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4. What other features, besides the geometric properties of the building footprints, can be used
in the machine learning algorithms to estimate building heights? And does including these
features, even if they are incomplete, improve the accuracy of the estimations?

5.  What methods can be used for scaling the machine learning techniques to the whole of the
USA?
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Supervised Regression

LOD1 roof reference points
[Biljecki et al., 2014]
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Contributions

1. Scale to a much larger extent than previously done, and deal with
the diversity in built-up areas

2. Investigate the possibility of only using geometric features for
inferring the building heights, and try to determine an optimal
subset for this purpose

3. Consider the different roof reference points and their influence on
the height prediction results
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Unique IDs Random Forest
Change CRS Multiple Linear
Feature Extraction Support Vector
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Mean Absolute Percentage Error (MAPE)
Root Mean Square Error (RMSE)
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Geometric Features

1.

8.

9.

Feature

Area

Compactness

Number of neighbours
Complexity

Number of adjacent buildings
Length

Width
Slimness

Number of vertices

Description

Footprint area
Normalised Perimeter Index

Buildings within 100m
The irregularity of the footprint

Buildings within Tm
Longest edge oriented MBR*

Shortest edge oriented MBR*
Side ratio

Number of vertices in footprint

Computation

2NVTA
P

Centroids
P
Va
Buffers

Length
Width

* Minimum Bounding Rectangle
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Detect CBDs

Atlanta, Georgia

No filter mean >= 11m mean >= 11m AND max >= 100m




Random Forest Regression

Test Input
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Multiple Linear Regression
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Simple linear regression — 1D example




Support Vector Regression

g-boundary and slack variables e-insensitive loss function
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Suburban
& Rural
Data

Own models:
USBuildingFootprints
and LiDAR data
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CBD & Suburban Data
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Contribution Geometric Features

Area Area
Compactness ~ -0.027 Compactness -0.2
#Neighbours ~ -0.36 -0.038 #Neighbours ~ -0.21 0.004
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Methodology Runtime

Training time* [s]

Regressor  Suburban / Rural model ~ CBD model — Combined model

RFR 13.96 2.62 17.03
MLR 0.12 0.01 0.50
SVR 0.70 0.04 2.23

* Average of 10 runs




Methodology Runtime

Training time* [s]

Regressor  Suburban / Rural model ~ CBD model — Combined model

RFR 13.96 2.62 17.03
MLR 0.12 0.01 0.50
SVR 0.70 0.04 2.23

* Average of 10 runs

Predicting time [mm:ss]

Regressor  Split model ~ Combined model

RFR 03:38.03 05:56.08
MLR 00:09.73 00:23.13
SVR 00:10.55 00:26.91

~125 million building footprints




Model Accuracy

Seattle Portland Astoria
Regressor CBD  Combined  Suburban /Rural ~ Combined  Suburban /Rural ~ Combined
MAE [m]  40.54 39.74 1.42 1.42 2.29 2.29
RER MAPE [%]  224.93 216.87 2477 24.92 28.90 28.91
RMSE [m]  48.58 47 91 2.36 2.36 2.99 2.98
RMSPE [%] 361.21 351.15 32.64 32.76 36.00 35.95
MAE [m] ~ 37.09 32.84 1.67 1.77 2.28 2.30
MLR MAPE [%]  218.27 117.57 27.27 29.30 29.30 29.91
RMSE [m] 4473 49.66 2.61 2.68 2.93 2.94
RMSPE [%] — 341.09 186.50 32.59 36.72 35.04 36.32
MAE [m]  36.83 34.88 1.65 2.51
SVR MAPE [%]  216.12 78.68 26.79 22.64 29.08 30.13
RMSE [m]  44.44 55.25 2.58 2.39 2.92 3.21
RMSPE [%]  337.03 107.51 31.91 26.64 34.58 34.21




Prediction model with
area morphology as
additional feature

Model Accuracy — Seattle CBD

Reference Model Random Forest Regression Multiple Linear Regression Support Vector Regression
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Model Accuracy — Seattle CBD

Combined prediction model CBD prediction model
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Prediction model
trained on rural and
suburban data

Model Accuracy — Portland

Portland, Oregon
Reference Model

Random Forest Regression
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Model Accuracy — Portland

Combined prediction model Suburban / Rural prediction model
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Model

Accuracy —
Astoria

Prediction model
trained on rural and
suburban data

Astoria, Oregon
Reference Model
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Model Accuracy — Portland
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Support Vector Regression
Model

Comparison

OCM

Prediction model
trained on rural and i
suburban data 0 750 1500 m

Error Measure OCM SVR Open City Model
MAE [m] 2.16 2.09
MAPE [%] 27.29 27.89
RMSE [m] 276 2.64

RMSPE [%] 31.56 33.34

Building height [m]

3 B W 2




Non-Geometric Features Denver
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Non-Geometric Features Denver

Suburbs CBDs Combined
Regressor Base  Enriched  Base  Enriched  Base  Enriched
MAE [m] |1.35 096] 2084 1729  [1.44 1.03 |

MAPE [%]  22.05 15.68 152.40 114.66 22.67 16.02

RER RMSE [m] 271 211 3068 2712 355 293
RMSPE [%]  33.30 25.08 267.17  208.19 36.97 28.52

MAE [m] 159 1.47 121.33 16.87| 1.72 1.60
MLR MAPE [%] 26.81 25.16 158.71 109.09 27.99 26.66
RMSE [m] 293 2.58 31.55 28.57 3.80 3.37
RMSPE [%]  35.05 33.73 24651 200.89  40.21 37.75

MAE [m] 155 1.46 26.10 25.80 1.68 1.59
MAPE [%]  23.94 23.79 87.49 89.80 25.12 24.93

SVR RMSE [m] 298 264 4145 3983 384 341
RMSPE [%]  31.21 31.07 88.19 95.24 36.17 34.84




Additional Results

Performance of the suburban and rural prediction model on Astoria, Oregon
#Adjacent buildings
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Conclusions




1.

“Can the 125 million USA building footprints be assigned a height without
making use of height data, and what accuracy can be achieved?”

YES

CBDs problematic (MAE 32.84m)
Suburban / Rural areas more promising (MAE 1.41m)




1.1

“What methods can be used to assess the accuracy of the building height
estimations¢ And when are the estimations deemed accurate enough?”

MAE, MAPE, RMSE, RMSPE
CityGML specification: 5m suggestion




1.2

“What relations are present between the different geometric properties of
the building footprints and the building height¢ And which subset is
deemed ‘optimal’ for predicting building heightsé”

CBDs: clear (linear) relations (length, width)
Suburban/ Rural: less clear (#adjacent buildings)
Combined: less clear (area morphology)

Not one subset best for all test areas and prediction models




1.3

“Are the geometric properties of the building footprints as training
features sufficient for meeting the accuracy requirements2”

PARTIALLY

CBDs: no
Suburbs / Rural: yes




1.4

“What other features, ..., can be used in the machine learning algorithms
to estimate building heights¢ And does including these features, even if
they are incomplete, improve the accuracy of the estimations2”

YES

Census & cadastral information
HAmenities & raster heights




1.5

“What methods can be used for scaling the machine learning techniques to
the whole of the USA2”

Parallelisation of processes

Detect area morphologies:
differently trained prediction models
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Discussion

1. Methods partially reliable on building height data

2. Reference models introduce uncertainty
i.  Both during training and testing phase

Only small area for non-geometric features
Prediction model without area morphology

Comparison Open City Model

S

Area morphology detection
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Suggestions for Future Work

1. Improve CBD detection process [suggested at P4]
2. Additional area morphologies [suggested at P4]

3. Extra non-geometric features, e.qg.
i. US-wide census and cadastral data
ii. Shadows in satellite imagery

4, Test more feature subsets

5. Higher diversity in training data
i.  Mainly for CBDs

6. Extra testing areas
i. Experiment with more granular footprints




Thank you for your attention. Are there any
questions?



https://www.flaticon.com/free-icon/help_1660114%3Fterm=questions&page=1&position=9
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