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Abstract

The aim of this thesis project is to investigate the model uncertainty of non-linear finite
element analysis of reinforced concrete structures at ultimate limit state. The study of this
model uncertainty is conducted by focusing on the approaches to model concrete crack-
ing, concrete-reinforcement interaction and mesh size. Based on these two aspects of non-
linear finite element analysis of reinforced concrete structures, eight different finite ele-
ment modelling strategies are developed and used to examine model uncertainty.

A set of sixty-seven experiments on reinforced concrete beams without shear reinforce-
ment are chosen to serve as benchmark for the study on the model uncertainty of the eight
modelling strategies. Flexural, shear and mixed failure modes are observed in the bench-
mark experiments with the beams having varying reinforcement ratio, concrete compres-
sive strength and depth. The measure of model uncertainty of all eight finite element mod-
elling strategies is performed firstly by making quantitative comparison of the predicted
ultimate capacity using the ratio of experimental to numerical failure load and secondly,
by making qualitative comparison of the predicted failure behaviour with that observed
in the benchmark experiments. For the quantitative comparison of the failure load, the
deviation of values form 1 indicates high model uncertainty with values lower than 1 repre-
senting non-conservative predictions and values higher than 1 representing conservative
predictions.

The eight modelling strategies are categorized into three groups. The first group of
modelling strategies is used primarily to select the shear retention model to be used for
the fixed total strain based crack concept and secondly to study the behaviour of both fixed
and rotating crack concepts when implemented in combination with embedded reinforce-
ment. Four of the eight modelling strategies are found in this group and only nine represen-
tative benchmark experiments are analysed using these modelling strategies. The damage
based and aggregate-size based shear retention models are investigated resulting in a mean
model uncertainty ratio of 0.86 and 0.82 respectively. This indicates that on average both
predict higher ultimate capacity when compared to experimental results with the aggre-
gate size based shear retention model exhibiting higher model uncertainty. Subsequently,
based on the qualitative comparison of predicted failure modes, the aggregate size based
shear retention model was not capable of predicting shear and mixed mode failure types
while the damage based shear retention predicted accurate failure modes for seven out of
the nine experiments. On the other hand, the rotating crack model with embedded rein-
forcement shows failure due to delamination of the concrete cover for all nine experiments
which is different from any failure mode observed in the experiments. Replacement of the
perfectly bonded embedded reinforcement by reinforcement with bond-slip demonstrated
to be able to avoid delamination of the concrete cover and predict the failure modes accu-
rately.

Based on the exploratory findings of the first group, the second group comprises of two
modelling strategies and all sixty-seven benchmark experiments are analysed using both
modelling strategies. The modelling strategies are fixed crack model with damage based
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vi Abstract

shear retention model and embedded reinforcement, which is referred to as F-EB-2-D and
rotating crack model with bond-slip reinforcement named R-BS-2. Both modelling strate-
gies, F-EB-2-D and R-BS-2, have 50 mm mesh size and result in mean model uncertainty
ratio of 1.11 and 1.06 respectively. This implies that both modelling strategies on average
give conservative predictions of the ultimate capacity with R-BS-2 showing on average a
better prediction. Examination of model uncertainty with respect to failure mode shows
that both modelling strategies give higher model uncertainty for experiments with shear
failure with F-EB-2-D and R-BS-2 predicting accurate failure modes for 48% and 51% of
the experiments respectively. The analyses of the beams with reinforcement ratio of lower
than 0.6% showed on average less model uncertainty in both F-EB-2-D and R-BS-2.

Following the study on F-EB-2-D and R-BS-2, a third group of modelling strategies is
composed by modifying the two modelling strategies to study the effect of mesh refine-
ment on model uncertainty. The mesh size of F-EB-2-D and R-BS-2, is refined from 50
mm to 25 mm in a critical section of the beams to formulate the modelling strategies F-
EB-3-D and R-BS-3 of this group. Sixteen of the benchmark experiments are reanalysed
using these modelling strategies and a significant improvement of failure mode prediction
is observed with both modelling strategies predicting accurate failure modes for 81% of the
16 experiments. A lowered mean model uncertainty ratio of 0.93 and 0.95 is recorded for
F-EB-3-D and R-BS-3 respectively. However, the results of the refined mesh models show
slightly non-conservative predictions of the capacity as most of the beams behaved more
stiff than when a coarser mesh is used.

The correlation between model uncertainty and numerical failure mechanism is made
using a ductility index which is defined as the ratio of the plastic dissipated energy in the
reinforcement to the plastic dissipated energy in the system. The relation between model
uncertainty and the ductility of the numerical failure mode is studied using 16 of the bench-
mark experiments analysed using F-EB-3-D. The majority of the analyses show that nu-
merical ductile flexural failure modes have model uncertainty ratios close to 1, however
the ductility index should be used together with model uncertainty if it is verified that the
correct equations are solved accurately.
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Introduction

Non-linear analysis of reinforced concrete is an advanced alternative for prediction of the
capacity and behaviour of reinforced concrete structures. The need for the application of
non-linear principles to analyse the mechanisms that occur in reinforced concrete struc-
tural elements arises due to the importance of optimization of resources and the growing
complexity of civil structures. Non-linear analysis accounts for the response of structures
beyond the linear material and geometric deformations and allows for an elevated use of
construction materials.

On the other hand, the complexity of the material properties of concrete after the elas-
tic regime has led to the application of simplified principles of linear elastic analysis. Many
building codes provide analytical models that are formulated based on linear elastic theo-
ries and empirical relations developed through calibration of large number of experiments.

Analytical methods of analysis of reinforced concrete are approximated due to several
factors. Firstly, cracking of concrete and the progressive loss of tensile strength is not di-
rectly included in the analytical models. The interaction of concrete and reinforcement
further adds to the challenge of analytical formulation. Moreover, the inclusion of multi-
axial stress conditions leads to cumbersome and complex analytical models and thus is
rarely considered. As a result, analytical models can give close approximations but are not
able to provide detailed depiction of actual stress transfer mechanisms.

Analysis of structures using finite element method involves a series of numerical ap-
proximations and material models which make it possible to attain reasonable predictions
of the behaviour of different load carrying structures. In the past few decades, there has
been continuous improvement of this method of numerical simulation.

Non-linear finite element analysis (NLFEA) of reinforced concrete has proved to be an
important tool with the growing number of complex and ageing structures among other
reasons. NLFEA consists of setting up an idealized mechanical model of the structure,
selecting and assigning material models and performing non-linear computations. The
accuracy of the predictions using NLFEA is heavily dependent on choices with regards to
theses aspects. The non-linear computation can include both physical and geometrical
non-linear effects. It involves gradual application of the load and employing an iterative
procedure to closely approximate the progressive change of stiffness of the structure.

Although analyses using finite element method have shown considerably satisfying re-
sults, the susceptibility of the finite element method to the implemented material models,



2 1. Introduction

solution procedures, the expert making the model and even to the type of software used
have made engineers sceptical about the use of NLFEA. The lack of coverage of non-linear
analysis in building codes has also contributed to its limited use in the professional engi-
neering world.

The study on the improvement of NLFEA of reinforced concrete structures thus be-
comes understandably important. It entails the identification and quantification of error
in prediction of capacity and behaviour of structures. In addition, standardization of mod-
elling techniques by providing guidelines to help obtain a certain level of uniformity of
results from different experts is beneficial.

Model uncertainty of NLFEA of reinforced concrete is the contrast between experimen-
tal results and computational predictions. Comparison of numerical predictions with ex-
perimental results is used to better understand and improve kinematic compatibility, con-
stitutive models as well as procedures for solving equilibrium equations in numerical sim-
ulation of reinforced concrete. In addition, model uncertainty also takes into account the
material uncertainty and error due to set-up and measurement of experiments. For this
reason, it is important to separate the uncertainty in numerical simulation from other ma-
terial and physical uncertainties.

1.1. Background

As the field of civil and structural engineering evolves together with advancement of tech-
nology, more intricate structures are possible and are being desired. The rising popularity
of structures such as shells, slender bridges, cantilevers and presence of dynamic load-
ing conditions requires the knowledge of non-linearity. Majority of these structures are
made of reinforced concrete. Thus understanding the non-linear material and geometrical
properties of reinforced concrete is crucial for design and analysis of complex structures.
Forensic engineering and reassessment of growing number of ageing buildings and infras-
tructure also require application of non-linear analysis.

To harness the advantages of non-linear effects, analytical and numerical computa-
tional methods are being used. However, material uncertainties coupled with the lack of
adequate knowledge has left non-linear analysis unpopular in the past. In recent years, the
advancement of computational tools such as finite element method, has enabled struc-
tural engineers to design and predict the capacity of structures using the principles of non-
linearity.

An important computational tool is the finite element method which is applicable to
solve continuum problems. Finite element method, as its name implies, functions by di-
viding the geometry of a structure into discrete elements bounded by nodes. Complex dis-
placement field of the structure is then calculated at these nodal points and interpolated
within the elements, creating a continuous displacement field throughout the structure.
The approximated displacement field in combination with constitutive models is used to
generate strain and stress fields. Many complex structures can thus be analysed in this
manner of close approximation. As a result it was able to garner attention from the aca-
demic and professional world.

Albeit remarkable accomplishments in recent years, application of finite element method
to perform analysis and design of reinforced concrete still faces some challenges. The pre-
cise prediction of the failure capacity and mechanism is affected by different aspects of the
finite element analysis.
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The error in numerical prediction of the capacity of a structure is known as model un-
certainty. In the paper by Engen [2], the modelling uncertainty is quantified as the ratio of
experimental failure load (Rexp) to the numerically predicted failure load (Ryum) which is
described in equation (1.1). The closer the value of 8 to 1, the more accurate the numerical
prediction is with respect to the experimental outcome and values lower than 1 indicate
non-conservative predictions while values higher than 1 show conservative predictions.

9= Rexperimental (1.1)

Rnumerical

The Fib Model code 2010 [4], specifies the need to verify numerical simulations of non-
linear analysis using benchmark experiments. It also provides safety formats applicable
for non-linear numerical simulations. The Fib model code 2010 puts forth three different
safety formats for NLFEA. The partial factor method, the global resistance method and the
probabilistic method. These safety formats incorporate a safety factor that accounts for
model uncertainty. These three safety formats are based on different levels of implementa-
tion of probabilistic theory.

In all the above mentioned safety formats, a model uncertainty global safety factor is
included to account for the mismatch between NLFEA predictions of resistance and the
experimentally predicted resistance of concrete structures. This model uncertainty as de-
fined in equation (1.1) includes the physical and numerical uncertainties. Thus, a global
safety factor for model uncertainty takes into consideration uncertainties such as spatial
variability of concrete strength, different batches of concrete used during construction, the
variability in concrete properties due to different suppliers as well as parameters of NLFEA
such as idealization of geometry, application of boundary conditions and effects of im-
plemented material models. Model uncertainty is also believed to be dependent on the
approaches used during finite element analysis. The set of modelling choices which are
necessary for the idealization, discretization and analysis of a physical problem is referred
in this report as modelling strategy. A quantified model uncertainty allows us to compare
between different modelling strategies.

Development of reliable safety formats that can have wide-spread application is a huge
advantage for main-stream use of NLFEA. Fib Model code 2010 [4] states that numerical
simulation of concrete structures needs to be validated by the use of benchmark exper-
iments and subsequently the model uncertainty safety factor recommended in the code
can be verified or revised.

1.2. Motivation
The pressing issue of sustainability has been of interest to our generation for some time. By
understanding that the construction industry is one of the major contributors to climate
change, several efforts to improve construction methodology and to optimize the use of
construction materials are underway. One alternative for optimized use of construction
materials is reduction of the size of structural elements by further exploiting the capacity
or resistance of materials for example by utilizing the capacity of materials and structural
members beyond their linear elastic regime.

In the past, due to several factors the capacity of structural elements and more im-
portantly concrete structures has been limited to the linear elastic regime. However, this
highly conservative and simplified assumption of material and structural behaviour results
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in large sizes of structural members and uneconomical design methodologies.

The motivation for this MSc. project is the contribution of non-linear analysis towards
optimized use of reinforced concrete. The application of non-linear material and geomet-
ric properties aids not only in predicting resistance of structures closest to reality but also
allows us to benefit from a higher utilization of material and physical capacity.

1.3. Scope

The scope of this research is limited to model uncertainty of NLFEA of reinforced con-
crete structures under ultimate loading conditions. In this thesis project only the effects
of physical non-linearity are considered with quasi-static loading conditions. The finite el-
ement models are developed in 2D work environment with varying concrete crack models,
concrete-reinforcement bond models and mesh sizes. To study this model uncertainty, a
set of experiments conducted on reinforced concrete beams without shear reinforcement
are selected to serve as benchmark.

To assist with numerical simulation of the benchmark experiments, a study of the be-
haviour of reinforced concrete beams without shear reinforcement is carried out. The gov-
erning methods of stress transfer and redistribution along with the role of longitudinal re-
inforcement and interaction between concrete and reinforcement on the failure character-
istics are investigated.

The approaches to model cracking of concrete and concrete-reinforcement interaction
are given priority and are studied in detail. Different variants of the concrete crack model
as well as the reinforcement model are analysed. For fixed crack concept, two shear re-
tention models are investigated based on accuracy of failure load and failure mechanism
predictions.

For this thesis, the multi-purpose software Diana version 10.2 is used to perform the
finite element analysis of the benchmark experiments. Among the concrete crack models
available in Diana, the total strain based crack model with fixed and rotating crack orien-
tations is considered. Similarly from the methods used to model concrete-reinforcement
interaction, the embedded and bond-slip interface reinforcement models are applied. In
addition to crack and reinforcement models, the study of the effect of mesh refinement on
numerical predictions is also performed.

1.4. Research Objectives

The main objective of this thesis work is to investigate the accuracy of NLFEA in predicting
the ultimate capacity of reinforced concrete structures. To fulfil this objective the following
series of questions are posed.

e To what extent does the applied modelling strategy influence the model uncertainty?

Firstly different modelling strategies will be established to perform NLFEA of the bench-
mark experiments. Subsequently, using the collected data from the analysis a link between
modelling strategy and model uncertainty is investigated. The model uncertainty will be
assessed based on the accuracy of the predicted capacity and the failure mode at ultimate
limit state.

* Does the failure mechanism affect the model uncertainty?

In this study, a large number of benchmark experiments are used which exhibit different
failure mechanisms, enabling in-depth study into the extent of the contribution of failure
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mechanism into modelling uncertainty.

¢ What is the most robust modelling strategy for reinforced concrete beams without
shear reinforcement?

After post-processing of analysis results using different modelling strategies, a study of
which modelling choices resulted in better predictions of the behaviour and capacity of
reinforced concrete beams without shear reinforcement is performed and possible recom-
mendations are made.

e Is it possible to recommend a modelling strategy that will minimize the model un-
certainty for a specific failure mechanism?

The model uncertainty is related with the failure mechanism and a comparison be-
tween different modelling strategies on how well they can predict a specific failure mode is
made.

1.5. Research Approach
After general understanding of the topic of research, the work plan is divided into four main
blocks of activities in order to achieve the above mentioned research objectives and answer
the research questions.

¢ Literature Review

In the past, research efforts have been made to define and quantify modelling uncer-
tainty of NLFEA. For this thesis, some of these researches are studied to get insight into the
sources of imperfect predictions when applying NLFEA. In addition, theories behind im-
plemented material models are studied to understand the fundamental concepts as well as
have realistic expectations of results. Once the benchmark experiments are chosen, litera-
ture on the behaviour of the experiments were reviewed.

¢ Selection of Benchmark Experiments

To quantify the model uncertainty of a specific finite element model, it is necessary to
pick reference structures that serve as a measure of the accuracy of the model. For this
purpose, experiments conducted at Delft University of Technology by Yuguang Yang [10]
in 2016 on simply supported reinforced concrete beams without shear reinforcement are
chosen. Sixty seven out of the one hundred and seven experiments carried out by Yuguang
Yang are selected for this thesis.

¢ Finite element analysis and modelling uncertainty computation

For this thesis project the finite element software Diana version 10.2 is used. Consid-
ering the benchmark experiments, eight different modelling strategies are developed to
serve the purpose of this research. The large number of benchmark experiments selected
required a semi-automated process of creating the finite element models and analysing
them. To accomplish this, a parametrized script in python is developed and implemented.
Following this, an excel spreadsheet is used to calculate the model uncertainty of each
modelling strategy per benchmark experiment.

¢ Interpret results and perform statistical analysis

Once the model uncertainty is calculated, careful observations and relevant compar-
isons between the results with respect to the goal of the research are done. Probabilistic
distribution of the modelling uncertainty from the obtained results is studied to under-
stand trends.

¢ Ductility Index Computation

To associate the brittle or ductile nature of the predictions with the computed model
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uncertainty ‘Theta - 6’, ductility index is used. This is also used to highlight the effect of
the degree of ductility of a failure mechanism on the precision of the finite element model.
The ductility index is defined as the ratio between the plastic dissipated energy in the re-
inforcement to the total plastic dissipated energy in the system. Diana 10.2 does not have
a result output of the plastic dissipated energy. Thus, a series of unloading and manipu-
lating stresses and strains is necessary. A separate python script is developed to assist in
computing the plastic dissipated energy.

1.6. Report OQutline

The structures of this report is aimed to help the reader understand the decisions made
during this thesis project to meet the research objectives and answer the research ques-
tions. In this section the contents of each chapter is briefly stated to give an overview of the
report.

¢ Following this introductory chapter, in Chapter 2 the description of the benchmark ex-
periments used for this thesis project is written. In this, an overview of experimental results
and a brief discussion of the failure modes observed in the experiments is provided to help
familiarize the reader with the behaviour of the selected set of benchmark experiments.

e Chapter 3 introduces the reader to the chosen modelling strategies and the aspects
of the finite element analysis that are the focus of this thesis. The concrete crack models
and concrete-reinforcement interaction models were given precedence among the differ-
ent aspects of NLFEA and are discussed in this chapter. Subsequently, the three groups of
modelling strategies applied in this thesis are introduced.

¢ In Chapter 4, the analysis results and discussion of the first group of modelling strate-
gies that are used to analyse a selected few of the benchmark experiments are presented.

¢ In Chapter 5, a second group of the modelling strategies is established and used to
analyse the entire set of benchmark experiments. The analyses results and observed trends
are presented and discussed in terms of model uncertainty and failure mode.

¢ A study on mesh refinement to develop a robust finite element model that can closely
simulate the failure behaviour of reinforced concrete beams without shear reinforcement
is presented in Chapter 6 and the results of this study are discussed.

¢ In Chapter 7, the study of the correlation between the numerically predicted failure
load and failure mechanism is performed. The method of calculation of ductility index is
described and the results of the ductility index of one modelling strategy is analysed with
respect to modelling uncertainty.

¢ Finally, the main Conclusions of the study are drawn and Recommendations are made
for future work.



Benchmark Experiments by Yang and
Koekkoek [10]

A series of experiments on reinforced concrete beams without shear reinforcement were
conducted in Delft university of Technology from April 2015 to August 2016. These experi-
ments were conducted by Yuguang Yang for a study on the transition from flexural to shear
failure of reinforced concrete beams without shear reinforcement. Three main types of fail-
ure modes were observed in this series of experiments. These are flexural, shear and mixed
failure. To study the modelling uncertainty of NLFEA, experiments that have high precision
in setup and data recording as well as proper measurement of material properties are cho-
sen. To study the modelling uncertainty due to the finite element computation it is appro-
priate to reduce the error in the experiments to pinpoint the computational methods that
are leading to inaccuracies. However, when working with concrete, material uncertainty
is an inevitable aspect that can bring variations in the expected outcomes of experiments.
To take these variations into account, repeated experiments are useful. Considering these
issues, the experiments done by Yuguang Yang proved to be ideal for a study such as this. In
addition, the experimental setup of the support and load condition are such that accurate
idealization into a finite element model could be done with ease. Out of 107 experiments
carried, 67 are selected for this thesis project, with some experiments being repeated. The
purpose for which these experiments were conducted also made them compelling from
the perspective of understanding the effect of failure mechanisms on accurate numerical
prediction. Originally, these experiments were carried out to study the shear capacity of
concrete beams and the mechanisms involved in brittle shear failures. The transition from
flexural to shear failure is also studied to determine the critical shear span to depth ratio
responsible for shear failure. In these experiments, different failure mechanisms are ob-
served as the position of the point load was altered.

2.1. Description of Benchmark Experiments
The 67 benchmark experiments were conducted on 16 simply-supported reinforced con-
crete beams without shear reinforcement. The geometric and material properties of these
16 specimens are summarized in table 2.1. Numerous experiments were carried out on
each beam.

The benchmark experiments are classified into three series of tests named A, B and C.

7
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This classification is based on geometrical and material characteristics of the beam speci-
mens. The A and B-series experiments are comprised of beams having a concrete grade of
C65 while the C-series has C30 grade concrete. In addition, the beams in the B-series ex-
periments have a height (H) of 500mm while the A and C-series have 300mm height (H). All
the beams have a width of 300mm and a length of 8m with a constant clear span of 5m. The
reinforcement ratio (p) of the beams varies from 1.2% to 0.45% with same top and bottom
reinforcements and effective depth (d).

To identify each of these experiments, a nomenclature was established. The example
below illustrates this nomenclature as described in the experimental report [10].

test series
reinforcement ratio
—— number of the specimen
end of the specimen
test number for loading position

A901B1

Figure 2.1: Nomenclature of benchmark experiments [10]

Table 2.1: Properties of 16 reinforced concrete beams without shear reinforcement used for the benchmark

experiments
No. | Name | f;cupic (MPa) | Reinforcement | H (mm) | d (mm) | p (%)
1 Al121 77.5 3420 300 269.5 1.17
2 | Al22 78.2 3¢20 300 270.5 1.16
3 Al123 79.2 3¢20 300 270 1.16
4 | A901 78.5 112 + 2¢20 300 274 0.9
5 | A902 78.5 112 + 2¢20 300 276 0.9
6 | A751 78.5 3¢16 300 274.5 0.73
7 | A752 78.5 3¢16 300 273 0.74
8 A601 78.5 1¢10 + 2¢16 300 275.5 0.58
9 A602 78.5 110 + 2¢16 300 272.5 0.59
10 | B701 81 3¢20 500 471.5 0.67
11 | B702 81.7 3¢20 500 471.5 0.67
12 | B501 81.8 1¢16 + 2¢20 500 471.5 0.59
13 | B502 81.9 116 + 2¢20 500 472.5 0.59
14 | C901 23.7 112 + 2¢20 300 271.5 0.91
15 | C751 23.7 3¢16 300 270 0.74
16 | C451 23.7 3¢p12 300 272.5 0.42

The aim of these experiments is to study the transition between flexural and shear fail-
ure in reinforced concrete beams without shear reinforcement. The 67 experiments were
conducted by moving the location of a point load applied at the top of the beams. As a
result the shear span designated as 'a’ in figure 2.4a varies for each experiment. All the
benchmark experiments were performed using displacement-controlled loading.



2.2. Experimental Program 9

_.A

T

5,000 s
- 5.000

£

Figure 2.2: Longitudinal view of a typical beam used for benchmark experiments
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Figure 2.3: Section A-A view of beams in benchmark experiment

2.2, Experimental Program

The experiments were conducted to make the utmost use of the beams. As aresult up to five
experiments were conducted on each of the 16 beams. This was made possible by utilizing
both ends of the beam.

As illustrated in figure 2.4, the first experiment has a long shear span with the target of
obtaining flexural failure. The following experiment has a reduced shear span in an effort
to obtain shear failure. Once shear failure is obtained, the shear crack is strengthened as
shown in figure 2.4(c) and the position of the load is moved to test a different shear span in
order to check the point of transition of failure mode. The supports are also shifted to make
use of the remaining undamaged section of the beam end. When one end of the beam can
no longer be used, the position of the load is shifted to the other end of the beam and a
similar procedure is followed.
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Figure 2.4: Illustration of the experimental approach

2.3. Overview of Experimental Results

Three types of failure modes are observed in the benchmark experiments. These are flex-
ural failure, shear failure and mixed (flexural/shear) failure. Based on the following obser-
vations, failure mechanisms were identified and peak loads were measured in these exper-
iments.

A. Flexural failure: identified by the yielding of the reinforcement. In this type of failure,
the peak load is sustained for a considerable amount of deflection of the beam before a
complete loss of capacity is observed. Primary or flexural cracks precede the yielding of the
reinforcement.

B. Shear failure

B.1 Flexural shear failure: This mode of failure is identified as the loss of capacity of
the beam due to formation of secondary cracks along the reinforcement in the tensile and
compressive zone before yielding of the reinforcement. This is the shear failure recorded in
the experiments.

B.2. Shear compression failure: this occurred in few experiments where the point load
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is located close to the support. A compression strut from the point load to the nearby sup-
port is created and failure of the beam is caused because of crushing of the compressive
strut.

C. Mixed (Flexural/Shear) failure: this is the case when reinforcement yields just before
flexural shear cracks occur. The peak load is sustained for a short period before the beam
undergoes a brittle failure. Two load levels are recorded in Yang’s experiments for this type
of failure. First at the yielding of reinforcement and second just before shear failure.

The mode of failure and the respective peak load of each benchmark experiments is
given in the table 2.2 with the shear slenderness of experiments.
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Table 2.2: Experimental failure load and failure mechanism of 67 benchmark experiments

Name | a/d | Exp. Failure Load(KN) Exp. Failure Mode
A121A1 | 5.57 115.3 Flexure
Al121A2 | 4.66 138.8 Flexure
Al121A3 | 3.71 144.6 Shear
Al121B1 | 3.71 160.6 Flexure+ shear
A122A1 | 2.77 194.7 Flexure+ shear
Al122B1 | 3.7 152.3 Shear
Al123A1 | 3.7 136.5 Shear
Al123A2 | 2.96 139 Shear
A123B1 | 4.63 134.9 Flexure
Al123B2 | 4.26 148.9 Flexure+ shear
A901A1 | 4.56 105.6 Flexure
A901A2 | 3.65 123.9 Flexure
A901A3 | 2.74 145 Shear
A901B1 | 3.21 127.5 Shear
A901B2 | 2.74 124.2 Shear
A902A1 | 3.61 120.7 Shear
A902A2 | 3.26 136 Flexure
A902A3 | 2.9 149.4 Shear
A902B1 | 3.99 121.5 Flexure
A902B2 | 3.62 124.2 Shear
A751A1 | 3.64 97.1 Flexure
A751A2 | 2.73 118.4 Shear
A751B1 | 2.91 106.7 Shear
A751B2 | 3.1 110.1 Flexure+ shear
A752A1 | 3.3 108.7 Flexure
A752A2 | 3.11 119 Shear
A752A3 | 3.11 121.6 Flexure+ shear
A752B2 | 2.56 141.9 Flexure+ shear
A601A1 | 3.63 80.3 Flexure
A601A2 | 2.72 102.1 Flexure
A601B1 | 2.54 118.7 Flexure+ shear
A601B2 | 2.18 123.2 Flexure with shear cracks
A602A1 | 2.75 98.8 Flexure
A602A2 | 2.57 112.8 Flexure
A602A3 | 2.55 114.2 Flexure+ shear
A602B1 | 5.5 58 Flexure
A602B2 | 2.39 110.9 Flexure+ shear
B701A1 | 4.77 175.5 Flexure
B701A2 | 4.24 179.5 Flexure
B701A3 | 3.71 185.7 Flexure
B701B1 | 3.61 193.6 Flexure
B701B2 | 3.18 202.4 Shear
B702A1 | 2.65 183.2 Shear
B702B1 | 3.08 164.9 Shear
B501A1 | 4.24 168.5 Flexure
B501A2 | 3.71 166.4 Shear
B501B1 | 3.82 165.7 Shear
B502A1 | 4.02 166.9 Flexure
B502A2 | 3.81 175.1 Flexure
B502A3 | 3.6 173.6 Shear
B502B1 | 3.6 173.2 Shear
C901A1 | 4.6 98.5 Flexure
C901A2 | 3.68 103.4 Shear
C901A3 | 3.68 84.1 Shear
C901B1 | 4.6 101.7 Shear
C751A1 | 4.63 76.5 Flexure
C751A2 | 3.7 84.5 Shear
C751A3 | 3.7 86.7 Shear
C751B1 | 3.7 82.8 Flexure+ shear
C451A1 | 4.59 41.4 Flexure
C451A2 | 3.67 58.6 Flexure
C451A3 | 2.75 73.5 Flexure+ shear
C451A4 | 2.75 70.9 Shear
C451B1 | 3.12 58.5 Flexure
C451B2 | 2.94 70.6 Flexure+ shear
C451B3 | 2.94 67.1 Flexure
C451B4 | 2.57 77.2 Shear
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2.4. Description of Failure Modes in Benchmark Experiments

Flexural, shear and mix mode failure types were observed in the benchmark experiments.
Understanding the method of transfer and redistribution of stresses at failure is important
to set up a robust finite element model. The two observed fundamental failure modes were
flexure and shear. Thus, the governing mechanisms involved in flexural and shear failure
are discussed in this section.

A. Flexural Failure

Flexural failure is the loss of strength of reinforced concrete beam due to high bending
moment acting on its cross-section. Flexural failure is characterized by the development of
compressive and tensile stresses along the height around the neutral axis of the beam. The
tensile stresses in reinforced concrete are carried by the reinforcement once the concrete
reaches its tensile strength. Following this, the compressive forces in the cross-section are
equilibrated with the tensile forces in the reinforcement. Depending on the amount of
the reinforcement either the concrete crushes or the reinforcement yields with progressive
loading.

The formation and propagation of the flexural cracks formed due to cracking of con-
crete affect the load-displacement graph of the reinforced concrete beams. Initiation and
spacing of flexural cracks is governed by the interaction between concrete and reinforce-
ment.

With cracking of concrete, the tensile forces will be transferred to the reinforcements
and this causes the development of bond stresses along the reinforcement. The bond stress
and diameter of the reinforcement govern the spacing and width of the subsequent cracks.
After the crack formation stage, the reinforcement is assumed to solely carry the tensile
forces with significant increase in the stresses resulting in the yielding of the reinforcement.
This is then known as flexural failure since it is an outcome of a predominant bending mo-
ment acting on a cross-section. For under-reinforced or ductile beams this failure is fairly
easy to predict as the material uncertainty of the reinforcement is lower than that of con-
crete. In addition, factors involved in the interaction between concrete and reinforcement
are more or less understood in this case.

B. Shear Failure

The failure of beams due to large shearing forces and formation of diagonal cracks along
the span is known as shear failure. Shear failure is a brittle phenomena unlike flexural
failure especially in concrete beams without shear reinforcement. It can be classified into
two types based on the stresses that result in the diagonal shear cracks. These are flexural
shear failure and shear compression failure. The former, as the name implies, is formed
when flexural cracks gradually incline as a result of high shear stresses. The latter, on the
other hand, is a product of the formation of diagonal cracks due to formation of a strong
compressive strut between the point ofloading and the nearby support. Shear compressive
failure is defined by the crushing of concrete due to this compressive strut.

In concrete beams without shear reinforcement the transfer of shear stress is governed
by three components. These are, direct shear transfer in the compressed part of the cross-
section, aggregate-matrix interlock in the cracked section and dowel action of longitudinal
reinforcement. These three methods of shear transfer are depicted in figure 2.5.
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direct shear transfer

Figure 2.5: Shear stress transfer mechanisms [11]



Finite Element Modelling Strategies

The study of model uncertainty of finite element analysis is associated with a selected set
of modelling choices. A set of modelling choices which is necessary for the idealization,
discretization and analysis of a physical problem is referred in this report as a modelling
strategy. The term solution strategy is commonly used in literature, however to avoid any
misinterpretation with the term solution procedure, the name modelling strategy is used
for this thesis work.

3.1. Definition of Finite Element Modelling Strategy
A non-linear finite element modelling strategy includes four main aspects:

a. Idealization of the physical problem
This includes the reasonable idealization of the geometry of the structure, the boundary
conditions, applied loads and the interaction with surrounding structures.

b. Discretization of the idealized problem
This involves the type and size of finite element. Choosing the finite element that divides
the geometry of the structure implies the selection of the displacement field. Once the dis-
placement field is established the strains can be drawn from it. Discretization involves how
and where these strains are calculated within an element. Among the choices in this as-
pect of the modelling strategy are analytical versus numerical integration, Gaussian versus
Newton-Cotes numerical integration and even regular versus high integration scheme.

c. Constitutive model
At the heart of a structural finite element computation lies the relation that links the strains
computed by the finite element to the stresses the structure is experiencing - this is the
constitutive relation. Since the constitutive relation is material dependent, most finite el-
ement software provide material models that capture the linear and non-linear behaviour
by taking user inputs. Choosing the appropriate material model along with a realistic input
is a crucial part of modelling strategy.

d. Solution procedure
A non-linear analysis takes into account the varying stiffness of the structure as the load-
ing progresses. In order to successfully calculate the stiffness of the structure at a given
load step, an iterative process of solving the system of equations to obtain equilibrium be-
tween internal and external forces in the discretized system is necessary. Thus setting the
appropriate method of applying the load, step size of the load, type of iterative solution

15
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procedure, norm and tolerance of the chosen norm to accurately follow the equilibrium
path are mandatory for a non-linear finite element modelling strategy.

A finite element modelling strategy should be specific for the problem at hand. Each
of the four aspects of the modelling strategy should be selected carefully; failure to do so
can lead to issues from solving an entirely different problem due to inaccurate idealization
to misleading results due to inappropriate material models. The guideline for non-linear
finite element analysis of concrete structures [6] serves as a starting point for engineers to
perform NLFEA of concrete structures with a certain degree of accuracy.

3.2. Approach to Model Cracking in Concrete
To include the presence and effect of cracks in materials such as concrete, two types of
crack modelling methods are available. These are the discrete and smeared crack concepts.

Discrete crack concept works by assigning non-linear interface elements where crack-
ingis expected. The advantage of this method is that the simulation of cracking is done by a
selected few interface elements that form a discontinuity in the continuum elements. The
computation of crack strains and stresses need only be done for these interface elements
and not the continuum elements. This method requires an earlier knowledge of the loca-
tion and orientation of the crack in order to assign the interface elements simulating crack
while the rest of the geometry is assigned linear elastic material properties.

The second method involves the smearing out of cracks throughout the continuum el-
ements. This method allows a more realistic simulation of cracks. The exact location and
orientation of cracks especially in a matrix-aggregate composite material such as concrete
is difficult to pre-determine. In addition, a discrete crack with a distinct direction of propa-
gation throughout the loading history does not mimic reality. Such is the case in reinforced
concrete structures with distributed fracture. Due to the unpredictable behaviour of shear
cracks especially in the absence of stirrups and distributed flexural cracks, smeared crack
approach is the most realistic alternative for reinforced concrete beams.

The smeared crack concept, first introduced by Rashid [7], is based on having a stress-
strain relation of the continuum element that can describe the process of crack formation.
As described in the thesis dissertation by Rots [8], this approach also allows the switch from
an initial isotropic stress-strain law to an orthotropic relation once crack initiates with the
crack plane serving as the axis of orthotropy.

In Diana, different material models based on the smeared crack approach are available.
One of them is the total strain based crack model. This crack model uses stress-strain re-
lation based on total strain. In the total strain based crack model different approaches to
model cracking are available. A common approach uses coaxial stress-strain concept which
applies the constitutive relation in the principal strain direction. This is known as rotating
crack model since the axis of application of the stress-strain relation shifts together with
the direction of the principal strain vector. The rotating crack model has proved to give
acceptable results for reinforced concrete structures over a long period of time. Another
approach is the use of a fixed coordinate system for the constitutive model known as fixed
crack concept. This approach has a fixed direction of the stress-strain relation upon the
formation of cracks and the crack plane is used as the axis for a constitutive coordinate sys-
tem. The second approach imitates more of the physical nature of cracks and thus becomes
interesting.

For both the crack concepts the stress is calculated in the direction of crack. The crack
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coordinate system is shown in figure 3.1.

Crack Planr_t}__,_,__,. v

Figure 3.1: Crack coordinate system

The strain is computed in the local element axis and transformed into the direction
of the crack plane using a transformation matrix given as equation (3.1). The difference
between the rotating and fixed crack concepts is that the transformation matrix is fixed
upon crack initiation for the fixed crack concept while it is continually calculated for the
rotating crack concept based on the direction of the principal strain vector as that is the
assumed crack plane.

Aént = Texy 3.1)

For this thesis project both of these crack concepts will be investigated by applying them
in different modelling strategies.

A particular aspect of the fixed crack concept is the issue of the shear stiffness of cracked
surface. Fixing the crack orientation implies that the crack plane and the principal strain as
well as the principal stress directions are not aligned. This raises the need to consider the
presence of shear stresses on the fixed crack plane. The shear stiffness of a cracked section
is governed by different factors and is believed to deteriorate based on the crack opening
width. Thus the shear stiffness behaviour of the cracked surface needs to be incorporated
in the fixed crack model.

Different shear behaviour models are available in Diana, however the damage based
shear retention and the aggregate size based shear retention models will be studied for this
thesis. Itis crucial to verify the shear retention behaviour since the benchmark experiments
do not possess shear reinforcement. The guideline for non-linear finite element modelling
of concrete structure [6] recommends that explicit verification of shear retention model is
necessary when using fixed crack model for reinforced concrete beams without shear rein-
forcement. A description of the two shear retention models implemented will be discussed.

A. Fixed Crack Model-Damage Based Shear Retention

This shear retention model reduces the shear stiffness with the same rate as the normal
stiffness of the crack plane. The updated shear stiffness after cracking will then be:

UE

T 21+v) 5.2

Ger

Where, G, is the shear stiffness of the cracked surface, u is the reduction factor for
Young’s Modulus on the cracked plane, E is the Young’s Modulus and v is the Poisson’s ratio.
B. Fixed Crack Model-Aggregate Size Based Shear Retention
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As mentioned in section 2.4, shear stresses in a cracked concrete are transferred through
aggregate-matrix interlock mechanism. Along with factors such as the roughness and shape
of the crack as well as concrete strength [9], aggregate interlock plays a fundamental role
in the transfer of shear stresses on a cracked surface. The fractured surface in concrete
experiences both the crack opening and shearing drift or displacement. As the shear dis-
placement occurs, the contact area between the aggregate and matrix keeps changing pre-
dominantly due to local crushing of the matrix.

Figure 3.2: Aggregate-matrix interlock on a cracked surface [9]

This local crushing of the cement matrix by itself contributes to the initial increase of
the shear stress on a crack. However after a certain shear strain value the shear stress drops
to a constant value. Figure 3.3a shows this relation by Gambarova [5].
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(a) Normal and shear stress versus vertical dis- (b) Gambarova’s relation and bi-linear repre-
placement of crack for differenet crack width sentation of shear stress versus shear displace-
ment

Figure 3.3: Relation between shear stress and vertical displacement [1]

A bi-linear representation of this relation shown in figure 3.3b is presented by Belletti
et al. [1] which simplifies the relation shown in figure 3.3a and defines a shear stiffness
reduction factor () based on the bi-linear assumption. Belletti et al. [1] also neglects the
aggregate interlock effect for crack width higher than maximum aggregate size.

On the other hand, Diana provides an even more simplified linear expression for the
shear reduction factor () that guarantees zero shear stiffness when the crack width reaches
half the maximum aggregate size given by equation (3.3).

2enh

B=1 3.3)

dagg
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Where ¢y, is the crack strain normal to the crack surface, h is the element size and dagg is
the maximum aggregate size. Considering these series of simplifications of the aggregate-
matrix interlock effect, the performance of the fixed crack model using the aggregate size
based shear retention model was decided to be examined in this thesis.

3.3. Approach to Model Bond in Reinforced Concrete

The interaction between concrete and reinforcement dictates the structural response of re-
inforced concrete. The approach in computational mechanics to model the bond between
concrete and reinforcement is an area of interest in NLFEA of reinforced concrete.

In Diana finite element software, the simulation of bond between concrete and rein-
forcement can be done in three ways. These are embedded reinforcement, bond-slip inter-
face reinforcement and concept of tension-stiffening.

Embedded Reinforcement

This reinforcement model in Diana was formulated in a way to simulate perfect bond
between concrete and reinforcement. To realize this the embedded reinforcement does not
have its own degrees of freedom. It acquires the displacement and strains of the so-called
‘Mother’ element that it is embedded in. The mother element in this case is the concrete
continuum element. This ensures perfect bond between concrete and reinforcement.

Bond-Slip Reinforcement

Bond-slip reinforcement on the other hand incorporates the deterioration of bond stress
between concrete and reinforcement with relative slip. To model this behaviour, interface
elements are used between the reinforcement and the surrounding concrete elements. The
reinforcement element type can either be a truss or beam element. Diana does not output
integration point results since the integration scheme of the reinforcement element and
the interface element are not the same. As a result, the bond traction stress and relative slip
between the reinforcement and concrete can only be extracted at the nodes.

Thus, the important aspect of using this reinforcement model is the type of bond stress-
slip relation specified for the interface elements between concrete and reinforcement. Sev-
eral bond-slip relations are provided in Diana, however for this thesis the one recommended
by fib model code 2010 [4] is considered.

Fib Model Code 2010 puts forth a local bond-slip relation defined by the following piece-
wise function for the bond stress.

S a
Tho = TbmaX(S—) for0<S<§; (3.4a)
1
Tho = Thmax forS; <8< (3.4b)
S-S,
Tho = Tbmax — (Thmax — Tf)(s S ) forS;<S<S3 (3.4¢)
— o3
Tho = Thf forS=S; (3.4d)

Where 1}, is the bond stress value for a given slip whereas Ty and 7pr are the maxi-
mum bond-stress for a given concrete compressive strength and minimum friction traction
stress respectively. S1, S2, S3 and S are the slip respective to the bond stress level. Fig-
ure 3.4a illustrates a typical bond stress-slip relation. These formulae are used to quantify
the bond stress- slip relation depending on the mean concrete compressive strength.
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(b) A typical bond stress-slip graph of equation (3.4) for a pull-out and splitting failure tests

Figure 3.4: Local bond stress versus relative slip relation [4]

The concrete-reinforcement interaction in the case of the benchmark experiments is
classified under the group specified in column 3 of figure 3.4a. This is based on the con-
crete cover and bond-conditions of the benchmark experiments. The concrete cover is not
large enough to be categorized as a pull-out test. The longitudinal reinforcement used are
deformed bars and the beam is unconfined by stirrups.
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The Fib model code 2010 [4] suggests that the bond stress should be reduced if yielding
of reinforcement occurs along the embedment length. It gives a reduction factor Q that
takes the steel strain after yielding into account to adjust the bond stress. This reduction
factor is given by equation (3.5)a and equation (3.5)b.

Q=1 €s <€y (3.5a)
Q=1-085(1—-e%") ey <es<ey (3.5b)
with
€Eq—€
a=—2Y  and b:[l—ft—m] (3.6)

Where €y and €, are the steel yield and ultimate strains respectively. fyy, and fiy, are
the yield and tensile strength of reinforcement respectively.

3.4. Description of Generic Finite Element Model
In section 1.5, it is mentioned that eight modelling strategies are investigated for this thesis
project. These modelling strategies have some common modelling parameters. A descrip-
tion of the general characteristics of the finite element modelling strategies is outlined in
this section.

The variables in each experiments such as the load position, material property and
depth are controlled by utilizing a python script, attached in Annex B and Annex C, to easily
modify these variables and build the numerical models.

3.4.1. Geometry of the Model

A

Figure 3.5: Geometry of finite element model

A 2D finite element model is used to numerically simulate the reinforced concrete beams
of the benchmark experiments. A typical geometry of the beams is shown in figure 3.5. In
section 2.2, it is mentioned that both ends of the beam were utilized to perform the exper-
iments. However on the numerical model only the left end is used since all the analysis of
the 67 experiments are performed independently without the inclusion of load history and
the beams are symmetric. Thus, the use of different ends of the model is not relevant.

The model has a length of 8m and a clear span of 5m. The width of the beam is 300mm
and the height depends on the selected experiment.

3.4.2. Material Properties
In this subsection, the material models of concrete and reinforcement as well as the model
for concrete-reinforcement interaction is described.

A. Concrete Material Model

The tensile behaviour of concrete beyond the linear elastic phase is given by Hordijk’s
exponential softening curve. This is based on tensile fracture energy of concrete as well as
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the finite element size(heq). This was done with the aim to prevent the effect of mesh size
on the crack behaviour.

i1

Gy
fieq

Figure 3.6: Hordijk tension softening model
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Where, f; is concrete tensile strength, € is the crack strain, € is the ultimate strain, ¢;
is a parameter given as 3 and ¢, as 6.93 [6].

The parabolic compression model is used to model compression softening behaviour.
This is formulated using the compressive fracture energy which is taken as 250 times the
tensile fracture energy. The formula implemented in Diana is described in equation (3.8)
where G, is the compressive fracture energy, a. is the crushing compressive strain, a, is
the ultimate compressive strain and f is the compressive strength.

Figure 3.7: Parabolic compression model
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1
QAej3 = _5% (3.9
5
3G
@, =min(a, - ———,2.5a.) (3.11)
2 hf.

Where, f, is concrete compressive strength, a /3 is the strain at which one-third of f, is
reached, a. is the strain at which f; is reached, a, is the strain at which material is com-
pletely softened, G, is compressive fracture energy and h is the finite element size.

B. Reinforcement Material Model

A linear strain hardening plastic constitutive relation is used to model the reinforce-
ment. Once the reinforcement yields the stiffness of the steel is reduced to 0.02% of Es.

Figure 3.8: Linear hardening material model for steel

C. Bond-slip Interface Material Model
The normal (B;,;) and tangential (B;) stiffness of the bond-slip are given as:

E.
B
B = 1—3 (3.13)

Where, Ec is the Young’s modulus of concrete and h is the element size. The 67 bench-
mark experiments have different material properties thus the formulas to calculate the val-
ues of the material properties are given in table 3.1.



24 3. Finite Element Modelling Strategies

Table 3.1: Input material properties for NLFEA

Concrete Material Properties

Mean cubic compressive strength(f¢) (MPa) f c,cubic
Mean cylinder compressive strength(f ) (MPa) f:*0.8
Mean tensile strength(fy) (MPa) 2.12*In(140.1*(fcm))
Characteristic Compressive strength (fi) (MPa) fem -8
Young’s Modulus(E.) (MPa) 21500 * (fem * 0.1)03%)
Fracture Energy(Gy) (N\mm) 0.073 * (fem' %)
Compressive Fracture energy(G¢) (N\mm) 250*Gg
Poisson’s Ratio(v) 0.2
Reinforcement Material Properties
Young’s Modulus (Es) (MPa) 210000
Poisson’s Ratio(v) 0.3

3.4.3. Support Conditions

The support condition is modelled to represent the physical conditions. In the experiments
steel plates were placed between the reinforced concrete beams and both the supports as
well as the loading jack. In figure 3.9, the elements coloured blue represent the steel plates
modelled to support the beam. They have a width of 300 mm, length of 100 mm and depth
of 20 mm and linear elastic material properties with stiffness of steel taken as Es.

Figure 3.9: Hinge on left support with steel plate and interface elements

2D line quadratic interface elements are modelled between the beams and the plates
to avoid the contribution from the stiffness of the steel plates to the stiffness of the beams.
The interface elements are shown in pink in figure 3.9. The normal and tangential stiffness
of these elements are given as K;, and K respectively:

E
Ky=— (3.14)
h
K
Ki=— (3.15)
100

Where, Es is the Young’s modulus of steel and h is the element size.
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3.4.4. Loading Conditions

To include the self-weight of the beam, phased analysis is utilized. Two phases are used.
In the first phase the self-weight is applied at once with the assumption that cracking of
concrete will not occur. This is later checked and proved to hold true thus all the analysis of
the benchmark experiments are modelled this way. In the second phase, the point load is
applied using displacement control. Imposed deformation of 1mm is used with load step
size of 0.05 mm for all the analysis.

To avoid localization of stresses and to ensure even distribution of the load, steel plates
are again used between the applied load and the beam. Interface elements are again used
between the steel plate and the beam with properties given in equation (3.14) and equa-
tion (3.15).

Figure 3.10: Loading condition in finite element models

3.4.5. Mesh

Regular plane stress elements are used to create the mesh of the geometry of the beam.
Specifically the element known as CQ16M in Diana is used for the concrete and truss ele-
ments are used for the reinforcement. The CQ16M is a quadrilateral element with quadratic
interpolation scheme and a Gaussian or 3X3 integration scheme is implemented to calcu-
late the strains and stresses in the elements.

Three different types of meshing are used by varying the element size which are shown
in figures 3.11, 3.12 and 3.13. The first two types of mesh are built using 25 mm and 50 mm
element size for the entire beam while the third mesh type has 25 mm mesh in the middle
section of the beam covering twice the area of the shear span and 50 mm mesh for the rest
of the beam as shown in figure 3.13.

L

Figure 3.11: Meshing type 1 with 25mm element size
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Figure 3.12: Meshing type 2 with 50mm element size

i,

Figure 3.13: Meshing type 3 with 25mm element size only in twice the shear span area

3.4.6. Analysis Procedures

The analysis procedure or the iterative solution procedure and convergence norms used
to solve equilibrium equations for all the non-linear finite element analyses was kept con-
stant.

The Secant(Quasi-Netwon Raphson) iterative solution procedure is selected. This is
done by referring to another research work [3] on reinforced concrete beams without shear
reinforcement that showed the secant iterative solution procedure was preferable due to
its ability to surpass the effect of local deformations in the equilibrium path. The compu-
tational effort required is also relatively lower then the Full or Regular Newton-Raphson
solution procedure.

For the Quasi-Newton iterations the stiffness matrix is not computed for each itera-
tion. Instead of that the stiffness matrix is computed once for the first iteration of a load
step increment and then modified for the rest of the iterations for the given load step. The
modification of the stiffness matrix is based on the out-of-balance force vector g; and the
current iterative displacement increment 6u;. However it requires more iterations than the
Full or Regular Newton-Raphson.

A maximum of 100 iterations was assigned with energy convergence norm having a
tolerance of 0.001 as recommended in the Guideline for NLFEA of concrete structures [6].
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Figure 3.14: Iterative solution procedure for Quasi-Newton iterations
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3.4.7. Summary of Finite Element Modelling Choices

Table 3.2: Summary of finite element modelling choices

Geometry of the Model
Geometry ‘ 2-dimensional
Support Condition
Load/Support plate Steel Plate with interface elements
Left end Restrained in X & Y axis
Right end Restrained in Y axis
Load Condition
Load application Displacement control
Imposed deformation Imm
Load step size 0.05mm
Material Models
Concrete Material Model
Concrete crack model Smeared-Total Strain Based
Crack orientation Fixed or Rotating
Shear retention Damage or Aggregate size based
Tensile behaviour Hordijk
Crack bandwidth Rots
Compression behaviour Parabolic
Tension-Compression (Effect of lateral crack) Vecchio & Collins (Max reduction factor =0.4)
Compression-Compression (Effect of confinement) Vecchio & Selby

Poisson effect

Damage based reduction

Reinforcement Material Model

Von Mises plasticity Linear Strain hardening
Type Embedded or Bond-slip interface reinforcement
Mesh
Continuum element type Regular plane stress
Continuum element name CQ16M
Reinforcement element type Truss
Interface element type 2D line quadratic
Element size(h) 25 mm or 50mm
Interpolation scheme Quadratic
Integration scheme Gaussian (3X3)
Analysis Procedure
Iterative solution procedure Quasi-Newton Raphson (Secant)
Iterations per load step 100
Convergence norm Energy
Convergence tolerance 0.001

3.5. Overview of Three Groups of Modelling Strategies applied
for this Thesis

To quantify and understand the effect of modelling choices on model uncertainty eight
different modelling strategies are develop for this thesis project. These eight modelling
strategies are grouped into three depending on the purpose of study and the number of
benchmark experiments that were analysed using each group.

The first group of the modelling strategies is formulated with the aim to study the sim-
ulation of shear behaviour using two of the shear retention models discussed in section 3.2
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for the fixed crack models. In addition, the modelling strategies in this group are used to
investigate the difference between fixed and rotating crack models by keeping the rein-
forcement the same in both cases. There are four modelling strategies in this group.

The main aim of formulating the modelling strategies in this group is to get a general
understanding of the behaviour of reinforced concrete beams without shear reinforcement
in numerical modelling and rule-out the less robust finite element models. Thus only nine
of the benchmark experiments are analysed using these modelling strategies. The analy-
ses results of the first group of modelling strategies with regards to model uncertainty are
further discussed in chapter 4.

The second group of modelling strategies is developed after studying the results of the
first group of modelling strategies. There are two modelling strategies in this group. All of
the benchmark experiments are analysed using this group of modelling strategies and the
results of these analyses are described and discussed in detail in chapter 5.

The third and last group has two modelling strategies. These two modelling strategies
were developed to study mesh refinement on improving model uncertainty. Only 16 of
the benchmark experiments were analysed using these two modelling strategies. These 16
experiments are referred to as 'original’ or 'first’ experiments. The reason for selecting the
original experiments is to avoid the contribution of load history on model uncertainty.

All the eight modelling strategies are given names based on the applied variants of crack
model, reinforcement bond model, mesh type (figures 3.11, 3.12 and 3.13) and shear reten-
tion behaviour. The names of each modelling strategy is listed below with the description
of the variants given in table 3.3.

1% group

1. F-EB-1-D: Fixed crack-Embedded reinforcement-Mesh type 1- Damage based shear
retention

2. F-EB-1-A: Fixed crack-Embedded reinforcement-Mesh type 1- Aggregate size based
shear retention

3. R-EB-1: Rotating crack-Embedded reinforcement-Mesh type 1

4. R-BS-1: Rotating crack-Bond-Slip reinforcement-Mesh type 1

2" group

1. F-EB-2-D: Fixed crack-Embedded reinforcement-Mesh type 2- Damage based shear
retention

2. R-BS-2: Rotating crack-Bond-Slip reinforcement-Mesh type 2
3™ group

1. F-EB-3-D: Fixed crack-Embedded reinforcement-Mesh type 3- Damage based shear
retention

2. R-BS-3: Rotating crack-Bond-Slip reinforcement-Mesh type 3
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Table 3.3: Summary of the variants of the eight modelling strategies

1st group
Name F-EB-1-D F-EB-1-A R-EB-1 R-BS-1
Crack orientation Fixed Fixed Rotating | Rotating
Reinforcement type Embedded Embedded Embedded | Bond-slip
Mesh type 1 1 1 1
Shear retention Damage Based | Aggregate based NA NA
No. of experimental samples 9 9 9 1
2nd group
Name F-EB-2-D R-BS-2
Crack orientation Fixed Rotating
Reinforcement type Embedded Bond-slip
Mesh type 2 2
Shear retention Damage Based NA
No. of experimental samples 67 67
3rd group
Name F-EB-3-D R-BS-3
Crack orientation Fixed Rotating
Reinforcement type Embedded Bond-slip
Mesh type 3 3
Shear retention Damage Based NA
No. of experiments 16 16




Analysis Results of the 1st Group of
Modelling Strategies

In this chapter, the results of NLFEA conducted using four modelling strategies on nine
benchmark experiments are discussed. The general layout of this chapter is such that de-
tailed description of analyses results for three out of the nine experiments per modelling
strategy is presented followed by an overview of model uncertainty for all nine experiments.
These three experiments are named A902B2, A752A3 and C451A2. To showcase the numer-
ical simulation capacity of the modelling strategies, the selected three experiments have
flexural, shear and mixed failure modes which can help assess the ability of the modelling
strategies to accurately predict different failure modes. The Diana crack strain shown for
each experiment corresponds to the load step just after the peak load.

The aim of NLFEA using this first group of modelling strategies is to verify shear reten-
tion models to be used for fixed crack concept and to study the behaviour of both fixed and
rotating crack models when used in combination with embedded reinforcement. For this
thesis project, only two shear retention models, namely the damage based and aggregate
size based shear retention models, are investigated.

The properties and observed experimental results of the nine experiments are shown in
table 4.1, where P, is the ultimate load and a is the shear span of the beam.

Table 4.1: Characteristics of the nine experiments

Name  f; cupic(MPa) As(mm?) d@mm) a(mm) P,(KN) Failure mode

A 902B2 78.5 1012+2(20 276 1000 124.2 Shear
A752A3 78.5 3016 273 850 120 F+S
A601A2 78.5 1010+2016  275.5 750 102.1 F+S
B701B2 81.1 3020 471.5 1500 202.4 Shear
B502A3 81.9 1016+20020  472.5 1700 173.6 Shear
B701B1 81.1 3020 471.5 1700 193.6 Flexural
C901A3 23.7 1012420020  271.5 1000 84.1 Shear
C751A2 23.7 3016 270 1000 84.5 Shear
C451A2 23.7 3012 272.5 1000 52.9 Flexural

31
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4.1. F-EB-1-D: Fixed Crack-Embedded-Mesh 1-Damage Based

The first modelling strategy in this group is F-EB-1-D. To showcase the degree of accuracy
of this modelling strategy, results of three out of the nine experiments are shown in this
section.

A. A902B2- Experiment with shear failure

Table 4.2: Description of benchmark experiment A902B2

Name  Rexp(KN) Ruum(KN) 6  Exp. Failure Num. failure
A 902B2 124.2 123.05 1.01 Shear Shear

Load-displacement graph
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Figure 4.1: Load-displacement graph of experiment-A902B2 using F-EB-1-D

Figure 4.2: Observed experimental crack pattern after failure of A902B2
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Figure 4.3: Failure crack strain of A902B2 at a load factor of 16.65 mm

The global behaviour of the experiment A902B2 is shown by the load-displacement
graph in figure 4.1. This graph shows a difference in initial stiffness of the beam between
the numerical prediction using F-EB-1-D, and the experimental outcome. This is because
A902B2 is not the first experiment conducted on the reinforced concrete beam specimen
and the numerical models do not take into account the load history of the experiments.
Upon cracking of concrete, the numerical model shows a reduction of the global stiffness
of the beam which leads to a similar behaviour as that of the experiment, however, due to
the initial high stiffness present in the numerical model, the vertical displacement at the
position of the load is lower than that of the experiment. In addition we can also see that
the peak load is comparable with that of the experiment with only 1.01 model uncertainty
ratio and the numerical model also shows shear failure mode which was also observed in
the experiment. The numerical shear failure behaviour of A902B2 is shown in figure 4.3.

B. A752A3- Experiment with flexure and shear failure

Table 4.3: Description of benchmark experiment A752A3

Name Rexp Ronum 0  Exp. Failure Num. failure
A752A3 120 134.67 0.89 F+S F+S
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Load-displacement graph
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Figure 4.4: Load-displacement graph of experiment A752A3 using F-EB-1-D

Prior to reaching the ultimate state, the numerical model shows a global stiffness which
is similar to what is observed in the experiment. The lack of inclusion of load history is still
apparent in the stiffer load-displacement relation exhibited by F-EB-1-D in figure 4.4. Due
to the initial higher stiffness witnessed in the numerical model, the ultimate load is also
predicted to be higher resulting in a non-conservative value of the model uncertainty ratio
0f 0.89. The behaviour of A752A3 from the numerical simulation using the modelling strat-
egy F-EB-1-D shows failure with a combination of flexure and shear, which is also referred
in the experimental report [10] as mixed mode failure. This failure type is similar to what
was observed during the experiment with even the numerical shear failure crack pattern
in figure 4.7 showing similarity to that of the experiment as shown in figure 4.5. Figure 4.6
shows the flexural crack strains at the moment of yielding of the bottom reinforcement at a
load level of 13.8 mm, these flexural cracks are later morphed or inclined to give the flexural
shear cracks that will cause ultimate failure of the beam.

Figure 4.5: Observed experimental failure crack pattern in experiment A752A3
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Figure 4.6: Crack strain of A752A3 at load factor of 13.8 mm- bottom reinforcement yields
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Figure 4.7: Crack strain of A752A3 at load factor of 23.45 mm -brittle shear failure occurs
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C. C451A2- Experiment with flexural failure

Table 4.4: Description of the benchmark experiment C451A2

Name  Rexp(KN) Rnum(KN) 0 Exp. Failure Num. failure
C451A2 52.9 65.65 0.81 Flexure Flexure
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Figure 4.8: Load-displacement graph of experiment-C451A2 using F-EB-1-D
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Figure 4.10: Observed experimental failure crack pattern in C451A2

Looking into the numerically predicted behaviour of C451A2 using the modelling strat-
egy F-EB-1-D in figure 4.8, a similarity in the global behaviour is visible with the experi-
mental result. The effect of exclusion ofload history is again visible since it creates a shift in
the load-displacement relation. The failure mode is accurately predicted as flexural failure
which is shown in the crack strain diagram in figure 4.9 with an extended ductile plateau
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also visible in figure 4.8. The ultimate load or capacity for flexural failure mode is defined
as the yielding of the reinforcement and for this experiment F-EB-1-D results in a model
uncertainty ratio of 0.81. Although this modelling strategy gives a good prediction of the
failure mode the model uncertainty value is relatively high.

4.2. F-EB-1-A: Fixed Crack-Embedded-Mesh 1-Aggregate Size
Based

The second modelling strategy in this group is F-EB-1-A. The analysis results of the three
experiments using this modelling strategy are presented in this section. These experiments
are the same as discussed for F-EB-1-D in section 4.1.

A. A902B2- Experiment with shear failure

Table 4.5: Description of the experiment-A902B2

Name  Rexp(KN) Rnum(KN) 6  Exp. Failure Num. failure
A902B2  124.2 13247 094 Shear Flexure

Load-displacement graph
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Figure 4.11: Load-displacement graph of experiment-A902B2 using F-EB-1-A
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Figure 4.12: Failure crack strain of A902B2 at a load factor of 20 mm

The load-displacement graph of A902B2 using F-EB-1-A is shown in figure 4.11 and
a comparable load-deformation response with the experiment upon cracking of concrete
is visible. However the graph also shows that a higher peak load is attained when using
F-EB-1-A resulting in a non-conservative model uncertainty of 0.94. The displacement
controlled analysis for experiment A902B2 using both modelling strategies F-EB-1-D and
F-EB-1-A is conducted up to the same load level, however F-EB-1-A is not able to show
the brittle shear failure that was observed in the experiment as well as in the analysis of
F-EB-1-D as can be seen from figure 4.12.

B. A752A3- Experiment with flexure and shear failure

Table 4.6: Description of the experiment-A752A3

Name Rexp Rnum 6  Exp. Failure Num. failure
A752A3 120 1475 0.81 F+S Flexure

Load-displacement graph
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Figure 4.13: Load-displacement graph of experiment A752A3 using F-EB-1-A
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Figure 4.14: Failure crack strain of A752A3 at a load factor mm

The behaviour of A752A3 from the numerical simulation using F-EB-1-A, as can be seen
in figure 4.13, gives a higher capacity for the same vertical displacement as that of the ex-
periment. This results in a model uncertainty of 0.81 which is a non-conservative or unsafe
prediction. In addition the failure mode is flexure with the reinforcement even reaching
its ultimate or tensile strength. Figure 4.14 shows the last load step with a large concen-
trated crack right below the position of the load having a crack width of 3.52 mm. This does

not match the experimental observed mixed failure mode unlike what is seen while using
F-EB-1-D.

C. C451A2- Experiment with flexural failure

Table 4.7: Description of the experiment-C451A2

Name Rexp Roum 0  Exp. Failure Num. failure
C451A2 529 70.55 0.75 Flexure Flexure
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Figure 4.15: Load-displacement graph of experiment-C451A2 using F-EB-1-A
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Figure 4.16: Failure crack strain of C451A2 at a load factor of 17.3 mm

As can be seen in figure 4.15, the load-displacement response of C451A2 obtained using
F-EB-1-A shows a stiff global response when compared to the experiment. Due to this
reason, the model uncertainty ratio is 0.75, which indicates a high contrast between the
experimental and the NLFEA peak load or ultimate capacity. On the other hand, the failure
mode is accurately predicted as flexural failure which can be seen from the crack pattern in
figure 4.16 as well as from the ductile plateau of the load-displacement graph in figure 4.15.

4.3. R-EB-1 : Rotating Crack-Embedded-Mesh 1

The third modelling strategy in the first group is R-EB-1 and in this section analysis results
of the same three experiments A902B2, A752A3 and C451A2 using this modelling strategy
are presented in this section.

A. A902B2- Experiment with shear failure
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Table 4.8: Overview of experimental and numerical results of A902B2 using R-EB-1

Name  Rexp(KN) Roum(KN) 6  Exp. Failure Num. failure

A 902B2 124.2 112.76 1.10 Shear Delamination
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Figure 4.17: Load-displacement graph of experiment-A902B2 using R-EB-1
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Figure 4.18: Failure crack strain of A902B2 at a load factor of 20 mm

The experiment A902B2 is again analysed using the modelling strategy R-EB-1 and the
load-displacement graph in figure 4.17 is plotted. The global response observed from the
analysis does not resemble the experimental output as can be seen from figure 4.17. A loss
of strength due to delamination of the bottom concrete cover is observed which is marked
in red on the graph shown in figure 4.17. The capacity of the beam does increase even after
this point, however the observed failure mode is dominated by the continued delamination

of the concrete cover in the shear span of the beam as can be seen from figure 4.18.

B. A752A3- Experiment with flexure and shear failure
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Table 4.9: Description of the experiment-A752A3

Name Rexp  Roum 6  Exp. Failure Num. failure
A752A3 120 132.84 0.90 F+S Flexure

Load-displacement graph
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Figure 4.19: Load-displacement graph of experiment A752A3 using R-EB-1
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Figure 4.20: Failure crack strain of A752A3 at a load factor mm

The global behaviour of A752A3 as seen from the numerical model using R-EB-1 in the
figure 4.19, shows a comparable stiffness with the experimental global response, however a
drop in the capacity of the beam initiated at the point marked in red indicates the formation
of longitudinal cracks along the reinforcement. A vertical crack opening of 3.24 mm is reg-
istered along the reinforcement at this load factor of 8.9 mm with the crack width reaching
up to 10 mm at the last load step. This indicates the delamination of the bottom concrete
cover in the loaded shear span of the beam. This failure type does not resemble what is ob-
served in the experiment. A diagonal shear crack appears to develop in figure 22, however
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the large crack strain of 0.42 shows the concrete cover has been spalled off. Nonetheless, a
non-conservative model uncertainty of 0.9 is recorded due to the redistribution of stresses
to the reinforcement.

C. C451A2- Experiment with flexural failure

Table 4.10: Description of the experiment-C451A2

Name Rexp Ronum 6  Exp. Failure Num. failure
C451A2 529 62.06 0.85 Flexure Delamination
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Figure 4.21: Load-displacement graph of experiment-C451A2 using R-EB-1
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Figure 4.22: Failure crack strain of C451A2 at a load factor of 20 mm

Figure 4.21 shows the load-displacement graph of C451A2 from the experiment and the
NLFEA performed using the modelling strategy R-EB-1. From this figure, it is apparent
that the graph of R-EB-1, shows a stiffer but comparable response with the experiment
up to the point marked in red, which signifies the drop in strength of the beam due to
the delamination of the bottom concrete cover in the shear span of the beam. Upon the
formation of this secondary longitudinal crack seen in figure 4.22, the reinforcement takes
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over and a rise in the capacity is again visible in figure 4.21 followed by the yielding of the
reinforcement.

4.4. R-BS-1 : Rotating Crack-Bond Slip-Mesh 1

The fourth modelling strategy in this group is R-BS-1. This modelling strategy is developed
as an improvement of the R-EB-1. The delamination of concrete below the reinforcement
is observed for all nine experiments in the case of R-EB-1 which leads to the wrong fail-
ure mode. The cause of this is the large longitudinal crack strain along the reinforcement
which is believed to be an effect of the assumption of perfect bond when using embed-
ded reinforcement. The relative displacement or slip between concrete and reinforcement
results in longitudinal principal strain along the reinforcement when perfect bond is as-
sumed. The embedded reinforcement coupled with rotating crack model thus results in
the consideration of the principal strain along the reinforcement as crack strain and the
delamination of concrete cover becomes the dominating failure mode. Thus the embed-
ded reinforcement is replaced with bond-slip interface reinforcement. This modified mod-
elling strategy is used to analyse only A902B2 out of the nine experiments to observe the
expected improvement of results.
A. A902B2- Experiment with shear failure

Table 4.11: Description of the experiment-A902B2

Name  Rexp(KN) Rnum(KN) 0 Exp. Failure Num. failure
A 902B2 124.2 137.09 091 Shear Shear
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Figure 4.23: Load-displacement graph of A902B2 using R-EB-1 and R-BS-1

The numerical load-displacement response of A902B2 using the modelling strategy R-
BS-1 which is shown in green in figure 4.23 exhibits a similar post-cracking (secondary)
stiffness as that of the experiment. It also does not show an earlier drop in the capacity
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of the beam due to the formation of longitudinal cracks along the reinforcement unlike
R-EB-1. Shear failure mechanism governs the ultimate limit state which matches the ex-
perimental result. Figure 4.24 shows the diagonal shear cracks formed at failure with an
approximate crack width of 6.25 mm. The model uncertainty of the modelling strategy R-
BS-1 is 0.91 which implies a higher numerical prediction than the experiment. The global
stiffness obtained using R-EB-1 is expected to be higher than that obtained using R-BS-1
since perfect bond is assumed in R-EB-1, however due to the effect of the governing longi-
tudinal crack this is not exhibited.

Analysis1

Phased 1, Load-step 703, Load-factor 17.550, Load
Crack Strains Eknn

min: 0.00 max: 0.25

Figure 4.24: Failure crack strain of A902B2 at a load factor of 17.55 mm

4.5. Discussion

In this section, the analyses results of nine benchmark experiments using the first group
of modelling strategies are discussed and the performance of the modelling strategies with
respect to failure load and failure mechanism predictions are evaluated. Following this,
certain conclusions are drawn from the observed trends.

The evaluation of each modelling strategy in this group consists of the assessment of
the predicted failure load and failure mechanism with respect to experimentally observed
results. As a result, the two criteria of performance evaluation are the accuracy of the pre-
dicted failure load and the accuracy of the predicted failure mechanism. Although the term
"accuracy’ is used when comparing numerical results with experimental outcomes, it is im-
portant to remember that the experimental results can also be erroneous. However, for this
study, the experimental results are set as benchmark and the numerical predictions are
measured against these results. The assumption that mean material properties are real-
ized in the experiment is made and the numerical simulation adheres to this assumption.
It is important to note that the actual realized material properties determine the ultimate
capacity and failure mechanism.

Criteria 1 : Accuracy of failure Load predictions

The accuracy of the failure load predictions are measured using the definition of model
uncertainty given by the ratio in equation (1.1). The nine experiments are analysed using
three of the modelling strategies of the first group and the respective model uncertainty
ratios of these experiments are shown in figure 4.25. The last modelling strategy in this
group, referred to as R-BS-1, is used to analyse only the experiment named A902B2, as
mentioned in section 4.4, and its results are also discussed here.
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Figure 4.25: Model uncertainty of the first group of modelling strategies

Table 4.12: Mean and coefficient of variation of the model uncertainty of the first group of modelling
strategies

Name | F-BS-1-D | F-EB-1-A | R-EB-1
Mean (0) 0.861 0.817 0.905
COV (0) 8.50% 15.70% | 12.20%

e Based on table 4.12 it is possible to see that F-EB-1-D resulted in a mean model un-
certainty ratio of 0.861 and a coefficient of variation of 8.5%. This indicates that the
average prediction using F-EB-1-D is non-conservative which is also seen in the load-
displacement graphs in figures 4.26, 4.27 and 4.28. Although, the effect of prior load-
ing is not included in the numerical models which is believed to contribute to the
model uncertainty, it is possible to say that on average F-EB-1-D results in relatively
higher prediction of the failure load.

* On the other hand, F-EB-1-A has a mean model uncertainty of 0.817 and a coefficient
of variation (COV) of 15.7%. The mean as well as the COV of the model uncertainty
indicate that it has performed less accurately when compared to both F-EB-1-D and
R-EB-1. Furthermore F-EB-1-A results in the stiffest predictions for eight out of the
nine experiments which is illustrated in Figures 4.26, 4.27 and 4.28. This explains
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the mean model uncertainty ratio of 0.817 which shows the highest deviation from 1
when compared to mean model uncertainty ratios of F-EB-1-D and R-EB-1 as stated
in table 4.12.

e R-EB-1 has a mean and COV of model uncertainty ratio of 0.905 and 12.25% which is
the lowest deviation of the ratio from 1. This indicates that R-EB-1 predicted on aver-
age the most accurate failure loads for the nine experiments listed in table 4.1. How-
ever R-EB-1 failed to give good predictions of the associated failure mechanisms in all
of the nine experiments. As mentioned in section 4.3, R-EB-1 results a failure mode
characterized by delamination of the concrete cover which governs the behaviour of
all nine experiments.

* Due to the delamination failure type observed when using R-EB-1, the modelling
strategy R-BS-1 is developed which has bond-slip reinforcement instead of embed-
ded reinforcement. This change in the approach to model concrete-reinforcement
interaction proved to eliminate the delamination failure type. This is possibly due to
the large principal strain that occurs along the reinforcement when using R-EB-1 is
now accounted as the relative slip between concrete and reinforcement when using
R-BS-1. However analysis of A902B2 using R-BS-1 shows a higher failure load predic-
tion than in the case of R-EB-1 as illustrated in figure 4.26. This can be explained due
to the fact the premature delamination failure has been avoided when using R-BS-1.

* Concluding from the observed trends from analyses of the nine experiments, it is
possible to say that both F-EB-1-A and F-EB-1-A gave stiffer predictions than R-EB-
1. This is due to the fact that fixed crack models suffer from stress-locking which also
explains the popularity of the rotating crack models for reinforced concrete struc-
tures in NLFEA practices.

To compare the difference in numerical predictions among F-EB-1-D, F-EB-1-A and R-
EB-1, the load-displacement graphs for the three experiments A902B2, A752A3 and C451A2
are presented in figures 4.26, 4.27 and 4.28.
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Figure 4.26: Load-displacement graph of A902B2 using the first group of modelling strategies
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Figure 4.27: Load-displacement graph of A752A3 using the first group of modelling strategies
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Figure 4.28: Load-displacement graph of C451A2 using the first group of modelling strategies

Criteria 2 : Accuracy of failure mechanism predictions

In table 4.13 the experimentally observed failure modes of the nine experiments along
with the failure modes predicted using F-EB-1-D, F-EB-1-A and R-EB-1 are presented to
help compare how accurately the modelling strategies can predict failure modes.

Table 4.13: Failure mode predictions using the first group of modelling strategies

Name  Exp. Failure F-EB-1-D F-EB-1-A R-EB-1

A 902B2 Shear Shear Shear Delamination
A752A3 F+S F+S Flexural Delamination
A601A2 F+S Flexural Flexural Delamination
B701B2 Shear Shear Flexural Delamination
B502A3 Shear Shear Flexural Delamination
B701B1 Flexural Shear Shear Delamination
C901A3 Shear Shear Flexural Delamination
C751A2 Shear Shear Flexural Delamination
C451A2 Flexural Flexural Flexural Delamination

e From table 4.13, it is possible to see that F-EB-1-D is able to accurately predict the
failure mechanism of eight of the nine benchmark experiments. From the load-displacement
graphs in figures 4.26, 4.27 and 4.28 it is possible to see that F-EB-1-D is able to pre-
dict shear, mixed mode and flexural failure types accurately. For figure 4.27, F-EB-1-
D is the only modelling strategy that is able to predict the mixed mode failure type.
The failure crack strain diagrams in figures 4.3, 4.6, 4.7 and 4.9 also show close sim-
ilarity to the experimentally observed crack patterns and behaviour of the beams at
failure. This can be explained by the fact that the fixed crack model mimics the true
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nature of cracking which is that once concrete cracks the fracture is fixed at the same
location and orientation and does not vanish and rotate based on the direction of
the principal plane. This helps the modelling strategies with fixed crack concept to
accurately capture the crack patterns which help in accurately predicting the failure
mode.

* F-EB-1-A appears to result in mostly flexural failure modes with seven out of the nine
experiments predicted to failure in flexure. This indicates that the aggregate size
based shear retention model overestimates the shear stiffness of the cracked plane
which avoids or prolongs the formation of flexural shear cracks. Due to this, F-EB-
1-A is neither able to predict the brittle behaviour nor the shear crack formation for
beams failing in shear.

* Asignificant crack strain along the longitudinal reinforcement occurs when using R-
EB-1 which is seen in figures 4.18, 4.20 and 4.22. A phenomenon which looks like
delamination of the concrete below the longitudinal reinforcement takes over the
analysis leading to failure of the beams. This is due to the use of embedded rein-
forcement which assumes perfect bond between concrete and reinforcement. The
downside of this assumption is that the slip between concrete and reinforcement is
mistaken as a large strain causing the orientation of the principal strain to align along
the reinforcement and since the rotating crack concept changes the crack orientation
based on the direction of the principal strain, cracking of concrete occurs along the
reinforcement leading to the delamination of the concrete cover.

Based on the evaluation of the modelling strategies, F-EB-1-D and R-BS-1 showed rel-
atively good performance with regards to failure load and failure mode predictions. As a
result, these two modelling strategies are selected for further study of model uncertainty by
utilizing the entire benchmark experiments and the results of this study are presented in
chapter 5. However the mesh type used in F-EB-1-D and R-BS-1 is the one shown in fig-
ure 3.11 which has element size of 25 mm for the entire geometry. This is found to be com-
putationally expensive and element size is changed to 50 mm as shown in figure 3.12 for
the analyses performed on all the benchmark experiments. The effects of using a coarser
mesh is also discussed in chapter 5.



Analysis Results of the 2nd Group of
Modelling Strategies

The second group of modelling strategies is discussed in this chapter. All the 67 bench-
mark experiments are analysed using two modelling strategies in this group. These two
modelling strategies are formulated based on the robustness of the modelling strategies of
the first group that are used to analyse nine of the benchmark experiments. In this chapter,
the trends that are observed in the model uncertainty ratio are presented using probabilis-
tic distributions and a single experiment is chosen to showcase the simulation of failure
behaviour.

The analyses using the first group of modelling strategies showed that the modelling
strategies F-EB-1-D and R-BS-1 gave good predictions with respect to failure load and fail-
ure mechanism of the nine experiments. As a result these two modelling strategies are
chosen to perform NLFEA on all the benchmark experiments. However an important mod-
ification is made to F-EB-1-D and R-BS-1 by changing the meshing from type 1 to type 2
as shown in figure 3.11 and figure 3.12 respectively. The 25mm element size of mesh type
1 requires relatively high computational time and effort thus is considered too fine to per-
form analysis of 67 experiments. Thus an element size of 50mm was decided to be used.
The 50mm element size is in line with the six elements along the height recommendation
given in [6] for both 300 mm and 500 mm beam height.

Changing the mesh type by definition changes the discretization of the finite element
model and as a result creates new modelling strategies. The modelling strategies F-EB-1-D
and R-BS-1 are now modified to become F-EB-2-D and R-BS-2 respectively. In this chapter
the model uncertainty of F-EB-2-D and R-BS-2 will be presented and discussed. In addi-
tion, the accuracy of prediction of failure mechanism is investigated as part of understand-
ing the model uncertainty.

51
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5.1. F-EB-2-D: Fixed Crack-Embedded-Mesh 2-Damage Based

In this section, model uncertainty of F-EB-2-D for all benchmark experiments will be dis-
cussed. As shown in table 3.2, The geometry, support condition, load condition and analy-
sis procedure are constant for all the eight modelling strategies and the difference between
the modelling strategies is due to the material models and mesh type used. Thus, Table 5.1
lists the specific material models for concrete and reinforcement and the discretization of
the geometry that characterize F-EB-2-D.

Table 5.1: Applied material models and discretization in F-EB-2-D

F-EB-2-D
Concrete Material Model
Concrete crack model Smeared-Total Strain Based
Crack orientation Fixed
Shear retention Damage based
Tensile behaviour Hordijk
Crack bandwidth Rots
Compression behaviour Parabolic
Tension-Compression Vecchio & Collins (Max reduction factor =0.4)
Compression-Compression Vecchio & Selby
Poisson effect Damage based reduction
Reinforcement Material Model
Von Mises plasticity Linear Strain hardening
Type Embedded reinforcement
Mesh
Continuum element type Regular plane stress
Continuum element name CcQlieM
Reinforcement element type Truss
Interface element type 2D line quadratic
Element size(h) 50mm
Interpolation scheme Quadratic
Integration scheme Gaussian (3X3)

By using the definition presented in table 5.1 the modelling strategy F-EB-2-D is set up.
Subsequently NLFEA using this modelling strategy is performed for all benchmark experi-
ment and the numerical failure load and failure mechanism for each analysis is recorded.
These results along with the model uncertainty defined by 0 are given in Annex A. Using
these results, the goodness of this modelling strategy to simulate the behaviour of rein-
forced concrete beams is studied. The influence of lack of shear reinforcement in the spec-
imens used for the benchmark experiments on numerical failure behaviour is also investi-
gated.

Firstly the accuracy of prediction of failure load is studied. Numerical failure is defined
as the drop of 10% of the load in the load-displacement response. Figure 5.1 illustrates
the match between experimentally obtained failure loads and numerically predicted failure
loads. In this figure the line represents exact match between experimental and numerical
failure loads. As seen from Figure 5.1, the majority of the predicted failure loads fall below
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the line which implies that failure load predictions for most benchmark experiments are
underestimated which accounts for 80.5% of the experiments.
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Figure 5.1: Graphical representation of experimental vs. predicted NLFEA failure load using F-EB-2-D

The model uncertainty of all the benchmark experiments using this modelling strategy
was computed as per equation (1.1) and a mean value of 1.108 and coefficient of variation
0f 10.877% is obtained. The model uncertainty data is fitted to a normal, log-normal and a
non-parametric (kernel) probabilistic distribution using MATLAB and shown in figure 5.2.
The log-likelihood of the normal probability distribution function is equal to 47.15 and
that of the log-normal probability distribution function is equal to 46.71. The goodness
of fit of the model uncertainty data to a normal probabilistic distribution and log-normal
probabilistic distribution is shown in figure 5.3 and figure 5.4 respectively.
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Figure 5.3: Goodness of fit of model uncertainty data of F-EB-2-D to normal distribution

The failure load model uncertainty ratios show a general good fit to both normal and
log-normal probabilistic distributions as can be seen from figures 5.3 and 5.4. However the
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value of the data at the tail of the distribution seems to fit both distributions the least. Thus,
the two values at the right end tail that show high deviation from the lines in figures 5.3
and 5.4 are selected to investigate the reason for the high model uncertainty. These two
experiments are A902A3 and A121A3 with model uncertainty ratios of 1.339 and 1.332 re-
spectively. Both of these experiments have experimental shear failure. However it is found
that the experiment A121A3 was repeated and named A121B1 which has an experimental
mixed mode failure type. The model uncertainty ratio for A121B1 is 0.983 which indicates
a large difference in the experimental failure load. This signifies the contribution of vari-
ability of the experimental results to the model uncertainty ratio.

0995 F . . ‘ ‘ . . . . . T
099 | © Msidata g

Log-Normal

095 r
0.9

0.75 r

o
t

Probability

0.25 r

0.1
0.05 |

0.01
0.005

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
Data

Figure 5.4: Goodness of fit of model uncertainty data of F-EB-2-D to log-normal distribution

Following the study of model uncertainty of F-EB-2-D with respect to prediction of fail-
ure load, the model uncertainty with respect to failure mechanism prediction is analysed.
The predicted failure mechanism using the modelling strategy F-EB-2-D for majority of the
benchmark experiments is a shear failure followed by regain of load resistance due to redis-
tribution of stresses to longitudinal reinforcement up to yielding point. This type of failure
is referred in this report as 'shear then yielding’. In the 'shear then yielding’ failure type the
formation of a compressive strut between the point load and the nearby support leads to
a brittle shear crack which results in more than 10% drop of load in the load-displacement
response. The point in the analysis just before this drop is considered as the peak load or
capacity of the beams.

29 of the 67 benchmark experiments showed shear then yielding failure type. The ex-
periments that showed this type of failure have a shear slenderness ratio (a/d) of less than
4. These 29 experiments have either of the three types of experimental failure modes. To
showcase the accuracy of predicted failure behaviour using F-EB-2-D, A121A1 is discussed
in detail which has an experimental flexural failure and is the first experiment on the beam
specimen. The analysis of A121A1 using the modelling strategy F-EB-2-D resulted in a
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shear failure with regain of resistance. The formation of compressive strut appears to cause
large shear displacement of already existing cracks which leads to a brittle shear failure.
Once the compressive strut fully forms as shown in figure 5.6, the part of the beam to the
left of the position of the load (part with compressive strut) and the part to the right the load
experience a relative displacement between each other resulting in considerable shear dis-
placement in the cracked section. The shear displacement is visible in figure 5.7 from the
distorted finite elements where the shear crack occurs.
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Figure 5.5: Principal stress plot of load step just before full compressive strut formation- RC beam A121A1
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Figure 5.6: Principal stress plot of load step at full compressive strut formation- RC beam A121A1
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Figure 5.7: Crack strain plot of load step at full compressive strut formation - RC beam A121A1
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Figure 5.8: Load-displacement graph of A121A1 using F-EB-2-D

The load-displacement graph of A121A1 in figure 5.8 also shows the drop of the resis-
tance at a displacement of 20.45 mm which is the load factor before the formation of com-
pressive strut and formation of the shear failure. It is also interesting to see the stress in the
reinforcement for such type of failure and as can be seen from the graph in figure 5.9, the
stress at a node of the reinforcement located in the loaded shear span of the beam mimics
the load-displacement response shown in figure 5.8. The drop in the reinforcement stress
occurs at the same load factor of 20.45 mm and the behaviour of the beam after the 20.45
mm appears to be mainly dictated by the reinforcement.
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Figure 5.9: Reinforcement stress versus displacement graph of A121A1

Looking into table 5.2 and the general trend of the analyses results of F-EB-2-D, it is
possible to see that all of the 27 experimental shear failures are predicted accurately while
77.8% of the experiments having flexural failure are predicted to have shear failure and
84.6% of the experiments with mixed mode failure are predicted to fail in shear as well. 59
out of the 67 experiments are predicted to fail in shear. Thus, shear failure is the dominat-
ing failure mechanism when using F-EB-2-D with 47.7% of the benchmark experiments
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predicted to have matching failure mechanism with their respective experimental failure
behaviour.

Table 5.2: Match between experimental and numerical failure mechanisms of the 67 benchmark

experiments
. F-EB-2-D Flexure | Shear | Flexure+Shear
Experiment
Flexure 3 21 3
Shear 0 27 0
Flexure+Shear 0 11 2

To analyse the effect of failure mode on the model uncertainty ratio, probabilistic dis-
tribution of the model uncertainty ratio of the tests that exhibited flexural and shear failure
during the experiments are plotted separately in figure 5.10. Among 67 benchmark exper-
iments, 27 fail in flexure and 27 fail in shear. The normal and log-normal distributions of
the model uncertainty ratio for flexural failure have a mean of 1.08 and a COV of 11.4%.
On the other hand, the normal and log-normal distributions of the model uncertainty ratio
for shear failure resulted in a mean of 1.15 and COV of 9.6%. This shows that shear failure
results in higher failure load model uncertainty ratio when using F-EB-2-D. The fact that
equal number of experiments failed in flexure and shear helps in making this comparison.
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Figure 5.10: MATLAB probabilistic fitting of modelling uncertainty of F-EB-2-D based on failure mode
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5.2. R-BS-2: Rotating Crack-Bond Slip-Mesh 2

This section describes the analyses results of the modelling strategy R-BS-2. The model un-
certainty (0) of R-BS-2 in predicting the capacity of the benchmark experiments is given in
Annex B. The fundamental characteristics of the modelling strategy R-BS-2 are presented
in table 5.3.

Table 5.3: Applied material models and discretization in R-BS-2

R-BS-2
Concrete Material Model

Concrete crack model Smeared-Total Strain Based

Crack orientation Rotating

Shear retention Not applicable
Tensile behaviour Hordijk
Crack bandwidth Rots
Compression behaviour Parabolic
Tension-Compression Vecchio & Collins (Max reduction factor =0.4)
Compression-Compression Vecchio & Selby
Poisson effect Damage based reduction
Reinforcement Material Model
Von Mises plasticity Linear Strain hardening
Type Bond-slip reinforcement
Mesh
Continuum element type Regular plane stress
Continuum element name CcQi6M
Reinforcement element type Truss
Interface element type 2D line quadratic
Element size(h) 50mm
Interpolation scheme Quadratic
Integration scheme Gaussian (3X3)

The model uncertainty as defined in equation (1.1) is quantified for all benchmark ex-
periments and the trend in the predicted failure mechanisms are discussed in this section.
Figure 5.11 shows the match between experimental and numerical capacity predicted us-
ing R-BS-2 with the line defining a perfect match. It can be seen from figure 5.11 that ap-
proximately equal number of experiments lie above and below the line. However, more
than half of the analyses of the benchmark experiments resulted in underestimated pre-
dictions of failure load.
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Figure 5.11: Graphical representation of experimental vs. predicted NLFEA failure load using R-BS-2

The probabilistic distributions for this modelling strategy show a concentration of val-
ues around 1 as shown in figure 5.12 which causes the distribution to be a bit skewed. A
mean value of 1.06 and coefficient of variation (COV) of 11.7% are calculated for the model
uncertainty using this modelling strategy. The goodness of fit of the model uncertainty
ratio to both normal and log-normal probabilistic distributions are shown in figures 5.13
and 5.14 with a log-likelihood of 44.65 and 47.02 respectively.
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Figure 5.12: MATLAB probabilistic fitting of modelling uncertainty 6 of R-BS-2
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Figure 5.13: Goodness of fit of model uncertainty data of R-BS-2 to normal distribution

T T T T
0.999 - b
O R-BS-2

L Log-normal _
0.995 a

0.99

0.95
0.9

0.75

o
o

Probability

0.25

0.1
0.05

0.01
0.005 | I 1 1 | I ]

Data

Figure 5.14: Goodness of fit of model uncertainty data of R-BS-2 to normal distribution
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The experiment A121A1 is again used to showcase the accuracy of the failure behaviour
predictions using R-BS-2. The load-displacement response of A121A1 using R-BS-2 is il-
lustrated in figure 5.15 and shows a brittle failure at 23.1 mm displacement. This figure
combined with the principal strain plot in figure 5.16 and the failure crack strain plot in
figure 5.17 shows a predicted shear failure. When compared to the result of the modelling
strategy F-EB-2-D, the shear failure caused by R-BS-2 does not show any regain of its re-
sistance. This shows that both modelling strategies, F-EB-2-D and R-BS-2, are not able to
exhibit the flexural failure of A121A1.
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Figure 5.15: Load-displacement graph of A121A1
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Figure 5.16: Principal stress plot at failure of A121A1 using R-BS-2
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Figure 5.17: Crack strain at failure of A121A1 using R-BS-2

Subsequently, to understand the correlation between the failure load model uncertainty
ratio and the type of failure mechanism, the probabilistic distributions are plotted sepa-
rately in figure 5.18 for flexural and shear failure types. From this figure, the experiments
with flexural failure show a mean of 1.02 and COV of 9.75% while the experiments with
shear failure resulted in a mean model uncertainty ratio of 1.07 and COV of 11.17%. The
mean model uncertainty ratio corresponding to shear failure shows more deviation from 1
with a larger spread when compared to flexural failure.
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Figure 5.18: MATLAB probabilistic fitting of modelling uncertainty 6 of R-BS-2

In addition to the model uncertainty ratio, the accuracy of failure mode predictions is
another measure of the performance of R-BS-2. To do this, table 5.4 is used to show the
number of experiments with their respective experimental and numerically predicted fail-
ure modes using R-BS-2. The values in the diagonal of table 5.4 show matching experimen-
tal and numerical predictions which accounts for 50.7% of the experiments. 22 out of 27 of
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the experimental shear failures are predicted accurately and only 8 out of 27 of the experi-
mental flexural failure are predicted accurately. This indicates that the modelling strategy
R-BS-2 is not well suited to predict flexural failure which appears to be due to the forma-
tion of shear cracks before or just after yielding of the reinforcement. This shows that shear
cracks occur before the reinforcement reaches large plastic strain which causes 10 out of 27
flexural failures to be predicted as mixed mode failure types.

Table 5.4: Match between experimental and numerical failure mechanisms

. R-BS-2 Flexure | Shear | Flexure+Shear
Experiment
Flexure 8 9 10
Shear 4 22 1
Flexure+Shear 0 9 4

5.3. Discussion

The failure load model uncertainty ratios of 67 benchmark experiments using both F-EB-
2-D and R-BS-2 are computed to make comparison of the two modelling strategies. From
the mean model uncertainty values of 1.12 and 1.08 of F-EB-2-D and R-BS-2 respectively,
it can be deduced that R-BS-2 shows better prediction of failure load. In addition, the eval-
uation of the two modelling strategies based on the accuracy of failure mode predictions
shows that R-BS-2 performed better by accurately predicting the failure mode of 51% of
the experiments while F-EB-2-D gave accurate predictions for 48% of the experiments.

Both these modelling strategies suffered heavily from the change of mesh type. The
larger element size of 50mm proves to be incapable of capturing the accurate failure mode.
The reason for this is the fact that the benchmark experiments are conducted on speci-
mens of reinforced concrete beams without shear reinforcement. The formation and prop-
agation of cracks is crucial in determining the behaviour of such beams. Increasing the
element size decreases the number of degrees of freedom. This affects the displacement
field of the finite element model as well as the strain and stress fields. In addition the num-
ber of integration points that calculate the stresses in the structure are also reduced. Thus,
the use of larger element size appears to have caused wrong failure mode predictions. It is
important to realize an element size of 50 mm is one-sixth of the beam height (H/6) for the
beams having 300 mm height and one-tenth (H/10) for the beams having 500 mm height
and still is not able to exhibit accurate failure modes for both beam heights. This raises the
need for the verification of the finite element size before performing NLFEA based on the
type of reinforced concrete structure.

In an effort to study the effect of mesh refinement, both modelling strategies F-EB-2-
D and R-BS-2 are modified to have the discretization of mesh type 3 shown in figure 3.13
and the modified modelling strategies are referred to as F-EB-3-D and R-BS-3. The experi-
ment A121A1 is analysed using F-EB-3-D and R-BS-3 and both resulted in an improvement
of failure mode predictions as can be seen from figure 5.19. Both the modified modelling
strategies F-EB-3-D and R-BS-3 are able to predict flexural failure with R-BS-3 resulting in
an extended ductile plateau. However, the predicted failure load while using the modified
modelling strategies F-EB-3-D and R-BS-3 is higher the experimental results. As a result,
further study on the effect of mesh refinement is performed using 16 of the first experi-
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Figure 5.19: Mesh refinement study on A121A1

The study of the correlation between the failure load model uncertainty and the ex-
perimental failure modes shows that on average shear failure modes show higher model
uncertainty with more spread in figures 5.10 and 5.18. In both cases the experiments with
shear failure displayed relatively high model uncertainty. This can be associated with the
fact that shear failure in beams without shear reinforcement is governed by the properties
of the concrete than flexural failure which is influenced by the property of the reinforce-
ment.

Furthermore, the trend of the model uncertainty ratios of both F-EB-2-D and R-BS-2
indicate the influence of reinforcement ratio which can be seen from the figure 5.20. Ex-
periments having reinforcement ratio lower than 0.6% show on average lower model un-
certainty ratio in both modelling strategies. Keeping in mind the effect of coarse mesh
mentioned above, this can also be due to the increased flexural capacity of the beams with
higher reinforcement ratio which causes the numerical models to fail in shear due to the
fact that the beams are not reinforced for shear.
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Figure 5.20: Influence of reinforcement ratio (p) of the benchmark experiments on model uncertainty ratio

In the following chapter, the analyses results from the two modified modelling strate-
gies, F-EB-3-D and R-BS-3 on 16 of the first or original experiments are presented.






Analysis Results of the 3rd Group of
Modelling Strategies

The refinement of mesh in selected sections of the beam proves to predict better failure
mechanism. This is expanded further to analyse 16 original or first experiments. The rea-
son for selection of the original experiments is to avoid the effect of load history on model
uncertainty and evaluate the modelling strategies on their merit of predicting failure be-
haviour.

6.1. F-EB-3-D: Fixed Crack-Embedded-Mesh 3-Damage Based

This modelling strategy is based on a modified version of the modelling strategy F-EB-2-D
which was discussed in chapter 5. The modification is done by changing the mesh type.
The mesh type is changed from type 2 in figure 3.12 to type 3 in figure 3.13. 16 original
experiments, mostly having experimental flexural failure are analysed using the modelling
strategy F-EB-3-D. Table 6.1 lists the fundamental characteristics of F-EB-3-D.

67
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Table 6.1: Applied material models and discretization in F-EB-3-D

F-EB-3-D
Concrete Material Model
Concrete crack model Smeared-Total Strain Based
Crack orientation Fixed
Shear retention Damage based
Tensile behaviour Hordijk
Crack bandwidth Rots
Compression behaviour Parabolic
Tension-Compression Vecchio & Collins (Max reduction factor =0.4)
Compression-Compression Vecchio & Selby

Poisson effect

Damage based reduction

Reinforcement Material Model

Von Mises plasticity

Linear Strain hardening

Type

Embedded reinforcement

Mesh

Continuum element type

Regular plane stress

Continuum element name CQlieM
Reinforcement element type Truss
Interface element type 2D line quadratic
Element size(h) 25 & 50mm
Interpolation scheme Quadratic

Integration scheme

Gaussian (3X3)

Following the analyses of the 16 original experiments using F-EB-3-D, the model uncer-

tainties of each analysis is quantified using the definition of 0 as described in equation (1.1).
The statistical distribution of the model uncertainty values is also plotted using MATLAB
and illustrated in figure 6.1. A mean value of 0.926 and a coefficient of variation (COV) of
8.25% is obtained. Both of this statistical parameter showed improvement when compared
to those of F-EB-2-D. However, it is also important to note that the statistical uncertainty
is higher in this case since the mean and COV values are based on a smaller set of data.

The predicted behaviour of the experiment A121A1 using F-EB-3-D will be further de-
scribed. The load-displacement graph of A121A1 shows a stiffer numerically predicted be-
haviour. This graph also shows the presence of ductile plateau which indicates that the
failure mechanism is flexure. Although the failure behaviour resembles that of the experi-
ment, the displacement still shows a difference compared to that of the experiments.
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Figure 6.1: Statistical distribution of model uncertainty using F-EB-3-D
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Figure 6.2: Load-displacement graph of A121A1 using F-EB-3-D

The failure mechanism of A121A1 at the peak resistance is shown in figure 6.3. This
figure shows high flexural crack strain below the point load which leads to yielding of the
reinforcement. The stress in the reinforcement before failure is also shown in figure 6.4.
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Figure 6.3: Crack strain at failure of A121A1 using F-EB-3-D
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Figure 6.4: Stress in reinforcement at failure of A121A1 using F-EB-3-D

The match of experimental and predicted failure mode using F-EB-3-D is immensly
improved when compared to the previous modelling strategies. 87.5% of the experiments
have matching failure modes, this can be seen from table 6.4.

Table 6.2: Experimental and numerical failure mechanisms

. R-BS-2 Flexure | Shear | Flexure+Shear
Experiment
Flexure 10 1 1
Shear 0 3 0
Flexure+Shear 0 1 0
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6.2. R-BS-3 : Rotating Crack-Bond Slip-Mesh 3

This modelling strategy, in similar fashion as F-EB-3-D, is a modified version of R-BS-2.
The mesh type was modified from type 2 to type 3. 16 original experiments are again used
to study the model uncertainty of this modelling strategy. Table 6.3 lists the fundamental
characteristics of R-BS-3.

Table 6.3: Applied material models and discretization in R-BS-3

R-BS-2
Concrete Material Model

Concrete crack model Smeared-Total Strain Based

Crack orientation Rotating

Shear retention Not applicable
Tensile behaviour Hordijk
Crack bandwidth Rots
Compression behaviour Parabolic
Tension-Compression Vecchio & Collins (Max reduction factor =0.4)
Compression-Compression Vecchio & Selby
Poisson effect Damage based reduction
Reinforcement Material Model
Von Mises plasticity Linear Strain hardening
Type Bond-slip reinforcement
Mesh
Continuum element type Regular plane stress
Continuum element name CQlieM
Reinforcement element type Truss
Interface element type 2D line quadratic
Element size(h) 25 & 50mm
Interpolation scheme Quadratic
Integration scheme Gaussian (3X3)
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Figure 6.6: Load-displacement graph of A121A1 using R-BS-3
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Figure 6.7: Crack strain plot of A121A1 at failure using F-EB-3-D

Table 6.4: Experimental and numerical failure mechanisms

. R-BS-2 Flexure | Shear | Flexure+Shear
Experiment
Flexure 11 1 0
Shear 0 2 1
Flexure+Shear 0 1 0

6.3. Discussion
The two modified modelling strategies gave better predictions of the failure mechanism.
The mean and COV values of the model uncertainty also showed improvements.

This shows that for reinforced beams without shear reinforcement finer mesh in the
critical region where flexural and shera cracks are expected results in more accurate predic-
tions. Majority of the analyses showed match between experimental and numerical failure
mechanisms. However the results appear to more stiffer than in previous cases.






Correlation of Numerically Predicted
Failure Load and Failure Mechanism

The model uncertainty and the predicted failure mechanisms have a correlation as shown
in [2]. To quantify this relation the degree of ductility of the numerical failure mechanism
is related to the model uncertainty through the ratio known as ductility index. This ratio is
defined as :

_ Wpl,st

X (7.1)

Wpl,sys

Where Wy s and Wy,sys are the plastic dissipated energy in the steel and the total plastic
dissipated energy in the system or structure. This ratio indicates how much of the plastic
dissipated energy in the system is taken up by the steel or reinforcement, allowing the mea-
surement of the ductility of the failure mechanism. For this thesis project, ductility index
is calculated for the 16 analyses performed using the modelling strategy F-EB-3-D as men-
tioned in section 6.1 and the results are used to study the relation between the ductility of
the numerical failure mode and the model uncertainty.

7.1. Method of Calculation of Ductility Index

To calculate the ductility index, the plastic dissipated energy in the reinforcement and the
system are computed separately.

7.1.1. Plastic dissipated energy in the reinforcement

The plastic dissipated energy in the reinforcement is calculated by implementing equa-
tion (7.2) to equation (7.4) using the stress and strain outputs at each integration point of
the reinforcement for all load steps of the NLFEA. A tabular output format of Diana is used
to obtain the stress and strain of each integration point in the local x-axis of the reinforce-
ment and these outputs are then manipulated using a Python script to perform the numer-
ical computation using the above mentioned equations. This Python script is attached in
AnnexD.

1
AWiotst,, = E(Un—l"'Un)(gn_gn—l) (7.2)
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Wiotst,, = Wiotst,—1 T AWhrotst,, (7.3)

Wpl,stm = Wtot,stm - Wel,st (7.4)

Equation (7.2) describes A W g s, which is the incremental dissipated energy in the
reinforcement for a single load step, n, and equation (7.3) states the total dissipated energy,
Wot,st,,, up to the current load step n, which is the summation of A Wiy s, for all load steps
up to n. These two equations are computed for each load step and finally equation (7.4)
is used to calculate the plastic dissipated energy, Wy, ,,, in the reinforcement for the last
load step m. 0, and 6 ,,—; are the stress in the reinforcement for the current (n) and previous
(n-1) load steps while ¢, and €,-; are the strain in the reinforcement for the current and
previous load steps respectively. W ¢ is the elastic dissipated energy in the reinforcement
which is given as:

1
Welst = 5 * (fy) * (Ey) (7.5)

Equation (7.2) to equation (7.5) calculate the plastic dissipated energy at a single inte-
gration point of the reinforcement per unit volume, in order to compute the plastic dissi-
pated energy in the entire reinforcement, the result of equation (7.4) is multiplied by the
volume of a single integration point and summed for all integration points of the reinforce-
ment.

;
Wpl,st = Z I/Vpl,stm * VOlintg (7.6)
i=1

where ris the number of integration points in the reinforcement.

7.1.2. Plastic dissipated energy in the system

The total plastic dissipated energy in the system is calculated by taking the area under the
load-displacement graph after unloading. This is done by first running the analysis and
registering the load step which results in the peak load and then unloading from this load
step. For this study, the analyses of 16 experiments performed using the modelling strat-
egy F-EB-3-D, are used and F-EB-3-D uses the total strain based crack model for concrete
which only allows secant unloading. Due to this, unloading of all the 16 experiments re-
sults in a load-displacement graph as shown in figure 7.1. The shaded area in figure 7.1
represents the plastic dissipated energy in the system which is calculated by taking the dif-
ference of the area under the loading and unloading graphs. The area under these graphs
are calculated in MATLAB using an approximation rule due to the irregular shape of the
graphs.
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Figure 7.1: Load-displacement graph with unloading to calculate the plastic dissipated energy in the
structure
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7.2. Relation between Model Uncertainty and Ductility Index
for F-EB-3-D Modelling Strategy
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Figure 7.2: Correlation between numerical failure mode and model uncertainty using F-EB-3-D

Table 7.1: Model uncertainty and ductility index of F-EB-3-D

Name 0 DI | Exp failure | Num failure
Al121A1 | 0.957 | 0.700 F F
A122A1 | 1.148 | 0.400 F/S S
A123A1 | 0.917 | 0.220 S
A901A1 | 0.898 | 0.780 F+S
A902A1 | 0.880 | 0.210
A751A1 | 0.855 | 0.780
A752A1 | 0.941 | 0.450
AG601A1 | 0.908 | 0.900
A602A1 | 0.874 | 0.970
B701A1 | 0.986 | 0.980
B702A1 | 0.864 | 0.170
B501A1 | 1.017 | 0.890
B502A1 | 0.957 | 0.960
C901A1 | 0.928 | 0.990
C751A1 | 0.893 | 0.970
C451A1 | 0.806 | 0.960
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7.3. Discussion

High ductility index means the plastic dissipated energy is carried mostly by the reinforce-
ment and this shows us that a ductile behaviour is observed from the numerical models.
On the other hand lower values of the ductility index show brittle numerical failure. The
analyses with lower ductility show relatively more spread of the model uncertainty ratio.
However since the number of experiments are limited to 16 and the majority of the experi-
ments show numerical flexural failure, the statistical uncertainty is higher.

The ductility index shows the brittle or ductile nature of the numerically predicted fail-
ure mode and relating this to the model uncertainty disregards the experimentally ob-
served failure behaviour. Although it can be used as an objective tool to characterize the
numerical failure mode, it is also dependent on the accuracy of the modelling strategy used
which is affected by factors such as the discretization of the geometry, the iterative solution
procedure, the applied material model or the idealization of the geometry.

For the above mentioned reasons, a correlation between ductility index and the model
uncertainty ratio should not always be made since it associates the ability of a modelling
strategy to predict the ultimate capacity with its ability to predict the failure mode which
happen to be independent as can be seen from the results of the second and third group of
modelling strategies. In some cases, a certain modelling strategy predicts the failure load
with high accuracy but fails to predict the ductile or brittle nature of the failure mode.

However figure 7.2 shows that higher ductility index values are on average associated
with model uncertainty ratio close to 1.






Conclusions

1. Based on the results of the study on the model uncertainty of NLFEA of reinforced con-
crete structures, it is possible to see that the implemented approach in NLFEA of reinforced
concrete structures does indeed result in different model uncertainty, which leads to the
conclusion that it is possible to use a NLFEA with a low model uncertainty if certain as-
pects of the numerical model are chosen carefully.

2. The results of this study show that the model uncertainty of a given NLFEA mod-
elling strategy is indeed influenced by the type of failure mode of the structure. Brittle
shear failure on average resulted in higher model uncertainty than ductile flexural failure.
The properties of the structure such as cross-sectional height, reinforcement ratio and con-
crete compressive strength also affect the resulted model uncertainty for a given NLFEA
modelling strategy. The effect of reinforcement ratio is even more pronounced with lower
model uncertainty obtained for reinforcement ratio lower than 0.6%.

3.The use of rotating crack model with embedded reinforcement demonstrated failure
due to delamination of the concrete cover. As a result, rotating crack models should be
used in combination with bond-slip reinforcement for reinforced concrete beams without
shear reinforcement. On the other hand, the fixed crack model with embedded reinforce-
ment proved to be capable of predicting both flexural and shear failure modes while the
behaviour of fixed crack model with bond-slip reinforcement is outside the scope of this
thesis project and thus was not investigated.

4. From the study on different modelling strategies, it is possible to see that the rotat-
ing crack model in combination with bond-slip reinforcement is able to give on average
a lower model uncertainty than the fixed crack model in combination with embedded re-
inforcement. However sufficiently small element size must be used in order to result in
comparable numerical predictions in both cases. The use of element size of one-sixth and
one-tenth of the cross-sectional height proved to be insufficient for the benchmark exper-
iments performed on reinforced concrete beams without shear reinforcement.

5. Implementation of a fine mesh in the section of the beams where flexural or shear
crack are expected, resulted in accurate prediction of failure mechanisms and reduced the
model uncertainty ratio. Due to this, it can be concluded that verification of the required
element size is important for NLFEA especially when considering concrete structures sus-
ceptible to brittle failure. Thus, the recommendation of element size of one-sixth of the
height (H/6) in [6] is found to be insufficient and should be verified before application.

6. The correlation between the model uncertainty of the failure load and the numerical
failure mode is made using the ductility index ratio however it is important to understand
the effect of solving the correct set of equations accurately on the computed ductility index
and an accurate correlation can be made if the numerically predicted failure mechanism
resembles that observed in the experiment.
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Recommendations

1. The model uncertainty of NLFEA is affected by how accurately the numerical model is
developed and one important aspect is the consideration of the load history of the structure
in the finite element model. Although majority of the time the existing loading condition is
simulated, the effort to incorporate the effect of prior loading scenario should be made.

2. The investigation of the performance of fixed crack model with bond-slip reinforce-
ment should be carried out to compare the resulting model uncertainty with the modelling
strategies investigated in thesis project and give a more comprehensive recommendation
of the preferred approach to numerically model reinforced concrete beams without shear
reinforcement.

3. The different available material models to simulate the deterioration of bond stress
and the relative slip between concrete and reinforcement should further be investigated
besides the relation recommended in the fib model code 2010 [4] which is used to model
the bond-slip reinforcement in this study.

4. For this thesis project, the accuracy of failure mode prediction is assessed using visual
inspection, however it is recommended to investigate ways that can objectively measure
the accuracy of the predicted failure mode and compare it with that of the experiment.

5. Model uncertainty of NLFEA with respect to the accuracy of the predicted deforma-
tion or displacement should also be investigated and incorporated with the model uncer-
tainty of the ultimate capacity. Although for simply supported beams the accuracy of the
predicted deformation has less importance, for structurally indeterminate members it can
have a pronounced effect on the simulation of the failure behaviour.
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A. Annex A

Table A.1: Predicted failure load and failure mechanism of 67 benchmark experiments using F-EB-2-D

No. Experiment Name Exp. Peakload(KN) NLFEA Peak Load (KN) MUC NLFEA Failure mode Exp. Failure mode Exp. Yield load
1 A121A1 115.3 99.66 1.157 Shear Flexure
2 Al21A2 138.8 107.84 1.287 Shear Flexure
3 Al121A3 144.6 108.54 1.332 Shear Shear
4 A121B1 160.6 163.39 0.983 Shear Flexure+ shear
5 Al122A1 194.7 200.61 0.971 Flexure+ shear Flexure+ shear
6 Al22B1 152.3 138.96 1.096 Shear Shear
7 Al123A1 136.5 111.5 1.224 Shear Shear
8 A123A2 139 119.94 1.159 Shear Shear
9 A123B1 134.9 106.18 1.27 Shear Flexure
10 A123B2 148.9 113.03 1.317 Shear Flexure+ shear
11 A901A1 105.6 100.59 1.05 Shear Flexure
12 A901A2 123.9 103.25 1.2 Shear Flexure
13 A901A3 145 109.59 1.323 Shear then Yielding Shear
14 A901B1 127.5 105.34 1.21 Shear then Yielding Shear
15 A901B2 124.2 116.43 1.067 Shear then Yielding Shear
16 A902A1 120.7 99.66 1.211 Shear then Yielding Shear
17 A902A2 136 108.23 1.257 Shear then Yielding Flexure
18 A902A3 149.4 111.51 1.34 Shear then Yielding Shear
19 A902B1 121.5 98.55 1.233 Shear then Yielding Flexure
20 A902B2 124.2 101.82 1.22 Shear then Yielding Shear
21 A751A1 97.1 93.45 1.039 Shear then Yielding Flexure
22 A751A2 118.4 116.38 1.017 Shear then Yielding Shear
23 A751B1 106.7 100.62 1.06 Shear then Yielding Shear
24 A751B2 110.1 100.29 1.098 Shear then Yielding Flexure+ shear
25 A752A1 108.7 106.36 1.022 Shear then Yielding Flexure
26 A752A2 119 99.6 1.195 Shear then Yielding Shear
27 A752A3 121.6 99.6 1.221 Shear then Yielding Flexure+ shear
28 A752B2 141.9 117.19 1.211 Shear then Yielding Flexure+ shear
29 A601A1 80.3 89.53 0.897 Flexure Flexure
30 A601A2 102.1 94.18 1.084 Shear then Yielding Flexure
31 A601B1 118.7 104.53 1.136 Shear then Yielding Flexure+ shear
32 A601B2 123.2 122.6 1.005 Flexure with shear cracks F with flexural shear cracks
33 A602A1 98.8 104.38 0.947 Shear then Yielding Flexure
34 AB02A2 112.8 98.44 1.146 Shear then Yielding Flexure
35 A602A3 114.2 99.38 1.149 Shear then Yielding Flexure+ shear
36 A602B1 58 59.2 0.98 Flexure Flexure
37 A602B2 110.9 128.14 0.865 Shear then Yielding Flexure+ shear
38 B701A1 175.5 188.84 0.929 Flexure+ shear Flexure
39 B701A2 179.5 178.46 1.006 Shear Flexure
40 B701A3 185.7 175.53 1.058 Shear Flexure
41 B701B1 193.6 167.31 1.157 Shear Flexure
42 B701B2 202.4 160.5 1.261 Shear Shear
43 B702A1 183.2 172.52 1.062 Shear then Yielding Shear
44 B702B1 164.9 176.33 0.935 Shear Shear
45 B501A1 168.5 170.37 0.989 Flexure+ shear Flexure
46 B501A2 166.4 155.31 1.071 Shear Shear
47 B501B1 165.7 167.79 0.988 Shear Shear
48 B502A1 166.9 152.63 1.094 Shear Flexure
49 B502A2 175.1 154.07 1.136 Shear Flexure
50 B502A3 173.6 160.56 1.081 Shear Shear
51 B502B1 173.2 160.56 1.079 Shear Shear
52 C901A1 98.5 78.21 1.259 Shear Flexure
53 C901A2 103.4 83.33 1.241 Shear Shear
54 C901A3 84.1 83.33 1.009 Shear Shear
55 C901B1 101.7 78.21 1.3 Shear Shear
56 C751A1 76.5 71.66 1.068 Shear Flexure
57 C751A2 84.5 76.93 1.098 Shear Shear
58 C751A3 86.7 76.93 1.127 Shear Shear
59 C751B1 82.8 73.82 1.122 Shear Flexure+ shear
60 C451A1 41.4 49.99 0.828 Flexure Flexure
61 C451A2 58.6 59.54 0.984 Flexure+ shear Flexure
62 C451A3 73.5 65.07 1.129 Shear then Yielding Flexure+ shear
63 C451A4 70.9 65.07 1.09 Shear then Yielding Shear
64 C451B1 58.5 62.73 0.933 Shear then Yielding Flexure
65 C451B2 70.6 64.32 1.098 Shear then Yielding Flexure+ shear
66 C451B3 67.1 64.32 1.043 Shear then Yielding Flexure
67 C451B4 77.2 68.47 1.127 Shear then Yielding Shear
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Table A.2: Predicted failure load and failure mechanism of 67 benchmark experiments using R-BS-2

No. Experiment Name Exp. Peakload(KN) NLFEA Peak Load (KN) MUC NLFEA Failure mode Exp. Failure mode
1 Al121A1 115.3 99.66 1.157 Shear Flexure
2 Al121A2 138.8 107.84 1.287 Shear Flexure
3 AlI21A3 144.6 108.54 1.332 Shear Shear
4 Al21B1 160.6 163.39 0.983 Shear Flexure+ shear
5 A122A1 194.7 200.61 0.971 Flexure+ shear Flexure+ shear
6 A122B1 152.3 138.96 1.096 Shear Shear
7 A123A1 136.5 111.5 1.224 Shear Shear
8 A123A2 139 119.94 1.159 Shear Shear
9 A123B1 134.9 106.18 1.27 Shear Flexure
10 A123B2 148.9 113.03 1.317 Shear Flexure+ shear
11 A901A1 105.6 100.59 1.05 Shear Flexure
12 A901A2 123.9 103.25 1.2 Shear Flexure
13 A901A3 145 109.59 1.323 Shear then Yielding Shear
14 A901B1 127.5 105.34 1.21 Shear then Yielding Shear
15 A901B2 124.2 116.43 1.067 Shear then Yielding Shear
16 A902A1 120.7 99.66 1.211 Shear then Yielding Shear
17 A902A2 136 108.23 1.257 Shear then Yielding Flexure
18 A902A3 149.4 111.51 1.34 Shear then Yielding Shear
19 A902B1 121.5 98.55 1.233 Shear then Yielding Flexure
20 A902B2 124.2 101.82 1.22 Shear then Yielding Shear
21 A751A1 97.1 93.45 1.039 Shear then Yielding Flexure
22 A751A2 118.4 116.38 1.017 Shear then Yielding Shear
23 A751B1 106.7 100.62 1.06 Shear then Yielding Shear
24 A751B2 110.1 100.29 1.098 Shear then Yielding Flexure+ shear
25 A752A1 108.7 106.36 1.022 Shear then Yielding Flexure
26 A752A2 119 99.6 1.195 Shear then Yielding Shear
27 A752A3 121.6 99.6 1.221 Shear then Yielding Flexure+ shear
28 A752B2 141.9 117.19 1.211 Shear then Yielding Flexure+ shear
29 A601A1 80.3 89.53 0.897 Flexure Flexure
30 AB601A2 102.1 94.18 1.084 Shear then Yielding Flexure
31 A601B1 118.7 104.53 1.136 Shear then Yielding Flexure+ shear
32 A601B2 123.2 122.6 1.005 Flexure with shear cracks F with flexural shear cracks
33 A602A1 98.8 104.38 0.947 Shear then Yielding Flexure
34 A602A2 112.8 98.44 1.146 Shear then Yielding Flexure
35 AB602A3 114.2 99.38 1.149 Shear then Yielding Flexure+ shear
36 A602B1 58 59.2 0.98 Flexure Flexure
37 A602B2 110.9 128.14 0.865 Shear then Yielding Flexure+ shear
38 B701A1 175.5 188.84 0.929 Flexure+ shear Flexure
39 B701A2 179.5 178.46 1.006 Shear Flexure
40 B701A3 185.7 175.53 1.058 Shear Flexure
41 B701B1 193.6 167.31 1.157 Shear Flexure
42 B701B2 202.4 160.5 1.261 Shear Shear
43 B702A1 183.2 172.52 1.062 Shear then Yielding Shear
44 B702B1 164.9 176.33 0.935 Shear Shear
45 B501A1 168.5 170.37 0.989 Flexure+ shear Flexure
46 B501A2 166.4 155.31 1.071 Shear Shear
47 B501B1 165.7 167.79 0.988 Shear Shear
48 B502A1 166.9 152.63 1.094 Shear Flexure
49 B502A2 175.1 154.07 1.136 Shear Flexure
50 B502A3 173.6 160.56 1.081 Shear Shear
51 B502B1 173.2 160.56 1.079 Shear Shear
52 C901A1 98.5 78.21 1.259 Shear Flexure
53 C901A2 103.4 83.33 1.241 Shear Shear
54 C901A3 84.1 83.33 1.009 Shear Shear
55 C901B1 101.7 78.21 1.3 Shear Shear
56 C751A1 76.5 71.66 1.068 Shear Flexure
57 C751A2 84.5 76.93 1.098 Shear Shear
58 C751A3 86.7 76.93 1.127 Shear Shear
59 C751B1 82.8 73.82 1.122 Shear Flexure+ shear
60 C451A1 414 49.99 0.828 Flexure Flexure
61 C451A2 58.6 59.54 0.984 Flexure+ shear Flexure
62 C451A3 73.5 65.07 1.129 Shear then Yielding Flexure+ shear
63 C451A4 70.9 65.07 1.09 Shear then Yielding Shear
64 C451B1 58.5 62.73 0.933 Shear then Yielding Flexure
65 C451B2 70.6 64.32 1.098 Shear then Yielding Flexure+ shear
66 C451B3 67.1 64.32 1.043 Shear then Yielding Flexure
67 C451B4 77.2 68.47 1.127 Shear then Yielding Shear
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#Project Settings

newProject ( "Directory/Name", 1000 )

setModelAnalysisAspects (

setModelDimension( "2D"

[ "STRUCT" ] )
)

setDefaultMeshOrder ( "QUADRATIC" )
setDefaultMesherType ( "HEXQUAD" )
setDefaultMidSideNodeLocation ( "LINEAR" )

setUnit ( "LENGTH", "MM"
setUnit ( "FORCE", "N" )

#Material Properties
#Concrete

E=26610.39

ve=0.2
MDensC=2.4e-09
fct=1.48

Gft=0.1239

Gfc=30.99

fc=18.96

#Reinforcement
Es=210000
vs=0.3
MdensR=7.85e-09
£y=550

)

#Young's Modulus [MPa]

#Poisson Ratio [-]

#Mass Density [T/mm3]

#Tensile Strength [MPa]

#Tensile Fracture Energy [N/mm]
#Compressive Fracture Energy [N/mm]
#Compressive Strength [MPa]

#Young's Modulus [MPa]
#Poisson Ratio [-]

#Mass Density [T/mm3]
#Yield Strength [MPa]

#Interface Between Load/Support Plate and Beam

kn=8400
ks=84

#Geometry

#Beam and Reinforcement
Lbeam= 8000

Hbeam=300

width=300

d=270

As=603.19

Cbr= Hbeam-d

#Support Plate
X1=1450
X2=1550

Y1=-20

Y2=0
Lspan=5000
Lsuppcent=1500

#Normal Stiffness [N/mm3]
#Shear Stiffness [N/mm3]

#Length of the beam [mm]
#Height of the beam [mm]
#Width of the beam [mm]
#Effective depth [mm]
#Area of reinforcement
#Concrete Cover

#Start of the left support plate (X)
#End of the left support plate (X)
#End of the support plate (Y)

#Start of the support plate (Y)
#Clear Span of the Beam

#Center of the left support

Rsuppcent=Lsuppcent+Lspan #Center of the right support

#Load Plate

a=1100

Hplate=20
Lplatecent=Lsuppcent+a

#Mesh
Elem=50

#Layout of the Beam

#Shear Span
#Height of Load Plate
#Center of the load plate

#Mesh Size

createSheet ( "Concrete beam", [[ O, 0, 0 ],[ Lbeam, 0, O 1,[ Lbeam, Hbeam, O 1,[ O,

Hbeam, 0 1] )

createlLine( "Bottom Rebar", [ 0, Cbr, 0 ], [ Lbeam, Cbr, 0 ]

createline( "Top Rebar",

[ 0, d, 01, [ Lbeam, d , 0 1)

)

createSheet ( "L Supp plate", [[ X1, Y1, 0 ],[ X2, Y1, O J],[ X2, Y2, 0 1,[ X1, Y2,
11 )

createSheet ( "R Supp plate", [[ Xl+Lspan, Y1, O ],[ X2+Lspan, Y1, 0 ], [X2+Lspan ,
Y2, 0 ],[ Xl+Lspan, Y2, 0 11 )

createSheet ( "Load plate", [[X1l+a , Hbeam, 0 ],[ X2+a, Hbeam, 0 ],[ X2+a,

Hbeam+Hplate, 0 ],[ Xl+a, HbeamtHplate, 0 ]] )

0



#Creating necessary vertex and lines

createPointBody( "Point body 1", [ Lsuppcent, Y1, 0 ] )
createPointBody( "Point body 2", [ Lplatecent, Hbeam+Hplate, 0 ] )
createPointBody( "Point body 3", [ Rsuppcent, Y1, 0 ] )

projection( "SHAPEEDGE", "L Supp plate", [[ Lsuppcent, Y1, 0 ]], [ "Point body 1"
1, 10, 0, -1 ], True )
removeShape ( [ "Point body 1" ] )
projection( "SHAPEEDGE", "Load plate", [[ Lplatecent, Hbeam+Hplate, 0 1], [ "Point
body 2" ], [ 0, 0, -1 ], True )
removeShape ( [ "Point body 2" ] )
projection( "SHAPEEDGE", "R Supp plate", [[ Rsuppcent, Y1, 0 ]], [ "Point body 3"
]r [OI Or -1 ]r True )
removeShape ( [ "Point body 3" ] )
createline( "Line Lsupp", [ X1, Y2, 0 ], [ X2, Y2, 0 ] )
createline( "Line Rsupp", [ Xl+Lspan, Y2, 0 1, [ X2+Lspan, Y2, 0 ] )
projection( "SHAPEFACE", "Concrete beam", [[ Lbeam/2, Hbeam/2, 0 ]], [ "Line
Lsupp", "Line Rsupp" 1, [ O, 0, -1 ], True )
removeShape ( [ "Line Lsupp", "Line Rsupp" ] )
#Support
addSet ( "GEOMETRYSUPPORTSET", "Support" )
createPointSupport ( "Lsupport", "Support" )
setParameter ( "GEOMETRYSUPPORT", "Lsupport", "AXES", [ 1, 2 ] )
setParameter ( "GEOMETRYSUPPORT", "Lsupport", "TRANSL", [ 1, 1, 0 ] )
setParameter ( "GEOMETRYSUPPORT", "Lsupport", "ROTATI", [ O, O, O ] )
[

attach( "GEOMETRYSUPPORT", "Lsupport", "L Supp plate",
createPointSupport ( "Rsupport", "Support" )

[ Lsuppcent, Y1, 0]1)

setParameter ( "GEOMETRYSUPPORT", "Rsupport", "AXES", [ 1, 2 ] )

setParameter ( "GEOMETRYSUPPORT", "Rsupport", "TRANSL", [ O, 1, O ] )

setParameter ( "GEOMETRYSUPPORT", "Rsupport", "ROTATI", [ O, O, O ] )
[

attach ( "GEOMETRYSUPPORT", "Rsupport", "R Supp plate",

addSet ( "GEOMETRYSUPPORTSET", "load Support" )

createPointSupport ( "Rxn @disp", "load Support" )

setParameter ( "GEOMETRYSUPPORT", "Rxn @disp", "AXES", [ 1, 2 1)

setParameter ( "GEOMETRYSUPPORT", "Rxn @disp", "TRANSL", [ O, 1, 0 1)
[

[ Rsuppcent, Y1, 0 1] )

setParameter ( "GEOMETRYSUPPORT", "Rxn Q@disp", "ROTATI", 0o, 0, 0 1)
attach( "GEOMETRYSUPPORT", "Rxn @disp", "Load plate", [[ Lplatecent, Hbeam+Hplate,
011)

#Load

addSet ( "GEOMETRYLOADSET", "Load" )

createPointLoad( "Point load", "Load" )

setParameter ( "GEOMETRYLOAD", "Point load", "LODTYP", "DEFORM" )
setParameter ( "GEOMETRYLOAD", "Point load", "DEFORM/TR/VALUE", -1 )
setParameter ( "GEOMETRYLOAD", "Point load", "DEFORM/TR/DIRECT", 2 )
attach( "GEOMETRYLOAD", "Point load", "Load plate", [[ Lplatecent, Hbeam+Hplate, O
11 )

addSet ( "GEOMETRYLOADSET", "Self-weight" )

createModelLoad( "Self-weight", "Self-weight" )

#Material property

#Element data

addElementData ( "Element data 1" )

setParameter ( "DATA", "Element data 1", "./INTEGR", [] )
setParameter ( "DATA", "Element data 1", "INTEGR", "HIGH" )
assignElementData ( "Element data 1", "SHAPE", [ "Concrete beam" ] )
assignElementData ( "Element data 1", "SHAPE", [ "L Supp plate" ] )
assignElementData ( "Element data 1", "SHAPE", [ "Load plate" ] )
assignElementData ( "Element data 1", "SHAPE", [ "R Supp plate" ] )

#Concrete

addMaterial ( "Concrete", "CONCR", "TSCR", [] )

setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/YOUNG", E )
setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/POISON", vc )
setParameter ( "MATERIAL", "Concrete", "LINEAR/MASS/DENSIT", MDensC )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENCRV", "HORDYK" )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENSTR", fct)



setParameter ( "MATERIAL", "Concrete", "TENSIL/GFl", Gft)

setParameter ( "MATERIAL", "Concrete", "TENSIL/POISRE/POIRED", "DAMAGE" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/COMCRV", "PARABO" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/COMSTR", fc )

(
(
(
(
setParameter ( "MATERIAL", "Concrete", "COMPRS/GC", Gfc)
(
(
(
(

setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDCRV", "VC1993" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDMIN", 0.4 )
setParameter ( "MATERIAL", "Concrete", "COMPRS/CONFIN/CNFCRV", "VECCHI" )
setParameter ( "MATERIAL", "Concrete", "SHEAR/SHRCRV", "DAMAGE" )

addGeometry( "Element geometry 1", "SHEET", "MEMBRA", [] )
rename ( "GEOMET", "Element geometry 1", "Concrete" )
setParameter ( "GEOMET", "Concrete'", "THICK", width)
setParameter ( "GEOMET", "Concrete'", "LOCAXS", True )
setElementClassType( "SHAPE", [ "Concrete beam" ], "MEMBRA" )
assignMaterial ( "Concrete", "SHAPE", [ "Concrete beam" ] )
assignGeometry( "Concrete", "SHAPE", [ "Concrete beam" ] )

#Reinforcement
addMaterial ( "Reinforcement", "REINFO", "VMISES", [] )

setParameter ( "MATERIAL", "Reinforcement", "LINEAR/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "Reinforcement", "PLASTI/YLDTYP", "EPSSIG" )
setParameter ( "MATERIAL", "Reinforcement", "PLASTI/HARDI4/EPSSIG", [] )
setParameter ( "MATERIAL", "Reinforcement", "PLASTI/HARDI4/EPSSIG", [ 0, O,

0.002619, 550, 0.0157, 605 1 )

addGeometry( "Element geometry 4", "RELINE", "REBAR", [] )

rename ( "GEOMET", "Element geometry 4", "Reinforcement" )

setParameter ( "GEOMET", "Reinforcement", "REITYP", "REIEMB" )

setParameter ( "GEOMET", "Reinforcement", "REIEMB/CROSSE", As )
setReinforcementAspects( [ "Top Rebar", "Bottom Rebar" ] )

assignMaterial ( "Reinforcement", "SHAPE", [ "Top Rebar", "Bottom Rebar" ] )
assignGeometry( "Reinforcement", "SHAPE", [ "Top Rebar", "Bottom Rebar" ] )
assignElementData ( "Element data 1", "SHAPE", [ "Top Rebar", "Bottom Rebar" ] )
setReinforcementDiscretization( [ "Top Rebar", "Bottom Rebar" ], "ELEMENT" )

#Steel plate
addMaterial ( "Steel plate", "MCSTEL", "ISOTRO", [] )
setParameter ( "MATERIAL", "Steel plate", "LINEAR/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "Steel plate", "LINEAR/ELASTI/POISON", vs )
setParameter ( "MATERIAL", "Steel plate", "LINEAR/MASS/DENSIT", MdensR )
addGeometry( "Element geometry 3", "SHEET", "MEMBRA", [] )
rename ( "GEOMET", "Element geometry 3", "Steel plate" )

)

setParameter ( "GEOMET", "Steel plate", "THICK", width

setParameter ( "GEOMET", "Steel plate", "LOCAXS", True )

setElementClassType( "SHAPE", [ "L Supp plate", "Load plate", "R Supp plate" ],
"MEMBRA" )

assignMaterial( "Steel plate", "SHAPE", [ "L Supp plate", "Load plate", "R Supp
plate" ] )

assignGeometry( "Steel plate", "SHAPE", [ "L Supp plate", "Load plate", "R Supp
plate" ] )

#Interface

addMaterial ( "Interface", "INTERF", "ELASTI", [] )

setParameter ( "MATERIAL", "Interface", "LINEAR/IFTYP", "LIN2D" )
setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSNY", kn )
setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSSX", ks )
addGeometry( "Element geometry 4", "LINE", "STLIIF", [] )
rename ( "GEOMET", "Element geometry 4", "Interface" )

setParameter ( "GEOMET", "Interface", "LIFMEM/THICK", width )
setParameter ( "GEOMET", "Interface", "LOCAXS", True )
createConnection( "Interface", "INTER", "SHAPEEDGE" )
setParameter ( "GEOMETRYCONNECTION", "Interface", "MODE", "AUTO" )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "L Supp plate", [[
Lsuppcent, 0, 0 11 )
attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Concrete beam", [[
Lsuppcent, 0, 0 11 )
attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "R Supp plate", [|[
Rsuppcent, 0, 0 11 )
attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Concrete beam", [



Rsuppcent, 0, 0 1] )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Load plate", [[ Lplatecent,
0, 011
setElementClassType ( "GEOMETRYCONNECTION", "Interface", "STLIIF" )

assignMaterial ( "Interface", "GEOMETRYCONNECTION", "Interface" )
assignGeometry( "Interface", "GEOMETRYCONNECTION", "Interface" )
setParameter ( "GEOMETRYCONNECTION", "Interface", "FLIP", False )

resetElementData ( "GEOMETRYCONNECTION", "Interface" )

#Mesh

setElementSize( [ "Concrete beam" ], Elem, -1, True )

setMesherType ( [ "Concrete beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Concrete beam" ], "LINEAR" )

setElementSize( [ "Concrete beam" ], Elem, -1, True )

setMesherType ( [ "Concrete beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Concrete beam" ], "LINEAR" )

setElementSize ( "Bottom Rebar", 1, [[ Lbeam/2, Cbr, 0 ]], Elem, 0, True )
setElementSize( "Top Rebar", 1, [[ Lbeam/2, Hbeam-Cbr, 0 1], Elem, 0, True )
setElementSize( [ "L Supp plate", "R Supp plate", "Load plate" ], Elem, -1, True )
setMesherType( [ "L Supp plate", "R Supp plate", "Load plate" ], "HEXQUAD" )
setMidSideNodeLocation( [ "L Supp plate", "R Supp plate", "Load plate" ], "LINEAR"
)

generateMesh( [] )

#Analysis Commands

addAnalysis( "Analysisl" )

addAnalysisCommand( "Analysisl", "NONLIN", "Structural nonlinear" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear", "EXECUT" )

addAnalysisCommand( "Analysisl", "PHASE", "Phased" )
setActivePhase( "Analysisl", "Phased" )
moveAnalysisCommand( "Analysisl", "Phased", "Structural nonlinear" )

setActivePhase( "Analysisl", "Phased" )

setActivePhase ( "Analysisl", "Phased" )

setActiveInPhase ( "Analysisl", "GEOMETRYSUPPORTSET", [ "load Support" ], [ "Phased"
], False )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",
"EXECUT (1) /ITERAT/MAXITE", 100 )

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear'", "EXECUT (2)" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",

"EXECUT (1) /LOAD/LOADNR" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",

"EXECUT (1) /LOAD/LOADNR", 2 )

addAnalysisCommand ( "Analysisl", "PHASE", "Phased 1" )

setActivePhase ( "Analysisl", "Phased 1" )

addAnalysisCommand ( "Analysisl", "NONLIN", "Structural nonlinear 1" )
setActivePhase( "Analysisl", "Phased 1" )

setActivePhase( "Analysisl", "Phased 1" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1", "EXECUT/EXETYP",
"START" )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(2)",
"EXECUT (1) " )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(1)",
"EXECUT (2) " )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(2)",
"EXECUT (1) " )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/MAXITE", 100 )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/METHOD/METNAM", "SECANT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/LINESE" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/LINESE", True )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

"EXECUT (1) /ITERAT/CONVER/ENERGY" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY", True )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",



"EXECUT (1) /ITERAT/CONVER/DISPLA", False )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/FORCE", False )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /LOAD/LOADNR" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /LOAD/LOADNR", 1 )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /LOAD/STEPS/EXPLIC/SIZES", "0.05(800)" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/MAXITE", 10 )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

"EXECUT (2) /ITERAT/CONVER/ENERGY", True )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/DISPLA", False )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/MAXITE", 100 )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/METHOD/METNAM", "SECANT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/LINESE" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/LINESE", True )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(1)",

"EXECUT (2)" )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(2)",

"EXECUT (1) " )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/FORCE", False )

setActivePhase ( "Analysisl", "Phased 1" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /SELTYP", "USER" )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/DISPLA (1) /TOTAL/TRANSL/GLOBAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (3) /TOTAL/GREEN/GLOBAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (4) /TOTAL/GREEN/GLOBAL/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (4) /TOTAL/CAUCHY/GLOBAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (4) /TOTAL/CAUCHY/GLOBAL/LOCATI", "INTPNT"
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (13) /CRACK/GREEN/LOCATI", "NODES" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (15) /CRKWDT/GREEN/LOCAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (16) /CRKWDT/GREEN/LOCAL/LOCATI", "INTPNT"
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/FORCE (1) /REACTI/TRANSL/GLOBAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (13) /CRACK/GREEN/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

)

)

"OUTPUT (1) /USER"

)



"OUTPUT (1) /USER/STRESS (5) /CRACK/CAUCHY/LOCAL" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural

"OUTPUT (1) /USER/STRAIN(1)" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural

"OUTPUT (1) /USER/STRAIN(3)" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural

"OUTPUT (1) /USER/STRAIN (15)" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural

"OUTPUT (1) /USER/STRESS (1) " )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear

"OUTPUT (2) /DEVICE", "TABULA" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear

"OUTPUT (2) /SELECT/MODSEL", "USER" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear

"OUTPUT (2) /SELECT/NODES (1) /RNGNRS", "NONE" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear

"OUTPUT (2) /SELECT/ELEMEN (1) /RNGNRS", "NONE" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear

"OUTPUT (2) /SELTYP", "USER" )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear
addAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear

"OUTPUT (2) /USER/STRESS (1) /TOTAL/CAUCHY/LOCAL" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear

"OUTPUT (2) /USER/STRESS (1) /TOTAL/CAUCHY/LOCAL/COMP",

[

nonlinear

nonlinear

nonlinear

nonlinear

"YxX" J

)

1"’
1",

1",
1",
1",
1",

1n’
1",

1",

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (2) /USER/STRESS (1) /TOTAL/CAUCHY/LOCAL/LOCATI",
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

"OUTPUT (2) /USER/STRAIN (3) /TOTAL/GREEN/LOCAL" )

"INTPNT" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

"OUTPUT (2) /USER/STRAIN (3) /TOTAL/GREEN/LOCAL/COMP", [

uxxn]

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

"OUTPUT (2) /USER/STRAIN (3) /TOTAL/GREEN/LOCAL/LOCATI",

"INTPNT"

)

1",
1",
1",
1,

"QUTPUT" )

"OUTPUT (2) /USER" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear 1",

"OUTPUT (2) /USER/STRAIN (1) " )
saveProject ( )
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Annex C



import math

#Project Settings

newProject ( "Directory/Name", 1000 )
setModelAnalysisAspects( [ "STRUCT" ] )
setModelDimension( "2D" )
setDefaultMeshOrder ( "QUADRATIC" )
setDefaultMesherType ( "HEXQUAD" )
setDefaultMidSideNodeLocation ( "LINEAR" )
setUnit ( "LENGTH", "MM" )

setUnit ( "FORCE", "N" )

#Material Properties

#Concrete
CG=65 #Concrete Grade
femcubic=78.5 #Cubic Compressive Strength [MPa]
fc=0.8*fcmcubic #Cylinder Compressive Strength [MPa]
fck=fc-8 #Characteristic Strength [MPa]
if CG<=50
fect=0.3*fc**(2/3) #Tensile Strength [MPa]
else:

fct= 2.12 * math.log(1+0.1*fc)
Ec=21500* (fc/10) **(1/3) #Young's Modulus [MPa]

ve=0.2 #Poisson Ratio [-]

MDensC=2.4e-09 #Mass Density [T/mm3]
Gft=0.073*fc**0.18 #Tensile Fracture Energy [N/mm]
Gfc=250*Gft #Compressive Fracture Energy [N/mm]

#Reinforcement

Es=210000 #Young's Modulus

MdensR=7.85e-09 #Mass Density [T/mm3]

nl=2 #Number of Rebars with diameter 1
dial=20 #Diameter 1 of Reinforcement [mm]
n2=1 #Number of Rebars with diameter 2
dia2=12 #Diameter 2 of Reinforcement [mm]
pi=math.pi

vs=0.3 #Poisson Ratio [-]

fy=550 #Yield Strength [MPa]

#Interface Between Load/Support Plate and Beam

kn=8400 #Normal Stiffness [N/mm3]
ks=84 #Shear Stiffness [N/mm3]
#Mesh

Elem=25 #Mesh Size

#Bond-slip Interface

bn=100*Ec/Elem #Normal Stiffness of bond-slip interface [N/mm3]
bs=bn/10 #Tangential Stiffness of bond-slip interface [N/mm3]
#Geometry

#Beam and Reinforcement

Lbeam= 8000 #Length of the beam [mm]

Hbeam=300 #Height of the beam [mm]

width=300 #Width of the beam [mm]

d=270 #Effective depth [mm]

As=(nl*pi* (dial**2)/4)+ (n2*pi* (dia2**2)/4) #Area of Reinforcement
Cp=(nl*pi*dial)+(n2*pi*dia2) #Perimeter of Reinforcement
Cbr= Hbeam-d #Concrete Cover

#Support Plate

X1=1450 #Start of the left support plate (X)
X2=1550 #End of the left support plate (X)
Y1=-20 #End of the support plate (Y)

Y2=0 #Start of the support plate (Y)
Lspan=5000 #Clear Span of the Beam [mm]
Lsuppcent=1500 #Center of the left support [mm]

Rsuppcent=Lsuppcent+Lspan #Center of the right support [mm]



#Load Plate

a=1100 #Shear Span [mm]

Hplate=20 #Height of Load Plate [mm]
Lplatecent=Lsuppcent+a #Center of the load plate [mm]

#Layout of the Beam

createSheet ( "Concrete beam", [[ O, 0, 0 ],[ Lbeam, 0, O 1,[ Lbeam, Hbeam, O 1,[ O,
Hbeam, 0 1] )

createlLine( "Bottom Rebar", [ 0, Cbr, 0 ], [ Lbeam, Cbr, 0 ] )

createline( "Top Rebar", [ 0, d, 0 1, [ Lbeam, d, 0 ] )

createSheet ( "L Supp plate", [[ X1, Y1, O ],[ X2, Y1, O ],[ X2, Y2, O 1,[ X1, Y2, O
11)

createSheet ( "R Supp plate", [[ Xl+Lspan, Y1, O ],[ X2+Lspan, Y1, 0 ], [X2+Lspan ,
Y2, 0 ],[ Xl+Lspan, Y2, 0 11 )

createSheet ( "Load plate", [[Xl+a , Hbeam, 0 ],[ X2+a, Hbeam, 0 ],[ X2+a,
Hbeam+Hplate, 0 ],[ Xl+a, HbeamtHplate, 0 ]] )

#Creating necessary vertex and lines

createPointBody( "Point body 1", [ Lsuppcent, Y1, 0 ] )
createPointBody ( "Point body 2", [ Lplatecent, Hbeamt+Hplate, 0 ] )
createPointBody( "Point body 3", [ Rsuppcent, Y1, 0 ] )

projection( "SHAPEEDGE", "L Supp plate", [[ Lsuppcent, Y1, O ]], [ "Point body 1"
]I [OI Or -1 ]r True)
removeShape ( [ "Point body 1" 1 )
projection( "SHAPEEDGE", "Load plate", [[ Lplatecent, Hbeam+Hplate, 0 1], [ "Point
body 2" 1, [ 0, 0, -1 1, True )
removeShape ( [ "Point body 2" ] )
projection( "SHAPEEDGE", "R Supp plate", [[ Rsuppcent, Y1, 0 ]], [ "Point body 3"
]I [OI Or -1 ]r True)
removeShape ( [ "Point body 3" ] )
createline( "Line Lsupp", [ X1, Y2, 01, [ X2, Y2, 0 1)
createline( "Line Rsupp", [ Xl+Lspan, Y2, 0 ], [ X2+Lspan, Y2, 0 ] )
projection( "SHAPEFACE", "Concrete beam", [[ Lbeam/2, Hbeam/2, 0 ]]1, [ "Line
Lsupp", "Line Rsupp" 1, [ O, 0, -1 1, True )
removeShape( [ "Line Lsupp", "Line Rsupp" ] )
#Support
addSet ( "GEOMETRYSUPPORTSET", "Support" )
createPointSupport ( "Lsupport", "Support" )
setParameter ( "GEOMETRYSUPPORT", "Lsupport", "AXES", [ 1, 2 ] )
setParameter ( "GEOMETRYSUPPORT", "Lsupport", "TRANSL", [ 1, 1, O ] )
setParameter ( "GEOMETRYSUPPORT", "Lsupport", "ROTATI", [ O, O, O ] )
[

attach( "GEOMETRYSUPPORT", "Lsupport", "L Supp plate",
createPointSupport ( "Rsupport", "Support" )

[ Lsuppcent, Y1, 0]1])

setParameter ( "GEOMETRYSUPPORT", "Rsupport", "AXES", [ 1, 2 1)

setParameter ( "GEOMETRYSUPPORT", "Rsupport", "TRANSL", [ O, 1, O ] )

setParameter ( "GEOMETRYSUPPORT", "Rsupport", "ROTATI", [ O, O, O ] )
[

attach( "GEOMETRYSUPPORT", "Rsupport", "R Supp plate",
addSet ( "GEOMETRYSUPPORTSET", "load Support" )
createPointSupport ( "Rxn @disp", "load Support" )

[ Rsuppcent, Y1, 0 11 )

setParameter ( "GEOMETRYSUPPORT", "Rxn @disp", "AXES", [ 1, 2 ] )

setParameter ( "GEOMETRYSUPPORT", "Rxn @disp", "TRANSL", [ O, 1, 0 ] )
setParameter ( "GEOMETRYSUPPORT", "Rxn (@disp", "ROTATI", [ O, 0, 0 1)

attach( "GEOMETRYSUPPORT", "Rxn @disp", "Load plate", [[ Lplatecent, Hbeam+Hplate,
011

#Load

addSet ( "GEOMETRYLOADSET", "Load" )

createPointLoad( "Point load", "Load" )

setParameter ( "GEOMETRYLOAD", "Point load", "LODTYP", "DEFORM" )

setParameter ( "GEOMETRYLOAD", "Point load", "DEFORM/TR/VALUE", -1 )

setParameter ( "GEOMETRYLOAD", "Point load", "DEFORM/TR/DIRECT", 2 )

attach( "GEOMETRYLOAD", "Point load", "Load plate", [[ Lplatecent, HbeamtHplate, O

11
addSet ( "GEOMETRYLOADSET", "Self-weight" )
createModelLoad( "Self-weight", "Self-weight" )



#Material property
#Element data

addElementData ( "Element data 1" )

setParameter ( "DATA", "Element data 1", "./INTEGR", [] )

setParameter ( "DATA", "Element data 1", "INTEGR", "HIGH" )

assignElementData ( "Element data 1", "SHAPE", [ "Concrete beam" ] )
assignElementData ( "Element data 1", "SHAPE", [ "L Supp plate" ] )
assignElementData ( "Element data 1", "SHAPE", [ "Load plate" ] )
assignElementData ( "Element data 1", "SHAPE", [ "R Supp plate" ] )

#Concrete

addMaterial ( "Concrete", "CONCR", "TSCR", [] )

setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/YOUNG", Ec )
setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/POISON", vc )
setParameter ( "MATERIAL", "Concrete", "LINEAR/MASS/DENSIT", MDensC )
setParameter ( "MATERIAL", "Concrete", "MODTYP/TOTCRK", "ROTATE" )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENCRV", "HORDYK" )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENSTR", fct)

setParameter ( "MATERIAL", "Concrete", "TENSIL/GFl", Gft)

setParameter ( "MATERIAL", "Concrete", "TENSIL/POISRE/POIRED", "DAMAGE" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/COMCRV", "PARABO" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/COMSTR", fc )

setParameter ( "MATERIAL", "Concrete", "COMPRS/GC", Gfc)

setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDCRV", "VC1993" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDMIN", 0.4 )
setParameter ( "MATERIAL", "Concrete", "COMPRS/CONFIN/CNFCRV", "VECCHI" )
addGeometry( "Element geometry 1", "SHEET", "MEMBRA", [] )

rename ( "GEOMET", "Element geometry 1", "Concrete" )

setParameter ( "GEOMET", "Concrete", "THICK", width)

setParameter ( "GEOMET", "Concrete", "LOCAXS", True )

setElementClassType( "SHAPE", [ "Concrete beam" ], "MEMBRA" )

assignMaterial ( "Concrete", "SHAPE", [ "Concrete beam" ] )

assignGeometry( "Concrete", "SHAPE", [ "Concrete beam" ] )

#BS-Reinforcement

addMaterial ( "BS-Reinforcement", "REINFO", "REBOND", [] )

setParameter ( "MATERIAL", "BS-Reinforcement", "REBARS/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "BS-Reinforcement'", "REBARS/MASS/DENSIT", MdensR )
setParameter ( "MATERIAL", "BS-Reinforcement", "REBARS/PLATYP", "VMISES" )
setParameter ( "MATERIAL", "BS-Reinforcement", "REBARS/PLASTI/TRESSH", "EPSSIG" )
setParameter ( "MATERIAL", "BS-Reinforcement", "REBARS/PLASTI/EPSSIG", [] )
setParameter ( "MATERIAL", "BS-Reinforcement", "REBARS/PLASTI/EPSSIG", [ 0, O,
0.002619, 550, 0.0157, 605, 0.0159, 1 1)

setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/SHFTYP", "BONDS4" )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/SHFTYP", "BONDS5" )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/SHFTYP", "BONDS4" )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/BONDS4/DIAMET",20 )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/BONDS4/SLPVAL", fc )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/BONDS4/SLPVAL", fc)
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/DSNY", bn )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/DSSX", bs )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/DSSX", bs )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/DSNY", bn )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/SHFTYP", "BONDS6" )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/SHFTYP", "BONDS3" )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/BONDS3/DISTAU", [] )
setParameter ( "MATERIAL", "BS-Reinforcement", "RESLIP/BONDS3/DISTAU", [O , 0 ,
0.011927684 , 2.658832327 , 0.023855367 , 3.50835029 , 0.047710735
, 4.629295961 , 0.071566102 , 5.444417869 , 0.09542147 , 6.108392642
, 0.119276837 , 6.678684847 , 0.143132205 , 7.183952447 ,
0.166987572 , 71.640858635 , 0.19084294 , 8.060072413 , 0.214698307
, 8.448895772 , 0.238553675 , 8.812577489 , 0.286264409 , 0.01
3, 0.01

1)

addGeometry( "Element geometry 2", "RELINE", "REBAR", [] )

rename ( "GEOMET", "Element geometry 2", "BS-Reinforcement" )

setParameter ( "GEOMET", "BS-Reinforcement'", "REITYP", "REITRU" )
setParameter ( "GEOMET", "BS-Reinforcement", "REITRU/CROSSE", As )

4



setParameter ( "GEOMET", "BS-Reinforcement", "REITRU/PERIME", Cp )
addElementData ( "Element data 2" )

setReinforcementAspects( [ "Bottom Rebar", "Top Rebar" ] )

assignMaterial ( "BS-Reinforcement", "SHAPE", [ "Bottom Rebar", "Top Rebar" ] )
assignGeometry( "BS-Reinforcement", "SHAPE", [ "Bottom Rebar", "Top Rebar" ] )
assignElementData ( "Element data 2", "SHAPE", [ "Bottom Rebar", "Top Rebar" ] )
setReinforcementDiscretization( [ "Bottom Rebar", "Top Rebar" ], "ELEMENT" )
setParameter ( "DATA", "Element data 2", "./ALMANS", [] )

removeParameter ( "DATA", "Element data 2", "ALMANS" )

setParameter ( "DATA", "Element data 2", "./INTERF", [] )

setParameter ( "DATA", "Element data 2", "INTERF", "TRUSS" )

#Steel plate
addMaterial ( "Steel plate", "MCSTEL", "ISOTRO", [] )

setParameter ( "MATERIAL", "Steel plate", "LINEAR/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "Steel plate", "LINEAR/ELASTI/POISON", vs )
setParameter ( "MATERIAL", "Steel plate", "LINEAR/MASS/DENSIT", MdensR )
addGeometry( "Element geometry 3", "SHEET", "MEMBRA", [] )

rename ( "GEOMET", "Element geometry 3", "Steel plate" )

setParameter ( "GEOMET", "Steel plate", "THICK", width )

setParameter ( "GEOMET", "Steel plate", "LOCAXS", True )

setElementClassType ( "SHAPE", [ "L Supp plate", "Load plate", "R Supp plate" ],
"MEMBRA" )

assignMaterial ( "Steel plate", "SHAPE", [ "L Supp plate", "Load plate", "R Supp
plate" 1 )

assignGeometry( "Steel plate", "SHAPE", [ "L Supp plate", "Load plate", "R Supp
plate" 1 )

#Interface
addMaterial ( "Interface", "INTERF", "ELASTI", [] )

setParameter ( "MATERIAL", "Interface", "LINEAR/IFTYP", "LIN2D" )
setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSNY", kn )
setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSSX", ks )
addGeometry( "Element geometry 4", "LINE", "STLIIF", [] )
rename ( "GEOMET", "Element geometry 4", "Interface" )
setParameter ( "GEOMET", "Interface", "LIFMEM/THICK", width )
setParameter ( "GEOMET", "Interface", "LOCAXS", True )

createConnection( "Interface", "INTER", "SHAPEEDGE" )
setParameter ( "GEOMETRYCONNECTION", "Interface", "MODE", "AUTO" )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "L Supp plate", [[
Lsuppcent, 0, 0 1] )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Concrete beam", [[
Lsuppcent, 0, 0 11 )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "R Supp plate", [[
Rsuppcent, 0, 0 11 )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Concrete beam", [[
Rsuppcent, 0, 0 11 )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Load plate", [[ Lplatecent,
0, 0 11)

setElementClassType ( "GEOMETRYCONNECTION", "Interface", "STLIIF" )

assignMaterial ( "Interface", "GEOMETRYCONNECTION", "Interface" )
assignGeometry( "Interface", "GEOMETRYCONNECTION", "Interface" )
setParameter ( "GEOMETRYCONNECTION", "Interface", "FLIP", False )

resetElementData ( "GEOMETRYCONNECTION", "Interface" )

#Mesh

setElementSize( [ "Concrete beam" ], Elem, -1, True )

setMesherType ( [ "Concrete beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Concrete beam" ], "LINEAR" )

setElementSize( [ "Concrete beam" ], Elem, -1, True )

setMesherType ( [ "Concrete beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Concrete beam" ], "LINEAR" )

setElementSize ( "Bottom Rebar", 1, [[ Lbeam/2, Cbr, 0 ]], Elem, 0, True )
setElementSize( "Top Rebar", 1, [[ Lbeam/2, Hbeam-Cbr, 0 1], Elem, 0, True )
setElementSize( [ "L Supp plate", "R Supp plate", "Load plate" ], Elem, -1, True )
setMesherType( [ "L Supp plate", "R Supp plate", "Load plate" ], "HEXQUAD" )

setMidSideNodeLocation( [ "L Supp plate", "R Supp plate", "Load plate" ], "LINEAR"
)



generateMesh( [] )

#Analysis Commands

addAnalysis( "Analysisl" )
addAnalysisCommand( "Analysisl", "NONLIN",
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",

"Structural nonlinear" )
"EXECUT" )

addAnalysisCommand ( "Analysisl", "PHASE", "Phased" )

setActivePhase ( "Analysisl", "Phased" )

moveAnalysisCommand( "Analysisl", "Phased", "Structural nonlinear" )
setActivePhase ( "Analysisl", "Phased" )

setActivePhase ( "Analysisl", "Phased" )

setActiveInPhase ( "Analysisl", "GEOMETRYSUPPORTSET", [ "load Support" ], [ "Phased"
], False )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",
"EXECUT (1) /ITERAT/MAXITE", 100 )

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear'", "EXECUT (2)" )
addAnalysisCommand( "Analysisl", "PHASE", "Phased 1" )
setActivePhase( "Analysisl", "Phased 1" )

addAnalysisCommand ( "Analysisl", "NONLIN", "Structural nonlinear 1" )
setActivePhase ( "Analysisl", "Phased 1" )

setActivePhase ( "Analysisl", "Phased 1" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1", "EXECUT/EXETYP",
"START" )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(2)",
"EXECUT (1) " )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(1)",
"EXECUT (2) " )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1", "EXECUT(2)",
"EXECUT (1) " )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/MAXITE", 100 )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/METHOD/METNAM", "SECANT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/LINESE" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/LINESE", True )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY", True )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/DISPLA", False )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN"
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /LOAD/LOADNR" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /LOAD/LOADNR", 1 )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /LOAD/STEPS/EXPLIC/SIZES", "0.05(900)" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/MAXITE", 10 )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY", True )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/DISPLA", False )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/MAXITE", 100 )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/METHOD/METNAM", "SECANT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",



"EXECUT (2) /ITERAT/LINESE" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/LINESE", True )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"EXECUT (2) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )
swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1"
"EXECUT (2)" )

swapAnalysisCommandDetails ( "Analysisl", "Structural nonlinear 1"
"EXECUT (1)" )

setActivePhase( "Analysisl", "Phased 1" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /SELTYP", "USER" )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/DISPLA (1) /TOTAL/TRANSL/GLOBAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRAIN (3) /TOTAL/GREEN/GLOBAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (4) /TOTAL/GREEN/GLOBAL/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (4) /TOTAL/CAUCHY/GLOBAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (4) /TOTAL/CAUCHY/GLOBAL/LOCATI", "INTPNT" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (13) /CRACK/GREEN/LOCATI", "NODES" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (15) /CRKWDT/GREEN/LOCAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (16) /CRKWDT/GREEN/LOCAL/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/FORCE (1) /REACTI/TRANSL/GLOBAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (13) /CRACK/GREEN/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (5) /CRACK/CAUCHY/LOCAL" )

, "EXECUT(1)",

, "EXECUT(2)",

"OUTPUT (1) /USER"

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRAIN(3)" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRAIN(4)" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRAIN (15)" )

removeAnalysisCommandDetail ( "Analysisl'", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRESS (1) " )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (1) /TOTAL/GREEN/GLOBAL/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",
"EXECUT (1) /LOAD/LOADNR" )

setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear",
"EXECUT (1) /LOAD/LOADNR", 2 )

addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (6) /TOTAL/TRACTI/LOCAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN(17) /TOTAL/TRACTI/LOCAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (18) /TOTAL/GREEN/GLOBAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (19) /TOTAL/GREEN/PRINCI" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (19) /TOTAL/GREEN/PRINCI/LOCATI", "INTPNT" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (19) /TOTAL/GREEN/PRINCI/LOCATI", "NODES" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (20) /TOTAL/GREEN/LOCAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",

)



"OUTPUT (1) /USER/STRAIN (20) /TOTAL/GREEN/LOCAL/LOCATI", "NODES" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (7) /TOTAL/CAUCHY/PRINCI" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (8) /TOTAL/CAUCHY/LOCAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (9) /TOTAL/CAUCHY/GLOBAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (10) /TOTAL/TRACTI/LOCAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (11) /TOTAL/SHEAR/LOCAL" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (21) /TOTAL/GREEN/LOCAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (21) /TOTAL/GREEN/LOCAL/LOCATI", "INTPNT" )
addAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (12) /TOTAL/CAUCHY/LOCAL" )
setAnalysisCommandDetail ( "Analysisl", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (12) /TOTAL/CAUCHY/LOCAL/LOCATI", "INTPNT" )
saveProject ( )
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import openpyxl

from openpyxl.utils.cell import coordinate from string,
column index from string

from openpyxl import Workbook

#Insert the name of the excel file

wb = openpyxl.load workbook ('DI trial.xlsx')

Sheet = wb]['Sheet2']

rowexx = []
rowsxx = []

rowexxS = []
rowsxxS= []
for rowOfCellObjects in Sheet['D1l':'D'+ str(Sheet.max row)]:
for cellObj in rowOfCellObjects:
if cellObj.value == 'Exx':
Xy = coordinate from string(cellObj.coordinate)
rowexxl = xy[1l]
rowexx.append (rowexxl)
rowexxS1l = xy[1]
rowexxS.append (rowexxS1l)
if cellObj.value == 'Sxx':
xy = coordinate from string(cellObj.coordinate)
rowsxxl = xy[1]
rowsxx.append (rowsxxl)
rowsxxS1l = xy[1]
rowsxxS.append (rowsxxS1)

rowsxx[:] = [a-1 for a in rowsxx]

#print (rowsxx)

Exxbook = Workbook ()

Exxsheet = Exxbook.active

#this is to fill the element number in the new excel file
Exxbook

elemnum = []

for i, j in zip(rowexx, TrOwsxx) :

for rowOfCellObjects in Sheet['B' + str(i):'B' + str(j)]:

for cellObj in rowOfCellObjects:
elemnuml = cellObj.value
elemnum.append (elemnuml)

Len = len(elemnum)

for a, b in zip(range(l, Len), range (0, Len)):
c = Exxsheet.cell (row=a, column=1)
c.value = elemnum|[b]

print ("Length of elemnum for Exx =", Len)
#this is to fill the intg points in the new excel file
intgpt = []



for i, j in zip(rowexx, roOwsxx) :
for rowOfCellObjects in Sheet['c' + str(i):'ec' + str(j)]:
for cellObj in rowOfCellObjects:
intgptl = cellObj.value
intgpt.append (intgptl)

Lenintgpt = len(intgpt)

for a, b in zip(range(l, Lenintgpt), range (0, Lenintgpt)):
d = Exxsheet.cell (row=a, column=2)
d.value = intgpt[b]

#this is to fill the Exx 1in the new excel file
Exx = []
for i, j in zip(rowexx, Trowsxx) :
for rowOfCellObjects in Sheet['D' + str(i):'D' + str(j)]:
for cellObj in rowOfCellObjects:
Exxl = cellObj.value
Exx.append (Exx1)
LenExx = len (Exx)
for a, b in zip(range(l, LenkExx), range (0, LenExx)):
e = Exxsheet.cell (row=a, column=3)

e.value = Exx[b]
#FOR SXX : FOR SXX : FOR SXX
LenrowexxS = len (rowexxS)
rowexx3S = [] # this is so the row of Exx except the

first row can be stored
for b in range(l, LenrowexxS):

rowexx3SS1l = rowexxS|[b]

rowexxSS.append (rowexxSS1)
rowexx3SS[:] = [a-1 for a in rowexxSS]
elemnumS = []

for i, j in zip(rowexxSS, rowsxxS) :
for rowOfCellObjects in Sheet['B' + str(j):'B' + str(i)]:
for cellObj in rowOfCellObjects:
elemnumS1l = cellObj.value
elemnumsS.append (elemnumS1)

LenE = len (elemnumS)

for a, b in zip(range(l, Len), range (0, LenE)):
c = Exxsheet.cell (row=a, column=6)
c.value = elemnumS [b]

print ("Length of elemnum for Sxx =", Len)
#this is to fill the integration points in the new excel file
intgptsS = []

for i, j in zip(rowexxSS, rowsxxS):
for rowOfCellObjects in Sheet['c' + str(j):'ec' + str(i)]:
for cellObj in rowOfCellObjects:



intgptSl = cellObj.value
intgptS.append (intgptS1)

LenintgptS = len(intgpts)

for a, b in zip(range(l, LenintgptS), range (0, LenintgptS)):
d = Exxsheet.cell (row=a, column=7)
d.value = intgptS[b]

#this is to fill the Exx 1in the new excel file
Sxx = []
for i, j in zip(rowexxSS, rowsxxS):
for rowOfCellObjects in Sheet['D' + str(j):'D' + str(i)]:
for cellObj in rowOfCellObjects:
Sxx1 = cellObj.value
Sxx.append (Sxx1)
LenSxx = len (Sxx)
for a, b in zip(range(l, LenSxx), range (0, LenSxx)):
e = Exxsheet.cell (row=a, column=8)
e.value = Sxx|[Db]

# For the Sxx of the LAST STEP there is a separate loop for
element number, integration points & Sxx
LenrowsxxS = len (rowsxxS)
rowsxx3SS = []
for x in range(l, LenrowsxxS) :
rOwsxxSS = rowsxxS|[x]

elemnumSL = []
for rowOfCellObjects in Sheet['B' + str (rowsxxSS):'B' +
str (Sheet.max row)]:
for cellObj in rowOfCellObjects:
elemnumSL1 = cellObj.value
elemnumSL.append (elemnumSL1)

Len = len(elemnumSL)

Q = LenE +1

R = Len + LenE

for a, b in zip(range(Q, R), range(0, Len)):
c = Exxsheet.cell (row=a, column=o6)
c.value = elemnumSL[Db]

print ("Length of elemnum for last Sxx =", Len)
#this is to fill the integration points in the new excel file
intgptSL = []

for rowOfCellObjects in Sheet['c' + str(rowsxxSS):'c' +
str (Sheet.max row)]:
for cellObj in rowOfCellObjects:
intgptSL1 = cellObj.value
intgptSL.append (intgptSLl)



LenintgptSL = len(intgptSL)

Q = LenintgptS +1

R = LenintgptSL + Lenintgpt$S

for a, b in zip(range(Q, R), range (0, LenintgptSL)):
d = Exxsheet.cell (row=a, column=7)
d.value = intgptSL[b]

#this is to fill the Exx in the new excel file
SxxL = []
for rowOfCellObjects in Sheet['D' + str(rowsxxSS):'D' +
str (Sheet.max row)]:
for cellObj in rowOfCellObjects:
SxxLl = cellObj.value
SxxL.append (SxxLl1)

LenSxxL = len (SxxL)

QO = LenSxx + 1

R = LenintgptSL + LenSxx

for a, b in zip(range(Q, R), range(0, LenSxxL)):
e = Exxsheet.cell (row=a, column=8)
e.value = Sxx[b]

Exxbook.save ("Exx & Sxx book.xlsx")






(10]
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Bibliography

Beatrice Belletti, Rita Esposito, and Joost Walraven. Shear capacity of normal,
lightweight, and high-strength concrete beams according to model code 2010. ii: Ex-
perimental results versus nonlinear finite element program results. Journal of Struc-
tural Engineering, 139(9):1600-1607, 2012.

Morten Engen, Max AN Hendriks, Jochen Koéhler, Jan Arve @verli, and Erik Aldstedt.
A quantification of the modelling uncertainty of non-linear finite element analyses of
large concrete structures. Structural Safety, 64:1-8, 2017.

P Evangeliou. Probabilistic nonlinear finite element analysis of reinforced concrete
beams without shear reinforcement. 2016.

FIB. Model code 2010, 2010.

PG Gambarova. Sulla trasmissione del taglio in elementi bidimensionali piani di ca
fessurati. Proc., Giornate AICAP, pages 141-156, 1983.

Max AN Hendriks, Ane de Boer, and Beatrice Belletti. Guidelines for nonlinear finite
element analysis of concrete structures. Rijkswaterstaat Technisch Document (RTD),
Rijkswaterstaat Centre for Infrastructure, RTD, 1016:2012, 2012.

YR Rashid. Ultimate strength analysis of prestressed concrete pressure vessels. Nu-
clear engineering and design, 7(4):334-344, 1968.

Jan Gerrit Rots. Computational modeling of concrete fracture. 1988.

Joost Cornelis Walraven. Aggregate interlock: a theoretical and experimental analysis.
1980.

Yuguang Yang and R.T. Koekoek. Measurement report on the transition between flexu-
ral and shear failure of rc beams without shear reinforcement. Technical report, 2017.

Yuguang Yang, Joop den Uijl, and Joost Walraven. Critical shear displacement the-
ory: on the way to extending the scope of shear design and assessment for members
without shear reinforcement. Structural Concrete, 322(10):891-921, 2016.

111



	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Scope
	Research Objectives
	Research Approach
	Report Outline

	Benchmark Experiments by Yang and Koekkoek yuguang
	Description of Benchmark Experiments 
	Experimental Program
	Overview of Experimental Results
	Description of Failure Modes in Benchmark Experiments

	Finite Element Modelling Strategies
	Definition of Finite Element Modelling Strategy
	Approach to Model Cracking in Concrete
	Approach to Model Bond in Reinforced Concrete
	Description of Generic Finite Element Model
	Geometry of the Model
	Material Properties
	Support Conditions
	Loading Conditions
	Mesh
	Analysis Procedures
	Summary of Finite Element Modelling Choices

	Overview of Three Groups of Modelling Strategies applied for this Thesis

	Analysis Results of the 1st Group of Modelling Strategies
	F-EB-1-D : Fixed Crack-Embedded-Mesh 1-Damage Based
	F-EB-1-A : Fixed Crack-Embedded-Mesh 1-Aggregate Size Based
	R-EB-1 : Rotating Crack-Embedded-Mesh 1
	R-BS-1 : Rotating Crack-Bond Slip-Mesh 1
	Discussion

	Analysis Results of the 2nd Group of Modelling Strategies
	F-EB-2-D : Fixed Crack-Embedded-Mesh 2-Damage Based
	R-BS-2 : Rotating Crack-Bond Slip-Mesh 2
	Discussion

	Analysis Results of the 3rd Group of Modelling Strategies
	F-EB-3-D : Fixed Crack-Embedded-Mesh 3-Damage Based
	R-BS-3 : Rotating Crack-Bond Slip-Mesh 3
	Discussion

	Correlation of Numerically Predicted Failure Load and Failure Mechanism
	Method of Calculation of Ductility Index
	Plastic dissipated energy in the reinforcement
	Plastic dissipated energy in the system

	Relation between Model Uncertainty and Ductility Index for F-EB-3-D Modelling Strategy
	Discussion

	Conclusions
	Recomendations
	Annexure
	Annex A
	Annex B
	Annex C
	Annex D
	Bibliography

