
A COMPUTATIONAL APPROACH
FOR RENEWABLE ARCHITECTURE

MSc. Architecture - Building Technology Thesis Report

IDIL GUMRUK
4740297

i.gumruk@student.tudelft.nl

Delft University of Technology
Faculty of Architecture and Built Environment
Building Technology

A COMPUTATIONAL APPROACH
FOR RENEWABLE ARCHITECTURE

A Generative Design Approach
Using Bioplastics and Earth

Master of Science (MSc) Thesis

Author

Idil Gumruk
4740297

i.gumruk@student.tudelft.nl
idilgumruk@gmail.com

Mentors

Dr. Ir. Pirouz Nourian
Architectural Engineering + Technology

Technical Design and Informatics

Dr. Ir. Fred Veer
Architectural Engineering + Technology

Structural Design & Mechanics

Sina Mostafavi
Architectural Engineering + Technology

PREFACE

This report covers the Idil Gumruk’s graduation
project as part of the Sustainable Graduation
Studio graduation studio, with focus on Design
Informatics and Structural Mechanics, for Mas-
ter of Science in Building Technology at the Delft
University of Technology.

I would like to thank all three of my mentors Pir-
ouz Nourian, Fred Veer and Sina Mostafavi for
their time and help during this process.

I would like to thank my roommate Sara Ham-
mond for helping me with my model, proof
reading my report and feeding me towards my
deadlines.

I would like to thank Amey Thakur for helping
me with my model and for always offering me
inspiring but also comical philosophical conver-
sations on life, environment, movies, books and
music, with Soujanya Prasad and Pierre Kauter
to get through this long and difficult year.

I would like to thank Claire Weil for always being
a phone call away whenever I need her.

I would like to thank the entire class of 2019 Build-
ing Technology class for the amazing two years.

Finally, I would like to thank my mom Zeynep, my
dad Ercument, my sister Elif, my aunt Sermin and
my uncle Ali for doing so much from so far. With-
out them, I wouldn’t be the person I am today.

ABSTRACT

Architecture has been using materials that are
extremely durable, disregarding the lifespan and
purpose of the structure. While this approach to
materiality provides a high standard for structural
stability and environmental control, it also caus-
es a large volume of waste at the end of the
life span of the building. While the material that’s
been used mostly cannot be recycled, reused
or biodegrade; it also forced the next structure
to extract new resources from the environment.
Introducing environment friendly materials and
utilizing these materials efficiently in the design
process is critical as the consumption of natural
resources is becoming dangerously high.

Computation has been used for optimization of
form and shape for decades. This research at-
tempts to understand environmentally friendly
materials, mud and bioplastics, and develop a
computational design method that will imple-
ment these new materials behaviour and opti-
mizing their use of them in the design process

Keywords: earthy architecture, bioplastics, bio-
degradable, topology, optimization, structural
analysis

TABLE OF CONTENTS

I.	 RESEARCH

	 I.	 INTRODUCTION

	 II.	 PROBLEM STATEMENT

	 III.	 RESEARCH OBJECTIVE

	 IV.	 RESEARCH QUESTIONS

	 V.	 CASE STUDY

	 VI.	 SCOPE AND LIMITATIONS

	 VII.	 RELEVANCE

II.	 LITERATURE REVIEW

	 I.	 EARTH

	 II.	 BIOPLASTICS

	 III.	 OPTIMIZATION

III.	 MATERIAL STUDY

	 I.	 FABRICATION

	 II.	 RESULTS

	 III.	 DISCUSSION

	 IV.	 CONCLUSION

IV.	 DESIGN PROCESS

	 I.	 CONCEPTUAL DESIGN

	 II. 	 UNIT / JOINT DESIGN

	 III. 	 COMPUTATIONAL DESIGN

V.	 CONCLUSION

	 I.	 INTRODUCTION

	 II.	 CONCLUSION

	 III.	 REFLECTION

VI.	 TERMINOLOGY

VII.	 REFERENCES

VIII. 	 LIST OF FIGURES

VIII.	 APPENDIX A: STRESS - STRAIN GRAPHS

IX.	 APPENDIX B: FIRST APPROACH CODE

X. 	 APPENDIX C: SECOND APPROACH CODE

10
11

12

12

12

13

14

15

16
17

21

23

28
29

36

37

47

48
49

54

65

84
85

86

92

94
96
98

100
112
114

10

I. RESEARCH

11

I. I. INTRODUCTION

Climate change, depleting resources and in-
creasing waste requires architecture to recon-
sider the way it uses its materials and their imple-
mentation into architectural design.

Historically humans were accustomed to use bi-
odegradable materials such as mud, bamboo
and timber for construction. These structures re-
quired frequent maintenance from occupants
to last for longer periods of time. Over the years,
we have moved away from these materials
towards more durable materials, such as con-
crete and plastics or petrol-based preservatives
to reduce the maintenance and increase the
strength of our structures.

Whilst we have extended the life of our build-
ings, we have created materials that were too
resistant to the natural processes. This has led
us to large amounts of waste and depletion of
resources.

If we reintroduce these biodegradable materi-
als into the built environment again, how would
the implementation of these materials into con-
temporary architecture and technology be?

12

I. II. PROBLEM STATEMENT

I. III. RESEARCH OBJECTIVES

I. IV. RESEARCH QUESTIONS

Non-renewable materials have been used in the
construction industry redundantly for centuries.
This behaviour resulted in a large amount of
waste of raw materials and energy. By choosing
renewable and ecological materials and using
them efficiently and effectively, building industry
can lower the environmental footprint, reduce
waste and energy consumption. Construction
industry needs to implement renewable materi-
als, in optimized forms.

The main objective is to develop a computa-
tional approach to optimize material uses of the
construction materials -earth and bioplastics- in
response to structural requirements.

1. How to develop building unit forms for bioplas-
tics and earth in consideration of the material
properties?

2. How to compute an architectural form in
consideration of the building units and material
performance of the units?

3. How to optimize material use in the given de-
sign problem?

13

I. V. CASE STUDY

To implement the idea, a bus station in Rotter-
dam Centraal is proposed. While the site is cho-
sen for its convenient location, the program was
chosen more intentionally for its function and
size.

A bus station doesn’t require indoor climate
control or complex envelope design. This sim-
plicity enables the project to experiment with
the material and computation more freely. The
program of a bus station still requires frequent
updates in its use, which makes it an appropri-
ate program for a fully biodegradable structure.

Figure 1.1: The map of the site, the base image is taken from Google Maps and edited by the author
to mark the proposed project site and the major landmarks around it.

14

I. VI. SCOPE AND LIMITATIONS

The main goal of this project is to develop a
computational method that for a fully biode-
gradable bus station in Rotterdam Centraal that
simulates growth over time in response to sur-
rounding environment, including humans and
climate.

In order to propose a realistic project, there will
be some experimentation with the proposed
materials and fabrication methods. The goal of
the material and fabrication experimentation is
limited to informing the computational model
but not to suggest a new construction method.

While there will be suggestions of construction
methods for the proposed design project, these
methods will not go beyond the suggestions.
Therefore, the configuration of the construction
methods will not be included in the computa-
tional model and will not be within the scope.

While the physical and mechanical properties
of bioplastics will be obtained through exper-
imentation and structural tests, in the case of
mud elements, the desired technical values will
be obtained from the literature.

In conclusion, this project overall only covers the
computational model and the basic develop-
ment of bioplastic units that will generate the
final form and simulate the overall growth of the
structure. It does not cover the full realisation of
the design.

It will only include a set of construction method
suggestions that could be used but these sug-
gestions should be taken only as suggestions.

Similarly, the material-fabrication study will only
be constructed to inform the computational
model. Therefore the data gathered from the
material-fabrication study should not be used as
a reference for any other project.

15

I. VII. RELEVANCE

Reintroducing biodegradable materials into ar-
chitecture in the contemporary context, could
help reduce waste created by the construction
industry, and reduce the environmental foot-
print of architecture. In many cases, these bio-
degradable materials are also locally available
which reduces the material cost of construction
by minimising transportation and fabrication
process. This aspect of these materials can con-
tribute to not only environmental but also social
sustainability.

16

II. LITERATURE REVIEW

17

II.I. EARTH

II. I. I COMPOSITION

II. I. II STRUCTURAL BEHAVIOUR

Earth is one of the oldest and most widely used
building materials in the world. This type of con-
struction includes clay, gravel, sand silt or oth-
er fireable soils[6]. This chapter is interested in
earthy architecture that require gradual drying
in ambient temperatures. The difference be-
tween explained earthy construction materials
and other types is that they don’t require post
processing such as baking in high temperatures
or compression like rammed earth or soil blocks
[1].

There are several challenges when it comes to
using earth as construction material. First, earth
is not a standardized material and its properties
differ based on site, as the composition of clay,
silt, sand and aggregates changes for each
location. Second, they lose volume as they
are drying due to loss of water. This may result
in cracks and weakened structural properties.
There are strategies to minimise shrinkage. They
will be further discussed on this chapter. Lastly,
earth is not water-resistant, and various strate-
gies should be present in the construction site to
protect the material.

Earth, when it’s not baked, can be reused in-
finite times by just adding water into it. Therefore,
it creates zero waste at the end of its life-cycle.
Furthermore, it reduces both the transporta-
tion and material costs, since it’s usually readily
available on site or could be brought to site from
closer proximity than most industrial materials.
Finally, mud protects organic building materials
from bacteria, fungi and other insects as they
reduce the water ratio in its environment[1].

“The tensile resistance of loam in a plastic state
is termed its “binding force””[1]. This behaviour
of earth is mostly related to its clay content and
clay type. While this value can be measured
anywhere between 25 to 500 g/cm², German
building code does not consider blocks below
50g/cm² as construction material[1].

The compressive strength of earth depends on
quantity and type of clay, grain size distribution,
the preparation of the block and its compac-
tion. The compressive strength of earth can differ
between 5 to 50 kg/cm². The German standards
allow between 3 and 5 kg/cm², which corre-
sponds to a safety factor of 7 [1].On the other
hand, earth virtually have no tensile strength.

The different elements in brick -aggregate and
sand type and size, clay and silt percentage-
play different role in brick’s performance. Larg-
er aggregate and sand particles increase the
strength of the brick whereas higher silt and clay
increase its water resistance, so more durable to
erosion [6].

Earth contains clay, silt, sand and other aggre-
gates such as gravel and stones.
The ideal percentages for mud brick is as follows
[6]:
-	 2-7% gravel
-	 61-6% sand
-	 22-32% silt
-	 14-15% clay

Clay in earth functions as a binder like cement
in concrete. Clay typically found in nature
mixed with organic substances and chemical
compounds particularly iron, manganese, lime
and magnesium compounds. These different
substances and compounds give clay differ-
ent hues of colour between white, yellow, red
and brown. Clay particles are usually formed
around silicon or aluminium cores. The binding
performance of clay depends on its silicon and
aluminium content, as they create different
chemical bonds. Silt, sand and gravel, different
from clay don’t have binding behaviour. They
are simply infill for the clay[17].

The soil from depths of 40 cm of the surface
typically has dead plants and humus. The earth
needs to be free of these organic compounds
to be used in architecture[17].

18

II. I. III BEHAVIOUR IN WATER II. I. IV ADOBE

Interacting with water causes swelling and
shrinkage in earth blocks. Swelling requires
a large amount of water. There needs to be
enough water in direct contact to shift earth’s
solid state to plastic state. Humidity would not
cause swelling [1].

When the earth blocks are exposed to freez-
ing temperatures, the water inside the earth
increases in volume and causes cracks in the
earth. This behaviour is mostly observed in earth
with hairline cracks. Hairline cracks typically oc-
cur when the earth is clayey. On the other hand,
rain erosion occurs more frequently in sandy
earth. Therefore, while sandy earth has better
frost resistance, the clayey earth is better for rain
resistance [1].

During the drying process, to reduce shrinkage
and cracks in earthy building elements, it is rec-
ommended to provide a slow and even drying
process. This is best provided by sheltering the
elements from direct sunlight and wind. Alterna-
tively, reducing the clay and water content, in-
cluding additives to the mixture and optimizing
the grain size distribution could minimise shrink-
age. The earth typically dries within 30 days
under temperature of 23°C and 50% relative
humidity in still air conditions, unlike concrete
that does not dry even after 100 days under the
same conditions [1].

In the case of not reaching the ideal percent-
ages of ingredients in the soil for the desired
purposes, it is recommended to use straw as a
binder. Straw increases the strength of the brick
while providing a better drying process for the
brick. Alternative additives for binding and sta-
bilizing mud bricks include, lime, bitumen, ce-
ment, cactus mucilage, oxblood, paper, corn
husks, soda water glass, urine, blood, casein,
animal glue and manure. Furthermore, while
cactus mucilage can work as water repellent,
high degree water protection can be achieved
by double-boiled linseed oil. It is speculated that
cooked starch and molasses may increase the
stability. On the other hand, the manure can be
used to repel insects [1],[6].

Mud bricks are traditionally used in hot-dry, sub-
tropical and moderate climates [20]. Germany
despite its colder climate who also adopted
use of mud construction in the 6th century. Ad-
ditionally, a different type of earth blocks -sod-
was used in Scandinavia and England around
17th and 18th century. This method later was
exported to the United States and Canada in
the 18th and 19th century. Sod, as opposed to
mud bricks, uses the top layer of soil including
the grass growing on it [20]. Lastly, in New Mex-
ico, silty soil blocks named terronis or terrones,
extracted from riverbeds containing living plant
roots were used for construction. This construc-
tion is still permitted in New Mexico [20].

Mud bricks are traditionally used in hot-dry, sub-
tropical and moderate climates [11]. Germany
despite its colder climate who also adopted
use of mud construction in the 6th century. Ad-
ditionally, a different type of earth blocks -sod-
was used in Scandinavia and England around
17th and 18th century. This method later was
exported to the United States and Canada in
the 18th and 19th century. Sod, as opposed to
mud bricks, uses the top layer of soil including
the grass growing on it [11]. Lastly, in New Mex-
ico, silty soil blocks named terronis or terrones,
extracted from riverbeds containing living plant
roots were used for construction. This construc-
tion is still permitted in New Mexico [11].

“Adobes are made either by filling moulds with
a pasty loam mixture or by throwing moist lumps
of earth into them” [11]. Adobe moulds are
typically built using timber and can be varied
in form. Some traditional moulds can be seen in
Figure 2.1. The mud is thrown into the mould in
order to reach the desired compaction for high-
er strength [11].

To increase compaction, a number of manual
soil block press machines can be used. This tech-
nique has been used in Europe since the 18th
century. Since then a variety of presses were de-
veloped. An example of this machinery can be
seen in Figure 2.2. These machines increase the
structural performance of the produced bricks

19

Figure 2.1: Typical moulds examples for adobe
[1]

Figure 2.2:”The best-known press worldwide in
the CINVA Ram, developed in Colombia by the
Chilean engineer Ramirez”[1]

20

and enable soil with lower water content to be
used during the process. As a result, the drying
process is significantly reduced, and bricks are
ready to be used in construction right after it’s
been pressed. However, the pace of brick pro-
duction reduces about 20% less and the blocks
need 4-8% cement content to accommodate
for lower water content. Otherwise, their com-
pressive strength is not as high as handmade
ones [11]. Furthermore, in order to maintain the
size of the bricks and structural behaviour consist-
ent, the soil mix needs to be at a “constant level
of moisture and composition” [11]. Alternative
to manual soil block press machines, there are a
number of fully automatic block making presses
that is able to produce bricks at a much higher
pace. However, these machines have much
higher costs and require initial investments [11].

Different kinds of mortar can be used during
the construction of earth blocks. These include
loam mortar, hydraulic lime mortar or high-hy-
draulic lime mortar. To prevent shrinkage while
drying the mortar, sufficient amount of course
sand should be used, while keeping the clay
content to 4-10%. Alternatively, if the surfaces
of bricks that are going to face each other are
wet enough, the use of mortar may not be nec-
essary, however this technique requires higher
craftsmanship [11].

PROTECTION

There are a number of techniques to protect
mud surfaces from environmental impacts such
as wind and rain erosion without using additives
in the soil.

Consolidating a mud surface when it’s still moist
and pliable with a help of metal trowel until the
surface is shiny with no pores and visible cracks
increases weather resistance remarkably.

Painting the surface is another way to protect it
from the environment. However, the paint needs
to be chosen carefully and should be reapplied
regularly. The paint needs to be water-repellent
and porous to allow water diffusion to outside.
A list of different ways of lime paint applications
are discussed in [20].

In addition to the previous protections, a num-
ber of water repellents can be used for surface
treatment. These are
-	 Silane and siloxanes
-	 Polysiloxanes (silicone resins)
-	 Siliconates
-	 Acrylic resins
-	 Silicate ester with hydrophobising addi-
tives
-	 Silicates with hydrophobising additives
[20].

In addition to these lime plaster, shingles, planks
and other covers are recommended to protect
the loam surfaces from environmental erosion.

21

II.II BIOPLASTICS

BIOBASED

FOSSIL-BASED

BIODEGRADABLENON BIODEGRADABLE

PE
PET
PA
PTT

PE
PET
PP

PLA
PHA
PBS
STARCH BLENDS

PBAT
PCL

BIOPLASTICS

Figure 2.3: Bioplastic chart based on biobased and biodegradability of traditional plastics. Re-
drawn by the author based on the graph provided in [14]

Bioplastics is a group of plastics with physical
and mechanical properties. “According to Eu-
ropean Bioplastics, a plastic material is defined
as a bioplastic if it is either biobased, biodegrad-
able, or features both properties”[16]. Therefore
a plastic could be considered bioplastic even
if it is not biodegradable or contain fossil-based
components inside.

Based on this definition, we can divide bioplas-
tics into three categories. Biobased PE, PET, PA
and PTT are bioplastics even though they are not
biodegradable. PBAT and PCL is biodegradable
even though they are fossil-based. Only PLA,
PHA or PBS and starch blends are both biobased
and biodegradable plastics. For comparison
please refer to Figure 2.3.

Among the three groups only the biobased bi-
odegradable plastics worth mentioning its pros
and cons of the overall production and end of
life cycle processes, given the main objective
of this project. These materials include starch
blends, PLA or PHA and are commercially used
for products like packaging.

It is important to understand the concept of
biodegradability in this context. Most things
are technically biodegradable, but to consider
something to be biodegradable it is important
to know the rate of degradation and the condi-
tions it needs to biodegrade.

The biodegradation of PLA can take place in an
industrial composter at 60°C in about 40 days.
“However at lower temperatures and/or lower
humidities, the storage stability of PLA products
is considered to be acceptable”[19]. As a result,
biodegradable plastics do not degrade in na-
ture [14].

In response to the commercial bioplastics, some
researchers started looking into alternatives for
bioplastics that could be derived from natural
materials. Using gelatine, water, glycerine, agar
and corn starch in different combinations and

II. II. II BIODEGRADATIONII. II. I COMMERCIAL BIOPLASTICS

II. II. III ALTERNATIVE BIOPLASTICS

22

ratios, one can make bioplastics in different ra-
tios. A variety of additives can be used in ad-
dition to the base bioplastics. Coffee grounds,
leaves, egg shells, clay, spirulina & sugar mixture,
vinegar, soap, burlap, hemp, are some of the
additives that can influence the behaviour of
plastics. (Kwong Oi-Ying, 2011; Margaret Dunne,
2018; Viladrich, 2014)

There are a series of advantages to these bio-
plastics. They have a fairly low melting point
which make them easier to experiment, melt
and reshape. They don’t contain any toxic ma-
terials. However, there are also a series of disad-
vantages. They are water-soluble, highly flam-
mable and not resistant to sunlight. Since they
are entirely made out of organic material, they
may grow mould if not ventilated well enough.
A series of organic protection methods could be
used to counteract these disadvantages.

RECIPES

There are a large collection of recipes that can
be found in the [5], [4], [21]. The recipes I will
mention here will be the ones I will experiment
with for this project. These recipes are chosen for
their suitability for this project’s purpose, based
on the process and product described by their
creators of the recipes.

Ingredients Brittle

0,0

60

12

1,8

60

12

3,6

60

12

7,2

60

12

Flexible

Glycerine (g)

Water (ml)

Gelatine (g)

Table 1: Bioplastic ingredient ratios based on
the material’s flexibility drawn by author based
on [4]

There are a large collection of recipes that can
be found in the [5], [4], [21]. The recipes I will
mention here will be the ones I will experiment
with for this project. These recipes are chosen for
their suitability for this project’s purpose, based
on the process and product described by their
creators of the recipes.

The recipe requires three ingredients; glycerine,
water and gelatine. According to the instruc-
tions, while gelatine needs to be animal-based,
glycerine could be either animal or plant-based.
Necessary tools include electric stove, pan,
spoon, scale and a measuring cup.

To create a bioplastic piece, one needs to com-
bine the ingredients in a pan and heat it up on
an electric stove until the mixture is thickens. The
mixture needs to be stirred as it’s heating up,
Once the mixture reaches to a desired consist-
ency, it should be poured into a mould. Mould
needs to be preferably silicone, plastic, glass or
metal to prevent sticking. Timber or paper is not
desirable. The plastic needs to spend a day in
the mould, then needs to be hanged in a frame
to dry for another day or two to cure in order to
maintain its desired form [4].

23

II. III. I TOPOLOGY OPTIMIZATION

Table 2: Optimization methods categorized based on (Querin et al., 2017)

There are three kinds of structural optimization
methods; size, shape and topology [12], [13],
[22]. Size optimization used when the compo-
nent’s overall form and loads are known but the
thickness and sizing of the elements that makes
up the given larger element is unknown. Shape
optimization is needed when “the form or con-
tour of some part of the boundary of a structural
domain” [13] is unknown. Topology optimization
is used when the shape or size of the structure is
unknown [13].

“The purpose of topology optimization is to find
the optimal lay-out of a structure within a spec-
ified region”[12]. There are several ways to per-
form topological optimization. They each have
their own advantages and disadvantages [13].
divides these methods into two categories: “Op-
timality Criteria methods and Heuristic or Intuitive
methods”. This division comes from the way the
optimization methods behave. Optimality Crite-
ria methods are more rigorous and “suitable for
problems with a large number of design varia-
bles and a few constraints” [13]. Heuristic meth-
ods on the other hand are derived from intuition
and observation of existing processes and sys-
tems. They provide efficient but not necessarily
optimal solutions [13]. Please refer to Table 2 for
the list of optimization methods under these two
categories.

II. III OPTIMIZATION

Among the eleven methods that were present-
ed in Table 2, this section will focus only four of
these: Computer-Aided Optimization (CAO)
and Soft Kill Optimization (SKO) in depth. In ad-
dition to these two, Evolutionary Structural Opti-
mization (ESO) and Bidirectional ESO (BESO) will
be discussed briefly. Furthermore, it is important
to mention that even though it will not be cov-
ered in this chapter, O. Sigmund [8] provides
a 99 line code for Solid Isotropic Material with
Penalization (SIMP) on MATLAB which could be
beneficial to look into if necessary. The reason
why these four methods were chosen among
eleven was intuitiveness of the methods and
easy implementation of them.

CAO and SKO are two methods developed by
Claus Mattheck and well explained in his publi-
cations. Since this method is more intuitive than
the others, it could be applied to this project
using the existing plugins (Karamba 3D) that are
readily available.

ESO and BESO method is already implement-
ed in Karamba 3D. Understanding this method
could inform the design process and could be
applied in this project.

A 99 line MATLAB code was presented in [8], [12]
using SIMP method. While this code was creat-
ed for a simple element, the code itself can be
modified to be used for any desired problem.
The easy access to this code and its explanation
makes it a viable method for this project.

OPTIMALITY CRITERIA METHODS HEURISTIC OR INTUITIVE METHODS
Homogenization Fully Stressed Design
Solid Isotropic Material with Panelization(SIMP) Computer-Aided Optimization (CAO)
Level Set Method Soft Kill Option (SKO)
Growth Method for Truss Structures Evolutionary Structural Optimization (ESO)

Bidirectional ESO (BESO)
Sequential Element Rejection & Admission (SERA)
Isolines / Isosurfaces Topology Design (ITD)

24

II. III. I. I SKO & CAO

SKO

Computer Aided Optimization (CAO) and Soft
Kill Optimization (SKO) are two different ap-
proachs to optimization that are used together
to create an optimized form. These methods
are derived from the optimization method of
trees and bones. While CAO imitates the way,
trees reinforce their structures by adding more
material to support, SKO imitates the way bones
subtract material from areas that are not under
stress. In both biological phenomena, the opti-
mization is not limited to addition or subtraction
of materials, but also location specific material
mineralization and its mechanical properties.
[18]. The desired workflow using CAO and SKO is
demonstrated in Table 5.

SKO method is derived from optimization mech-
anism of bones. Higher stress areas have higher
degree of mineralization -stiffer materials- than
lower stress areas. This enables to have a matrix
with varied Young’s modulus based on the load
case applied to the element [18].

To achieve this smart heterogenous material
matrix computationally [15], [18] proposes using
Young’s modulus as a function of the temper-
ature. “The Young’s modulus/temperature re-
lation can be defined as an open polygon by

Rough Design Area

SKO

CAO

Lightweight Design

Lightweight & Fatigue-Resistant Design

Rough Design Area

FEM run with a constant E

Variation of Young’s modulus

FEM run with the varied E

Table 5: Workflow between SKO and CAO (re-
drawn by the author based on [18]

Table 6: Soft Kill procedure (redrawn by the
author based on [18]

(2)T =
1
m

Σ T(i)
i

-

giving moduli at several different temperatures”
[18]. The temperature T = 100 (temperature in
arbitrary units) was set to the maximum Young’s
modulus Emax and temperature T = 0 to the mini-
mum value Emin.” [18] Using equation 2 [18], the
FEM software averages temperature of all verti-
ces of the mesh.

[18] describes this procedures as described in
Table 6.
1. As described in Table 6, the rough design area
goes through a FEM run to calculate the stress-
es based on the load cases applied to it. It has
a constant Young’s modulus within this given
rough design area.
2. After the first run, the previously constant
Young’s modulus is changed in response to the
stresses in each node. With the new locally de-
fined Young’s modulus values, a new FEM run
applied to the rough design area.
3. Based on the second FEM, a new set of
Young’s modulus assigned to each vertex.

25

CAO

Second and third steps are repeated until the
model is divided into two extreme Young’s mod-
uli, which can represent either a material and
void or two separate materials. The young’s
modulus that represent the void is eventually
gets “soft killed”[18].

Following this procedure, after an optimum
topology is achieved in the design region, a
CAO can be applied to the topology for shape
optimization [18].

The calculated stress and the new Young’s mod-
ulus are directly related. New young’s modulus
could be calculated using equation 3 [18].

In order to the incrementally change the Young’s
modulus in relation to the calculated stress level,
equation 4 [18] was used. Equation 4 is essential-
ly the implementation of equation 3 [18].

Constant k controls the shift of the value in rela-
tion to the stress change. Constant k has to be
larger than 1 [18].

An alternative to equation 4 is to use a prede-
termined reference stress value as σref, as seen
on equation 5 [18]. This could be determined
manually or referenced to a specific vertex in
the model. Using equation 5, it is also important
to maintain the limits for the Young’s modulus to
remain in the desired range [18].

(4)En+1 = En + k(σn - σn-1)

(5)En+1 = En + k(σn - σref)

(6)T(i)
n+1 = T(i)

n + k(σ(i)
n - σref)

(3)En+1 = σn

It is recommended to use Emin as Emax / 1000 to
give satisfactory stress level for void. As men-
tioned before, SKO actually converts these
stressed into temperature terms to run the FEM.
In order implement equation 5 into a thermal
FEM equation 6 [18] has been used. [18]

As mentioned earlier, similar to SKO, CAO also
uses stress and temperature for its calculations.
Stress - temperature relationship is similar, there
are some contrasts between the two. Their σref
are not equal to each other, because in the
case of SKO, the boundaries of the mesh are still
inside the rough design area mesh. Therefore,
the boundary conditions are treated the same
as non-boundary conditions. As this is not the
case in CAO, σref for CAO is half of σref of SKO.
Lastly, σref in either method should consider a
lower value than the desired Young’s modulus.
As the iterations will lower the average below
the reference [18].

CAO method uses the concept of adaptive
growth in trees and other plants. Adaptive
growth is the growth that occurs in weaker parts
of branches to reinforce the branch. This growth
does not only occur as a volume but also miner-
alization of the area. A visual representation of
adaptive growth can be seen in Figure 2.4.

Using the FEM of the initial design (design after
SKO), we will receive a stress, strain and displace-
ment value for each vertex. Using equation 7
[15], we can also calculate Mises reference
stresses. This helps us find where the local weak-
nesses are. These are the areas where adaptive
growth will occur. [15]

(7)σmises=
1

√2 (σ1 - σ2)2 + (σ2 - σ3)2 + (σ3 - σ1)2√

The computed Mises stresses will determine the
temperature distribution on the FEM element.
This temperature map is not related to any re-
al-life heat or temperature measures, but just
a method to imitate adaptive growth. When
the temperature distribution mapped on to the
element, places with the highest temperature
will correspond to the parts that has the highest
stresses. Following this temperature map, we also
set the material to have approximately 1/400 of
the actual value for its modulus of elasticity. [15]

26

FORCE

COMPRESSION WOOD

FORCE

TENSION WOOD

Figure 2.4: Adaptive growth redrawn from [15]

In the new FE model with the new temperature
map as thermal load and reduced modulus of
elasticity, the topmost layer of the mesh is also
assigned to have a thermal expansion factor of
a, which needs to be greater than 0. With the
top layer of low modulus of elasticity and ther-
mal expansion of а, the layer will expand in re-
action to the heat map created based on the
mises stresses. This expansion is calculated using
equation 8 [15]. The effect of equation 8 can be
increased via a constant [15].

(8)Λl = l0 · α · (T - Tref)

After allowing thermal expansion and allowing
the adaptive growth, the original modulus of
elasticity, young’s modulus and initial load cases
would be applied to the new geometry. A new
FE analysis would show the improved stresses on
the new geometry. If the new geometry would
satisfy the expectation, it would be the final opti-
mized form, otherwise thermal expansion meth-
od coul be applied until the desired results were
achieved [15].

After allowing thermal expansion and allowing
the adaptive growth, the original modulus of
elasticity, young’s modulus and initial load cases
would be applied to the new geometry. A new
FE analysis would show the improved stresses on
the new geometry. If the new geometry would
satisfy the expectation, it would be the final opti-
mized form, otherwise thermal expansion meth-
od coul be applied until the desired results were
achieved [15].

STRESSES

27

Hard-kill optimization methods specifically add
or subtract finite number of elements to the giv-
en design area in each iteration based on heu-
ristic criteria. Evolutionary Structural Optimization
is the best known hard-kill method of topology
optimization [2]. The main characteristics of
hard-kill methods is that the result is not in terms
of the material properties but instead either 1 or
0, material or void. This creates a clear boundary
of the optimized structure[2].

The first proposed ESO method was only de-
veloped to remove materials, and assuming
that the remaining materials should have the
same and safe stress levels globally. This idea is
achieved by using Mises stress level of a given
rough design area. To achieve this outcome,
a rejection ratio (RRi) needs to be determined
based on the equation 9 [2].

II. III. I. II ESO & BESO

(9)
σе

νm
< RRi σmax

νm

(11)aj
n= wiai

e
i=1

M
Σ

(12)
1

M-1

(13)

(10)1ai
e = 2 ui

T · Ki· ui

In addition to RRi, in order to optimize displace-
ment and maximize stiffness, equation 10 [2] was
implemented to ESO, where “ai

e is the sensitivity
number of element i, ui is the displacement vec-
tor and Ki is the stiffness matrix for the element
i”[2].

An alternative to subtractive ESO was additive
ESO (AESO), where the material was added to
the basic structure. This leads to the early version
of bi-directional ESO (BESO), where materials
can be both added and subtracted from the
given rough design area. This approach was
able to consider both stress-based and stiffness/
displacement criterion. One of the main chal-
lenges of this approach is the checkerboard
problem. In order to overcome this problem,
equation 11 [2] was used for mesh dependency
filter by averaging the sensitivity numbers of the
adjacent nodes [2].

In this wi is the weight factor that’s defined by
equation 12 [2]. rij is the distance to the adjacent
node [2].

Finally the mesh dependency filter is calculated
by equation 13 [2], “where K is the total number
of nodes to inside the filter domain with radius
rmin and w(rij) is the linear weight factor”[2] calcu-
lated by equation 13 [2].

Von Mises stresses, as shown in equation 7, al-
ways result in positive value [25]. While this makes
von Mises values applicable for metals and plas-
tics, where the material behaves similarly both
in tensions and compression. For this project,
where the main structural material is adobe -a
material that has virtually has no tensile strength-
instead of using von Mises stresses for analysis,
normal stresses will be analyzed and used for the
topology optimization.

wi=

ai=

()1-
rij

ΣMΣi=1 rij

Σj=1 w(rij)ΣK

Σj=1 w(rij)aj
nΣK

II. III. II. STRESSES & TOPOLOGY OPTIMIZATION

28

III. MATERIAL STUDY

29

III. I. III MOULD DESIGN

III. I. II MATERIAL TESTING REQUIREMENTS

III. I. I INTRODUCTION

Based on the literature research the mould needs
to have a smooth surface to be removed easily.
Given the condition, a vivak mould seemed to
be easier, faster and cheaper way to create the
mould.

First, the required shape was manually cut from 4
mm Medium-density fibreboard (MDF). Then it’s
negative was created through vacuum forming
for vivak. Another sheet of vivak was used as a
cover for the mould. In order to keep the mould
flat and prevent bending during the curing pro-
cess, enough weight was placed on top of the
mould once the mould was filled with bioplastic. Tensile strength test was necessary to understand

the behaviour of the bioplastics and to further
design the building units out of it. To test the ten-
sile and yield test, a series of samples needed to
be produced. The desired form of the sample
was as drawn in Figure 3.1. The specimen’s di-
mensions should be as show in the diagram and
the thickness should be somewhere between
2-4 mm.

In order to understand the structural strength
and overall material behaviour, and decide on
a recipe that will suit the building unit the best,
we decided to have a tensile strength test to a
series of different ratios of bioplastics. This cha-
peter will cover the specimen creation process,
the test results and the conclusions drawn from
the tests.

Figure 3.1: Specimen dimensions Figure 3.2: Vivak mould for bioplastics

III.I FABRICATION

30

1. Jacob Hooy brand beef-
based gelatine powder.
2. La Saponaria brand vege-
table-based glycerine
3. Tap water [2]
4. Kitchen scale

III. I. IV INSTRUCTIONS

1

7

2

8

3

54 6

10

9

5. Metal pan
6. Wooden spoon
7. Coffee grounds
8. Egg shells
9. Electric stove [3]
10. Paper clip

Figure 3.3: Tools and ingredients used.

31

01. Place the metal pan on the kitchen scale
and start the kitchen scale. Make sure the scale
reads 0.0 kg.

02. Add the necessary amount of water, glycer-
ine and gelatine, in this order. If the additives are
included in the recipe add the additives into the
mixture as well.

03. Place the metal pan on the stove and start
heating the pan in medium heat -from the set-
tings between 0-9 on the given stove set it to 4.

04. Constantly stir the mixture with a wooden
spoon as it heats up.

05. Once the mixture thickens -depending on
the mixture this time can take sometime be-
tween 9-19.5 mins. (see Table 3).

06. Once the required time is done pour the mix-
ture into the mould and cover the lid immidiate-
ly, before the mixture starts to cool down.

32

III. I. V INITIAL ATTEMPTS

SPECIMEN 1:
The specimen 1 is made out of 2 g of glycerine,
60 ml of water and 12 g of gelatine. This mixture
was heated until the mixture was thickened and
poured into the mould. The mould was covered
with a plastic bag and some weight. This cov-
er caused the specimen to have unintentional
grooves and imperfections on the surface. The
next day the specimen was removed from the
mould and placed on a table, left to dry and
cure. Within hours the specimen started deform-
ing. It is observed that the deformation follows
the imperfections and the grooves that was
caused by the use of plastic bag as a cover.
Furthermore, the specimen was behaving more
flexible than the desired performance.

SPECIMEN 2:
The specimen 2 is made out of 1 g of glycerine
60 ml of water and 13 g of gelatine. The recipe
was changed to have less glycerine and more
gelatine. Based on the literature research on
Section II. II. III, glycerine ratio influences the
flexibility of the sample. This mixture was heat-
ed until the mixture was thickened and poured
into the mould. The mould was covered with
another sheet of vivak and some weight. This
covering method prevented unwanted grooves
and imperfections that occurred in Specimen 1.
The next day the specimen was removed from
the mould. An uneven amount of extra material
was creeped out of the mould while drying in-
side the mould. This extra material was used to
attach the clips onto the specimen and hanged
from a rod. A significant uneven deformation
occurred on the specimen, even though it was
not as drastic as the first specimen. The defor-
mation seemed to follow the unwanted extra
material that was creeping out of the mould,
but hanging model proved to be an effective
way to create a better drying process.

SPECIMEN 3:
The specimen 3 was created the same cooking,
mould, covering and drying procedure as the
specimen 2, except used a different recipe of
1 g of glycerine, 50 ml of water and 23 g of gel-

atine. A different recipe was chosen to observe
the influence of gelatine to water percentage
on the specimen. The specimen with less water
required less time to thicken. The specimen was
also deformed similar to specimen 2, by follow-
ing the extra material that creeped while the
specimen was inside the mould.

SPECIMEN 4:
The specimen 4,5 and 6 were created on the
same day. The specimen 4 is made out of 5
drops of glycerine, 50 ml of water and 23 g of
gelatine. The recipe was changed to even less
glycerine. This mixture was heated until the mix-
ture was thickened and poured into the mould.
The mould was covered with another sheet of
vivak and some weight. An uneven amount of
extra material was creeped out of the mould
while drying inside the mould. This extra material
was manually removed using a blade. The clips
were attached on the specimen on both ends to
create a balanced effect and some weight on
the lower end of the specimen. Removal of the
extra materials around the specimen significant-
ly improved the behaviour of the deformation,
even though it still occurred. The holes created
by the pressure of the clips seemed to influence
the deformation to a certain degree and sug-
gested the need for a better way to hang the
specimen to dry.

SPECIMEN 5:
The specimen 5 is made out of 1 drop of glyc-
erine, 50 ml of water and 23 g of gelatine. This
mixture was heated until the mixture was thick-
ened and poured into the mould. The mould
was covered with another sheet of vivak and
some weight. An uneven amount of extra mate-
rial was creeped out of the mould while drying
inside the mould. This extra material was manu-
ally removed using a blade. The specimen was
hanged to a thin wooden stick using a string
going through the specimen on both corners.
While this method helped preventing to create
holes on both ends of the specimen, it did not
fully prevent deformation. Additionally, it was
not ideal to sew through material during the dry-
ing process considering its future uses.

33

1

2

3

4

5

6

Figure 3.4: First six specimens that failed to meet
the requirements

SPECIMEN 6:
The specimen 6 is made out of 3 drops of glycer-
ine, 50 ml of water and 23 g of gelatine. This mix-
ture was heated until the mixture was thickened
and poured into the mould. The mould was
covered with another sheet of vivak and some
weight. An uneven amount of extra material was
creeped out of the mould while drying inside the
mould. This extra material was manually removed
using a blade. The specimen was hanged to a
thin wooden stick using a string going through
the specimen on both corners. Another wooden
stick was hanged from the specimen to create
some weight and therefore force to straighten
the specimen more. This attempt was also not
successful and led to unwanted deformation. A
better method for drying process is still needed.

34

III. I. VI FRAME DESIGN

Following the first six specimen a better drying
process needed to be developed. The research
in section II. II. III suggests the use of frames.
Initial attempt to avoid frames was to ob-
serve if the behaviour of the material could
be controlled without a frame, as it could
open up opportunities to experiment more
3D forms. While this could still be done, given
the time frame of the project, this area was
not investigated further in this research and
a frame to improve the drying process was
developed.

For a frame to be effective, it needs to hold
the specimen straight while its curing. Be-
cause the sample loses water volume as it
cures, it needs to be strong enough to en-
dure the forces created during shrinkage.
It is important to maintain the flatness and
original dimensions as much as possible.

Any frame that will hold the specimen in
place will have to deform the specimen
where it connects to it. Therefore, the are-
as where the frame will be attached to the
specimen should be chosen on the areas
where this deformation would not influence
the test.

As a result, a rectangular frame that will
pinch the specimen on both ends and keep
the at the desired distance while leaving the
remaining parts of the specimen untouched.
The frame was constructed out of timber to
increase the friction between the material
and the frame. This way the material won’t
slip out of the frame while curing. Examples
of frames and the drying process can be
seen in Figure 3.5.

35

Figure 3.5: Some of the specimens as they are drying and curing in the frames.

36

III.
II

RE
SU

LT
S

Ta
bl

e
3:

 C
on

te
nt

 o
f t

he
 te

st
ed

 sp
ec

im
en

s a
nd

 th
e

ov
er

al
l r

es
ul

ts
 o

f t
he

 te
ns

ile
 te

st
s

C
oo

ki
ng

a
0

b
0

S
0

Sa
m

pl
es

G
ly

ce
rin

e
W

at
er

G
el

at
in

C
of

fe
e

Eg
g

Sh
el

ls
m

in
s

N
m

m
N

m
m

m
m

m
m

m
m

²
#

7
1

50
23

4
11

08
,8

1
7,

34
11

08
,8

1
7,

34
4

10
40

#
8

1
50

23
2

16
46

,3
4

7,
73

16
46

,3
4

7,
73

4
10

40
#

9
1

40
23

-
12

57
5,

50
4,

48
11

5,
09

17
,4

4
4

10
40

#
10

1
30

23
-

-
70

9,
89

5,
60

69
0,

22
5,

60
4

10
40

#
11

1
50

23
- -

4
18

,5
#

12
1

50
23

6
19

,5
32

4,
80

6,
10

31
8,

64
6,

11
4

10
40

#
13

1
50

23
-

-
1717

11
7,

47
4,

69
23

,4
6

12
,7

6
4

10
40

#
14

1
50

23
-

-
-

-- - -

-
-

-
- - - - -

-
-

-
-

-
- - - - -

17
15

82
,3

9
7,

61
4

10
40

#
15

1
50

23
17

19
64

,0
3

7,
49

18
76

,2
7

7,
50

4
10

40
#

16
1

50
23

17
23

1,
04

15
,7

0
16

1,
94

43
,2

1
4

10
40

#
17

1
50

23
17

15
89

,9
5

7,
11

15
89

,9
5

7,
11

4
10

40
#

18
1

50
23

2
17

82
7,

42
10

,0
1

82
3,

90
10

,0
2

4
10

40
#

19
1

50
23

2
17

50
6,

95
7,

13
10

1,
23

10
,3

1
4

10
40

#
20

1
50

23
2

17
63

7,
28

6,
92

12
7,

42
7,

53
4

10
40

#
21

1
50

23
2

17
59

8,
58

8,
30

30
5,

44
10

,2
7

4
10

40
#

22
1

30
23

99

77
1,

58
6,

32
76

3,
30

6,
33

4
10

40
#

23
1

30
23

9
12

86
,2

3
8,

56
12

84
,3

8
8,

56
4

10
40

#
24

1
30

23
9

34
7,

61
7,

24
12

3,
49

39
,5

8
4

10
40

#
26

1
50

23
4

16
12

4,
26

36
,4

9
4

10
40

#
27

1
50

23
4

16
29

9,
43

6,
07

59
,4

5
7,

52
4

10
40

#
28

1
50

23
4

16
10

6,
76

2,
44

21
,2

5
31

,8
0

4
10

40
#

29
1

50
23

4
16

29
5,

52
6,

18
57

,4
4

7,
59

4
10

40

Ba
se

 (g
)

A
d

d
iti

ve
s (

g)
m

ax
d

L
at

 F
d

L
at

 b
re

ak
m

ax
F

br
ea

k
F

Ty
pe

 0
1:

 1
 g

 G
ly

ce
rin

e,
 5

0
g

W
at

er
, 2

3
g

G
el

at
in

, 4
 g

 C
of

fe
e

G
ro

un
d

s
Ty

pe
 0

2:
 1

 g
 G

ly
ce

rin
e,

 5
0

g
W

at
er

, 2
3

g
G

el
at

in
, 2

 g
 C

of
fe

e
G

ro
un

d
s

Ty
pe

 0
3:

 1
 g

 G
ly

ce
rin

e,
 3

0
g

W
at

er
, 2

3
g

G
el

at
in

Ty
pe

 0
4:

 1
 g

 G
ly

ce
rin

e,
 5

0
g

W
at

er
, 2

3
g

G
el

at
in

37

III.III DISCUSSION

Graph 1: The overlay of all the standard force-strain graphs of the specimens.

Table 3 shows all the tested specimens’ content
and the results for the tests. The contents that
were identical are colour coded.

The goal of these tests is to understand this
experimental material’s (bioplastic’s) tensile
strength and overall behaviour in order to de-
sign, optimize and produce building compo-
nents that could work well with earth in places
where earth’s tensile strength is not sufficient.

The output of this test includes following infor-
mation: standard force-strain graph, maximum
force, length at the maximum force, force when
the specimen breaks and the length of the
specimen when it breaks.

Stress can be defined as the units of force per
unit area and can be represented as σ (sigma).
Assuming the force applied on a cross-section
is distributed evenly, the stress on a given cross
section can be calculated following Equation 1

(1)σ =
P
A

[9], where P stands for Force[N], A for cross-sec-
tion area [mm2] and σ for stress [N/mm2] [9].

Young’s modulus is equal to “the slope of the in-
itial linear-elastic part of the stress-strain curve in
tension [10]. We can obtain this curve using the
standard force-strain graph and equation 1, by
dividing the standard force values to cross-sec-
tion area -in this case 40 mm2.

Tensile strength is the tensile “stress required to
break the material. For most plastics and ceram-
ics, the peak in tensile stress occurs at break”
[10]. Since we are given the value for F break,
this divided by the cross-section area will give us
the tensile strength of the bioplastics.

The yield strength (elastic limit) is “the stress at
the first peak of the stress strain curve”[10]. This
value also can be obtained from the standard
force-strain graph by using the equation1.

ST
A

N
D

A
RD

 F
O

RC
E

[N
]

STRAIN [mm]

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

Specimen 7 Specimen 8 Specimen 9
Specimen 10 Specimen 12 Specimen 13
Specimen 14 Specimen 15 Specimen 16
Specimen 17 Specimen 18 Specimen 19
Specimen 20 Specimen 21 Specimen 22
Specimen 23 Specimen 24 Specimen 26
Specimen 27 Specimen 28 Specimen 29

38

07

07

28

28

29

29

26

26

27

27

Figure 3.6: The specimens [07, 26, 27, 28, 29] before and after

39

ST
A

N
D

A
RD

 F
O

RC
E

[N
]

STRAIN [mm]

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70

Specimen 7 Specimen 26 Specimen 27 Specimen 28 Specimen 29

Graph 2: The overlay of all Type 01 Specimens with 1 g of glycerine, 50 g of water, 23 g of gelatine
and 4 g of coffee

Table 4: The mechanical properties of Type 01 specimens.

Five different specimens with the same recipe of
1 g of glycerine, 50 g of water, 23 g of gelatin
and 4 g of coffee was created. Even though the
recipes were identical, the performance of the
specimens were fairly different. The difference
can be seen on Table 4 and Graph 2.

While Specimen 7 performed extremely well in
respect to its young’s modulues tensile and yield
strenght, other specimens did not perform as
successfully.

The difference can also be observed in the way
the specimens broke. While specimen 7 broke

III. III. I TYPE 01

Specimens Fmax Fbreak
[N] [N] [N/mm2] [GPa]

07 1108,812 1108,812 34,598 0,035
26 124,265 2,764 0,003
27 299,432 59,448 3,786 0,004
28 106,763 21,246 3,473 0,003
29 295,518 57,442 4,162 0,004

Young's Modulus
[MPa] [MPa]

1,436 7,388

27,720 27,720

Tensile Strength Yield Strength

3,107 1,400
1,486 7,486
0,531 2,669

without any necking, specimen 26, 27, 28 and 29
yielded for longer. This specific difference could
be the result of the curing period after it’s been
removed from the frame. Specimen 7 had sig-
nificantly more time to cure than specimens 26,
27, 28 and 29.

It could be speculated that higher curing time
increases the young’s modulus, tensile and yield
strength. Given the data, we can conclude that
specimen 07 is an outlier and calculate the ten-
sile strength of Type 01 as 1.64 ± 1.07 MPa. Yield
strength is 4,74 ± 3,16 MPa. Young’s modulus is
3,55 ± 0,59 MPa.

40

08

08

20

20

21

21

18

18

19

19

Figure 3.7: The specimens [08, 18, 19, 20, 21] before and after

41

ST
A

N
D

A
RD

 F
O

RC
E

[N
]

STRAIN [mm]

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12

Specimen 8 Specimen 18 Specimen 19 Specimen 20 Specimen 21

Graph 3: The overlay of all Type 02 Specimens with 1 g of glycerine, 50 g of water, 23 g of gelatine
and 2 g of coffee

III. III. II TYPE 02

Specimens Fmax Fbreak
[N] [N] [N/mm2] [GPa]

08 1646,342 1646,342 34,099 0,034
18 827,422 823,896 2,165 0,002
19 506,951 101,226 4,524 0,005
20 637,281 127,423 6,138 0,006
21 598,583 305,444 10,823 0,0117,636 1,720

20,597 20,686
2,531 12,674
3,186 15,932

Tensile Strength Yield Strength Young's Modulus
[MPa] [MPa]
41,159 41,159

Table 5: The mechanical properties of Type 02 specimens.

Five different specimens with the same recipe of
1 g of glycerine, 50 g of water, 23 g of gelatin
and 4 g of coffee was created. The results can
be seen on Table 5 and Graph 3.

Similar to Type 01 specimens, Specimen 08 in
Type 02 performed significantly better than the
rest of the specimens. This supports the previous
arguement about the curing process and its
influence on the material’s mechanical proper-
ties.

However, it could also be argued that the spec-
imens 18, 19, 20 and 21 behaved fairly similar

and the specimen 08 was an exception. Based
on the results we can conclude that Type 02 has
the tensile strength of 18.78 ± 14.54 MPa, yield
strength of 23.04 ± 14.36 MPa and young’s mod-
ulus of 14.44 ± 10.50 MPa.

If we compare specimen 07 to 08, we see the 08
or calculated mechanical properties, it can be
argued that using higher percentage of coffee
grounds weakens the material’s young’s modu-
lus, tensile and yield strength.

42

10

10

24

24

22

22

23

23

Figure 3.8: The specimens [10, 22, 23, 24] before and after

43

ST
A

N
D

A
RD

 F
O

RC
E

[N
]

STRAIN [mm]

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45

Specimen 10 Specimen 22 Specimen 23 Specimen 24
Graph 4: The overlay of all Type 03 Specimens with 1 g of glycerine, 30 g of water and 23 g of
gelatine.

III. III. III TYPE 03

Specimens Fmax Fbreak
[N] [N] [N/mm2] [GPa]

10 709,886 690,216 9,516 0,010
22 771,575 763,298 8,380 0,008
23 1286,234 1284,382 7,221 0,007
24 347,605 123,486 4,439 0,004

32,110 32,156
3,087 8,690

17,255 17,747

Tensile Strength Yield Strength Young's Modulus
[MPa] [MPa]

19,082 19,289

Table 6: The mechanical properties of Type 03 specimens.

Four different specimens with the same recipe
of 1 g of glycerine, 30 g of water and 23 g of
gelatin was created. The results can be seen on
Table 6 and Graph 4.

Looking at the graph, specimen 24 seems to
have a different behaviour than the rest. This dif-
ference can be the result of how the specimen
broke. Unlike the others, it did not broke in the
middle part. This might be the result of an error in
its fabrication.

The rest of the specimens seems to perform
close to each other. Unlike the previous types,

curing process may not have effected this reci-
pe. Coffee grounds may be extending the cur-
ing process.

Type 03 has the tensile strength of 17.88 ± 15.73
MPa, yield strength of 19.47 ± 14.79 MPa and
young’s modulus of 7.39 ± 4.63 MPa.

44

13

13

16

16

17

17

14

14

15

15

Figure 3.9: The specimens [13, 14, 15, 16, 17] before and after

45

ST
A

N
D

A
RD

 F
O

RC
E

[N
]

STRAIN [mm]

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45 50

Specimen 13 Specimen 14 Specimen 15 Specimen 16 Specimen 17
Graph 5: The overlay of all Type 04 specimens with 1 g of glycerine, 50 g of water and 23 g of
gelatine.

III. III. IV TYPE 04

Specimens Fmax Fbreak
[N] [N] [N/mm2] [GPa]

13 117,468 23,461 24,985 0,025
14 1582,394 1582,394 4,632 0,005
15 1964,027 1876,273 5,016 0,005
16 231,042 161,939 1,859 0,002
17 1589,953 1589,953 9,166 0,00939,749 39,749

39,560 39,560
46,907 46,907
4,048 5,776

Tensile Strength Yield Strength Young's Modulus
[MPa] [MPa]
0,587 2,378

Table 7: The mechanical properties of Type 04 specimens.

Five different specimens with the same recipe
of 1 g of glycerine, 50 g of water and 23 g of
gelatine was created. The results can be seen
on Table 7 and Graph 5.

Specimen 13 and 16 perfomed significantly
worse than the rest. However specimen 13 was
not broken during the test. Therefore this might
be the error during the testing.

Type 04 has the tensile strength of 32.71 ± 19.32
MPa, yield strength of 33.59 ± 18.48 MPa and
young’s modulus of 11.41 ± 7.82 MPa.

46

Figure 3.10: Tensile strength test at 3mE TU Delft

47

III.IV CONCLUSION

Specimens Fmax Fbreak
[N] [N] [N/mm2] [GPa][MPa]

Young's ModulusYield StrengthTensile Strength
[MPa]

07 1108,812 1108,812 34,598 0,035
08 1646,342 1646,342 34,099 0,034
09 575,498 115,092 27,418 0,027
10 709,886 690,216 9,516 0,010
12 324,798 318,641 5,077 0,005
13 117,468 23,461 24,985 0,025
14 1582,394 1582,394 4,632 0,005
15 1964,027 1876,273 5,016 0,005
16 231,042 161,939 1,859 0,002
17 1589,953 1589,953 9,166 0,009
18 827,422 823,896 2,165 0,002
19 506,951 101,226 4,524 0,005
20 637,281 127,423 6,138 0,006
21 598,583 305,444 10,823 0,011
22 771,575 763,298 8,380 0,008
23 1286,234 1284,382 7,221 0,007
24 347,605 123,486 4,439 0,004
26 124,265 2,764 0,003
27 299,432 59,448 3,786 0,004
28 106,763 21,246 3,473 0,003
29 295,518 57,442 4,162 0,004

2,669
7,388

19,289
32,156
8,690
1,400
7,486

1,436

27,720
41,159
14,387
17,747
2,031
2,378
39,560
46,907
5,776
39,749
20,686
12,674
15,932
1,720

32,110
3,087
3,107
1,486
0,531

20,597
2,531
3,186
7,636
19,082

0,587
39,560
46,907
4,048
39,749

27,720
41,159
2,877
17,255
7,966

Glycerine Water Gelatine Coffee

[MPa] SD [±] [MPa] SD [±] [MPa] SD [±] (g) (g) (g) (g)

Type 01 1,64 1,07 4,74 3,16 3,55 0,59 1 50 23 4

Type 02 18,78 14,54 23,04 14,36 14,44 10,50 1 50 23 2

Type 03 17,88 15,73 23,04 14,79 7,39 4,63 1 30 23 -

Type 04 32,71 19,32 33,59 18,48 11,41 7,82 1 50 23 -

Tensile Strength Yield Strength Young's Modulus

If we look at the overall result, we can conclude
that Type 04 is the best option for the proposed
panels. It has the highest tensile and yield
strength and has the second highest youngs
modulus.

However, as discussed in sections III. III. I TYPE 01
and III.III.II TYPE 02, the specimens with coffee
grounds may need a longer curing period and
may have a lower performance due to the cur-
ing process. Considering the specimens 07 and
08, trying the recipe of Type 02 for the panels
with the appropriate amount of curing time may
improve the performance of the panel.

In conclusion, while Type 04 seems like the best
option among the tested recipes, it is valid to
test panels with Type 02 recipes.

Table 8: The calculated mechanical properties of all types of recipes.

Table 9: The mechanical properties of all specimens

48

IV. DESIGN PROCESS

49

IV. I. CONCEPTUAL DESIGN

Figure 4.1: Handsketch

50

IV. I. I. EXISTING BUS STATIONS

2 M 3 M

2 M 4 M

10 M
3 M

LARGE BUS STATION

MEDIUM BUS STATION

SMALL BUS STATION

A small size bus stop is 2m x 3 m with glass casing
and a seat for two people.

A medium size bus stop is 2m x 4 m with glass
casing and a seat for two people.

A large scale bus station is usually more site spe-
cific. This particular one is drawn based on den
Haag HS Station. The station expends over 60 m
consists of 10m modules of station areas. As the
station serves both sides, the depth of the station
is increased to 3 m.

Figure 4.2: Existing bus station analysis

51

IV. I. II. INITIAL FORM

The dimensions, need for seats and canopy size
was defined based on the standard dimensions
found in section IV.I.I. Existing Bus Stations,

4 M

2.
5

M

SEATING FOR PASSENGERS

CANOPY FOR PASSENGERS

SUPPORT FOR THE LOAD TRANSFER

Figure 4.3: Proposed conceptual design

52

IV. I. III. COMPUTATIONAL WORK FLOW

MESH FEM

MISES STRESS
&

DISPLACEMENT
ANALYSIS

SOFT KILL OPTIMIZATION [SKO]ARCHITECT / DESIGNER COMPUTER AIDED OPTIMIZATION [CAO]

VARIATION OF
YOUNG’S
MODULUS

TEMPERATURE
MAPPING

CHANGE IN
MODULUS OF

ELASTICITY

ASSIGN
THERMAL

EXPANSION
COEFFICIENT

SIMULATE
THERMAL

EXPANSION

MAPPING OF
TENSION &

COMPRESSION
REGIONS

KARAMBA 3D
LIBRARY

DETERMINE
YOUNG’S
MODULUS

BREP
SUPPORT POINTS

LOAD = SELF LOAD + CLADDING

Figure 4.4: Conceptual computational workflow

53

MESH FEM

MISES STRESS
&

DISPLACEMENT
ANALYSIS

SOFT KILL OPTIMIZATION [SKO]ARCHITECT / DESIGNER COMPUTER AIDED OPTIMIZATION [CAO]

VARIATION OF
YOUNG’S
MODULUS

TEMPERATURE
MAPPING

CHANGE IN
MODULUS OF

ELASTICITY

ASSIGN
THERMAL

EXPANSION
COEFFICIENT

SIMULATE
THERMAL

EXPANSION

MAPPING OF
TENSION &

COMPRESSION
REGIONS

KARAMBA 3D
LIBRARY

DETERMINE
YOUNG’S
MODULUS

BREP
SUPPORT POINTS

LOAD = SELF LOAD + CLADDING

54

IV. II. UNIT / JOINT DESIGN

IV. II. I. BIOPLASTIC UNIT GEOMETRY

The most important finding of section III. MA-
TERIAL STUDY was that the unit design should
absolutely consider the fabrication process.
The fabrication of the samples showed that in
order to control the behaviour of the elements, it
needs to be streched while curing to control the
deformation during the process. Therefore the
unit should be designed to take this into consid-
eration.

An alternative could have been that the folding
behaviour has been considered and the units
are designed accordingly. In some ways, that
was also considered in the current unit design.
However, leaving the control of the unit too
much into the material would have resulted in
units that are extremely difficult or maybe im-
possible to engineer for its purpose.

Initial goal was to 3D print these units, this idea
was later dropped. The specimens were creat-
ed without 3D printing, and changing the fabri-
cation process may have effected the materials
mechanical properties. Furthermore, it would
have added a brand new line of experiments
to understand the material’s behaviour under
a different fabrication process. In order to elim-
inate further experimentation with the fabrica-
tion process, using moulds to fabricate panels
and then streching them like it’s been done with
the dog-bone specimens simplified the fabrica-
tion process.

While considering fabrication process for the unit
design, it was also important to consider how
these units will come together in an architectur-
al setting. It needs to consider how they will con-
nect to each other and how they will connect
to the earth substructure, which is essentially the
main structure that carries the whole.

Even though during the design process these
considerations were happening spontenously,
this chapter will start with the unit design and ex-
plore more into the joints between the units and
their connection to the mud structure.

The geometry was basically derived from
the amount of points or edges the unit will be
streched from, and if they can come together
when they were created. When that’s the case
units streched from two, three, four and six cor-
ners or edges seemed to have the most poten-
tial. So I started with a number of iterations as
can be seen in Figure 4.5.

Among these iterations, the second from the
top, or the triangular one was the one I chose
to develop further, because as the structure
curves, the panels will need to rotate along and
this rotation could be most attainable by trian-
gular panels.

The units with two pieces were too small and
would require too many joints for the structure.
square panels both architecturally and structur-
ally was not appealing. Even though hexagonal
panels had a more appealing geometry, as stiff
panels both the square and hexagonal panels
would have had a hard time accomodating the
curvature of the main mud structure.

These diagrams also helped questioning the
units of adobe bricks. Less standard and more
suitable bricks could be developed as they are
also developed using moulds.

55

Figure 4.5: Panelization options

MOULDED CURED ASSEMBLED ON BRICKS

56

IV. II. II. UNIT FABRICATION PROCESS

MOULD FRAME

Figure 4.6: Panel fabrication process

57

DEFORMATION PANEL

58

IV. II. III. UNIT SAMPLES

Figure 4.7: Fabricated panels

59

60

IV. II. IV. ASSEMBLY

Figure 4.8: Panel assembly sequence

61

Figure 4.9: Panel assembly

62

IV. II. IV. TESTING MATERIALS

IV. II. IV. I INTRODUCTION & OBSERVATIONS

SPECIMEN 2, 3

SPECIMEN 4

SPECIMEN 5,6

SPECIMEN 7

Figure 4.10: Panels to be tested

Table 10: Panel test result

Fmax dL at Fmax FBreak dL at break a0 b0 S0 Gelatine Glycerine Water Coffee
N mm N mm mm mm mm² g g g g

Specimen 2 190,11 11,66 100,00 100,00 10000,00 207,00 9,00 450,00 18,00
Specimen 3 171,65 39,89 150,61 54,92 100,00 100,00 10000,00 207,00 9,00 450,00 -
Specimen 4 710,53 33,58 710,53 33,58 100,00 100,00 10000,00 276,00 12,00 600,00 -
Specimen 5 103,91 26,04 100,00 100,00 10000,00 207,00 9,00 450,00 -
Specimen 6 115,47 29,20 100,00 100,00 10000,00 207,00 9,00 450,00 -
Specimen 7 205,96 46,91 100,00 100,00 10000,00 207,00 9,00 450,00 -

On May 24th 2019, in we ran tensile strength tests
at 3mE TU Delft. For this test, there were four pan-
els produced, following two different recipes.
To clarify, specimen number do not represent
individual panels but rather represent the test
results obtained during the tesint of the panels.
Therefore, specimen 2 and 3 belongs to panel 01
(green), specimen 4 belongs to panel 02 (blue),
specimen 5 and 6 belongs to panel 03 (purple)
and specimen 7 belongs to panel 04 (pink). To
make this distinction clearer, color coding was
used on this report. Please see Figure 4.10 and
Table 10 for further clarification.

The main recipe that was followed was 23 unit
gelatine, 1 unit glycerine and 50 unit water. Sec-
ond recipe added 2 units of coffee grounds. The
addition of the sample with coffee grounds was
to clarify the uncertainty about the influence of
curing process on the material behaviour.

For the first recipe -the one without coffee
grounds- we tried keeping the same ratio but in
different amounts of material to observe if the
production process is scalable.

It is also important to note that due to the

63

IV. II. IV. I INTERPRETATION OF THE RESULTS

Graph 6: Panels test result

When the specimens are compared, based on
the graphs drawn for four different types of pan-
els, panel 04 was able to withstand the highest
stress levels. This may be the result of the geom-
etry more than the difference in the amount of
materials used in the specimen.

Panel 03 and 04 having the exact same recipe,
have fairly similar behaviour in comparison to
the others. This shows the consistent behaviour
of the material. However, the question of form
and scalability unanswered.

Both panel 01 and 02 broke during the testing.
Which was not the desired behaviour for a ma-
terial that’s been tested for structural purposes.
The ideal result could have been deforming and

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

Specimen 2

Specimen 4

Specimen 6

Specimen 7

ST
A

N
D

A
RD

 F
O

RC
E

[N
]

DEFORMATION [mm]

non-standardized fabrication method, each
panel had a slightly different form, which influ-
enced the structural performance of the form.
While panel 02 had a visibly more symmetrical
form, panel 01, 03 and 04 had a less symmetrical
shape.

As a result following observations and conclu-
sions were drawn.

64

returning to its original state.

This behaviour was observed for panel 03 and
04, as they were seemingly deformed under the
applied force and returned to its original form
once the force was removed. This behaviour of
these panels encouraged us to do a separate
test to see its structural behaviour under con-
stant stable force. See Graph 7 for the results.

Graph 7 shows an unstable behaviour under
constant pressure, which is not a desired perfor-
mance for a structural material.

It was decided that these panels cannot be
used for structural purposes due to their unsta-
ble behaviour. However they could still be used
in the project as panels and they could support
their own weight when a substructure was pro-
vided.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500

N
O

M
IN

A
L

ST
RA

IN
 [m

]

TEST TIME [s]

Graph 6: Panel 04 creep test result

IV. II. IV. II CONCLUSION

65

IV. III. COMPUTATIONAL DESIGN

IV. III. I. INTRODUCTION

There has been two separate approaches ex-
plored for this thesis. This chapter will explain
both approaches and how they are created
using specific inputs, Karamba3D library, cus-
tom python and Karamba3D components for
Grasshopper. Neither of the processes are fully
functioning, however especially the second
approach gives promising results for further re-
search.

First approach is looking at a case where the
main design input is a surface, specifically shell
structure. This rough surface is then topologically
optimized to create and optimized geometry
using SKO.

Second approach receives a rough design
volume, support areas and desired void areas
as input and created a topology optimization
through voxelization.

66

KARAMBA COMPONENT

INPUT

PYTHON COMPONENT FOR MESH

PYTHON COMPONENT FOR SKO

brep

mesh

appx. b
mesh fem strain@nodes evaluate

stress limit adobe mesh

biop mesh

brick width

brick depth

brick brick height

material properties

load case 0

load case 1

support

crossection

support type

vertices & edges mises stress

Young’s modulus

support p
os. (

Point3D)

Figure 4.11: SKO flow diagram

IV. III. II. INITIAL APPROACH

IV. III. II. I WORKFLOW DIAGRAM

67

brep

mesh

appx. b
mesh fem strain@nodes evaluate

stress limit adobe mesh

biop mesh

brick width

brick depth

brick brick height

material properties

load case 0

load case 1

support

crossection

support type

vertices & edges mises stress

Young’s modulus

support p
os. (

Point3D)

68

Figure 4.12: SKO Grasshopper screenshot

IV. III. II. II. GRASSHOPPER SCREENSHOT

69

70

IV. III. II. III. SKO PYTHON COMPONENT

import rhinoscriptsyntax as rs
import clr

clr.AddReferenceToFileAndPath(“C:\Program Files\Rhino 6\Plug-ins\karamba.gha”)

import Karamba.Models.Model as Model
import Karamba.Elements.ModelShell as Shell
import feb.ShellMesh as ShellMesh
import feb.TriShell3D as TriShell3D
import feb.VectSurface3DSigEps as TriStates
import feb.Deform as Deform
import feb.Response as Response
import Rhino.Geometry as rg

import Karamba.Materials as fm
from operator import attrgetter

#import feb model

femodel = model.Clone()
femodel.deepCloneFEModel()

Karamba3D 1.1.0 Hacker’s Essentials [24] fold-
er come with an example file names “Sim-
pleShellEso” [23] for ESO. This script is drived
from the ESO component provided.

The file first runs a Karamba analysis for a given
shell. Then, it brings the results into a python
component. The resulting “Model” output of
the “Karamba Shell View” component is im-
ported into python as “model”.

The other two inputs are NRemove and Niter.
They both only accept integer. NRemove limits
the number of removal of nodes (soft kill) that
is allowed in each iteration. Niter determins the
number of iterations.

Inside the component it’s cloned and convert-
ed into finite element model.

71

#bioplastic material
bf = “biop”
bn = “biop”
bE = 1.35
bG = 0.65
bgamma = 0.6
balphaT = 0.5
bfy = 1.1

biop = fm.FemMaterial_Isotrop(bf,bn,bE,bG,bG,bgamma,bfy,balphaT,None)
biop.addTo(femodel.febmodel)
feb_biop = femodel.febmodel.material(femodel.febmodel.numberOfMaterials()-1)

#adobe material
af= “adobe”
an= “adobe”
aE = 350
aG = 150
agamma = 14.5
aalphaT = 5
afy = 0.0005

adobe = fm.FemMaterial_Isotrop(af,an,aE,aG,aG,agamma,afy,aalphaT,None)
adobe.addTo(femodel.febmodel)
#feb_adobe = femodel.febmodel.material(femodel.febmodel.numberOfMaterials()-1)

Following, created both bioplastic and adobe
materials based on the literature research and
material study finding. The created materials
are also added into the finite element model.

72

class skoVert:
 def __init__(self,shell_elem,totstress):
 self.active = True
 self.fitness = 0
 self.shell_elem = shell_elem
 self.area = shell_elem.area()
 self.node = node
 self.stress = self.shell_elem.strain(femodel.febmodel,crosec,self.node)*aE
 def update(self):
 self.fitness = self.stress/totstress

sko_verts = []
for i in femodel.elems:
 if type(i) != Shell:
 continue
 tri_mesh = femodel.febmodel.triMesh(i.fe_id)
 for j in xrange(tri_mesh.numberOfElems()):
 sko_verts.append(skoVert(tri_mesh.elem(j),j))

Following a new class for each node created
with attributes that will be used for evaluation
of the node.

The major difference between the SKO and
the ESO is the fitness criteria. SKO evaluates
mises stress. If this value is below the limit, it
simply “soft kills” the node. However Karamba
does not provide mises stress value for tri-mesh
nodes, but it does provide the strain on each
node. Using strain and Young’s modulus, we
can calculate the stress on each node. From
the nodal stress we can then calculate nodal
mises stress.

73

nremove_per_iter = int(NRemove/NIter+1)
n_removed = 0

#SKO iterations
for iter in xrange(NIter):
 analysis = Deform(femodel.febmodel)
 response = Response(analysis)

 try:
 response.updateNodalDisplacements()
 response.updateMemberForces()
 except:
 raise Exception(“problem”)

 for sko_vert in sko_verts:
 sko_vert.update()

In each iteration the model is let to deform and
update the attributes of each node created in
class skoVert.

74

 sko_verts = sorted(sko_verts, key = attrgetter(“fitness”))
 n_removed_per_iter = 0
 change = False

 for sko_vert in sko_verts:
 if (n_removed >= NRemove):
 break
 if (n_removed_per_iter >= nremove_per_iter):
 break
 if (sko_vert.active == False):
 continue
 sko_vert.shell_elem.material(feb_biop)
 sko_vert.active = False
 n_removed+=1
 n_removed_per_iter +=1
 change = True
 if (change == False):
 break

Depending on the result, within the limits rpovd-
ed by number of iterations and allowable num-
ber of nodes removal the nodes are removed
from the mesh. (soft kill process)

75

 femodel.febmodel.touch()
 #split mesh based on material
 adobemesh = rg.Mesh()
 biopmesh = rg.Mesh()

 for i in xrange(femodel.febmodel.numberOfNodes()):
 feb_pos = femodel.febmodel.node(i).pos()
 adobemesh.Vertices.Add(rg.Point3d(feb_pos.x(),feb_pos.y(),feb.pos.z()))
 biopmesh.Vertices.Add(rg.Point3d(feb_pos.x(),feb_pos.y(),feb.pos.z()))

 for sko_vert in sko_verts:
 ind0 = sko_vert.shell_elem.node(0).ind()
 ind1 = sko_vert.shell_elem.node(1).ind()
 ind2 = sko_vert.shell_elem.node(2).ind()

 if (sko_vert.active):
 adobemesh.Faces.AddFace(rg.MeshFace(ind0,ind1,ind2))
 else:
 biopmesh.Faces.AddFace(rg.MeshFace(ind0,ind1,ind2))

Finally two different meshes are created as one
mesh being “soft-killed” (bioplastic), the other
being the structural (adobe).

A similar approach could also be applied for
shape optimization (CAO).

76

IV. III. III. SECOND APPRAOCH

IV. III. III.II DISCRETIZATION OF THE VOLUMEIV. III. III.I INTRODUCTION

This approach as explained in section IV. III. I.
Uses volumes and voxelization to receive a top-
ologically optimized form.

This chapter will further explain how Karam-
ba3D plugin for Grasshopper was used for finite
element modeling and analysis, how custom
voxel class was utilized to create a coherant
flow of data and some of the major issues that
were encountered throughout the process.
While some problems were solved, others re-
mained unsolved within the time frame given
for this project.

For finite element modeling, Karamba3D pl-
ugin for grasshopper was used for this project.
One of the first problems with this tool was that
it does not provide FEM for solid object. Kar-
amba3D only provides FEM for shell structures,
beams and trusses.

In order to overcome this obstacle, using the
center points of voxels were used to create
a three-dimensional grid of beams with the
square cross section of the voxel size. These
beams assumed to be acting like the actual
volume.

77

x

y
z

As voxels fills up the given rough design vol-
ume, they are given x, y and z value based on
their sequence in the volume. While this gives
a unique index number for each voxel, it also
makes it easier to find the adjacent voxels.

self.x = int
self.y = int
self.z = int
self.index = self.x, self.y, self.z

This attribute creates the visual Rhino interface
representation of the voxel.

self.vox = rg.Box()

If the voxel represents void this value is set to
False, otherwise it is set to True.

self.active = bool

If the voxel’s center is inside the support region
this value is set to True, otherwise False.

self.support = bool

This attribute recieves the global coordinates of
the center of the voxel.

self.center = rg.Point3d()

This value shows the voxels adjacent to the giv-
en voxel as a list of six booleans. The voxels are
checked based on their self.index and if their
self.Active Is true depending on their location it
changes that item in the list to true or false.
Item 0 corresponds to x-1
Item 1 corresponds to y-1
Item 2 corresponds to x+1
Item 3 corresponds to y+1
Item 4 corresponds to z+1
Item 5 corresponds to z-1

self.adjacency=[bool,bool,bool,bool,bool,bool]

Axial force values obtained from Karamba3D
on the beams connected to the voxel assigned
to the voxel as shown below

self.totalForceX = float
self.totalForceY = float
self.totalForceZ = float

The values received from axial values are di-
vided into cross section area of the beams to
receive total stress values on each axes.
self.totalStressX = float
self.totalStressY = float
self.totalStressZ = float
self.totalStress = self.totalStressX
	 + self.totalStressY + self.totalStressZ

IV. III. III.III CUSTOM VOXEL CLASS ATTRIBUTES

Figure 4.13: Voxel visual representation

78

IV. III. III. III. GENERAL WORKFLOW DIAGRAM

Figure 4.14: General workflow diagram

design
area

voxel
resolution

removed
area

support
areas

voxelization line to
beam

lines for
beams&points

for support

custom
cross-section

loads

support pts

locating
distributed

load

finite
element
model

force to
voxel

custom
 material

Number of
Voxels Remove

voxel
remove

number of
iteration

voxel to
mesh mesh

01 02

03

04 05 06

79

design
area

voxel
resolution

removed
area

support
areas

voxelization line to
beam

lines for
beams&points

for support

custom
cross-section

loads

support pts

locating
distributed

load

finite
element
model

force to
voxel

custom
 material

Number of
Voxels Remove

voxel
remove

number of
iteration

voxel to
mesh mesh

01 02

03

04 05 06

00 REFERENCE NO. FOR APPENDIX

PYTHON

KARAMBA 3D COMPONENT

MANUAL INPUT

80

IV. III. III. IV. LOW RESOLUTION ITERATIONS

IV. III. III.II LOOPING

Using Karamba3D plugin for FEM, even though
Karamba3D’s library partially accessible, it was
not very easy to navigate through as there is
no real documentation of it. Within the given
time, desired functions were not able to figured
out and therefore the looping had to be done
manually.

The data was collected at the end of the line
through Grasshopper data component. The
Data was internalized and re-plugedin at the
beginning of the script.

Figure 4.15: Low Resolution iterations of the
code

Voxels Removed each Iteration = 10
No of Iterations = 13

81

IV. III. III.III SINGLE VOXELS

After a number of iterations, it was observed
that there were a number of individual voxels
that were remaining outside the main body.
This resulted in individual beams floating in
space without any support and causing the
analysis to be wrong. In order prevent this prob-
lem, after each iteration a check point was
created for each voxel using Depth First Search
(DFS) algorithm using the beams as edges and
voxels as vertices. This way, after each iteration,
if there is a voxel that is not connected to the
first support, that voxel was removed from the
iteration.

Figure 4.16: Low Resolution iterations of the
code fixed with DFS

Voxels Removed each Iteration = 10
No of Iterations = 16

82

Figure 4.17: Grasshopper interface of the code

Voxels Removed each Iteration = 10
No of Iterations = 16

IV. III. III. IV. GRASSHOPPER SCREENSHOT

83

84

V. CONCLUSION

85

V. I. INTRODUCTION

The main objective followed by the secondary
objective of this project were proposed in chap-
ter I. III. Reseach Objective repeated here as
follows:

to develop a computational approach to opti-
mize material uses of the construction materials
-earth and bioplastics- in response to structural
requirements.

In pursuance of the main objective, following
research questions as proposed in chapter I.IV.
Research Questions will be answered in this
chapter, followed by further recommendations.

1. How to develop building unit forms for bioplas-
tics and earth in consideration of the material
properties?

2. How to compute an architectural form in
consideration of the building units and material
performance of the units?

3. How to optimize material use in the given de-
sign problem?

86

V. II. CONCLUSION

1. How to develop building unit forms for bioplas-
tics and earth in consideration of the material
properties?

BIOPLASTICS

The design of the bioplastic elements followed a
modular approach. They are dimensioned with
the assumption of a mud substructure. There-
fore, the unit dimensions were decided with
potential brick forms and dimensions in mind.
Furthermore, the elements are designed to have
joint locations implemented in the design. Final-
ly, the geometry of the panels was chosen to be
triangular in order to be adjustable to potential
curvatures of the design.

In order to determine the most suitable recipe
for the bioplastic units four different recipes went
through tensile testing. As a result, Type 04 recipe
was chosen to be the most suitable recipe for
the elements. This recipe requires 1 g of glycer-
ine, 50 g of water and 23 g of gelatine. With this
recipe one can achieve tensile strength of 32.71
MPa, yield strength of 33.59 MPa and Young’s
Modulus of 11.41 MPa. As a reference, accord-
ing to [10] general purpose unfilled Polylactide
(PLA) has the tensile strength of 47-70 MPa, Yield
Strength of 55-72 MPa and Young’s Modulus of
3.3-3.6 GPa. Please refer to Chapter III for more
detailed analysis of this process.

During the fabrication of the samples for the
tensile test, it is observed that the bioplastic
material is subject to significant shrinkage once
it’s removed from the mould to cure. This pro-
cess requires additional framing of the element
during the curing process to keep the element
in tension for maintaining the desired form. This
behaviour of the material heavily influenced the
design of the bioplastic element. Deformation
still occurs during the curing process, however
when the element is tensioned intentionally,
this deformation becomes advantageous as
the shrinkage causes a level of curvature which
increases the area moment of inertia of the ele-
ment. For further explanation of the fabrication
process and its influence on the form, please
refer to chapter IV. II. Unit / Joint Design.

As mentioned before, the joint locations were

implemented in the element design. While the
joint design was only left speculative, it’s de-
sign can be seen in chapter IV. II. III. Assembly.
This joint, depending on the load case, can be
made out of steel, PLA or recycled plastics.

ADOBE BRICKS

This project did not focus heavily on adobe part
of materiality. All the assumptions regarding the
adobe was derived from the literature research.

As a result, this project proposes to use an adjust-
able mould for adobe bricks that will follow the
curvy form of the bus stop. The mould expected
to have two parallel edges with changing an-
gles on the other two edges. This proposal was
considered due to symmetrical form of the bus
stop design. This form would require the each
brick to be produced at least twice. However,
this proposal was only remained in theory and
never been tried to be actually implemented
into the form.

87

BIOPLASTICS

Bioplastics of this kind is recently introduced to
the design world. While it’s exciting to be able to
make bioplastics in your kitchen, there are also
quite a field to explore.

There needs to be further research on what kind
of biodegradable additives could be used with
this material to increase its mechanical proper-
ties. Furthermore, currently this material is very
weak against UV and water as well as being
highly flammable. There are some research on
additives to increase its water resistance includ-
ing beeswax and gum arabic. However, I hav-
en’t encountered anything in regards to UV and
fire protection.

As described throughout the report, these bi-
oplastics are 4D materials, meaning that they
change their form over time. A detailed inves-
tigation into how 4D materials in general can
influence architectural design and how time
specifically influence bioplastic’s form could be
beneficial for the further use of this material in
architecture. One are in particular could be the
influence of deformation into structural behav-
iour and if this can be manipulated intentionally
to achieve desired structural behaviour.

In regards to specific panel design of this pro-
ject, further structural tests could be run to un-
derstand the scalability of the material. Different
joinery designs could be proposed.

For the implementation of this design into a com-
putational design, a script could be developed
to create the panelization automatically.

ADOBE BRICKS

On the adobe side, a script can also be devel-
oped for adobe placement. For that, the mesh-
ing script could be used as the base.

Further research into adjustable brick mould
could be useful for this and other projects. In
relation to adjustable mould, a script could be

FURTHER RECOMMENDATIONS

developed to reduce the variety of unique brick
forms to increase the pace of the production,
as changing the mould would increase the pro-
duction time.

Finally, it would be interesting to control biode-
gradably, and design the structure to control
biodegredation.

88

2. How to compute an architectural form in
consideration of the building units and material
performance of the units?

The form in this project could be divided into
two parts. First is the rough design area to be
optimized, and second is the form after the op-
timization process. This chapter will focus on the
former and the next chapter will be focusing on
the latter.

Determining the rough design area consists of
five main aspects; overall rough design area,
support locations, material properties, void re-
gions and load cases. All these five aspects are
determined by the designer, based on the pro-
gram of the assignment and general material
behaviour.

To determine these three aspects, a brief in-
vestigation to the existing bus stop design was
conducted. This analysis informed the design
in terms of overall size and the programmatic
requirements of the structure. Depending on
the location, a single bus stop size can vary be-
tween 2 x 3 m and 2 x 4 m. Three main elements
stood out in all the sample bus stops; a canopy,
a bench and a vertical surface to display the
bus schedule.

Following this analysis, the footprint of the struc-
ture was determined to be 2 x 4 m. Unlike typical
rectangular bus stops, this structure was de-
signed to be triangular through its support points.
This decision was made for aesthetical reasons
while still creating a modular form. The bus stops,
depending on its location may serve one side or
either side of the sidewalk, and these bus stops
can be used either individually or stacked next
to each other facing both sides of the sidewalk.

Finally, there were two load cases assigned to
the structure. One is the self-load of adobe and
the other is the distributed load of bioplastic
panels across the structure. This way, while the
panels create canopy for people where the
adobe is absent, they also create canopy for
adobe where it’s present.

V. II. II.FORM

The proposed form requires strong bracing at
the support points. Therefore, the seating areas
are intentionally placed to serve this purpose.
This way a program requirement was provided
while serving a structural purpose.

Finally, there were two load cases assigned to
the structure. One is the self-load of adobe and
the other is the distributed load of bioplastic
panels across the structure. This way, while the
panels create canopy for people where the
adobe is absent, they also create canopy for
adobe where it’s present.

89

3. How to optimize material use in the given de-
sign problem?

Among many topology optimization methods,
this project chose to apply Mattheck’s Soft-Kill
Optimization (SKO) [15],[18]. This decision made
both for conceptual and practical reasons.

Conceptually it works because this project start-
ed as a fascination towards natural algorithms,
and Mattheck’s method does exactly that. He
derives the SKO method based on his observa-
tions on bones and the CAO method on trees
[15],[18].

Practically it was also desirable as it is a fairly
intuitive optimization method and compare to
most optimization methods it’s easier to apply.

V. II. III. OPTIMIZATION

90

Optimization Method:
This project used SKO and CAO method for
topology and shape optimization. Alternative
optimality criteria methods such as SIMP or oth-
er heuristic methods such as ESO or BESO could
result in more optimal forms – higher structural
performance with less amount of material.

Checkerboard filter:
Adding a checkerboard filter as discussed in
chapter II. III. I. II ESO & BESO, could improve the
results of the topology optimization and would
generate a mesh that is more suitable for shape
optimization.

Structural Analysis:
This project used Karamba 3D plugin for Grass-
hopper as the FEM and FEA. Further structural
analysis and optimization could be achieved
with more advanced FE softwares.

Topology Optimization as a Design Method:
This is the approach I find the most fascinating.
Either on computer or on Virtual Reality, a design
process could be created using voxelation and
live FEM. In this scenario, you will be facing the
the design area and that would be filled with
voxels. You can start carving spaces in this do-
main and you would start seeing the stress lines,
which would help you make intuitive decisions
as you carve interior spaces in the voxels.

In the traditional design process, our designs in-
crease in scale as the design starts getting more
details. This change in scale could be achieved
by decreasing the voxel size. This method can
create a new subtractive approach to the de-
sign process. A script or even a computer pro-
gram can be designed for this purpose.

FURTHER RECOMMENDATIONS

91

Figure 5. 1: Imagination of a future application

92

V. IV. REFLECTION

As part of Sustainable Graduation Studio gradu-
ation studio, my project was focusing on Structur-
al Mechanics and Design Informatics. The main
focus of this project was to develop a compu-
tational approach to optimize material uses of
the construction material -earth and bioplastics
in response to structural requirements. Therefore,
the computational approach was addressing
the Design Informatics while material properties
and topological optimizations were addressing
the structural mechanics topics.

The research approach did not work out as
smoothly as I was hoping. Not every code I
wrote worked out, and I had to change my ap-
proach many times which caused me to waste
a lot of time, even though those times spent
were valuable later as I get better and faster
at writing codes. However, I believe I get to the
point I aimed for, but I didn’t have enough time
to explore my arrival point. The design was the
process for the research. Therefore, the design
was not the main goal but was the enabler of
the learning process.

Many of the aspects of the project is experimen-
tal. Therefore, the project itself is not a product
that can be readily available for public or the
practice of architecture. However, many of the
codes, tests and findings could be applied to
further research within the practice. The project-
ed innovation has been achieved on the theo-
retical level, and proof of concept level. How-
ever, the innovation wasn’t ready to be used in
practice.

The project contributes to different aspects of
sustainable development. On the material end
of the project, the production of a panel out of
bioplastics was fairly new to the field of architec-
ture. However, the bioplastic panel is not devel-
oped to be an off-the-shelf product. It still needs
serious further research to be implemented in a
larger scale. The use of topology optimization is
nothing new in engineering and architecture.
However, it’s implementation into design pro-
cess in architecture is not as common. Typically,
these processes added on to the design after
the design is established. As a result, the project
does not propose an ultimate answer or solution
to use of biodegradable materials in architec-

ture or reducing material use by topology op-
timization in design, it does contribute a new
element into the pool of research for the future
researchers to move forward. The project didn’t
necessarily focus on socio-cultural aspects of
architecture, however it’s positive impact on
environment can be interpreted as ethical im-
pact. The biggest moral issue I was confronted
with was the use of edible materials. However,
I still believe it’s more acceptable to use edible
materials, in a country where there is already
plenty of food wasted, than using materials that
are essentially bad for the environment, the ori-
gin of food.

93

94

VI. TERMINOLOGY

Biobased: “The term ‘biobased’ means that the
material or product is (partly) derived from bio-
mass (plants). Biomass used for bioplastics stems
from e.g. corn, sugar cane, or cellulose” [16].

Biodegradable: “Biodegradation is a chemical
process during which micro-organisms that are
available in the environment convert materials
into natural substances such as water, carbon
dioxide, and compost (artificial additives are
not needed). The process of biodegradation
depends on the surrounding environmental
conditions (e.g. location or temperature), on
the material and on the application.” [16].

Checkerboard problem: “A checkerboard is
defined as a periodic pattern of high and low
values of Pseudo-densities...arranged in a fash-
ion of checkerboards. This behaviour is undesira-
ble as it is the result of a numerical instability and
does not correspond to an optimal distribution
of material. The checkerboards possess artificial-
ly high stiffness, and also such a configuration
would be difficult to manufacture.” [7].

Mises Stress: “where the stress of one element,
σe

υm , is compared with the maximum stress of
the whole structure σmax

υm”[3].

95

96

VII. REFERENCES

[1] G. Minke, Building with Earth. Birkhaeuser, 2006.
[2] J. D. Deaton and R. V. Grandhi, “A survey of structural and multidisciplinary continuum topology
optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, no. 1, pp. 1–38, 2014.
[3] F. A. Gonçalves, “Introduction to Structural Optimization using the ESO and BESO Evolutionary
Methods,” 2018.
[4] Margaret Dunne, “Bioplastic Cook Book,” 2018. [Online]. Available: https://issuu.com/nat_arc/
docs/bioplastic_cook_book_3. [Accessed: 27-Mar-2019].
[5] Kwong Oi-Ying, BIO-PLASTIC HANDBOOK. 2011.
[6] R. Rael, Earth Architecture, 1st Editio. New York: Princeton Architectural Press New York, 2009.
[7] A. Shukla, A. Misra, and S. Kumar, “Checkerboard Problem in Finite Element Based Topology
Optimization,” Int. J. Adv. Eng. Technol., 2013.
[8] O. Sigmund, “A 99 line topology optimization code written in matlab,” Struct. Multidiscip. Optim.,
2001.
[9] B. J. Goodno and J. M. Gere, “Tension, Compression, and Shear,” in Mechanics of Materials,
Ninth Edit., Cengage Learning, 2017.
[10] “CES Edupack 2018.” Granta, Cambridge, 2018.
[11] G. Minke, “Working with Earthen Blocks,” in Building with Earth, Birkhaeuser, 2006.
[12] M. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications. Berlin:
Springer International Publishing, 2003.
[13] O. M. Querin, A. Cristina, and P. Marti, Topology Design Methods for Structural Optimization.
Academic Press, 2017.
[14] A. R. Bagheri, C. Laforsch, A. Greiner, and S. Agarwal, “Fate of So-Called Biodegradable Poly-
mers in Seawater and Freshwater,” Glob. Challenges, vol. 1, no. 4, p. 1700048, 2017.
[15] C. Mattheck, A. Baumgartner, D. Gräbe, and M. Teschner, “Design in nature,” Struct. Eng. Int. J.
Int. Assoc. Bridg. Struct. Eng., 1996.
[16] “What are bioplastics?”
[17] G. Minke, “The Properties of Earth as a Building Material,” in Building with Earth, Birkhaeuser,
2006.
[18] A. Baumgartner, L. Harzheim, and C. Mattheck, “SKO (Soft Kill Option): The Biological Way to
Find an Optimum Structure Topology,” Int. J. Fatigue, vol. 14, no. 6, pp. 387–393, 1992.
[19] J. Lunt, “Large-scale production, properties and commercial applications of polylactic acid
polymers,” Polym. Degrad. Stab., vol. 59, no. 1–3, pp. 145–152, Jan. 1998.
[20] G. Minke, “Weather Protection of Loam Surfaces,” in Building with Earth, Birkhaeuser, 2006.
[21] J. Viladrich, Bioplastic - Tools and Recipes. 2014.
[22] H. Behrooz and E. Hinton, Homogenization and structural topology optimization: theory, prac-
tice and software. London: Springer International Publishing, 1999.
[23] “SimpleShellEso.” Karamba3D.
[24] “Karamba3D 1.1.0 Hacker’s Essentials.” Karamba3D. https://www.karamba3d.com/download/
[25] J. S. Rao, Simulation Based Engineering in Solid Mechanics. .

97

[1] G. Minke, “Working with Earthen Blocks,” in Building with Earth, Birkhaeuser, 2006.
[2] E. Zakharov, Transparent glass with clean mineral water isolated on white background. 2019.
[3] Samsung CTR164NC01 57.5cm 4 Zone Electric Cooktop. .

IMAGES

98

VIII. LIST OF FIGURES

Figure 1.1 The map of the site, the base image is taken from Google Maps and edited by the
author to mark the proposed project site and the major landmarks around it. 13
Figure 2.1: Typical moulds examples for adobe [1] 19
Figure 2.2:”The best-known press worldwide in the CINVA Ram, developed in Colombia by the
Chilean engineer Ramirez”[1] 19
Figure 2.3: Bioplastic chart based on biobased and biodegradability of traditional plastics. Re-
drawn by the author based on the graph provided in [14] 21
Figure 2.4: Adaptive growth redrawn from [15] 26
Figure 3.1: Specimen dimensions 29
Figure 3.2: Vivak mould for bioplastics 29
Figure 3.3: Tools and ingredients used 30
Figure 3.4: First six specimens that failed to meet the requirements 33
Figure 3.5: Some of the specimens as they are drying and curing in the frames. 35
Figure 3.6: The specimens [07, 26, 27, 28, 29] before and after 38
Figure 3.7: The specimens [08, 18, 19, 20, 21] before and after 40
Figure 3.8: The specimens [10, 22, 23, 24] before and after 42
Figure 3.9: The specimens [13, 14, 15, 16, 17] before and after 44
Figure 3.10: Tensile strength test at 3mE TU Delft 46
Figure 4.1: Handsketch 49
Figure 4.2: Existing bus station analysis 50
Figure 4.3: Proposed conceptual design 51
Figure 4.4: Conceptual computational workflow 52
Figure 4.5: Panelization options 55
Figure 4.6: Panel fabrication process 56
Figure 4.7: Fabricated panels 58
Figure 4.8: Panel assembly sequence 60
Figure 4.9: Panel assembly 61
Figrue 4.10: Panels to be tested 62
Figure 4.11: SKO flow diagram 66
Figure 4.12: SKO Grasshopper screenshot 68
Figure 4.13: Voxel visual representation 77
Figure 4.14: General workflow diagram 78
Figure 4.15: Low Resolution iterations of the code 80
Figure 4.16: Low Resolution iterations of the code fixed with DFS 81
Figure 4.17: Figure 4.17: Grasshopper interface of the code 82
Figure 5. 1: Imagination of a future application 90

99

100

IX.	APPENDIX A: STRESS-STRAIN

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25 30

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 07)

0

0,5

1

1,5

2

2,5

3

3,5

0 5 10 15 20 25 30 35 40 45

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 08)

101

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 09)

0

2

4

6

8

10

12

14

16

18

20

0 0,5 1 1,5 2 2,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 10)

102

0

1

2

3

4

5

6

7

8

9

0 0,5 1 1,5 2 2,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 12)

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 6

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 13)

103

0

5

10

15

20

25

30

35

40

45

0 0,5 1 1,5 2 2,5 3 3,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 14)

0

10

20

30

40

50

60

0 0,5 1 1,5 2 2,5 3 3,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 15)

104

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 16)

0

5

10

15

20

25

30

35

40

45

0 0,5 1 1,5 2 2,5 3

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 17)

105

0

5

10

15

20

25

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 18)

0

2

4

6

8

10

12

14

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 19)

106

0

2

4

6

8

10

12

14

16

18

0 0,5 1 1,5 2 2,5 3 3,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 20)

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 21)

107

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 22)

0

5

10

15

20

25

30

35

0 0,5 1 1,5 2 2,5 3 3,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 23)

108

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 24)

0

0,5

1

1,5

2

2,5

3

3,5

0 5 10 15 20 25 30

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 26)

109

0

1

2

3

4

5

6

7

8

0 0,5 1 1,5 2 2,5 3 3,5E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,

δ
e

 (
M

P
a

)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 27)

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12 14

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 28)

110

0

1

2

3

4

5

6

7

8

0 0,5 1 1,5 2 2,5 3 3,5

E
n

g
in

e
e

ri
n

g
 S

tr
e

ss
,
δ

e
 (

M
P

a
)

Engineering Strain, εe (%)

STRESS - STRAIN (SPECIMEN 29)

111

112

XI.	APPENDIX B: FIRST APPROACH CODE

###CREATE MESH###
import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import math

#create class for vertex points
class Vert:
 def __init__(self):
 self.kx = None
 self.ky = None
 self.k = None
 self.p = None
 def setKey(self,x,y):
 self.kx = x
 self.ky = y
 self.k = (self.kx, self.ky)
 def setP(self,a):
 self.p = a
 def getP(self):
 return self.p
 def getKey(self):
 return self.k
 def getRevKey(self):
 return (self.ky,self.kx)
 def getKX(self):
 return self.kx
 def getKY(self):
 return self.ky

get brep edges
brepe = brep.Curves3D

#pick the longest edge
lenl = []
for i in brepe:
 l = rg.Curve.GetLength(i)
 lenl.append(l)
lenl.sort()
long = lenl[len(lenl)-1]
for i in brepe:
 if i.GetLength() == long:
 lngst = i

#find the support points
a = brep.Edges
supportp = []
for i in range(a.Count):
 x = a.Item[i]
 y = x.EndVertex
 z = y.Location
 supportp.append(z)

#create plane from support points
mpl = rg.Plane(supportp[0],supportp[1],sup-
portp[2])

#create brick locations
lenlngst = rg.Curve.GetLength(lngst)
nob = math.floor(lenlngst/(refine*bw))
eqdiv = lenlngst/nob
plocs = rg.Curve.DivideEquidistant(lngst, eqdiv)

#project points onto plane
ptproject = []
for i in plocs:
 a = rg.Point3d(i.X, i.Y, mpl.OriginZ)
 ptproject.append(a)

#create contours for bricks
bricklines = []
for i in ptproject:
 a = rg.Line(i, 2*mpl.YAxis)
 bricklines.append(a)

#project lines to brep
procrvs = []
for i in bricklines:
 icrv = rg.Line.ToNurbsCurve(i)
 procrv = rg.Curve.ProjectToBrep(icrv,brep,rg.
Vector3d(0,0,-1),0.01)
 if len(procrv) ==1:
 procrvs.append(procrv[0])

#create pt grid
plocs2 = []
verts = []
listnob = []
sup = []
for x,i in enumerate(procrvs):
 leni = rg.Curve.GetLength(i)
 nob2 = math.floor(leni/(refine*bh))
 eqdiv2= leni/nob2
 ploc2 = rg.Curve.DivideEquidistant(i,eqdiv2)
 listnob.append(nob2)
 for y,j in enumerate(ploc2):
 plocs2.append(j)
 vert = Vert()
 vert.setKey(x,len(ploc2)-1-y)
 vert.setP(j)
 verts.append(vert)
 if x == 0 and y == len(ploc2)-1:
 sup.append(vert.getP())

MESH CODE

113

 if x == len(procrvs)-1 and y== len(ploc2)-1:
 sup.append(vert.getP())
 if x == math.floor(nob/2-1) and y == 0:
 sup.append(vert.getP())
 if x == math.ceil(nob/2-1) and y == 0:
 sup.append(vert.getP())

#create mesh
mesh = rg.Mesh()

for i in verts:
 x = i.getKX()
 y = i.getKY()
 a = i.getP()
 av = mesh.Vertices.Add(a)
 for j in verts:
 if j.getKX() == x+1 and j.getKY() == y:
 b = j.getP()
 bv = mesh.Vertices.Add(b)
 for k in verts:
 if k.getKX() == x+1 and k.getKY() ==y+1:
 c = k.getP()
 cv = mesh.Vertices.Add(c)
 for m in verts:
 if m.getKX() == x and m.getKY() == y+1:
 d = m.getP()
 dv = mesh.Vertices.Add(d)
 face = mesh.Faces.AddFace(av,bv,cv,dv)

114

XII.	APPENDIX C: SECOND APPROACH CODES
01 VOXELIZATION

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import math
import Rhino
import Grasshopper

bbox = rg.Brep.GetBoundingBox(brep, rg.Plane.WorldXY)
mesh = rg.Mesh()

#find the right index
def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

#Find the Length, Widhth, and Height of the bounding box of the Brep
w = bbox.Diagonal.X
l = bbox.Diagonal.Y
h = bbox.Diagonal.Z

#Divide the 3 axis of the boudning box by the dimensions of the voxel
#This will give you a U, V, W value along the bounding box
#Turn this value into an integer by finding the next biggest integer (roudingUp)
xr = int(math.ceil (w/voxres))
yr = int(math.ceil (l/voxres))
zr = int(math.ceil (h/voxres))

#create a container for your point list and distance list
points = []
distList = []

create a base plane for all the geometry
bp = bbox.Min
bXV = rg.Vector3d.XAxis
bYV = rg.Vector3d.YAxis

bPlane = rg.Plane(bp, bXV, bYV)

Due to the fact that all voxels are based on the center points, we need
to create a shift towards the voxel’s center, which is half of each dimension
xShift = (w/xr)/2
yShift = (l/yr)/2
zShift = (h/zr)/2

#create voxels
voxs = [] #container for vox class
voxsbox = [] #container for instance.vox attribute.
for i in range (0,xr):
 for j in range(0,yr):
 for k in range(0,zr):
 vox = Vox()
 x = i*(w/xr)

115

 y = j*(l/yr)
 z = k*(h/zr)
 vox.setVox(rg.BoundingBox(x+bbox.Min.X,y+bbox.Min.Y,z+bbox.Min.Z,x+(w/xr)+bbox.
Min.X,y+(l/yr)+bbox.Min.Y,z+(h/zr)+bbox.Min.Z))
 vox.setIndex(i,j,k)
 vox.setCenter(vox.getVox().Center)
 voxs.append(vox)
 voxsbox.append(vox.getVox())

#pick voxels in the support area
supports = []

for i in support:
 for j in voxs:
 a = rg.Brep.IsPointInside(i,j.getCenter(),0.001, False)
 if a == True:
 j.setSupport(True)
 j.setActive(True)
 supports.append(j)
 else:
 if j.getSupport() != True:
 j.setSupport(False)

#pick voxels in the clear area
for i in voxs:
 a = rg.Brep.IsPointInside(remove,i.getCenter(),0.001,False)
 if a == True:
 i.setActive(False)

voxsactive =[]
for i in voxs:
 if i.getActive() != False:
 i.setActive(True)
 voxsactive.append(i.getVox())

116

02 Lines For Beams&Points For Support

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import math
import Rhino
import Grasshopper
from VoxClass import Vox

for i in voxs:
 print i.getActive()

#find the right index
def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

#find the adjacencies
for a,i in enumerate(voxs):
 x = i.getX()
 y = i.getY()
 z = i.getZ()

 if x == 0:
 i.setAdjacency(0,False)
 if x+1 < xr:
 next = findIndex(x+1,y,z)
 if voxs[next].getActive() == False:
 i.setAdjacency(2,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(0,False)
 else:
 voxs[next].setAdjacency(0,True)
 else:
 i.setAdjacency(2,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(0,False)
 else:
 voxs[next].setAdjacency(0,True)
 if x == xr-1:
 i.setAdjacency(2,False)

 if y == 0:
 i.setAdjacency(1,False)
 if y+1 < yr:
 next = findIndex(x,y+1,z)
 if voxs[next].getActive() == False:
 i.setAdjacency(3,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(1,False)
 else:
 voxs[next].setAdjacency(1,True)
 else:

XII.	APPENDIX C: SECOND APPROACH CODES

117

 i.setAdjacency(3,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(1,False)
 else:
 voxs[next].setAdjacency(1,True)
 if y == yr-1:
 i.setAdjacency(3,False)

 if z == 0:
 i.setAdjacency(5,False)
 if z+1 < zr:
 next = findIndex(x,y,z+1)
 if voxs[next].getActive() == False:
 i.setAdjacency(4,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(5,False)
 else:
 voxs[next].setAdjacency(5,True)
 else:
 i.setAdjacency(4,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(5,False)
 else:
 voxs[next].setAdjacency(5,True)
 if z == zr-1:
 i.setAdjacency(4,False)

#create lines for beams
lines = []
linesInds = []
linesPts = []
for x,i in enumerate(voxs):
 if i.getActive() == True:
 x = i.getX()
 y = i.getY()
 z = i.getZ()
 if x<xr-1 and y<yr-1 and z<zr-1:
 next1 = findIndex(x+1,y,z)
 next2 = findIndex(x,y+1,z)
 next3 = findIndex(x,y,z+1)
 if voxs[next1].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next1].getIndex()))
 else:
 pass
 if voxs[next2].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next2].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next2].getIndex()))
 else:

118

 pass
 if voxs[next3].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next3].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next3].getIndex()))
 else:
 pass
 if x == xr-1 and y <yr-1 and z<zr-1:
 next2 = findIndex(x,y+1,z)
 next3 = findIndex(x,y,z+1)
 if voxs[next2].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next2].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next2].getIndex()))
 else:
 pass
 if voxs[next3].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next3].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next3].getIndex()))
 else:
 pass
 if x<xr-1 and y == yr-1 and z<zr-1:
 next1 = findIndex(x+1,y,z)
 next3 = findIndex(x,y,z+1)
 if voxs[next1].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next1].getIndex()))
 else:
 pass
 if voxs[next3].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next3].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next3].getIndex()))
 else:
 pass
 if x <xr-1 and y<yr-1 and z == zr-1:
 next1 = findIndex(x+1,y,z)
 next2 = findIndex(x,y+1,z)
 if voxs[next1].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next1].getIndex()))
 else:
 pass
 if voxs[next2].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next2].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next2].getIndex()))
 else:

02 Lines For Beams&Points For Support
XII.	APPENDIX C: SECOND APPROACH CODES

119

 pass

 if x == xr-1 and y == yr-1 and z < zr-1:
 next1 = findIndex(x,y,z+1)
 if voxs[next1].getActive() != False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(),voxs[next1].getIndex()))
 else:
 pass

 if x == xr-1 and y < yr-1 and z == zr-1:
 next1 = findIndex(x,y+1,z)
 if voxs[next1].getActive() != False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(),voxs[next1].getIndex()))
 else:
 pass

 if x < xr-1 and y == yr-1 and z == zr-1:
 next1 = findIndex(x+1,y,z)
 if voxs[next1].getActive() != False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(),voxs[next1].getIndex()))
 else:
 pass

 if x == xr-1 and y == yr-1 and z == zr-1:
 pass
 else:
 pass

supportpts = []
for i in voxs:
 if i.getSupport() == True:
 pt = i.getCenter()
 supportpts.append(pt)

120

def dfs(graph, start):
 visited, stack = set(), [start]
 while stack:
 vertex = stack.pop()
 if vertex not in visited:
 visited.add(vertex)
 stack.extend(graph[vertex] - visited)
 return visited

def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

graphlist = []

for i in voxs:
 if i.getActive() == True:
 edge = []
 index = i.getIndex()
 edge.append(index)
 for j in lns:
 if index in j:
 if j[0] == index:
 edge.append(j[1])
 else:
 edge.append(j[0])
 graphlist.append(edge)

refpts = []
for i in voxs:
 if i.getSupport() == True:
 refpts.append(i.getIndex())
print len(refpts)

graph = {}
for i in graphlist:
 a = i.pop(0)
 graph.update({a : set(i)})

newInds = dfs(graph,refpts[1])

for i in newInds:
 x,y,z = i
 ind = findIndex(x,y,z)
 voxs[ind].setActive(True)

print (newInds)

#create lines for beams
lines = []

02 Lines For Beams&Points For Support Part2
XII.	APPENDIX C: SECOND APPROACH CODES

121

linesInds = []
linesPts = []
for x,i in enumerate(voxs):
 if i.getActive() == True:
 x = i.getX()
 y = i.getY()
 z = i.getZ()
 if x<xr-1 and y<yr-1 and z<zr-1:
 next1 = findIndex(x+1,y,z)
 next2 = findIndex(x,y+1,z)
 next3 = findIndex(x,y,z+1)
 if voxs[next1].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next1].getIndex()))
 else:
 pass
 if voxs[next2].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next2].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next2].getIndex()))
 else:
 pass
 if voxs[next3].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next3].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next3].getIndex()))
 else:
 pass
 if x == xr-1 and y <yr-1 and z<zr-1:
 next2 = findIndex(x,y+1,z)
 next3 = findIndex(x,y,z+1)
 if voxs[next2].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next2].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next2].getIndex()))
 else:
 pass
 if voxs[next3].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next3].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next3].getIndex()))
 else:
 pass
 if x<xr-1 and y == yr-1 and z<zr-1:
 next1 = findIndex(x+1,y,z)
 next3 = findIndex(x,y,z+1)
 if voxs[next1].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next1].getIndex()))

122

 else:
 pass
 if voxs[next3].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next3].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next3].getIndex()))
 else:
 pass
 if x <xr-1 and y<yr-1 and z == zr-1:
 next1 = findIndex(x+1,y,z)
 next2 = findIndex(x,y+1,z)
 if voxs[next1].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next1].getIndex()))
 else:
 pass
 if voxs[next2].getActive() !=False:
 line = rg.Line(i.getCenter(),voxs[next2].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(), voxs[next2].getIndex()))
 else:
 pass

 if x == xr-1 and y == yr-1 and z < zr-1:
 next1 = findIndex(x,y,z+1)
 if voxs[next1].getActive() != False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(),voxs[next1].getIndex()))
 else:
 pass

 if x == xr-1 and y < yr-1 and z == zr-1:
 next1 = findIndex(x,y+1,z)
 if voxs[next1].getActive() != False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(),voxs[next1].getIndex()))
 else:
 pass

 if x < xr-1 and y == yr-1 and z == zr-1:
 next1 = findIndex(x+1,y,z)
 if voxs[next1].getActive() != False:
 line = rg.Line(i.getCenter(),voxs[next1].getCenter())
 lines.append(line)
 linesInds.append((i.getIndex(),voxs[next1].getIndex()))
 else:
 pass

02 Lines For Beams&Points For Support Part2
XII.	APPENDIX C: SECOND APPROACH CODES

123

 if x == xr-1 and y == yr-1 and z == zr-1:
 pass
 else:
 pass

print len(newInds)
for i in voxs:
 i.setActive(False)
voxsactive = []
for i in newInds:
 x,y,z = i
 newInd = findIndex(x,y,z)
 voxs[newInd].setActive(True)
 voxsactive.append(voxs[newInd].getVox())

124

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import math
import Rhino
import Grasshopper
import sys
from VoxClass import Vox
import clr

#find the right index
def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

#find the adjacencies
def findAdjacency(voxs):
 for a,i in enumerate(voxs):
 x = i.getX()
 y = i.getY()
 z = i.getZ()
 if x == 0:
 i.setAdjacency(0,False)
 if x+1 < xr:
 next = findIndex(x+1,y,z)
 if voxs[next].getActive() == False:
 i.setAdjacency(2,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(0,False)
 else:
 voxs[next].setAdjacency(0,True)
 else:
 i.setAdjacency(2,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(0,False)
 else:
 voxs[next].setAdjacency(0,True)
 if x == xr-1:
 i.setAdjacency(2,False)
 if y == 0:
 i.setAdjacency(1,False)
 if y+1 < yr:
 next = findIndex(x,y+1,z)
 if voxs[next].getActive() == False:
 i.setAdjacency(3,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(1,False)
 else:
 voxs[next].setAdjacency(1,True)
 else:
 i.setAdjacency(3,True)
 if i.getActive() == False:

03 Locating Distributed Load
XII.	APPENDIX C: SECOND APPROACH CODES

125

 voxs[next].setAdjacency(1,False)
 else:
 voxs[next].setAdjacency(1,True)
 if y == yr-1:
 i.setAdjacency(3,False)
 if z == 0:
 i.setAdjacency(5,False)
 if z+1 < zr:
 next = findIndex(x,y,z+1)
 if voxs[next].getActive() == False:
 i.setAdjacency(4,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(5,False)
 else:
 voxs[next].setAdjacency(5,True)
 else:
 i.setAdjacency(4,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(5,False)
 else:
 voxs[next].setAdjacency(5,True)
 if z == zr-1:
 i.setAdjacency(4,False)

findAdjacency(voxs)
loadvox = []
voxBox = []
for i in voxs:
 if i.getActive() == True:
 if i.getAdjacency()[4] == False:
 loadvox.append(i)
 voxBox.append(i.getVox())

loadedbeams = []
loadedbeamsId = []
for i in loadvox:
 for n,j in enumerate(linesInds):
 x,y,z = i.getIndex()
 xj0, yj0, zj0 = j[0]
 xj1, yj1, zj1 = j[1]
 if i.getIndex() == j[0] and z == zj1:
 print i.getIndex()
 print j
 loadedbeams.append(lines[n])
 loadedbeamsId.append(linesInds[n])
 elif i.getIndex() == j[1] and z == zj0:
 loadedbeams.append(lines[n])
 loadedbeamsId.append(linesInds[n])
 else:
 pass

126

04 Force To Voxel

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import math
from VoxClass import Vox
import clr
clr.AddReferenceToFileAndPath(“C:\Program Files\Rhino 6\Plug-ins\karamba.gha”)
import operator

class Force:
 def __init__(self, force, vox0,vox1):
 self.force = force
 self.vox = vox0
 self.direction = vox1
 self.voxInd = (vox0,vox1)
 self.index = None
 def getForce(self):
 return self.force
 def getVox(self):
 return self.vox
 def getDirection(self):
 return self.direction
 def getVoxInd(self):
 return self.voxInd
 def setIndex(self,x):
 self.index = x
 def getIndex(self):
 return self.index

axialForces0 = axialForces[:len(axialForces)//2]
axialForces1 = axialForces[len(axialForces)//2:]

axialFs0 = [axialForces0[x:x+2] for x in xrange(0,len(axialForces0),2)]
axialFs1 = [axialForces1[x:x+2] for x in xrange(0,len(axialForces1),2)]

axialFs = []
for x,i in enumerate(axialFs0):
 axialF = i+axialFs1[x]
 axialFs.append(axialF)

forces = []
for x,force in enumerate(axialFs):
 a = Force(force[0],lineInds[x][0],lineInds[x][1])
 a.setIndex(x)
 b = Force(force[1],lineInds[x][1],lineInds[x][0])
 b.setIndex(x)
 forces.append(a)
 forces.append(b)

voxsActive = []
for i in voxs:
 if i.getActive() != False:

XII.	APPENDIX C: SECOND APPROACH CODES

127

 voxsActive.append(i)

forcesActive = []
for i in forces:
 for j in voxsActive:
 if i.getVox() == j.getIndex():
 forcesActive.append(i)

voxs_sorted = sorted(voxsActive,key = operator.attrgetter(‘index’))
forces_sorted = sorted(forcesActive,key=operator.attrgetter(‘vox’))

voxForces= []
for i in range(len(voxs_sorted)):
 a = []
 for x,j in enumerate(forces_sorted):
 if j.getVox() == voxs_sorted[i].getIndex():
 a.append(j)
 voxForces.append(a)

def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

totdirs = []
for i in voxForces:
 for j in i:
 xdir = []
 ydir = []
 zdir = []
 totxdir = 0
 totydir = 0
 totzdir = 0
 xa,ya,za = j.getVox()
 xb,yb,zb = j.getDirection()
 index = findIndex(xa,ya,za)
 if ya == yb and za == zb:
 xdir.append(j.getForce())
 if len(xdir) == 1:
 totxdir = -xdir[0]
 elif len(xdir) == 2:
 totxdir = xdir[0] + xdir[1]
 else:
 totxdir = 0
 voxs[index].setTotalForceX(totxdir)
 voxs[index].setTotalStressX(math.pow(crosec,2))
 elif xa == xb and za == zb:
 ydir.append(j.getForce())
 if len(ydir) == 1:
 totydir = -ydir[0]
 elif len(ydir) == 2:
 totydir = ydir[0] + ydir[1]

128

04 Force To Voxel

 else:
 totydir = 0
 voxs[index].setTotalForceY(totydir)
 voxs[index].setTotalStressY(math.pow(crosec,2))
 elif xa == xb and ya == yb:
 zdir.append(j.getForce())
 if len(zdir) == 1:
 totzdir = -zdir[0]
 elif len(zdir) == 2:
 totzdir = zdir[0] + zdir[1]
 else:
 totzdir = 0
 voxs[index].setTotalForceZ(totzdir)
 voxs[index].setTotalStressZ(math.pow(crosec,2))

for i in voxs:
 if i.getActive() !=False:
 if i.getTotalForceX() == None:
 i.setTotalForceX(0)
 if i.getTotalForceY() == None:
 i.setTotalForceY(0)
 if i.getTotalForceZ() == None:
 i.setTotalForceZ(0)
 i.setTotalForce() elif xa == xb and ya == yb:
 zdir.append(j.getForce())
 if len(zdir) == 1:
 totzdir = -zdir[0]
 elif len(zdir) == 2:
 totzdir = zdir[0] + zdir[1]
 else:
 totzdir = 0
 voxs[index].setTotalForceZ(totzdir)
 voxs[index].setTotalStressZ(math.pow(crosec,2))

for i in voxs:
 if i.getActive() !=False:
 if i.getTotalForceX() == None:
 i.setTotalForceX(0)
 if i.getTotalForceY() == None:
 i.setTotalForceY(0)
 if i.getTotalForceZ() == None:
 i.setTotalForceZ(0)
 i.setTotalForce()

XII.	APPENDIX C: SECOND APPROACH CODES

129

130

05 Voxel Remove

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import math
import clr
clr.AddReferenceToFileAndPath(“C:\Program Files\Rhino 6\Plug-ins\karamba.gha”)
import operator
from ForceClass import Force
from VoxClass import Vox

def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

for i in voxs:
 print i.getActive()

actVox = []
for i in voxs:
 if i.getActive() == True and i.getSupport() == False:
 actVox.append(i)

comp_sort = []
comp_sorted = []
comp_sorted0 = []
comp_sorted1 = []
comp_sorted2 = []
comp_sorted3 = []
comp_sorted4 = []

for i in actVox:
 x,y,z = i.getTotalForce()
 if z == 0:
 comp_sorted.append(i)
 if z > 0:
 comp_sorted0.append(i)
 elif x > 0 and y > 0 and z<0:
 comp_sorted1.append(i)
 elif x > 0 or y > 0 and z<0:
 if x > 0:
 comp_sorted2.append(i)
 elif y > 0:
 comp_sorted3.append(i)
 elif x <= 0 and y<=0 and z<=0:
 comp_sorted4.append(i)

comp = sorted(comp_sorted,key = operator.attrgetter(‘totalForceXY’))
comp0 = sorted(comp_sorted0,key = operator.attrgetter(‘totalForceZ’))
comp1 = sorted(comp_sorted1,key = operator.attrgetter(‘totalForceXY’))
comp2 = sorted(comp_sorted2,key = operator.attrgetter(‘totalForceX’))
comp3 = sorted(comp_sorted3,key = operator.attrgetter(‘totalForceY’))
comp4 = sorted(comp_sorted4,key = operator.attrgetter(‘totalForceVect’))

XII.	APPENDIX C: SECOND APPROACH CODES

131

comp_sort.append(comp)
comp_sort.append(comp0)
comp_sort.append(comp1)
comp_sort.append(comp2)
comp_sort.append(comp3)
comp_sort.append(comp4)

voxRemoved = []
count = 0
if count < (NRemove):
 if len(comp_sort[0]) > NRemove:
 for j in range(NRemove):
 comp_sort[0][j].setActive(False)
 voxRemoved.append(comp_sort[0][j])
 count+=1
 elif len(comp_sort[0]) > 0:
 for i in comp_sort[0]:
 i.setActive(False)
 voxRemoved.append(i)
 count+=1
 for j in range(NRemove-len(comp_sort[0])):
 comp_sort[1][j].setActive(False)
 voxRemoved.append(comp_sort[1][j])
 count+=1
 elif len(comp_sort[1]) > NRemove:
 for j in range(NRemove):
 comp_sort[1][j].setActive(False)
 voxRemoved.append(comp_sort[1][j])
 count+=1
 elif len(comp_sort[1]) > 0:
 for i in comp_sort[1]:
 i.setActive(False)
 count+=1
 voxRemoved.append(i)
 for j in range(NRemove-len(comp_sort[1])):
 comp_sort[2][j].setActive(False)
 count+=1
 voxRemoved.append(comp_sort[2][j])
 elif len(comp_sort[2]) > NRemove:
 for j in range(NRemove):
 comp_sort[2][j].setActive(False)
 count+=1
 voxRemoved.append(comp_sort[2][j])
 elif len(comp_sort[2]) > 0:
 for i in comp_sort[2]:
 i.setActive(False)
 count+=1
 voxRemoved.append(i)
 for j in range(NRemove-len(comp_sort[2])):
 comp_sort[3][j].setActive(False)

132

 count+=1
 voxRemoved.append(comp_sort[3][j])
 elif len(comp_sort[3]) > NRemove:
 for j in range(NRemove):
 comp_sort[3][j].setActive(False)
 count+=1
 voxRemoved.append(comp_sort[3][j])
 elif len(comp_sort[3]) > 0:
 for i in comp_sort[3]:
 i.setActive(False)
 count+=1
 voxRemoved.append(i)
 for j in range(NRemove-len(comp_sort[3])):
 comp_sort[4][j].setActive(False)
 count+=1
 voxRemoved.append(comp_sort[4][j])
 elif len(comp_sort[4]) > 0:
 for i in comp_sort[4]:
 i.setActive(False)
 count+=1
 voxRemoved.append(i)
 for j in range(NRemove-len(comp_sort[4])):
 comp_sort[5][j].setActive(False)
 count+=1
 voxRemoved.append(comp_sort[5][j])

compressive = []
compVoxs = []
compInds = []

for i in actVox:
 if i.getActive() == True:
 x,y,z = i.getIndex()
 voxs[findIndex(x,y,z)].setActive(True)
 else:
 x,y,z = i.getIndex()
 voxs[findIndex(x,y,z)].setActive(False)

for i in voxs:
 if i.getActive() == True:
 compressive.append(True)
 compVoxs.append(i.getVox())
 compInds.append(i.getIndex())
 else:
 compressive.append(False)

05 Voxel Remove
XII.	APPENDIX C: SECOND APPROACH CODES

133

134

#find the right index
def findIndex(x,y,z):
 result = int(x*(yr)*(zr) + y*(zr) + z)
 return result

mesh = rg.Mesh()

#find the adjacencies
for a,i in enumerate(voxs):
 x = i.getX()
 y = i.getY()
 z = i.getZ()
 print “x”
 print x
 print “y”
 print y
 print “Z”
 print z

 if x == 0:
 i.setAdjacency(0,False)
 if x+1 < xr:
 next = findIndex(x+1,y,z)
 if voxs[next].getActive() == False:
 i.setAdjacency(2,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(0,False)
 else:
 voxs[next].setAdjacency(0,True)
 else:
 i.setAdjacency(2,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(0,False)
 else:
 voxs[next].setAdjacency(0,True)
 if x == xr-1:
 i.setAdjacency(2,False)

 if y == 0:
 i.setAdjacency(1,False)
 if y+1 < yr:
 next = findIndex(x,y+1,z)
 if voxs[next].getActive() == False:
 i.setAdjacency(3,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(1,False)
 else:
 voxs[next].setAdjacency(1,True)
 else:
 i.setAdjacency(3,True)

06 Voxel To Mesh
XII.	APPENDIX C: SECOND APPROACH CODES

135

 if i.getActive() == False:
 voxs[next].setAdjacency(1,False)
 else:
 voxs[next].setAdjacency(1,True)
 if y == yr-1:
 i.setAdjacency(3,False)

 if z == 0:
 i.setAdjacency(5,False)
 if z+1 < zr:
 next = findIndex(x,y,z+1)
 if voxs[next].getActive() == False:
 i.setAdjacency(4,False)
 if i.getActive() == False:
 voxs[next].setAdjacency(5,False)
 else:
 voxs[next].setAdjacency(5,True)
 else:
 i.setAdjacency(4,True)
 if i.getActive() == False:
 voxs[next].setAdjacency(5,False)
 else:
 voxs[next].setAdjacency(5,True)
 if z == zr-1:
 i.setAdjacency(4,False)

#find boundary voxels
boundaryVoxs = []
for i in voxs:
 if i.getActive() != False:
 count = 0
 for x,j in enumerate(i.getAdjacency()):
 if j == False:
 count+=1
 if count > 0:
 i.setIsEdge(True)
 boundaryVoxs.append(i.getVox())

meshVerts = []
for i in voxs:
 if i.getActive() != False:
 for x,j in enumerate(i.getAdjacency()):
 if j == False:
 if x == 0:
 boxCorners = rg.BoundingBox.GetCorners(i.getVox())
 meshVerts.append(boxCorners[0])
 meshVerts.append(boxCorners[3])
 meshVerts.append(boxCorners[7])
 meshVerts.append(boxCorners[4])
 if x == 1:
 boxCorners = rg.BoundingBox.GetCorners(i.getVox())

136

 meshVerts.append(boxCorners[1])
 meshVerts.append(boxCorners[0])
 meshVerts.append(boxCorners[4])
 meshVerts.append(boxCorners[5])
 if x == 2:
 boxCorners = rg.BoundingBox.GetCorners(i.getVox())
 meshVerts.append(boxCorners[2])
 meshVerts.append(boxCorners[1])
 meshVerts.append(boxCorners[5])
 meshVerts.append(boxCorners[6])
 if x == 3:
 boxCorners = rg.BoundingBox.GetCorners(i.getVox())
 meshVerts.append(boxCorners[3])
 meshVerts.append(boxCorners[2])
 meshVerts.append(boxCorners[6])
 meshVerts.append(boxCorners[7])
 if x == 4:
 boxCorners = rg.BoundingBox.GetCorners(i.getVox())
 meshVerts.append(boxCorners[4])
 meshVerts.append(boxCorners[7])
 meshVerts.append(boxCorners[6])
 meshVerts.append(boxCorners[5])
 if x == 5:
 boxCorners = rg.BoundingBox.GetCorners(i.getVox())
 meshVerts.append(boxCorners[0])
 meshVerts.append(boxCorners[3])
 meshVerts.append(boxCorners[2])
 meshVerts.append(boxCorners[1])

faceVerts = [meshVerts[x:x+4] for x in xrange(0, len(meshVerts), 4)]

for i in faceVerts:
 a = mesh.Vertices.Add(i[0])
 b = mesh.Vertices.Add(i[1])
 c = mesh.Vertices.Add(i[2])
 d = mesh.Vertices.Add(i[3])
 face = mesh.Faces.AddFace(a,b,c,d)

06 Voxel To Mesh
XII.	APPENDIX C: SECOND APPROACH CODES

137

