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Executive Summary
Using solar radiation pressure to propel a spacecraft is a concept that dates back to the early rocket
pioneers at the beginning of the 20th century. A solar sail provides propulsion by momentum exchange
with incoming photons of light, instead of by expelling reaction mass, as most spacecraft do. Because
it is not possible to refuel in space, the propulsive capabilities of current space missions are limited by
their stock of propellant. In contrast, solar sails are capable of providing thrust indefinitely, which allows
them to potentially reach velocities unattainable by conventional spacecraft. Furthermore, augmenting
the gravitational acceleration with constant propulsive acceleration allows for non-Keplerian trajectories
to be flown, which opens up new possibilities for mission design.

There has been renewed interest in solar sails in recent years. Small demonstrator missions have
been flown in Earth orbit, showing that it is possible to deploy large, thin membranes in space, and
that they can be used to raise the orbit altitude. Recent work has found novel solar-sail displaced
libration point orbits in the Sun-Earth and Earth-Moon systems. These orbits are useful for a number
of applications, including observation and communication capabilities for the polar regions of the Earth
andMoon, space weather monitoring, astronomical observation, and space physics research. Because
solar sails possess essentially unlimited propulsive endurance, they provide the possibility of increasing
the scientific value of a single spacecraft by visiting multiple different orbits over the course of a mission.
Transfers trajectories between these orbits may therefore be of use to future mission design, and have
not been investigated before.

This report presents time-optimal transfer trajectories between solar-sail displaced orbits around
the 𝐿ኻ and 𝐿ኼ points of the Sun-Earth and Earth-Moon systems. Such trajectories may be useful for
designing future missions that investigate the space environment in the vicinity of the Earth and Moon.
Furthermore, the methods described in this paper can be extended to find trajectories between a wider
range of solar-sail displaced orbits.

Initial guess trajectories are generated as two-segment transfers, where the sail attitude along each
segment is fixed. The discontinuity between the two segments is minimized by means of a genetic-
algorithm approach. These trajectories are then optimized by two methods: multiple shooting with
differential correction, and pseudo-spectral collocation. The results of these two methods are com-
pared.

In the Sun-Earth system, both methods yield good results, with transfer times as short as 91 days
for transfers between 𝐿ኻ and 𝐿ኼ orbits, and transfer times as short as 29 days for transfers between
orbits around the same libration point. Pseudo-spectral collocation generally yielded slightly faster
trajectories, with a smoother and more continuous control profile.

In the Earth-Moon system, pseudospectral collocation failed to yield practically feasible trajectories,
proving unable to handle the time-dependency introduced into the dynamics by the apparent rotation
of the Sun around the system. The differential corrector found trajectories with transfer times as short
as 15.6 days, but the associated control profiles feature large discontinuous jumps in the cone angle
of the sail, which are likely to be problematic in practice.

iii





Contents

Executive Summary iii

List of Symbols vii

List of Figures xi

List of Tables xi

1 Introduction 1
1.1 Solar Sailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Solar-sail applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Transfers between solar-sail libration point orbits. . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Report outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Journal Article 5

3 Conclusions and Recommendations 37
3.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Verification and validation 41
A.1 Three-body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Solar-sail acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3 Trajectory propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.4 PSOPT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.5 Trajectory validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

v





List of Symbols
Latin Symbols

𝐴 Matrix of state vector partial derivatives ( - )

𝐶 Matrix of partial derivatives of constraints w.r.t. state variables ( - )

𝐺 Endpoint cost function ( - )

𝐽 Cost function ( - )

𝐽ፆፀ Genetic algorithm cost function ( - )

𝐿 Integral cost function ( - )

𝑀 Matrix of partial derivatives of ΔV w.r.t. state variables ( - )

𝑃ፚ፫፫ Period of the arrival orbit ( - )

𝑃 ፞፩ Period of the departure orbit ( - )

𝑃፦ፚ፱ Largest period of either the departure or arrival orbit ( - )
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1
Introduction

This chapter contains an introduction to the thesis work that is presented in this report. Section 1.1
provides a conceptual background by providing a short overview of the history and applications of
solar sailing. Section 1.2 places the report in the context of prior work on transfers between solar-
sail displaced libration point orbits. The research objective and associated research questions are
presented in section 1.3. Finally, section 1.4 describes the structure of the remainder of this report.

1.1. Solar Sailing
Conventional spacecraft achieve propulsion by momentum exchange with some type of propellant,
which is expelled from the spacecraft at high velocity. Because there is currently no means to refuel in
space, all the propellant that will be needed throughout the course of a mission has to be brought from
Earth when the spacecraft is launched. Because the propellant itself adds additional mass that must be
accelerated, the amount of propellant that is needed increases exponentially with the required mission
Δ𝑉. This leads to a strict trade-off between propulsion and payload capabilities in mission design.

Figure 1.1: Artist conception of Lightsail-2 deployed in Earth orbit. Image credit: The Planetary Society.

Solar sails present an alternative to propellant-based propulsion techniques. A solar sail works
by reflecting photons of incoming Sunlight off a large reflective sail. The photons hitting the sail are

1



2 1. Introduction

massless, but they do possess momentum. This momentum is exchanged with the sail twice: first
when the sail temporarily absorbs the photon, and then again when the photon is re-emitted. In this
way, the spacecraft is accelerated by making use of the energy in the ambient solar radiation pressure,
analogous to the way a sailboat makes use of the terrestrial wind.

The potential of rocket propulsion through solar radiation pressure was recognized by early rocket
pioneers like Tsander (1924), who envisioned a future where interplanetary vessels carried passengers
through the solar system, propelled by enormous mirrors over a square kilometer in size collecting light
beamed to them by even larger mirrors on orbiting stations. The term solar sailingwas coined by Garwin
(1958), who proposed using a thin, aluminium-coated plastic sail to propel a spacecraft to velocities that
are unattainable by chemical propulsion. In subsequent years several papers explored the dynamics
of solar-sail enabled interplanetary and Earth-escape trajectories (Tsu, 1959; Sands, 1961; Fimple,
1962), and NASA seriously considered using a solar sail for a rendezvous mission with Halley’s Comet
(Friedman et al., 1978). Concerns regarding the technological readiness of solar sails forestalled any
actual mission however, and no solar sails were flown in this era (McInnes, 1999).

In recent years, there has been renewed interest in solar sailing. Through reductions in launch costs
and standardized spacecraft platforms, small demonstrator missions have become relatively affordable,
and the first solar sails have flown in space. The IKAROS mission has demonstrated propulsion and
attitude control capabilities while en route to Venus (Sawada et al., 2011), NanoSail-D2 and Lightsail-1
were deployed in Earth orbit (Johnson et al., 2011; Betts et al., 2017), and Lightsail-2, displayed in Fig.
1.1, has successfully demonstrated Earth-bound orbit raising using solar-sail propulsion (Davis, 2019).

1.1.1. Solar-sail applications
The ability of solar sails to provide continuous acceleration without consuming propellant makes them
suitable for a variety of mission applications. For interplanetary transfers, they are particularly com-
petitive for high-energy trajectories, such as those required to fly to Mercury. For such transfers, the
exponential nature of the rocket equation has required spacecraft with conventional propulsion to per-
form a number of gravity-assist maneuvers, which add complexity and lead to long flight times.

A unique application of solar sails is their ability to enable non-Keplerian orbits, by the addition of
continuous thrust to the gravitational acceleration. These orbits can provide scientific observation and
communication capabilities which can not otherwise be achieved. For example, near-future solar sails
allow for displaced libration point orbits which can provide continuous coverage of the polar regions of
the Earth (Ceriotti and McInnes, 2012) or Moon (Wawrzyniak and Howell, 2008), which is a capability
that cannot be provided by conventional polar orbits. Other proposals include using a solar sail to
access a displaced orbit Sunward of the Earth-Sun 𝐿ኻ point to provide early warning of potentially
damaging space weather events (West, 2004), and displacing geostationary orbits above or below the
equatorial plane, greatly increasing the available orbital slots (McInnes, 1999).

Finally, solar sails could enable long duration missions visiting multiple locations, as there are no
limits on their endurance, beyond eventual component failure. For example, a survey mission of near-
Earth asteroids could visit many such objects, even if they are in widely separated orbits. Such long-
duration capabilities would also be of use for missions that study the space environment, such as
studies of the solar wind, or the magnetic fields of the Sun and planets, by providing measurements
with increased spatial coverage.

1.2. Transfers between solar-sail libration point orbits
The focus of this thesis work is to find time-optimal transfer trajectories between solar-sail displaced
libration point orbits in the Sun-Earth and Earth-Moon systems. Such transfers are of interest because
they could greatly enhance the scientific value of a single spacecraft. For example, a spacecraft could
transfer from a displaced orbit optimized for coverage of one of the poles of the Earth or Moon to one
that is optimized to provide coverage of the other pole, or more fully measure the magnetic field of a
planetary body by observations around both the Sunward and outer co-linear libration points.

To date, the only example of a transfer between libration point orbits was conducted during NASA’s
ARTEMIS mission (Sweetser et al., 2011). The objective of this mission was to investigate the effect of
the Moon on the magnetic fields of the Earth and Sun by measuring the solar wind at various locations.
Twin spacecraft were inserted into quasi-periodic Lissajous orbits around the 𝐿ኻ and 𝐿ኼ points of the
Earth-Moon system. The trajectory of one of the two spacecraft, ARTEMIS-P1, is displayed in Fig.
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1.2. After a period of initial observations in an 𝐿ኼ orbit, ARTEMIS-P1 was transferred to an 𝐿ኻ orbit.
Conventional propulsion methods were used for both station-keeping and insertion into the libration
point orbits (Folta et al., 2011). Similar future missions would benefit from solar-sail propulsion, which
would allow an unlimited number of transfers between these orbits.

Figure 1.2: Trajectory design for ARTEMIS-P1, including ፋᎴ to ፋᎳ transfer. Image credit: Sweetser et al. (2011)

The majority of the work on solar-sail trajectories has been concerned with finding interplanetary
or Earth-escape trajectories. In comparison, transfers involving displaced libration point orbits have
received less attention. Several studies have analyzed the use of solar-sail propulsion to reach the
Sun-Earth triangular Lagrange points. Sood and Howell (2016) found transfer trajectories between a
low Earth parking orbit and the 𝐿኿ point, Farres et al. (2019) investigated transfers from the 𝐿ኻ and
𝐿ኼ points to the region of practical stability of the 𝐿ኾ and 𝐿኿ points, and Fernandez et al. (2018) found
trajectories to the 𝐿኿ point, departing from solar-sail displaced orbits around the 𝐿ኻ and 𝐿ኼ points.

Recent work has found extended families of solar-sail displaced periodic orbits around the 𝐿ኻ and
𝐿ኼ points of the Earth-Moon system (Heiligers et al., 2016). For the planar Lyapunov orbits around
these points, displayed in Fig. 1.3 for varying levels of sail performance, homoclinic and heteroclinic
connections were found by Heiligers (2018). These connections depart and arrive along the unstable
and stable manifolds of the orbits in question, and were not optimized for time of flight. Feasible tra-
jectories between high Earth orbit and displaced vertical Lyapunov orbits around the Earth-Moon 𝐿ኼ
points were found by Van Den Oever and Heiligers (2018).

Time-optimal transfers between orbits around the co-linear 𝐿ኻ and 𝐿ኼ points have not yet been
investigated in either the Sun-Earth or the Earth-Moon system.
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Figure 1.3: Displaced planar Lyapunov orbits around the Earth-Moon ፋᎳ and ፋᎴ points for different values of solar-sail
acceleration under different sail steering laws. Image credit: Heiligers et al. (2016).

1.3. Research objective
The objective of this thesis is to add to the literature by finding time-optimal transfer trajectories between
a number of solar-sail displaced libration point orbits around the 𝐿ኻ and 𝐿ኼ points of the Sun-Earth and
Earth-Moon systems. Two methods for finding these trajectories will be compared: direct pseudospec-
tral collocation andmultiple shooting with differential correction. Such trajectories have not been studied
before, and investigating the nature and control requirements of these trajectories will demonstrate the
feasibility of using near-future solar-sail technology to improve the scientific output of future missions
similar to ARTEMIS. Furthermore, the framework presented in this paper can be expanded to investi-
gate transfers between a wider range of solar-sail orbits.

To achieve this objective, the following research questions have been formulated:

I What are the time-optimal transfer trajectories between solar-sail displaced orbits around the co-
linear libration points of the the Sun-Earth and Earth-Moon systems?

II How do transfer trajectories in the Sun-Earth system differ from those in the Earth-Moon system?

III Which optimization method is most suitable to find time-optimal transfer trajectories between
solar-sail displaced libration point orbits in the Sun-Earth and Earth-Moon systems?

1.4. Report outline
The rest of this report is organized as follows. Chapter 2 presents the main body of the thesis, in the
form of a draft journal article. This article contains a complete representation of the work, and can be
read independently of the rest of the report. The conclusions are discussed in chapter 3, together with
a reflection on the research questions and recommendations for future work. Finally, a verification of
the methods and techniques that were used is described in the appendix.
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Time-Optimal Transfers Between Planar Solar-Sail Libration
Point Orbits

Roderick de Boer
Delft University of Technology

This paper presents time-optimal transfer trajectories between planar solar-sail displaced li-

bration point orbits around the !1 and !2 points of the Sun-Earth and Earth-Moon systems.

Initial guesses for these transfers are generated as two-segment trajectories, with a fixed sail

attitude along each segment. The position and velocity discontinuity between the segments

is minimized by means of a genetic-algorithm approach. The time of flight of these trajecto-

ries is then optimized by means of a direct pseudo-spectral collocation method as well as a

multiple shooting differential correction (MSDC) method. The results of these methods are

subsequently compared. Pseudo-spectral collocation was found to outperform MSDC in the

solar-sail augmented Sun-Earth system, obtaining trajectories with transfer times as short as

101 days. Differential correction generally yields trajectories with slightly longer flight times

than pseudo-spectral collocation, but converges more reliably. In the time-dependent solar-

sail augmented Earth-Moon system, pseudo-spectral collocation fails to provide reproducible

results. Transfer trajectories with flight times as short as 15.6 days are obtained in the Earth-

Moon system using MSDC, but these trajectories feature control discontinuities that are likely

to be problematic in practice.

I. Introduction
Using solar radiation pressure to propel a spacecraft is a concept that dates back to the early rocket pioneers at the

beginning of the 20th century. Some early concrete mission proposals were considered in the 1970s for missions to the

outer solar system, but ultimately no solar sail was flown in this era [1]. However, the start of the 21st century has seen a

renewed interest in solar sails. The IKAROS mission has demonstrated propulsion and attitude control capabilities while

en route to Venus [2], NanoSail-D2 and Lightsail-1 were deployed in Earth orbit [3, 4], and Lightsail-2 has successfully

demonstrated Earth-bound orbit raising using solar-sail propulsion [5].

Solar sails are able to provide acceleration without consuming propellant, which provides a unique advantage

for certain classes of missions. Spacecraft that are equipped with a solar sail are able to maintain their propulsion

capability essentially indefinitely. The acceleration provided by a solar sail allows a spacecraft to maintain non-Keplerian

orbits, which can potentially provide scientific observation or communication capabilities which cannot otherwise be



achieved [1]. Recent work has found novel solar-sail displaced periodic orbits in the Sun-Earth and Earth-Moon systems.

These orbits form extended families of libration point orbits, and Earth-centered orbits have also been found [6–8].

Spacecraft placed in these orbits can be used to provide continuous coverage of the polar regions of the Earth or Moon

for observation and communication, monitor for harmful space weather events, and perform space physics research.

By continuously accelerating, a spacecraft equipped with a solar sail is able to reach speeds far in excess of what

a conventional chemical or even ion engine can provide. In addition, solar-sail spacecraft potentially have a greater

capability to continually transfer between different orbits than spacecraft with conventional propulsion systems. For

certain applications this could greatly enhance the value of a mission, by allowing a single spacecraft to provide

observations from multiple vantage points over time, which would otherwise require a constellation of multiple

spacecraft.

To date, the only example of a transfer between libration point orbits was conducted in NASA’s ARTEMIS mission

[9]. The objective of this mission was to investigate the effect of the Moon on the magnetic fields of the Earth and Sun

by measuring the solar wind at various locations. Twin spacecraft were inserted into quasi-periodic Lissajous orbits

around the !1 and !2 points of the Earth-Moon system. After a period of initial observations, the !2 spacecraft was

transferred into an !1 orbit as well. Conventional propulsion methods were used for both station-keeping and insertion

into the libration point orbits [10]. A similar future mission could benefit from the unlimited propulsive endurance of a

solar sail.

Prior work on solar-sail trajectories has been mainly concerned with finding interplanetary trajectories or Earth-

escape trajectories. Transfers between displaced libration point orbits have received less attention. Several papers have

investigated transfers to the triangular libration points of the Sun-Earth system. Ref. [11] found transfer trajectories

between a low Earth parking orbit and the !5 point, Ref. [12] investigated transfers from the !1 and !2 points to the

region of practical stability of the !4 and !5 points, and Ref. [13] found trajectories to the !5 point, departing from

solar-sail displaced orbits around the !1 and !2 points. Transfers between displaced orbits around the co-linear libration

points have not yet been investigated.

Feasible trajectories between high Earth orbit and displaced vertical Lyapunov orbits around the Earth-Moon !2

points were found by Ref. [14]. Homoclinic and heteroclinic connections between planar displaced orbits around the

Earth-Moon !1 and !2 points were found by Ref. [15]. These connections depart and arrive along the unstable and

stable manifolds of the orbits in question, and were not optimized for time of flight.

This paper will add to the literature by finding time-optimal transfer trajectories between a number of solar-sail

displaced libration point orbits around the !1 and !2 points of the Sun-Earth and Earth-Moon systems. Two methods

for finding these trajectories will be compared: direct pseudospectral collocation, as implemented in the open-source

software package PSOPT [16], and multiple shooting with differential correction. Such trajectories have not been

studied before, and investigating the nature and control requirements of these trajectories will demonstrate the feasibility
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of using near-future solar-sail technology to improve the scientific output of future missions similar to ARTEMIS.

Furthermore, the framework presented in this paper can be expanded to investigate transfers between a wider range of

solar-sail orbits.

II. Dynamics
In the well-known circular restricted three-body problem (CR3BP) the motion of an object % is governed by the

gravitational attraction of two primary bodies with mass <1 and <2, respectively. The mass of the object is considered

to be negligible compared to that of the primary bodies, and is assumed to exert no gravitational influence. Furthermore,

the primary bodies are assumed to move in circular orbits about their common center of mass.

The reference frame used to describe the motion of an object % within the framework of the CR3BP is displayed in

Fig. 1. An orthogonal reference frame is defined with the centre of mass of the primary bodies as the origin. The G-axis

runs along the line connecting the primary bodies, with the positive direction pointing towards <2, the smaller of the

two primary bodies. The I-axis coincides with the angular momentum vector of the orbiting bodies, and the H-axis

completes the right-handed reference frame. The reference frame rotates about the I-axis with an angular velocity of

lll = lẑ. Within this reference frame, the motion of a spacecraft equipped with a solar sail is governed by [17] :

¥r + 2lll × ¤r +lll × (lll × r) = ∇* + aB , (1)

where the three terms on the left-hand side are the kinematic, Coriolis and centripetal accelerations respectively,* is

the gravitational potential of the primary bodies, and aB is the acceleration provided by the solar sail, given by:

a( =
[
0(,G 0(,H 0(,I

])
. (2)

Equation 1 is made dimensionless by introducing new units of time, mass, and length. As the unit for mass, the sum

of the primary body masses (<1 + <2) is used. The unit for length is defined as the distance between the primaries, and

the reciprocal of the angular velocity of the reference frame 1/l is used as the unit of time. If ` is then defined as the

fraction of the mass of the smaller primary body, <2, with respect to the total system mass, the G coordinates of the

primary bodies become −` and 1 − `, respectively. The value of ` is equal to 3.0035 × 10−6 for the Sun-Earth system,

and 0.01215 for the Earth-Moon system. The gravitational potential* is then given by:

* = −
(
1 − `
A1
+ `
A2

)
, (3)

where A1 and A2 are the distances between the spacecraft and the primary bodies, given by A1 =
√
(` + G)2 + H2 + I2 and

A2 =
√
(1 − ` − G)2 + H2 + I2, respectively. The transfer trajectories that are investigated in this work are between planar

3



Fig. 1 Definition of the CR3BP reference frame.

Lyapunov orbits in the GH plane, as presented in Section III. The out-of-plane motion can therefore be omitted, and Eq.

1 can be decomposed into scalar acceleration components [17]:

¥G = −1 − `
A3

1
(` + G) + `

A3
2
(1 − ` − G) + 2 ¤H + G + 0B,G ,

¥H = −1 − `
A3

1
H − `

A3
2
H − 2 ¤G + H + 0B,H ,

(4)

A. Solar-Sail Force Model

The solar-sail force model adopted in this paper assumes an idealized solar sail, which provides perfect specular

reflection of the incoming solar radiation. For such a sail, the resulting acceleration is directed along the solar-sail

normal vector n̂ = [=G , =H]) , as shown in the left panel of Fig. 2. More complicated sail force models account for

partly diffuse reflection, sail billowing, and degradation [1, 18, 19], but these effects are not considered in this work.

The magnitude of the solar-sail acceleration depends on the sail area, spacecraft mass, and the distance from the

Sun. Because both the solar radiation pressure and the gravitational attraction of the Sun are inversely proportional to

the square of the distance to the Sun, it is convenient to express the solar-sail acceleration as a fraction of the solar

gravitational acceleration through the solar-sail lightness number V. A feasible near-future value for the solar-sail

lightness number is 0.04 [20, 21], which corresponds to an acceleration of 0.239 <</B2 for a sail directly facing the
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Sun, at a distance of one AU. The dimensionless acceleration provided by the solar sail can then be expressed as [1]:

aB = V
1 − `
A12 (Ŝ· n̂)

2 n̂, (5)

where the Sun-line Ŝ is the unit vector pointing from the Sun to the solar sail.

In the Sun-Earth system, the Sun-line Ŝ is co-linear with r1. The orientation of the solar sail with respect to the

Sun-line can be expressed using the cone angle U, as shown in Fig. 2. The sail acceleration is then given by:

aB,(� = V
1 − `
A12 cos2U n̂, (6)

where the subscript (� is used throughout this paper to refer to cases in the Sun-Earth system.

In the Earth-Moon system, the position of the Sun is no longer fixed. From the perspective of the Earth-Moon

reference frame, the Sun rotates around the system in clockwise direction with an angular rate of Ω( , as depicted in the

right panel of Fig. 2. In non-dimensional units,Ω( is equal to 0.9252. Unlike the Sun-Earth system, the apparent motion

of the Sun makes the solar-sail augmented Earth-Moon system non-autonomous. Throughout this paper, the position of

the Sun is assumed to be along the negative G-axis at time C = 0. The inclination between the orbital planes of the Moon

around the Earth and the Earth around the Sun is assumed to be zero. The Sun-line vector over time is then given by [7]:

Ŝ�" =


cos(Ω(C)

− sin(Ω(C)

 , (7)

where the subscript �" is used throughout this paper to refer to cases in the Earth-Moon system.

Fig. 2 Solar sail force model: acceleration of reflecting sail (left) and definition of the Sun-line in the
Earth-Moon system (right).

In the Earth-Moon system, variations in solar radiation pressure due to changes in the distance between the sail and

the Sun are small. The solar radiation pressure is therefore assumed to be constant, and equal to the solar radiation
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pressure at a distance of one AU from the Sun. The first two terms on the right hand side of Eq. 5 can then be replaced

with a characteristic sail acceleration 00,�" . A solar-sail lightness number of V = 0.04 corresponds to an 00,�" value

of 0.09. The solar-sail acceleration in the Earth-Moon systems is then given by:

aB,�" = 00,�" (Ŝ�" · n̂)2 n̂. (8)

III. Optimal Control Problem
The aim of this work is to find time-optimal transfer trajectories between a number of solar-sail displaced libration point

orbits in the Sun-Earth and Earth-Moon systems by solving the associated optimal control problem. The objective of an

optimal control problem is to find a state history x(C) and a control history u(C) that minimizes a cost function �, which

in general terms is defined as [22]:

� = � (x0, x 5 , C0, C 5 , p) +
∫ C 5

C0

! (x(C), u(C), C)3C, (9)

where p is a vector of static optimization parameters, and the subscripts 0 and 5 refer to the initial and final states,

respectively.

The solution must satisfy the system dynamics:

¤x(C) = f(x(C), u(C), C), (10)

as well as a set of constraints:

c(x, u, C) ≤ 0. (11)

In this paper, the time of flight of the transfer trajectories will be optimized. The cost function in Eq. 9 thus reduces to:

� = C 5 − C0. (12)

The state vector x(C) consists of the spacecraft’s position and velocity in Cartesian components:

x =
[
G H ¤G ¤H

])
. (13)

The control consists of the solar-sail cone angle: u(C) = U(C). Because it is physically impossible for a solar sail to

generate a force with a component in the direction of the source of the radiation, the angle is constrained to a semicircle

facing away from the Sun: −90◦ ≤ U ≤ 90◦. The boundary conditions for the state vector are determined by the arrival
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and departure points along the libration point orbits. The starting condition x0 is obtained by propagating the departure

orbit from time )0 to a certain time along the orbit )∗
34?

, as illustrated in Fig. 3. The same is done for the end state x 5 ,

by propagating the arrival orbit from )0 to )∗0AA . In the Sun-Earth system, )∗
34?

and )∗0AA can be independently selected,

but this is not the case for the Earth-Moon system. This is because the position of the Sun is an implicit component of

the orbit state, and in the Earth-Moon system the position of the Sun is not constant. Therefore, a restriction is applied

to )∗
34?

and )∗0AA :

)∗0AA = )
∗
34? + )�, (14)

where )� is the time of flight of the transfer trajectory.

Fig. 3 State vector boundary conditions for the optimal control problem.

Bounds are set on the state variables to ensure that the trajectory remains close to the target orbits:

0.9 ≤ G ≤ 1.1

−0.1 ≤ H ≤ 0.1

}
(D= − �0ACℎ

0 ≤ G ≤ 2

−1 ≤ H ≤ 1

}
�0ACℎ − ">>=

(15)

The difference between the bounds of the Sun-Earth and Earth-Moon systems reflects the scale difference between

the size of the libration point orbits in those systems. In the Earth-Moon system, 0 ≤ C0 = )∗
34?
≤ %34? and

0 ≤ C 5 = )∗0AA ≤ 2%<0G , where %34? is the period of the departure orbit, and %<0G is the period of either the departure

or arrival orbit, whichever is larger. In the Sun-Earth system, the times along the departure and arrival orbits are

independent of each other, so C0 = 0 and 0 ≤ C 5 ≤ 2%<0G .

7



A. Orbit Sets

Several different families of periodic orbits exist around the libration points of the CR3BP. These families include planar

and vertical Lyapunov orbits, halo orbits, and quasi-periodic Lissajous orbits [23, 24]. These classical orbits can be

extended through the addition of a solar-sail acceleration. Families of solar-sail displaced halo and Lyapunov orbits

have been found in the Sun-Earth system [13] as well as the Earth-Moon system [7]. Starting from a classical orbit, a

periodic orbit for a sail with very low performance can be found by applying a differential correction scheme [7]. Orbits

for sails with greater performance are then found by using the differential corrector in a continuation process, where the

sail performance is gradually increased in each iteration [7]. The sail is controlled through a simple steering law. For

the Sun-Earth case, the work in [13] assumed that the sail normal vector is always aligned with the Sun-line: n̂ = Ŝ. In

the Earth-Moon case, Ref. [7] also considered an additional steering law where the sail is aligned with the Earth-Moon

line, with the sail normal vector given by:

n̂ = B86=(cos (Ω(C))
[
1 0

])
, (16)

where the B86=(cos (Ω(C) term represents the direction of the sail acceleration switching between the positive and

negative G-axis as the Sun moves around the system. From the substitution of Eqs. 7 and 16 into Eq. 8 it is clear that

the Sun-line steering law provides a constant acceleration magnitude with variable acceleration direction, whereas the

Earth-Moon steering law provides a constant acceleration direction with variable magnitude.

To demonstrate the capability of solar-sail propulsion to transfer between libration point orbits, this paper will design

transfer trajectories between four orbits in each system; two around !1 and two around !2. All orbits considered are

planar Lyapunov orbits. The characteristics of these orbits are presented in Table 1 for the Sun-Earth system, obtained

from Ref. [13], and in Table 2 for the Earth-Moon system, obtained from Ref. [7]. Note that the periods of the Sun-Earth

system orbits vary, whereas all Earth-Moon orbits have the same period. For a solar-sail orbit to be periodic in the

Earth-Moon system, the period has to be an integer fraction or multiple of the period of the apparent orbit of the Sun

around the system. The orbits considered in this work all have a period equal to that of the Sun. All orbits are displayed

in Fig. 4.

Table 1 Characteristics of selected periodic orbits in the Sun-Earth system.

Orbit VVV Period Steering Law Initial State

SE-L1A 0.04 5.2669 Sun-line [0.975130; 0.000012; 0.000008; 0.021762]
SE-L1B 0.04 6.0046 Sun-line [0.969703; -0.000017; -0.000009; 0.033174]
SE-L2A 0.04 2.1321 Sun-line [0.995271; 0.007389; -0.000212; 0.011473]
SE-L2B 0.04 2.3307 Sun-line [1.003331; 0.000064; 0.000432; -0.046171]
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Table 2 Characteristics of selected periodic orbits in the Earth-Moon system.

Orbit 00,�"00,�"00,�" Period Steering Law Initial State

EM-L1A 0.1 6.7912 Earth-Moon line [0.785751; 0; 0; 0.361937]
EM-L1B 0.1 6.7912 Sun-line [0.906177; 0; 0; -0.443959]
EM-L2A 0.1 6.7912 Earth-Moon line [1.168131; 0; 0; -0.169859]
EM-L2B 0.1 6.7912 Sun-line [1.174760 ; 0; 0; -0.244425]

Fig. 4 Solar-sail displaced Lyapunov orbits in the Sun-Earth system (left) and Earth-Moon system (right).

IV. Methodology
Two methods are used to solve the optimal control problem presented in section III. A direct pseudo-spectral collocation

method, as implemented by the open source software package PSOPT, is introduced in section IV.A. Secondly, section

IV.B describes a method employing multiple shooting with differential correction. Both methods require an initial guess

to start the optimization procedure. Initial guess trajectories to start the optimization process are obtained through a

genetic-algorithm approach, as described in section IV.C.

A. Pseudo-spectral Collocation

The first technique used to solve the optimal control problem is a direct pseudo-spectral collocation method, as

implemented by the software package PSOPT [16]. The trajectory is discretized into a grid of nodes, and the value of

all time-dependent variables are approximated between the nodes by Legendre polynomials. Differentiation of these

polynomials can be achieved my matrix multiplications only, and integrals are approximated using Gauss quadrature
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rules. Locally optimal solutions can then be found using non-linear programming (NLP) techniques, making use of

the IPOPT NLP solver [25]. A maximum tolerance of 1 × 10−5 was used for the NLP convergence tolerance, but

where possible stricter tolerances were set to obtain more accurate trajectories. The boundary conditions of the transfer

trajectory are obtained by interpolating from a table of departure and arrival orbit states. Static optimization parameters

representing the time along the orbit are used for this interpolation for transfers in the Sun-Earth system, as described

in section III, whereas the start and end times of the trajectories are used in the time-dependent Earth-Moon system.

Interpolating from a table of orbit states requires PSOPT to use numerical differentiation, which is less accurate and

slower than using automatic differentiation [26].

B. Differential Corrector

The differential correction method presented in this section largely follows the approach in Ref. [27], but accounting for

the solar-sail acceleration. The differential corrector starts by dividing the initial guess trajectory into = − 1 segments,

with = nodes. The generation of this initial guess trajectory will be discussed in section IV.C. The position and velocity

at each node are interpolated from the integrated initial guess trajectory based on the epoch of the node. Each node 8 has

an augmented state vector associated to it, defined as:

X8 =
[
G H ¤G ¤H U

])
. (17)

Along the trajectory segment between nodes 8 and 8 + 1, the cone angle U is assumed to be constant, and equal

to the cone angle value at node 8. The differential corrector transforms the infeasible initial guess into a continuous

trajectory with a two-phase method. The first phase, or level one, of the differential corrector employs sequential single

shooting for each trajectory segment. The objective of the level one differential corrector is to obtain a trajectory that is

continuous in time and position, by introducing discrete Δ+s at the nodes. In the second phase, or level two, the epochs,

positions, and cone angles of each node are adjusted simultaneously to minimize these Δ+s.

Level one differential corrector

The effect of small changes to the state at time C0 to the state at a later time C can be expressed by the state transition

matrix (STM) :

Φ(C, C0) =
XX(C)
XX(C0)

. (18)

The STM is obtained by propagating it along with the state vector from an initial condition of Φ(C0, C0) = � using the

relation:
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¤Φ(C, C0) = �(C)Φ(C, C0), (19)

where the matrix � is defined as:

�(C) = X
¤X(C)

XX(C) . (20)

Changes in the state vector at time C as a result of small perturbations to the state vector at time C0 are then given by:

XXC = Φ(C, C0)ΔX0. (21)

The state vector in Eq. 17 can be decomposed into a position vector R = [G, H]) , a velocity vector V = [ ¤G, ¤H]) , and the

cone angle U. Equation 21 can be expanded in terms of these sub-components [27]:



XRC

XVC

XUC


=



Φ'' (C, C0) Φ'+ (C, C0) Φ'U (C, C0)

Φ+ ' (C, C0) Φ++ (C, C0) Φ+ U (C, C0)

ΦU' (C, C0) ΦU+ (C, C0) ΦUU (C, C0)





ΔR0

ΔV0

ΔU0


. (22)

Starting with the first node, the trajectory segment is propagated from the initial conditions at node 8 (R8 ,V8 , C8)

to C8+1, the time of the next node. The position error XR8+1 is defined as the difference between the position at the

end of the propagated segment and the position at the next node, R8+1. Keeping the position and cone angle at node 8

unchanged, a Δ+ is introduced at node 8 in order to minimize the position error, given by:

ΔV8 = [Φ'+ (C8+1, C8)]−1XR8+1. (23)

This Δ+ is then added to the state vector at node 8, which is then again propagated to C8+1. Because Eq. 23 is based

on linearized equations of motion, this process is repeated iteratively until the position error at C8+1 falls below a set

tolerance. A tolerance of 1× 10−8 was used as the convergence criterion for the level one corrector. The same process is

applied to each trajectory segment in succession, resulting in a vector of ΔVs:

ΔV =

[
ΔV1 ΔV2 . . . ΔV=

])
(24)

Level two differential corrector

The level one differential corrector provides a trajectory that is continuous in time and position, with discrete Δ+s at the

node points. Small changes in the Δ+ at node 8 can be approximated as a function of deviations in the position, time,
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and cone angle of the node itself and of the two adjacent nodes:

XΔV8 =
[
i8,8−1 i8,8 i8,8+1

] [
XR8−1 XC8−1 XU8−1 XR8 XC8 XU8 XR8+1 XC8+1 XU8+1

])
, (25)

where i8, 9 is a matrix of the partial derivatives of the Δ+ at node 8 with respect to the position, time, and cone angle of

node 9 :

i8, 9 =

[
XΔV8
XR 9

XΔV8
C 9

XΔV8
XU 9

]
. (26)

The expression in Eq. 25 can be extended to the whole system of = nodes:



XΔV2

...

XΔV=−1


= "

[
XR1 XC1 XU1 . . . XR= XC= XU=

])
, (27)

with " defined as:

" =



i2,1 i2,2 i2,3 0 0 . . . 0

0 i3,2 i3,3 i3,4 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . i=−1,=−2 i=−1,=−1 i=−1,=


. (28)

Because each node is assumed to depend only on its two immediate neighbours, the matrix " is sparsely populated

along the diagonal. The linear system displayed in Eq. 27 is undetermined, because there are = − 2 equations and 3=

unknowns, and can therefore not be directly solved. A guess for the changes in node positions, times and cone angles

that reduce the ΔVs at the nodes is obtained by [27]:
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

XR1

XC1

XU1

...

XR=

XC=

XU=



= ") ("") )−1



XΔV2

...

XΔV=−1


. (29)

After the node update step in Eq. 29 the trajectory is no longer continuous. The level one and level two correctors are

therefore applied iteratively, until the Δ+s produced by the level one corrector fall below a set tolerance. In this work,

the differential corrector is considered to have converged on a solution if the individual position errors at the nodes fall

below 1× 10−8, as mentioned in the section deriving the level one corrector, and the norm of the vector ΔV produced by

the level one corrector falls below 1 × 10−6.

The partial derivatives in Eq. 26 can be constructed by setting up linearized relations between the respective variables,

using the STMs obtained by the level one corrector. To illustrate this process, consider a trajectory composed of two

segments and three nodes, as depicted in Fig. 5. The Δ+ at node two is defined as:

ΔV2 = V+2 − V
−
2 , (30)

where V−2 is the velocity at the end of the first trajectory segment, and V+2 is the velocity at the start of the second

trajectory segment. There are no discontinuities in epoch, and the level one corrector eliminated the discontinuities in

position, so C+2 = C
−
2 = C2 and R+2 = R−2 = R2.

The STM relations in Eq. 22 can be further expanded by also including changes in the positions and velocities due to

small changes in the epochs of the nodes. For the trajectory segment between nodes one and two, this yields [27]:



XR−2 − V
−
2 XC
−
2

XV−2 − a−2 XC
−
2

XU−2


=



Φ'' (C2, C1) Φ'+ (C2, C1) Φ'U (C2, C1)

Φ+ ' (C2, C1) Φ++ (C2, C1) Φ+ U (C2, C1)

ΦU' (C2, C1) ΦU+ (C2, C1) ΦUU (C2, C1)





ΔR+1 − V
+
1XC
+
1

ΔV+1 − a+1XC
+
1

ΔU+1


. (31)
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Fig. 5 Positions, epochs and velocities of nodes and segments in the level two corrector.

Additionally, the inverse relation can be used, which is given by:



XR+1 − V
+
1XC
+
1

XV+1 − a+1XC
+
1

XU+1


=



Φ'' (C1, C2) Φ'+ (C1, C2) Φ'U (C1, C2)

Φ+ ' (C1, C2) Φ++ (C1, C2) Φ+ U (C1, C2)

ΦU' (C1, C2) ΦU+ (C1, C2) ΦUU (C1, C2)





XR−2 − V
−
2 XC
−
2

XV−2 − a−2 XC
−
2

XU−2


. (32)

The STM Φ(C2, C1) is obtained from the level one corrector, and Φ(C1, C2) can be obtained by Φ(C1, C2) = Φ(C2, C1)−1.

Note that only the complete STM can be obtained in this way, as this does not hold for the individual sub-components.

Similar equations can be set up for the relation between nodes two and three. Partial derivatives of ΔV2 with respect to

the other variables can then be constructed. As an example, from Eqs. 30 and 32 it is clear that:

XΔV2
XR1

= −
XV−2
XR+1

= Φ'+ (C1, C2)−1. (33)

Similarly:

XΔV2
XC1

= −
XV−2
XC+1

= Φ'+ (C1, C2)−1V+1 . (34)

Partial derivatives for the other variables are constructed in a similar way. This procedure is carried out for all internal

nodes to populate the matrix " .

Differential corrector constraints

Constraints can be placed on the level two corrector by modifying Eq. 27 by appending the vector ΔV with the constraint

values and augmenting the " matrix [27]:
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

XΔV2

...

XΔV=−1

Xc


=


"

�


[
XR1 XC1 XU1 . . . XR= XC= XU=

])
, (35)

where c is a vector of constraints, and � is a matrix of the partial derivatives of the individual constraints with respect to

the node positions, epochs, and cone angles. This matrix � is analogous to the " matrix for the original ΔV vector, as

specified by Eq. 28, and is constructed in a similar way. Each constraint acts on a single node, but multiple constraints

may act on the same node. Furthermore, as was the case with ΔV, only directly adjacent node states are assumed to

have influence on the constraint value.

Partial derivatives of the constraints are constructed in a similar way to the partial derivatives of the ΔV vector, but

the constraints may also be a function of velocity. This is accounted for by making use of the chain rule. As an example,

the partial derivative of a constraint with respect to the position of the node upon which the constraint acts is given by

[27]:

X28,:

XR8
=
X28,:

XR8
+
X28,:

XV−8
XV−8
XR8
+
X28,:

XV+8

XV+8
XR8

, (36)

where 28,: refers to the :-th constraint acting on node 8. For the problem considered in this paper, four types of constraint

are applied. These constraints are introduced hereafter.

Endpoint constraints

Position and velocity constraints are applied to the first and last nodes:

X1 − X3 ()∗34?) = 0

X= − X0 ()∗0AA ) = 0
(37)

where X3 (C) and X0 (C) are Fourier-series approximations of the arrival and departure orbit states as a function of time.

Approximating the target orbits with Fourier series allows for the straightforward computation of the partial derivatives

of the boundary conditions with respect to time. For transfers in the Earth-Moon system, )∗
34?

= C1 and )∗0AA = C=. In

the case of transfers in the Sun-Earth system, the required departure and arrival times can be independently chosen

along the target orbits, as described in Section III. Therefore, )∗
34?

and )∗0AA are included as independent optimization

variables. For Sun-Earth system transfers these variables are appended to the vector of position, epoch, and cone angle

deviations on the right-hand side of Eq. 35.
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Epoch constraints

The epoch of each node is adjusted by the differential corrector independently of the epochs of the other nodes. Left

unconstrained, this can result in trajectory segments going backwards in time. Furthermore, the convergence of the

algorithm is improved when nodes remain equally spaced in time [27]. Because the differential corrector can only apply

equality constraints, these two concerns are addressed simultaneously by formulating a combined constraint for each

node except the last:

(C8+1 − C8) −
C= − C1
= − 1

= 0, 8 = 1, 2, ..., = − 1. (38)

This constraint ensures that the difference in epochs between two adjacent nodes is equal to the total flight time divided

by the number of segments, providing equally spaced, sequential nodes.

Cone angle constraints

As mentioned in section III, the solar sail cannot generate an acceleration with a component in the direction of the

Sun. The cone angle should therefore be constrained to the interval −90◦ ≤ U ≤ 90◦. The differential corrector cannot

naturally enforce this inequality constraint. The bounds on the cone angle are therefore enforced by resetting the cone an-

gle to 90◦ or−90◦ after the node update in Eq. 29 is applied if the cone angle at a nodewould otherwise exceed these values.

Continuation constraint

The differential corrector scheme presented in this section produces feasible trajectories by driving the constraint values

to zero, but cannot optimize the trajectory. The time of flight of a converged trajectory can be reduced however, by

applying the differential corrector in a continuation scheme. After a feasible trajectory has been obtained, the differential

corrector is applied again with an additional constraint, given by:

C= − C1 − )∗ − X)∗ = 0, (39)

where )∗ is the time of flight of the previously converged trajectory, and X)∗ is a small time increment. The converged

trajectory is used as the initial guess for the new iteration. This process is repeated until the differential corrector no

longer converges.

Finally, it should be noted that this method is based on linearizing the dynamics of a highly non-linear system. The

node update produced by Eq. 29 can yield changes in node position, time, or cone angle that are far beyond the range

where this linearized approximation is accurate, resulting in a rapidly diverging trajectory. A limit of 0.02 is therefore

set on the maximum change in the node position ‖R‖ that is allowed in a single iteration. If this limit is exceeded by any

16



node, a scaling factor is applied to the entire node update vector.

C. Initial Guess Trajectories

An initial guess is required to start the optimization process. A diagram of the initial guess trajectory generation is

displayed in Fig. 6. An initial guess for the transfer is obtained by dividing the transfer trajectory in a departure and

arrival phase. The state vector at the start of the departure phase is obtained by interpolating the orbit state at a certain

departure time, )∗
34?

, along the departure orbit. The trajectory is then propagated for a certain length of time, )�34?

with a fixed cone angle U34?. The same is done for the arrival trajectory, but this trajectory is propagated backwards

in time from a targeted state along the arrival orbit at )∗0AA for a length of time equal to )�0AA , with fixed cone angle

U0AA . The mismatch in position and velocity between the end of the departure segment and the beginning of the arrival

segment is then minimized by means of a genetic algorithm, as implemented by the ga.m routine in MATLAB®. For the

Sun-Earth system, the genetic algorithm decision vector is defined as:

g(� =
[
)∗
34?

)∗0AA )�34? )�0AA U34? U0AA

]
, (40)

where the subscripts 34? and 0AA refer to the departure and arrival trajectory segment, respectively. The bounds on the

parameters are defined as:



0

0

0

0

−90◦

−90◦



≤



)∗
34?

)∗0AA

)�34?

)�0AA

U34?

U0AA



≤



%34?

%0AA

%<0G

%<0G

90◦

90◦



, (41)

where %34? is the period of the departure orbit, %0AA is de period of the arrival orbit, and %<0G is the larger of those

two periods.

In the Sun-Earth system, the time along the departure and arrival orbits and the flight times of the departure and

arrival segments of the transfer trajectory can be independently selected. In the non-autonomous Earth-Moon system

however, the position of the Sun, which is dependent on time, must be consistent throughout the entire trajectory. The

departure and arrival segments are therefore propagated from their time-dependent starting conditions at )∗
34?

and )∗0AA

to an intermediate epoch )∗2>=, again with constant cone angles U34? and U0AA . The genetic algorithm decision vector

then becomes:

17



g�" =

[
)∗
34?

)∗2>= )∗0AA U34? U0AA

]
, (42)

with bounds defined as:



0

0

0

−90◦

−90◦



≤



)∗
34?

)∗2>=

)∗0AA

U34?

U0AA



≤



%34?

2%<0G

2%<0G

90◦

90◦



. (43)

A constraint is applied to the parameters to ensure that )∗
34?

< )∗2>= < )
∗
0AA .

Fig. 6 Generation of initial guess trajectories in the Sun-Earth system using a genetic algorithm.

The cost function of the genetic algorithm is given by:

��� = ΔA + FEΔE, (44)

where ΔA and ΔE are the position and velocity discontinuities, respectively, and FE is a weight factor for the velocity

discontinuity. There is no a priori guidance on the preferred ratio to trade off position and velocity errors. A velocity

weight factor of 0.3 was found to produce initial guess trajectories with small overall errors. For both the Sun-Earth and

Earth-Moon cases the total flight time of the initial guess trajectories was constrained to a maximum of twice the period

of the departure or arrival orbit, whichever is larger.

For each of the transfers the genetic algorithm is run five times with different RNG seeds, with a population size of

200. The best performing trajectory out of these five seeds is then interpolated along a grid with Legendre-Gauss-Lobatto
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(LGL) node spacing for use in PSOPT, or with equally spaced nodes when used an an initial guess for the differential

corrector. The properties of the resulting initial guess trajectories are displayed in Table 3 for the Sun-Earth system

transfers and in Table 4 for the Earth-Moon system transfers. In the Sun-Earth system, the genetic algorithm is able to

generate initial guess trajectories with small position and velocity discontinuities between the departure and arrival

segments. Position errors vary from 91 < to 876 :<, but are generally below 100 :<. Velocity errors also vary, and

show an average of 1.1 </B. Initial guess trajectories in the Earth-Moon system are significantly less feasible. With the

exception of transfer 16, initial guesses feature either a large position error or a large velocity error, or both. Position

errors can be as large as 6946 :<, and velocity errors can be as large as 80 </B. These errors are an order of magnitude

larger than those for the Sun-Earth system in dimensional units, but due to scale difference between the Sun-Earth and

Earth-Moon systems they can be up to four orders of magnitude larger in non-dimensional units.

Table 3 Genetic algorithm initial guess results for the Sun-Earth system.

# Departure Arrival TOF ΔA ΔE U0AA U34?

1 SE-L1A SE-L2A 163 days 1.394 × 10−7 20.87 km 8.669 × 10−6 0.259 m/s 8.81◦ 31.46◦

2 SE-L1A SE-L1B 133 days 5.852 × 10−6 876.1 km 5.970 × 10−6 0.178 m/s 11.63◦ −24.43◦

3 SE-L1A SE-L2B 105 days 5.746 × 10−7 86.02 km 2.057 × 10−6 0.061 m/s 23.44◦ 33.16◦

4 SE-L1B SE-L1A 109 days 7.293 × 10−7 109.2 km 4.272 × 10−5 1.277 m/s 33.02◦ −18.61◦

5 SE-L1B SE-L2A 156 days 5.545 × 10−9 0.830 km 4.484 × 10−5 1.329 m/s 28.65◦ 57.37◦

6 SE-L1B SE-L2B 151 days 9.858 × 10−7 147.6 km 7.439 × 10−6 0.222 m/s 23.04◦ −68.90◦

7 SE-L2A SE-L1A 153 days 9.936 × 10−8 14.87 km 1.331 × 10−4 3.976 m/s −44.37◦ −11.81◦

8 SE-L2A SE-L1B 179 days 4.475 × 10−8 6.700 km 5.194 × 10−6 0.155 m/s −42.14◦ −27.15◦

9 SE-L2A SE-L2B 79 days 6.120 × 10−10 0.091 km 1.338 × 10−7 0.004 m/s −11.72◦ −1.44◦

10 SE-L2B SE-L1A 107 days 3.393 × 10−7 50.79 km 3.186 × 10−7 0.010 m/s −44.06◦ −16.98◦

11 SE-L2B SE-L1B 194 days 8.637 × 10−8 12.93 km 1.728 × 10−4 5.165 m/s −14.50◦ −28.02◦

12 SE-L2B SE-L2A 85 days 4.558 × 10−7 68.23 km 3.005 × 10−5 0.898 m/s −38.83◦ 12.28◦

Table 4 Genetic algorithm initial guess results for the Earth-Moon system.

# Departure Arrival TOF ΔA ΔE U34? U0AA

13 EM-L1A EM-L2A 12.6 days 1.807 × 10−2 6946 km 1.878 × 10−5 0.019 m/s −21.50◦ −35.56◦

14 EM-L1A EM-L2B 19.2 days 8.711 × 10−9 0.003 km 6.602 × 10−2 67.16 m/s −4.95◦ −36.70◦

15 EM-L1B EM-L2A 19.1 days 9.635 × 10−7 0.370 km 7.682 × 10−2 78.15 m/s 32.19◦ 1.58◦

16 EM-L1B EM-L2B 16.6 days 7.191 × 10−7 0.276 km 1.757 × 10−3 1.787 m/s −31.00◦ 57.23◦

17 EM-L2A EM-L1A 14.8 days 3.273 × 10−7 0.126 km 7.447 × 10−2 75.76 m/s −28.93◦ −32.68◦

18 EM-L2A EM-L1B 17.3 days 6.318 × 10−3 2429 km 7.874 × 10−2 80.10 m/s 1.84◦ −45.74◦

19 EM-L2B EM-L1A 18.6 days 7.377 × 10−3 2836 km 2.964 × 10−7 0.000 m/s 39.00◦ 6.50◦

20 EM-L2B EM-L1B 17.4 days 6.618 × 10−3 2544 km 7.032 × 10−5 0.072 m/s −36.55◦ 38.21◦
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V. Results
This section presents the results of the trajectory optimization. Transfers in the Sun-Earth system are discussed in

section V.A, and transfers in the Earth-Moon system are presented in section V.B.

Fig. 7 Transfer times of initial guess and optimized trajectories for the Sun-Earth system.

A. Sun-Earth System Trajectories

Transfer times for the Sun-Earth trajectories are listed in Table 5, and displayed in Fig. 7. Transfer times are reported for

the initial (infeasible) guess, the first iteration of the differential corrector (DC), the result of the differential corrector

used in continuation on the time of flight, and PSOPT. For most cases, both the differential corrector (after continuation)

and PSOPT provide trajectories with substantially shorter flight times compared to the initial guess. PSOPT did not

converge on a solution for transfers 6, 8 and 10, whereas the differential corrector converged in all cases. For those cases

where PSOPT did converge, it always obtained a shorter time of flight than the differential corrector. In most cases, the

difference in flight time was small, but for transfers 9 and 12 the flight time of the PSOPT trajectory was roughly a third

of that of the differential corrector. Three transfer cases will be described in detail in this section: transfer 1, where the

differential corrector and PSOPT arrive at similar results, transfer 2, where PSOPT obtains a slightly shorter flight time

with a distinctly different trajectory, and transfer 9, where PSOPT significantly outperforms the differential corrector.

The trajectories and control profiles for transfer 1, between SE-L1A and SE-L2A, are displayed in Fig. 8. The differential

corrector and PSOPT converge on slightly different solutions, both of the same general shape as the initial guess. The

PSOPT trajectory both departs and arrives at earlier points along the orbits, and with a flight time of 134 days is slightly

faster than the differential corrector trajectory which has a flight time of 139 days. Note that, in the control profiles in

Fig. 8 (right), there is a subtle difference in how the initial guess is represented for the differential corrector and PSOPT.

Because the differential corrector works with piece-wise constant controls, the cone angle instantaneously jumps from

the departure segment value to the arrival segment value. In contrast, PSOPT interpolates the control between the nodes
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Table 5 Transfer times of the initial guess and optimized trajectories in the Sun-Earth system.

Transfer Departure Arrival Initial Guess DC Iteration 1 DC Continuation PSOPT

1 SE-L1A SE-L2A 163 days 163 days 139 days 134 days
2 SE-L1A SE-L1B 133 days 133 days 102 days 91 days
3 SE-L1A SE-L2B 105 days 102 days 102 days 101 days
4 SE-L1B SE-L1A 109 days 108 days 93 days 93 days
5 SE-L1B SE-L2A 156 days 156 days 144 days 143 days
6 SE-L1B SE-L2B 151 days 151 days 130 days -
7 SE-L2A SE-L1A 153 days 154 days 136 days 134 days
8 SE-L2A SE-L1B 179 days 180 days 145 days -
9 SE-L2A SE-L2B 79 days 79 days 78 days 29 days
10 SE-L2B SE-L1A 107 days 108 days 102 days 101 days
11 SE-L2B SE-L1B 194 days 194 days 137 days -
12 SE-L2B SE-L2A 85 days 97 days 90 days 30 days

with Legendre polynomials, which is represented with a linear segment between the arrival and departure values. This

convention is also adopted in subsequent figures.

The trajectories and control profiles for transfer 2, between SE-L1A and SE-L1B, are depicted in Fig. 9 and

provide an example of a case where PSOPT and the differential corrector converge on distinctly different solutions. The

differential corrector obtained a trajectory with a flight time of 102 days, which is 31 days shorter than the initial guess

trajectory obtained by the genetic algorithm. PSOPT has converged on a solution that is substantially different from the

initial guess, with a flight time of 91 days. This is an illustration of the limitations of using the differential corrector in

a continuation process. The method is based on small incremental changes to the initial guess trajectory. Therefore,

in order to find a given solution, a continuous path must exist between the initial guess and the solution where each

incremental step towards the solution is slightly more optimal than the last. If a better solution exists beyond a region of

less optimal trajectories, the differential corrector will not find it. While PSOPT and other optimization techniques are

certainly not immune to the problem of converging to local minima, the differential corrector is especially susceptible to

it.

Finally, the differential corrector is substantially outperformed by PSOPT for transfers 9 and 12, which are transfers

between the same orbit pair, but in opposite direction. Transfer 9 is displayed in Fig. 10. The differential corrector has

obtained a trajectory and control profile that is almost unchanged from the initial guess. The final transfer time obtained

by the continuation process is 78 days, corresponding to a gain of only one day over the initial guess. The trajectory

found by PSOPT is significantly faster, with a transfer time of only 29 days. This is another case where the differential

corrector is unable to break out of a local minimum. However, unlike the results for transfer 2, here the local minimum

trajectory has a significantly longer transfer time than the trajectory that was found with PSOPT.

Summarizing the results of the Sun-Earth system trajectories, it is clear that PSOPT outperforms the differential corrector
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Fig. 8 Optimized trajectory (left) and control over time (right) for transfer 1 (SE-L1A - SE-L2A) using the
differential corrector (top) and PSOPT (bottom).

for every trajectory where it converges, in certain cases by a large margin. Furthermore, PSOPT provides a smooth

continuous control profile, which is more desirable from a practical perspective, compared to the stepped controls of the

differential corrector.
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Fig. 9 Optimized trajectory (left) and control over time (right) for transfer 2 (SE-L1A - SE-L1B) using the
differential corrector (top) and PSOPT (bottom).

B. Earth-Moon System Trajectories

In contrast to the results for the Sun-Earth system, where PSOPT clearly outperformed differential correction, PSOPT

did not yield usable results for the Earth-Moon system trajectories. While PSOPT did converge on a solution for

most cases, the control profile associated with these trajectories is not considered feasible for practical purposes. As

an example, Fig. 11 displays the control output of the differential corrector and that of PSOPT for transfer 19 (see

Table 4), using three different node spacings within PSOPT. The control history provided by PSOPT displays abrupt
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Fig. 10 Optimized trajectory (left) and control over time (right) for transfer 9 (SE-L2A - SE-L2B) using the
differential corrector (top) and PSOPT (bottom).

discontinuities, with the cone angle jumping to plus or minus 90 degrees for one or two nodes. Furthermore, many

sections display a sawtooth-like pattern around a mean trend line rather than a smooth continuous curve. When

constraints are imposed on the cone angle or the control derivative, the method fails to converge at all. These results

are typical for all the Earth-Moon system transfers considered in this work. As can be seen in Fig. 11, these effects

are reduced when the number of nodes is increased, but are not resolved completely. The fact that the control profile

improves so dramatically when the number of nodes is increased indicates that PSOPT is not able to properly handle
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the time-dependent system dynamics, and in particular the time-dependent nature of the controls, due to the apparent

motion of the Sun around the system. When the number of nodes is increased, the change in the direction of the

Sun-line over a single trajectory segment is reduced, and the resulting control profile is smoother and more continuous.

However, further increasing the number of nodes beyond 100 does not always yield further improvement, and becomes

increasingly computationally demanding. When the number of nodes is increased beyond 200, more system memory is

required than the 32-bit implementation of PSOPT can address, which imposes a limit on the quality of the obtained results.

Fig. 11 Control output for transfer 19 (EM-L2B - EM-L1A) using the differential corrector (top left) and
PSOPT with varying node spacing.
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Again, while PSOPT did converge for the Earth-Moon trajectories considered here, the results are considered not

practically feasible. To illustrate this, trajectories can be reintegrated outside of PSOPT from the starting condition, with

the cone angle at any time interpolated from the PSOPT control output at the nodes using cubic polynomials. Figure 12

compares such reintegrated trajectories for transfers 7 (in the Sun-Earth system) and 19 (in the Earth-Moon system).

As can be seen in Fig. 12, the Earth-Moon trajectory eventually diverges from the PSOPT output and terminates far

from the target orbit, whereas the reintegrated trajectory matches the PSOPT output for the Sun-Earth system transfer.

This can be explained by the fact that PSOPT provides a control output at the nodes, but approximates the controls

between the nodes with a series of Legendre polynomials. When the control output is a smooth continuous curve, a

simple cubic interpolation allows the trajectory to be accurately reconstructed. However, for the erratic control output

obtained for the Earth-Moon system transfers, the complete specification of Legendre polynomials with their respective

weighting factors would have to be provided in order to reconstruct the trajectory outside of PSOPT. This greatly limits

the usefulness of the PSOPT results, and consequently only the results of the differential corrector are reported for the

Earth-Moon system transfers.

Fig. 12 Reintegrated trajectory compared to PSOPT output for transfers 7 (in the Sun-Earth system, left)
and 19 (in the Earth-Moon system, right).

Transfer times for the Earth-Moon system trajectories are listed in Table 6 and displayed in Fig. 13. As mentioned,

PSOPT did not yield easily reproducible results for the Earth-Moon system transfers. The differential corrector also

failed to converge for transfers 13 and 17, between the EM-L1A and EM-L2A orbits. For the remaining six cases, the

final transfer times obtained from the differential corrector (after continuation) are shorter than the initial guess in only
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two cases. This can be explained as a consequence of the relative infeasibility of the initial guesses produced by the

genetic algorithm, which in most cases exhibited large discontinuities in either position or velocity. As a result, the dif-

ferential corrector initially (i.e., before continuation) converged to trajectorieswith longer flight times than the initial guess.

Fig. 13 Transfer times of initial guess and optimized trajectories for the Earth-Moon system.

Fig. 14 Optimized trajectory (left) and control over time (right) for the EM-L1A - EM-L2B (14) transfer
using the differential corrector.

Optimized trajectories and control histories are given in Fig. 14 for transefer 14 (EM-L1A - EM-L2B) and in Fig. 15

for transfer 16 (EM-L1B - EM-L2B). Both trajectories closely resemble their initial guess. The differential corrector
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obtained transfer times of 19.4 and 15.6 days, compared to initial guess transfer times of 19.2 and 16.6 days, respectively.

Obtaining feasible trajectories resulted in control histories that display a sinusoidal pattern, which is typical for all

transfers in the Earth-Moon system, and could also be seen in the control output of PSOPT displayed in Fig. 11. Another

feature of the control histories is the presence of large discontinuous changes in the sail attitude of 140 degrees or more,

which were not seen in the Sun-Earth system transfers. The need for these changes is another effect of the time-varying

direction of the incoming solar radiation, and are likely to be problematic in practice.

Table 6 Transfer times of the initial guess and optimized trajectories in the Earth-Moon system.

Transfer Departure Arrival Initial Guess DC Iteration 1 DC Continuation PSOPT

13 EM-L1A EM-L2A 12.6 days - - -
14 EM-L1A EM-L2B 19.2 days 22.3 days 19.4 days -
15 EM-L1B EM-L2A 19.1 days 26.9 days 20.5 days -
16 EM-L1B EM-L2B 16.6 days 16.6 days 15.6 days -
17 EM-L2A EM-L1A 14.8 days - - -
18 EM-L2A EM-L1B 17.3 days 21.1 days 20.4 days -
19 EM-L2B EM-L1A 18.6 days 20.7 days 19.4 days -
20 EM-L2B EM-L1B 17.4 days 17.2 days 16.2 days -

Fig. 15 Optimized trajectory (left) and control over time (right) for the EM-L1B - EM-L2B (16) transfer
using the differential corrector.
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VI. Conclusion
This paper has found time-optimal transfer trajectories between solar-sail displaced libration point orbits around the !1

and !2 points of the Sun-Earth and Earth-Moon systems. Initial guess trajectories based on a two-phase transfer, with

piece-wise constant sail attitudes and state errors between the two phases, were obtained using a genetic-algorithm

approach. These trajectories were then made feasible and their time of flight was optimized using multiple shooting

with differential correction and pseudospectral collocation as implemented by the open-source software package PSOPT.

The performance of these two methods was subsequently compared.

For transfers in the Sun-Earth system, PSOPT generally outperforms differential correction, yielding trajectories

with flight times as short as 29 days for transfers between !2-point orbits, and as short as 101 days for transfers between

!1 and !2-point orbits. Multiple shooting with differential correction obtained transfer trajectories with transfer times

that were only slightly longer than those obtained by PSOPT for most cases, with transfer times between !1 and !2-point

orbits as short as 102 days. However, in certain transfer cases, the PSOPT trajectory is shorter by as much as 60 days,

because the differential corrector is more susceptible to converging to a local minimum. The differential corrector

always converged on a solution, whereas PSOPT failed to converge in three out of twelve cases.

For transfers in the Earth-Moon system, PSOPT proved unable to properly handle the time-dependent system

dynamics, providing trajectories with control histories that were not reproducible outside PSOPT. The differential

corrector converged for six out of eight cases, yielding trajectories with transfer times as short as 15.6 days. From the

results obtained in the Sun-Earth system it seems reasonable to expect shorter transfer trajectories can be obtained by a

more powerful optimization method, given the limitations of the differential corrector. Because these trajectories are

already relatively short however, a more fruitful area for future research might be finding a method to limit the large

discontinuities in cone angle that are present in all transfers in the Earth-Moon system, as these are likely to present

considerable practical difficulties in an actual mission.
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3
Conclusions and Recommendations

This chapter contains the conclusions that can be drawn from the thesis work which was presented in
chapter 2. Section 3.1 presents answers to the research questions, and section 3.2 provides recom-
mendations for future work.

3.1. Conclusions
The objective of this thesis was to add to the literature by finding time-optimal transfer trajectories
between a number of solar-sail displaced libration point orbits around the 𝐿ኻ and 𝐿ኼ points of the Sun-
Earth and Earth-Moon systems. Two methods for finding these trajectories were compared: direct
pseudospectral collocation, as implemented in the open-source software package PSOPT (Becerra,
2010), and multiple shooting with differential correction. This section provides a summary of the main
findings by answering the research questions that were introduced in section 1.2.

I. What are the time-optimal transfer trajectories between solar-sail displaced orbits around the co-
linear libration points of the the Sun-Earth and Earth-Moon systems?

Time-optimal transfer trajectories were found in the Sun-Earth and Earth-Moon systems. In the Sun-
Earth system, trajectories were obtained with transfer times as short as 91 days for transfers between
𝐿ኻ and 𝐿ኼ orbits, and as short as 29 days for transfers between orbits around the same libration point.
These transfer trajectories are up to 64% faster than the two-segment initial guess trajectories, which
were obtained with simple fixed controls in each segment. In the Earth-Moon system, trajectories were
found with transfer times as short as 15.6 days for transfers between 𝐿ኻ and 𝐿ኼ orbits. In contrast to the
results in the Sun-Earth system, the improvement in flight time compared to the initial guess is modest.
In the best case, the reduction in flight time was limited to 7%.

II. How do transfer trajectories in the Sun-Earth system differ from those in the Earth-Moon system?

Initial guess trajectories in the Earth-Moon system were significantly less feasible than those found
for the Sun-Earth system. In non-dimensional units, the magnitude of the position and velocity dis-
continuities between the departure and arrival trajectory segments was up to four orders of magnitude
larger in the Earth-Moon system than in the Sun-Earth system. These large discontinuities in the initial
guess trajectories proved to be challenging for the differential corrector, which initially converged to
transfer trajectories with significantly longer flight times than the initial guess. Consequently, the flight
times of the trajectories after continuation on the time of flight show only modest improvement over the
initial guess.

Control profiles for transfers in the Sun-Earth system are smooth and continuous, with maximum ab-
solute cone angles of roughly 70∘. The control profiles for transfers in the Earth-Moon system show
a sinusoidal pattern in the cone angle over time, along with large discontinuous jumps of up to 140
degrees. These features are a consequence of the time-dependency of the system, introduced by the
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apparent rotation of the Sun. The large discontinuous jumps are likely to present significant difficulties
in practice.

III. Which optimization method is most suitable to find time-optimal transfer trajectories between
solar-sail displaced libration point orbits in the Sun-Earth and Earth-Moon systems?

For transfers in the Sun-Earth system, PSOPT generally outperforms the differential correction method.
For all transfers where PSOPT converges on a solution, the obtained transfer time is shorter than the
one obtained by the differential corrector. The difference in transfer times between the two methods
is usually small, but in some cases where the differential corrector gets stuck in a local minimum, the
PSOPT trajectory can be faster by as much as a factor of three. While PSOPT failed to converge on a
solution in three cases, the differential corrector always converged. In total, out of the twelve transfers
that were investigated, PSOPT produced slightly faster trajectories in seven cases, significantly faster
trajectories in two cases, and failed to converge in three cases. In addition to providing faster trajec-
tories, the control profiles produced by PSOPT are continuous, while those provided by the differential
corrector are step-wise constant. Because it produces faster trajectories with more desirable control
profiles, it can be concluded that PSOPT is the more suitable method for finding transfers in the Sun-
Earth system.

For transfers in the Earth-Moon system, PSOPT failed to provide feasible trajectories by either not
converging on a solution, or by converging on solutions with erratic control profiles which could not be
reproduced outside of PSOPT. The differential corrector did converge on a solution in six out of eight
cases, but the trajectories that were found feature discontinuities in the control profile, which may be
difficult to achieve in practice. Because PSOPT failed to provide any feasible trajectories, the differ-
ential corrector is the most suitable method for transfers in the Earth-Moon system, but further work is
required to obtain trajectories with practically feasible controls.

3.2. Recommendations
This work has presented time-optimal transfer trajectories between planar Lyapunov orbits around the
𝐿ኻ and 𝐿ኼ points of the Sun-Earth and Earth-Moon systems. This section provides some suggestions
for future research.

Employ dynamic node spacing
In order to minimize the Runge phenomenon, Legendre-Gauss-Lobatto (LGL) node spacing or a simi-
lar scheme is required by PSOPT. The transfers between 𝐿ኻ and 𝐿ኼ orbits studied in this work usually
feature a flyby of the smaller primary body. The system dynamics are highly non-linear at close ap-
proaches. These approaches by necessity occur roughly halfway in the trajectory, which is where the
LGL node spacing is extremely sparse. Increasing the total number of nodes becomes computationally
infeasible beyond 150 nodes because of memory limitations. A collocation method which makes use
of dynamic node spacing, and can thus offer more densely spaced nodes in these highly non-linear
regions, may produce better results.

Employ a multi-phase approach
Another solution to the node spacing problem discussed in the previous paragraph may be to employ
a multi-phase approach, where the trajectory is divided into a departure, flyby, and arrival phase. By
properly choosing the relative lengths of these phases, PSOPT may be able to more properly account
for the highly non-linear dynamics while retaining the LGL node spacing. The convergence of the differ-
ential corrector may also benefit from amulti-phase approach, by generating step updates for the highly
non-linear flyby phase separately from the comparatively more stable departure and arrival phases.

Use a 64-bit implementation of PSOPT
Results in the Earth-Moon system show that the trajectories PSOPT provides become more feasible
when the number of nodes is increased, as the increased node density mitigates the problem intro-
duced by the time-dependency of the system. The number of nodes that can be used is strictly limited
by the amount of system memory that can be addressed by the 32-bit implementation of PSOPT that
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was used in this paper. By making use of a 64-bit compiler it will be possible to increase the number
of nodes, although at the cost of greatly increasing the computation time.

Use interpolated controls in the differential corrector
The differential corrector as specified in this work uses step-wise continuous controls between the
nodes. This can lead to large discontinuities in the cone angle from one node to the next, which may
not be feasible in practice. These discontinuities in cone angle can be eliminated by using interpolated
controls between the nodes. Linear interpolation would be relatively straightforward to implement, by
making the cone angle a function of the cone angle at adjacent nodes and time and adding the appro-
priate partial derivatives to the state transition matrices. The resulting control profile may still require
rapid changes in the cone angle at the nodes. More elaborate interpolation schemes can provide a
smoother control profile, but this would require modifying the method to allow for constraints that act
on more than the immediately adjacent nodes.

Investigate the time-dependency of the Earth-Moon system
Both PSOPT and the differential corrector obtained better results in the Sun-Earth system. There
are two main differences between the Sun-Earth and the Earth-Moon systems. The first is the time-
dependency introduced by the non-stationary Sun in the Earth-Moon system. The second is a scale
difference caused by the difference in the mass ratio between the Sun and the Earth and the Earth and
the Moon. The latter effect may be responsible for part of the difference in performance between the
two systems, as the ratio between solar-sail acceleration and gravitational acceleration by the smaller
primary body during close approaches differs substantially. To disentangle these effects, transfers
could be investigated for a fictitious autonomous system with the Sun as the larger primary body, but
with the mass ratio of the Earth-Moon system, or with several intermediary mass ratios.

Investigate three-dimensional orbits
The departure and arrival orbits used for the transfers studied in this work were planar Lyapunov orbits.
Because the Sun was assumed to be in the same plane as the orbits, the resulting trajectories are two-
dimensional. Three-dimensional displaced libration point orbits have also been found (Heiligers et al.,
2016). The methods used in this work can be readily adapted to find transfer trajectories between
these orbits as well. By adding a sail clock angle (McInnes, 1999) as an additional control variable,
three-dimensional trajectories can be obtained using the samemethodology that was used in this paper.

Use a more realistic solar-sail force model
The orbits and transfer trajectories studied in this work used a solar-sail force model based on perfect
reflection. For such a model, the sail acceleration is directed along the sail normal vector. A higher
fidelity model which incorporates diffuse reflection and absorption would add an acceleration compo-
nent that is tangential to the sail normal vector (Forward, 1989), and provide more realistic results.

Use higher fidelity system dynamics
The work in this paper made use of the circular restricted three-body model, which is an idealization
of the true system dynamics. Properly accounting for the elliptical orbits of the Earth and Moon, and in
the case of the Earth-Moon system, the inclination between the Earth-Moon orbital plane and the plane
of the ecliptic, will provide more realistic trajectories.





A
Verification and validation

This appendix contains the verification and validation of the primary methods that have been used to
obtain the results in this work.

A.1. Three-body dynamics
The circular restricted three-body dynamics can be verified by examining the accelerations produced
by the model for an object placed at one of the classic libration points with zero velocity. If correctly
implemented, these accelerations should be zero. An orthogonal 𝑥𝑦𝑧 reference frame was defined in
Section II of Chapter 2. Within this reference frame, the 𝑥-coordinates of the three co-linear libration
points can be found by solving (Wakker, 2015):

𝑥 − (1 − 𝜇) 𝜇 + 𝑥|𝜇 + 𝑥|ኽ + 𝜇
1 − 𝜇 − 𝑥
|1 − 𝜇 − 𝑥|ኽ = 0. (A.1)

The three real roots of Eq. A.1 can be found by the fzero.m routine in MATLAB®. These 𝑥-
coordinates are then used to construct state vectors for stationary objects in the libration points, by
setting all other variables to zero. Table A.1 displays these state vectors, as well as the resulting accel-
erations produced by the three-body dynamics model. As can be seen in Table A.1, these accelerations
are negligible, and the correct implementation of the three-body system is verified.

Table A.1: Earth-Moon system model accelerations at the three co-linear libration points.

Libration point State vector 𝑥̈ 𝑦̈
𝐿ኻ [ 0.836918; 0; 0; 0] 2.220 × 10ዅኻዀ 0
𝐿ኼ [ 1.155680; 0; 0; 0] −6.661 × 10ዅኻዀ 0
𝐿ኽ [ -1.005062; 0; 0; 0] −4.441 × 10ዅኻዀ 0

A.2. Solar-sail acceleration
For a perfectly reflecting sail, the solar-sail acceleration is directed along the sail normal vector. The
magnitude of the sail acceleration depends on the cone angle between the sail normal vector and
the Sun-line. As the cone angle increases, the acceleration provided by the sail decreases due to a
decrease in the projected surface area of the sail facing the Sun. The normalized sail acceleration
obtained from the solar-sail force model is displayed in the left panel of Fig. A.1. The normalized sail
acceleration given by McInnes (1999) is displayed in the right panel for comparison. As can be seen
in Fig A.1, the acceleration from the sail force model matches the acceleration found in the reference.
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Figure A.1: Normalized sail acceleration as a function of cone angle obtained from force model (left) and McInnes (1999) (right).

A.3. Trajectory propagation
Trajectories are propagated by means of the ode45.m routine in MATLAB®. The arrival and departure
orbits for the transfer trajectories studied in this work provide a convenient way to verify the accuracy
of the numerical integration, as well as the three-body dynamics and solar-sail force model. After
propagating a solar-sail enabled orbit for one period, the final orbit state should be identical to the
starting state.

The difference between the starting orbit state and the orbit state after one period of integration is
displayed in Table A.2 for two orbits in the Earth-Moon system, and one orbit in the Sun-Earth system.
As can be seen in Table A.2, the difference in state variables is negligible for all three orbits. Because
these orbits are very unstable, small errors in the three-body dynamics, solar-sail force model, or nu-
merical integration scheme would have produced substantial deviations in the end states of the orbits.
Those three factors can therefore be considered to be verified.

Table A.2: Difference in state variables between starting state and state after one period.

Orbit Steering Law 𝑥 𝑦 𝑥̇ 𝑦̇
EM-L1A Earth-Moon line 4.155 × 10ዅኻኺ 2.208 × 10ዅኻኺ 8.420 × 10ዅኻኺ 4.577 × 10ዅኻኺ
EM-L1B Sun line 2.312 × 10ዅኻኺ 5.700 × 10ዅኻኺ 1.936 × 10ዅዃ 8.035 × 10ዅኻኺ
SE-L1A Sun line 1.703 × 10ዅኻኽ 4.446 × 10ዅኻኽ 6.857 × 10ዅኻኽ 1.381 × 10ዅኻኽ

A.4. PSOPT Implementation
To verify the correct implementation of the optimization problem in PSOPT, an optimized trajectory is
sought for a homoclinic connection between two points along the SE-L1B orbit. The departure and
arrival points along the orbit are fixed. A deliberately poor initial guess is generated by propagating the
trajectory from these points with a fixed cone angle of 40 degrees. An integral cost function consisting
of the square of the cone angle is used instead of the time of flight. The optimal solution to this problem
is known in advance: the trajectory should follow the original orbit, with a constant cone angle of zero.

The optimized trajectory and cone angle over time for the initial guess and the PSOPT output are
displayed in Fig. A.2. As can be seen, PSOPT has found the expected solution, despite the initial
guess being highly infeasible.
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Figure A.2: Trajectory (left) and control output over time (right) for a homoclinic connection for the SE-L1B orbit using PSOPT
top optimize for minimum control effort.

A.5. Trajectory validation
To validate the optimized trajectories that are provided by PSOPT and the differential corrector, they
can be reintegrated in MATLAB®. For PSOPT trajectories, the cone angle between the nodes is ap-
proximated by a quadratic polynomial. For trajectories obtained from the differential corrector, the same
step-wise constant controls as used in the differential correction method are applied. The result of the
reintegrated PSOPT trajectory for transfer 3 is displayed in Fig. A.3. The reintegrated trajectory is
identical to the PSOPT output.

Figure A.3: Comparison of reintegrated trajectory and PSOPT output for transfer 3 (SE-L1A - SE-L2B).

Table A.3 displays the deviations in the state variables for transfer 3 at the end of the reintegrated
trajectories, compared to the output of PSOPT and the differential corrector. As can be seen, the
deviations are small, and on the order of the 1×10ዅዀ convergence tolerances that were set for PSOPT
and the level two differential corrector. The deviations slightly exceed the tolerance. For PSOPT, this
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can be explained by the error introduced by interpolating the controls between the nodes by quadratic
polynomials for the reintegration, whereas PSOPT uses Legendre polynomials. In the case of the
differential corrector, the deviations are caused by small residual Δ𝑉𝑉𝑉s at the nodes. These Δ𝑉𝑉𝑉s are
individually below the tolerance, but the errors they introduce compound over the whole trajectory.

Table A.3: Deviation of state variables at the end of the reintegrated trajectories for transfer 3.

Method Δ𝑥 Δ𝑦 Δ𝑥̇ Δ𝑦̇
PSOPT −2.5946 × 10ዅዀ 3.6863 × 10ዅዀ −2.1939 × 10ዅ዁ −2.3674 × 10ዅ዁
Differential corrector 1.1323 × 10ዅዀ −2.1326 × 10ዅ዁ 3.411 × 10ዅዀ 5.960 × 10ዅ዁
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