [166]
and [167]. This approach assumes that the PANS cut-off is located at lower wave num-
bers than the dissipation range and therefore that the dissipation occurs entirely at the
modelled scales. This is valid if there is a clear separation between the large energy
containing scales and the small dissipative scales (identifiable by the inertial subrange,
which follows Kolmogorov’s law) [57, 167]. Theoretically, for low Reynolds number flows,
where the scales overlap, or for high Reynolds number flows with a high physical resolu-
tion (low fk ), part of the dissipation should also be resolved. This implies that fε should
be lower than 1.0. It is expected that the resolved structures, obtained when fk < 1.0,
should change due to increased dissipation.

Although most maritime applications are high Reynolds number flows, it is not un-
likely that some cases require high physical resolutions, i.e. low fk . For low Reynolds
numbers, an often mentioned approach is to keep fk = fε, whereas fk < fε < 1.0 has been
recommended for moderate Reynolds numbers [106, 167]. Pereira et al. [168] state that
if fk = fε the only change with respect to the underlying RANS model is an increase of

Parts of this chapter have been published in Proceedings of MARINE 2019 [163], in International Journal of
Heat and Fluid Flow 80, 108484 (2019) [164], and Journal of Fluids Engineering (2021) [165].
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the effective diffusion coefficient and cross-diffusion term; these terms go infinity when
fk goes to 0. Using this approach vortex shedding for a cylinder was underpredicted, es-
pecially with lower fk . By contrast Lakshmipathy et al. [167] obtained satisfactory results
for the same test case using a finer grid, indicating a potential grid dependency. Frendi
et al. [166] simulated a backward facing step, using a fixed fk and varying fε. These au-
thors state that for wall-bounded flows viscous effects and dissipation should be taken
into account by lowering fε. Better agreement with experiments was reported with this
approach, although only the parameter fε was varied, with fk kept fixed as 0.2. Their
results indicated a decrease in range of scales with decreasing fε, due to the increased
dissipation.

This section evaluates the three aforementioned approaches for specifying fε ( fε =
1.0, fε = a · fk with a = 2 and fε = fk ) by applying them to a turbulent channel flow at
both ‘low’ (Reτ = 180) and ‘moderate’ (Reτ = 395) Reynolds numbers. The results are
compared to Direct Numerical Simulation (DNS) reference data by Moser et al. [169].
In this section, fk values of 0.15, 0.10 and 0.05 are used, see Chapter 5. To maintain a
distinction between modelling and numerical error, a strong aspect of PANS, fk and fε
are kept constant in time and space.

4.1.1. SPECIFYING fε
Kinetic energy is mostly contained in the larger scales, whereas dissipation occurs in
the smallest scales; this dictates 0 ≤ fk ≤ fε ≤ 1 [106]. For specifying fε, three Reynolds
number regimes can be distinguished in literature, which lead to different correspond-
ing values of fε: the ‘high’, ‘moderate’ and ‘low’ Reynolds number approaches. Generally
speaking in the high Reynolds number case, there is a clear separation between the large
energy-containing scales and the small dissipative scales (identifiable by the inertial sub-
range, which follows Kolmogorov’s law) [57, 167]. For a low Reynolds number flow these
scales overlap. A moderate Reynolds number lies between these limits. In terms of scale
separation, clearly this distinction is difficult to quantify. In generalised form, if fε is
taken as fε = a · fk , the PANS-SST transport equations (Eq. 2.26 and 2.27) reduce to

∂k

∂t
+ ∂

∂x j
· (k〈U j 〉

)
︸ ︷︷ ︸

I

= Pk︸︷︷︸
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[(
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a

fk

)
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∂x j
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ω

a
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∂ω

∂x j︸ ︷︷ ︸
IX

.
(4.2)

In the k equation (4.1), term (I) indicates rate of change plus convection, (II) rate of pro-
duction, (III) rate of destruction and (IV) transport by molecular and turbulent diffusion.
In theω equation (4.2) the terms are rate of change (V), rate of production (VI), rate of de-
struction (VII), transport by molecular and turbulent diffusion (VIII) and cross-diffusion
(IX). This last term is a result of the ε= kω transformation in the construction of the SST
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model [89]. The terms in red differ from the standard SST model. For these equations
the effect of the three approaches for specifying fε will be discussed from a numerical
perspective. It is clear that terms (I), (II), (III), (V) and (VI) are independent of fk and a.

HIGH REYNOLDS NUMBER APPROACH

In this case fε = 1.0 (a = 1.0/ fk ); here the transport by diffusion (IV and VIII) and cross-
diffusion term (IX) increase proportionally to 1/ f 2

k with decreasing fk . The rate of de-
struction (VII) decreases proportionally to fk . So for fk < 1.0 the diffusion term in the
k equation increases, spreading the modelled turbulent kinetic energy in space. At the
same time, in the ω equation, the diffusion terms dominate over the destruction term.
This implies that for low fk values the dissipation is more spread out in space but the
rate of destruction of ω is reduced.

MODERATE REYNOLDS NUMBER APPROACH

In this case fε = a · fk with 1.0 < a < 1.0/ fk . Consequently terms (IV), (VIII) and (IX)
increase proportionally to a/ fk . Term (VII) is independent of fk and is proportional to
a. Again the diffusion terms increase, and the destruction term in the ω equation de-
creases. The difference between these terms is smaller than for the high Reynolds num-
ber approach, so it is expected that dissipation occurs more locally.

LOW REYNOLDS NUMBER APPROACH

In the limit of fε = fk (a = 1.0) terms (IV), (VIII) and (IX) increase proportionally to 1/ fk .
Term (VII) is now constant and reduces to βω2, which is identical to the original SST
model. The term containing P ′ disappears completely. With decreasing fk the model re-
mains identical to the SST model but with increased diffusion and cross-diffusion terms
(IV, VIII and IX) [168].

Reyes et al. [46] derived the relationship between PANS and RANS turbulence viscos-
ity as

νt ,PAN S

νt ,R AN S
= f 2

k

fε
(4.3)

and related the PANS Kolmogorov scales to the physical integral scales for length (η/L),
time (tη/T ) and velocity (uη/U ) as [46]

η

L
∼C 3/4

µ

f 3/2
k

fε
,

tη
T

∼C 1/2
µ

fk

fε
,

uη
U

∼C 1/2
µ f 1/2

k . (4.4)

The effect of the different approaches on these ratios across the fk range is shown graph-
ically in Fig. 4.1, with a = 2 used throughout as example. Note that these ratios are in-
dependent of Reynolds number. The figure is corrected for the fact that fε cannot be
not higher than fk . The point after which the viscosity and length scales for fε = 1.0 and
fε = a · fk deviate, and where a discontinuity for the time scale is located, lies at fk = 1/a.
For the turbulence viscosity and the length scales, the high Reynolds number approach
yields the lowest ratios across the entire fk range, meaning that the turbulence viscosity
is lowered, more unsteadiness and smaller length scales can be expected in the solu-
tion. The moderate Reynolds number approach yields the same if fk > 1/a; for fk < 1/a
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the turbulent viscosity and length scales are larger, i.e. it is expected that the smallest
structures are absent. The low Reynolds number approach yields the highest ratio for
all fk except at the limits of fk = 0 or 1. The time scales however show the opposite
trend, across the fk range the lowest ratio is for the moderate Reynolds approach. The
low Reynolds number approach is independent of fk , while the high approach lies in
between these limits. The velocity scales decrease with f 1/2

k independently of fε.

Note that for the high Reynolds number approach there is little difference in terms
of turbulence viscosity and length scales if fk is small (in the range fk < 0.2). This corre-
sponds to the findings in Chapter 5, where only a fully developed turbulent solution was
found for small fk , but then little difference was seen between the different fk values. In
contrast, in this range the time scales are strongly affected.
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Figure 4.1: Relationship between PANS and RANS turbulence viscosity, νt , length, ηu /L, time, tηu /T , and
velocity scales, uηu /U , versus fk for different fε approaches. Here a = 2.

Based on these theoretical observations some questions arise concerning the use of
the low Reynolds number approach. There appears to be no clear advantage; additional
diffusion is added in the equations, and theoretically the the turbulent viscosity and
length scales are larger than for the high Reynolds number approach, indicating that the
smallest scales will be suppressed. For the moderate Reynolds number approach, small
differences compared to fε = 1.0 are expected, and only for low fk . In order to check
these findings in a practical case, in the remainder of this chapter the three approaches
are applied to a turbulent channel flow at two different Reynolds numbers (Reτ = 395
and 180).
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4.1.2. NUMERICAL SETUP
The numerical setup will be extensively reported in chapter 5. Computations are made
using a rectangular domain, with two no-slip walls oriented normal to the y-axis. The
remaining boundaries are connected using periodic boundary conditions in order to ap-
proximate an infinite channel. Comparisons between different model settings are per-
formed on a Cartesian grid, with a density of Nx = 127, Ny = 95 and Nz = 95 with clus-
tering towards the walls. For Reτ = 395 this results in x+ ≈ 12, y+ ≈ 0.1 and z+ ≈ 10.
The non-dimensional time step∆t∗ = uτ∆t/(2δ) ≈ 1×10−3 leads to∆t+ = u2

τ∆t/ν≈ 0.08
(2000 time steps per flow-through time). The grid density and time step are below LES
guidelines and approach DNS resolution [55]. To maintain the proper bulk and friction
Reynolds numbers, Reb =Ub2δ/ν and Reτ = uτδ/ν respectively, a body-force is applied
which is proportional to the pressure gradient dp/dx =−τw /δ, with τw = ρu2

τ [52]. The

Péclet number (Pe = ρu∆x
Γ , with Γ the diffusion coefficient [90, 170]) has a magnitude

of O (10). As shown in the literature, the use of scale-resolving turbulence models for a
turbulent channel yields a so-called supercritical laminar solution for which many flow-
through times are needed to trigger transition to the turbulent regime [171]. In order
to speed up the transition, the method suggested by Schoppa and Hussain [172] is used
here. The details are given in Tab. 4.1.

Table 4.1: Details of the channel flow setup.

Symbol Case 1 Case 2
Reτ 395 180
Reb 13800 6300
δ [m] 0.1 0.1
Ub [m/s] 6.928×10−2 3.157×10−2

uτ [m/s] 3.966×10−3 1.807×10−3

τw [N/m2] 1.570×10−2 3.259×10−3

ν [m2/s] 1.004×10−6 1.004×10−6

ρ [kg/m3] 998 998

4.1.3. RESULTS FOR DIFFERENT fε
For all figures in this section the three approaches (‘high’, ‘moderate’ and ‘low’ Reynolds
number) are shown from left to right, indicated as H, M and L respectively. For M, fε is
taken as 2 · fk , i.e. a = 2. For Reτ = 180, the initialisation method (Section 4.1.2) yields
a laminar flow 1 for M and L. This is an indication of added dissipation (the initial per-
turbations are dampened). For comparison purposes, a second set of computations is
performed where the computations are restarted from a fully turbulent H computation.

Fig. 4.2 shows the mean velocity versus the channel height. For both Reτ values H
matches the DNS well independently of fk . M shows slight discrepancies in the profile;
especially for Reτ = 180, the velocity is underpredicted near the centre. L at Reτ = 395
and with fk = 0.15 shows a more parabolic profile, which is an indication of a laminar

1In this context laminar flow is defined as the absence of resolved velocity fluctuations, i.e. the Reynolds

stresses Rei j = u′
i u′

j /u2
τ ≈ 0.
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flow. Both of the lower fk values do show a turbulent flow profile, however the bound-
ary layer appears to be thinner than half of the channel height. The velocity is almost
constant in the region 0.5 ≤ y/δ ≤ 1.0. At the lower Reτ, both fk = 0.15 and 0.10 show a
laminar profile. The profile for fk = 0.05 matches the DNS data reasonably well.
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Figure 4.2: Velocity profiles (u/Ub ), from left to right H, M and L for Reτ = 395 (top) and 180 (bottom).

Fig. 4.3 shows two components of the Reynolds stress profiles. The fluctuations show
that the magnitude of the Reynolds stresses are not yet fully statistically converged, how-
ever the trends between the different approaches can be compared. The statistical con-
vergence will be investigated in detail in Sec. 5.3.2. The results for H and M are very
similar. For both Reτ, Reuu and Reuv both show the correct profile, the magnitude con-
verges towards the DNS data with decreasing fk . Reuv is slightly underpredicted. Reuu

at Reτ = 180 is overpredicted near the wall for H and M. L clearly deviates from the ref-
erence data. At Reτ = 395, the Reuu profiles show the correct shape, but fk = 0.15 and
0.05 underpredict the magnitude. Reuv is not captured by all fk values. For Reτ = 180,
the profile is correct for fk = 0.05, although the magnitude is not well captured. For this
Reτ, fk = 0.05 is again the only setting which captures Reuv reasonably. For the other
fk settings, Reuv is almost zero, indicating laminar flow, which is in agreement with the
mean velocity profiles.

The turbulence kinetic energy spectra are shown in Fig. 4.4. As expected the spectra
at the lower Reτ show less scale separation, while for the higher Reτ, a −5/3 slope is
observed in part of the frequency range. For H the value of fk has little influence on the
spectra, for M the effect of reducing fk is more visible. A lower fk leads to more resolved
turbulence, i.e. more energy in the spectrum and a higher cut-off frequency. This effect
is the largest at Reτ = 180. The same influence of fk is clear for L; only fk = 0.05 at
Reτ = 180 matches the reference set, but still the energy at higher frequencies is lower
than for M and H. In all other computations the energy is too low, the spectrum shows
again that the flow is mostly laminar. It is clear that reducing fε reduces the energy in the
spectrum; M contains less energy than H, again especially at higher frequencies.
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Figure 4.3: Normalised Reynolds stress profiles (Rei j ), from left to right H, M and L for Reτ = 395 (rows one
and two) and Reτ = 180 (rows three and four).
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Figure 4.4: Turbulence kinetic energy spectra (Eu,y+≈20( f )), from left to right H, M and L. Reτ = 395 (top row)
and Reτ = 180 (bottom row).

Finally the effect of fε on the flow is visualised using structures based on the Q-
criterion in Figures 4.5 and 4.6 for Reτ = 395 and 180 respectively. For both Reynolds
numbers the same observations are made; for H the structures appear independent of
fk . M shows a large dependency on fk ; lowering fk leads to more and smaller scales, for
higher fk only larger structures are observed away from the walls. This decrease in range
of scales is in line with results by Frendi et al. [166]. The behaviour can be related to the
definition of fε: for fε = 1.0, all dissipation occurs at the smallest scales, while if fε < 1.0,
dissipation can also occur at larger scales. As a consequence the smaller scales are sup-
pressed, since the turbulence is dissipated ‘earlier’. By reducing fk and thereby also fε
the range of scales increases again. For L the absence of structures for fk = 0.15 for both
Reτ, and for fk = 0.10 for Reτ = 180 again indicates a laminar flow. fk = 0.10 at Reτ = 395
shows some large structures, but these do not resemble the turbulent structures as seen
for the other approaches or for LES simulations (see Chapter 5). For fk = 0.05 it is ob-
served that the smallest structures are absent, which is in line with the turbulence kinetic
spectrum.

4.1.4. CONCLUSIONS

Different approaches for specifying fε in the PANS model were compared based on the-
ory and turbulent channel flow simulations. Little difference between the moderate and
high Reynolds number approaches was found. The moderate Reynolds number ap-
proach does have a larger dependency on fk , since due to the smaller value of fε, the
turbulence dissipation is no longer confined to the smallest scales. For the low Reynolds
number approach, it was demonstrated that excess diffusion is added to the equations.
A laminar-like solution is obtained independent of the flow initialisation or Reynolds
number. It is concluded that even at a low Reynolds number, fk = fε is an approach
which should not be used due to the suppression of the smaller scales. Only when using
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Figure 4.5: Instantaneous turbulent flow fields (Q = 0.7), coloured by u∗ = u/Ub . From left to right fk = 0.15,
0.10 and 0.05, for fε = 1.0 (first row), fε = 2 · fk (second row) and fε = fk (third row). Reτ = 395.

Figure 4.6: Instantaneous turbulent flow fields (Q = 0.7), coloured by u∗ = u/Ub . From left to right fk = 0.15,
0.10 and 0.05, for fε = 1.0 (first row), fε = 2 · fk (second row) and fε = fk (third row). Reτ = 180.
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a very low fk (in the DNS limit) reasonable results for the mean velocity and Reynolds
stress profiles can be obtained, although in that case the results obtained using fε = 1.0
also match the reference data well for the present test case, and contain more energy at
the smaller scales.

For industrial flow cases at high Reynolds number, it is recommended to use fε = 1.0.
That being said, if the reasoning is followed which leads to allowing fk to vary in time and
space, one can wonder whether the same should be applied to fε, i.e. fε depending on
local flow quantities. There is currently no relationship to dynamically estimate fε found
in the literature, while pursuing this method has the risk of re-introducing the problem
of numerical and modelling error entanglement.

4.2. fk ESTIMATES
For the usage of PANS two approaches can be distinguished: 1) the Constant fk ap-
proach, where a constant value of fk is used in the domain and throughout the sim-
ulation time. This approach was often used to verify the PANS model, but has mostly
fallen out of favour recently since it is more computationally expensive in cases with a
large range of different turbulent length scales. Theoretically, to use this approach in
these cases a fine grid is required in the entire domain. In contrast, in approach 2), fk

can vary in space allowing a coarser turbulent resolution in regions where large turbu-
lent scales are dominant. This approach can be further subdivided into Static, where
fk is fixed in time, or Dynamic for which fk can also vary in time. Between these ap-
proaches strong disagreements exist: advocates of the Constant approach claim that by
using a varying fk one of the key advantages of the PANS model, the separation of mod-
elling and discretisation error, is destroyed, and the model is reduced to a hybrid model.
On the other hand, advocates of the varying fk approach state that this way the grid, and
therefore resources, can be used more optimally. It is argued that applying a constant fk

is not reasonable due to the spatial and temporal variation in turbulence length scales
and grid resolution. Instead, by varying it in the domain and simulation time, the length
scales which can be resolved, are resolved. Note however that the spatial variation in fk

reintroduces commutation error, since the PANS filtering operation does not commute
with the spatial gradient [173]. Recent work such as Girimaji and Wallin [173] and David-
son [174] attempts to account for this error by adding a term in the k and momentum
equations based on the gradient of fk .

In the case of Constant fk , it would be beneficial to have an a priori estimate of which
physical parameter can be used for a particular flow on a given grid. In the case of vary-
ing fk , the need for a reliable estimate for fk is obvious. In the literature on the subject
however, there is no consensus on which estimate to use. This section aims to give an
overview of several methods found in literature and their properties. Note that all these
estimates only concern fk and all works assume fε = 1.0. The different estimates are
compared for two test cases: a circular cylinder at Re = 3900, representative of a turbu-
lent wake flow driven by spatially-developing coherent structures [57, 175]; and a tur-
bulent channel flow at Reτ = 395, representative of an internal wall-bounded flow. The
results of both Static and Dynamic estimates are evaluated, and compared with the a
posteriori computed modelled-to-total ratio of turbulence kinetic energy, f̃k , obtained
from Constant fk computations.
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4.2.1. fk ESTIMATES IN LITERATURE
The fk estimates found in literature are divided according to category (Static, based on
an a priori RANS computation, and Dynamic, computed during a PANS computation).
Within this study the original notation is modified to maintain consistency between the
different estimates and to properly compare them. Some general definitions are the grid
sizes

∆mi n = min
(
∆x ,∆y ,∆z

)
, (4.5)

∆max = max
(
∆x ,∆y ,∆z

)
, (4.6)

∆av g = (
∆x ·∆y ·∆z

) 1
3 , (4.7)

and the characteristic turbulent length scales Lt and lt

Lt = K
3
2

E
= K

1
2

CµΩ
and lt = k

3
2

ε
= k

1
2

Cµω
(4.8)

with a constant Cµ = 0.09. For clarity, a distinction is made between Lt , based on total
(modelled plus resolved) quantities and lt , based on modelled quantities. In the case of
Static approaches Lt = lt , while in the case of Dynamic approaches, estimates based on
both length scales can be found in literature. Note that while lt can be obtained directly
from the PANS transport equations, Lt must be obtained by computing the instanta-
neous velocity fluctuations, making the numerical implementation more difficult. Since
fε = 1.0, dissipation occurs entirely at the smallest scales (ε = E and ω = Ω). Fig. 4.7
shows a summary of the fk estimates, sorted per approach, indicating that there is no
clear relationship between estimation method and Reynolds number or number of cells.
The Static estimates are obtained from Girimaji and Abdol-Hamid [51], Frendi et al.
[166], Abdol-Hamid and Girimaji [176], Jeong and Girimaji [177], Han et al. [178], and
Foroutan and Yavuzkurt [179], and the Dynamic estimates D. Luo et al. [62], Elmiligui
et al. [180], Basu et al. [181], Song and S.-O. Park [182], Basara et al. [183], D. Luo [184],
Davidson and Friess [185], and Basara et al. [186]. The formulations are given in Ap-
pendix D. In the literature, the estimates are applied to a range of test cases, including a
turbulent jet, swirl in expansion, channel flow, open cavity, backward facing step, bluff
bodies, square and circular cylinders, hill and hump flows. There is often little reason-
ing as to why a particular estimation is applied to a certain test case. This is surprising
since the performance of turbulence models is in general highly case dependent. An ex-
ception is the work by D. Luo [184], in which results using Dynamic fk are compared to
those using a Constant fk , as well as from DES, for a backward facing step. The author
claims that the Dynamic results are ‘almost comparable to the DES computation’, with
the Constant fk underperforming in predicting skin friction and Reynolds stress profiles.
However the applied grid is rather coarse in the wall-normal direction (y+ ≈ 1), mean-
ing that the Constant fk computation is not able to properly resolve the boundary layer,
leading to poor results. The DES and Dynamic PANS both apply RANS in the boundary
layer, leading to superior results. It is also shown in this chapter that the difference in
results is smaller on a finer grid, indicating that numerical errors may play a role and
therefore making it difficult to generalise this conclusion.
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Note that in the literature some estimates are explicitly bounded to the interval [0,1],
whereas other papers do not mention this. In this study, such explicit bounds are not in-
cluded to highlight the differences between estimates; of course in the implementation
of these methods such bounds should be included.
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Figure 4.7: Literature overview with a selection of the available fk estimates [51, 62, 166, 176–187]. The
Reynolds numbers are based on the freestream velocity and characteristic length scale; the year indicates the
year of publication. The results are shown as a function of the number of grid cells and the approach.

CONCLUSIONS BASED ON LITERATURE

An overview of the required input quantities and properties of the estimates is given
in Table 4.2. A comparison of the formulation of the Static estimates shows that the
formulations by Abdol-Hamid and Girimaji [176], Girimaji and Abdol-Hamid [51], Frendi
et al. [166] and Han et al. [178] are essentially the same estimate. The magnitude can
differ due to the application of different constants, but the trend is the same. This also
shows that there is no consensus on how to define the grid size, which is also true for
LES [52]. The grid definition could have a large effect on strongly anisotropic grids. The
estimate by Jeong and Girimaji [177] appears to be incorrect due to the use of the grid size
in the denominator, while that by Foroutan and Yavuzkurt [179] is the only one which by
definition keeps fk bounded between 0.0 and 1.0, which is a theoretical advantage. The
other estimates are most likely explicitly bounded to a maximum value of 1.0, although
this is not always clear in literature.

More variation can be found between the Dynamic estimates. Firstly, it is observed
that the estimates by Elmiligui et al. [180], Basu et al. [181], D. Luo et al. [62], D. Luo
[184] and Davidson and Friess [185] are all based on lt , so only on modelled quantities.
This is questionable since for low fk , the RANS model has little effect on the solution.
The reasoning behind this dependence on lt instead of Lt is related to the difficulties
in obtaining K for statistically unsteady flows, as recognised by Basara et al. [186] and
Pereira [100]. In the case of a statistically steady flow K = 〈K 〉+k, whereby 〈K 〉 can be
obtained from the difference between the instantaneous and mean velocity; for a sta-
tistically unsteady flow the difference between instantaneous and mean velocity leads
to an overprediction of K due to the energy contained in the large scale motions. An
overprediction in K results in reduced values for fk [100].

Nevertheless, the estimates of Song and S.-O. Park [182], Basara et al. [183] and Basara
et al. [186] are based on Lt , and therefore require computing K . An interesting exception
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to this is the method of Basara et al. [186], where the total kt is obtained using an addi-
tional transport equation. However this estimate therefore only works in the context of
a specific PANS formulation, and is thus not applicable in a general PANS formulation.
Therefore it is not applied in the current work.

It is observed that due to their formulation, for all estimates (with the exception of
Jeong and Girimaji [177]) limy+→0 fk = 1. Some arguments for this behaviour can be
found in the occurrence of the smallest length scales at the wall. This implies however
that the PANS model is reduced to a hybrid model with a behaviour similar to DES-like
models. For some methods this is mentioned as a goal, while formulating the estimate
[180, 185]. This behaviour does not happen however, with a Constant fk approach.

Furthermore, it is obvious that due to the application of the different empirical con-
stants any result can be obtained using the different estimates. The authors are therefore
of the opinion that the magnitude of the estimation is less relevant than the trend of the
estimation methods. All estimates are proportional to ∆n , with often n = 2/3, so grid
refinement only affects the magnitude. Consequently, only results for a single grid are
shown in this chapter.

Table 4.2: Overview of input quantities and properties of PANS resolution estimates in literature.

Approach Source Input quantities fk ∈ [0.0,1.0] Calibration
Grid Length scale Miscellaneous constant

Static Abdol-Hamid and Girimaji [176] ∆max lt −
Girimaji and Abdol-Hamid [51] ∆mi n lt −
Frendi et al. [166] ∆mi n lt fε −
Jeong and Girimaji [177] ∆ λT −
Han et al. [178] ∆av g lt −
Foroutan and Yavuzkurt [179] ∆av g lt −

Dynamic Elmiligui et al. [180] ∆max lt −
Basu et al. [181] ∆max lt ∆t ||〈U 〉||2 −
Song and S.-O. Park [182] ∆ Lt ν ε − −
Basara et al. [183] ∆av g Lt −
D. Luo et al. [62] ∆max lt −
D. Luo [184] ∆max lt −
Davidson and Friess [185] ∆max lt −
Basara et al. [186] ∆av g L̃t kssv ε −

4.2.2. TEST CASES
The estimates are applied to two canonical test cases: one representative of a turbulent
wake flow with coherent structures, and one of an internal boundary layer flow.

The selected test case for the turbulent wake flow is the flow around a circular cylin-
der at Re = 3900. This flow was thoroughly investigated using PANS by Pereira, Vaz, Eça,
and Girimaji [57] and Pereira, Eça, Vaz, and Girimaji [175]. In the current work the finest
grid, and set-up, as employed by Pereira, Vaz, Eça, and Girimaji [57] and Pereira, Eça, Vaz,
and Girimaji [175] are used. All terms in the equations are discretised with second-order
accurate schemes. The rectangular computational domain measures 22D in transverse
and 3D in span-wise direction, with an inflow located 10D upstream of the cylinder and
the outflow 40D downstream, as shown in Fig. 4.8. At the inflow constant velocity, turbu-
lence intensity (I = 0.2%) and eddy-viscosity ratio (νt /ν= 10−3) are prescribed to match
the experimental conditions of Parnaudeau et al. [188]. The pressure is imposed at the
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top and bottom boundaries, and at the outlet the streamwise derivates are set to zero.
Symmetry boundary conditions are applied in the spanwise direction. Computations are
performed on a multi-block structured hexahedral grid of 4.5×106 cells, with dimension-
less cell lengths in the tangential, normal and streamwise direction of x+

t = 1.8, x+
n = 0.38

and x+
s = 38.9, and a non-dimensional time step, ∆tU∞/D = 5.209× 10−3 leading to a

time-averaged maximum Courant number (U∆t/∆x [93]) of 2.7. This was shown to be
sufficient to achieve acceptable discretisation errors [57]. Round-off errors are deemed
negligible due to the use of double precision arithmetic and to minimise iterative er-
rors calculations are run until the maximum norm, L∞, of the normalized residuals of
all equations equals 10−5 at each time step (equivalent to L2 ≈ 10−7). The constant fk

values employed in the current work are 0.75, 0.50 and 0.25.

Figure 4.8: Circular cylinder computational domain and grid.

In order to investigate the effect of fk estimates inside a boundary layer, a second
test case is used: a turbulent channel flow at Reτ = uτδ/ν = 395, see Chapter 5. Based
on the results previously obtained for these test cases by Pereira, Vaz, Eça, and Girimaji
[57] and in Chapter 5 the employed grids are judged to have sufficient resolution to sup-
port the applied fk values. Consequently significantly higher estimates are dismissed as
erroneous.

In order to validate the different fk estimates, the outcomes are compared with the
a posteriori computed ratio of modelled-to-total turbulence kinetic energy from a Con-
stant fk computation, designated f̃k ,

f̃k = k
1
2

(
u′

i u′
i

)
+k

. (4.9)

For a channel flow the computation of u′
i is straightforward. For a cylinder however, due

to the statistically unsteady flow, it is difficult to distinguish between the time-varying
mean velocity and the ensemble averaged turbulent velocity. In the results presented
here this difference is neglected, leading to an overpredicted value for u′

i and conse-

quently a reduced f̃k .

4.2.3. EVALUATION OF STATIC ESTIMATES
The Static estimates are applied to results obtained with the k−ω SST RANS model [102].
All plots of the estimates are limited between 0.0 and 1.0, even if the estimate itself is not
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necessarily bounded between these limits. For the cylinder case the results are shown
in a contour plot at the centre of the domain in Fig. 4.9 and the estimates, averaged in
spanwise direction, are quantitatively compared on an axial line located on the domain
centreline in the vertical direction in Fig. 4.10. Fig. 4.9 also shows the time-averaged axial
velocity. For the channel flow case, due to the statistical stationarity, only a quantitative
comparison is given. Technically, the estimates should be applied to a steady-state com-
putation, however for the cylinder case the flow is inherently unsteady. Therefore the
time-averaged quantities are used, immediately highlighting a limitation of using Static
estimates.

The estimates of Abdol-Hamid and Girimaji [176], Girimaji and Abdol-Hamid [51]
and Han et al. [178] vary in magnitude due to the different constants and/or grid sizes
but overall show a similar behaviour (see Figures 4.9a, 4.9b and 4.9e). fk is 1.0 (or larger)
upstream and near the wall and decreases towards 0.0 in the wake. The lowest values can
be found for Foroutan and Yavuzkurt [179], the largest for Han et al. [178]. It is clear that
the estimate of Jeong and Girimaji [177] is incorrect, fk is 1.0 in the entire domain, except
in the first layer of cells near the wake (not visible in the figure). Finally the estimate of
Abdol-Hamid and Girimaji [176] is similar to the estimate of Foroutan and Yavuzkurt
[179], although the values in the wake are somewhat higher and the RANS region near
the wall is thicker. These estimates show both a wider wake region where fk < 1.0, and
maintain these low values further downstream, compared to the other estimates. The
plots in Fig. 4.10 show that, with the exception of the estimate of Foroutan and Yavuzkurt
[179], all estimates exceed 1.0 upstream of the cylinder. The estimate of Han et al. [178]
also exceeds 1.0 in the wake. Again it is clear that the estimate of Jeong and Girimaji
[177] is incorrect, since it only has a proper value near the cylinder while in the rest of
the domain the value is too large to be visible in the figure.

(a) Abdol-Hamid and Girimaji [176] (b) Girimaji and Abdol-Hamid [51] (c) Jeong and Girimaji [177]

(d) Foroutan and Yavuzkurt [179] (e) Han et al. [178] (f) Mean axial velocity

Figure 4.9: Static fk estimates and the time-averaged axial velocity for a circular cylinder.

For the channel flow the estimates show relatively high values. The estimate of Jeong
and Girimaji [177] returns a value higher than 1.0 in the entire domain. Both Girimaji
and Abdol-Hamid [51] and Han et al. [178] show a minimum value of approximately 0.5
for y/δ > 0.15 and y/δ > 0.05 respectively. The estimates of Abdol-Hamid and Girimaji
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[176] and Foroutan and Yavuzkurt [179] have a minimum value of 0.2 in the centre, al-
though Abdol-Hamid and Girimaji [176] increases above 1.0 at y/δ= 0.1. Foroutan and
Yavuzkurt [179] shows the lowest values across the channel height, and is the only one
which shows a maximum of 1.0 at the wall.
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Figure 4.10: Static fk estimates applied to the circular cylinder (left) and channel flow (right). The estimates
for the cylinder are obtained on axial lines located on the domain centreline in the vertical direction, averaged
in spanwise direction. The grey area indicates the cylinder. For the channel flow the estimates are obtained
along the height of the channel.

4.2.4. EVALUATION OF DYNAMIC ESTIMATES
The Dynamic estimates are applied to instantaneous flow fields from PANS computa-
tions performed with fk fixed in time and space, denoted as fk,c . This is not how a true
Dynamic approach should work, since this way the flow field does not depend on the
estimate. The advantage of this approach is that oscillations in the estimates are sup-
pressed. Consequently, the different estimates can be compared more objectively. In the
contour plots, the results are again bounded between 0.0 and 1.0, even if the estimate
itself is not. The a posteriori computed value f̃k is also shown for comparison. Fig. 4.11
shows the values of the estimates applied to the cylinder in a contour plot at the centre
of the domain, and Fig. 4.12 shows fk on axial lines located on the domain centreline in
the vertical direction, averaged in spanwise direction.

All estimates show an increase in estimated fk with decreasing fk,c , indicating that in
a Dynamic approach fk should converge to a target value. If fk,c is larger than the target
value, fk is smaller than the target value, and vice versa. As observed by Davidson and
Friess [185], this implies that the estimated fk is implicitly linked to f̃k . Note that due to
the spatial and temporal variation of the flow field, the target fk will also vary, leading to
potentially oscillatory behaviour for fk .

There is little difference between all the estimates whether fk,c = 0.75 or 0.50, but the
estimates increase when fk,c = 0.25. This is an indication that the converged value, fk,d ,
lies between these results. The estimates of Elmiligui et al. [180] and Basu et al. [181]
show a similar behaviour, with fk = 1.0 upstream, in the far-field and close to the cylin-
der, with lower values in the wake. The estimate of Song and S.-O. Park [182] shows a sim-
ilar trend, but the values upstream and towards the far-field are significantly lower. With
decreasing fk,c , the region where fk ≈ 1.0 upstream and in the far-field increases. The
estimate by Basara et al. [183] shows an interesting trend; because of the dependence
on Lt the wake shows high fk values in the wake centre, but lower values surrounding
the wake centre. The difference is clear when comparing the estimate to the one of D.
Luo et al. [62], which has an almost identical formulation but depends on lt . The esti-
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mate of D. Luo et al. [62] is unaffected by fk,c in the wake, but increases in the far-field
and upstream. Note that the low values in the entire domain for this estimate are mostly
related to the small constant (CPAN S ) used in the formulation. Finally the estimate of
Davidson and Friess [185] shows a comparable trend, but there is less ambiguity in fk . It
is either 0.0 in the wake, or 1.0 elsewhere. The formulation therefore ensures a DES-like
behaviour, as was desired in formulating the estimate.

The behaviour observed for the a posteriori computed ratio, f̃k , differs from the es-
timates. Firstly, the effect of fk,c is clearly visible; as expected with decreasing fk,c , f̃k

decreases. Secondly, it can be seen that in general f̃k is significantly lower than fk,c .
It appears that modifying fk,c has little effect on f̃k in the entire domain. Instead, it
mainly affects the peak values of f̃k occurring in the domain. Thirdly, due to the lam-
inar flow upstream and in the far-field, both k and 〈K 〉 ≈ 0, leading to f̃k ≈ 0, which is
in strong contrast to the results of the estimated fk values. Finally, f̃k is also low in the
near-wall regions, as opposed to the estimates which all give fk ≥ 1 due to limy+→0 lt

and limy+→0 Lt = 0. The peaks in the wake seem to be best predicted by the estimate of
Davidson and Friess [185], most likely due to the dependence on Lt . However outside of
the wake the estimate deviates from f̃k .

Fig. 4.12 shows that only the estimates of Elmiligui et al. [180], Basu et al. [181] and
Davidson and Friess [185] are bounded between 0.0 and 1.0 in the domain. The largest
deficiencies compared to f̃k are visible upstream of the cylinder, where all the estimates
return a value larger than 0.9, while it is clear that f̃k < fk,c . Downstream of the cylinder
the estimates of Song and S.-O. Park [182], D. Luo et al. [62] and Davidson and Friess
[185] have the same order of magnitude as f̃k for fk,c = 0.75 and 0.50, but for fk,c = 0.25
the estimates are all larger. It is important to note that only the estimates of Song and
S.-O. Park [182] and D. Luo et al. [62] yield values significantly smaller than 1.0 upstream.
This is relevant for cases when synthetic turbulence is added at the inflow, since the
introduced fluctuations should not be dissipated before they reach the object of interest.

Fig. 4.13 shows the estimates for the channel flow case, for which f̃k is also always less
than fk,c . Note that indeed limy+→0 f̃k = 0, but only in the cell closest to the wall. Again
it is clear that these estimates are less suitable for an internal boundary layer flow: the
estimate of Basara et al. [183] is larger than 1.0 in the entire domain, while the estimates
of Elmiligui et al. [180] and Basu et al. [181] remain close to 1.0. The estimate of Song and
S.-O. Park [182] is unaffected by changing fk,c , as was also observed for the cylinder case,
and is around 0.50 across the channel height. The estimate of Davidson and Friess [185]
is close to 1.0 in the entire domain, again in the spirit of the desired DES-like behaviour.
Only the estimate of D. Luo et al. [62] shows reasonable values ( fk ≈ 0.15 at y/δ> 0.2 for
fk,c = 0.15), which increases to 0.25 for fk = 0.10 and 0.5 for fk = 0.05. However close to
the wall the estimate is still significantly larger than 1.0.

4.2.5. DISCUSSION AND CONCLUSIONS

The review of modelled-to-total kinetic energy fk estimates presented in this chapter
makes clear that there is no consensus on how to estimate fk from a given flow field
on a given grid, both for Static and Dynamic PANS. These approaches are both strongly
dependent on this estimate, potentially leading to significant modelling errors. Due to
differences in the definition of the characteristic grid dimension and the application of
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Figure 4.11: Dynamic fk estimates for a circular cylinder, for different fk,c .
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empirical constants, it is clear that the absolute values of the estimates should be treated
with care. Instead more emphasis should be placed on the predicted trends. An issue
unaddressed in literature is that Static estimates should be applied to a steady compu-
tation; however for statistically unsteady flows, such solutions are unobtainable. In this
work, the mean flow field was used.

Both the Static and Dynamic estimates do not yield reasonable results for the chan-
nel flow case and significantly overpredict fk . For the cylinder case with a Static compu-
tation, the estimate of Foroutan and Yavuzkurt [179] seems most appropriate, since it is
the only one which is properly bounded between 0.0 and 1.0. In case of Dynamic PANS,
only the estimates of Elmiligui et al. [180], Basu et al. [181] and Davidson and Friess [185]
are bounded between these limits, although that of Basu et al. [181] generally predicts
too high values. It is observed that estimates based on K instead of k generally lead to
better predictions, however K is difficult to obtain in statistically unsteady flows.

It is shown that the fk value employed in a Constant fk computation, fk,c , mostly
affects the peak values of f̃k in the field, and generally f̃k < fk,c . This difference is suffi-
ciently large that the author is of the opinion that even if f̃k would be corrected for the
energy contained in the large scale motions, still f̃k ≤ fk,c , which is a favourable property
of the PANS model. Generally the estimates tend to give values of fk which are signifi-
cantly larger than f̃k . Aside from the difference in magnitude, the trends observed for
the estimates differ in key aspects from the computed f̃k , indicating more fundamental
issues. Most estimates are constructed such that limy+→0 fk = 1 in the near-wall region,

since limy+→0 lt and limy+→0 Lt = 0. A comparison with f̃k shows that although this prin-
ciple is correct, the region in which it is applied is not. In the Constant fk computations
fk = 1.0 only in the first layer of cells near the wall, whereas in the estimates this occurs
in the entire boundary layer. This behaviour also explains the failure of the estimates
for the channel flow case, and it gives rise to the belief that the estimates should not
be applied inside boundary layers. A consequence of this behaviour is that the PANS
model behaves more like a DES model. This is sometimes described in literature as an
advantage or a goal in the derivation of the estimate, although this does imply that the
unfavourable properties of DES, such as error entanglement, are then also incorporated.
A second issue with the estimates is that they all yield fk = 1.0 if the resolved flow is
laminar (upstream and in the far-field). This implies that in case of laminar flow, the
PANS model resorts to the RANS parent model. For Static computations this becomes
problematic if during the subsequent PANS computation synthetic turbulence is added
at the inflow, since the introduced fluctuations might be dissipated before they reach
the object of interest. In the opinion of the authors, it is not possible to design a gen-
eral estimate (applicable in the entire domain) which does not suffer from this problem.
Upstream of the object no information is available concerning the resolution which can
be supported, except for the grid size. The estimates found in literature which depend
on k are strongly dependent on values set at the inflow boundary condition, and the
turbulence decay; whereas the estimates depending on K suffer from the fact that no
information is available upstream, unless synthetic turbulence is added. To include this
fk should be below 1.0; this leads to a circular dependency. It seems that the estimates
are only valid for cases which show strongly separated vortical structures; and even then
only in the wake of the object. To enable the usage for other cases, it is beneficial to limit
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fk in laminar regions to a certain threshold and only apply the estimate in the wake of
the object. For this threshold, no definition is available.

Finally it must be remarked that Dynamic PANS computations run the risk that fk

will show an oscillatory behaviour due to the strong spatial variation of the estimates.
Not only is fk temporally and spatially varying, but also the flow field upon which it is
based. This combination might negatively influence the results. Although this hypothe-
sis is not investigated in this work, it contributes to the opinion of the author that despite
potential theoretical advantages to the usage of Dynamic PANS, the Constant PANS ap-
proach, with a fk fixed in time and space, is still preferable in order to minimise errors in
CFD results and increase the reliability of industrial CFD.

4.3. PANS-KSKL MODEL
From RANS modelling, it is known that there are several theoretical and practical ad-
vantages to prefer the KSKL model over k −ω based models. Firstly, the KSKL model
commonly predicts lower eddy-viscosities compared to k −ω models (see e.g. F. Menter
et al. [103], F. Menter and Egorov [189], and Liebrand et al. [190]). In the context of PANS,
this implies that less turbulence will be modelled compared to a k −ω SST-based clo-
sure, for the same fk value. Lower eddy-viscosities can be advantages for cases such as
predicting cavitation dynamics or under water radiated noise. Secondly, the RANS KSKL
model exhibits a lower dependency on the height of the first near-wall cell (y+), thereby
resulting in decreased numerical errors on the same grid [107]. Thirdly, k−ωmodels suf-
fer from difficult to define boundary conditions at the outer boundary, and at the wall,
whereω goes to infinity [191]. In contrast,

p
kL is zero by definition at the wall, making it

easier to implement in CFD codes and also improving iterative convergence. Finally, one
of the shortcomings of k −ω based models is the generally poor iterative convergence of
the second transport equation for the dissipation rate ω, especially in connection with
multiphase problems, such as cavitation and free-surface flows (see e.g. Liebrand et al.
[190] and Hoekstra and Vaz [192]). When combining this model with the PANS frame-
work, this feature is incorporated. This leads to non-negligible iterative errors even for
simulations with a high physical resolution (i.e. close to DNS), while in this case it would
be reasonable to expect the discretisation error to be the dominating error source in the
total numerical error. In such cases, the RANS parent model only works as a sub-filter
model, of which it would be desirable to be accompanied by a small iterative error. Large
iterative errors also make the estimation of discretisation errors difficult – which is one
of the main attractions of PANS [57, 193] – since for such methods the iterative error
should be at least two orders of magnitude lower than the discretisation error [56]. The
PANS-KSKL model is expected to exhibit, like its RANS counterpart, improved iterative
convergence behaviour due to the substitution of the ω equation by the

p
kL equation.

These properties have motivated other researchers to also favour the KSKL model, for
example in the context of transition modelling [194] and the prediction of drag forces
[96].

This section investigates a new PANS closure based on the k −p
kL (KSKL) model.

4.3.1. PANS-KSKL MODEL PROPERTIES
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SPECIFYING fl

The filtering of the Navier-Stokes equations depends on the values chosen for fk and fl .
fk determines the physical resolution of the flow, i.e. to what extent the turbulence spec-
trum is resolved. In the original version of PANS, the second setting fε = ε/E determines
the overlap between the energy-containing and the dissipation ranges. For ease of use it
is preferable to have the same two settings for different types of PANS closures. Conse-
quently, for k −ω based PANS models, the second parameter fω is related to fε (see e.g.
Pereira, Vaz, Eça, and Girimaji [57]), using

fω = fε
fk

. (4.10)

Thereby the user needs to set fk and fε, and the appropriate fω is selected in the code.
In the case of PANS-KSKL the second parameter is fl . Following the relationship

derived by Reyes et al. [46], the PANS length scales can be related to the RANS length
scales using

l

L

(= fl
)∼ f 3/2

k

fε
. (4.11)

This can also be derived when combining Eq. C.11 with the ratio of eddy-viscosities [46],

νt

νtT
= f 2

k

fε
. (4.12)

IMPLICATIONS FOR SUB-FILTER QUANTITIES

The sole effect of the sub-filter model on the filtered Navier-Stokes equations is on the
eddy-viscosity, the formulation of which varies between the k −ω and KSKL closures.
As mentioned in the introduction, for RANS, it is commonly observed that the eddy-
viscosities predicted by the KSKL model are lower than those of k−ωmodels. This should
hold when using PANS-KSKL with fk < 1.0.

A related property is that the decay in νt , downstream of the inlet, is affected by the
closure formulation. It is known from RANS modelling that the location of transition
strongly depends on the turbulence quantities, and therefore on the decay of νt from
the inlet (see e.g. Spalart and Rumsey [195] and Lopes et al. [196]). This effect is limited
for RANS simulations of high Reynolds number flows, where a ‘fully turbulent’ solution
is assumed, but it’s relative importance increases with decreasing Reynolds number. In
the context of SRS, the effect of νt ,i n is often overlooked, since with decreasing fk , the
νt decreases until 0 in the limit of fk = 0.0 (Chapter 6). However, for intermediate values
fk values, νt ,i n still has an effect on the equations being solved (i.e. Eq. 2.4), making
the decay a relevant parameter. Following the derivations by Lopes [197] for the RANS
SST and KSKL model, the decay of PANS-SST and PANS-KSKL can be derived. Under
the assumptions of a steady, uniform flow, aligned with the x axis, sufficiently far away
from walls, constant fk in the domain, and by neglecting the diffusion terms, the decay
of PANS-SST can be formulated as

νt =
νt ,i n[

1
〈U 〉

(
〈U 〉+ (

αβ∗−αβ∗ fk +β fk
)

(x −xi n) ki n
νt ,i n

)] β∗
αβ∗−αβ∗ fk+β fk

−1
(4.13)
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while the decay for PANS-KSKL is

νt =
νt ,i n[

1
〈U 〉

(
〈U 〉+βK SK L (x −xi n) ki n

νt ,i n

)] β∗
βK SK L

−1
. (4.14)

with the subscript i n indicating values at the inlet of the domain, and

βK SK L =β∗−ζ3C 1/4
µ fk . (4.15)

See Appendix E, for the derivation of Eq. 4.13 and 4.14. The solution for the decay of νt

for PANS-SST and PANS-KSKL model is of a similar form as the solutions for the RANS
parent models, but with different constants. These constants do not only depend on the
constants of the model, but are also a function of fk . The functions are shown graphically
in Fig. 4.14. Interestingly, the two closures show a different trend. For fk = 1.0 (the RANS
models), the KSKL model shows a larger νt decay, compared to the SST model. With
decreasing fk , for PANS-SST the decay increases, leading to a large decrease in νt down-
stream of the inlet. For PANS-KSKL, the decay decreases with decreasing fk , leading to
a reduced decay compared to PANS-SST. The fk for which the decays are equal depends
on the values ki n/νt ,i n and the downstream distance x −xi n . In the limit of fk = 0.0, the
PANS-KSKL model, theoretically, shows no decay of νt . This implies that with decreasing
fk , the PANS-SST model becomes less sensitive to the inlet boundary conditions, while
the PANS-KSKL model becomes more sensitive to this, leading to the need to vary the
modelled quantities at the inlet with varying fk .
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Figure 4.14: Decay of νt versus downstream location x as function of fk for PANS-SST (left) and PANS-KSKL
(right) according to Eq. 4.13 and 4.14, respectively. Values used for this example are Cµ = 0.09, β∗ = 0.09,
α= 0.5, ζ3 = 0.028, β= 0.08, 〈U 〉 = 1.0, ki n /νt ,i n = 10.

Thirdly, there are the effects on the turbulent length scales l and Lvk , which appear in
the second turbulence closure equation (Eq. C.17). One of the key features of the KSKL
model is its inclusion of an additional length scale, the von Kármán length scale Lvk ,
given by Eq. C.14, which, without the limiters, reduces to

Lvk = κ〈S〉√
∂2〈Ui 〉
∂xk

2
∂2〈Ui 〉
∂x j

2

. (4.16)
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The length scale is a function of the resolved strain rate 〈S〉 and the rate of change in
the resolved acceleration ∂2〈Ui 〉/x2

j . It is therefore solely based on the resolved veloc-

ity field. According to Xu et al. [198], who investigated different formulations for LvK

in the context of scale-adaptive simulation (SAS), the von Kármán length scale can be
considered as the second length scale in a RANS model for a fully developed planar tur-
bulent boundary layer. This would erroneously imply that LvK should reduce together
with fk . Modification of fk leads to differences in the strain rate and rate of change in
acceleration, due to increased variations in the velocity field (as seen in Pereira, Vaz, Eça,
and Girimaji [57] and Klapwijk et al. [193]). A consequence is that LvK will increasingly
vary in space and time with reducing fk . However, the presumption in RANS is that the
time-averaged velocity field – when all turbulence is modelled – is identical to the time-
averaged velocity field when all turbulence is resolved. From this, it is to be expected
that the time-averaged LvK is also independent of fk .

This is not the case for the second length scale in the KSKL model, l , which is part of
the convected secondary quantity

p
kl . By definition, this depends on fk according to

the relationship derived in Eq. 4.11, and is shown in Fig. 4.15. As expected, the ratio l /L
goes to zero with decreasing fk , meaning that increasing the physical resolution leads
to a RANS turbulent length scale going to zero, indicating that all turbulence should be
resolved. It can also be shown that the slope of ∂ fl /∂ fk decreases when fk approaches
zero, implying an initially larger effect of reducing fk , but less difference for lower fk

values. This is in line with results obtained with different (k −ω based) PANS closures
(Chapter 5).
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Figure 4.15: Ratio l /L versus fk according to Eq. 4.11 with fε = 1.0. Note the inversion of the horizontal axis,
fk = 1.0 on the left corresponds with RANS, fk = 0.0 on the right corresponds with DNS.

4.3.2. NUMERICAL EXAMPLES
The PANS-KSKL turbulence model is applied to two test cases and compared against the
PANS-SST model. fε = 1.0 to avoid excessive diffusion, and constant values of fk are
employed in time and space.

TURBULENT CHANNEL FLOW AT Reτ = 395
The first test case is the canonical turbulent channel flow at Reτ = uτδ/ν = 395, see
Chapter 5.
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Fig. 4.16 and Fig. 4.17 show the mean velocity, turbulence kinetic energy spectra,
eddy-viscosity ratio, turbulence intensity, and Reynolds stresses, for several fk values.
Next to the PANS-KSKL, results PANS-SST results from Chapter 5 are also included. In
line with the PANS-SST results, only low fk values yield a resolved turbulent flow when
using PANS-KSKL. For an explanation of this phenomenon, see Chapter 5. The mag-
nitude of the eddy-viscosity predicted by PANS-KSKL is strongly reduced compared to
PANS-SST, while the profiles are similar. For PANS-KSKL the threshold to obtain a tur-
bulent solution is fk = 0.25, while for PANS-SST the highest applicable fk value was 0.15.
This different threshold is a direct consequence of the reduced eddy-viscosity levels of
the PANS-KSKL. As an example, for fk = 0.25, νt /ν is almost 25 times higher for PANS-
SST compared to PANS-KSKL, leading to dampening of the velocity fluctuations and a
laminar flow solution. It is known know from literature that for SRS the effective compu-
tational Reynolds number,

Ree = Uδ

ν+νmodel l ed
= Uδ

ν+ f 2
k νt

, (4.17)

must exceed the critical transition Reynolds number needed for the onset of instability,
Rec [175, 193]. For a turbulent channel flow, Rec ≈ 2300, obtained from experiments
[199]. When the critical Reynolds number is equated to the effective Reynolds number
for both PANS models, the relationship

fk,SST

fk,K SK L
=

√
νt ,K SK L

νt ,SST
(4.18)

can be derived. From this relation, it is clear that the reduction in predicted eddy-viscosity
leads to a lower threshold for PANS-SST, compared to PANS-KSKL.

Fig. 4.18 shows the modelled length scales and von Kármán length scale for several
fk values. For PANS-KSKL, the modelled length scale l is one order of magnitude smaller
than for PANS-SST. In line with the explanations in Sec. 4.3.1, for the values of fk which
result in a resolved turbulent flow solution, LvK is independent of fk . LvK /δ≈ 0.1 in the
centre, and reduces towards the wall. For higher fk values, for this test case, theoretically
LvK approaches infinity, since due to the steady, laminar, flow solution the denominator
goes to zero. In practice, due to the inclusion of limiters, LvK will be bound to cl2κd ,
which is approximately 0.05 at the channel centre, and decreases linearly to zero at the
wall. This shows how the inclusion of LvK allows “the model to recognize and adjust
to already resolved scales in the simulation” [103]. This property is the foundation of
SAS, as investigated in detail by Xu et al. [198]. The effect mostly occurs in unsteady
calculations exhibiting separation. This feature is retained when using the model as a
sub-filter model in PANS.

The different PANS closure strongly affects iterative convergence behaviour. The
convergence is assessed based on the residuals, which are normalised by the diagonal
element of the left-hand-side matrix of the linearised system of equations. To com-
pare the convergence behaviour the the relaxation factors were kept constant: 0.2 for
momentum, 0.2 for pressure and 0.2 for the turbulence equations. Fig. 4.19 shows the
time-averaged convergence of all equations for the first 20 iterations per timestep, using
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fk = 0.1, while Fig. 4.20 shows the effect of varying fk on the convergence of the k and ω
and

p
kl equations. As expected, the convergence of the momentum, pressure and tur-

bulence kinetic energy equations is hardly affected, but the residuals of the second tur-
bulence equation vary significantly. The ω equation for PANS-SST with low fk stagnates
at L∞ ≈ 10−2 −10−3, with L2 being two orders of magnitude lower. For PANS-KSKL, thep

kl equation both starts at a lower residual, as well as exhibiting a stronger decay. The
equation reaches L∞ ≈ 10−8, and is thereby the best converged equation. Using these
settings the wall clock time of a typical run time is approximately 5 days on 50 cores (In-
tel Xeon E5-2660 v3 CPU (10 core) at 2.60 GHz, with InfiniBand communication), this is
independent of the choice for turbulence method.
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Figure 4.19: Turbulent channel flow. Time-averaged iterative convergence for the different equations, using
PANS-SST (left) and PANS-KSKL (right) with fk = 0.1.

Investigating the effect of fk on the convergence of the turbulence equations (as
shown in Fig. 4.20) indicates that reducing fk (i.e. reducing the effect of the sub-filter
model) leads to reduced residuals, both for the k, and the ω and

p
kl equations. The

one exception is the ω equation for fk = 0.25, which shows residuals four orders of mag-
nitude lower than for fk = 0.10 or 0.05. However, as seen in Fig. 4.16 and Fig. 4.17, this
simulation predicts an incorrect laminar flow, hence these low residuals are related to
the unrepresentative flow field. As shown earlier, the residuals of the

p
kl equation are

on average five orders of magnitude lower than for theω equation, and – with the excep-
tion of the fk = 0.05 case – keep decreasing linearly with an increasing iteration number.
These results confirm the expected behaviour that a reduction of fk (i.e. approaching
DNS), leads to a reduction in iterative errors due to the sub-filter turbulence model
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Figure 4.20: Turbulent channel flow. Time-averaged iterative convergence for k (dashed lines), and ω and
p

kl
(solid lines) equations, using PANS-SST (left) and PANS-KSKL (right) for varying fk .
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ELLIPTICAL WING

The second case is an elliptical wing with a NACA662−415 cross-section, a root-chord of
c0 = 0.1256 m and a wingspan of b = 0.15 m, at Re =U∞c0/ν= 8.95×105, see Chapter 7.
The wing is simulated in wetted and cavitating flow conditions (with a cavitation num-
ber σ= (

p∞−pv
)

/
(
1/2ρU 2∞

) = 4.2 and 1.7,respectively) where p∞ is the far-field pres-
sure and pv the vapour pressure. The simulations use the ITG to prevent leading edge
separation. Turbulent fluctuations are added at x/c0 =−2.4, homogeneous isotropic tur-
bulence is prescribed, resulting in a turbulence intensity at the location of the wing tip
of It i p ≈ 0.4%, with an integral length scale of L /c0 = 0.6 (L /rc ≈ 80). The wall clock
time of a typical run time is approximately 7 days on 200 cores (Intel Xeon E5-2660 v3
CPU (10 core) at 2.60 GHz, with InfiniBand communication), this is again independent
of the choice for turbulence method.

The time-averaged obtained residuals for PANS-KSKL and PANS-SST for the momen-
tum (u, v , w), pressure (p), vapour volume fraction (αv ) and turbulence equations, are
shown in Fig. 4.21. The relaxation factors were 0.25 for momentum, 0.10 for pressure,
0.25 for turbulence and 0.25 for the cavitation equation. The convergence for PANS-SST
and PANS-KSKL is similar for momentum, pressure and vapour volume fraction. For
PANS-KSKL, the convergence of the turbulence kinetic energy equation is slightly re-
duced compared to PANS-SST, which has been observed before in the context of RANS
predictions for propellers [200], and is likely related to the reduced eddy-viscosity. A re-
duction in eddy-viscosity reduces diffusion (see Eq. C.12), thereby making the transport
equation for k more difficult to solve. The main difference however, occurs again for the
second turbulence equation. For PANS-SST, the ω equation stagnates at L2 = 10−3 with
L∞ = 101. This is a common occurrence for k −ω models in conjunction with cavitation
modelling (see e.g. [190, 201]). In contrast, the

p
kl equation continues to converge, and

within 50 iterations reaches L2 = 10−10, even when used in combination with the vapour
volume fraction transport equation. This demonstrates that the superior convergence
behaviour of the KSKL closure is maintained in multiphase flow conditions.

The predicted kinematics of the cavitating tip vortex are analysed at x/c0 = 0.5 down-
stream of the wing tip. Fig. 4.22 shows the time- and circumferential-averaged profiles
of axial (ux /U∞) and azimuthal velocity (uθ/U∞), eddy-viscosity ratio (νt /ν), normalised
modelled turbulence kinetic energy (k/U 2∞) and normalised second turbulence variable
along the radius. Only the azimuthal velocity is compared to data obtained using PIV
[43]. The vapour volume fraction and pressure coefficient (Cp = (p − p∞)/

(
1/2ρU 2∞

)
)

are given in Fig. 4.23. The time-averaged normalised cavity radius (defined based on a
vapour volume fraction αv = 0.1) is rc /c0 ≈ 0.01 for both PANS closures.

In wetted flow conditions the PANS-KSKL model predicts a higher axial velocity at
the viscous core radius than the PANS-SST model. Both models show a reduction in ax-
ial velocity at the vortex core (r /c0 ≤ 0.05), which is an indication of increased physics
in the simulation. Evidence for this behaviour can be observed in the experimental re-
sults reported by Bosschers [13]. The increase in axial velocity towards in the region
r /c0 ≤ 0.02 is also an improvement compared to the wetted flow results obtained using
DDES and IDDES, reported by Liebrand et al. [190]. For those results max

(
ux /U∞

)≈ 1.1,
which is a significant underprediction compared to the experimentally observed values.
The maximum azimuthal velocity is underpredicted by 20% by both PANS models. In
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Figure 4.21: Elliptical wing. Time-averaged iterative convergence for the different equations, using PANS-SST
(left) and PANS-KSKL (right) with fk = 0.1.
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Figure 4.22: Elliptical wing. Radial distribution of time-averaged axial and azimuthal velocity, eddy-viscosity
ratio, turbulence kinetic energy and second turbulence variable at x/c0 = 0.5 downstream of the wing tip.
Dashed lines indicate wetted flow, and solid lines indicate cavitating flow. Vertical dashed lines correspond to
the cavity radius rc . Experimental data from Pennings, Westerweel, et al. [43].
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Figure 4.23: Elliptical wing. Radial distribution of vapour volume fraction and pressure coefficient at x/c0 = 0.5
downstream of the wing tip. Dashed lines indicate wetted flow, and solid lines indicate cavitating flow. Vertical
dashed lines correspond to the cavity radius rc .

cavitating conditions, the predicted viscous core radii (rv = argmax(uθ)) and azimuthal
velocity magnitudes match the experimental values. The inclusion of cavitation reduces
the axial velocity at the vortex core and increases the viscous core radius, compared to
wetted flow.

As expected, the eddy-viscosity levels for fk = 0.1 are orders of magnitude lower than
for a full RANS ( fk = 1.0) solution (not shown in this work). The inclusion of cavitation
reduces the eddy-viscosity to zero inside the cavity radius. In line with the expectations
formulated in Sec. 4.3.1, the eddy-viscosity in the far-field predicted by PANS-KSKL – for
this fk – is approximately three times larger than the eddy-viscosity produced by PANS-
SST. In wetted flow conditions, the PANS-KSKL eddy-viscosity also shows a large peak at
the viscous core radius, which is absent for PANS-SST. Technically, the assumptions of a
uniform, steady flow, made in the derivation of eddy-viscosity decay, are not valid in this
case, due to the inclusion of synthetic inflow turbulence. Despite this, it does explain the
higher νt /ν in the far-field. The effect of varying fk on the eddy-viscosity decay is outside
of the scope of this work, but was investigated in Chapter 6 for PANS-SST. It is important
to note that for cavitating conditions, at the cavity radius, the eddy-viscosity ratios are
similar in magnitude, implying similar cavitation dynamics. Compared to PANS-SST,
higher levels of k are observed for PANS-KSKL. The peak in k coincides with the peak in
νt /ν and is just outside the viscous core radius.

Comparing the values for the second turbulence variable, obtained by two different
turbulence closures, is not straightforward, due to the different formulations. For both
models, the inclusion of cavitation reduces the magnitude in the region r /c0 ≤ 0.03. In
line with expectations, PANS-SST predicts high diffusion in the entire field (with the ex-
ception of the vortex core). From RANS modelling it is known that the SST model per-
forms poorly in strongly rotating flows, leading to the use of curvature corrections, see
e.g. [202]. In contrast, in cavitating conditions, PANS-KSKL shows a constant, low, dif-
fusion inside the cavity radius, with a peak at a higher radius compared to PANS-SST.
In wetted flow conditions, there is a large difference in

p
kl between the vortex core and

viscous core radius. This reduction outside the vortex core also occurs for PANS-SST, but
the difference in magnitude is significantly smaller, again highlighting the difficulties of
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applying the SST model for rotational flows.
The PANS-KSKL model predicts a lower pressure coefficient in the vortex core in wet-

ted flow conditions, compared to PANS-SST. This is related to the increased axial ve-
locity. In cavitating conditions, both models show identical pressure profiles, but the
vapour volume fraction is slightly higher for the PANS-KSKL model.

Fig. 4.24 shows – for cavitating conditions – the distribution of the instantaneous
normalised eddy-viscosity, modelled turbulence kinetic energy and second turbulence
values at the same location as Fig. 4.22. The distribution of

p
kl clearly shows the roll-up

process of the vortex. These differences in the second turbulence variables also con-
tribute to the differences in eddy-viscosities. For PANS-KSKL, the eddy-viscosity is de-
fined as the minimum of two terms, C 1/4

µ

p
kl and a1k/〈S〉 (see Eq. C.10). Inside the cavity

radius, νt is defined by term II, due to the high strain rate caused by the rotation, while
outside of this radius, it is determined by term I. This can seen by comparing the dis-
tributions of νt /ν and

p
kl in Fig. 4.24. In contrast, for PANS-SST, the eddy-viscosity is

given by

νt = a1k

max(a1ω,〈S〉F2)
. (4.19)

As for PANS-KSKL, at the vortex core, νt is defined by the second term in the max func-
tion, due to the high strain rate caused by the rotation. Further outwards the dissipation
rate dominates. The high diffusion rate around the vortex leads to a lower eddy-viscosity.

From these definitions, it is easily observed that the limiters depend on the used fk

value. When the eddy-viscosity in the RANS turbulence kinetic energy length scale and
dissipation rate is expressed, the following relations can be obtained:

νt = min

(
C 1/4
µ

f 2
k

fε

p
K L;

a1 fk K

〈S〉

)
(4.20)

for PANS-KSKL, and

νt = a1 fk K

max
(
a1

fεΩ
fk

,〈S〉F2

) (4.21)

for PANS-SST. Both of the limiters in these functions show a similar trend: with decreas-
ing fk , the region depending on term II (depending on the strain rate) decreases in size,
while the eddy-viscosity in a larger part of the domain is depends on either

p
kl or ω.

Interestingly, the trends are not identical. For PANS-KSKL term I decreases quadrati-
cally, and term II linearly; for PANS-SST however, term I decreases linearly, and term II is
independent on fk . This partly explains why the secondary turbulence transport equa-
tion for PANS-KSKL (with lower fk values) is better suited for rotational flows than the ω
equation, since the ω equation requires more arbitrary limiting.

4.3.3. CONCLUSIONS
A new PANS closure has been derived based on the KSKL model. Simulations using low
fk values show that the favourable properties of decreased eddy-viscosity and improved
iterative convergence exhibited by the KSKL model compared to k −ω models are car-
ried over to the PANS model. It is shown that the improvement in iterative convergence
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Figure 4.24: Elliptical wing. Instantaneous νt /ν, k and
p

kl or ω, for PANS-SST (top row) and PANS-KSKL
(bottom row), at x/c0 = 0.5 downstream of the wing tip. The cavity radius,αv = 0.1, is indicated in cyan (rc /c0 ≈
0.01).

holds for multiphase flows, for which the ω equation is well known for being difficult
to converge, making this model suitable for cases such as simulating cavitation dynam-
ics and underwater radiated noise. In common engineering practice, higher fk values
than those values used in this work might be more typical, although the benefits demon-
strated here are expected to be maintained, since they largely derive from the parent
RANS model. It was also shown – theoretically and numerically – that the PANS-KSKL
model exhibits a low decay of eddy-viscosity downstream of the inlet boundary condi-
tion for fk < 1.0, potentially simplifying practical application compared to the PANS-SST
model. The influence of fk on the decay of the eddy-viscosity prescribed at the inlet, and
the effect this has on the results, requires further numerical investigation.

4.4. CONCLUSIONS
Two questions concerning the use of PANS were investigated, both related with how to
select the input parameters, fk and fε. Based on the results for a channel flow and a
circular cylinder, it is concluded that the most reliable results can be obtained with fε =
1.0, i.e. the high Reynolds number approach, and with a Constant, a priori determined,
fk . These settings will be used in the remainder of this thesis.

A new PANS-KSKL model is derived, investigated and tested. For several flows in the
remainder of this thesis, this model will be applied.





5
TURBULENT CHANNEL FLOW AT

Reτ= 395

Different variable resolution turbulence modelling approaches (hybrid, bridging models
and LES) are evaluated for turbulent channel flow at Reτ = 395, for cases using either
streamwise periodic boundary conditions or the inflow turbulence generator (ITG). The ef-
fect of iterative, statistical and discretisation errors is investigated. For LES, little difference
between the different sub-filter modelling approaches is found on the finer grids, while on
coarser grids ILES deviates from explicit LES approaches. The results for hybrid models
are strongly dependent on their formulation, and the corresponding blending between the
RANS and LES regions. The application of PANS with different ratios of modelled-to-total
kinetic energy, fk , shows that there is no smooth transition in the results between RANS
and DNS. Instead, a case-dependent threshold which separates two solution regimes is ob-
served: fk values below 0.2 yield a proper turbulent solution, similar to LES results; higher
fk values lead to a laminar flow due to filtering of the smallest scales in the inverse energy
cascade. The application of the ITG is observed to yield similar performance for all mod-
els. The reduced computational cost and increased flexibility makes it a suitable approach
to enable the usage of SRS for industrial flow cases which depend on the development of a
turbulent boundary layer. It ensures that sufficient large-scale structures develop over the
full boundary layer height, thereby negating the problem of relying on the inverse energy
cascade for the development of turbulence. Both LES and PANS with ITG yield a better
match with the reference data than hybrid models; of these methods PANS is preferable
due to the separation of modelling and discretisation errors.

5.1. INTRODUCTION
Linked to the increased physics in SRS is the requirement of more physical inflow bound-
ary conditions. It has been repeatedly shown that the results of LES or DNS can be de-
pendent on inflow conditions, e.g. [26, 27]. For SRS of turbulent flows which do not

This chapter has been published in Computers & Fluids 209, 104636 (2020) [193].
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exhibit strong separated vortical structures, it is necessary that the inflow contains time-
varying fluctuations which resemble turbulence. If this is not addressed, laminar 1 so-
lutions can be obtained, and consequently integral quantities, such as mean forces, can
be underpredicted [29]. For attached, weakly unsteady flows, unphysical laminar sepa-
ration may occur easily since transition to turbulence is significantly delayed. Ironically,
this implies that for computing mean forces RANS methods often yield the best results
for such flows. Hybrid methods also better predict mean forces, due to the use of RANS
inside the boundary layer, resulting for example in superior prediction of velocity gradi-
ents close to the wall, when using steady inflow. However, at the interface between RANS
and LES regions not all the modelled turbulence is transferred directly into resolved tur-
bulence, leading to an overly laminar flow field. In such cases, inflow turbulence might
still be necessary. While this problem has been known for a number of years, many pub-
lications using SRS still do not apply a proper inflow. These works often focus on tur-
bulent structures and dynamics which appear satisfactory, yet the forces simultaneously
show a large mismatch with experimental data. This discrepancy in integral quantities
leads to difficulties in the validation of numerical results, and deteriorates the credibility
of SRS for practical applications. Currently, the need for synthetic turbulence generation
hampers the usage of SRS for industrial cases, such as cavitation and noise research for
ship propellers.

Inflow turbulence can be generated either by precursor methods (such as a channel
flow), or by synthetic methods, which do not rely on flow recycling. Precursor methods
are generally noted for their accuracy, although they are more expensive to use due to the
need to generate turbulence in a second, separate, domain. Their use is also often lim-
ited to canonical flows. Synthetic methods are cheaper to use, easier to tune to a desired
set of turbulent inflow statistics, and more generally applicable [28]. These properties
make a synthetic method preferable for industrial CFD, despite the requirement of a de-
velopment length to allow the introduced fluctuations to develop into ‘real’ turbulence.
In the case of cavitation and noise prediction, a further requirement is that the inflow ve-
locity fluctuations are divergence-free, thereby avoiding spurious pressure fluctuations
which can pollute the entire domain for incompressible computations.

It is well known that the choice of SRS model affects the flow prediction around the
object of interest, although a subject less well addressed in the literature is the model
interaction with the propagation of inflow turbulence. Consequently, an evaluation of
different SRS methods in combination with inflow turbulence is necessary. This chap-
ter attempts to provide a systematic overview of the effect of SRS turbulence modelling
approaches, both with streamwise periodic boundary conditions and with the ITG. Full
comparisons between different SRS approaches, including higher order moments, are
rare in literature [184]; often, different codes, grids and solver settings are used, which
makes it difficult to assess the modelling error of the turbulence modelling approaches.
Models included in this chapter are hybrid (DDES [53], IDDES [203]) and XLES [104]);
bridging (PANS [51] with fk ∈ [0.05,1.00]); and LES (Smagorinsky [47], Lilly [108, 109],
WALE [111], KSGS [112] and ILES). Attention is paid to the assessment of iterative, dis-
cretisation and statistical errors.

1In this context laminar flow is defined as the absence of resolved velocity fluctuations, i.e. the Reynolds

stresses Rei j = u′
i u′

j /u2
τ ≈ 0.
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The chosen test case is a turbulent channel flow at Reτ = 395, a canonical test case
for the study of wall-bounded turbulence, due to the simple geometry and abundance
of reference data. Experimental results are first published ninety years ago, and numer-
ical studies have been performed using LES and DNS since the 1980s. Fig. 5.1 shows an
overview of numerical results available in the open literature. It is observed that a range
in total number of grid cells is applied for LES/DNS approaches at lower Reτ values. DES
and PANS results have been published for significantly higher Reτ, but often without re-
fining the grid. Most results shown are obtained using a finite volume approach, with
second-order accurate discretisation schemes. Fig. 5.1 also shows an overview of the us-
age of synthetic turbulence generation methods available in the open literature, sorted
per test case.

In this chapter, Sec. 5.2 describes the test case, numerical setup and turbulence-
generating method. After an assessment of the numerical errors in Sec. 5.3, the results for
hybrid, bridging and LES approaches using streamwise periodic boundary conditions
(i.e. flow recycling) and the ITG are compared in Sec. 5.4 and 5.5, respectively. Finally,
Sec. 5.6 discusses the implications of the results for industrial test cases, followed by the
conclusions in Sec. 5.7.

102 103 104 105 106 107 108 109

Number of cells

102

103

104

105

R
e τ

DES

DNS

LES

PANS

RANS

Test case DFM FSM FM SEM
Decaying homogeneous 1 1 2 2
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Staggered cube array 1

Figure 5.1: Literature overview with a selection of the available numerical results. Turbulent channel flow
results (left) as function of the number of grid cells, Nc , and the turbulence modelling approach (left) [169, 171,
204–216]. Usage of synthetic turbulence generation (right) sorted by test case and method (Digital Filtering
(DFM), Forward Stepwise (FSM), Fourier (FM) and Synthetic Eddy method (SEM) [26, 27, 124–126, 217–223].

5.2. NUMERICAL SETUP AND SOLVER
Computations are made using a rectangular domain, with two no-slip walls oriented
normal to the y-direction and periodic boundary conditions in spanwise direction. (see
Fig. 5.2). The remaining boundaries are either connected using periodic boundary con-
ditions in order to approximate an infinite channel; or alternatively, an inflow and out-
flow boundary condition is specified if the ITG is applied. Cartesian grids with hyper-
bolic tangent clustering towards the walls are used, as described in Sec. 5.3.3. The non-
dimensional time step for the grid used for comparing turbulence modelling approaches,
G4, is ∆t∗ = 1/2uτ∆t/δ ≈ 1×10−3. This leads to ∆t+ = u2

τ∆t/ν ≈ 0.08 and a maximum
Courant number below 0.2 (2000 time steps per flow-through time). To maintain the
proper bulk and friction Reynolds numbers, Reb = Ub2δ/ν and Reτ = uτδ/ν respec-
tively, a body-force is applied which is proportional to the streamwise pressure gradient
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dp/dx =−τw /δ, with τw = ρu2
τ [52].
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Top wall 2δFlow

Symbol Value
δ [m] 0.1
Ub [m/s] 6.928×10−2

uτ [m/s] 3.966×10−3

τw [N/m2] 1.570×10−1

ν [m2/s] 1.004×10−6

Reτ 395
Reb 13800

Figure 5.2: Schematic overview of the domain and physical parameters. The dashed lines indicate the compu-
tational domain. The figure is based on the drawing of de Villiers [171].

For the simulations reported here time integration is performed using a second-
order implicit three time level scheme, and the convection terms in the momentum
equations are discretised using a second-order accurate central differencing scheme (the
Péclet number has a magnitude of O (10)). An investigation into the effect of the convec-
tion scheme for the momentum equation can be found in Sec. 5.3.3. The turbulence
equations are discretised using a first-order upwind scheme. Due to the fine grid resolu-
tion employed, the effect of discretisation on the sub-filter stresses is limited.

The use of scale-resolving turbulence methods for a turbulent channel yields a so-
called supercritical laminar solution for which many flow-through times are needed to
trigger transition to the turbulent regime [171]. To this end in the current work to speed
up the transition, the method suggested by Schoppa and Hussain [172] is used. This
method is only applicable to cases where periodic boundary conditions can be used, and
is tuned for a turbulent channel flow; it is therefore not a general approach. The flow is
initialised as a laminar parabolic flow profile, u+

0 , on which near-wall parallel streaks of
slower and faster moving fluid are superimposed according to the equation

u+ (
y+, z+)= u+

o

(
y+)+ ∆u+

0

2
cos

(
β+z+) y+

30
exp

(−σy+2 +0.5
) · (1+0.2X ) . (5.1)

Here∆u+
0 is the streak’s normal (y−direction) circulation per unit length, taken as 1/4Ub ,

β+ = 2π/z+ is the spanwise wave number, chosen to produce a sparse streak spacing
(z+ ≈ 200), σ= 0.00055 and X is an added random signal, X ∈ [0,1], to enhance symme-
try breaking. To generate instabilities, based on linear stability analysis the streaks are
perturbed according to the relation

w+ (
y+, z+)= εsin

(
α+x+)

y+ exp
(−σy+2) · (1+0.2X ) , (5.2)

with a linear perturbation amplitude ε=Ub/200 and an axial wave numberα+ = 2π/500.

5.3. NUMERICAL ERRORS
The input error is assumed to be negligible due to the well controlled conditions in the
computations, and either the periodic nature of the solution, or the reliability of the DNS
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results reported in the open literature. The round-off error is negligible due to the use of
double precision arithmetic. Therefore, in this chapter, only the iterative, discretisation
and statistical error are assessed.

The results are obtained along a line perpendicular to the wall at the centre of the
channel (see Sec. 5.3.2). Computations are performed using grid G4 (see Sec. 5.3.3)
and using PANS ( fk = 0.10) unless indicated otherwise. Only half the channel height
is shown.

5.3.1. ITERATIVE ERROR

The iterative convergence is assessed based on the residuals, normalised by the diago-
nal element of the left-hand-side matrix of the linearised system of equations. This is of
particular interest since if the iterative error would be of the same order of magnitude as
the turbulence fluctuations, the results would be strongly affected. Despite this, the in-
fluence of iterative error is rarely studied in the open literature. Following the approach
advocated by Eça, Vaz, et al. [154], a PANS computation with fk = 0.10 was performed us-
ing different iterative convergence criteria (L2 = 10−3, 10−4, 10−5, 10−6, 10−7 and 10−8).

The effect on the mean velocity (u+), Reynolds stresses (Rei j = u′
i u′

j /u2
τ) and turbulence

kinetic energy spectra (Eu( f ) at y+ ≈ 20) along a wall-normal line at the centre of the do-
main is shown in Fig. 5.3. For values of L2 = 10−3 and 10−4, the mean velocity shows an
underprediction in the buffer layer (5 < y+ < 30), while for L2 ≤ 10−5 the results are con-
verged. The Reynolds stresses and spectra also show a large mismatch with the reference
data for L2 = 10−3 and 10−4. The magnitude of the peak value Reuu and the turbulence
kinetic energy spectra converge for stricter convergence criteria. As a compromise be-
tween cost and accuracy, the criterium L2 = 10−6 is used in the remainder of this chapter.
Applying this criterium leads to a residual of L∞ = 10−5 in each time step for momentum;
the residuals for pressure and turbulence equations are at least one order of magnitude
smaller. In this manner, the iterative error is smaller than the turbulence fluctuations of
interest.

5.3.2. STATISTICAL ERROR

A potentially dominating error in unsteady and especially turbulence resolving simu-
lations is the statistical error. In order to remove the start-up effects and estimate the
magnitude of this source of uncertainty, the Transient Scanning Technique (TST) is em-
ployed [160]. This technique allows an estimation of the statistical uncertainty based
on a signal of finite length. The uncertainty is expanded to obtain a 95% confidence in-
terval. The TST is applied to the velocity signals and Reynolds stresses at measurement
points along the height of the channel. Based on the TST, it is found that the first 11
flow-through times (≈ 30000 time steps) must be removed to eliminate the start-up ef-
fects. This conclusion is independent of the wall-normal distance of the measurement
point. In the remainder of this chapter, the mean values are then computed based on
approximately 45 flow-through times, resulting in a statistical uncertainty for the mean
streamwise velocity below 2%, and for the Reynolds stress components below 10%.

These uncertainties are in agreement with the sampling errors as obtained from the
engineering approaches suggested by Ries et al. [224]. The estimates of the sampling
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Figure 5.3: Mean velocity (u+) profiles, Reynolds stress (Reuu and Reuv ) profiles and turbulence kinetic energy
spectra (Eu,y+≈20( f )) using different iterative convergence criteria.
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error e for u+, u′ and u2
r ms are given as:

e =
√

2δI 2

Ub tav
, e =

√
δ

Ub tav
and e =

√
4δ

Ub tav
. (5.3)

Here tav indicates the averaging time and I the turbulence intensity I = u′/u. These
estimates give sampling errors of 1%, 5% and 10% for u, u′ and u′2 respectively when
applied to the results of the present study.

In order to reduce these errors more flow-through times should be computed. It must
be noted that in literature spatial averaging is often applied to the results since the flow
is statistically homogeneous [224]. In this way a low statistical uncertainty is achieved
using fewer flow-through times. However this implies that the flow is statistically con-
verged in the entire domain, but not at every location. In this chapter spatial averaging
is explicitly not applied, to ensure a statistically converged solution at all locations, and
to properly compare with results obtained with the ITG.

5.3.3. DISCRETISATION ERROR
In order to assess the discretisation error, four different grids (with refinement ratios
ri = hi /h1 = ∆ti /∆t1 = 1.00, 1.25, 1.57 and 1.97) were employed. Details of the grids
are given in Tab. 5.1. The grid designated G4 is equal to the one used for the DNS ref-
erence data [169]. Note that all these grids are well within LES guidelines, in terms of
wall resolution, found in literature, and have resolutions typical of DNS [55, 225]. It is
commonly assumed in literature, when grids with DNS resolution, in conjunction with
second-order schemes, are used for LES, that discretisation errors are negligible and do
not have to be assessed. However, discretisation errors depend on both the number of
cells and the accuracy of the schemes employed, and assessment of these errors is still
necessary.

The effect of grid refinement is shown in Fig. 5.4. Both the mean velocity and Reynolds
stresses appear reasonably insensitive to grid resolution, however Reuu and Reuv de-
viate slightly on the finest grid. The main differences are observed for the turbulence
kinetic energy spectra. Grid refinement leads to a slightly increased cut-off frequency,
since the smaller cells allow for higher wavenumbers to be resolved. This indicates that
the employed fk (0.10) is below the grid cut-off, i.e. the grid and numerical settings do
not result in DNS resolution. Nevertheless, based on the similarity between the results
it is concluded that the coarsest grid has a sufficient resolution. For this reason, grid re-
finement for the LES models was not pursued, since due to the fine grid resolution, little
effect of the sub-filter model is expected. Instead, to compare the effect of grid resolution
on the sub-filter modelling, grid coarsening was performed. To this end, two additional
grids (with refinement ratios ri = 2.63 and 3.97) are employed, in combination with PANS
( fk = 0.10), LES KSGS and ILES. Fig. 5.5 shows that even the coarsest grid still has suffi-
cient resolution to predict the mean velocity profiles well, in the cases of PANS and ILES.
For Reuu both ILES and PANS overpredict the peak near the wall, especially on coarser
grids. This overprediction is absent for LES KSGS, due to the sub-filter model. On finer
grids however, the peak is underpredicted, indicating that the SGS is too dissipative. The
peak on the coarsest grid is also shifted away from the wall. For Reuv , again LES KSGS
predicts the magnitude better on a coarse grid than ILES and PANS. This difference is
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absent on finer grids. In terms of turbulence kinetic energy spectra, it is clear that grid
refinement leads to an increase in energy at higher frequencies, i.e. the cut-off frequency
increases. The effect of the sub-filter model is also clear for LES KSGS, the cut-off on all
grids being at a lower frequency than for ILES and PANS. This effect is most significant
on the coarsest grid.

To conclude, the grid designated G4 has a sufficient resolution to be able to compare
the different models. Grid coarsening shows that, although the results obtained by ILES
appear reasonable, the absence of a sub-filter model can lead to an overprediction of
turbulent stresses on coarse grids. In addition, similarity in results indicates that PANS
with a low fk is comparable to LES without a sub-filter model (ILES).

Table 5.1: Details of used grids. ri (= hi /h1 = ∆ti /∆t1) indicates the refinement ratio , N the number of cells
in different directions, ∆y1 the initial wall-normal spacing, x+ = uτ∆x/ν, y+ = uτ∆y/ν and z+ = uτ∆z/ν the
average non-dimensional wall units in different directions and the maximum Courant number, Comax .

Grid ri Nx Ny Nz N /106 ∆y1 ·104 x+ y+ z+ Comax

G6 3.97 63 47 47 0.14 2.1 24 0.2 20 0.07
G5 2.63 95 71 71 0.48 1.4 16 0.13 13 0.12
G4 1.95 127 95 95 1.18 1.0 12 0.10 10 0.20
G3 1.56 159 119 119 2.30 0.8 9.6 0.08 8 0.21
G2 1.25 199 149 149 4.50 0.6 7.7 0.06 6.4 0.22
G1 1.0 249 187 187 8.84 0.5 6.1 0.05 5.1 0.25
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Figure 5.4: Mean velocity (u+) profiles, Reynolds stress (Reuu and Reuv ) profiles and turbulence kinetic energy
spectra (Eu,y+≈20( f )) using different grids and PANS ( fk = 0.10).
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(a) LES KSGS
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(b) ILES
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(c) PANS ( fk = 0.10)

Figure 5.5: Mean velocity (u+) profiles, Reynolds stress (Reuu and Reuv ) profiles and turbulence kinetic energy
spectra (Eu,y+≈20( f )) using different grids.
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A second source of discretisation error is the discretisation of the convection terms
in the equations. Due to the use of a unstructured finite volume CFD code, users are
limited to second-order accurate schemes. For the Reynolds number studied here, the
discretisation of the momentum equations is dominant. Basara et al. [226] investigated
blended upwind-CD schemes for finite volume LES and hybrid methods. They state that
‘results obtained with a blending factor lower than 0.98 or 0.96 are treated as suspicious’,
and that the use of a second-order accurate Central-Differencing scheme is preferred.
However in industrial high Reynolds number flows this is often not possible, meaning
that (lower-order) upwinding, or blended schemes are used [226]. In order to investigate
this effect, the convection scheme for the momentum equation is varied between First
Order Upwind (FOU), Central Differencing (CD), a blended upwind-CD with a blend-
ing factor of 0.5 (FOU-CD) and the approximately second-order QUICK (Quadratic Up-
stream Interpolation for Convective Kinematics [227]) scheme. The investigation is per-
formed for ILES, LES KSGS and PANS with fk = 0.10. The computations are deliberately
performed on the coarser grid G6 to highlight the difference between different convec-
tion schemes and different sub-filter models [226]. These differences are expected to be
smaller on finer grids. The non-dimensional time step∆t∗ = uτ∆t/2δ≈ 2×10−3 leads to
∆t+ = u2

τ∆t/ν≈ 0.5 and a maximum Courant number of 0.1.

Fig. 5.6 shows the normalised mean velocity (u+) and Reynolds stress profiles (Reuu

and Reuv ), together with the turbulence kinetic energy spectra E( f ). In terms of velocity
profiles, the CD scheme yields the best match with the reference data for all turbulence
approaches. The QUICK scheme captures the trend, but overpredicts the velocity in the
range 0.1 < y/δ < 0.4 and underpredicts the velocity in the outer layer (y+ > 50), espe-
cially for the PANS model. FOU clearly yields a laminar, parabolic, velocity profile. Both
the mean velocity and Reynolds stresses indicate that FOU and FOU-CD yield no fluc-
tuations, i.e. a laminar flow; CD and QUICK yield a turbulent solution. Generally the
magnitude of the Reynolds stresses are larger for QUICK than for CD. Finally the spectra
are compared. Due to the laminar flow predicted using FOU and FOU-CD the energy
contained in the spectrum is much lower for all models. Both CD and QUICK show the
correct shape, but for all models CD contains more energy across the entire frequency
range. There appears to be little difference between ILES and PANS. The spectrum for
LES KSGS shows a cut-off at a lower frequency, since part of the turbulence is modelled
by the sub-filter model.

To conclude it is clear that for all SRS, first order schemes add too much discretisation
error and lead to a mismatch in flow profile. Fully second-order schemes yield the best
results, while using QUICK (a commonly used scheme in industrial applications), rea-
sonable results are obtained. With a QUICK scheme less energy is resolved than by the
CD scheme, which is in line with literature [216, 228]. In the remainder of this chapter
the convection terms in the momentum equation are discretised using a second-order
accurate CD scheme. For industrial cases the application of CD is typically not possi-
ble, due to high local cell Péclet numbers [90], although reasonable results can still be
obtained using QUICK.
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(a) LES KSGS
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(b) ILES
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(c) PANS ( fk = 0.10)

Figure 5.6: Comparison of normalised mean velocity (u+), Reynolds stress (Reuu ) profiles and turbulence
kinetic energy spectra (Eu,y+≈20( f )) using different convection schemes for the momentum equations.
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5.4. TURBULENCE APPROACHES WITH FLOW RECYCLING

5.4.1. LES
Fig. 5.7 shows the mean velocity profiles, Reynolds stresses and turbulence kinetic en-
ergy spectra of the streamwise velocity at y+ ≈ 20. The mean velocity profiles for all
models capture the trend of the DNS data. In terms of Reynolds stresses, it is clear that
all models capture the trend, but deviate in terms of magnitude. The highest Reynolds
stress terms are generally obtained for the ILES and KSGS, followed by the Smagorinsky,
Lilly and WALE model. The Lilly model performs adequately for Reuu , but underpredicts
Reuv , Rev v and Rew w . For all models the magnitude of the Reynolds stress terms is gen-
erally underpredicted, with Rew w an exception. For Rev v , the peak is shifted towards the
right for all models indicating that the strongest turbulence fluctuations occur further
from the wall. The turbulence kinetic energy spectra for the LES models are comparable,
although as shown in Sec. 5.3.3 this is grid dependent. For the resolution employed here,
there is little difference between the models. Only ILES shows a slightly higher cut-off
frequency due to the absence of a sub-filter model. Generally it appears that ILES yields
the best results, which has been observed before for a channel flow on a fine grid. This is
related to excessive diffusion and non-monotonic grid convergence for LES, i.e. on fine
grids ILES can give better results than LES with a sub-filter model [229, 230].
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Figure 5.7: Normalised mean velocity and Reynolds stress profiles and turbulence kinetic energy spectra using
LES and DNS [169]. From left to right, and top to bottom u+, Reuu , Reuv , Rev v , Rew w and Eu,y+≈20( f ).

Turbulent structures in the flow are visualised in Fig. 5.8, using iso-contour plots of
Q, based on the instantaneous flow field. Q is defined as Q = 1/2(|〈Ω〉|− |〈S〉|), with 〈Ω〉
defined as the anti-symmetric part of ∇u, representing local flow rotation [231]. The
iso-contours and the sides of the domain are coloured by the normalised streamwise
velocity (u∗ = u/Ub). Based on a visual observation, it appears that the Lilly and WALE
model predict larger structures than the other models. For the Lilly model, this is related
to the application of the ‘test’ filter, which is larger than the grid size; for the WALE model,
this is a result of the inclusion of wall distance in the determination of the length scale
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Ls .
To conclude, the comparison shows that the best match for the Reynolds stresses is

obtained with ILES, although this is strongly grid dependent. Smagorinsky, KSGS and
WALE perform comparably, and the Lilly model shows the poorest performance due to
the larger test filter. The WALE model should perform better for flows involving complex
geometries, meaning its advantages do not show up here.

Figure 5.8: LES instantaneous turbulent flow fields (Q = 0.3), coloured by u∗ = u/Ub . First row from left to
right Smagorinsky, Lilly and WALE, second row KSGS and ILES.

5.4.2. HYBRID MODELS
Fig. 5.9 shows the flow field statistics for the hybrid models. For the mean velocity, XLES
shows an underprediction in the buffer-layer (5 ≤ y+ ≤ 30). DDES shows an overpredic-
tion in the log-law region and an underprediction near the centreline. IDDES matches
the reference data well. In terms of Reynolds stresses, XLES captures the trend but un-
derpredicts the magnitude for all components. The peak in the Rev v and Rew w distri-
bution is significantly shifted away from the wall, an indication of the hybrid nature of
the model. The DDES model has a more interesting behaviour. The shielding function
of the model is formulated such that close to the wall, inside the boundary layer, RANS
should be used. In the far-field LES should be employed, with the RANS model acting as
sub-filter model [213]. Since a turbulent channel flow consists solely of a boundary layer,
with no far-field region, one might expect the solution to be fully RANS. This explains the
good match for the averaged velocity. However the Reynolds stress components show
that turbulence is fully modelled only in the region y+ < 50, while closer to the centre
turbulence is resolved. The employed grid resolution leads to l SRS

t < l R AN S
t , thereby forc-

ing the switch to occur inside the boundary layer. The division between RANS and LES
regions, is visible in Fig. 5.10. Note that even though this is the same behaviour which
lead to the development of DDES as a replacement of DES, this can still occur for DDES
under certain circumstances (i.e. combinations of test case and grid density). An effect
of using LES only close to the centreline is an underprediction of the energy contained
in the spectrum at the investigated location (y+ ≈ 20). In IDDES and XLES, the RANS re-
gion is much smaller (see Fig. 5.10), which is reflected in the magnitude of the Reynolds
stresses. Due to the use of RANS close to the wall an underprediction occurs in this re-
gion. For IDDES and XLES models the turbulence kinetic energy spectrum also matches
well with the other LES results. Note that the underprediction for DDES is related to the
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location of the probe (y+ ≈ 20), which is inside the RANS layer. The fluctuations at this
point are LES fluctuations which influence the RANS layer. The turbulence kinetic en-
ergy spectrum match the DNS data better for spectra closer to the centreline (not shown
in this study).

The turbulent structures in the flow are visualised in Fig. 5.11. The effect of using
RANS near the walls in the DDES formulation is obvious, only larger structures in the
centre of the channel exist. The structures in the IDDES and XLES model are similar to
the LES Smagorinsky, KSGS and ILES results.

The results indicate that for cases where the instantaneous near wall flow field is
of importance (for instance sheet cavitation), hybrid models are less suitable than LES
or PANS. DDES is not able to properly resolve the boundary layer. In contrast, IDDES
performs better for the mean velocity and Reynolds stresses but with the exception of
Rev v . XLES underpredicts the all components of the Reynolds stress tensor.
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Figure 5.9: Normalised mean velocity and Reynolds stress profiles and turbulence kinetic energy spectra us-
ing hybrid models and DNS [169]. From left to right, and top to bottom u+, Reuu , Reuv , Rev v , Rew w and
Eu,y+≈20( f ).

5.4.3. PANS
The PANS model is applied with fk = 0.75, 0.50, 0.25, 0.20, 0.15, 0.10 and 0.05. Fig. 5.12
clearly shows the effect of reducing the fk parameter on the mean velocity profile: fk =
1.00 yields a RANS result as expected, while when moving from fk = 0.75 to 0.20 the mod-
elled turbulence kinetic energy is reduced and more turbulence kinetic energy should be
resolved. However, by reducing fk the flow profile becomes more laminar. Rather than
resolving turbulence the velocity perturbations are damped and the flow remains lami-
nar. The highest fk values still have a reasonable match with the DNS, since these yield
mostly turbulent RANS solutions. Below fk = 0.20 the fluctuations are not damped and
a fully turbulent flow develops. The results for fk = 0.15, 0.10 and 0.05 match the DNS
data velocity almost perfectly. The same behaviour occurs if PANS is applied to a fully
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Figure 5.11: Hybrid models instantaneous turbulent flow fields (Q = 0.3), coloured by u∗ = u/Ub . From left to
right DDES, IDDES and XLES.

developed turbulent flow (for instance obtained from a LES computation); for higher
fk values the fluctuations are damped after between five and seven flow-through times.
The normalised Reynolds stress profiles and turbulence kinetic energy spectrum yield
additional insight into this behaviour. It is clear that for computations with fk in the
range 0.75−0.20 a laminar solution is obtained; the Reynolds stress tensor components
equal zero. The Reynolds stress profiles and turbulence kinetic energy spectra fk = 0.15,
0.10 and 0.05 are comparable and obtain the proper trends and order of magnitude. In-
terestingly, the peaks for fk = 0.10 are higher than for fk = 0.15 and 0.05. This is an in-
dication of the need for finer grids and iterative convergence criteria for lower fk values.
For both fk = 0.10 and 0.05 the match is better than for explicit LES, which is related to
the increased turbulence resolution.

The turbulent structures in the flow are visualised in Fig. 5.13 for the lower fk values.
There is little difference between the different simulations. It appears that the results
for cases with low fk are identical to ILES. This is not true when looking at the eddy-
viscosity, however. The maximum eddy-viscosity ratio, νt /ν, in the field for fk = 0.15
has a magnitude of O (102), whereas for fk = 0.05 this is O (10), and for ILES it is zero by
definition. For comparison, for a turbulent RANS solution νt /ν= O (105). It is clear that
the magnitude of eddy-viscosity has little effect on the results, provided that fk is below
the threshold to allow a turbulent flow.

The observed strong dependence on fk , resulting in distinct laminar and turbulent
flow regimes, is related to the physics of the problem. In a wall-bounded turbulent flow,
such as a turbulent channel or flat plate, the small scales near the wall move away from
the wall, and merge into increasingly larger scales away from the wall. The large scales
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Figure 5.12: Normalised mean velocity and Reynolds stress profiles and turbulence kinetic energy spectra using
PANS and DNS [169]. From left to right, and top to bottom u+, Reuu , Reuv , Rev v , Rew w and Eu,y+≈20( f ).

Figure 5.13: PANS instantaneous turbulent flow fields (Q = 0.3), coloured by u∗ = u/Ub . From left to right
fk = 0.15, 0.10 and 0.05.

then break up into small scales and are dissipated. This process is known as energy
backscatter, or the inverse energy cascade [214]. A turbulent flow only develops if the
filter length is smaller than the length scales of the small scales, otherwise the mecha-
nism responsible for creating a fully turbulent flow is filtered out. This can occur on a
coarse grid for all methods, or, in the case of PANS, when using a large fk value. This hy-
pothesis is confirmed by the guideline that for SRS the effective computational Reynolds
number,

Ree = Uδ

ν+νmodel l ed
= Uδ

ν+ f 2
k νt

, (5.4)

must exceed the critical transition Reynolds number needed for the onset of instabil-
ity, Rec [175]. For a turbulent channel flow, this guideline is satisfied for the cases with
fk < 0.20 (Rec ≈ 2300, obtained from experiments [199]). To enable turbulent results for
fk values in the range 0.20−1.00 the ITG is needed, which not only feeds the small scales,
but also feeds energy directly into the larger scales to allow a turbulence cascade to de-
velop. Note that the synthetic turbulence is inserted across the height of the channel, in
contrast to the physics where turbulence develops parallel to the walls.



5.5. TURBULENCE APPROACHES WITH ITG

5

93

5.5. TURBULENCE APPROACHES WITH ITG
The second set of results is obtained by applying the ITG described in Sec. 2.4. The tur-
bulent fluctuations are added to the mean turbulent velocity profile, which is prescribed
at the inlet. The domain is initialised with the mean turbulent flow profile, while the ITG
is located just behind the inlet. The body-force terms are added over Lt g = 0.1δ which
corresponds to two cells in the streamwise direction. In this case periodic boundary
conditions are only applied in the spanwise direction. Based on the TST (see Sec. 5.3.2),
temporal averaging of the results is performed over 7 flow-through times, after removing
two flow-through times. The resulting statistical uncertainty for the mean streamwise
velocity is below 3%, and for the Reynolds stress components below 12%. The mean
velocity and Reynolds stress profiles prescribed are taken from the DNS reference data.
The prescribed integral length scales are anisotropic but a homogeneous approximation
is made based on the length scales given by Y. Kim et al. [124]; in the streamwise direc-
tion the length scale is taken as 0.9δ, in the spanwise and wall perpendicular direction as
0.045δ. It is noted that, due to this assumption, the prescribed length scales at the wall
are too large.

The application of the ITG based on Eq. 2.51 affects the iterative convergence; the
L2 and L∞ norms are shown in Tab. 5.2. The ratio L∞/L2 is O (101) for synthetic cases
compared to O (102) for recycling results, indicating that the residuals stagnate in a con-
siderable part of the domain. Fig. 5.15 shows that this occurs in the cells close to the
location at which the body-force terms are applied, due to the local, explicit, addition of
these terms, which also vary per time step. The close proximity of the ITG to the inflow
(where velocity is prescribed) also contributes to this situation. To remedy this issue, for
Chapter 6 onwards, an additional source term is added to the velocity field (see Eq. 2.51).

Table 5.2: Average residual norms for recycling and synthetic cases.

Equation Recycling Synthetic
L∞ L2 L∞ L2

Momentum: 10−5 10−6 10−2 10−4

Pressure: 10−6 10−7 10−4 10−6

Turbulence: 10−6 10−7 10−7 10−9

It is observed that a streamwise development length is needed to allow the added
perturbations to develop into a turbulent flow profile, and obtain a reasonable match
with the input values. With the current implementation of the ITG, after 6δ the results
for u and Reuu are self similar, as shown in Fig. 5.14. At this location, Reuv is still under-
predicted, Reuv keeps developing until approximately 10δ. This is comparable to Y. Kim
et al. [124] and Z.-T. Xie and Castro [126], who both give a required development length
of 10δ. The results shown in the remainder of this section are obtained at a location 6δ
behind the ITG.

In order to compare the results obtained from recycling and synthetic computations,
Fig. 5.16 shows the resolved turbulence intensity versus the channel height for all mod-
els. As shown in Sec. 5.4, for the recycling cases, the LES models show the best match
with the reference data, together with the PANS results with fk < 0.2 . The synthetic re-
sults however, are similar for all models. With the exception of PANS, I is overpredicted
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Figure 5.14: Normalised mean velocity and Reynolds stress profiles at different downstream locations using
PANS with fk = 0.05 and the ITG. From left to right, u+, Reuu and Reuv .

Figure 5.15: Velocity (left) and pressure (right) residuals in the domain for a PANS computation with ITG ( fk =
0.05). The ITG is located at the left of the images.

at the centre of the domain. Both DDES and PANS with higher fk show an underpredic-
tion of I at the wall. The PANS results show an increase in I with decreasing fk , as might
be expected. Nevertheless the results show that the application of the ITG can prevent
the occurrence of laminar flow for cases where the critical transition Reynolds number
exceeds the effective computational Reynolds number (as is the case for fk ≥ 0.20, see
Section 5.4.3).

5.5.1. LES
Fig. 5.17 shows the results obtained using different LES models. As expected the shape
of the mean velocity profiles matches the DNS data well, however an underprediction
occurs across the channel height. For Reuu , ILES and WALE have the correct peak value,
with the other models showing the correct shape but a lower peak. In contrast to the
recycling results (Fig. 5.7), where all models underpredicted Reuv and Rev v , the results
lie on or above the DNS data for all models except the Lilly model. This model does
accurately predict Rew w however, which is overpredicted by the other models. For the
turbulence kinetic energy spectrum, the ILES and WALE model contain the most energy,
while the spectrum for the Lilly model shows less energy than for the recycling cases. The
underprediction by the Lilly model is similar to that already shown in Fig. 5.7 and is again
related to the application of the larger ‘test’ filter, which filters out synthetic turbulence.

5.5.2. HYBRID MODELS
The results obtained using different hybrid models are shown in Fig. 5.18. For the mean
velocity, the same underprediction occurs as for the LES models. The results for the
DDES model are improved with respect to recycling cases (Fig. 5.9): the magnitude is
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Figure 5.17: Normalised mean velocity and Reynolds stress profiles and turbulence kinetic energy spectra using
LES and the ITG. From left to right, and top to bottom u+, Reuu , Reuv , Rev v , Rew w and Eu,y+≈20( f ). Results
obtained at x = 2δ and averaged in transverse direction.



5

96 5. TURBULENT CHANNEL FLOW AT Reτ = 395

still significantly underpredicted but the distribution of the Reynolds stress components
is closer to the DNS data, and there is more energy in the spectrum. For the IDDES
model, the Reynolds stresses are also higher compared to the recycling results. The peak
of Reuu , Reuv and Rev v is better captured, but Rew w is overpredicted. The XLES results
are similar to the IDDES results, with the exception of an underprediction of Reuu near
the wall which was also observed for recycling cases. The energy in the turbulence ki-
netic energy spectrum is lower for XLES than for IDDES, exhibiting a magnitude similar
to DDES. For all models Reuv is underpredicted at the centre, which was not the case for
the recycling results.
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Figure 5.18: Normalised mean velocity and Reynolds stress profiles and turbulence kinetic energy spectra
using hybrid models and the ITG. From left to right, and top to bottom u+, Reuu , Reuv , Rev v , Rew w and
Eu,y+≈20( f ). Results obtained at x = 2δ and averaged in transverse direction.

5.5.3. PANS
Fig. 5.19 shows the results obtained using PANS with different fk values. As seen for the
other synthetic results, the mean velocity is underpredicted. For all components of the
Reynolds stresses a similar behaviour is observed; with decreasing fk the results con-
verge towards the DNS data with decreasing fk . Reuu is overpredicted at the centre with
fk = 0.05. The same occurs for Rew w when fk ≤ 0.25, but then across the full channel
height. The increase in fluctuations with decreasing fk can be related to the results ob-
tained without the ITG: the addition of synthetic turbulence leads to a turbulent profile,
yet computations with higher fk values add dissipation, thereby damping the resolved
turbulence. Consequently, the resolved Reynolds stresses decrease in magnitude. This
is most visible in the turbulence kinetic energy spectra, where the cut-off frequency in-
creases with decreasing fk .

Fig. 5.20 visualises the turbulent structures from PANS, based on Q. The most im-
portant difference with the results presented in Sec. 5.4.3 (Fig. 5.13) is that for fk > 0.15
turbulent structures now exist in the flow. However for these higher fk values the fluctu-
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Figure 5.19: Normalised mean velocity and Reynolds stress profiles and turbulence kinetic energy spectra using
PANS and the ITG. From left to right, and top to bottom u+, Reuu , Reuv , Rev v , Rew w and Eu,y+≈20( f ). Results
obtained at x = 2δ and averaged in transverse direction.

ations are filtered by the model as they propagate downstream of the ITG, as can be most
clearly seen near the walls. The images are similar to the recycling results for the lower
fk values ( fk ≤ 0.15), however close to the ITG more structures can be seen in the centre
of the channel.

Figure 5.20: PANS with ITG, instantaneous turbulent flow fields (Q = 0.3), coloured by u∗ = u/Ub . From left to
right, and top to bottom fk = 0.75, 0.50, 0.25, 0.15, 0.10 and 0.05. The ITG is located at the left of the images.

5.6. DISCUSSION
In this chapter turbulence is generated both using streamwise periodic boundary con-
ditions and a pressure gradient, i.e. as precursor (Sec. 5.4), and using the ITG (Sec. 5.5).
For industrial CFD it is shown that, independent of the selected turbulence simulation
approach, the synthetic method can produce a turbulent inflow at significantly lower
computational cost. Only two flow-through times from ITG to object of interest have
to be computed before statistics can be collected based on the TST, in contrast to the
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precursor computations for which 11 flow-through times were required (Sec. 5.3.2). The
ability to more easily tune the method to obtain the desired Reynolds stresses and length
scales is also attractive for industrial applications for which these quantities may already
be known. Finally, it is noted that for a range of industrial test cases, such as foils, wings
or propellers, only homogeneous inflow turbulence is required. For such cases, the ad-
vantages of the ITG clearly show; no flow recycling is required, and the grid only needs
to be refined around the object of interest and upstream.

A cause of concern is the possible introduction of additional numerical errors by the
ITG. The main error sources are: not satisfying mass conservation, interpolation, and
iterative errors. In the present study, the pressure fluctuations introduced by the ITG
were observed to be of the same order of magnitude as the pressure fluctuations in recy-
cling cases (results not shown in this study), indicating that the introduced turbulence
satisfies mass continuity. Interpolation errors occur between the grid on which random
numbers are generated, and the CFD grid. However, due to the finer density of the CFD
grid compared to the density of the random number grid (which is a consequence of
the desired length scales), this error is small. It is also important to keep in mind that
the velocity fluctuations themselves are not interpolated to the CFD grid, but rather the
body-force terms which perturb the flow, thereby decreasing the sensitivity to the inter-
polation. Note that a precursor turbulence generator may also not be entirely free from
interpolation errors, depending on the two grids used.

The application of the ITG does significantly worsen the convergence behaviour when
compared to recycling cases (Sections 5.3.1 and 5.5). The solver does not converge in the
cells near the ITG where the body-force terms are added. If the ITG is located further
from the inflow, the residuals can be reduced by about one order of magnitude, but stag-
nation still occurs (results not shown in this study). However the residuals show that the
lack of convergence is a local effect (Fig. 5.15), and by definition the object of interest
must be located far from the ITG to allow for a sufficient development length [28]. It
is expected that the ITG has little effect on the iterative error at the object of interest,
and therefore these cells could be excluded from the reported maximum residuals in the
domain.

While potentially introducing numerical errors, it is clear that the ITG significantly
reduces modelling errors by improving the similarity between computations and exper-
imental setups. This is beneficial not only for SRS techniques such as LES and PANS
which yield unphysical laminar and/or separating flows without proper inflow condi-
tions [29], but also for hybrid models where the problems tend to be more concealed.
Finally, while both precursor and synthetic turbulence generation methods are indepen-
dent of the turbulence simulation approach, it should be emphasised that recycling in
combination with PANS using insufficiently low fk values does not lead to a turbulent
flow (see Fig. 5.12). To enable the use of this model with these settings, the synthetic
method is required.

5.7. CONCLUSIONS
A turbulent channel flow at Reτ = 395 is simulated using two approaches for generating
inflow turbulence. The interaction of these methods with several SRS models is inves-
tigated, and the results are compared to DNS reference data. For recycling cases the
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numerical errors are also evaluated. Based on the normalised residuals it is shown that
the iterative error was negligible. The statistical uncertainty based on 45 flow-through
times was below 2% for the mean values, and below 10% for the Reynolds stresses. The
grids employed satisfy LES recommendations from the open literature. It is shown that
the discretisation error due to the grid is negligible, the discretisation of the convective
terms in the momentum equations having a larger effect. Best results are obtained with
a second-order accurate CD scheme.

For LES, the magnitude of the turbulent fluctuations depends on the sub-filter mod-
elling. Due to the fine grid resolution however, the difference between the LES models
was found to be small. The Lilly and WALE model predict larger turbulent structures
than the other models. On coarser grids explicit LES predicts the Reynolds stresses more
accurately than ILES. In contrast, hybrid models, which are often favoured in industrial
applications, show less satisfactory results. Both XLES and IDDES have a reasonable
match; the velocity profiles are close to the reference data, and the Reynolds stresses, al-
though underpredicted in magnitude, show the correct shape. Due to the formulation of
the IDDES model, the Reynolds stresses are especially underpredicted close to the wall.
While the formulation of the DDES model should lead to a full RANS behaviour, in the
centre of the domain a LES behaviour was observed. Finally the application of PANS
showed that there is a case-dependent threshold which separates two solution regimes:
0.20 ≤ fk < 1.0 yields a laminar solution regardless of the initialisation of the flow, while
if fk < 0.20 a turbulent flow can develop. The results are then very similar to ILES, since
due to the low fk the RANS formulation in the PANS model has little effect. This finding
is supported by the visualised turbulent structures and an investigation into the effect of
grid coarsening, where PANS with fk = 0.10 and ILES follow the same trend.

The application of the ITG shows that results comparable to recycling computations
can be obtained at reduced computational cost. In this case, the PANS model with higher
fk values also results in a turbulent flow. Ease of usage and tuning makes the use of the
ITG promising in order to obtain a representative inflow for industrial CFD applications.
In the following chapters a method to improve the iterative convergence behaviour is
assessed, and the method is applied to more industrially orientated test cases, including
cavitation. Also the effect on the far-field radiated noise is investigated.





6
DELFT TWIST 11 HYDROFOIL

The Delft Twist 11 Hydrofoil is a common test case for investigating the interaction be-
tween turbulence and cavitation modelling in computational fluid dynamics. Despite
repeated investigations, results reported for the lift and drag coefficient are accompanied
by significant uncertainties, both in experimental and numerical studies. When using
scale-resolving approaches, it is known that turbulent fluctuations must be inserted into
the domain in order to prevent the flow from remaining laminar around the body of in-
terest, although this has been overlooked until now for the present test case. This chapter
investigates the errors occurring when a laminar inflow is applied for mildly separated or
attached flows, by employing the partially averaged Navier-Stokes equations with varying
values for the ratio of modelled-to-total turbulence kinetic energy, and with varying grid
densities. It is shown that depending on the grid resolution laminar leading edge sepa-
ration can occur. When turbulent fluctuations are added to the inflow, the leading edge
separation is suppressed completely, and the turbulent separation zone near the trailing
edge reduces in size. The inflow turbulence has a large effect on the skin friction, which
increases with increasing turbulence intensity to a limit determined by the grid resolu-
tion. In cavitating conditions the integral quantities are dominated by the shedding sheet
cavity. The turbulence intensity has little effect on the pressure distribution, leading to
a largely unaffected sheet cavitation, although the shedding behaviour is affected. It is
shown that, especially in wetted flow conditions, with scale-resolving methods inflow tur-
bulence is necessary to match the experimental flow field.

6.1. INTRODUCTION
This chapter aims to explore the reduction in modelling errors when using resolved in-
flow turbulence, and the application of the ITG for simulating cavitation dynamics. Such
a methodology can result in an increased physical resolution while using smaller do-
mains, i.e. less computational cells. Potential use cases include: simulating a propeller
in a cavitation tunnel, simulating a propeller in behind condition without resolving the

This chapter has been published in Ocean Engineering 228, 1088602 (2021) [201].
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entire flow around the hull upstream, or predicting the interaction between two wings,
while only simulating the downstream wing. The test case of choice in the current chap-
ter, is the 3D twisted wing studied by Foeth et al. [232]. This is a well documented test
case, exhibiting a shedding sheet cavity representative of a ship propeller, while avoid-
ing the additional complications due to a rotating body. The test case was experimen-
tally studied in both wetted and cavitating conditions, and is a common numerical test
case [233]. Due to the cavitation occurring inside the boundary layer, the cavitation
behaviour is strongly dependent on the interaction between turbulence and cavitation
modelling, emphasizing the need for proper inflow boundary conditions. An overview
of previous investigations into this test case is given in Sec. 6.2.2.

The test case was designed to study cavitation behaviour, which naturally has led
to a focus on attempting to capture the cavitating behaviour. Unfortunately, an effect
of this is that some of the difficulties in simulating this test case have been overlooked.
Although it is known from literature that inflow turbulence is necessary for SRS meth-
ods, all SRS results in the open literature for this test case do not employ such methods.
Indeed, they obtain reasonable results for the cavity length and shedding behaviour. It
seems that the presence of a sheet cavity on the wing surface obscures some of the diffi-
culties in simulating this flow. The laminar 1 inflow leads to an incorrect boundary layer
prediction, but still the presence of cavitation leads to a production of turbulence and
vorticity due to the occurrence of shear layers in the flow. Due to these turbulent per-
turbations, turbulence-like structures arise when solving the Navier-Stokes equations,
masking the modelling errors due to the laminar inflow. Due to the complex interac-
tion between modelling and numerical error such results strongly depend on the used
grid, time step and turbulence model. Commonly, coarser grids results in lower eddy-
viscosity levels (see e.g. Diskin et al. [234]), leading to the occurrence of increased dy-
namics. In such cases grid refinement can suppress dynamics, thereby leading to an
increasing comparison error with grid refinement. In contrast, under wetted flow con-
ditions, the lack of inflow turbulence structures can lead to unrealistic flow results when
using SRS approaches.

In the current chapter an attempt is made to show the mismatch between compu-
tations and experiments which can occur for this case when using a steady inflow for
SRS. The focus will therefore be on wetted flow conditions, to prevent the presence of
turbulence due to cavitation obscuring the errors. Nevertheless, results for cavitating
conditions are also presented. All results are obtained using PANS, in order to be able
to systematically vary the turbulence resolution between RANS and (underresolved) di-
rect numerical simulation (DNS), while simultaneously utilising several grid densities.
Iterative, statistical and discretisation errors are assessed.

The chapter is organised as follows. Sec. 6.2 describes the test case and numerical
setup, while Sec. 6.3 details the estimation of the numerical errors. After this, the results
are addressed in two sections: wetted flow in Sec. 6.4, and cavitating flow in Sec. 6.5. The
Discussion and Conclusions in Sections 6.6 and 6.7 complete the study.

1In this context laminar flow is defined as the absence of resolved velocity fluctuations, i.e. the Reynolds

stresses Rei j = u′
i u′

j /u2
τ ≈ 0.
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6.2. TEST CASE AND SETUP

6.2.1. TEST CASE DESCRIPTION
The Delft Twist 11 Hydrofoil is a NACA0009 profile with a spanwise-varying angle of at-
tack from 0° at the sides to 11° at midspan, mounted with an angle of attack at the wall
αw all = −2°. The chord length c = 0.15 m and the span s = 2c. The spanwise twist is
given by [232, 235]

α=αmax

(
2
|y |
c

3

−3
y

c

2
+1

)
+αw all . (6.1)

The Reynolds number is Re =U∞c/ν= 1×106, leading to an inflow velocity of U∞ = 6.97
m/s. In cavitating conditions, the cavitation number isσ= (

p∞−pv
)

/q∞ = 1.07 with the
dynamic pressure q∞ = 1/2ρU 2∞. In the experiments sand roughness with a grain size of
10−4 m was applied at the leading edge at x/c = 0.04 to force transition to turbulence,
but also leading to an increase in drag.

Foeth [235] measured the lift force, the pressure at different locations on the suc-
tion side and applied particle image velocimetry (PIV) to analyse the developing cavity
shape and shedding behaviour. The drag was not measured. For the lift and pressures,
the calibration errors of the sensors are reported, but no total uncertainties are given.
Regarding the setup, an uncertainty of 2.7% is reported for the inflow velocity, and 5%
for the cavitation number. Inflow turbulence levels of the cavitation tunnel were 2-3%
at the location of the wing. This is higher than the more recent values reported for the
same cavitation tunnel by Varadharajan [236] (≈ 1.5%), but those were obtained with a
50% lower mean tunnel velocity. From both sources no information is available on the
integral length scale, which makes matching the experimental setup and quantitative
validation difficult. For more details the reader is referred to Foeth [235].

In the present study, for the cavitation model the bubble radius and concentration
were set to nb = 1 × 108 m−3 and Rb = 1 × 10−5 m, respectively, based on [79]. Time
integration is performed using a second-order implicit three time level scheme, the con-
vection terms in the momentum equations are discretised using a second-order accu-
rate flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK)
scheme, the turbulence and cavitation equations are discretised using a first-order up-
wind scheme. Diffusion is central second-order accurate, and non-orthogonality and
eccentricity of the grid are considered by extra deferred corrections.

6.2.2. LITERATURE OVERVIEW
The Delft Twist 11 Hydrofoil is a common test case for investigating the interaction be-
tween turbulence and cavitation modelling in CFD. In literature, a number of different
turbulence modelling approaches for this case have been applied, such as Euler equa-
tions [237, 238], unsteady RANS [79, 239–243], unsteady RANS with an ad-hoc eddy-
viscosity correction (such as the so-called Reboud correction [244]) [79, 240, 245, 246],
Reynolds Stress Models (RSM) [242], LES [240, 243, 247–251], hybrid models [79, 240,
242, 243] and PANS [252]. The use of unsteady RANS typically suppresses the cavity dy-
namics, while LES results show a shape and shedding behaviour which is more in agree-
ment with the experiments, although the cavity length is underpredicted. hybrid mod-
els, such as DES, shed less cavity structures due to the sheet cavity being close to the wing
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surface, i.e. in a RANS region. The use of the Reboud correction leads to increased cavity
dynamics and cavity length, however its ad hoc empirical nature introduces additional
modelling error in the results. The PANS results reported show a shedding behaviour
comparable to experiments, however only one ratio of modelled-to-total turbulent ki-
netic energy was investigated. From literature it is know that the results can vary signifi-
cantly based on this ratio [57, 164, 193]. Most investigations ([79, 239–243, 245, 249, 253])
make use of the Schnerr-Sauer cavitation model, which is also employed in the current
chapter.

An overview of the reported mean lift coefficient CL = L/(q∞cs) and Strouhal num-
ber St = f c/U∞ as function of the number of grid cells Nc in cavitating conditions can
be found in Fig. 6.1. The coefficients are defined using the lift force L and the shedding
frequency f , and divided by the turbulence model. The mean lift coefficient is under-
predicted by every simulation found in the open literature, which indicates that the cav-
itation extent is underestimated [253]. A wide variety of grid types and densities is em-
ployed in the literature. It must be noted that, in general, the grids are relatively coarse
considering the Reynolds number, with high wall-normal resolutions. The stream- and
spanwise resolutions are regularly not reported, and the sensitivity of the results towards
the grid is often not investigated. This leads to few reported uncertainties for integral
values.
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Figure 6.1: Literature overview of integral quantities in cavitating conditions as function of the number of cells
and turbulence model [79, 239–243, 245, 246, 249, 250, 253, 254].

As mentioned in the introduction, the literature focusses on cavitation conditions.
Nevertheless, some results for wetted flow are reported [79, 233, 243, 253, 254]. These re-
sults are mostly limited to the forces and the pressure distribution on the centreline, no
flow visualisations are given. Hoekstra et al. [233] do report that within their workshop
‘all participants report an attached boundary layer on the entire foil’, i.e. no boundary
layer separation is observed on the wing surface. See Fig. 6.2 for an overview of the re-
ported mean lift CL and drag coefficient CD = D/(q∞cs) as function of the number of
grid cells and turbulence model. Some results match the experimental lift coefficient
well, however again the spread in results is significant.
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Figure 6.2: Literature overview of integral quantities in wetted flow conditions as function of the number of
cells and turbulence model [79, 233, 239, 243, 253, 254].

6.2.3. NUMERICAL SETUP

The computational domain extends two chord lengths upstream of the leading edge and
five chord lengths downstream. Half of the wing is modelled with a symmetry plane at
the centre of the wing. The use of a symmetry plane in the setup can lead to modelling
errors when attempting to resolve turbulence using SRS and when adding synthetic tur-
bulence. Nevertheless, it was employed to reduce numerical cost. It must be remarked
that most results in literature, including the LES results, employ the same simplification.
The top and bottom of the domain are located one chord length from the wing, matching
the dimensions of the cavitation tunnel used by Foeth et al. [232]. The boundaries of the
domain are modelled as slip-walls, whereas on the wing a no-slip boundary condition is
applied. At the inlet an inflow boundary condition is used, fixed pressure is defined at
the outlet.

Fig. 6.3 shows the wing geometry, computational domain and grid topology. The
boundary conditions at the inlet are a Dirichlet condition for all velocity components
and turbulence quantities, and at the outlet a Dirichlet condition for the pressure. The
wing’s surface is modelled as a non-slip wall, with a symmetry boundary condition at
the centre of the wing. All other domain boundaries are modelled as slip walls. Four
geometrically similar, multi-block hexahedral structured grids (G1, G2, G3 and G4) are
used, but for comparison purposes also an additional grid (G0∗) is employed. This grid is
identical to grid G1, but it includes a local refinement box with dimensions 4/3c×c×2/3c
surrounding the wing. In this refinement box the grid is refined by a factor 2 with respect
to grid G1. The average values of the non-dimensional wall cell-sizes x+

n , x+
c and x+

s
(normal, chordwise and spanwise) on the suction side centreline of the different grids
are given in Tab. 6.1. Due to the 3D geometry and grid topology, the averaged values do
not give a good indication of the cell distribution over the wing. Fig. 6.4 shows the x+

n , x+
c

and x+
s distribution over the chord at the wing centreline on the suction side. Over the

entire wing x+
n is well below 1 for all grids. On the suction side, x+

c reaches high values
at the leading edge, drops immediately after the leading edge and then increases again.
It remains relatively constant but decreases again towards the trailing edge. Finally, x+

s
is high at the leading edge, and decreases along the wing. The values for x+

s at the wing
midspan are lower than the values towards the wall of the cavitation tunnel (where α =



6

106 6. DELFT TWIST 11 HYDROFOIL

−2°).
When comparing these resolutions to guidelines from literature for a well-resolved

LES or PANS, x+
n < 1, 50 < x+

c < 150 and 15 < x+
s < 40, [225], it is clear that in wall-normal

direction, all grids are sufficiently fine. Grids G0∗ and G1 do comply with the required
x+

c , however none of the applied grids reaches the required resolution in spanwise direc-
tion. Due to the computational cost, the grids are not refined below these levels.

For computations with a resolved turbulent inflow, the ITG is located at xT G = −2c
with respect to the leading edge of the wing, which is close to the inflow boundary con-
dition.

Figure 6.3: The Delft Twist 11 Hydrofoil and grid G3 at the symmetry plane. In the left figure, the boundary
conditions are indicated with lines, black dots refer to planes at the front of the image, while grey dots refer to
planes at the back of the image.

Table 6.1: Number of cells Nc , grid refinement factor hi , and non-dimensional wall units x+ = uτx/ν based
on the friction velocity at the wall uτ, in normal, x+n , chordwise, x+c , and spanwise, x+s , directions, averaged on
the wing suction side at the centreline and obtained from a steady state, wetted flow, RANS computation. The
∗ indicates a grid with local refinement surrounding the wing.

Grid Nc /106 hi x+
n x+

c x+
s

G4 1.30 2.00 0.32 320 550
G3 2.10 1.70 0.25 260 460
G2 4.50 1.32 0.20 225 330
G1 10.31 1.00 0.15 150 290
G0∗ 55.13 0.50 0.08 80 150

6.3. NUMERICAL ERRORS
As is generally accepted, numerical errors can be divided into input, round-off, iterative,
discretisation, and, in the case of unsteady computations, statistical errors [149]. The
round-off error is assumed to be negligible due to the use of double precision arithmetic
[255]. One of the sources of input error are boundary conditions. The effect of chang-
ing the inflow boundary condition is assessed in Sec. 6.4. In this section, the iterative,
discretisation and statistical error are assessed.

The iterative convergence is assessed based on the residuals, normalised by the di-
agonal element of the left-hand-side matrix of the linearised system of equations. All
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Figure 6.4: Non-dimensional wall units x+ = uτx/ν, based on the friction velocity at the wall uτ, versus the
chord length at the wing centreline on the suction side only, in normal, x+n , chordwise, x+c , and spanwise, x+s ,
directions. Obtained from a steady state, wetted flow, RANS computation.

wetted flow calculations with steady inflow condition are converged until L∞ is below
10−6. Computations with a resolved turbulent inflow are converged until L2 is below
10−4 and L∞ below 10−2. The largest residuals occur near the ITG and the wing leading
edge. Residuals can be reduced further by increasing the number of outerloops, with the
exception of the ω equation which stagnates. For cavitating computations, the L2-norm
is generally in the order of 10−3, while the L∞-norm is in the order of 10−1 for all equa-
tions except for theω equation. For this equation the L2-norm is in the order of 10−3 and
the L∞-norm in the order of 100 −10−1.

The finite length of a CFD simulation introduces a random uncertainty in the mean
of the signal. To estimate the statistical uncertainty, and to remove the start-up effect, the
Transient Scanning Technique (TST) is used (see Sec. 3.2.5). For wetted flow cases with
a steady inflow or low levels of inflow turbulence intensity (ILE < 10%), the statistical
uncertainty for integral quantities is below 1%, for higher inflow turbulence intensities
(ILE > 10%) it is below 5%. For cavitating computations, the statistical uncertainty for
the mean lift and drag forces is below 3%.

The discretisation error, Ed (φ), is estimated using a power series expansion [57, 149]

Ed (φ) =φ1 −φ0 = φi+1 −φ1

r p
i+1 −1

. (6.2)

where φ0 indicates the estimated solution for zero discretisation error and r is the re-
finement ratio, based on

ri

r
= hi

h1
. (6.3)

with h the cell length. Based on the data it is not possible to obtain an accurate estima-
tion of p, so both a value of 1.0 and 2.0 are used. p = 1.0 leads to a conservative estimate,
Ed ,max whereas p = 2.0 yields a lower value, Ed ,mi n .

6.4. WETTED FLOW RESULTS
This section describes the results for wetted flow simulations, i.e. without cavitation.
Among the results reported are the lift coefficient CL = L/(q∞cs), the drag coefficient
CD = D/(q∞cs), the pressure coefficient Cp = (p −p∞)/q∞ and the streamwise skin fric-
tion coefficient C f ,x = τw,x /q∞ at the wing midspan. The results are compared against
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experimental results by Aït Bouziad [256] (designated EPFL), and against results ob-
tained with the panel code XFoil [257]. With XFoil the 2D NACA0009 cross-section was
computed at an angle of attack at the centreline (α=9°). Since the 3D effects due to the
twist are not included in XFoil, differences in the magnitude of Cp are to be expected.
Nevertheless, it gives a good indication of the pressure distribution along the chord.

6.4.1. STEADY INFLOW CONDITION

Most of the computations with a steady inflow converge to a steady solution, with the ex-
ception of flow solutions which show leading edge separation extending along the chord.
Consequently, the results in this section are obtained with a larger time step which is
kept fixed to ∆t∗ =U∞×∆t/c = 6.97×10−3, leading to a maximum and average Courant
number of 48 and 2.3 on the finest grid, and 22 and 1.2 on the coarsest grid, respectively.
These large Courant numbers were deemed acceptable based on preliminary computa-
tions with a smaller time step, which showed the same solutions with a similar iterative
convergence.

Fig. 6.5 shows the lift and drag coefficient as a function of the grid refinement hi /h1

and the physical resolution fk , together with the discretisation error as error bars. Both
the lift and drag have a low grid dependency, leading to small discretisation errors. fk has
little influence on the lift coefficient in the range 1.00−0.50, however the lift coefficient
suddenly drops by almost 10% for fk = 0.25. For fk = 0.00, lift increases again. This will
be commented upon later. The drag coefficient shows a linear decrease with decreasing
fk , with the exception for fk = 0.25 on the two finest grids, and fk = 0.00, where the drag
suddenly increases. A division of the drag into pressure and friction drag shows that the
friction drags linearly decreases with fk . However for fk = 0.00 and 0.25 on the fine grids
the pressure drag doubles, due to flow separation occurring at the leading edge, as will
be explained later based on flow visualisations.

The effect of reducing fk is visualized in Fig. 6.6 by showing the time-averaged stream-
wise skin friction coefficient, limiting streamlines and time-averaged normalized stream-
wise velocity u/U∞. With a reduction in fk , the streamwise skin friction decreases. For
fk = 0.25, the flow starts to change. Depending on the grid resolution, two solution
regimes are predicted. For the coarser grids (G3 and G4), turbulent separation is ob-
served in the streamlines near the trailing edge along the entire span of the wing. Along
the spanwise position the angle of attack varies, the separation region moves towards the
leading edge with increasing angle of attack. This is accompanied by a negative friction
coefficient on the wing surface, indicating recirculating flow over the wing. On the finer
grids (G1 and G2), the separation location moves further upstream, and the flow exhibits
laminar separation close to the leading edge. The flow solution is now also unsteady,
which together with the separation at the leading edge, is a clear indication of a stall
condition. After the laminar separation bubble the flow periodically detaches and reat-
taches, leading to a time-averaged positive skin friction, which increases the pressure
drag as observed in Fig. 6.5. The grid sensitivity of the flow separation is likely related
to the x+

c resolution behind the leading edge (see Fig. 6.4). While it is low at the lead-
ing edge, on grids G3 and G4 it more than doubles over a chordwise distance of ≈ c/30,
thereby suppressing the flow separation. On the finer grids, x+

c still increases, but the
increase is less drastic, allowing the grid to resolve the flow separation. The results for
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Figure 6.5: Time-averaged lift and drag coefficient (top row), and friction and pressure drag (bottom row) as
function of the refinement ratio hi /h1 and fk , for wetted flow simulations with steady inflow. The dots are the
results, the blue vertical lines indicate the uncertainty Ed ,mi n .
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fk = 0.00 show this stall condition on all grids; due to the absence of a turbulence model,
the flow instability is not suppressed by any eddy-viscosity. Again the time-averaged
skin friction is positive behind the separation bubble at the leading edge, leading to an
increased pressure drag. For this fk value, the largest differences occur more towards
the tunnel side wall where the angle of attack is lower. On the coarse grid there is a large
region with negative friction, which decreases in size on the finer grids.

fk G3 G2 G1

1.
00

0.
75

0.
50

0.
25

0.
0

Figure 6.6: Limiting streamlines and time-averaged skin friction coefficient C f ,x on the wing surface, and
streamwise velocity u/U∞, for different fk values, using different grids with steady inflow. Results for G4 are
similar to G3 and are therefore not shown. Flow from left to right.

To quantify the differences in time-averaged skin friction coefficient, Fig. 6.7 shows
C f ,x at the wing centreline. C f ,x decreases with decreasing fk . For fk = 1.00, C f ,x is close
to the XFoil prediction, the deviation in slope is likely related to 3D effects which are not
included in the XFoil prediction. The trend remains the same in the range 0.5 ≤ fk ≤ 1.0,
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only the magnitude varies. For fk = 0.25 on the coarse grids, C f ,x shows a trough for
0.05 < x/c < 0.1, after which it increases until x/c = 0.2 and then decreases again until
it becomes negative for x/c > 0.4. On these coarser grids, the low C f values are likely
related to an absence of transition, i.e. the flow remains laminar along the chord. On the
finer grids, the flow separates at the leading edge, so C f ,x shows a peak at x/c ≈ 0.05, after
which it becomes negative until x/c ≈ 0.4, and then remains positive until the trailing
edge. The leading edge separation induces transition at x/c ≈ 0.4, leading to a higher C f

than observed for fk = 0.25 on the coarser grids. Fig. 6.6 already showed that this pattern
varies significantly along the span of the wing. Finally for fk = 0.00, the pattern is similar
on all grids. There is a large separation region at the leading edge, inducing transition.
C f ,x on the fine grids (G2 and G1) equals the C f ,x predicted by fk = 0.25, which is in line
with the earlier visual observations.
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Figure 6.7: Time-averaged streamwise skin friction coefficient with steady inflow, for varying fk using different
grids.

The pressure distribution at the wing surface is less affected by the flow pattern, as
shown in Fig. 6.8. The different computations show little difference, with the exception
of the fk = 0.00 and 0.25 on grids G2 and G1, which is of course directly linked to the
unsteady flow separation. The other computations predict similar Cp distributions, but

for fk = 0.25, Cp is slightly lower in the range 0.2 . x/c . 0.7, and higher for x/c & 0.7.

Two observations can now be made. Firstly, both C f ,x and CD are strongly affected by fk ,
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and vary for each fk value; while Cp and CL show two sets of solutions based on fk being

above or below a certain threshold. Secondly, in the range x/c ≤ 0.4, Cp does not depend
on fk , which is favourable for cavitation inception predictions. The cavitation behaviour
and attached sheet cavity extent will be insensitive to fk , and consequently to the lack of
inflow turbulence.
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Figure 6.8: Time-averaged surface pressure coefficient Cp for varying fk using different grids with steady in-
flow.

What happens when fk is reduced? The change in the flow is related to changes in
the turbulence intensity, both modelled and resolved. Due to the reduction of fk the
effect of modelled turbulence is reduced, while due to the steady inflow boundary con-
dition the resolved flow is laminar (i.e. the resolved turbulence intensity is zero). This is
clearly visible in Fig. 6.9, which shows k, ω and νt /ν between the location where later
resolved inflow turbulence will be inserted, and the leading edge. Both k and ω de-
crease downstream, but since νt /ν depends on the ratio of k and ω (Eq. 2.28), νt /ν is
relatively constant along the streamwise direction. However with decreasing fk , νt /ν de-
creases, leading to the flow becoming laminar with decreasing fk . Note that for fk = 0.00,
νt /ν= 0 by definition. Due to low inflow turbulence level, by pass transition on the wing
surface is delayed, and the flow separates at the trailing edge. For even lower fk , the
flow becomes completely laminar and separates at the leading edge. This was already
observed by Foeth [235], who recognised that for the limited Reynolds numbers typical
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for model scale wings transition to turbulence does not occur at the leading edge un-
less the boundary layer is locally disturbed, hence the application of surface roughness
in the experiments. It is known from literature that laminar boundary layers separate
earlier than turbulent boundary layers [258]. The occurrence of turbulent trailing edge
separation leads to the decrease in lift coefficient, and the decrease in drag coefficient is
proportional to the reduction in skin friction due to the laminar boundary layer along the
chord. With leading edge separation the lift and drag coefficient increase again, due to a
different pressure distribution. Unsteady structures can be observed (e.g. based on the
Q−criterion), potentially leading to a wrong conclusion that the approach is resolving a
turbulent boundary layer.

Up to now, with the exception of the work by Foeth [235] who employed surface
roughness, separation has not been reported in literature for this test case. A number
of reasons can be identified to explain this. Simulations using RANS or hybrid models
do not show flow separation due to the inherent assumptions employed in RANS in the
boundary layer, leading to transition to turbulent flow at the leading edge. For SRS re-
sults, such as LES and PANS, it is shown that for intermediate fk values, such as 0.25,
the behaviour is grid sensitive and only occurs on fine grids. The literature overview in
Fig. 6.1 and Fig. 6.2 showed that most LES results reported in literature are obtained us-
ing coarser grids than the ones here, thereby potentially hiding this behaviour. It must
also be remarked that most investigations in literature focus on cavitation dynamics.
However, due to the nature of the test case, when cavitation is included, this separation
is again masked since due to the cavitation inception criterion used in CFD, the sheet
cavity occurs at the same location as the flow separation at the leading edge. The use
of XFoil further confirms the hypothesis that the leading edge separation with a laminar
inflow is physical. When using a turbulent inflow, similar C f ,x and Cp distributions are
found, however when reducing the inflow turbulence (when moving from what is known
in XFoil as a ‘dirty’ towards a ‘clean’ wind tunnel) the solution becomes more and more
difficult to converge, again pointing to unsteady flow separation at the leading edge.

To ensure that further grid refinement does not yield different flow behaviour, ad-
ditional fk = 0.25 and 0.00 computations were performed on a grid with a local refine-
ment box surrounding the wing (grid G0∗). The integral values are CL = 0.35 and 0.42,
CD ×102 = 1.00 and 0.85 for fk = 0.25 and 0.00 respectively. The drag appears to continue
to increase with increasing simulation time. Fig. 6.10 shows C f ,x and Cp at the midspan,
along with a flow visualisation for fk = 0.00. For this additionally refined grid, the wing
does not show such a large region of recirculating flow at the leading edge, as for grid
G1, leading to a pressure distribution closer matching the experiments. At a first glance
it appears that refining the grid to this level solves the problems observed previously in
this section. However, investigation of C f shows that leading edge separation still occurs.

The difference is that here C f becomes positive again at x/c ≈ 0.1, after which it remains

positive until close towards the trailing edge. On grid G1, C f also seemed to recover at
x/c ≈ 0.07, but then decreases again and does not become positive until x/c ≈ 0.4. The
increased grid resolution, decreases the leading edge separation, and therefore leads to
a reasonable prediction of the drag. The lift however, is even lower than for the PANS
results on coarser grids. Potentially, the leading edge separation is reduced even more
on a further refined grid, however it is important to realise that this grid is already re-
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Figure 6.9: Time- and y − z plane spatially-averaged modelled turbulence kinetic energy k (left), dissipation
rate ω (centre) and eddy-viscosity ratio νt /ν (right) decay for steady inflow. The inlet boundary is located at
the left of the figures, the leading edge at the right. Results obtained on grid G4 (top row) and G1 (bottom row)
for varying fk . Recall that for fk = 0.00, k and νt /ν are, by definition, zero.

fined to a level which is currently unaffordable for industrially oriented cases. This grid
is significantly finer than LES grids employed in the literature for this test case.
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Figure 6.10: C f ,x (left), Cp (centre), and flow visualisation for fk = 0.00 on grid G0∗ (right) for steady inflow.

To summarise, it is clear that flow predictions with SRS with a steady inflow do not
match experimental conditions, but it could be argued that this would have little effect
on cavitation predictions due to the inception criterion used in CFD. Cp does not vary,
so the inception behaviour will be the same. However, it should be emphasized that the
laminarization of the flow is a problem, as also known from literature [28, 193]. Firstly,
Cp does change towards the trailing edge, potentially affecting the development and dy-
namics of shed cavities. Secondly the integral quantities (lift and drag) differ signifi-
cantly from experiments, making validation impossible. It is interesting to note that the
lift decreases with fk , away from the experimental value, with the exception of fk = 0.00,
which gives higher values than fk = 1.00. From this, the incorrect conclusion could be
made that fk = 0.00, also known as ILES, does not suffer from these problems and yields
the best match for experimental values. Nevertheless, as shown, CD , C f ,x and Cp are
different, and in fact the entire flow changes, from a steady attached flow to an unsteady
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flow separating at the leading edge. Indeed, the lift is better predicted, but for the wrong
reasons. Instead it is necessary to introduce synthetic inflow turbulence to obtain a tur-
bulent boundary layer from the leading edge onwards, to better match the experimental
results.

6.4.2. RESOLVED TURBULENT INFLOW CONDITION
To trigger the flow to become turbulent and suppress unphysical separation, synthetic
turbulence is added at the inflow. The need for such boundary conditions is well known
for LES and PANS [28, 193], however LES results in the open literature for this specific
test case do not employ such methods.

The ITG is located at xT G =−2c, with turbulent fluctuations inserted in a plane per-
pendicular to the flow with dimensions c×c and a thickness in primary flow direction of
c/15, which corresponds to 2−3 cells in streamwise direction. A number of conditions
with varying levels of turbulence intensity and integral length scale are investigated, the
settings at the location of the ITG are summarized in Tab. 6.2. The decay in turbulence
kinetic energy is compared to the slope of theoretical decay of isotropic homogeneous
turbulence [259]

ui ui

U 2∞
∝

( x −xT G

L

)−n
. (6.4)

In this equation x indicates the measurement location and n is approximately equal to
1.27, based on experiments. Tab. 6.2 also shows the turbulence intensity,
I = p

2/3〈K 〉/U∞ =
√

ui ui /U∞, expected at the leading edge based on the theoretical
decay. For Case A and C the turbulence intensity is comparable to the experimental
setup; no integral length scale was reported for the experiments.

From a theoretical perspective, it is incorrect to insert velocity fluctuations in a com-
putation with fk = 1.00, since for such a fk value all turbulence should be modelled. In
this chapter it is still done, to investigate the trends. Due to the use of pseudo-random
numbers the curves for the different computations overlap.

The time step for these computations is kept fixed to ∆t∗ =U∞×∆t/c = 6.97 ·10−4,
with maximum Courant numbers of approximately 5 occurring close to the leading edge.
In the remainder of the domain the Courant number is well below 1. The L2 norms of
the residuals are O (10−4), O (10−6), O (10−7) and O (10−7), for momentum, pressure, tur-
bulence kinetic energy and dissipation, respectively. Of these equations only theω equa-
tion stagnates, the other equations keep on converging and decrease at least one order
of magnitude during a time step. The L∞ norms for the same equations are O (10−2),
O (10−3), O (10−4) and O (10−3). The largest residuals occur in the cells where the ITG is
located. During the computation the flow passes the chord seven times, with averaging
applied during the final four time units (Tw f = c/U∞), leading to a maximum statistical
error of 5%, which occurs for the case with highest inflow turbulence intensity.

First, cases A and B are compared on all grids with 0.0 ≤ fk ≤ 1.0. The streamwise de-
velopment of the synthetic isotropic turbulence between the ITG and the leading edge,
is shown for fk = 0.25 in Fig. 6.11. The Reynolds stresses decrease around two orders
of magnitude on the coarse grid, while on the fine grid the decrease is about one order
of magnitude, which is comparable to Eq. 6.4. An initially surprising observation is that
the decay of resolved turbulence is almost insensitive to the fk value (not shown in the
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Table 6.2: Settings for the homogeneous, isotropic, inflow turbulence at the ITG ui ui /U 2∞TG , and theoretically

expected inflow turbulence at the leading edge ui ui /U 2∞LE and turbulence intensity ILE , following the slope
defined by Eq. 6.4.

Case L /c ui ui /U 2∞T G ui ui /U 2∞LE ILE /%
A 0.033 0.01 0.0004 2.0
B 0.013 0.10 0.004 6.3
C 0.013 0.01 0.0004 2.0
D 0.033 0.10 0.004 6.3
E 0.013 0.20 0.008 8.9
F 0.013 0.30 0.012 11.0
G 0.013 0.40 0.016 12.7
H 0.013 0.60 0.024 15.5

graph), suggesting no effect of the chosen fk on the computations. However, the statis-
tical representation of turbulence (the ‘RANS’ contribution) does vary with fk , a higher
fk leads to a higher eddy-viscosity. As observed earlier, on finer grids the eddy-viscosity
levels also increase.

These results, in combination with results from literature [168, 193] suggest that while
the selected value of fk strongly affects the production of modelled turbulence, it does
not affect the decay of resolved turbulence in this streamwise range. While this might
seem counterintuitive, it can be explained from the equations which are being solved.
The filtered Navier-Stokes equations are independent of fk , fk only affects the turbu-
lence transport equations for k andω. Due to the formulation of the ITG fluctuations are
introduced regardless of fk , which can lead to the unphysical combination of fk = 1.00,
i.e. RANS, with resolved turbulent fluctuations. After their addition to the flow, the devel-
opment of the fluctuations is described by the Navier-Stokes equations. The difference
between computations with different fk values, is the level of νt /ν. However in this short
range the effect of the increased eddy-viscosity is too small to significantly dampen the
velocity fluctuations, and therefore the decay of resolved turbulence is comparable. A
similar observation was made when using synthetic turbulence for a channel flow in
Chapter 5, close to the ITG the solutions for different fk values are comparable, and
velocity fluctuations are being dampened only further downstream. The comparable
decay is also an indication that the grids are fine enough to not add excessive diffusion.

In Fig. 6.12 and 6.13, the flow is visualized using the time-averaged streamwise ve-
locity and friction coefficient at the wing surface, for different fk values on grids G4 and
G1. The visualisation shows that while the flow at the surface is affected by the inflow
turbulence, for fk = 0.25 a region of separated flow still occurs near the trailing edge.
The size of the separated flow region is reduced compared to the results obtained with a
steady inflow, especially on the finer grid. The separation is also smaller for Case B than
for Case A. When fk = 0.00, the region of separation is larger, especially on the coarser
grid. This is an indication of the increased grid sensitivity of ILES, due to the absence of
a sub-filter model. Note that for both these levels of inflow turbulence, for all fk values,
the large flow separation at the leading edge as observed for low fk values without inflow
turbulence (Fig. 6.6) disappears.
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Figure 6.11: Time- and y−z plane spatially-averaged resolved streamwise Reynolds stresses for Case A (left) and
B (right) between ITG and the leading edge, on different grids for fk = 0.25. The results show little dependence
on fk .

Figure 6.12: Limiting streamlines and time-averaged streamwise skin friction coefficient C f ,x and time-
averaged streamwise velocity u/U∞, on grid G4 (top row) and grid G1 (bottom row) with a resolved turbulent
inflow, Case A. From left to right fk = 0.50, 0.25 and 0.00. Results for fk = 1.00 and 0.75 are similar to fk = 0.50.

Figure 6.13: Limiting streamlines and time-averaged streamwise skin friction coefficient C f ,x , and time-
averaged streamwise velocity u/U∞, on grid G4 (top row) and grid G1 (bottom row) with a resolved turbulent
inflow, Case B. From left to right fk = 0.50, 0.25 and 0.00. Results for fk = 1.00 and 0.75 are similar to fk = 0.50.
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The effect on the skin friction coefficient is further analysed in Fig. 6.14, by plot-
ting C f ,x versus x/c at midspan for varying fk for the two cases. A comparison with the

steady inflow results shows that C f ,x increases with the addition of inflow turbulence.

An increase in Rei i also leads to an increase in C f ,x , independent of fk used in the com-

putation. As expected, fk = 1.00 gives a RANS distribution, where C f ,x has a peak at the
leading edge and then decreases along the chord, while remaining positive. The magni-
tude is comparable to the XFoil prediction. With decreasing fk , the magnitude of C f ,x

decreases along the chord. For fk = 0.50, there is a slight kink at x/c = 0.1, but the pro-
file remains similar to the RANS results. However the result for fk = 0.25 clearly shows
not only a much lower C f ,x , but also drops after the leading edge to a negative value,
after which it increases again to a constant value along the wing. This shows that the
flow is still laminar at the leading edge, but transitions to turbulent flow at x/c = 0.1,
indicating that the inflow turbulence is not sufficient to trigger a turbulent flow at the
leading edge. For Case A, it can also be observed that for x/c > 0.9, C f ,x still becomes

negative, indicating turbulent flow separation. It is noteworthy that on finer grids C f ,x

always increases, independent of fk . For fk = 0.25, this has the effect that, while still
present, the separation region at the trailing edge is reduced (as was observed previously
in Fig. 6.12). On the coarse grid, C f ,x for fk = 0.00 remains close to zero for both cases,
indicating that transition does not occur and that the flow remains laminar. On the finer
grid it increases, but remains close to zero along the chord.

When comparing Case B to Case A, it can be observed that the increase in inflow
turbulence leads to an increase in C f ,x along the chord for all fk values, except for fk =
0.00 on the coarse grid. For Case B, on the coarse grid there is still a small region where
C f ,x < 0 close to the leading edge, while on the fine grid C f ,x remains positive along the
wing.
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Figure 6.14: Time-averaged streamwise skin friction coefficient C f ,x for a steady inflow and resolved turbulent
inflows Case A and Case B, on grid G4 (top row) and G1 (bottom row) for varying fk .
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The effect on the pressure coefficient is limited, and is therefore not shown. There
is no difference between different fk values, except at the trailing edge (x/c > 0.9) in the
location of turbulent flow separation. As expected, this difference is larger on the coarse
grid, G4, and larger for Case A than for Case B. For Case A, there is a still a difference
between fk = 0.25 and 0.00 and the other fk values on the finest grid; for Case B there is
no longer an observable difference between the different fk values on the finest grid.

The effect on the integral quantities is presented in Fig. 6.15, where the time-averaged
lift and drag coefficient are given as a function of the grid refinement and fk . The pre-
dicted trend for the lift for Case A is similar to what was observed without inflow turbu-
lence (Fig. 6.5). There is a sudden decrease in CL for fk = 0.25, but the predicted lift by
fk = 0.00 is again approximately 5% larger than for fk = 1.00, which is caused by a higher
pressure on the pressure side of the wing between the leading edge and midchord, close
to the tunnel wall. For Case B the decrease at fk = 0.25 is smaller, and CL is more con-
stant across the fk range, especially on the finest grid. The addition of inflow turbulence
leads to a temporally varying lift coefficient, since now the effective angle of attack varies
in time. As expected the standard deviationσCL for Case B is larger than for Case A due to
the higher turbulence intensity. For Case A,σCL ×103 ≈ 6 while for Case B,σCL ×103 ≈ 23.
For the drag coefficient, in both cases A and B, the trend is the same as for the case with
a steady inflow: CD decreases with decreasing fk . For both cases, CD increases across
the fk range compared to the steady inflow, and C f ,x for Case B is larger than for Case A.
Again the standard deviation in the drag coefficient is larger for Case B than for Case A,
i.e. σCD ×103 ≈ 1.3 versus σCD ×103 ≈ 0.4.

It is again emphasized, that, while ILES ( fk = 0.00) theoretically should involve the
least modelling of turbulence, it is not the best approach. It does yield the highest lift
coefficient, but at the same time the predicted drag force is lower than all other results.
The skin friction shows that the flow is still laminar, but due to the now absent leading
edge separation the lift coefficient is reduced compared to the results with steady inflow.
The use of a different convection scheme in the momentum equation might improve
these results. It is known from literature that ILES requires a convection scheme which
adds enough dissipation to act as a sub-filter model. In the current chapter QUICK is
used, which might not fulfil that requirement by either adding too much, or not sufficient
dissipation. An investigation into different convection schemes is outside of the scope of
the current chapter. The difficulties in predicting integral quantities do indicate that the
use of ILES is rather sensitive to the setup, next to the entanglement of modelling and
discretisation errors, which is inherent to the method (see Chapter 5. Consequently, in
the remainder of this chapter fk = 0.25 is employed.

6.4.3. INCREASING L VERSUS ILE
When varying both L and ILE systematically (cases A, B, C and D), a distinction can
be made between the effect of L versus ILE . These variations are only investigated
for fk = 0.25, on the finest grid, since here the largest difference between results from
cases with and without inflow turbulence occur. Varying L has almost no effect on the
time-averaged lift and drag coefficient. However, with a smaller integral length scale,
the standard deviation of the signal increases, see Tab. 6.3. Increasing ILE leads to an
increase of 5− 10% in time-averaged quantities; as expected the increase in standard
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Figure 6.15: Time-averaged lift (top row) and drag coefficient (bottom row) as function of the refinement ratio,
hi /h1, and fk , for wetted flow simulations with a resolved turbulent inflow, Case A (left) and Case B (right).
The dots are the results, the blue vertical lines indicate the uncertainty Ed ,mi n .
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deviation is again significantly larger (between 2 and 3 times larger). The streamwise
decay of ILE (not shown) is as expected comparable for all computations, but varies in
magnitude depending on the inflow ILE .

Table 6.3: Overview of integral quantities as function of the inflow turbulence level at the ITG and integral
length scale on grid G1 with fk = 0.25.

L /c 0.013 0.033
ILE CL σCL ×103 CL σCL ×103

2.0 0.38 7.6 0.38 4.1
6.3 0.41 25.3 0.39 10.8

CD ×102 σCD ×103 CD ×102 σCD ×103

2.0 0.98 0.5 0.98 0.3
6.3 1.03 1.5 1.03 0.7

The flow visualisation in Fig. 6.16 is in line with previous results, modifying L shows
only small differences, while increasing ILE decreases the size of separation region at
the trailing edge. This is also clearly visible in Fig. 6.17, where C f ,x increases with ILE . It
is important to realise that the location of transition is not affected by the settings of the
ITG, only the magnitude of the skin friction. For ILE = 2.0%, there is only a difference be-
tween L /c = 0.013 and 0.033 near the trailing edge, whereas for ILE = 6.3%, L /c = 0.013
yields a higher skin friction along the chord. The increase in C f ,x manifests itself already

at the leading edge. All computations show a trough at x/c ≈ 0.05, but the minimum C f ,x

varies. For ILE = 2.0%, for both integral length scales min
(
C f ,x

)
×103 ≈ −1, indicating

locally recirculating flow. The lack of difference between the two integral values indi-
cates that while the inflow turbulence intensity is high enough to prevent leading edge
separation on the wing, due to the turbulence decay it is too low at the leading edge to
further affect the boundary layer flow. When the inflow turbulence intensity is increased

to ILE = 6.3%, min
(
C f ,x

)
increases. When L /c = 0.033 the minimum is close to 0, while

for the smaller integral length scale the minimum is approximately +1. Here the inflow
turbulence intensity does affect the boundary layer flow, the smaller integral length is
closer in magnitude to the turbulent length scales occurring closer to the wing surface,
leading to an increasingly turbulent boundary layer and therefore increased skin fric-
tion. For the pressure distribution, again no differences are observed, except near the
trailing edge.

These observations imply that a sufficiently small integral length scale can trigger
transition directly at the leading edge, similarly to roughness applied to the wing. How-
ever, such a small length scale must be supported by the grid to be convected from the
ITG until the leading edge and enter the boundary layer. Due to the employed grid reso-
lutions in this chapter, no integral length scales below L /c = 0.013 are investigated. For
the remainder of this chapter, this smaller length scale is employed.

6.4.4. THE EFFECT OF INCREASING INFLOW TURBULENCE INTENSITY
To investigate the effect of increasing the inflow turbulence intensity, cases B, C, E, F, G
and H are compared. The integral length scale is kept fixed to L /c = 0.013, and only
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Figure 6.16: Limiting streamlines and time-averaged streamwise skin friction coefficient on the wing surface,
and streamwise velocity, for fk = 0.25 on grid G1 with a resolved turbulent inflow.

0.0 0.2 0.4 0.6 0.8 1.0

x/c

0

2

4

6

8

C
f
,x

×
10

3

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

−
C

p

2.0%, 0.013

2.0%, 0.033

6.3%, 0.013

6.3%, 0.033

Exp. (EPFL)

Figure 6.17: Time-averaged streamwise skin friction (left) and surface pressure coefficient (right) for fk = 0.25
on grid G1 with a resolved turbulent inflow, as function of the inflow turbulence level and integral length scale.
The legend indicates ILE and L /c.
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grid G1 with fk = 0.25 is investigated. The streamwise development of Rei i follows the
theoretical decay for all cases, and an increase in Rei i also leads to an increase in νt /ν.

The effect on the integral quantities is shown in Fig. 6.18. Both the time-averaged lift
and drag increase with increasing inflow turbulence, and both quantities increase by ap-
proximately 10% between the lowest and the highest inflow turbulence levels. However
the difference between a RANS solution and a SRS solution without inflow turbulence
is much larger for the drag than for the lift, as seen in previous sections. So while the
increase in inflow turbulence results in a lift force which is comparable to the RANS so-
lution, the drag force is still significantly underpredicted. Note also that for both lift and
drag, the increase with increasing ILE seems to converge, meaning even higher inflow
turbulence intensities will likely not result in a significantly higher mean force value.
Note that for ILE = 15.5%, ui ui /U 2∞TG = 0.60, which is very high, but it is employed for
the sake of completeness. The standard deviation of the signal has not converged. Fur-
thermore, the large value for CD at ILE = 0.0% is caused by the separation at the leading
edge, so this should not be interpreted as the ‘correct’ result.
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Figure 6.18: Time-averaged (solid lines) and standard deviation (dashed lines) of lift (left) and drag coefficient
(right), for fk = 0.25 on grid G1 with a resolved turbulent inflow, as function of the inflow turbulence level. The
legend indicates ILE .

Finally, the effect of increasing inflow turbulence intensity on C f ,x and Cp is inves-

tigated in Fig. 6.19. The C f ,x profiles show a small separation at the leading edge for
non-zero ui ui /U 2∞, leading to transition. This transition location does not vary with the
inflow turbulence intensity, although an increase in ILE does lead to an increase in skin
friction along the wing, which is also observed in RANS computations in literature [260].
For C f ,x , the results with the highest ILE seem to converge, indicating a limit to the skin
friction which can be obtained using the ITG on this grid, with this value for the inte-
gral length scale. The minimum value of C f ,x at x/c ≈ 0.05 also increases, until a limit is

reached at approximately C f ,x ×103 = 1.1. A consequence of the increasing inflow tur-

bulence intensity is a change of the slope of C f ,x , in the range 0.1 ≤ x/c ≤ 0.7. The peak
at x/c ≈ 0.1 reaches a maximum for ILE = 6.3%, after which it decreases again, while at
x/c ≈ 0.7 the C f ,x keeps increasing with increasing ILE . Finally, again for Cp , there is
little difference between the computations with inflow turbulence.
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Figure 6.19: Time-averaged streamwise skin friction (left) and surface pressure coefficient (right) for fk = 0.25
on grid G1 with a resolved turbulent inflow, as function of the inflow turbulence level.

6.4.5. INFLOW TURBULENCE CONCLUSIONS

Based on these comparisons, the use of synthetic turbulence at the inflow can suppress
the large leading edge separation as observed for PANS with a low fk value and usual
steady inflow conditions. Provided that the grid can support the selected integral length
scale, a decrease in integral length scales increases the skin friction. The effect of varying
ILE is larger. No inflow turbulence leads to either a large leading edge separation zone,
or a laminar flow along the wing. A small amount of inflow turbulence already sup-
presses the leading edge separation, and leads to a small separation at the leading edge,
inducing transition. To increase the lift and drag coefficient, higher inflow turbulence
intensities are required. C f ,x shows that even with the highest levels of turbulence at-
tempted in this chapter, still laminar to turbulent transition is visible downstream of the
leading edge. To trigger transition further towards the leading edge, the integral length
scale should be reduced. This does require the grids to be refined further, due to the com-
putational costs this was not attempted in the current chapter. The application of inflow
turbulence does also decrease the turbulent separation region at the trailing edge, how-
ever it was not completely removed. Separation at the trailing edge is never mentioned
in literature, however there is an indication that this phenomenon was also present in
the experiments. When one of the few reported wetted flow velocity fields obtained with
PIV by Foeth [235] is compared with the current computations using the same colour
scale, it becomes clear that the turbulent separation at the leading edge also occurred in
the experiments. Fig. 6.20 shows the same wavy region of low velocity at the trailing edge,
although the velocity scale prohibits the observation of negative velocities at the trailing
edge. This implies that turbulent separation at the trailing edge is a feature of this test
case, and the removal of this by increasing the inflow turbulence intensity should not be
a goal.

Cp is only affected near the trailing edge; closer to the leading edge it matches the
limited experimental data well. This indicates that the presence of synthetic turbulence
should have little effect on cavitation inception (this will be investigated in the next sec-
tion). This does not mean that cavitation is not affected at all. The presence of resolved
turbulence in the flow can potentially disturb the formed cavity, leading to additional
dynamics, varying wing loading or noise. Together with the ability to tune the turbu-
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Figure 6.20: Magnitude of velocity at the wing centreline, obtained using PANS with fk = 0.25 on G4 (left) and
PIV (right). The PIV field is reproduced from Foeth [235], both figures use the same colour scale.

lence inflow statistics, the procedure here used is a promising method to compute noise
due to cavitation dynamics, or dynamically varying blade loading for cavitating or non-
cavitating propellers in a non-uniform wake field.

6.5. CAVITATING RESULTS
The final investigation in this chapter concerns the application of inflow turbulence to
a case with cavitation. Thus far in literature PANS is rarely combined with multi-phase
flows, a notable exception being the work by Ji, X. Luo, Y. Wu, et al. [252]. However this
work focusses on analysing the cavity dynamics, only a single fk is attempted with a
steady inflow, and the associated modelling errors are not investigated. To the knowl-
edge of the authors the combination of cavitation with inflow turbulence has not been
attempted before. The computations are compared against numerical results obtained
with DDES and IDDES; and against experimental results by Aït Bouziad [256] and Foeth
[235], designated EPFL and Delft, respectively.

In the computations the cavitation number, σ= 1.07 is matched, while the settings
for the inflow turbulence correspond to Case B of the wetted flow computations, mean-
ing L /c = 0.013 and ILE = 6.3%; the turbulence intensity is comparable to the exper-
iments. For this level of inflow turbulence, the lift coefficient is relatively insensitive to
the selected fk value. The relatively low turbulence intensities limit the risk of numerical
instabilities when cavitation modelling is included. Higher inflow turbulence intensi-
ties lead to improved drag predictions, but in cavitating computations can also lead to
increased computational instability due to the combination of shedding sheet cavita-
tion and inflow turbulence. The integral length scale in the experiments is unknown, the
currently employed value is selected based on numerical reasons. The Courant number
is well below 1, with the exception of some cells at the trailing edge where a maximum
value of 4 is reached. The computations are started from a wetted flow computation with
cavitation introduced over a period corresponding to around 0.5 shedding cycles. Based
on the TST it is found that the first five shedding cycles must be removed to eliminate the
start-up effects. Computations are then continued for an additional six cycles in the sta-
tionary range, reducing the statistical uncertainty for the mean lift and drag forces below
3%. A shedding cycle Ts is 1/St larger than the wetted flow time unit, so Ts = Tw f /St .
The normalised residuals reach at least 10−3 for L2 for all equations. The L∞ norms are
higher, and occur near the leading edge.

Fig. 6.21 shows the developed time signal and power spectral density (PSD) of the
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lift coefficient and vapour volume, compared with DDES and IDDES results, following
removal of the start-up effects, as discussed in Sec. 6.3. The PSD is computed using the
pwelch algorithm and applying a Hann window with 50% overlap, resulting in averag-
ing over 6 segments [261]. Note the significantly larger variations in Vv for IDDES. The
PSDs for the PANS computations show no clear dominant shedding frequency due to the
windowing, but show that the resolved turbulent inflow leads to a higher PSD at higher
frequencies.
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Figure 6.21: Time signal and PSD with windowing of lift coefficient (left) and vapour volume (right), for fk =
0.25 on grid G1 without and with inflow turbulence (L /c = 0.013, ILE = 6.3%). Time axis shifted following
removal of start-up effects. DDES results from Vaz et al. [79].

The integral values can be found in Tab. 6.4. As for wetted flow, the application of a
resolved turbulent inflow condition increases the lift for the PANS computations; CL is
below the lift predicted by the hybrid models (DDES and IDDES). When comparing to
experiments, all models underpredict the lift. Fig. 6.1 already showed that this is com-
mon in literature, indicating that the discrepancy might also be attributed to unknown
experimental uncertainty. It is remarkable that the fluctuations in lift are also signifi-
cantly smaller for PANS than for the hybrid models, this will be commented upon later.
Note that the standard deviation of the lift coefficient is an order of magnitude larger
than for the wetted flow computations (Sec. 6.4), indicating that the fluctuations in the
lift due to the inflow turbulence are negligible compared to the cavitation induced fluc-
tuations. Unsurprisingly, the predicted drag is higher for all models which employ RANS
close the the wall, the fluctuations in drag however are comparable for all models. For
PANS, the standard deviation of the drag has increased by a factor 2 compared to wet-
ted flow, again indicating that the fluctuations due to cavitation are dominant. This is
confirmed by the observation that the standard deviation for a steady inflow condition is
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slightly higher than for a resolved turbulent inflow. The average vapour volume increases
for PANS when the resolved turbulent inflow condition is employed, but the mean and
standard deviation of the vapour volume remain below the predictions done by DDES
and IDDES. Finally, the Strouhal number is computed from a single segment PSD of the
lift coefficient and vapour volume to emphasize the lower frequencies of the shedding
sheet cavity (not shown here). For PANS without inflow turbulence, StVv is larger than
StCL , implying different mechanisms are responsible for the vapour and lift fluctuations
respectively, and indicating additional dynamics in the sheet cavity. For PANS with a
resolved inflow, the shedding frequency halves although it must be remarked that this
shedding frequency is difficult to discern.

Table 6.4: Integral values of cavitating computations with PANS with a steady and a resolved turbulent inflow
and fk = 0.25 on G1. DDES results were previously reported in Vaz et al. [79]. St computed from PSDs without
windowing (not shown in this chapter).

Experiment Steady inflow Resolved turbulent inflow
Quantity DDES IDDES PANS ( fk = 0.25) PANS ( fk = 0.25)
CL 0.53 0.43 0.43 0.39 0.41
σCL ×103 - 11.19 19.27 1.56 2.33
CD - 2.28 2.36 1.71 1.74
σCD ×103 - 2.07 3.52 2.26 2.21
Vv /c3 ×103 - 1.69 2.42 1.16 1.30
σVv /c3 ×104 - 2.95 6.90 1.79 2.72
StCL 0.70 0.56 0.72 0.63 0.37
StVv 0.70 0.56 0.72 0.81 0.85

Fig. 6.22 shows both the instantaneous and time-averaged streamwise skin friction
and velocity at the centreline for both cases with PANS. The trailing edge separation can
still be observed towards the tunnel wall, where the angle of attack is smaller, but in the
regions downstream of the sheet cavity it is absent. The size decreases again when inflow
turbulence is added. An interesting observation is that the low momentum inside the
cavity leads to a time-averaged velocity field, which looks similar to the time-averaged
velocity field for wetted flow with low fk without inflow turbulence, i.e. when flow sep-
aration occurs at the leading edge (see Fig. 6.6). In this case the presence of cavitation
masks the leading edge separation which was observed in the wetted flow computation.

Similar observations can be made from the time-averaged skin friction and pressure
coefficients at midspan, see Fig. 6.23. The skin friction coefficient is based on the den-
sity of the liquid to enable comparing to the wetted flow results. Again the similarity with
wetted flow cases without inflow turbulence is clear in the shape of C f ,x (compare for ex-

ample Fig. 6.23 to Fig. 6.7). The application of inflow turbulence leads to a higher C f ,x

in the range x/c > 0.5, but towards the leading edge (in the cavitation region), little dif-
ferences occur. This is not surprising, since in this region the local flow is dominated by
the presence of the low momentum fluid inside the cavity. In the range 0.25 ≤ x/c ≤ 0.35,
the steady inflow results show more re-circulation than the resolved turbulent inflow re-
sults, indicating that the application of inflow turbulence affects the boundary layer in
the region where the cavity is periodically being shed.

The time-averaged pressure coefficient clearly shows the presence of cavitation com-
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Figure 6.22: Instantaneous (top row) and time-averaged (bottom row) limiting streamlines and friction coeffi-
cient C f ,x , on the wing surface, and streamwise velocity, u/U∞, for fk = 0.25 on grid G1, for steady (left) and
a resolved turbulent inflow (right) (L /c = 0.013, ILE = 6.3%). The instantaneous iso-contour of the vapour
volume is indicated in green (αv = 0.1).

pared to the results obtained for wetted flow. At the leading edge, the pressure coefficient
shows the suction peak due to the presence of a stagnation point. The magnitude of this
peak depends on the value of n0 chosen in the Schnerr-Sauer cavitation model, but does
not affect the dynamic cavitation behaviour [79]. Downstream of the suction peak the
pressure coefficient has a constant value approximately equal to the cavitation number
(until x/c ≈ 0.3). The length of this horizontal plateau indicates the mean length of the
cavity. When comparing to the experimental results, the cavity length is underpredicted
by all numerical approaches. The application of a resolved turbulent inflow has little
effect on the mean cavity length, however, the mean cavity length predicted by PANS is
lower than the cavity length predicted by DDES or IDDES, related to the higher shedding
frequency. This also explains the lower predicted vapour volume. Again note the simi-
larity between Cp for cavitating conditions, with the laminar wetted flow condition on

grid G1 which also exhibits a horizontal plateau at −Cp ≈−1.1 in the range 0 < x/c ≤ 0.2
(see Fig. 6.8).

The effect of the resolved turbulent inflow is most visible in the standard deviation of
the streamwise skin friction and pressure coefficients near the leading edge. For the skin
friction in the region x/c ≤ 0.2, the standard deviation fluctuates but is at some points
almost 30% higher, while the standard deviation of the pressure coefficient increases al-
most 50% in the same region. Along the remainder of the chord the standard deviation
for both PANS computations is similar, and in magnitude, σCp is comparable to the re-
sults obtained with DDES and IDDES. However, the chordwise variation is sensitive to
the model choice. For IDDES two clear peaks can be observed, the largest is related to
the varying length of the sheet, while the peak at the leading edge is due to the cavity
detaching from the leading edge and growing again. A somewhat similar behaviour is
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observed for PANS with a steady inflow. However, for the resolved turbulent inflow σCp

reduces at the the leading edge, indicating a different shedding behaviour. Instead of
the periodically growing and detaching cavity as observed in experiments and obtained
with IDDES, for PANS only parts of the sheet are shed, similar to what was observed for
DDES [79]. For PANS, this happens at a higher shedding frequency, leading to a lower
standard deviation of the lift coefficient and a lower time-averaged vapour volume.
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Figure 6.23: Time-averaged (top row) and standard deviation (bottom row) of streamwise skin friction (left) and
surface pressure coefficient (right), for fk = 0.25 on grid G1 with inflow turbulence, L /c = 0.013, ILE = 6.3%.
DDES results from Vaz et al. [79].

6.6. DISCUSSION
In this chapter, the ITG is used to reduce the modelling errors in SRS incurred by using
a steady (RANS-like) inflow, both in wetted and cavitating conditions. For the test case
considered, when applying fk ≤ 0.5, it is necessary to insert turbulent fluctuations up-
stream of the wing in order to obtain a flow field predicted by SRS which is close to the
experimentally observed flow field. Since lowering fk reduces the amount of modelled
inflow turbulence, this must be replaced by resolved turbulence in order to maintain a
physically correct flow field approaching the object of interest. When a steady inflow
is applied, the flow around the object remains laminar along most or all of the chord,
and – for certain combinations of sufficiently fine grid resolution and low fk – separates
already at the leading edge. Flow separation was not previously reported for numerical
results found in literature, although an indication of this phenomenon can be found in
the experimental work by Foeth [235]. The reasons for this oversight vary: the results
obtained with RANS or hybrid models do not exhibit flow separation, due to the RANS
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assumption of a fully-developed turbulent boundary layer. The LES results reported in
literature also did not exhibit this, although this could be related to the employed grid
resolution at the wall; not just in wall-normal direction, but also in the directions par-
allel to the wall (which is in literature much coarser than the ones here used). In the
current chapter it is observed that the inclusion of cavitation in the computation tends
to mask the leading edge separation, which is likely also the case for the LES results from
literature.

Using synthetic inflow turbulence, transition is triggered closer to the leading edge,
resulting in turbulent flow along the wing, thereby avoiding laminar flow separation.
This behaviour is reminiscent of the application of vortex generators on aerofoils, where
the vortex generators energize the boundary layer, thereby improving the stall behaviour
by preventing leading edge separation [258, 262, 263]. The turbulent flow separation at
the trailing edge seen in certain simulations is, however, thought to be physically correct,
since this was also observable in the experiments. It is noted that the sensitivity to inflow
turbulence quantities for SRS is analogous to what is commonly observed when using
RANS with transition models, where modest differences in inflow turbulence intensity
can dramatically affect boundary layer development (see e.g. [190, 260, 264]).

An alternative approach for obtaining a turbulent boundary layer in the simulations
is to trip the boundary layer close to the leading edge. This is commonly applied for
measurements of turbulent boundary layers performed at moderate Reynolds numbers
(104 − 105) or for flow control purposes, in order to reduce the size of laminar separa-
tion bubbles, and reduce the associated drag. Applications include aircraft wings, wind
turbines or blades of turbomachinery [258, 263]. The sand grain roughness applied in
the experiments of the present test case could be reproduced numerically in a number
of ways: by geometrically resolving the roughness [265], applying a simplified trip in the
geometry (e.g. [263, 266]), or by adding wall-normal velocity fluctuations (e.g. [258, 267,
268]). An advantage of a trip is that there is no need to tune the ITG to obtain a turbulent
boundary layer. Nevertheless, there are several challenges involved in applying this type
of approach. Geometrically resolved sand grain roughness is far from standard practice
in CFD, and will in any case only quantitatively agree with what is used in experiments,
while wall-normal velocity fluctuations and a trip – despite the much simpler geometry
– must also be tuned to obtain a flow disturbance equivalent to the roughness applied in
the experiments. Wall-normal velocity fluctuations could also have a detrimental effect
on iterative convergence. Although these approaches do reduce the need for a refined
grid upstream of the object, leading to slightly reduced numerical cost per simulation,
the required modification to the grid makes it a less general methodology, which is more
difficult to apply across a range of test cases or operating conditions ([263]). In real-life
engineering applications it can be expected that inflow turbulence is present. Conse-
quently, the use of a steady inflow in combination with SRS always introduces a certain
level of modelling error. When trips are used, there is also the risk that a too thick tur-
bulent boundary layer develops, which may affect the flow prediction downstream. It
can also introduce a pressure jump [263], which can have implications for numerical
cavitation inception (which is typically based on the simplified criterion Cp <−σ).

Therefore, when the development of a turbulent boundary layer is the primary goal,
applying leading edge roughness is probably the better approach. However, should the
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focus of simulations be more on large-scale dynamics, such as noise generation of pro-
pellers due to inflow turbulence [269] or cavitation dynamics, the development of the
boundary layer is of less importance compared to the interaction of turbulence with the
leading edge. In such cases the ITG is the more appropriate choice.

It was shown in this chapter that, despite specifying unphysically high inflow tur-
bulence intensities in the simulations (significantly higher than the reported 2− 3% in
the experiments), it was not possible to obtain transition directly at the leading edge,
since the inflow turbulence fluctuations do not enter the boundary layer due to insuffi-
cient (spanwise) grid resolution. This agrees with the findings of Tangermann and Klein
[270], who studied the effect of inflow turbulence for a NACA profile at moderate angle
of attack using DDES. While using inflow turbulence with similar L /c to that used in the
present chapter, they observed that smaller integral length scales are needed to enter the
boundary layer and cause transition, while larger length scales mainly affect loading, as
they induce angle of attack fluctuations. However, to be able to properly resolve a fully
turbulent boundary layer from the leading edge onwards, the grid resolution has to be
increased by several orders of magnitude to support these smaller length scales, as well
as the transition process they initiate. The lack of resolution leads to a limit in skin fric-
tion: for computations with low fk values, the skin friction remains significantly lower
than the results with higher fk values. It is noted, however, that when applying a trip it
might also be difficult to numerically reproduce the transition behaviour behind the trip
due to the fine grid resolution required.

As already mentioned in the Introduction, the Delft Twist 11 Hydrofoil was used as
a test case representative of a simplified propeller. The results in this chapter indicated
that the fundamental shedding frequency of the sheet cavity was not affected by the syn-
thetic inflow turbulence. For a propeller operating in a wake field, this finding likely
holds, since the dynamics of a sheet cavity at the blade passage frequency are governed
by the rotation of the blade in a non-uniform mean velocity field, although cavity shed-
ding and higher-frequency dynamics are expected to be somewhat sensitive to inflow
turbulence. Simulating a non-uniform wake field in SRS leads to the additional require-
ment of specifying inhomogeneous anisotropic inflow turbulence.

6.7. CONCLUSION
The Delft Twist 11 Hydrofoil was evaluated in wetted and cavitating flow conditions, us-
ing the PANS methodology with a varying ratio of modelled-to-total kinetic energy, on
different grids and using both a steady and a resolved turbulent inflow. It was shown that
modelling errors can occur when applying a steady inflow condition, as used for RANS,
due to the flow around the object remaining laminar. This leads to underpredicted lift
and drag forces, making validation impossible. Depending on the grid resolution, the
wing can even exhibit laminar leading edge separation, i.e. stall.

When employing a resolved turbulent inflow, where homogeneous isotropic turbu-
lence is inserted into the flow, the leading edge separation disappears regardless of the
chosen input values for the ITG. The region of trailing edge separation is reduced by
increasing the inflow turbulence intensity, which also increases the skin friction along
the wing. The separation at the trailing edge is also observed in the experimental re-
sults, meaning that, although this was not reported previously, a proper match with the
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experimental flow field is obtained. Increasing the inflow turbulence intensity also in-
creases the mean lift and drag force, though only till a certain limit. The fluctuations in
lift and drag keep increasing. An important observation is that the inflow turbulence has
almost no effect on the pressure distribution. This implies that inception remains unaf-
fected when using the – in CFD and the maritime world – commonly applied cavitation
inception criterion. Varying the integral length scale has less effect on the flow separa-
tion. When using a resolved turbulent inflow, it is necessary that SRS grids are refined
upstream to support the convection and development of inflow turbulence.

For cavitating conditions, the variations in lift and drag due to inflow turbulence are
significantly smaller than the fluctuations due to the shedding sheet cavity. The addition
of inflow turbulence does affect the shedding behaviour: smaller parts of the sheet cavity
are being shed at a higher frequency. The predicted mean lift and drag match the numer-
ical results reported in the literature, while the predicted Strouhal number is higher than
the experimental value. To the knowledge of the authors, this is the first application of
synthetic inflow turbulence to a test case including cavitation.

As part of future work it is desirable to improve the iterative convergence of the com-
putations, which was seen to reduce due to the interaction of cavitation and inflow tur-
bulence. Secondly, the influence of applying a symmetry plane at the foil midspan in
order to reduce the domain size (and thereby also the required number of grid cells)
should be further investigated. When resolving turbulence, the symmetry plane intro-
duces a modelling error, and with the inclusion of inflow turbulence this error becomes
even larger, being already present upstream of the wing. It is also clear that further re-
fined grids are a necessity to obtain a proper resolved boundary layer and properly cap-
ture transition behaviour with SRS methods. With respect to the validation, the inclusion
of more physics in the CFD computations leads to more stringent demands for experi-
mental data. It is recommended to not only measure integral quantities, but also char-
acteristics of the setup such as turbulence intensity and integral length scale, and the
flow in the boundary layer. The absence of this information for the Delft Twist foil high-
lights the need for new experimental test cases aimed at validation of SRS investigations
of multiphase flows.

In this chapter the ITG is successfully combined with cavitation. The next chapters
will focus on the inclusion of an acoustic analogy in such setups.
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7
ELLIPTICAL WING

A tip vortex generated by an elliptical wing is simulated in wetted and cavitating condi-
tions, using scale-resolving simulations. The vortex is excited by synthetic inflow turbu-
lence with varying inflow turbulence intensities. Vortex kinematics and cavity dynamics
are analysed, and validated against experiments and a semi-analytical model from liter-
ature. The far-field radiated noise is analysed using an acoustic analogy. Using a back-
ground noise correction, the sound due to inflow turbulence is removed, and the sound
due to cavity dynamics is isolated. Based on the sound spectra, the main noise generat-
ing mechanisms are identified. Cavitating simulations predict a broadband increase of
approximately 15 dB in the far-field radiated noise, while doubling the inflow turbulence
intensity results in an increase of approximately 10 dB.

7.1. INTRODUCTION
Historically, when investigating cavity vortex dynamics, there is – both for experiments
and simulations – a preference for using stationary wings representative of propeller
blades, instead of using the full propeller geometry. The absence of rotation leads to
a simplified measurement setup and reduced computational requirements since only a
single blade has to be resolved. Such a case is the canonical case of a vortex generated
by a three-dimensional wing with an elliptical planform [13, 190, 272, 273], commonly
referred to as the ‘Arndt’ wing. With respect to the cavity dynamics, several vortex de-
formation modes can be identified [13, 273], each of which contribute to the noise pro-
duced by the wing.

In numerical investigations in literature, a range of turbulence models are applied,
resulting in different reported lift coefficients, as shown in Fig. 7.1. Formulations relying
on the Boussinesq hypothesis are not sufficient, as shown by Schot et al. [23]. Curvature
corrections are found to improve results, but modelling errors of the velocity profiles in
the vortex were still found to be large [23, 274]. The application of LES and ILES de-
creases the modelling error for the integral quantities compared to experiments and the

This chapter has been submitted for publication [271].
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models avoided early decay of vorticity [274]. However, it is unclear whether turbulent
velocity fluctuations are properly developed, meaning that the predicted vortex could
be excessively laminar. Paskin [25] obtained velocity fluctuations in the wake of the foil,
using DES. However, due to grid induced separation the lift coefficient did not match
the experimental results of [43]. The work by Liebrand et al. [190] showed that the usage
of SRS, such as DDES, can lead to improved vortex predictions compared to traditional
Reynolds averaged Navier-Stokes (RANS) methods. However – due to the steady inflow –
the results obtained converged to a steady solution, exhibiting a significant modelling er-
ror when compared to experiments. Remarkably, most numerical investigations in liter-
ature focus on either predicting cavitation inception (e.g., Asnaghi, Svennberg, Gustafs-
son, et al. [274]), or capturing the time-averaged flow kinematics (e.g., [23, 25]). There
are few attempts at simulating the cavity dynamics and noise generating mechanisms,
for which this test case was designed.
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Figure 7.1: Literature overview of lift coefficients (CL = L/
(
1/2ρU 2∞A

)
, with the overline indicating a time-

average, L the lift force, ρ the density and A the wing surface area) in wetted flow conditions, as function of
the number of grid cells (Nc ) and turbulence model. Results at 9° angle of attack at Re ≈U∞c0/ν= 8.95×105.
Experimental results from Pennings, Bosschers, et al. [273], numerical results from [25, 190, 202].

The aim of this chapter is to investigate whether the vortex dynamics observed in
experiments for this test case can be reproduced by applying SRS together with synthetic
inflow turbulence, and whether this can be related to far-field noise. Simulations are
performed with PANS [51] and IDDES [54]. A theoretical advantage of PANS is that due to
the explicit setting of the filter between RANS and DNS, the discretisation and modelling
errors are decoupled [57]. The use of a single formulation ranging from RANS to DNS
prevents ad hoc behaviour when switching between resolving and modelling turbulence,
as can occur for hybrid methods, such as (I)DDES [79]. In this chapter the PANS-KSKL
model, designed for multiphase flows, is used. Iterative, statistical and discretisation
errors are assessed. The postprocessing consists of:

1. analysing and validating the vortex kinematics;

2. analysing the vortex dynamics based on 2D fast Fourier transforms, and com-
paring the dynamics against the semi-analytical formulation by Bosschers [13],
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which was validated with experimental measurements by Pennings, Bosschers, et
al. [273];

3. analysing the predicted noise, computed using an acoustic analogy.

The chapter is structured as follows. Sec. 7.2 describes the test case, theoretical dis-
persion relationship by Bosschers [13] and numerical setup. After a discussion of the
numerical uncertainty in Sec. 7.3, the main results are presented in Sec. 7.4, followed by
the discussion and conclusions in Sec. 7.5 and 7.6, respectively.

7.2. TEST CASE AND SETUP
The ‘Arndt’ wing is an elliptical planform with a NACA662 − 415 cross-section, a root-
chord of c0 = 0.1256 m, a wingspan of b = 0.15 m and a surface area A = 0.01465 m2.
The most widely considered test condition in literature for this wing is for a root-chord
based Reynolds number of 8.95×105. Using ν = 1.002×10−6 m2/s and ρ = 998 kg/m3,
this yields an inflow velocity of 7.15 m/s.

Numerical results in the literature often exhibit a premature decay of vorticity, and
therefore an underpredicted cavity size, compared to experiments. This is primarily at-
tributed to numerical diffusion, and overprediction of eddy viscosity. Liebrand et al.
[190] recently argued that this can also partly be attributed to the assumption of a fully
turbulent boundary layer, while the Reynolds number is in the transitional regime. Fol-
lowing those results the wing is investigated only at 9° angle of attack, to mitigate this
laminar-turbulent transition issue.

Pennings, Westerweel, et al. [43] measured the lift force and applied particle image
velocimetry (PIV) in wetted and cavitating conditions to analyse the cavity dynamics and
measure cavity radius for different cavitation numbers. For the same cavitation tunnel
Foeth [235] reported typical levels of inflow turbulence intensity at the location of the
wing of 2-3%, while Varadharajan [236] observed ≈ 1.5% at a 50% lower mean tunnel
velocity. Neither source provides information on the integral length scale.

7.2.1. DISPERSION RELATION FOR A 3D VORTEX
The goal of the current study is to compare the simulated cavity dynamics with the ex-
perimental observations by Pennings, Westerweel, et al. [43]. Based on those results,
three vortex deformation modes were identified: the breathing mode (a volume varia-
tion), the serpentine mode (a centre line displacement) and the double helix mode (an
rotating elliptical cross-section of the vortex), as visualised in Fig. 7.2.

Bosschers [13] extended this idea, and derived a dispersion relation using a small-
perturbation analysis for the kinematic and dynamic boundary conditions, to describe
these dynamics and to analyse resonance frequencies in the radiated noise. Under the
assumption that the phase velocity of the axial deformation is much smaller than the
speed of sound, the non-dimensional dispersion relation for low frequencies can be for-
mulated as

ω̃± (
k̃x ,n

)= Ũx,c k̃x +Ũθ,c n ±
√

Kσ

√√√√−k̃x K ′
n

(|k̃x |
)

Kn
(|k̃x |

) Tω. (7.1)
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Figure 7.2: Deformation modes of the vortex cavity. From top till bottom the breathing mode (n = 0), the
serpentine mode (n = 1) and the double helix mode (n = 2), based on Bosschers [13].

The vibration modes all contain two branches and therefore two frequencies. This is in-
dicated by the plus-minus sign, and also used in the mode identification (e.g. n = 0+ and
n = 0−). In Eq. 7.1, non-dimensional quantities are indicated with a tilde. K is a mod-
ified Bessel function of the second kind (also known as a MacDonald function), and K ′
is its first derivative with respect to the argument; n indicates an integer, representing
the mode (n = 0, ±1, ±2, for breathing, serpentine mode and double helix mode, respec-
tively), k̃x = kx rc is the normalised wavenumber, with kx = 2π/λ with λ the wavelength,
and ω̃= 2π f rc /U∞. Tω indicates the contribution of surface tension. Due to the absence
of surface tension modelling in the present study, this is neglected, i.e. Tω = 1.0. The ex-
pression depends furthermore on the normalised axial and azimuthal velocities at the
cavity interface, Ũx,c = ux,c /U∞ and Ũθ,c = uθ,c /U∞, respectively.

In the current study Eq. 7.1 is used as validation of the cavitation dynamics predicted
by the simulations. Ũx,c and Ũθ,c will be compared against the values obtained by Pen-
nings, Bosschers, et al. [273] and Bosschers [13]. Due to limitations in the PIV measure-
ments, in the experimental results Ũθ,c was obtained using

Ũθ,c =

p
σ, potential flow vortex,

p
σ

√
r 2

c

r 2
v+r 2

c
, cavitating Lamb-Oseen vortex,

(7.2)

with σ as the cavitation number. The stiffness term was defined as

Kσ =
{
σ, potential flow vortex,

σ
(

r 2
c

r 2
v+r 2

c

)
, cavitating Lamb-Oseen vortex.

(7.3)

The dispersion relation (Eq. 7.1), with the relative sensitivities to the different param-
eters, is visualised in Fig. 7.3

7.2.2. COMPUTATIONAL DOMAIN AND GRID
The computational domain corresponds to the cavitation tunnel of Delft University of
Technology [43], with an inlet located 5c0 upstream of the wing and an outlet located
10c0 downstream. The domain is visualised in Fig. 7.4.
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Figure 7.3: Non-dimensional dispersion diagram for the cavity deformation modes n = 0± and n = 2± (left) and
n = 1± (right) described by Eq. 7.1. The parameters are taken as Ũx,c = 1.0, Ũθ,c = 1.0 and Kσ = 1.0. Shaded
regions indicate uncertainty bands obtained by varying the parameter in the subcaption by ±10%.
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The grid consists of multi-block hexahedral structured grid, with additional refine-
ment around the wing’s edges. To minimise numerical diffusion, a priori grid refinement
was employed to increase the resolution in the vortex and wake regions [275]. For the
resolution in the vortex, the recommendation by Asnaghi, Svennberg, and Bensow [202]
of an in-plane and streamwise resolution of rv /8 and rv /4 was met for the finest grid,
with rv the viscous core radius. Upstream of the wing – between the ITG and the wing
– an additional refinement box is located to resolve the inserted synthetic inflow turbu-
lence. The computational grid contains 7.44×106 cells, and has non-dimensional wall

cell sizes (x+ = uτx/ν, with uτ the wall friction velocity and x the cell size) of x+
n = 0.1,

x+
t = 160 and x+

s = 330 in normal (n), tangential (t ) and spanwise (s) direction, respec-
tively. The numerical grid, with the porous data surfaces used for the acoustic analysis
(see Sec. 2.6.1) are shown in Fig. 7.5. The PDS passes through several regions of varying
grid densities, which is not ideal with respect to the accuracy of the FWH method. Nev-
ertheless, given the computational cost of the simulations, and the need to refine the
grid in the region encompassing the vortex, this is considered inevitable.
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SLIP-WALL

NON-SLIP WALL

Figure 7.4: Schematic visualisation of computational domain including geometrical parameters expressed in
c0, and boundary conditions. Reproduced from Liebrand et al. [190].

Figure 7.5: Numerical grid. The PDS for the acoustic analysis is indicated in yellow.

7.2.3. COMPUTATIONAL SETUP
Two experimental conditions were matched, one wetted flow and one cavitating condi-
tion. The wetted flow condition corresponds to a cavitation number of σ= 4.2, while for
the cavitating conditionσ= 1.7 [13, 273]. The conditionσ= 1.7 is common in numerical
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investigations of this test case in literature, since in this way tip vortex cavitation is ob-
tained, while avoiding sheet cavitation [23] which could dominate the vortex dynamics
due to its shedding behaviour. This case was also investigated without inflow turbulence
using ReFRESCO by Liebrand et al. [190].

Although the specified number of seeds and bubble radius are expected to affect
the liquid-vapour interface, their effect was considered to be out of the scope of this
research. These were set to nb = 1×109 m−3 and RB = 3×10−5 m respectively, based on
[23, 64, 80]. For the PANS-KSKL model, a fixed fk value of 0.1 is employed, based on the
experience for simulating sheet cavitation (see Chapter 6.

The boundary condition at the inlet is a Dirichlet condition for all velocity compo-
nents and a Neumann condition for pressure. Next to the resolved turbulence, at the
inflow a RANS turbulence intensity of 1% and an eddy-viscosity ratio of 1.0 is prescribed.
A Dirichlet condition for the pressure is prescribed at the outlet, with Neumann con-
ditions for velocity and turbulence quantities. The tunnel walls were modelled as slip
walls, and the wing’s surface as a non-slip wall. The timestep for these computations is
kept fixed to ∆t∗ =∆tU∞/c0 = 0.01.

Homogeneous isotropic turbulence was inserted at x/c0 = −2.4 using three differ-

ent turbulence intensity levels, resulting in a turbulence intensity (I =
√

u′2/U∞, with
u′ = 〈Ui 〉−U∞) at the location of the wing tip of It i p ≈ 1.3%, 0.7% or 0.3%. The integral
length scale is selected taking several considerations into account. Firstly, the energy-
containing scales should be sufficiently large such that about 80% of the TKE can be
resolved using the chosen grid resolution. This requirement derives from guidelines for
LES [52], and is also necessary when selecting a low fk value (< 0.2). Furthermore, and
importantly for the present case, since the ITG introduces numerical background noise
into the simulation, it is desirable to select the integral length scales such that a fre-
quency shift relative to the anticipated cavity dynamics is present. From literature it is
known that the non-dimensional cavity resonance frequency (2π f rc /U∞) at σ= 1.7 lies
in the range 0.4−0.6 [273]. Therefore an integral length scale of Ltip/rc ≈ 80 is chosen,
corresponding to fL = U∞/L = 0.07, or at least six times below the cavity resonance
frequency. We note that the selected inflow parameters do not correspond to measured
conditions in the cavitation tunnel, although there is a complete lack of information re-
garding the integral length scale in the facility. For test cases where the integral length
scale is known, meaning that a frequency shift between cavitation dynamics and inflow
turbulence cannot necessarily be guaranteed, additional attention should be given to
ensuring sufficient signal-to-noise ratio in the simulations.

The streamwise development of inflow turbulence based on a line monitor b/3 above
the wing tip in z direction is shown in Fig. 7.6. The integral length scale was determined
using the first local minimum of the temporal autocorrelation function.

The inflow intensities remain relatively constant in the region (x −xTG )/c0 ≥ 0.5, af-
ter the initial disturbances due to the ITG. For all turbulence intensities, the wetted flow
I is slightly higher for than the cavitating results. This is likely related to an interaction
between the ITG and the cavitation model. Assuming a quadratic dependency of the
(non-cavitating) noise on the turbulence intensity, a 10% difference between the cases
results in an effect below 1 dB, which for the current studies is considered acceptable.

To evaluate the inflow turbulence characteristics, the spectra are compared against
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Figure 7.6: Streamwise development of inflow turbulence intensity and turbulence kinetic energy spectra at the
streamwise position close to the wing tip. Dashed lines indicateσ= 4.2 (wetted flow), solid lines correspond to
σ= 1.7. Translucent lines indicate the von Kármán fits. The wing tip is located at x/c0 = 0.0, which corresponds
to

(
x −xT G

)
/c0 = 2.4. Cavity radius obtained from results described in Sec. 7.4.3. For σ = 4.2 results, the

frequency axis is normalised by the rc obtained from the corresponding σ= 1.7 simulation.

theoretical von Kármán spectra (shown with translucent lines in Fig. 7.6), given by

Φuu = Lt i p u′2

πU∞
2π(

1+ k̂2
x
)5/6

exp

(
−9

4

(
2π f

U∞Rλ

)2)2

, (7.4)

with

k̂x = 2π f /U∞p
πΓ (5/6)/

(
Lt i pΓ (1/3)

) . (7.5)

HereΦuu indicates the power spectral density, Γ the gamma function, and Rλ the Taylor
scale Reynolds number, here assumed to be 500 [276]. For this fit, the integral length

scale Lt i p and u′2 are taken from the simulation. To enable comparison against the
results from the analysis of the cavitation dynamics, and results from literature, the hor-
izontal axis is normalised based on the cavity radius rc . For the σ = 4.2 results, rc is
obtained from the corresponding σ= 1.7 simulation.

Taking the ratio of the integral of the numerical resolved and theoretical von Kármán
spectra results in an estimate that 80-90% of the turbulence kinetic energy is resolved in
the simulations, which satisfies guidelines for LES [52]. It is also clear from Fig. 7.6 that
the energy-containing range lies well below the cavity resonance frequency, confirming
that the desired frequency separation has been achieved. The cut-off at lower wavenum-
bers in the numerical results compared to the theoretical spectra should help to further
reduce the numerical background noise at frequencies at which cavity dynamics are ex-
pected.

Cavitating computations are started at a higher cavitation number to increase sta-
bility of the simulation during the initial timesteps. By increasing the vapour pressure
using a cosine function, the required cavitation number is reached after 0.0193 s, or in
non-dimensional time-units tU∞/c = 1.1. The inflow turbulence reaches the tip of the
wing after 0.07 s, or tU∞/c = 4.0. Each full computation simulates 1.93 s, or tU∞/c = 110.
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7.2.4. POSTPROCESSING METHOD

From the simulations several different types of data are extracted, and combined. The
postprocessing method is schematically shown in Fig. 7.7, with the remainder of this and
the next subsection going into more detail regarding the determination of the relevant
quantities.

Dynamics (e.g. Fig. 7.15)Kinematics (e.g. Fig. 7.12) Sound (e.g. Fig. 7.20)

Cavitating-flow SRS

Cavity iso-surface

ParaView-Catalyst
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Cavity dynamics

Dispersion lines (Eq. 7.1)
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p ′, SL( f ), OASL(θ)

Background noise correction

Velocity slice

VORTFIND

ux , uθ

rv , Ũx,c , Ũθ,c

Validation

Validation

Link cavity dynamics to far-field pressure fluctuations

Experiments

Semi-analytical model

Figure 7.7: Postprocessing flow chart indicating the data flow.

To compute the viscous core radius and obtain the parameters for the dispersion re-
lationship, the improved VORTFIND algorithm [277, 278] is applied to cross-sections of
the velocity field around the vortex at x/c0 = 0.50 downstream of the tip. From this ve-
locity slice, the vortex centre, velocity profiles, and consequently the viscous core radius,
can be obtained.

The vortex dynamics are analysed using a modified version of the method developed
by van den Boogaard [279] which was based on the work of Bosschers [13]. In those
studies the cavity centreline and radius are obtained from the cavity projection to two
planes (y and z, also designated ‘top’ and ‘side’ view). The centreline and radius are then
analysed by means of a 2D fast Fourier transform (FFT) to obtain Cross-Power Spectral
Density (CPSD) and the phase difference between the planes. These results can then be
compared against the theoretical dispersion relation (Eq. 7.1). Bosschers [13] applied
the methodology to experimental results, while van den Boogaard [279] attempted to
reproduce this for a numerical test case.

The restriction to two projection planes derives from the limited data available from
the experiments, in which a stereo camera setup was used. Theoretically, the projec-
tion to two planes should yield all the required information to distinguish the different
modes: variations in radius lead to the n = 0 mode, variation in centreline give the n = 1
mode, and from differences between ry and rz the n = 2 mode can be obtained. How-
ever, some problems with this approach can be observed. The main issue is that due
to the setup it is assumed that the cavity cross-section is always convex, and can be de-
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scribed by an ellipse. Due to the projection, any other shape will always reduce to this
ellipse, meaning that modes n = 0, 1 and 2 are the only modes which can be observed.
Higher modes are commonly assumed to be irrelevant with respect to noise generation,
due to their lower acoustic radiation efficiency [280], since it is expected that the n = 0
acts as a monopole, n = 1 as a dipole, and n = 2 as a quadrupole. It does however mean
that more elaborate vortex features cannot be obtained with this postprocessing. Even
when this assumption is made deliberately, the approach based on projections can still
lead to problems. Consider the hypothetical case of an elliptical cross-section, with its
main axis oriented 45° with respect to the projection coordinate system. Based on the
projections, ry = rz , meaning that no distinction can be made between a circular and
elliptical cross-section. This means that in the CPSD there is a data bleed of the n = 2
mode to the n = 0 mode. Due to the temporal rotation of the n = 2 mode this phe-
nomenon will always occur, however at varying locations along the vortex. In the work
of Bosschers [13], this was circumvented by identifying the modes of the dispersion lines
based on their phase difference, yet an approach which does not suffer from this prob-
lem is preferable. The current approach makes use of different parameters. The modes
are identified using the cavity centroid, effective radius, eccentricity and angle, which
are defined later in this subsection.

ReFRESCO co-processing, which is based on the ParaView Catalyst library [281], is
used to obtain this data and manage the amount of data which needs to be written to
file. The procedure is schematically shown in Fig. 7.8. In the simulation, the iso-surface
of αv = 0.1 is extracted at every timestep, thereby preventing the need to store the full
solution at every timestep. These iso-surfaces are sliced in the streamwise direction, ori-
ented perpendicular to a quadratic fit of the time-averaged cavity trajectory. The inter-
section between the slice and iso-surface yields a polygon. Using the method by Fitzgib-
bon et al. [282], an ellipsoid with the centroid

(
yc , zc

)
and a width of 2a and a height of

2b, according to the formulation(
y − yc

)2

a2 + (z − zc )2

b2 = 1, (7.6)

is fitted onto the cross-section. The effective radius is computed with

re f f =
p

ab, (7.7)

when assuming that the area of the ellipse is equivalent to a circle with radius re f f

(πr 2
e f f =πab). The eccentricity is defined as

e =


√
1− a2

b2 , if b > a;√
1− b2

a2 , if a < b.
(7.8)

The angle of the fitted ellipse with respect to a Cartesian coordinate system is also anal-
ysed to check whether the cross-section rotates in time. Note that by fitting an ellipse,
the results are still limited to the second modal deformation. This makes for easy com-
parison against the results by Bosschers [13], but using this method an extension can be
easily realised in the future by modifying the fitting function.
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Figure 7.8: Extraction of vortex parameters. Fig. 7.8a shows the cavity with a slice of the iso-surface. Fig. 7.8b
shows the fitting procedure and extraction of variables. Onto each cross-section of the cavity (in blue), is an
ellipse fitted (black) with the parameters xc , yc , a, b, e, and the angle, indicated by θ. The effective radius is
computed using a circle with the same area as the fitted ellipse (red). For comparison, the method used in the
experiments by [43] is indicated in grey with the subscript exp.

The availability of these three quantities allows for a clear distinction between the
different modes: the centroid should yield n = 1, the effective radius n = 0 and the ec-
centricity n = 2. For all quantities, following Bosschers [13] the Power Spectral Density
(PSD) is computed with

PSD = 120+10log10

(
S ¯S∗

r 2
c

)
, (7.9)

with S is the single-sided 2D spectrum of the quantityφ, and S∗ is its complex conjugate.
The spectrum and its conjugate are multiplied using an element-wise matrix multiplica-
tion, i.e. the Hadamard product, indicated by ¯. For the centroid and fitted ellipse, the
Cross-Power Spectral Density (CPSD) is also computed based on the y and z coordinates
or a and b of the ellipse respectively, using

C PSD = 120+10log10

(Gyc ¯G∗
zc

r 2
c

)
(7.10)

where Gyc indicates the 2D spectrum of yc , and G∗
zc

the complex conjugate of the 2D
spectrum of zc , or Ga and Gb respectively. These results are presented in decibels (dB),
and can be compared against the theoretical dispersion relation (Eq. 7.1).

The far-field acoustics are obtained using the FWH method, as explained in Sec. 2.6.1.
In the current study the far-field receiver arrays are placed at 3° intervals by revolving
around the x-axis (blue), y-axis (orange), and z-axis (green). Receivers are located in the
acoustic far-field, at a distance of rr ec = 5 m, i.e. ≈ 40c0. The setup is visualised in Fig. 7.9.
The PDS is a cylinder with a radius of 0.25 m and a length of 0.4 m, extending from the
wing tip downstream, containing 71840 cell faces (see also Fig. 7.5). The PDS is con-
structed from the faces of the numerical grid, thereby avoiding interpolation [148]. At
the location of the wing, the cylinder ends on the wing surface. The intersection with the
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boundary layer introduces spurious noise, due to the quadrupole source volume integral
being ignored [82, 86, 148, 283]. Nevertheless, it was deemed necessary to encapsulate
the cavity attached to the wing tip.

In literature it is observed that for flows containing strong vortical structures, such as
propellers, the inclusion of end caps can lead to spurious noise, again originating from
the quadrupole source volume integral being ignored. A common solution is to omit the
downstream part of the PDS, provided that the PDS is long enough to enclose as much
of the relevant flow physics as possible [82, 86]. A similar problem is expected to occur
here as well due to the inflow turbulence generation, however in this case both the up-
and downstream parts of the PDS (i.e. the top and bottom, or end caps, of the cylinder)
must be removed. This is not a full solution, since the PDSes lie inside the region where
upstream turbulence is being generated. This leads to vortices passing through the sides
of the cylinders, and consequently spurious noise. A method to address this is by com-
puting the quadrupole sources and correcting the predicted noise [283], which remains
to be done in future work. In the current study, it is anticipated that this noise will be
dominated by the cavitation noise. The background noise due to the ITG-PDS setup will
be investigated in Sec. 7.4.4.

Figure 7.9: Left figure: Locations of the far-field receiver arrays placed at 3° intervals by revolving around x-axis
(blue), y-axis (orange), and z-axis (green). Distance from the wing was scaled down by a factor of 10 in the
figure for readability. Right figure: side view of the PDS and wing.

7.3. NUMERICAL ERRORS
To assess the iterative convergence, the residuals, normalised by the diagonal element
of the left-hand-side matrix of the linearised equation, are used. For PANS-KSKL wetted
flow computations with inflow turbulence, the obtained residuals are L2 ≈ 10−4 (L∞ ≈
10−2) for the momentum equations, L2 ≈ 10−6 (L∞ ≈ 10−3) for pressure and L2 ≈ 10−8

(L∞ ≈ 10−5) and L2 ≈ 10−10 (L∞ ≈ 10−8) for k and
p

kL, respectively. When cavitation
is included, similar convergence is obtained, while the vapour volume fraction equa-
tion reaches L2 ≈ 10−5 (L∞ ≈ 10−2). These residuals show the superior convergence be-
haviour of the KSKL closure, as observed in Chapter 4. For the IDDES computations,
based on a SST model, similar convergence is reached for all equations, except the tur-
bulence equation. For k, L2 ≈ 10−7 (L∞ ≈ 10−4), but ω stagnates at L2 ≈ 10−3 (L∞ ≈ 100).

With respect to the discretisation error, a grid based on previous verification studies
by Liebrand et al. [190], is employed with additional grid refinement zones. It was shown
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that the resolution used by Liebrand et al. [190] was sufficient to achieve acceptable dis-
cretisation errors (below 10%) for the prediction of the vortex kinematics.

Finally, the finite length of a CFD simulation introduces a random uncertainty in
the mean of the signal. To estimate the statistical uncertainty, and to remove the start-
up effect, the Transient Scanning Technique (TST) is used. As start up effect, the time
corresponding to the flow moving from the inlet to the wing tip is removed, correspond-
ing to 5.5 non-dimensional time units (T = c0/U∞). After the start up, the simulation
is continued for another 6 flow-through times of the entire domain, corresponding to
approximately 100 non-dimensional time units. Due to the need to obtain a sufficient
time-trace to analyse the cavity dynamics, the resulting statistical uncertainty is negligi-
ble for the integral quantities. For quantities describing the cavity dynamics, such as the
effective radius and eccentricity, the statistical uncertainty is below 3%.

7.4. RESULTS
Cavitating and wetted flow conditions are investigated, both with and without inflow
turbulence, using PANS and IDDES (see Tab. 7.1 for the different conditions). From the
experimental results described in Bosschers [13] a relatively small vortex (rc /c0 = 0.0038)
with a mostly circular cross-section is expected. In all results in this section, PANS-KSKL
computations are indicated by fk = 0.1.

7.4.1. OVERVIEW

Fig. 7.10 shows an overview of the simulations, with the normalised, instantaneous, vor-
ticity in the background, together with the cavity iso-surface and skin friction coefficient
and limiting streamlines on the wing surface. The variations in vorticity in the back-
ground are a result of the synthetic inflow turbulence. In the wake and surrounding the
vortex higher levels of vorticity are present. The limiting streamlines and skin friction co-
efficient show turbulent separation at x/c0 ≈ 0.6 on both the pressure and suction side,
which was also observed experimentally [284]. For more details on this phenomenon,
and the sensitivity to the inflow characteristics, the reader is referred to Liebrand et al.
[190].

Tab. 7.1 reports the time-average and standard deviation of the lift and drag coef-
ficient, together with the mean viscous core and cavity radius. The results show that
IDDES predicts a lower time-averaged lift and drag, and a lower standard deviation of
these quantities, both in wetted and cavitating flow. The standard deviation of the lift
and drag for IDDES without inflow turbulence is 0, which is in line with the results ob-
tained in [190], namely that these computations converge to a steady state. The addition
of inflow turbulence leads to small variations in the instantaneous lift and drag, but does
not alter the viscous core radius.

The use of PANS without ITG leads to leading edge flow separation, similar to what
was observed in in Chapter 6. Consequently, PANS is only used in combination with ITG.
IDDES is applied with and without ITG, since it does not suffer from this issue due to the
fact that the inner part of the boundary layer is solved using RANS.

Fig. 7.11 shows an instantaneous side and top view of the vortex at σ = 1.7. The
n = 0 and n = 1 modes are not clearly discernible, although it should be noted that this
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(a) Pressure side (b) Suction side

Figure 7.10: PANS ( fk = 0.1), σ = 1.7, It i p ≈ 0.7%. Limiting streamlines and skin friction coefficient (C f =
|τw,x |/

(
0.5ρU 2∞

)
, with τw,x the skin friction in streamwise direction), on the wing surface. Cavity is indicated

in yellow. The background shows a slice of the normalised, instantaneous, x component of the vorticity (ω =
∇×〈Ui 〉) at y/c0 = 0.4 in the pressure side image, and y/c0 =−0.4 in the suction side image. The flow is from
left-to-right for the pressure side, and from right-to-left for the image of the suction side.

Table 7.1: Time average and standard deviation of lift and drag forces; and mean radii, obtained at x/c0 = 0.50.

σ Computation It i p /% CL σCL CD σCD rv /c0 rc /c0

4.2 fk = 0.1 1.3 0.714 0.029 0.059 0.002 0.012 -
fk = 0.1 0.7 0.712 0.012 0.060 0.002 0.012 -
fk = 0.1 0.3 0.710 0.009 0.060 0.002 0.012 -
IDDES 1.3 0.639 0.020 0.054 0.001 0.013 -
IDDES 0.0 0.646 0.000 0.054 0.000 0.013 -

1.7 fk = 0.1 1.3 0.713 0.024 0.060 0.002 0.018 0.010
fk = 0.1 0.7 0.714 0.013 0.060 0.002 0.018 0.010
fk = 0.1 0.3 0.712 0.009 0.060 0.002 0.017 0.009
IDDES 1.3 0.644 0.023 0.054 0.002 0.017 0.009
IDDES 0.0 0.648 0.000 0.054 0.000 0.017 0.008
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is expected due to the small amplitude of the fluctuations. It is possible to discern the
ribbon-like structure in the cavity downstream of the tip, indicative of the n = 2 mode.

Figure 7.11: PANS ( fk = 0.1), σ= 1.7, It i p ≈ 0.7%. Instantaneous top and side view images of the vortex cavity.
The side view shows the wing pressure side, the flow is from left to right.

The description of the results follows the workflow as described in Fig. 7.7. The ve-
locity distributions are determined in Sec. 7.4.2, Sec. 7.4.3 focuses on the analysis of the
cavity dynamics, while Sec. 7.4.4 shows the acoustic results and compares those to the
cavity dynamics.

7.4.2. VORTEX KINEMATICS
Using the VORTFIND algorithm the velocity field is analysed at x/c0 = 0.5. Fig. 7.12
shows the time-averaged profiles of axial and azimuthal velocity along the radius, com-
pared to the data obtained using PIV by [43]. In both graphs, also the cavity radius rc is
indicated, this being obtained based on the results described in Sec. 7.4.3.

The axial velocity for wetted flow shows a clear difference between IDDES and PANS.
For IDDES the axial velocity decreases inside the viscous core radius, having a maximum
at the viscous core radius for both wetted and cavitating conditions. This was also ob-
served in Liebrand et al. [190] for RANS models (KSKL, SST and EARSM) and DDES. For
PANS however, for wetted flow, the axial velocity increases to a maximum which is con-
stant in the region r /c0 / 0.08. The inclusion of cavitation leads to a decrease in axial
velocity in the core for all computations, but again PANS predicts a higher velocity than
IDDES. The axial velocity is reduced even further for lower cavitation numbers (simula-
tions at σ= 1.2 were performed but are not presented here).

The increase in inflow turbulence intensity leads to a small reduction in axial velocity
in the vortex core in wetted flow conditions. This reduction is in line with the observation
of Varadharajan [236], who investigated experimentally the effect of inflow turbulence
on a wetted vortex at a lower Reynolds number. Several turbulence intensities (up to
6%) were employed. A reduction in axial velocity of up to 20% was measured, however
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the currently considered range in turbulence intensities (up to 1.3%) is smaller.
The azimuthal velocity profiles for σ = 1.7 with PANS match the experiments well,

both in terms of viscous core radius and velocity magnitude. The IDDES predictions
show a slightly reduced azimuthal velocity and a smaller viscous core radius. In wetted
flow conditions, for both models the azimuthal velocity is underpredicted at the viscous
core radius. The PANS results show a higher maximum velocity compared to IDDES,
but this is still approximately 20% lower than the experimental values. Increasing I in-
creases the maximum velocity for IDDES, but for PANS there is no observable difference.

From these figures, the viscous core radius is obtained, as well as the axial and az-
imuthal velocities at the cavity interfaces. These values – obtained at this downstream
location – are used as input for the semi-analytical dispersion relationship (Eq. 7.1). It
is known from literature (e.g. [190]) that the viscous core size and cavity radius depend
on the downstream distance, due to the counteracting effects of roll-up and vortex dif-
fusion. Generally, the cavity radius decreases somewhat linearly, while the viscous core
size keeps increasing downstream. This downstream location is a compromise between
downstream distance of the wing tip, and the limited length of the cavity in the simula-
tions. It does introduce an error in the determination of the dispersion lines (Eq. 7.1);
based on Fig. 7.3 the effect of this error can be approximated.
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Figure 7.12: Radial distribution of axial (left) and azimuthal (right) velocity at x/c0 = 0.5. Dashed lines and
circles indicate σ = 4.2 (wetted flow), solid lines and triangles correspond to σ = 1.7. Vertical dotted lines
indicate the cavity radius rc (αv = 0.1). Experimental data from Pennings, Westerweel, et al. [43].

7.4.3. CAVITY DYNAMICS
Secondly, the cavity dynamics are analysed based on the cavity iso-surfaces (αv = 0.1)
extracted at every timestep (as described previously in Sec. 7.2.4). All results shown here
are obtained with a PANS model, fk = 0.1, with It i p = 0.7%.

To select which part of the vortex to analyse, space-time diagrams, are used. In these
contour plots, the cavity radius is shown with the downstream distance off the tip (x) on
the horizontal axis, and time (t ) on the vertical axis. Downstream propagating phenom-
ena can be observed as diagonal lines. Fig. 7.13 shows x−t diagrams for IDDES with and
without inflow turbulence, leading to a dynamic and steady cavity, respectively. In the
derivation of the dispersion relation (Eq. 7.1) it is assumed that the vortex is an infinitely
long 2D vortex. This requires theoretically that the vortex should be analysed where the



7.4. RESULTS

7

149

cavity size no longer grows (after the roll-up, x/c0 > 1.0), nor decays. However, in compu-
tational results it is commonly observed that the cavity diffuses after ≈ 1c0 downstream
of the tip [190]. Consequently, in the current study, the vortex is analysed from directly
behind the tip until the point where it diffuses, so the effect of the roll-up is not removed.
This is also a clear discrepancy between simulations and experiments. In experimental
results, the cavity extends all the way until the end of the test section, i.e. O (10c0).

From Fig. 7.13 the effect of ITG is clearly visible. Both results are obtained with ID-
DES, but while the results with ITG show dynamics and a vortex increasing and decreas-
ing in length and radius, the results without ITG converge indeed to a steady solution for
t/s ' 0.1.

Figure 7.13: Space-time diagram of cavity radius normalised with viscous core radius. Left IDDES without ITG
(It i p = 0.0%), right with ITG (It i p ≈ 1.3%).

RESOLUTION

The resolution of the cavity dynamics analysis can be computed from the sampling res-
olution in time and space. In this analysis the timestep is ∆t = 1.93 · 10−4 s, so the
sampling frequency is fs,t i me = 1/∆t = 5.81 ·103 Hz, and consequently the Nyquist fre-
quency is fN ,t i me = fs,t i me /2 = 2.91 ·103 Hz. The number of temporal samples is 1×104,
while the number of spatial samples is 500 over a length of 2c0 behind the tip, leading
to ∆s = 6 · 10−4 m, fs,space = 1/∆s = 1.67 · 103 m−1 and fN ,space = fs,space /2 = 8.35 · 102

m−1. The distance between two slices corresponds to 2−3 cells, so the spatial resolution
is slightly undersampled.

Based on Fig. 7.13, the cavity is commonly analysed in the range 0.0 < x/c0 < 0.8,
leading to 102 spatial and 104 temporal samples. Following the approach of Bosschers
[13], the time-averaged data for each streamwise location station is subtracted to obtain
the fluctuations with respect of the mean. For the FFT a single segment is used to obtain
the best resolution.

This leads to a spatial resolution of ∆kx = 9.95 m−1 and a temporal resolution of
∆ f = 2.07 Hz. For PANS ( fk = 0.1) with It i p ≈ 0.7%, this results in the non-dimensional
resolutions of ∆ (kx rc ) = 2.6×10−3 and ∆

(
2π f rc /U∞

)= 1.1×10−2. For comparison, van
den Boogaard [279] obtained ∆kx = 36−84 m−1 and ∆ f = 4−8 Hz, while Bosschers [13]
had a resolution of∆kx = 31.6 m−1 and∆ f = 0.15 Hz. Bosschers [13] indicated that while
his temporal resolution was sufficient, his spatial resolution was not. The resolution in
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the current analysis therefore uses a coarsened temporal resolution, and a refined spatial
resolution.

1D ANALYSIS

Following Bosschers [13] a 1D analysis is first performed, where an averaging operator in
time or space is applied, followed by a FFT in space or time, respectively. Fig. 7.14 shows
the 1D PSD for the effective radius, eccentricity, centroid location and angle.

The PSD of the time-averaged effective radius, centroid locations and angle decrease
after kx rc ≈ 0.04. For the time-averaged angle and eccentricity there is a peak at kx rc ≈
0.1. In the space-averaged PSDes, there is a peak in the spectrum at 2π f rc /U∞ ≈ 0.01,
after which the spectra decrease. For the effective radius and y and z centroids there
is a slight hump at 2π f rc /U∞ ≈ 0.2. The eccentricity and angle show a clear peak at
2π f rc /U∞ ≈ 0.3−0.4, and for the eccentricity there is another peak at 2π f rc /U∞ ≈ 1.0.
These peaks are an indication that the helical mode is present in the cavity. At a slightly
lower frequency, 2π f rc /U∞ ≈ 0.2, there is also a peak for the y and z centroids for PANS
with It i p = 0.7 and 0.3%, pointing to the serpentine mode. The effective radius does
not show a clear peak, indicating that the breathing mode is difficult to discern from the
simulations. The spectra will be related to the produced sound in Sec. 7.4.4, where a
physical interpretation will be given.

For PANS, increasing the inflow turbulence intensity generally also increases the PSD
of the space-averaged quantities. For the y and z centroids, for It i p = 1.3% there is
a much higher broadband spectrum at higher frequencies, thereby obscuring the sec-
ondary peaks which can be observed for the lower intensities. A possible explanation for
this is that in this case the inflow turbulence disturbs the vortex to such a degree that the
vortex no longer oscillates in a natural frequency.

2D ANALYSIS

Secondly a 2D analysis is applied, where a FFT in time and in space is applied simultane-
ously, resulting in a wavenumber-frequency diagram in which dispersion relationships
should appear as diagonal lines (as detailed in Sec. 7.2.1). The contour plots of the 2D
PSD and CPSD are also smoothed using a bilinear filter to remove noise.

In the 2D PSD plots the fitted dispersion relations (Eq. 7.1) are shown, using the val-
ues given in Tab. 7.2. The tables shows the fitting parameters obtained from the compu-
tations, and from the theoretical relations given by Bosschers [13] (Eq. 7.2 and Eq. 7.3).
Ũx,c has no theoretical counterpart. Ũθ,c from the computations is lower than the poten-
tial flow and Lamb-Oseen values. For Kσ the Lamb-Oseen values are used in the plots.
Ũx,c is slightly lower than the experimentally observed value, while Ũθ,c matches the
experimental value well. As expected based on the results in Sec. 7.4.2, there is little
difference between the parameters for the different simulations. Compared to the ex-
perimental values from Bosschers [13], Ũx,c is 20% lower, while Ũθ,c is comparable.

In line with the experimental analysis, convection lines, defined by

ω̃= cg
(
k̃x − k̃x,0

)
, (7.11)

are drawn at constant group velocity cg and using k̃x,0 = 0.42m, with m = 0. Bosschers
[13] used cg = 0.95U∞, but in the current study, a better match was obtained using cg =
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Figure 7.14: Frequency domain analysis of the temporally- (left) and spatially-averaged (right) effective radius,
eccentricity, centroid and angle of the cavity. The resolution is given in Sec. 7.4.3.
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1.25U∞. This value is closer to the value cg = 1.19U∞ employed by Pennings, Bosschers,
et al. [273].

Table 7.2: Values of non-dimensional velocities and stiffness coefficient at the cavity interface for σ = 1.7,
based on Equations 7.2 and 7.3 for potential flow and Lamb-Oseen, respectively (see Section 7.4.2), and based
on computations. The values used for the lines in Figs. 7.15 and 7.16 are indicated in bold. Cavity radius and
viscous core size are given in Table. 7.1. For σ = 1.7, Bosschers [13] gives experimental values of Ũx,c = 1.25
and Ũθ,c = 0.4.

Computation It i p /% Coefficient Potential flow Lamb-Oseen Computation
PANS( fk = 0.1) 1.3 Ũx,c - - 1.013

Ũθ,c 1.30 0.622 0.387
Kσ 1.70 0.387 -

PANS( fk = 0.1) 0.7 Ũx,c - - 1.012
Ũθ,c 1.30 0.616 0.387
Kσ 1.70 0.379 -

PANS( fk = 0.1) 0.3 Ũx,c - - 1.011
Ũθ,c 1.30 0.630 0.385
Kσ 1.70 0.397 -

IDDES 1.3 Ũx,c - - 1.002
Ũθ,c 1.30 0.620 0.365
Kσ 1.70 0.384 -

IDDES 0.0 Ũx,c - - 1.002
Ũθ,c 1.30 0.587 0.369
Kσ 1.70 0.344 -

Fig. 7.15 shows the PSD of eccentricity, effective radius, y centroid and angle for a
PANS simulation with It i p ≈ 0.7%. Fig. 7.16 shows the CPSD and phase difference for the
y − z centroid and a −b of the fitted ellipse. Following the results by Bosschers [13], the
phase differences are only shown for a coherence larger than 0.4. Results for the It i p ≈
0.3% are similar, and not shown in this thesis. The 1D analysis in Fig. 7.14 showed a lot of
noise in the space-averaged PSDes of the y and z centroids coordinates for It i p ≈ 1.3%.
This reduces the coherence and makes both the trends for the z centroid and the phase
differences more difficult to observe, again pointing to the conclusion that the vortex is
no longer oscillating according to a dispersion relation, and instead is dominated by the
inflow turbulence. As expected, the reduced dynamics and cavity length for the IDDES
simulation make observing the dispersion relation more difficult. Consequently, these
results are not presented.

The PSD of the effective radius shows a diagonal lines in the wavenumber-frequency
diagram, but this does not match the theoretical lines for the n = 0± modes. The slope
does match the dispersion lines, as is to be expected, since it depends on the axial flow
speed. The same occurs for the PSD of the y and z centroids. The diagonal lines visi-
ble in the PSD of the effective radius and y and z centroids match the convection line
cg (m = 0). The PSD of the eccentricity and angle do match the n = 2− and n = −2+
modes.

The CPSD of the y − z centroid and a −b ellipse show a similar behaviour. Again the
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n =±1± modes are not distinguishable, but the n = 2− and n =−2+ modes can be clearly
observed in the CPSD of the a −b ellipse. In contrast, the phase difference of the y − z
centroid does match the theoretical dispersion lines for the n =−1+ and n = 1− modes.
For the CPSD of the y − z centroid clearly shows the convection line cg (m = 0).

Figure 7.15: PANS ( fk = 0.1), σ = 1.7, It i p ≈ 0.7%. Wavenumber-frequency diagrams (PSD) of the variation
of the effective radius, y and z centroids, eccentricity and angle, based on a single segment FFT. Theoretical
dispersion lines shown in cyan, and convection line in black.

What can be concluded from these results? The match with the theoretical predic-
tions shows that the helical mode shape can be clearly distinguished from the PSDes,
while the serpentine mode can be distinguished from the phase difference, but not in
the PSD. This is in line with the observations by Bosschers [13] based on experiments by
Pennings, Bosschers, et al. [273]. In contrast, the breathing mode (volume variation) is
difficult to distinguish. Two reasons for this can be identified. First, when comparing the
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Figure 7.16: PANS ( fk = 0.1), σ = 1.7, It i p ≈ 0.7%. Wavenumber-frequency diagrams (CPSD) and phase dif-
ference of the a −b ellipse and the y − z centroid coordinates, based on FFT with 4 segments in time and 2
in space, with a 75% overlapping Hann window. Phase differences with a coherence below 0.4 are masked.
Theoretical dispersion lines shown in cyan, and convection line in black.
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cavity radius with the experimental result, it is clear that the numerically predicted cavity
length is both significantly smaller from the experimental cavity, and fluctuates. This was
already observed in Fig. 7.13. The fluctuations can cause shrinking of the cavity along
the entire cavity length in a short timespan, instead of a fluctuation propagating along
the cavity with approximately the free-stream velocity. This results in a large peak at zero
wavenumber and frequency, making observing the dispersion relationship difficult. Sec-
ondly, while the time-averaged numerical cavity radius is larger (rc /c0 ≈ 0.01) compared
to the experimental value (rc /c0 = 0.0038 [13]), it also varies more along the cavity length.
This invalidates the assumption of an infinite vortex, made in the derivation of the dis-
persion relation. An alternative explanation would insufficient excitation of the breath-
ing mode, either in amplitude or frequency. However, the wavelength corresponding to
the resonance criterion of zero group speed (at ∂ω̃/∂k̃x = 0 [13]) is λ = 2πrc /k̃x , with
k̃x = 0.05, leading to λ ≈ 0.078 m. This wavelength is close to the turbulence integral
length scale of the inflow turbulence (L = 0.6c0 = 0.075 m). This suggests that a lack of
excitation does not cause the absence of the n = 0 mode.

The reduced cavity dynamics for IDDES can be related to the model formulation,
which blends RANS with LES depending on the location (in contrast to PANS). Fig. 7.17
shows the RANS/LES regions around the wing tip. As expected, the area close to the
wing is solved using RANS. The local refinements in the grid are also clearly visible, since
they directly affect the RANS/LES interface (see Sec. 7.3). While most of the tip vortex
is in a LES region, the vortex originates in a RANS region at the wing tip. This is also
the location where the inflow turbulence is most likely to interact with the vortex, since
the remainder of the vortex is locating in the wake of the wing. The use of RANS at the
wing tip reduces the resolved turbulent velocity fluctuations, which are transferred to
modelled turbulence. Consequently, the excitation of the vortex is reduced, leading to
less cavity dynamics.

(a) Chordwise-normal (y/c0 = 0.0) (b) Spanwise-normal (z/c0 = 0.8) (c) Streamwise-normal (x = xt i p )

Figure 7.17: Instantaneous LES regions (lt /l R AN S
t ) for the IDDES model close to the wing tip. 1 indicates RANS,

0 LES. The cavity is indicated in yellow.

7.4.4. FAR-FIELD NOISE

Finally, the far-field radiated noise is investigated using the results of the FWH acoustic
analogy. The results are presented as source levels (SL) at one metre, assuming spherical
spreading,

SL( f ) = SPL( f )+20log10 (|r|) (7.12)
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with SPL( f ) the sound pressure level, defined as

SPL( f ) = 10log10

(
φpp

(
f
)

p2
r e f

)
(7.13)

where φpp is the acoustic pressure power spectral density and pr e f the acoustic refer-
ence pressure, pr e f = 1×10−6 Pa; and the overall SL,

OASL = 10log10

´ f2

f1
φpp d f

p2
r e f

+20log10 (|r|) , (7.14)

indicating the decibel level of the normalised acoustic energy across the frequency range
f1 − f2.

The source levels have been smoothed using a top hat filter based on one-third oc-
tave (OTO) bandwidths, according to

φ̂( fc ) =
ˆ fu

fl

φ( f )d f −∆ fOT O , (7.15)

which is then corrected to recover the narrowband spectrum level. Here fc are the OTO
bandwidth centre frequencies, resulting in fl = 2−1/6 fc and fu = 21/6 fc .

Following common practise for sound measurements [285], a background noise cor-
rection is applied [18]:

• if the difference between signal and background noise is more than 10 dB, the re-
sults are not adjusted;

• if the difference is between 3 and 10 dB, the background noise is subtracted from
the signal;

• if the difference is below 3 dB, the source level data in the corresponding OTO band
is discarded due to an insufficient signal-to-noise ratio.

WETTED FLOW

Fig. 7.18 shows the SL spectra for the furthest downstream receiver for the wetted flow
computations, and the OTO SL corrected using the IDDES simulation without inflow
turbulence for the background noise levels. All spectra show a peak at 2π f rc /U∞ ≈
0.02−0.04, after which the spectrum decays. For PANS the SL is proportional to inflow
turbulence intensity in the frequency range 10−2 < 2π f rc /U∞ < 10−1; doubling the in-
tensity results in an increase at the spectral peak of approximately 10 dB. In the range
2π f rc /U∞ > 0.2 the spectra converge.

In contrast, the IDDES spectrum shows the same peak at lower frequencies, but is
significantly lower in the region 2π f rc /U∞ > 0.2. For IDDES without ITG (It i p = 0.0%),
the SL is, as expected, even lower. Across the frequency range the difference is around
150 dB. Consequently, in the largest part of the frequency range, the results are not ad-
justed by the background noise correction.
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Figure 7.18: Wetted flow spectra (left) and OTO bandwidth filtered spectra, corrected with the IDDES It i p =
0.0% result (right), obtained at the furthest downstream receiver.

From the sensitivity of the spectrum to varying inflow turbulence intensities, and the
fact that the frequency range overlaps with the energy-containing frequency range in the
inflow spectrum (see Fig. 7.6), it can be concluded that the peak at lower frequencies is
directly related to the inflow turbulence. The peak at lower frequencies is also present
in pressure spectra made at locations close to the wing tip (not shown). This frequency
range should therefore not be considered in the following, cavitating, investigations to
assess the overall sound level (OASL). This will be ensured by performing the background
noise correction.

Fig. 7.19 shows gives the OASL, integrated over the frequency range 0.01 ≤ 2π f rc /U∞ ≤
0.1. In this frequency range the inflow turbulence intensity has the largest effect, based
on Fig. 7.18. The results for It i p = 1.3% for IDDES and PANS are almost identical. There
is a an increase of approximately 120 dB between simulations with It i p = 0.0% and
It i p = 0.3%. For PANS, doubling the turbulence intensity leads to a subsequent increase
of 10 dB. The results for the different planes are almost identical, pointing to a monopole
behaviour. This implies that the first term in Eq. 2.68 dominates, likely since the ITG in-
troduces a large varying velocity normal to the PDS.

CAVITATING FLOW

Fig. 7.20 shows the SL spectra at the furthest downstream receiver in cavitating condi-
tions, and compares it against wetted flow computations. Again the observation can be
made that – compared to IDDES – the PANS simulations predict a higher SL in the re-
gion 2π f rc /U∞ > 0.2, while having a comparable magnitude at lower frequencies. The
SL of IDDES without ITG (It i p = 0.0%) is again not visible in the graph due to its low
magnitude.

Comparing the cavitating results to the wetted flow results shows that for frequencies
in the range 2π f rc /U∞ > 0.05, the cavitating simulations predict a SL which is 10-20
dB higher. The SL of PANS wetted flow is approximately the same as the SL for IDDES
with cavitating flow. This increase in SL for PANS can be related to the increased cavity
dynamics as observed in Sec. 7.4.3.

Fig. 7.21 shows the SL spectra for only the cavitating simulations, and the SL for each
simulation corrected using the corresponding wetted flow spectrum. The PANS simula-
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Figure 7.19: OASL for wetted flow computations at receivers in the different planes, integrated over 0.01 ≤
2π f rc /U∞ ≤ 0.1. For the YZ-plane, 0° is in the lift direction, and 90° in the spanwise direction. For the XZ-
plane, 0° is in the flow direction, and 90° in the spanwise direction. For the YZ-plane, 0° is in flow direction,
and 90° in the lift direction.
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Figure 7.20: OTO bandwidth filtered spectra, for cavitating and wetted flow computations. Spectra obtained
for the furthest downstream receiver. Dashed lines indicate σ = 4.2 (wetted flow), solid lines correspond to
σ= 1.7.
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tions with It i p = 0.3% and It i p = 0.7% show a broadband hump in the frequency range
0.2 / π f rc /U∞ / 0.5, matching the hump in the PSD of the space-averaged effective
radius.

There is also a peak observable at 2π f rc /U∞ ≈ 0.5, and at 2π f rc /U∞ ≈ 1.0. These
peaks are more clearly observable in the uncorrected spectra, shown in Fig. 7.22, since
the OTO filtering reduces the amplitude and shifts the frequency. In the uncorrected
spectra, the peaks have an amplitude of approximately 10 dB. The frequency of the first
peak matches the peak in the PSD of the space-averaged eccentricity, while the second
one matches the peak in the space-averaged centroid. This implies that the n = 0 mode
is responsible for broadband hump, while the n = 1 or n = 2 lead to the secondary peaks
in the SL spectra. The first peak also overlaps with the cavity resonance observed in ex-
perimental measurements [273]. The increased PSD at higher frequencies in the cavity
dynamics as observed for It i p = 1.3% manifests itself in the SL spectra by an increased
SL across the frequency range 2π f rc /U∞ > 0.2. The background noise correction clearly
shows that the lower frequencies (2π f rc /U∞ ≤ 0.2) should not be considered for deter-
mining the OASL due to cavitation, as expected based on the previous section.
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Figure 7.21: Uncorrected (left) and background noise corrected (right) OTO bandwidth filtered spectra. For
the background noise corrected spectra, each cavitating spectrum is corrected by its corresponding wetted
flow spectrum. The corrected spectra are discontinuous where data is discarded due to an insufficient signal-
to-noise ratio. Spectra obtained at the furthest downstream receiver.
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Figure 7.22: Spectra for cavitating simulations, obtained for the furthest downstream receiver.
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Fig. 7.23 shows the OASL at the different receiver planes, determined in the frequency
range based on the background noise correction. The OASL predicted by PANS and ID-
DES with cavitation and It i p = 1.3% is comparable, and is approximately 15 dB higher
than the wetted flow OASL. Again, for PANS doubling the inflow turbulence intensity
leads to an increase of approximately 10 dB, despite the different frequency range com-
pared to Fig. 7.19. The directionality plots show that the far-field radiated noise has a
monopole behaviour, which is agreement with theory and measurements for most cavi-
tating cases (see e.g. [13]).
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Figure 7.23: OASL at receivers in the different planes, integrated over 0.2 ≤ 2π f rc /U∞ ≤ 2.0. For the YZ-plane,
0° is in the lift direction, and 90° in the spanwise direction. For the XZ-plane, 0° is in the flow direction, and 90°
in the spanwise direction. For the YZ-plane, 0° is in flow direction, and 90° in the lift direction. Dashed lines
indicate σ= 4.2 (wetted flow), solid lines correspond to σ= 1.7.

7.5. DISCUSSION
The cavity dynamics and associated far-field pressure fluctuations originating from a
cavitating tip vortex were analysed. The results are sensitive to the choice of turbu-
lence model, inflow turbulence characteristics, method to solve multiphase flows and
the method to extract the acoustics. These aspects are discussed further.

In the cavity dynamics the oscillation modes from theory can be discerned. The
slope and trend of the lines is correct, but the match between theory and simulations
is less good. With additional tuning of the parameters of the semi-analytical equations
it is possible that a better match can be obtained between theory and simulations. Cur-
rently, this is not done for reasons of consistency. The cavity is analysed at its interface,
and hence the values for the azimuthal and axial velocity at that location are used. This
points to one of the error sources. In a VOF method, there is no clear definition of an
interface [65], meaning that the results are sensitive to the choice of interface used. Cur-
rently, the (common) assumption of αv = 0.1 (10% of vapour) is employed to locate the
interface. Since the velocity distributions are proportional to the definition of the cavity
radius (inside the viscous core radius), the parameters defining the dispersion lines are
sensitive to this choice. An alternative method would be to fit the dispersion lines, and
check at which iso-surface these values can be obtained. However, this could lead to a
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discrepancy between the interface used for the analysis of the cavity dynamics, and the
one used for the fitting parameters. Alternatively the cavity dynamics should be analysed
at a range of vapour volume fractions. Due to the associated additional computational
cost and storage requirements this would entail, this was not attempted in the current
study. That being said, it is important to realise that the value of vapour volume fraction
does strongly affect the size of the cavity which can be analysed. While for αv = 0.1, the
length is approximately 1c0, this decreases to 0.6c0 for αv = 0.5, and even to 0.2c0 for
αv = 0.9. The cavity radius approximately halves with each of these steps. Since part of
the discrepancies between simulations and theory can be related to the underpredicted
cavity length, a higher vapour volume fraction to extract the iso-surface is not likely to
improve the results.

Compared to experimental investigations, the dynamics – especially of the effective
radius and centreline – are less pronounced. Since the inclusion of inflow turbulence
introduces cavity dynamics, it is logical to attribute this difference to the level of inflow
turbulence intensity. It must be remarked that the current levels of turbulence intensity
are a compromise between numerical stability and cavitation dynamics. Higher levels
of inflow turbulence intensity do lead to increased cavity dynamics, but also result in
higher numerical background noise levels. It can also lead to parts of the cavity being
shed, invalidating the assumption of an infinite vortex. It is hypothesised that the mech-
anism of the cavity dynamics is as follows: the inflow turbulence acts as a disturbance,
which triggers the cavitating tip vortex at the leading edge to start oscillating. Due to this
excitation, the cavity starts to oscillate in its natural frequency, leading to the observ-
able oscillation modes. Evidence for this can be found in the mismatch in frequencies
between inflow turbulence and cavity dynamics.

In this study, two methods of SRS were applied: IDDES and PANS. IDDES has two
clear advantages, due to its hybrid formulation it is cheaper to apply, and it allows for
running the case without inflow turbulence (which was not possible when using PANS).
Nevertheless, to resolve cavity dynamics inflow turbulence is required, whatever SRS
method is used. When comparing the results to PANS, it is clear that both the differ-
ences in dynamics, as well as in acoustics are significant. For IDDES, there are less cavity
dynamics, and it is more difficult to discern the oscillation modes. This in turn makes
it more difficult to understand the noise generating mechanics. One of the reasons for
this is likely related to the RANS region close to the wing, from which the vortex origi-
nates. It seems that in the PANS simulations, the vortex is mostly affected by the inflow
turbulence at the wing tip. However in IDDES this is handled by RANS. This leads to re-
duced cavity dynamics compared to PANS, for which part of the turbulence spectrum is
resolved throughout the entire domain.

A final comment concerns the method of processing the results. A coupled CFD-
solver and co-processor is used to speed up the workflow, and even more importantly,
reduce the storage requirements. The cavity iso-surface is computed at runtime, at every
timestep, and stored to a file by the co-processor. This results in approximately 40 Gb of
iso-surface data per simulation. To put this into perspective, storing the full solution file
containing all fields, to extract the iso-surface a posteriori, would require approximately
80 Tb of data per simulation, i.e. an increase of a factor 2000. Even when only the grid
data and vapour volume fraction field would be saved, this would still result in approxi-
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mately 20 Tb of data per simulation. It is clear that that standard approach would make
the study here performed unfeasible.

7.6. CONCLUSIONS
A tip vortex originating from an elliptical wing is simulated with SRS in conjunction with
synthetic inflow turbulence. Reported results include kinematics, 3D cavity dynamics,
and far-field pressure levels. The dynamics are compared to a modal decomposition
based on theory for an infinitely long, 2D, cavitating vortex.

The comparison of the velocity profiles showed that the results match the exper-
iments reasonably well in cavitating conditions. In wetted flow results, the peak az-
imuthal velocity is underpredicted by 20%. The application of synthetic inflow turbu-
lence leads to observable cavity dynamics, which is a significant improvement compared
to previous results reported in literature, for which the simulations converge to a steady
state solution, even when using SRS. The mean velocity profiles are little affected by in
the inflow turbulence, in the range of turbulence intensities employed in this study. In
general, increasing the inflow turbulence intensity leads to increased cavity dynamics.
However, it was shown that a too high inflow turbulence intensity can disturb the vortex
to such a degree that observing the dispersion relation is no longer possible.

The cavity dynamics are analysed using 1D and 2D FFT’s of the effective radius, cen-
troid, angle, eccentricity and coefficients of the fitted ellipse. It was not possible to ob-
serve the breathing mode, likely due to the violation of the assumption of an infinite vor-
tex, and because the variations in cavity length affected the cavity radius. The serpentine
mode could be observed in the phase difference of the y and z centreline coordinates,
while the helical mode could be observed in the angle, eccentricity and the CPSD of the
fitted ellipse. To the knowledge of the authors, this is the first time that it was possible
to numerically reproduce the semi-analytical dispersion relationship of a cavitating vor-
tex. In contrast to the experimental observations from literature, in the current study
the dispersion relation is matched against the numerical data using fitting parameters
obtained from the simulations itself, thereby validating this relation.

Far-field pressure levels were obtained using an acoustic analogy. There is a clear
difference for far-field radiated noise between wetted and cavitating flow. The inclusion
of cavitation leads to an increase of 10−20 dB in the far-field SL, as long as dynamics are
introduced by synthetic inflow turbulence. The variability in the inflow introduces the
broadband hump in the sound spectrum. In the spectra the effect of inflow turbulence
is also present, but the sound sources can be separated based on their frequency range.
When comparing the acoustic spectra to the spectra of the cavity dynamics, it seems that
especially the effective radius and the eccentricity in the non-circular cross-section con-
tributes to the acoustics for this case. These are described by the n = 0± and 2± modes
of the dispersion relationship. The peaks in the sound spectra match the resonance fre-
quency observed in literature. Since the acoustic behaviour is a monopole, it is clear that
the variations in effective radius dominate the radiated noise, as was expected.

For future work, it would be desirable to capture the n = 0± modes, since these dom-
inate the produced far-field noise. Several lines of work could be investigated. Firstly, it
would be desirable to obtain a longer cavity – by using finer grids or modifications to the
cavitation model – to better comply with the assumptions made in the derivation semi-
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analytical model. This way the match with experimental data could also be improved.
Alternatively, varying inflow turbulence integral length scales could be considered. Fi-
nally, there is the option to use an inflow which more closely resembles a wake field
affecting a ship propeller. Such a wake field results in different excitation frequencies
affecting the vortex, since the wake is dominated by the blade passage frequency. This
could be achieved for a wing by varying the inflow speed or angle of attack. With respect
to noise predictions, it would be preferable to have the PDS inside a constant grid density
region, which requires an increased cell count in the wake.

In this study a co-processing method is used to manage the amount of data being
generated. With the increase in available computational power such large data flows will
become even more of an issue in the future. This means that performing data analysis
during the simulation runtime – although requiring more work to setup the simulation
– is the only scalable future option.
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CONCLUSIONS

This chapter summarises the main conclusions and recommendations.

8.1. INTRODUCTION
This thesis aims to give a better understanding of simulating cavitating tip vortices, in
order to predict sources of URN. To this end, SRS were applied to several test cases, in-
cluding wetted and cavitating conditions. Conclusions concern both the simulation of
noise sources, as well as the general application of SRS. Based on the findings several
recommendations are given for further research directions, as well as for the use of SRS.

8.2. THE NEED FOR AN UNSTEADY INFLOW CONDITION
It is repeatedly shown in literature that the results of LES or DNS can be dependent on
inflow conditions, e.g. [26, 27]. For SRS of attached turbulent flows it is necessary that
the inflow contains time-varying stochastic fluctuations which resemble turbulence. In
the field of maritime engineering, this has mostly not been addressed until now. The
following problems associated with not using a resolved turbulent inflow were observed
in this study for the different test cases:

• Turbulent channel flow: when using PANS, there is a case-dependent threshold
based on the ratio of modelled-to-total turbulence kinetic energy fk , which sepa-
rates two solution regimes: 0.2 ≤ fk < 1.0 yields a laminar solution regardless of the
initialisation of the flow, while if fk < 0.2, a turbulent flow can develop. A resolved
turbulent inflow therefore is necessary.

• Delft Twist 11 hydrofoil: the boundary layer flow remains laminar, and depending
on the grid resolution and fk , leading edge separation can be seen at the angle
of attack investigated. In the experiments, this was circumvented by adding lead-
ing edge sand roughness. The inclusion of cavitation in the computation tends to
mask the leading edge separation, thereby partly explaining reported agreement
between numerical and experimental results in literature.
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• Elliptical wing: the boundary layer flow remains laminar, and depending on the
grid resolution and fk , can also show leading edge separation. More importantly,
this test case was experimentally used to investigate cavitation dynamics. However
without inflow turbulence all simulations converge to a steady solution resulting
in a lack of noise generating mechanisms. This conclusion is in line with that of
Pennings [36], who concluded that a cavitating vortex only acts as a noise source
when the natural frequencies of the cavity are excited.

For the channel flow with periodic boundary conditions and a low enough fk value, a
turbulent flow, matching DNS results, can be obtained. However, for the other cases –
simulating an object in the centre of a cavitation tunnel – it is common to employ slip
walls for the domain walls to reduce the computational cost. It is also not desirable to
use periodic boundary conditions, to prevent the wake of the object interacting with the
object. These two reasons make the use of synthetic inflow turbulence a necessity in
order to obtain a SRS flow prediction matching the experimental results.

8.3. SRS WITH A TURBULENT INFLOW
It is shown that, independent of the selected turbulence simulation approach, the syn-
thetic method can produce a turbulent inflow at significantly lower computational cost
than using a precursor method. The ability to more easily tune the method to obtain the
desired Reynolds stresses and length scales is also attractive for industrial applications
for which these quantities may already be known. Despite the proposed improvements,
the possible introduction of additional numerical errors – such as interpolation and it-
erative errors (especially occurring in multi-phase flow conditions) – remains a concern.
Nevertheless, the modelling errors are significantly reduced by improving the similarity
between computations and experimental setups.

The main findings per test case are:

• Turbulent channel flow: synthetic inflow turbulence can deliver a turbulent flow
for PANS computations with higher fk values.

• Delft Twist 11 Hydrofoil: when employing a resolved turbulent inflow, the leading
edge separation disappears regardless of the chosen input values for the turbu-
lence generator. The flow field matches the experimentally observed flow field
better, and the mean lift and drag force are increased, though still underpredicted
compared to the experimental values. Importantly, the pressure distribution is not
affected, thereby not changing the cavitation inception behaviour when using the
cavitation inception criterion Cp <−σ.

• Elliptical wing: the introduction of synthetic inflow turbulence again suppresses
leading edge separation. It also leads to observable cavitation dynamics, whereas
these dynamics were lacking in the case of a steady inflow. This indicates that the
synthetic inflow turbulence acts as an disturbance for the tip vortex, which then
oscillates at its natural frequencies.
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8.4. CAVITATION DYNAMICS AND NOISE GENERATION

For the Twist foil in cavitating conditions, the variations in lift and drag due to resolved
inflow turbulence are significantly smaller than the fluctuations due to the shedding
sheet cavity. This indicates that for this test case the dynamics of the sheet cavity are
relatively unaffected by the inflow turbulence.

For a cavitating tip vortex, the introduction of synthetic inflow turbulence leads to
cavitation dynamics that match the theoretical predictions based on a modal decom-
position for an infinitely long, two-dimensional, cavitating vortex. The serpentine and
helical modes were clearly observed, but it was not possible to discern the breathing
mode in the wavenumber-frequency diagrams. It is hypothesised that this is due to the
limited and fluctuating cavity length in the simulations, invalidating the assumption of
an infinite vortex in the dispersion relation. The fluctuation in cavity length also cause a
decrease of the cavity radius along the length, instead of a fluctuation propagating along
the cavity length, making observing the dispersion relationship difficult.

The acoustic analysis showed that the inclusion of cavitation leads to an increase of
10-20 dB in the acoustic source level, as long as cavity dynamics are introduced. Far-field
pressure fluctuations occur at similar frequencies as the variations in effective radius and
eccentricity in the non-circular cross-section. The acoustic behaviour is a monopole,
since it is dominated by variations in the effective radius. Numerical noise due to the
inflow turbulence is also present in the sound spectra. Using wetted flow computations
with inflow turbulence, it was possible to perform a frequency-dependent background
noise correction, and separate the predicted cavitation noise from other spurious con-
tributions.

8.5. FINDINGS RELATED TO PANS

8.5.1. EFFECT OF fε

When using PANS, two settings determine the turbulence resolution: the modelled-to-
total ratio of turbulence kinetic energy and dissipation, fk and fε, respectively. In litera-
ture, PANS is applied almost exclusively using fk < 1.0 and fε = 1.0 (known as the ‘high
Reynolds number’ approach), assuming that dissipation occurs entirely at the modelled
scales.

This assumption was tested using simulations of a turbulent channel flow at varying
Reynolds numbers. When reducing fε, under the condition fk < fε < 1, the results show
a larger dependency on fk . Due to the reduction of fε, the turbulence dissipation is no
longer confined to the smallest scales, leading to excessive diffusion and a suppression
of the smaller scales. In the case of a channel flow, this can lead to a laminar-like so-
lution, independent of the flow initialisation or Reynolds number. Only when using a
very low fk (in the DNS limit) can reasonable results for the mean velocity and Reynolds
stress profiles be obtained, although in that case the results for fε = 1.0 also match the
reference data well. Consequently, for industrial flow cases at high Reynolds number,
the recommendation to use fε = 1.0 was found to be valid.
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8.5.2. SELECTING fk
For the usage of PANS two approaches can be distinguished: 1) the Constant fk ap-
proach, where a constant value of fk is used in the domain and throughout the simu-
lation time; and 2) the approach where fk can vary. This approach can be further subdi-
vided into Static, where fk is fixed in time, or Dynamic for which fk can also vary in time.
At the time of writing, there is no consensus on how to estimate fk from a given flow
field on a given grid, both Static and Dynamic PANS. The results obtained using either
of these approaches are strongly dependent on this estimate, potentially leading to sig-
nificant modelling errors. Due to differences in the definition of the characteristic grid
dimension and the application of empirical constants, it is clear that the absolute values
of the estimates should be treated with care, and more emphasis should be placed on
the predicted trends instead. An issue unaddressed in literature is that Static estimates
should be applied to steady flow solutions; however for statistically unsteady flows, such
solutions are not obtainable. In this thesis this issue was circumvented by using the
time-averaged quantities.

In this work, the estimates were compared against the a posteriori computed ratio
of modelled-to-total turbulence kinetic energy f̃k . It was shown that, in general, f̃k is
smaller that the constant fk , which was used in the computation. Several issues were
observed with the in literature published estimates:

• Most estimates are constructed such that fk = 1 in the entire boundary layer. Con-
stant fk computations show that f̃k = 1.0 only in the first row of cells near the wall.
This indicates that the estimates should not be applied inside boundary layers,
and a consequence of this behaviour is that the PANS model behaves more like
a DES model. This is sometimes described in literature as an advantage or a aim
in the derivation of the estimate, although this does imply that the unfavourable
properties of DES, such as error entanglement, are then also incorporated.

• All estimates yield fk = 1.0 if the flow is laminar (upstream and in the far-field), im-
plying that in those regions the PANS model resorts to the RANS parent model. For
Static computations this can be a problem, if during a subsequent PANS computa-
tion synthetic turbulence is added at the inflow. Due to the high fk value upstream,
the introduced fluctuations might already be largely dissipated before they reach
the object.

• Dynamic PANS computations potentially show an oscillatory behaviour for fk due
to the strong spatial variation of the estimates. This spatial variation is analogous
to DES computations, where the flow can also suddenly transition from a LES zone
to a RANS zone, thereby introducing commutation errors. Not only is fk tempo-
rally and spatially varying, but also the flow field upon which it is based, thereby
potentially introducing artificial unsteadiness in the computation.

These issues combined lead to the conclusion that despite potential theoretical advan-
tages of the usage of Dynamic PANS, the Constant PANS approach, with a fk fixed in time
and space, is still preferable in order to minimise errors in CFD results and increase the
reliability of industrial CFD.
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8.5.3. PANS-KSKL MODEL
A new PANS closure was derived based on the KSKL model aimed at multiphase flows.
It was shown that the favourable properties of decreased eddy-viscosity and improved
iterative convergence exhibited by the KSKL model compared to k−ωmodels, are carried
over to the PANS model. The improvement in iterative convergence holds for multiphase
flows, thus making the new model attractive for the accurate simulation of cavitation
dynamics and noise. For such cases the ω equation is difficult to converge. It was also
shown that for fk < 1.0 the PANS-KSKL model exhibits a low decay of eddy-viscosity
downstream of the inlet boundary condition. This simplifies practical application, but
can make the PANS-KSKL model more sensitive to the eddy-viscosity prescribed at the
inlet. The influence of varying the eddy-viscosity at the inflow for varying fk requires
further numerical investigation.

8.6. RECOMMENDATIONS FOR FUTURE WORK
The use of CFD to predict URN depends on the modelling and/or resolving of turbu-
lence, cavitation and acoustics, and their interaction. Within this thesis there was a focus
on resolving and modelling turbulence, and the associated inflow boundary condition.
For future work it is recommended to focus on the other two components.

A recurring observation, both in literature and in this thesis, is that numerically pre-
dicted cavities have a smaller size compared to experimental observations. In this thesis,
this is most apparent for cavitating tip vortex of the elliptical wing. While the experi-
mentally observed vortex propagates beyond the end of the test section, the numerically
predicted vortex diffuses after approximately one root chord length. The application of
adaptive grid refinement in the vortex region could extend the cavity size, but will not
address this discrepancy entirely. In literature, the underprediction of cavity sizes is of-
ten related to excessive diffusion due to high eddy-viscosity levels in simulations (see
e.g. [190]). However, while the use of SRS with inflow turbulence does slightly increase
the cavity length, it is still significantly underpredicted despite reduced eddy-viscosity
levels. This finding suggests that solutions to address the underprediction of the cav-
ity length should be sought for in the modelling of multiphase flow, i.e. volume of fluid
(VOF) together with the cavitation model.

In VOF the vapour-liquid interface is not clearly defined, and is usually algebraically
reconstructed based on a scalar field (the vapour volume fraction αv ). VOF is known for
not being able to keep a sharp interface (see e.g. [66–73]). This implies that the results
for cavity dynamics can strongly depend on the chosen definition of the interface (in
this thesis αv = 0.1), and leads to early dissipation of the vortex. Alternative methods to
describe the interface, such as geometric reconstructions methods [286], level-set [287],
coupled level-set VOF [288] and phase field methods [289–291] exist, but are currently
not widely applied for industrial test cases. Reasons for this include not satisfying mass
conservation, or difficulties in the application on unstructured grids (for example due to
the need for high-order derivatives [291]). It is recommended to look into the application
of such methods for cavitation predictions.

Related to the method of modelling multiphase flow, is the modelling of phase change,
i.e. the cavitation model. In this thesis the Schnerr-Sauer cavitation model [80] is em-
ployed. This method is widely used in literature, with generally favourable results despite
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using a simplified inception criterion. However, in the context of tip vortex cavitation it
must be noted that the influence of non-condensible gas is neglected. Recent research
in the TU Delft cavitation tunnel suggests that the tip vortex cavity size is largely domi-
nated by gas diffusion into the vortex [292], which is an effect currently not included in
the simulations. In order to better match experimental observation such effects should
be included in the modelling.

With respect to noise predictions, from the elliptical wing simulations it is clear that
the application of inflow turbulence leads to a high sound level at lower frequencies.
While turbulence produces sound, it is likely that part of the numerically predicted sound
is due to an interaction between the inflow turbulence and the Ffowcs Williams-Hawkings
(FWH) acoustic analogy. Currently, it is not possible to distinguish between physical and
spurious artificial sound. This should be looked into, and if possible corrected. In this
thesis this was partly addressed by the application of a background noise correction to
the predicted sound levels. While this requires extra (wetted flow) simulations, it is a im-
portant step to distinguish between sound introduced by cavitation and sound due to
other sources, such as the inflow turbulence. It is advisable to apply such a correction to
cavitating sound preditions.

8.7. GUIDELINES FOR THE USE OF SRS
Following the investigations described in this thesis, several recommendations can be
made for the use of SRS for industrial test cases:

• It is crucial that SRS of attached flows include a resolved turbulent inflow. The
implemented turbulence generator can deliver such an inflow, at a small increase
in computational cost compared to SRS simulations without inflow turbulence,
while significantly reducing modelling errors.

• When using a resolved turbulent inflow, it is necessary that SRS grids are refined
upstream to support the convection and development of inflow turbulence. This
is one of the main reasons for the increase in computational cost compared to SRS
simulations without inflow turbulence.

Based on the verification and validation processes, some further observations can be
made:

• The traditional, RANS based, assumption that discretisation errors are dominant
is no longer valid in the context of SRS. Consequently, for validation purposes, the
total numerical error should be used. A consequence of this is that in a research
context all error sources should be examined, even though some of these exami-
nations are expensive or difficult.

• The inclusion of more physics in the CFD computations leads to more stringent
demands for experimental data. It is recommended to measure characteristics of
the setup such as inflow turbulence intensity and integral length scale, and also
the flow inside the boundary layer to enable validation of SRS.

• The absence of such information about the setup for the cases addressed in this
work highlights the need for new experimental test cases aimed at validation of



8.7. GUIDELINES FOR THE USE OF SRS

8

171

SRS investigations of multiphase flows. Typical test cases include wings and pro-
pellers exhibiting sheet or tip vortex cavitation.
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A
GOVERNING EQUATIONS FOR

CAVITATING FLOW SIMULATIONS

Starting from the equation describing the rate of change of a quantity φ in a material
volume V moving in a velocity field Ui , in integral form:

d

dt

ˆ
φdV =

ˆ (
∂φ

∂t
+ ∂

∂xi
·φUi

)
dV =

ˆ (
Dφ

Dt
+φ ∂

∂xi
·Ui

)
dV. (A.1)

A.1. CONSERVATION OF MASS
When using φ= ρ in Eq. A.1, the general equation for mass conservation is obtained

∂ρ

∂t
+ ∂

∂xi
· (ρUi

)= ∂ρ

∂t
+Ui · ∂ρ

∂xi
+ρ ∂Ui

∂xi
= Dρ

Dt
+ρ ∂Ui

∂xi
= 0. (A.2)

This relation holds for any material volume, hence the integral signs are omitted.
For an incompressible fluid without phase change, ρ is uniform and independent of

time. In that case, Eq. A.2 reduces to

∂Ui

∂xi
= 0 (A.3)

For a mixture fluid of liquid and vapour, when ignoring non-condensible gas, the
mixture density can be expressed as

ρ =αlρl +αvρv (A.4)

with α designating the vapour volume fraction, and ρl and ρv the temperature depen-
dent, uniform in time and space, density of liquid and water respectively. Substituting
this into the first formulation of Eq. A.2, leads to

∂
(
αlρl +αvρv

)
∂t

+ ∂

∂xi
· ((αlρl +αvρv

)
Ui

)= 0. (A.5)
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Using αv +αl = 1,

∂
(
αlρl + (1−αl )ρv

)
∂t

+ ∂

∂xi
· ((αlρl + (1−αl )ρv

)
Ui

)= 0. (A.6)

Expanding the derivatives, and rewriting terms, yields

∂
(
ρv +

(
ρl −ρv

)
αl

)
∂t

+ ∂

∂xi
· ((ρv +

(
ρl −ρv

)
αl

)
Ui

)= 0, (A.7)

∂ρv

∂t
+ ∂

(
ρl −ρv

)
αl

∂t
+ ∂

∂xi
· (ρvUi

)+ ∂

∂xi
· ((ρl −ρv

)
αlUi

)= 0. (A.8)

Recall that ∂ρv /∂t = ∂ρl /∂t = 0, and that ∂ρv /∂xi = ∂ρl /∂xi = 0(
ρl −ρv

) ∂αl

∂t
+ (
ρl −ρv

) ∂

∂xi
· (αlUi ) =−ρv

∂Ui

∂xi
, (A.9)

∂αl

∂t
+ ∂

∂xi
· (αlUi ) =− ρv

ρl −ρv

∂Ui

∂xi
. (A.10)

Similarly, it can be derived that

∂αv

∂t
+ ∂

∂xi
· (αvUi ) = ρl

ρl −ρv

∂Ui

∂xi
. (A.11)

Eq. A.5 can be divided according to the phases:

ρl
∂ (αl )

∂t
+ρl

∂

∂xi
· (αlUi )+ρv

∂ (αv )

∂t
+ρv

∂

∂xi
· (αvUi ) = 0. (A.12)

Substituting Eq. A.10 and A.11, yields

ρlρv

ρl −ρv

∂Ui

∂xi
+ ρvρl

ρl −ρv

∂Ui

∂xi
= 0. (A.13)

This equation is an expression for condensation plus evaporation, with the source terms

− ρlρv

ρl −ρv

∂Ui

∂xi
+ ρvρl

ρl −ρv

∂Ui

∂xi
= 0. (A.14)

Hence, the source term can be expressed as

ṁ = ρlρv

ρl −ρv

∂Ui

∂xi
(A.15)

from which the conservation of mass can be derived:

∂Ui

∂xi
= ρl −ρv

ρlρv
ṁ (A.16)

∂Ui

∂xi
=

(
1

ρv
− 1

ρl

)
ṁ. (A.17)

Since ρl >> ρv , this is approximated as

∂Ui

∂xi
= ṁ

ρv
. (A.18)
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A.2. CONSERVATION OF MOMENTUM
While the cavitation models as described in the previous section (using ṁ), are typically
called mass transfer models, it is important to realise that the source term also affects
the momentum equation, or any other conservation equation [192].

When again the conservation equation Eq. A.1 is considered, using φ = ρUi , the
equation for momentum conservation is obtained

∂
(
ρUi

)
∂t

+ ∂

∂x j
· (ρUiU j

)=− ∂P

∂xi
+ ∂

∂xi

[
µ

(
∂Ui

∂x j
+ ∂U j

∂xi
− 2

3

∂Um

∂xm
δi j

)]
+ρgi . (A.19)

This is equation is commonly referred to as the Navier-Stokes equation. Should you wish
to write the equation using a material derivative, the left hand side can be rewritten to
obtain

∂
(
ρUi

)
∂t

+U j ·
∂

(
ρUi

)
∂x j

+ρUi
∂U j

∂x j
=− ∂P

∂xi
+ ∂

∂xi

[
µ

(
∂Ui

∂x j
+ ∂U j

∂xi
− 2

3

∂Um

∂xm
δi j

)]
+ρgi ,

(A.20)
D

(
ρUi

)
Dt

=−ρUi
∂U j

∂x j
− ∂P

∂xi
+ ∂

∂xi

[
µ

(
∂Ui

∂x j
+ ∂U j

∂xi
− 2

3

∂Um

∂xm
δi j

)]
+ρgi . (A.21)

In case of non-cavitating flow, the termρUi
∂U j

∂x j
= 0. However, for cavitating flow, ρUi

∂U j

∂x j
=

ρUi
ṁ
ρv

, meaning that this term cannot be ignored. This is often overlooked, or incor-

rectly documented in literature. The same holds true for the expansion rate: 2
3
∂Um
∂xm

δi j =
2
3

ṁ
ρv
δi j .
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TURBULENCE MODELS

B.1. RANS
B.1.1. k −ω SST2003
TRANSPORT EQUATIONS

∂
(
ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −ρβ∗ωk + ∂

∂x j
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µ+µtσk

) ∂k

∂x j

)
, (B.1)

∂
(
ρω

)
∂t

+ ∂

∂x j
· (ρω〈U j 〉

)= α

νt
Pk −βρω2 + ∂

∂x j

[(
µ+µtσω

) ∂ω
∂x j

]
+2ρ (1−F1)

σω2

ω

∂k

∂x j

∂ω

∂x j
.

(B.2)

TURBULENT VISCOSITY

νt = a1k

max(a1ω,〈S〉F2)
. (B.3)

AUXILIARY FUNCTIONS

Pk = min
(
ρνt 〈S〉,10ρβ∗kω

)
, (B.4)

F1 = tanh

min

max

( p
k

β∗ωd
,

500ν

d 2ω

)
,

4ρσω2 k

d 2 max
(

2ρσω2
ω

∂k
∂x j

∂ω
∂x j

,10−10
)
4 , (B.5)

F2 = tanh

(
max

(
2
p

k

β∗ωd
,

500ν

d 2ω

)2)
, (B.6)

Φ=Φ1F1 +Φ2 (1.0−F1) . (B.7)
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Table B.1: Coefficients of the k −ω SST2003 turbulence model.

α1 α2 a1 β1 β2 β∗ σk1 σk2 σω1 σω2
5
9 0.440 0.310 0.075 0.0828 0.090 0.850 1.000 0.500 0.856

B.1.2. KSKL
TRANSPORT EQUATIONS

∂
(
ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −Dk +
∂

∂x j

[(
µ+ µt

σk

)
∂k

∂x j

]
, (B.8)

∂
(
ρ
p

kL
)

∂t
+ ∂

∂xi
·
(
ρ
p

kL〈Ui 〉
)
=
p

kL

k
νt 〈S〉2

(
ζ1 −ζ2

(
L

Lvk

)2)
−ζ3ρk + ∂

∂x j

[(
µ+ µt

σp
kL

)
∂(
p

kL)

∂x j

]
−6ν

p
kL

d 2 fpkL .

(B.9)

TURBULENT VISCOSITY

νt = min

(
C 1/4
µ

kLp
k

,
a1k

〈S〉
)

. (B.10)

AUXILIARY FUNCTIONS

Pk = ρνt 〈S〉2 (B.11)

Dk =C 3/4
µ ρ

k3/2

l
(B.12)

a1 = aS
1 fb +

(
1− fb

)
aR

1 , (B.13)

fb = tanh


20

(
C 1/4
µ

p
kL+ν

)
κ2〈S〉2d 2 +0.01ν

2 , (B.14)

LvK = max

min

κ
∣∣∣∣∣∣∣∣∣

〈S〉2√
∂2〈Ui 〉
∂x j

2
∂2〈Ui 〉
∂xk

2

∣∣∣∣∣∣∣∣∣ ,cl2κd

 ,
L

c l1

 , (B.15)

fpkL = 1+ cd1ξ

1+ξ4 , (B.16)

ξ=
p

0.3kd

20ν
. (B.17)
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Table B.2: Coefficients of the KSKL turbulence model.

aR
1 aS

1 cd1 cl1 cl2 Cµ κ σk σp
kL ζ1 ζ2 ζ3

0.577 0.320 4.700 10.000 1.300 0.090 0.410 2/3 2/3 0.800 1.470 0.0288

B.2. HYBRID MODELS

B.2.1. DDES
AUXILIARY FUNCTIONS

∆= max
(
∆x ,∆y ,∆z

)
, (B.18)

CDDES = F1CDDES1 + (1−F1)CDDES2 , (B.19)

fd = 1− tanh


Cd1

νt +ν
κ2d 2

√
0.5

(〈S〉2 +〈Ω〉2
)


Cd2
 . (B.20)

Table B.3: Coefficients of the k −ω DDES turbulence model.

β∗ Cd1 Cd2 CDDES1 CDDES2 κ

0.09 20 3 0.78 0.61 0.41

B.2.2. IDDES
AUXILIARY FUNCTIONS

lt = f̃d l R AN S
t + (

1− f̃d
)

l SRS
t , (B.21)

l SRS
t =C I DDES min(Cw max(d ,∆) ,∆) , (B.22)

C I DDES = F1C I DDES + (1−F1)C I DDES , (B.23)

f̃d = max
(
1− fd t , fb

)
, (B.24)

fd t = 1− tanh


Cd t1

νt

κ2d 2
√

0.5
(〈S〉2 +〈Ω〉2

)


Cd t2
 , (B.25)

fb = min

(
2.0exp

(
−9.0

(
0.25− d

∆

)2)
,1.0

)
. (B.26)

Table B.4: Coefficients of the k −ω IDDES turbulence model.

β∗ Cd1 Cd2 Cw C I DDES1 C I DDES2 κ

0.09 20 3 0.15 0.78 0.61 0.41
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B.2.3. XLES
TRANSPORT FUNCTION

∂
(
ρω

)
∂t

+ ∂

∂x j
· (ρω〈U j 〉

)= Pω−βωρω2 + σd

ω
ρmax

(
∂k

∂xi

∂ω

∂xi
,0

)
+ ∂

∂x j

((
µ+σωµt

) ∂ω
∂x j

)
.

(B.27)

AUXILIARY FUNCTIONS

Pω = ραω〈S〉2. (B.28)

l̃ = min(l ,C1∆) , (B.29)

νt = l̃
p

k, (B.30)

ε=βk
k

3
2

l̃
, (B.31)

∆= max
(
∆x ,∆y ,∆z

)
, (B.32)

C2 = βk

C1
, (B.33)

αω = βω

βk
− σωκ

2√
βk

. (B.34)

Table B.5: Coefficients of the XLES turbulence model.

C1 βk βω σk σω σd αω
0.05 0.09 0.075 2/3 0.5 0.5 0.55

B.3. BRIDGING METHODS

B.3.1. PANS SST
TRANSPORT EQUATIONS

∂
(
ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −β∗ρωk + ∂

∂x j

[
ρ

(
ν+νtσk

fω
fk

)
∂k

∂x j

]
, (B.35)

∂
(
ρω

)
∂t

+ ∂

∂x j
· (ρω〈U j 〉

)= α

νt
Pk −

(
P ′− P ′

fω
+ βρω

fω

)
ω+ ∂

∂x j

[(
µ+µtσω

fω
fk

)
∂ω

∂x j

]
+2ρ

σω2

ω

fω
fk

(1−F1)
∂k

∂x j

∂ω

∂x j
.

(B.36)

TURBULENT VISCOSITY

νt = a1k

max(a1ω,〈S〉F2)
. (B.37)
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AUXILIARY FUNCTIONS

F1 = tanh

min

max

( p
k

β∗ωd
,

500ν

d 2ω

)
,

4ρσω2 k

d 2 max
(

2ρσω2
ω

∂k
∂x j

∂ω
∂x j

,10−10
)
4 , (B.38)

F2 = tanh

(
max

(
2
p

k

β∗ωd
,

500ν

d 2ω

)2)
, (B.39)

Φ=Φ1F1 +Φ2 (1.0−F1) , (B.40)

Pk = min
(
νt 〈S〉,10β∗kω

)
, (B.41)

P ′ = αβ∗ρk

νt
. (B.42)

Table B.6: Coefficients of the PANS k −ω SST2003 turbulence model.

α1 α2 a1 β1 β2 β∗ σk1 σk2 σω1 σω2
5
9 0.440 0.310 0.075 0.0828 0.090 0.850 1.000 0.500 0.856

B.3.2. PANS KSKL
TRANSPORT EQUATIONS

∂
(
ρk

)
∂t

+ ∂

∂x j
· (ρk〈U j 〉

)= Pk −Dk +
∂

∂x j

[(
µ+ µt

σk
√

fk fl

)
∂k

∂x j

]
(B.43)
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(
ρ
p

kl
)
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+ ∂
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·
(
ρ
p

kl〈U j 〉
)
=ρ

p
kl√

fk fl k
νt 〈S〉2

(
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(
l

fl Lvk

)2)
−ζ3ρk
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σp
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√
fk fl
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∂
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kl
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]
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(B.44)

TURBULENT VISCOSITY

νt = min

(
C 1/4
µ

kLp
k

,
a1k

〈S〉
)

. (B.45)

AUXILIARY FUNCTIONS

Pk = ρνt 〈S〉2 (B.46)

Dk =C 3/4
µ ρ

k3/2

l
(B.47)

a1 = aS
1 fb +

(
1− fb

)
aR

1 , (B.48)

fb = tanh


20

(
C 1/4
µ

p
kL+ν

)
κ2〈S〉2d 2 +0.01ν

2 , (B.49)
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LvK = max

min

κ
∣∣∣∣∣∣∣∣∣

〈S〉2√
∂2〈Ui 〉
∂x j

2
∂2〈Ui 〉
∂xk

2

∣∣∣∣∣∣∣∣∣ ,cl2κd

 ,
L

c l1

 , (B.50)

fpkL = 1+ cd1ξ

1+ξ4 , (B.51)

ξ=
p

0.3kd

20ν
. (B.52)

Table B.7: Coefficients of the PANS KSKL turbulence model.

aR
1 aS

1 cd1 cl1 cl2 Cµ κ σk σp
kL ζ1 ζ2 ζ3

0.577 0.320 4.700 10.000 1.300 0.090 0.410 2/3 2/3 0.800 1.470 0.0288



C
PANS KSKL DERIVATION

Throughout this derivation, uppercase letters indicate the total, i.e. RANS quantity, while
lowercase letters indicate the modelled, i.e. PANS quantity.

Following literature, the ratio of modelled-to-total turbulence kinetic energy, fk =
k/K , is applied for the first equation. For the second equation, which solves for

p
kL, a

secondary ratio is defined, based on the modelled turbulent integral length scale L, as

fl =
l

L
. (C.1)

C.1. k EQUATION
The k equation is given by

∂ (K )

∂t
+ ∂

∂x j
· (K 〈U j 〉

)= PK −DK + ∂

∂x j

[(
ν+νtT cσk

) ∂k

∂x j

]
, (C.2)

with the production and destruction terms for the KSKL model defined as

PK = νtT 〈S〉2 and DK =C 3/4
µ

K 3/2

L
. (C.3)

Here cσk = 1/σk and 〈S〉 is the magnitude of the strain rate tensor 〈S〉 = 2〈Si j 〉〈Si j 〉.
The derivation is based on the relation between RANS and PANS turbulence kinetic

energy, which is given by

∂ (k)

∂t
+ ∂

∂x j
·
(
k〈U j 〉

)
= fk

[
∂ (K )

∂t
+ ∂

∂x j
·
(
K 〈U j 〉

)]
(C.4)

and can be rewritten as

∂ (k)

∂t
+ ∂

∂x j
·(k〈U j 〉

)= fk

[
∂ (K )

∂t
+ ∂

∂x j
·
(
K 〈U j 〉

)]
+ ∂ (k)

∂t
+ ∂

∂x j
·
[

k
(
〈U j 〉−〈U j 〉

)]
. (C.5)
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When the conservation expressions on the left and right are replaced by the closure
equation, the following relationship is obtained:

Pk −Dk +
∂

∂x j

[(
ν+νt cσk

) ∂k

∂x j

]
= fk

[
PK −DK + ∂

∂x j

[(
ν+νtT cσk

) ∂K

∂x j

]]
+ ∂

∂x j
·
[

(k
(
〈U j 〉−〈U j 〉

)]
.

(C.6)

For the local terms, the following relationship holds:

Pk −Dk = fk [PK −DK ] , (C.7)

implying that

PK = 1

fk
(Pk −Dk )+DK . (C.8)

Following the zero transport model approach, where it is assumed that the resolved fluc-
tuating velocity field does not contribute to the turbulent transport of the modeled field,

the last term ( ∂
∂x j

·
[

k
(
〈U j 〉−〈U j 〉

)]
) is assumed to be zero. When Eq. C.8 is inserted in

Eq. C.6, after moving fk to the left-hand side, the relation

∂ (k)

∂t
+ ∂

∂x j
· (k〈U j 〉

)= Pk −Dk +
∂

∂x j

[(
ν+νtT cσk

) ∂k

∂x j

]
(C.9)

is obtained. Based on the definition of the eddy-viscosity

νt = min

(
C 1/4
µ

p
kl ;

a1k

〈S〉
)

, (C.10)

the ratios of the RANS and PANS eddy-viscosities can be expressed in terms of fk and fl :

νtT = 1√
fk fl

νt . (C.11)

Combining Eq. C.10 with Eq. C.9 leads to the PANS k equation:

∂ (k)

∂t
+ ∂

∂x j
· (k〈U j 〉

)= Pk −Dk +
∂

∂x j

[(
ν+ νt

σk
√

fk fl

)
∂k

∂x j

]
. (C.12)

C.2.
p

kl EQUATION

The KSKL
p

kl equation is given by

∂
(p

K L
)
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·
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(C.13)
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with the von Kármán length scale defined as

Lvk = max

min

 κ〈S〉√
∂2〈Ui 〉
∂xk

2
∂2〈Ui 〉
∂x j

2

;cl2κd

 ;
L

cl1

 , (C.14)

where d indicates the near wall distance. Again relating RANS to PANS:

∂
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kl
)
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+ ∂

∂x j
·
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kl〈U j 〉
)
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√
fk fl

[
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, (C.15)

which can be rewritten as

∂
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kl
)
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·
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)
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(C.16)

Next, the conservation expression on the right hand side is again replaced by the KSKL
closure, and again the zero transport assumption is applied. To relate all quantities to
known, sub-filter, quantities, L is replaced by l / fl . After simplification, the PANS

p
kl

equation is obtained:

∂
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kl
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·
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d 2 fpkl .
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D
PANS fk ESTIMATES

The fk estimates found in literature are divided according to category (Static, based on
an a priori RANS computation, and Dynamic, computed during a PANS computation).
Within this thesis the original notation is modified to maintain consistency between the
different estimates and to properly compare them. Some general definitions are the cell
sizes

∆mi n = min
(
∆x ,∆y ,∆z

)
, (D.1)

∆max = max
(
∆x ,∆y ,∆z

)
, (D.2)

∆av g = (
∆x ·∆y ·∆z

)1/3 , (D.3)

and the characteristic turbulent length scales Lt and lt

Lt = K
3
2

E
= K

1
2

CµΩ
and lt = k

3
2

ε
= k

1
2

Cµω
(D.4)

with a constant Cµ = 0.09.

D.1. STATIC PANS ESTIMATES
These estimates are based on an a priori RANS computation, so all turbulence kinetic
energy is modelled, i.e. K = k, 〈K 〉 = 0 and Lt = lt .

D.1.1. ABDOL-HAMID AND GIRIMAJI (2004)
Abdol-Hamid and Girimaji [176] estimated fk based on the ratio between the unresolved
turbulent length-scale and characteristic grid size using

fk ≥Ch

(
∆max

lt

)2/3

. (D.5)

Ch is a model coefficient which must be calibrated; in the original paper a value of 1.0 is
used.
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D.1.2. GIRIMAJI AND ABDOL-HAMID (2005)
Girimaji and Abdol-Hamid [51] use an estimate very similar to that of Abdol-Hamid and
Girimaji [176], but with a different constant, and replacing∆max with∆mi n . The estimate
is given as

fk ≥ 1√
Cµ

(
∆mi n

lt

)2/3

. (D.6)

D.1.3. FRENDI ET AL. (2007)
Frendi et al. [166] modified the estimate of Girimaji and Abdol-Hamid [51] to take fε into
account:

fk ≥ 1√
Cµ

(
∆mi n

lt

)2/3

f 2/3
ε . (D.7)

In the limit fε = 1.0, equation D.7 reduces to equation D.6, therefore this estimate is not
addressed any further in the current work.

D.1.4. JEONG AND GIRIMAJI (2010)
Jeong and Girimaji [177] define the estimate as

fk ≥ 3
λT

∆
, (D.8)

with λT the Taylor scale of turbulence and ∆ the grid size. The precise definition of the
grid size is not given; in the current work ∆ is taken as ∆av g . Surprisingly this estimate
uses the grid size in the denominator, while all other methods use a ratio with the grid
size in the numerator. This choice is questionable, since this implies that grid refinement
leads to a grid which is less capable of resolving structures, which is counterintuitive.
The authors do not actually use this estimate in their work, they use a constant fk in the
domain.

D.1.5. HAN ET AL. (2013)
Han et al. [178] use the same definition as Girimaji and Abdol-Hamid [51], but choose
the average cell size, ∆av g :

fk ≥ 1√
Cµ

(
∆av g

lt

)2/3

. (D.9)

D.1.6. FOROUTAN AND YAVUSKURT (2014)
Foroutan and Yavuzkurt [179] define a different estimate, derived from an energy spec-
trum equation, to circumvent the issue of too high fk values as observed by Davidson
[187]:

fk = 1−


(

lt
∆av g

) 2
3

0.23+
(

lt
∆av g

) 2
3


4.5

. (D.10)
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For a coarse grid lt ¿ ∆, so fk goes to 1. Equation D.10 does satisfy the definition that
fk should be bounded between 0.0 and 1.0, which is not a common property of the esti-
mates addressed.

D.2. DYNAMIC PANS ESTIMATES

These estimates are evaluated during a PANS computation. At every time step the used
fk is computed based on the instantaneous flow field, i.e. fk is updated per time step and
is therefore spatially and temporally varying. Since the estimates are evaluated during a
PANS computation part of the turbulence spectrum is being resolved, so k ≤ K , 〈K 〉 > 0
and Lt > lt .

D.2.1. ELMILIGUI ET AL. (2004)
Elmiligui et al. [180] use a variable fk defined as

fk ≥ 1+ tanh(2π (Λ−0.5))

2
, (D.11)

following the damping function from a Hybrid model. The turbulent length scale is de-
fined here as

Λ= 1

1+
(

lt
∆max

)4/3
. (D.12)

fk is defined in such a way that it equals 1.0 in the viscous sub layer, where the unresolved
characteristic length scale tends to be small. fk is also bounded to 1.0.

D.2.2. BASU ET AL. (2007)
Basu et al. [181] use

fk ≥ 1

1+β
(

lt

CPAN S ·∆̃max

)2/3
. (D.13)

Interestingly the definition of the grid size is slightly different by taking the time step and
velocity into account:

∆̃max = max(∆max ,∆t · ||〈U 〉||2) . (D.14)

Theoretically, not only grid resolution but also temporal resolution determines to which
extent the turbulence kinetic energy spectrum can be resolved. Most estimates implic-
itly rely on the user to ensure a sufficient temporal resolution based on Courant number
and/or t+. In contrast equation D.13 incorporates this explicitly, which increases the ro-
bustness. Nevertheless, for the grids and time steps considered in this work ∆̃max =∆max.
The additional constants are CPAN S = 0.8 and β= 0.3.
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D.2.3. SONG AND PARK (2009)
Song and S.-O. Park [182] give an estimate (I ) and its approximation (I I ), defined as

fk ≥
(
∆

Lt

)2/3

 1− ( η
∆

)2/3

1−
(
η

Lt

)2/3


︸ ︷︷ ︸

I

≈
(
∆

η

)2/3 (
1−

( η
∆

)2/3
)

,

(
η

Lt

)2/3

︸ ︷︷ ︸
I I

(D.15)

in which η indicates the Kolmogorov length scale, defined as

η=
(
ν3

ε

)1/4

. (D.16)

An advantage of the approximation, I I , is the absence of the singularity, which is present
in formulation I . In the current work, the difference between the formulation (I ) and
the approximation (I I ) was investigated. For an external flow the difference was found
to be negligible, but the singularity in formulation I leads to additional peaks inside a
boundary layer. Consequently in the current work the approximation is applied. It is
mentioned that for ∆ either the maximum or volumetric average can be used, although
the authors do not specify which one is used in their work. The differences were found
to be marginal, and therefore in the current work ∆av g is employed for this estimate.

D.2.4. BASARA ET AL. (2011)
Basara et al. [183] uses an estimation similar to Han et al. [178] (equation D.9), but based
on total quantities

fk ≥ 1√
Cµ

(
∆av g

Lt

)2/3

. (D.17)

This estimate is also used by Davidson [187], who recognised that on a coarse grid the fk

obtained is too high, leading to dissipation of the turbulent fluctuations.

D.2.5. LUO ET AL. (2014)
D. Luo et al. [62] use the same estimate as Abdol-Hamid and Girimaji [176], but with the
inclusion of a different constant, CPAN S , which is taken as 0.1. The authors state that the
constant should be further calibrated. The estimate is given by

fk ≥CPAN S

(
∆max

lt

)2/3

. (D.18)

Note that this implies that an estimate formulated for Static PANS is employed in a Dy-
namic approach, resulting in a different estimate for the unresolved length scale, lt , due
to the reduction in k. This explains the need for the inclusion of the constant CPAN S .

D.2.6. LUO (2019)
D. Luo [184] uses the same estimate as D. Luo et al. [62]. It is remarked that the estimate
is not rigorous in theory and needs additional validation. To this end, for the constant
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CPAN S three values are employed (0.1, 0.3 and 0.5). The value determines the extent of
the near wall RANS region, and it is concluded that 0.3 yields the best results. Since this
estimate with CPAN S = 0.1 is identical to that of D. Luo et al. [62], and otherwise just 3 or
5 times higher, it is not addressed further in the current work.

D.2.7. DAVIDSON AND FRIESS (2019)
Davidson and Friess [185] derive an estimate based on the equivalence criterion between
DES and PANS [293]. The estimate is formulated as

fk = 1− ψ−1

Cε2 −Cε1
, (D.19)

with

ψ= max

(
1,

lt

CDES∆max

)
, (D.20)

including the constants Cε1 = 1.5, Cε2 = 1.9 and CDES = 0.78 · F 1+ 0.61 · (1−F 1). The
estimate is designed to make the PANS model behave as a DES model. According to the
authors, the estimate self-adapts, by forcing f̃k towards fk , without the need for comput-
ing f̃k . This feature is designated ‘passive control’ by the authors.

D.2.8. BASARA ET AL. (2018)
[186] Finally Basara et al. [186] employ the estimate of Basara et al. [183], but with Lt

defined differently, here designated L̃t . L̃t is defined based on kt instead of K , where kt

is defined as
kt = k +kssv , (D.21)

with kssv the ‘scale-supplying’ resolved kinetic energy, which requires that an additional
transport equation is solved. kt is the total kinetic energy (modelled plus resolved), but
obtained solely from the additional transport equation and the k equation in the PANS
model. This implies that kt ≈ K . An advantage of this is that no (expensive) averaging
operations are needed to obtain the resolved, and thereby total, kinetic energy. However,
it must be noted that this only works if this extra equation is solved. In Basara et al. [186]
this equation is formulated in the context of the four equation PANS k −ε−ζ− f model.
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PANS EDDY-VISCOSITY DECAY

DERIVATIONS

E.1. PANS-SST
The PANS-SST equations are

∂k

∂t
+ ∂

∂x j
· (k〈U j 〉

)= Pk −β∗ωk + ∂

∂x j

[(
ν+νtσk

fω
fk

)
∂k

∂x j

]
, (E.1)

and

∂ω

∂t
+ ∂

∂x j
· (ω〈U j 〉
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νt
Pk −

(
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fω
+ βω
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ω+ ∂
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ν+νtσω

fω
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σω2

ω

fω
fk
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∂k

∂x j

∂ω

∂x j
,

(E.2)

with

P ′ = αβ∗k

νt
. (E.3)

When assuming a steady, uniform flow aligned with the x axis, sufficiently far away from
walls and neglecting the diffusion terms, with νt = k/ω, the equations simplify to:

〈U 〉dk

dx
=−β∗kω, (E.4)

which can also be written as,

〈U 〉dk

dx
=−β∗ k2

νt
, (E.5)

and

〈U 〉dω

dx
=−

(
P ′− P ′

fω
+ βω

fω

)
ω. (E.6)
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Inserting Eq. E.3, yields

〈U 〉dω

dx
=−

(
αβ∗k

νt
− αβ∗k

fωνt
+ βω

fω

)
ω

=−
(
αβ∗ω− αβ∗ω

fω
+ βω

fω

)
ω

=−
(
αβ∗− αβ∗ fk

fε
+ β fk

fε

)
ω2.

(E.7)

Using the common assumption of fε = 1.0, this reduces to

〈U 〉dω

dx
=−(

αβ∗−αβ∗ fk +β fk
)
ω2. (E.8)

This equation can be solved after rewriting it to

1

ω2 dω=− 1

〈U 〉
(
αβ∗−αβ∗ fk +β fk

)
dx. (E.9)

Integrating yields

ˆ ω

ωi n

1

ω2 dω=
ˆ x

xi n

− 1

〈U 〉
(
αβ∗−αβ∗ fk +β fk

)
dx (E.10)

[
− 1

ω

]ω
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(
αβ∗−αβ∗ fk +β fk

)
(x −xi n) (E.11)

1

ω
− 1
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= 1
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(
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(x −xi n) (E.12)

1
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− 1
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= 1
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(
αβ∗−αβ∗ fk +β fk

)
(x −xi n) (E.13)

1

ω
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〈U 〉ωi n
(E.14)

ω= 〈U 〉ωi n

〈U 〉+ (
αβ∗−αβ∗ fk +β fk

)
(x −xi n)ωi n

. (E.15)

Here the subscript i n indicates values at the inlet of the domain.
Using this solution, Eq. E.5 can be solved by integrating

〈U 〉dk

dx
=−β∗k

〈U 〉ωi n

〈U 〉+ (
αβ∗−αβ∗ fk +β fk

)
(x −xi n)ωi n

(E.16)

1

k
dk = −β∗ωi n

〈U 〉+ (
αβ∗−αβ∗ fk +β fk
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dx (E.17)
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[lnk]k
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(E.19)
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k = ki n[
1
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(x −xi n)ωi n
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. (E.23)

k = ki n[
1
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(x −xi n) ki n
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. (E.24)

To derive a transport equation for the eddy-viscosity, the definition

〈U 〉dνt
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(E.25)

can be used. Inserting Eq. E.5 and E.6, yields

〈U 〉dνt

dx
= 1

ω2

(−β∗kω2 + (
αβ∗−αβ∗ fk +β fk

)
kω2) , (E.26)

which reduces to

〈U 〉dνt

dx
=−(

β∗−αβ∗+αβ∗ fk −β fk
)

k. (E.27)

A solution for this equation can be obtained, again using the definition of νt = k/ω, and
the solutions for the decay functions of k and ω, Eq. E.15 and E.24,

νt =

ki n[
1

〈U 〉 (〈U 〉+(αβ∗−αβ∗ fk+β fk )(x−xi n )ωi n)
] β∗
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〈U 〉+(αβ∗−αβ∗ fk+β fk )(x−xi n )ωi n

(E.28)
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νt = νt ,i n

1
〈U 〉

(〈U 〉+ (
αβ∗−αβ∗ fk +β fk

)
(x −xi n)ωi n

)
[

1
〈U 〉

(〈U 〉+ (
αβ∗−αβ∗ fk +β fk

)
(x −xi n)ωi n

)] β∗
αβ∗−αβ∗ fk+β fk

(E.29)
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E.2. PANS-KSKL
The PANS-KSKL equations are
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(E.32)

Again, under the assumption of a steady, uniform flow aligned with the x axis, suffi-
ciently far away from walls, with neglecting the diffusion terms, the equations simplify
to:

〈U 〉dk

dx
=−C 3/4

µ

k3/2

l
(E.33)

and

〈U 〉
d

(p
kl

)
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=−ζ3k
fl√
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. (E.34)

These equations have no simple solution, hence a transport equation for the eddy-viscosity
is considered. When assuming uniform flow, the eddy-viscosity is given by

νt =C 1/4
µ

p
kl . (E.35)

Using this, Eq. E.33 and E.34 can be rewritten to
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and
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which, under the assumption of fε = 1.0 becomes

〈U 〉d (νt )

dx
=−ζ3C 1/4

µ fk k. (E.38)

An additional constant βK SK L is defined, such that

ζ3C 1/4
µ fk =β∗−βK SK L , (E.39)

leading to

〈U 〉d (νt )

dx
=−(

β∗−βK SK L
)

k. (E.40)

While the functions Eq. E.36 and E.40 are not easily solved, it is important to realise
the similarity with the decay functions of the PANS-SST model (Eq. E.5 and E.27, re-
spectively). The functions are identical, except for the constants, implying solutions of a
similar form. Consequently, based on Eq. E.24, the decay of k is given by

k = ki n[
1
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(E.41)

and, based on Eq. E.30, the decay of νt is given by
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