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Introduction

This thesis is dedicated to the study of a class of probabilistic inequalities,
called Rosenthal inequalities. These inequalities provide two-sided estimates
for the p-th moments of the sum of a sequence of independent, mean zero
random variables, in terms of a suitable norm on the sequence itself. Rosen-
thal inequalities are named after the mathematician H.P. Rosenthal, who first
discovered them for scalar-valued random variables around 1970. The original
version of his result ([121], Theorem 3) reads as follows. If 2 < p < oo and (f;)
is a sequence of independent, mean zero random variables in LP({2), where
(2, F,P) is a probability space, then

(E@f e Cpmax{(glﬁmp);, (imw);},
(13 a]) = g { () (L) )
=1 i=1 i=1

Here ¢, is a constant depending only on p. Rosenthal’s motivation for de-
riving these inequalities was to gain insight into which Banach spaces are
linearly isomorphic to a complemented subspace of an LP-space. Using (0.1),
he showed that the span of a sequence of independent, mean zero random
variables in LP(2) is isomorphic to either [, L?,1? & [P, or a novel space X,
which is nowadays called Rosenthal’s space. The latter space has several inter-
esting properties. For example, it is isomorphic to both a complemented and
an uncomplemented subspace of L?. The space X,, is also important from a
historical perspective. It was the first example of an .Z},-space which cannot
be obtained by taking direct sums of {2, [P, and LP.

Rosenthal’s inequalities soon became a standard tool for probabilists and
were subjected to intensive study. Several authors have investigated the best
constant ¢, appearing in the first inequality of (0.1). The constant ¢, obtained
in the original proof grows exponentially in p as p — oco. It was first determined
by Johnson, Schechtman and Zinn [66] that the optimal order of growth is

(0.1)
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given by t—. Different proofs of this fact are given in [10, 92]. The exact

value of the best constant was subsequently determined in the special case
where the f; are, in addition, symmetric. Let ny be a symmetrized Poisson
random variable with parameter 1 and let g be a standard Gaussian random
variable. It was shown by Utev [137] that ¢, = (E|ns\p)% if p > 4 and by Figiel
et al. [54] that ¢, = (1 +E\g|p)% if 2 < p <4. Of course, c2 = 1.

Rosenthal’s inequalities have been extended in various directions. Soon
after their discovery, Burkholder obtained a generalization in which the se-
quence (f;) is replaced by a martingale difference sequence [27, 29]. These
inequalities are usually called the Burkholder-Rosenthal inequalities. In an-
other direction, several authors have considered versions of (0.1) in which the
LP-norm on Z?zl fi is replaced by the norm of a rearrangement invariant
Banach function space [9, 64, 65].

We shall be interested in extending Rosenthal’s inequalities in two different
directions. In the first part of this thesis, we consider the situation in which the
random variables f; are vector-valued, i.e., they take values in a Banach space
X. The inequalities we develop in this setting are principally designed to prove
a novel It6 isomorphism for vector-valued stochastic integrals with respect to
a compensated Poisson random measure. This isomorphism provides a key
tool for the analysis of stochastic partial differential equations.

The second part of this thesis deals with the situation where the ran-
dom variables f; are replaced by noncommutative random variables. More
precisely, we suppose that the f; are elements of a noncommutative sym-
metric space associated with a von Neumann algebra. The noncommutative
Rosenthal inequalities we establish are utilized to prove Itd isomorphisms for
noncommutative stochastic integrals with respect to certain Brownian mo-
tions. These isomorphisms provide a tool to understand noncommutative (or
quantum) stochastic differential equations.

We now describe our main results in these two directions and their appli-
cations in detail.

Stochastic partial differential equations

Many phenomena in physics, biology and financial mathematics can be de-
scribed mathematically in the form of stochastic partial differential equations
(SPDEs), i.e., partial differential equations driven by a random noise pro-
cess. One can think here of models describing the erratic behavior of particles
immersed in a fluid, turbulence, environmental pollution and the dynamics
of financial instruments deriving their value from interest rates. In the func-
tional analytic approach to SPDEs, one reformulates an SPDE as a stochastic
ordinary differential equation (SDE) in a suitable infinite-dimensional state
space X. This approach was pioneered by the schools of G. da Prato and
J. Zabczyk for SPDEs driven by Gaussian noise [38]. By considering SDEs
in Hilbert spaces they obtained existence and uniqueness results for a large
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class of SPDEs. For the study of the regularity of solutions to SPDEs, i.e.,
the smoothness of their paths, one must go beyond the framework of Hilbert
spaces. Typically, one would like to consider SDEs in an LP-space, or in a de-
rived space such as an extrapolation space of an LP-space or a Sobolev space,
so that the regularity of a solution can be determined using the Sobolev em-
bedding theorems. For this purpose, J. van Neerven, M. Veraar and L. Weis
investigated the existence of Ito-type isomorphisms for stochastic integrals
taking values in a general Banach space X. In [106] they showed that if X is
a UMD Banach space and W is a standard Brownian motion, then for any
1 < p < oo there exist constants ¢, x,Cp x > 0, depending only on p and X,
such that

PN P v
o) = Cox BIRE I )7
0.2)

t
1
e x BRI o x)F < (B / F, W,

—~

Here Rp : £2 — ~(0,t; X) is the random integral operator

(Rrg)(w) := /0 Fy(w)g(s) ds (we 2,9 € L%0,1))

associated with an adapted X-valued process F' and 7(0,¢; X) is the space of
y-radonifying operators from L2(0,t) into X. These estimates give an exact
description of the class of integrands F' for which the p-th moment of the
stochastic integral fot F, dW, is finite.

The right hand side estimate in (0.2) is used to perform a fixed point ar-
gument that establishes the existence and uniqueness of solutions to abstract
stochastic equations in the space X. In combination with Sobolev embed-
ding theorems, the estimate also provides regularity of solutions and optimal
convergence rates for numerical schemes. The left hand side estimate shows
that the right hand side estimate is the best possible. This optimality proved
crucial in the recent solution of the maximal regularity problem for SPDEs
driven by Brownian motions [105]. Maximal regularity results in turn provide
a powerful tool to study nonlinear SPDEs.

In the recent years there has been increased interest in SPDEs driven by
Lévy noise. We refer to [111] for an introduction to the subject. For an effective
treatment of such equations one again needs an Ito-type isomorphism as in
(0.2) for stochastic integrals with respect to Lévy noise. By the celebrated
Lévy-Ité decomposition, every scalar-valued Lévy process L can be written as

Lt:Ct+0Wt+/

x dN(t,dz) + / x dN(t,dz), (0.3)
{Jol<1}

{lz|>1}

where ¢, o are scalars, W is a standard Brownian motion, N is a Poisson
random measure on R, x R — {0} which is independent of W, and N is
the compensated Poisson random measure associated with N (see e.g. [5]).
Roughly speaking, this means that any Lévy process is the sum of a deter-
ministic drift, a Brownian motion, and two integrals describing the small and
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large jumps of the process, respectively. For the problem of determining It6-
type isomorphisms for Lévy stochastic integrals, the decomposition suggests
that one should first consider stochastic integrals with respect to Brownian
motion and (compensated) Poisson random measures. The case of Brownian
motion being well-understood, we consider the following question. Suppose we
are given a compensated Poisson random measure N on R4 x J, where J is
a o-finite measure space (the ‘jump space’), and a simple, adapted X-valued
process F'. Can one find a suitable norm || |||, - on the integrand F such that

1

~ ||P P
axllFllx < (B] [ Faf]))" <CoxllFll, . @)
Ry xJ X

for constants ¢, x,Cp x depending only on p and X7

In contrast to the well-established theory for Brownian motion, moment
estimates for stochastic integrals of vector-valued processes with respect to
Lévy processes are poorly developed even in finite-dimensional state spaces
(see [89] for the best known result in this case). Previous approaches to this
problem have yielded only (non-optimal) one-sided estimates under additional
assumptions on the martingale type of the Banach space X [25, 31, 58, 143].
Other approaches define only weak or Pettis-type stochastic integrals and
provide no moment estimates at all [4, 120, 122].

In Chapter 2 it will be demonstrated that one can find an It6-type iso-
morphism (0.4) when X is a Hilbert space, an L%-space, or even a non-
commutative L4-space, with 1 < ¢ < oo. If X is an L9%-space it turns out
that the norm |[-[||, ;. can always be expressed in terms of the norms of
the three spaces LP(§2; L9(S; L*(Ry x J))), LP(£2; LP(R4 x J; L4(S))), and
LP($2; LY (R4 x J; L(S))) and takes a different form depending on the rela-
tive position of the parameters p,q and 2. For example, if 2 < ¢ < p < oo,
then |[-[[|,, Lo is given by the maximum of these three norms. The complete
statement of our results can be found in Corollary 2.18 and Theorem 2.31.
These It6-isomorphisms can be combined with (0.2) to obtain Ité-type iso-
morphisms for stochastic integrals with respect to a Lévy process L through
the Lévy-It6 decomposition, imposing suitable assumptions on the Lévy mea-
sure of L. This is sketched in Chapter 2 and will be explained in detail in
forthcoming work.

Loosely speaking, our approach to (0.4) consists of two main steps. First
we ‘decouple’ the stochastic integral, i.e., we use that if 1 < p < co and X is
a UMD space, then there exist constants ¢, x,Cp x > 0, depending only on

p and X, such that
P2 pa 2
) <[ Fanl)
X R+XJ X

c,,,X(EH/ F dN,
R+><J
SCPVX(]EH/ F dN,
R+><J

PN
)",
X
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where N, is a copy of N which is independent of F. Decoupling inequalities
are a key ingredient in the proof of (0.2) [106, 138] and can be traced back
to the work of Garling [55] and McConnell [101] (see also [91]). For a simple,
adapted process F' the decoupled stochastic integral is a sum of independent,
mean zero L?-valued random variables. Thus, the main work in proving (0.4)
for Li-spaces is to find Rosenthal-type inequalities for random vectors in L9-
spaces which yield the desired It6 isomorphism.

Vector-valued Rosenthal inequalities

Some of the most general inequalities for a sum of vector-valued random
variables known in the literature were discovered by J. Hoffmann-Jgrgensen
[59]. He showed that, if X is a Banach space and (§;) is a finite sequence of
independent, mean zero X-valued random variables, then there is a constant
c¢> 0 and, for all 1 < p < o0, a constant C,, > 0 depending only on p such
that

3=

E[Xel) <c(E] s, + (EmgXII&H’;})%}
! ) ! (0.5)

EIZal,) 2@ 2], + (Emaxc ).

The original proof yields a constant C), which grows exponentially in p. Differ-
ent proofs were found by M. Talagrand ([133], see also [95]) and S. Kwapien
and J. Szulga ([90], see also [91]), which yield that the optimal order of C,,
is 102 5 as p — 0. The inequalities in (0.5) can be considered as a signifi-
cant generalization of (0.1) to the vector-valued case. For practical purposes,
however, Hoffmann-Jgrgensen’s result lacks the power of Rosenthal’s origi-

nal inequalities, as it provides no direct way to compute the p-th moment

El>, §i||1;()% in terms of the individual elements &;. It merely reduces the
problem to computing two different quantities, which may not be a simpler
task.

Motivated by our application to Poisson stochastic integration, we wish
to obtain a generalization which captures the original flavour of Rosenthal’s
inequalities. More specifically, we consider the following question: given 1 <
p < 00, a Banach space X and a finite sequence (§;) of independent, mean
zero X-valued random variables, can we find constants ¢, x,Cp x depending
only on p and X such that

) < GxllE@l,x.  (06)

e 1), x < (B X6

for a suitable norm [||-]|| on the sequence (§;) which can be computed in
terms of the (moments of the) individual elements &;? Our main results give
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the following positive answer to this question in the case where X is an L9-
space. To state our results, let us introduce the following notation. If A, B are
quantities depending on a parameter «, then we write A <, B if there is a
constant ¢, > 0 depending only on « such that A < ¢, B. We write A ~, B
if both A <, B and B <, A hold.

Theorem 0.1. Let 1 < p,q < oo. Let (£2,F,P) be a probability space and
(S, X, 1) be a o-finite measure space. Set

Sq = LU(S; *(L*(12)));
Dp,q = IP(LP(2; L9(S)))-

If (&) is a finite sequence of independent, mean zero L(S)-valued random

variables, then
(5] e

where s, 4 15 given by

RO
L‘I(S) —p,q g’t Sp,q?

SqNDyqaND,, if 2<qg<p<oo;
SqN (Dg,q+ Dpg) if 2<p<g<oo;
(SqNDyq)+Dpy if 1<p<2<g<oo;
(Sq+Dyq)NDpy if 1<g<2<p<o0;
Sg+ (DgqNDpg) if 1<qg<p<2

Sq+Dgq+Dpy if 1<p<g<2

The main ingredients in the proof of Theorem 0.1 are randomization tech-
niques, Khintchine’s inequalities, type and cotype inequalities for L(S5),
Rosenthal’s original inequalities (0.1) and Hoffmann-Jgrgensen’s inequalities
(0.5). For 1 < p,q < oo the spaces s, 4 satisfy the duality relation

(p.a)” = Spras % + ; =1 % + % =1
This duality plays a prominent role in the proof.

Theorem 0.1 can be further generalized to apply to random vectors in a
noncommutative L-space associated with a semi-finite von Neumann algebra
M. In this case, the role of the space S, is taken over by the spaces S . and
Sq,r» which we now briefly describe. If 1 < ¢ < co and (§;) is a finite sequence
of M-valued random variables we set

I€ls,.. = | (CBer)’
Iels,.. = | (X Eiil?)

LCI(M);

N

La(M)’
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From the work of M. Junge on conditional sequence spaces [68] one can de-
duce that these expressions define two norms on the linear space of all finite
sequences of M-valued random variables. We let S ¢, Sq,» denote the comple-
tions in the respective norms.

Theorem 0.2. Let 1 < p,q < oco. Let (2, F,P) be a probability space and let
M be a semi-finite von Neumann algebra. Set

Dy,q = IP(LP($2; LU (M))).

If (&) is a finite sequence of independent, mean zero LY(M)-valued random

variables, then
(5] 2

where s, 4 15 given by

R LI
La(M) —=p,q i)llsp,qs

Sq.cNSqrNDggNDpg if 2<q¢g<p<oo;
Sq.eNSgrN(Dgq+ Dpy) if 2<p<q<oc;
(SqcNSqrNDyq)+Dpy if 1<p<2<g<o0;
(Sqe+Sqr+Dgq)NDpy if 1<g<2<p<o0;
Sge +8qr +(Dgg N Dpyg) if 1<qg<p<2

Sge+Sgr+Dgq+Dpy if T<p<g<2.

The spirit of the proof of Theorem 0.2 is the same as in the case of classi-
cal Li-spaces, but different arguments and additional machinery, such as the
noncommutative Khintchine inequalities due to F. Lust-Piquard and G. Pisier
[98], are required in the noncommutative setting. As a result, the proof will
be different from the one presented for Theorem 0.1 even for a commutative
von Neumann algebra.

The result in Theorem 0.2 for p = g can also be deduced from the non-
commutative Rosenthal inequality proved by M. Junge and Q. Xu (see (0.10)
below). However, in the applications we are interested in one typically needs
a version in which p and ¢ are different.

Although it is not part of this thesis, we wish to point out that it is possible
to deduce Burkholder-Rosenthal inequalities for L?(M)-valued martingales
from Theorem 0.2. This result is worked out in detail in [41].

Application to random matrices

Moment estimates and tail bounds for the largest singular value of random
matrices play an important role in applications of random matrix theory in
numerical error analysis, convex geometry and statistics, see [134, 139] and
the references therein. As an application of one of our Rosenthal inequalities
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for random vectors in L?(M), we deduce quantitative bounds for the moments
of the largest singular value of a random matrix in terms of its entries. Recall
that the largest singular value of an n x n matrix a is equal to its operator
norm |a||, when considering a as an operator on [2.

Theorem 0.3. Let 2 < p < oo. Suppose x;; are independent, mean zero

random variables in LP(2). If z is the n x n random matriz (z;;);';—,, then

25 (Elle)P)? > max | max @Ez“) = (ZM”) |

(E max |m”|>

i, j=1,.

T =

3

and

(E||x||P)%§e(1+\/§)apynmax{ max (ZEx”)%, max (ZEZ‘U) ,

=1

[N

3 =

eayp p (El jlzllax |24 |P>
,

=1,...,

} (0.7)
with oy, < max{2y/Togn,2v2+/p — 1}.

More generally, in Chapter 3 we provide bounds for the moments of the largest
singular value of a sum of random matrices and of a random matrix with
independent rows or columns.

Unfortunately, the upper bound in (0.7) is not of the right order in terms
of the dimension of the matrix. Indeed, if the entries of the matrix x are
identically distributed and have finite fourth moment, then it has been known
for a long time [11] that the largest singular value is asymptotically of order
v/n. More recently, R. Latala obtained the bound

n 1 n 1 1
2\ 2 2\ 2 1
Bllal < O max (32 F%) + max (3 1%) (ZE%) ):
1= 1=

1,j=1
(0.8)
for a matrix with independent, mean zero entries having finite fourth moment
[93]. For comparison, observe that (0.5) and (0.8) together imply that there
is a universal constant C' > 0 such that for all 1 < p < oo,

(E|z|P)7 < ckfgp( ne (ZE%) + max (ZE%)%

1,.

(5 )+ (e e 1)’

2,
3,j=1

The upper bound in Theorem 0.3 exhibits different growth behaviour in p and

does not contain the factor (szzl Exfj)%. In particular, the bound (0.7) is
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applicable to random matrices having entries without a finite fourth moment.
On the other hand, we note that the bound in (0.8) is of the right order
v/n if the entries of the matrix are, in addition, identically distributed. In
(0.7) an additional factor «, , of order v/logn appears. As will be discussed
in Chapter 3, this factor is an inevitable product of our method to prove
Theorem 0.3.

Further investigation is needed to discover the ‘right’ bounds for the mo-
ments of the largest singular value of a random matrix.

Noncommutative probability theory

In Part II of this thesis we migrate from the setting of vector-valued ran-
dom variables into the realm of noncommutative probability theory. Loosely
speaking, noncommutative probability theory is a generalization of classical
probability theory, in which random variables are not modeled as measurable
functions on a probability space, but instead by closed, densely defined opera-
tors on a Hilbert space. This mathematical formalism was initially developed
to give a probabilistic description of quantum mechanical experiments [108].
In these experiments physical observables occur whose statistics violate sim-
ple probabilistic inequalities such as the famous Bell inequalities and hence
cannot be described in terms of classical probability theory. An accessible in-
troduction for mathematicians to the basic ideas of the probabilistic model
for quantum mechanics can be found in [87]. In view of the origins of the
subject, noncommutative probability theory is often referred to as quantum
probability theory.

Let us now describe the setting of noncommutative measure theory. In
its barest form a noncommutative measure space can be defined as a pair
(A, @), where A is a unital algebra of bounded linear operators on a complex
Hilbert space and ¢ is a weight on the positive cone A, of A. The elements
of A are interpreted as bounded, measurable functions and the functional ¢
plays the role of (integration with respect to) a measure. In order to develop
a satisfactory analogue of measure theory in the noncommutative context it
turns out that one needs to impose some additional assumptions on the non-
commutative measure space. We will always consider a pair (M, 1), where
M is a von Neumann algebra and 7 is a normal, semi-finite, faithful trace on
M. Any Maharam measure space (S, X, ) can be viewed as a noncommu-
tative measure space, by identifying it with the pair (L*°(S, X, u), ), where
7(f) = [4 f dp. Other natural examples that we will encounter in the main
text are the algebra of bounded linear operators on a Hilbert space (equipped
with its standard trace), random matrices, von Neumann algebras associated
with groups and von Neumann subalgebras of the bounded linear operators
acting on a Fock space.

Given a noncommutative measure space (M, 7) one can construct the
topological x-algebra S(7) of T-measurable operators, which is the noncom-
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mutative analogue of the space of measurable functions, equipped with the
topology of convergence in measure. The trace 7 can be extended to S(7)4
and a good part of classical measure and integration theory can be recovered.
For example, versions of Fatou’s lemma, the dominated convergence theorem
and Egorov-type results exist in the noncommutative setting. Moreover, every
symmetric (quasi-)Banach function space E on (0,00) gives rise in a natural
way to a noncommutative version F(M), called the noncommutative (quasi-)
Banach function space associated with E. This construction yields noncom-
mutative versions of many spaces of interest in probability theory, harmonic
analysis and interpolation theory, such as LP-spaces, weak LP-spaces, Lorentz
spaces and Orlicz spaces.

If the trace 7 is finite and satisfies 7(1) = 1, then we can think of the pair
(M, T) as a noncommutative probability space. Many of the classical prob-
abilistic concepts, such as convergence in probability, distribution functions,
conditional expectations, and martingales, have a natural noncommutative
analogue. Other concepts require reformulation, e.g., almost sure convergence,
or allow for different generalizations. The most prominent example in the lat-
ter category is the notion of independence. In the 1980’s, D. Voiculescu dis-
covered a new notion of independence, called free independence. This notion
is different from tensor independence, which generalizes the concept famil-
iar from classical probability theory. Voiculescu’s discovery led to the birth
of free probability theory, the branch of noncommutative probability theory
which takes free independence as its axiom for independence (see [109, 140]
for an introduction to this beautiful theory). Under a certain set of intuitive
requirements on the notion of independence, it has been shown that free and
tensor independence are the only possible notions of independence in a non-
commutative probability space (cf. [17]). On the other hand, there are many
examples of noncommutative random variables which satisfy a weaker notion
of independence, which we discuss below.

In most cases, additional difficulties have to be overcome when generalizing
probabilistic results to the noncommutative context. Simple arguments may
break down as one cannot evaluate a noncommutative random variable point-
wise, or because the triangle inequality for the absolute value on S(7) does
not hold. Moreover, in the development of martingale theory severe difficulties
are posed by the lack of effective stopping time arguments, even though there
exist many different constructions of noncommutative stopping times, see [34]
and the references therein. Despite these difficulties, there has been consid-
erable progress in the field. The early literature, summarized in [37, 61, 62],
has mainly focused on central limit theorems, ergodic theorems, and almost
sure and L2-convergence results for noncommutative martingales. In the re-
cent years, many classical probabilistic inequalities have been generalized to
the context of noncommutative LP-spaces. We mention in particular the non-
commutative versions of Khintchine’s inequalities [98], the Burkholder-Gundy
inequalities for noncommutative martingales [114, 116], Doob’s maximal in-
equality [68] and the Burkholder-Rosenthal inequalities [70]. These inequali-
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ties have proved to be fundamental for the study of the geometry of noncom-
mutative LP-spaces, free probability theory and noncommutative harmonic
analysis.

In the second part of this thesis, we study Khintchine, Burkholder-Gundy,
Rosenthal, Burkholder-Rosenthal and dual Doob inequalities in the setting
of noncommutative symmetric spaces. Our efforts culminate in a generaliza-
tion of (0.1), which is applied to obtain Ito-type isomorphisms for stochastic
integrals with respect to Boson and free Brownian motion. We first give an
exposition of this application.

Noncommutative stochastic integration

Noncommutative stochastic integration theory is concerned with the construc-
tion and analysis of integrals of the form fg fs dDs, where f and @ are non-
commutative stochastic processes. Noncommutative stochastic integrals give a
way to describe noncommutative continuous-time dynamical systems in terms
of noncommutative stochastic differential equations. In contrast with the well-
developed classical stochastic integration theory, noncommutative stochastic
integration has so far been developed only in particular settings, usually where
f and @ are linear operators on a g-deformed Fock space. The richest theory
is the stochastic integration theory for the symmetric or Boson Fock space
(i.e., the case ¢ = 1), initiated by Hudson and Parthasarathy in [60] (see also
[110]). Boson stochastic integration not only includes integration with respect
to Boson Brownian motion, but also Poisson processes and other noncommu-
tative semimartingales. This theory is actively used in quantum optics, quan-
tum measurement theory and quantum filtering theory. We refer to [97, 110]
and the references therein for an exposition of the theory, and to [12, 22] for
surveys on applications in the various areas of quantum physics. Stochastic
integration theory with respect to Brownian motion for the anti-symmetric,
or Fermion, Fock space (¢ = —1), initiated by Barnett, Streater and Wilde in
[13] (see also [30, 114]) is also applied in quantum physics. Stochastic integrals
have moreover been defined for operators on g-Fock spaces for —1 < ¢ < 1
[51, 126]. Especially the theory for the full Fock space (¢ = 0), see [20, 88],
is well developed under the impetus of free probability theory and can be
considered important from a pure mathematical viewpoint.

Most of the existing stochastic integration theories either make explicit
use of the underlying Fock space structure or use an L2-isometry to define
stochastic integrals. Apart from the estimates for stochastic integrals with re-
spect to Fermionic Brownian motion given in [114], no estimates for the p-th
moments of stochastic integrals are known. To explore whether one can for-
mulate a canonical theory of stochastic integration in von Neumann algebras,
we investigate whether one can find It6 isomorphisms for stochastic integrals
with respect to a Boson or free Brownian motion.
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In Theorems 8.17 and 8.21 we prove the following results. Let E be a
symmetric Banach function space on (0,00) and let pg and ¢gg denote its
lower and upper Boyd index, respectively. If @ is a Boson Brownian motion
and either 1 < pp < ggp <2or 2 < pg < gg < 0o, then

| [ 1o, . =0 lflneon =] [ @ o], . ©9)

If E satisfies 1 < pp < gqg < oo and @ is a free Brownian motion, then we
find

t
d(PH o~ ,
[ e
t
dd H ~ .
| [ @0, =& Il

The spaces H(0,t), HE(0,t) and HE(0,t) are closed subspaces of noncom-
mutative L%(0, t)-valued symmetric spaces. The latter are examples of Hilbert-
space valued noncommutative symmetric spaces, which are introduced in this
thesis. These spaces generalize the Hilbert-space valued noncommutative LP-
spaces which were constructed earlier in [113] and studied in detail in [69].

The general ideas used in our approach to vector-valued Poisson stochastic
integration can be used in the proof of the noncommutative Itd isomorphisms.
First we prove new decoupling inequalities, which are used to decouple the
noncommutative stochastic integrals. Concretely, we show that the stochastic
integral of an adapted step process f can be viewed (in terms of equivalence
of norms) as a randomized sum of the form Y ,_, fr ® ®y (or >_,_; fr * P
in the free case) defined in a tensor (free) product probability space. Here the
@, are increments of the integrator process defined on a ‘copy’ of the original
probability space and the f; are the values of f. The unconditionality of non-
commutative martingale difference sequences in noncommutative symmetric
spaces with nontrivial Boyd indices plays a prominent role in the proof. As a
second step, we use novel noncommutative Khintchine-type inequalities to ob-
tain two-sided estimates for the stochastic integral in terms of the integrand.
These Khintchine inequalities are derived from new Rosenthal inequalities for
independent random variables in a noncommutative symmetric space, which
we present below.

Noncommutative Rosenthal inequalities

The classical Rosenthal and Burkholder-Rosenthal inequalities have been ex-
tended by M. Junge and Q. Xu to sequences of noncommutative random vari-
ables given by elements of a noncommutative (Haagerup) LP-space [70, 71]. As
is the case for Rosenthal’s original result, these inequalities have been devel-
oped to study the classification and geometry of noncommutative LP-spaces
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[71]. The noncommutative random variables in Junge and Xu’s generalization
of (0.1) are only required to satisfy the following, very weak, notion of inde-
pendence. Suppose that (Nj) is a sequence of von Neumann subalgebras of
M and that N is a common von Neumann subalgebra of the A} such that
7|ar is semi-finite. Let Ex be the conditional expectation with respect to N.
We say that (NVy) is independent with respect to N if for every k we have

En(xy) = En(x)En(y), for all 2 € Ny, and y € W*((N});2k),

where W*((N;),xk) denotes the von Neumann subalgebra generated by the
N with j # k. In [71] it is shown that if 2 < p < oo and (xy) is a sequence
such that x € LP(Ny) and Ex(zx) = 0 for all k, then

n n 1
§ ~ § p P
H k=1 xk‘ Lr(M) “p Hhax {(k—l ”xk”LP(M)) ’ (0'10)

[(Sewin) | |(edeir)’
k=1 k=1

They also observed that one can deduce a version of (0.10) for 1 < p < 2 by
duality.

The main part of the proof of (0.10) (and in fact of Rosenthal’s classical
proof) is a ‘p = 2p argument’: one proves that if (0.10) holds for some p,
then it must hold for 2p as well. This type of argument can be traced back
to [35] (see also [96], Lemma 2.c.4) and was used earlier to prove Burkholder-
Gundy inequalities for noncommutative martingale difference sequences in
noncommutative LP-spaces [114]. An alternative proof of (0.10) was given
by N. Randrianantoanina [117]. He proves a weak-type (1,1) inequality for a
martingale difference sequence in L?(M). Subsequently he obtains the version
for 1 < p < 2 by real interpolation and finally finds the result for 2 < p < oo
by duality. This approach yields the optimal order of the constants in (0.10)
and its dual version. In addition, he proves Rosenthal-type inequalities for
independent random variables in noncommutative martingale BMO spaces.
These can serve as a surrogate for the case p = oo, in which case (0.10)
does not hold. The proof of Randrianantoanina can be adapted to extend
the Burkholder-Rosenthal to noncommutative Lorentz LP-9-spaces associated
with a finite von Neumann subalgebra [63].

We wish to obtain a version of (0.10) for a larger class of noncommutative
symmetric spaces. The techniques used in both [71] and [117] are specific to LP-
spaces at several points and therefore not suited to this general setting. Using
a different argument we can prove the following result. We let diag(zy)j_,
denote the n x n diagonal matrix with x1,...,x, on its diagonal.

Le(M) LP(M)}'

Theorem 0.4. (Noncommutative Rosenthal theorem) Let M be a semi-finite
von Neumann algebra equipped with a normal, semi-finite, faithful trace 7.
Suppose that E is a symmetric Banach function space on (0,00) satisfying
any of the following conditions:
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(i) 2 < pp < qp < 00;
(ii) E is an interpolation space for the couple (L?, LP) for some 2 < p < o0
and E is q-concave for some q < co.

Let (Ny) be a sequence of von Neumann subalgebras of M and N a common
von Neumann subalgebra of the (Ny) such that 7| is semi-finite. Suppose
that (Ny) is independent with respect to € := Exr. Let (xy) be a sequence such
that x € E(Ng) and E(xx) = 0 for all k. Then, for any n,

(i5|wk|2)%
k=1

~ di e ,
H;MHE(M) EmaX{H iag(zx) =1l E(ar, (M)

|(ewie)’
k=1

More generally, we will prove under condition (i) that the noncommutative
Burkholder-Rosenthal inequalities hold for noncommutative martingale dif-
ference sequences in E(M). This result, formulated in Theorem 7.6 below,
extends the known results for noncommutative LP-spaces and Lorentz spaces
(63, 70, 117].

The conditions (i) and (ii) in Theorem 0.4 ensure, in two different senses,
that the space E is ‘between L? and L4, for some q < co. The presence of these
conditions is not surprising, as the Rosenthal inequalities in noncommutative
LP-spaces do not hold for p = oo and, moreover, take a different form if
l<p<2

The Burkholder-Rosenthal inequalities in Theorem 7.6 hold, in particular,
for the noncommutative weak LP-space LP**°(M), for any 2 < p < oo. Since,
by a result of H. Kosaki [84], we can always embed a Haagerup LP-space into a
noncommutative weak LP-space LP'*° over a suitable semi-finite von Neumann
algebra, we recover the Burkholder-Rosenthal inequalities for Haagerup LP-
spaces proved in [70].

The techniques used in establishing (0.11) can be adapted to prove the
following Rosenthal-type inequalities for independent random vectors in a
noncommutative symmetric space.

EM)

E(M)}. (0.11)

Theorem 0.5. Suppose 2 < p < co and let E be a symmetric Banach function
space on (0,00) which is 2-convezr and q-concave for some q < co. Let M be a
semi-finite von Neumann algebra. If (§k) is a sequence of independent, mean
zero E(M)-valued random variables, then

€
k=1

b . !
o) = mas { (Bllding (€)1 ar, uey) (0.12)

(X Egr)”

k=1

n

(3 me)”

k=1

EM) E(M)}'
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In principle it is possible to derive noncommutative and vector-valued Ro-
senthal inequalities for symmetric spaces which are ‘between L! and L?’ by
duality from Theorems 0.4 and 0.5, respectively. However, in applications it
is usually easier to apply these results first to the case of interest and to use
a duality argument only after making some additional calculations. An ex-
ample of this situation can be found in Section 7.3, where Khintchine-type
inequalities are derived from Theorem 0.4.

In the remainder of this introduction we discuss two main tools, noncom-
mutative Khintchine inequalities and the noncommutative Boyd interpolation
theorem, which are used to prove Theorem 0.4. These results are interesting
in their own right.

Noncommutative Khintchine inequalities

Corresponding to the two conditions appearing in our noncommutative Ro-
senthal theorem, we need two different types of Khintchine inequalities for its
proof. In the statement of these inequalities we use the notation

@) sz = || (D wion)
k

1
<\ 2
Il = | (D2 weat)
k

If F is a symmetric quasi-Banach function space on (0, c0), then these expres-
sions define two (quasi-)norms, called the column and row (quasi-)norm, on
the space of all finite sequences (zy) in E(M).

Under condition (i) in Theorem 0.4, a key tool needed in proving this re-
sult is the following Khintchine type inequality. Let (ry)72 ; be a Rademacher
sequence defined on a probability space (£2, F,P) and let M be a semi-finite
von Neumann algebra. Let L>°(£2)®M denote the tensor product von Neu-
mann algebra. Suppose that F is a symmetric quasi-Banach function space
on (0,00) which is p-convex for some 0 < p < oo. In Theorem 6.1 we show
that if the upper Boyd index gg of E is finite, then

E(M);

BEM)

< , . 0.13
|32 t] g 52 { N maee Nl }. (019

for any finite sequence (xy) in E(M). Our result complements the main result
in [94], which provides the following dual inequality. It is shown there that if
F is a symmetric Banach function space which is either separable or the dual
of a separable space and satisfies gg < oo, then

i { < ) e | H ,
inf 3 [|(ye) | 2ovsizy + o)l B2y ¢ SE zk:m®$k BLe()FM)
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where the infimum is taken over all decompositions xy = yx + 2i in E(M).

As an ingredient for our proof of Theorem 0.4 under condition (ii), as
well as for our proof of Theorem 0.5, we establish a different Khintchine type
of inequality. Suppose that F is a symmetric quasi-Banach function space on
(0, 00) which is p-convex and g-concave for some 0 < p, ¢ < co. In Theorem 6.7
we show that

EH Z kakaE(M) SE max { [(@e) | 2z, ||(~Tk)HE(M;l$)}» (0.14)
k

for any finite sequence (xy) in E(M). This result complements a result by F.
Lust-Piquard and Q. Xu [99], who showed that the inequality

inf {1l mowaz) + 1z s S E| ;mkaE(M) (0.15)

holds if F is a 2-concave symmetric Banach function space which is either
separable or has the Fatou property. They derive this result from an interesting
characterization which says that if E is a 2-convex symmetric Banach function
space which is either separable or has the Fatou property, then E(M) satisfies
a version of the little Grothendieck inequality if and only if E* (M) satisfies
the Khintchine inequality (0.15). Here E* denotes the Kothe dual of E.

Our results are optimal in the following sense: (0.13) holds for any semi-
finite von Neumann algebra if and only if g5 < oo and (0.14) holds for any
semi-finite von Neumann algebra if and only if F is g-concave for some ¢ < oo.

We apply the inequalities (0.13) and (0.14) to obtain Burkholder-Gundy
inequalities for noncommutative martingale difference sequences in noncom-
mutative Banach function spaces. Our main result in this direction, formulated
in Theorem 6.29, improves several results in the literature [14, 15, 16].

In the Khintchine inequality (0.13) one can replace the Rademacher se-
quence (1) by a sequence of operator coefficients () in a finite von Neumann
algebra N, provided that the sequence () satisfies

< M2 a2y b, (0.16
H > i, mnn S0 N@) o, N@w) o | (0.16)

for all 1 < g < co. The situation is even better if («y) satisfies (0.16) for
q = o0, for example if (ay) is a sequence of free group unitaries [57]. In this
case we show that

< { 2, . }, 0.17
H;akmkHE(A@M) Sp max { @) s @o)llsowas f - (0-17)

for any symmetric quasi-Banach function space E which is p-convex for some
0 < p < co. In fact, for symmetric Banach function spaces (0.17) holds with a
universal constant. This inequality is the basis for an alternative proof of the
following special case of (0.13). Even though this method does not cover the
full result, it yields a significantly better estimate on the constant in (0.13).
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Theorem 0.6. Let 1 < g < oco. Suppose that E is a fully symmetric quasi-
Banach function space on (0,00). If E is an exact interpolation space for the
couple (L', L9), then

< 161/2 { s . }
H;WMHE(MM) < 16y/2qmax {[|@) Lo @) o)

for any finite sequence (xy) in E(M).

Using (0.17) we also show, under suitable conditions on the space E, that the
intersection E(M;I?) N E(M;I?) is isomorphic to a complemented subspace
of E(L(Fs)®M), where L(F) is the free group von Neumann algebra. As a
consequence, we find a useful interpolation result for intersections of row and
column spaces. We refer to Theorem 6.25 for a precise statement.

Noncommutative Boyd interpolation theorem

In our proof of Theorem 0.4 we make extensive use of interpolation theory.
In particular, we use the noncommutative version of the Boyd interpolation
theorem, named after D. Boyd [23]. Let us first recall the classical version of
Boyd’s result. Fix 1 < p,q < oo. Let F be a symmetric Banach function space
on (0, 00) which is separable or has the Fatou property. D. Boyd demonstrated
that if p < pg < gg < ¢, then E is an interpolation space for the couple
(LP, L9). Together with the Calderén-Mitjagin theorem, which characterizes
the symmetric Banach function spaces which are an interpolation space for
the couple (L', L>°), the Boyd interpolation theorem provides an invaluable
tool in the analysis of symmetric spaces.

To obtain interpolation tools for noncommutative Banach function spaces,
one often appeals to an abstract lifting theorem from [48] which says that if
E, Ey, F are fully symmetric spaces such that F is an interpolation space for
the interpolation couple (Ey, E1), then E(M) is an interpolation space for the
couple (Ey(M), E1(M)). In particular, we can ‘lift’ the classical Boyd inter-
polation theorem: if F is a symmetric Banach function space which satisfies
p < pg < qrg < q and is either separable or has the Fatou property, then
E(M) is an interpolation space for the couple (L? (M), LI(M)).

We present a new, direct proof of the noncommutative Boyd interpolation
theorem, which avoids the use of the lifting theorem. In this way, we remove
some restrictions imposed by the lifting theorem and obtain an extension of
the known version of the noncommutative Boyd theorem in two directions.
Firstly, we find that the result is true for any 0 < p < ¢ < oo and any
symmetric quasi-Banach function space E on (0,00) which is s-convex for
some 0 < s < 0o. Secondly, we can interpolate (sub)convex operators defined
only on the positive cone of a couple of noncommutative LP-spaces. A special
case of our main result, Theorem 5.19, reads as follows.
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Theorem 0.7. Let E be a symmetric quasi-Banach function space on (0, 00)
which is s-convex for some 0 < s < co. Let M, N be von Neumann algebras
equipped with normal, semi-finite, faithful traces T and o, respectively. Suppose
that 0 < p < g < oo and let T : LP(M) L + LI(M); — S(o) be a subconvex
map such that for some constants C,,Cy > 0 depending only on p and g,
respectively,

Tz proe vy < Crllzllorny (€ LT (M)y, 7=p,q).

If 0 < p < pg and either qg < q < oo or q = oo, then there is a constant
Cp.q,E depending only on p,q and E such that

1Tzl pvy < €pg,pmax{Cp, Oy} [|l2[lpry  (x € E(M)4).

Apart from the use of some basic properties of distribution functions for op-
erators, our proof of Theorem 0.7 is completely elementary.

By modifying the proof of Theorem 0.7 we can deduce a version of the ‘dual
Doob’ inequality, which is dual to Doob’s maximal inequality, for noncommu-
tative symmetric spaces. The following result is presented in Theorem 5.24
below.

Theorem 0.8. Let E be a symmetric Banach function space on (0,00) and
let M be a finite von Neumann algebra. Let (£;);>1 be an increasing sequence
of conditional expectations in M. If 1 < pg < qg < 00, then for any sequence
(2i)iz1 in E(M)4,

: 0.18
PO (0.18)

H > Eilw)
i>1
In [68], this inequality was established for noncommutative LP-spaces and
used to prove a noncommutative version of Doob’s maximal inequality by a
duality argument. It is to be expected that this argument can be adapted to
work for an appropriate class of noncommutative symmetric spaces. This is a
topic for future research.

<6 | X
~FE 7
s 8 | 2

Organization

Part I is entirely dedicated to the study of vector-valued Rosenthal inequalities
and their applications. In Chapter 1 we discuss Rosenthal inequalities for
random variables taking values in Banach spaces and, in particular, in Hilbert
spaces and LP-spaces. In Chapter 2 these results are applied to vector-valued
stochastic integration with respect to compensated Poisson random measures.
The main results of this chapter will appear as part of [45]. The first two
chapters can be read without any knowledge of noncommutative analysis. In
Chapter 3 we prove Rosenthal inequalities for random variables taking values
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in a noncommutative LP-space and apply these results to random matrices.
This chapter is based on [41].

Chapter 4 contains a detailed introduction to symmetric quasi-Banach
function spaces and their interpolation theory. Chapter 5 introduces noncom-
mutative quasi-Banach function spaces, interpolation results for these spaces,
Hilbert-space valued noncommutative symmetric spaces and conditional se-
quence spaces. In particular, the chapter contains the noncommutative Boyd
interpolation theorem with a new proof based on [42]. Chapter 6 is devoted
to the study of Khintchine inequalities in noncommutative symmetric spaces.
Parts of Section 6.4 have appeared in [46]. Chapter 7 contains the main re-
sults on noncommutative Rosenthal and Burkholder-Rosenthal inequalities.
Several of the results of Chapters 6 and 7 have been published in [44]. Finally,
Chapter 8 gives an exposition of our results on stochastic integration in non-
commutative symmetric spaces. The results in this chapter extend the results
presented in [43], which contains an exposition in the specialized setting of
noncommutative LP-spaces.






Part 1

Vector-valued Rosenthal inequalities






1

Vector-valued Rosenthal inequalities in
LP-spaces

In this chapter we consider Rosenthal-type inequalities for random vectors
in Banach spaces. The main question is the following: given 1 < p < o0, a
Banach space X and a sequence (&;) of independent, mean zero X-valued
random variables, can we find two-sided estimates of the form

cox ) < (B| e )" < CuxllE@Il. (1.1)

for a suitably chosen norm ||| - ||| on the sequence (§;) and constants ¢, x, Cp x
depending only on p and X7 After discussing some preliminary results from
Banach space geometry, we will consider this question in a general Banach
space. We shall see that if X satisfies a type assumption, then we obtain
an upper estimate as in (1.1) and if it satisfies a cotype assumption, then
we obtain a lower estimate. Unfortunately, unless the Banach space under
consideration is (isomorphic to) a Hilbert space, the norm |||-||| we find in
the upper estimate is in general different from the norm found in the lower
estimate.

The main results of this chapter improve the latter estimates in the case
where X is an LY-space. We obtain a significant extension of Rosenthal’s
theorem for scalar-valued random variables, by finding a norm || -|f, , such
that the inequalities in (1.1) hold simultaneously. It turns out that one needs
to consider six different norms ||-|[, ., depending on the relative position of
p,q and 2. These results can moreover be extended to the case where X is a
noncommutative Li-space, see Chapter 3 ahead.

The results of this chapter will be applied in Chapter 2 to the problem of
vector-valued Poisson stochastic integration.

1.1 Probabilistic notions from Banach space geometry

Throughout this thesis we reserve the symbol (r;);>1 to denote a Rademacher
sequence, i.e., a sequence of independent, {—1,1}-valued random variables
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defined on some probability space ({2, F,P) which satisfy
Piri=1)=P(r; =-1) =% (i>1).

Let us recall the following classical inequalities due to A. Khintchine.

Theorem 1.1. [83] (Khintchine’s inequalities) For any 0 < p < oo and any
finite sequence (a;) in C we have

(#] 32"} = (Siei)

Using the Holder and Hélder-Minkowski inequalities one can deduce the fol-
lowing result as a corollary.

Theorem 1.2. For any 0 < p,q < oo and any finite sequence (f;) in LI(S)

we have ) . s
(E” Zi:rifi Lq(s))p “pa H(;'ﬁzy

One cannot straightforwardly generalize Theorem 1.2 to the setting of Banach
spaces, as the ‘square function’ appearing on the right hand side of (1.2) has
no meaning for elements f; from a Banach space. However, a useful substitute
is given by the following inequalities due to J.P. Kahane [74]. The extension
for quasi-Banach spaces is due to N. Kalton ([76], Theorem 2.1).

(1.2)

La(s)

Theorem 1.3. (Kahane’s inequalities) Let 0 < p,q < oo and let X be a
quasi-Banach space. Then there exist constants K ), depending only on p and
q such that for any sequence (x;);>1 in X we have

gL
(B vl )™ = o (] 3o i
i>1 i>1

We now proceed to define several probabilistic concepts which are related to
the geometry of a Banach space.

i)%. (1.3)

Definition 1.4. A Banach space X is said to have type p for some 1 <p <2
if there is a constant C > 0 such that for any finite sequence (x;) in X we

have
(]EH ;mi i) < C(Z ||mi||';()5. (1.4)

The least possible constant C' for which (1.4) holds is called the type p con-
stant of X and is denoted by T,(X).
A Banach space X is said to have cotype q for some 2 < q < oo if there
is a constant C' > 0 such that for any finite sequence (x;) in X we have
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(X lailig)" <c (B> ra

max ||z x < C(EH > ria;

2\ 4
) if ¢ < o0

X

. (1.5)
) if ¢ = o0.

X

The least possible constant C for which (1.5) holds is called the cotype ¢
constant of X and is denoted by Cy(X).

By the triangle inequality every Banach space has type 1 and cotype oo with
constant 1. Note that by Kahane’s inequalities we can replace (E[| >, 7;2; 1%)2
in the definition of type (and cotype) by (E||>", x5 )+ for any 1 < r < oo,
By the contractive embedding {" C [P, one immediately sees that if X has
type p, then it has type r for any r < p and similarly, if it has cotype ¢, then
it has cotype s for any s > q.

It follows from the parallelogram law that a Banach space X is isomet-
rically isomorphic to a Hilbert space if and only if X has both type and
cotype 2 and T5(X) = Co(X) = 1. The following fundamental result, due to
S. Kwapien, extends this characterization to spaces which are only isomorphic
to a Hilbert space. For a proof we refer to [1], Theorem 7.4.1.

Theorem 1.5. A Banach space has both type 2 and cotype 2 if and only if it
s 1somorphic to a Hilbert space.

If (S,%, 1) is a measure space, then LP(S) has type min{p,2} and cotype
max{p, 2}. This fact is not difficult to deduce from Khintchine’s inequalities
for LP-spaces (Theorem 1.2), see [1], Theorem 6.2.14.

To discuss duality results between type and cotype we need the following
notion. Let 1 < p < oo and X be a Banach space. The n-th Rademacher
projection m, in LP(§2; X) is defined by

mf = S nE()  (f € L2 X)).

k=1

The space X is called K-convex if

Ky, x = sup [mol[p(rr(2;x)) < o0
n>1

This property does not depend on p, ie. if 1 < p,q < oo, then we have
K, x < oo if and only if K, x < co. Moreover, a space X is K-convex if and
only if its dual X* is K-convex and K, x = K,/ x- whenever 1 < p,p’ < 0o
satisfy % + L = 1. By a deep result due to G. Pisier, a Banach space X is
K-convex if and only if it has type p > 1. Moreover, if this is the case, then
X has finite cotype. The proofs of these statements, as well as the following
duality theorem, may be found in Chapter 13 of [39].
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Theorem 1.6. Let X be a Banach space and assume that 1 < p <2< g <
satisfy ]%Jr% = 1. If X has type p, then X* has cotype ¢ and Cy(X*) < T,(X).
On the other hand, if X is K-convex and has cotype q < oo, then X* has type
p and Tp(X*) < Ky xCy(X).

In our treatment of vector-valued Poisson stochastic integration in Chapter 2,
we will restrict ourselves to the class of spaces in which martingale difference
sequences are unconditional.

Definition 1.7. Let 1 < p < co. A Banach space X is called a UMD,-space
if there is a constant C' > 0 such that for any finite martingale difference
sequence (z;) in LP(£2;X) and any choice of signs (€:)i>1 in {—1,1} we

have .
(el ) < cfel e

It is well known that the UMD,-property in (1.6) is p-independent, i.e. if
1 < p,q < oo, then X is a UMD,-space if and only if it is UMD,,. Therefore,
if X is UMD,, for some 1 < p < oo, it is customary to simply call it a UMD-
space. In the following theorem we collect some known properties of UMD
Banach spaces.

i)%. (1.6)

Theorem 1.8. If X is a UMD Banach space, then X has the following prop-
erties:

(a) X is reflexive;

(b) X* is a UMD space

(c) X has type p > 1 and cotype q < o©.
(d) X is K-conver.

Although UMD spaces are very special from a geometrical point of view, many
of the concrete spaces we will consider below in fact possess this property.
For example, Hilbert spaces, LP-spaces and noncommutative LP-spaces with
1 < p < oo are all UMD. For proofs of the stated facts and much more on
UMD spaces, we refer to [28] and the references therein.

1.2 Banach spaces with type or cotype restriction

In this section we study sums of independent, mean zero random vectors in a
Banach space. We use the following terminology and notation. Throughout,
we let (£2,F,P) denote a probability space. If X is a Banach space, then
an X -valued random variable is a measurable map £ : 2 — X, where X is
equipped with its Borel o-algebra B(X). We denote by e the distribution of
X, the probability measure on X given by

pe(B) =P € B)  (BeB(X)).
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We will always assume that an X-valued random variable is strongly measur-
able, i.e. there is a sequence of X-valued step functions (&;) such that & — &
a.s. By the Pettis measurability theorem, this is equivalent to assuming that
¢ is a.s. separably valued and (£, z*) is measurable for any z* € X*. We say
two random variables £, 7 are identically distributed if pe = . Since &, 7 are
strongly measurable, this is equivalent to saying that the scalar valued ran-
dom variables (£, z*) and (1, z*) are identically distributed for any z* € X*.
Recall that a random variable ¢ is Bochner integrable if there is a sequence of
X-valued step functions (§;) such that & — £ a.s. and

lim E[|§; —&|[x = 0.
i—»00

If € is Bochner integrable, then we say it is mean zero if its Bochner integral
E¢ is zero.

Given a Bochner integrable random variable £ and a sub-c-algebra G of
F we let E(£|G) be the vector-valued conditional expectation with respect to
G. If n is an X-valued random variable on (§2, F,P), then we set E({|n) :=
E(¢|o(n)), where o(n) is the o-algebra generated by 7. Let (£2, F,P) be a copy
of (£2, F,P). On the product probability space 2 x 2 we define

{(w,0) = {(W)lg(@),  &w,w) =&(@)le(w).

Notice that £ and §~ are independent and identically distributed. We shall refer
to 5 as an independent copy of &.

We commence by making the following well-known observation, see e.g.
[95], Lemma 6.3. We provide a proof for the reader’s convenience.

Lemma 1.9. Let F : R — R be convexr and increasing, let X be a Banach
space and & be an X -valued mean zero random variable such that E|F (2|[£]])] <
oco. If & is an independent copy of &, then

EF(|¢]) < EEF(|¢ — &) < EF(2[€]).

Proof. Since F' is convex and increasing, the function F(]| - ||) is convex as
well. By Jensen’s inequality,

EF(lél) = EF (I - E@)])
= BEF(|E(E - o))
< BEF(|3(2¢) + §(-26))
< BE(LF(|2¢]) + LR (| - 28])
= EF(2¢]).

As a consequence we have the following randomization principle.
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Corollary 1.10. (Randomization) Suppose that X is a Banach space and that
1 <p<oo. If (&) is a finite sequence of independent, mean zero X -valued
random variables and (r;) is a Rademacher sequence on a probability space
(2., F.,P.), then

p ) s

o)

P 1 P 1
25 2e],)" < (mE|Xne],)" <2(2] X
Proof. Let éi be an independent copy of &;. By Lemma 1.9,

(& Sell)’ < (s8] Se-af)’

= (EEEr Zrz’(ﬁi — &) i)%
< 2(BE||}_rc i)
< 2(EEE, || > ri(¢i - &) i)

Using Kahane’s inequalities, this leads to the following observation.

Lemma 1.11. If X is a Banach space and 1 < p < 2, then X has type p if
and only if for every finite sequence (n;) of independent, mean zero X -valued
random variables in LP($2; X) we have

P\ 5
(EHZW X) Spx (ZE||771'||§<> -
3 7

On the other hand, if 2 < q < oo, then X has cotype q if and only if for every
finite sequence (n;) of independent, mean zero X -valued random variables in

L1($2; X) we have
(S Emlg)* sox () Sal) "

Lemma 1.12. Fiz 1 < p < 0o. Let X be a Banach space and (&;) be a finite

sequence of independent, mean zero X -valued random variables. If X has type
1 <s<2, then

(5

P
s

") e (B elx) )
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On the other hand, if X has cotype 2 < s < 00, then
(B(Xleix) )’ S (B Ze])"

Proof. Suppose X has type s. By Corollary 1.10, Kahane’s inequalities and
the type s inequality we obtain

P ) s

b's

Elsel) = =3

B 1
= (B Tre],))
Spox (B (Znanx) R
The second assertion is proved similarly. O

For the proof of the next lemma we need the following inequality, due to H.P.
Rosenthal.

Theorem 1.13. [121] Let (12, F,P) be a probability space and let 2 < p < oo.
If (&) is a finite sequence of independent, mean zero random variables in
LP(£2), then

(E\;@ ”)% ~, max{(;mgilp)’l’, (Zijlmsiﬁ)é}-

Lemma 1.14. Let X be a Banach space and (§;) be a finite sequence of in-
dependent X -valued random wvariables. If 0 < s < p < 0o, then

1
S

(E (Znsmu) Bk Npsxmax{(;Eusn&) (ZEH@HX) }

On the other hand, if 1 < p < s, then

1
s

(E (Znanx) ok Np,éxmf{(;Enm&) (ZEIIH I%)" }

where the infimum is taken over all finite sequences (n;) € IP(LP(£2; X)) and
(0;) € 1°(L°($2; X)) such that & = n; + 6;.

Proof. Suppose first that 0 < s < p < co. We may assume that E||&;]|5% < oo
for all 7. By the triangle inequality,

(B(Xleix) ") < (B X s~ mhes] ) + DBl
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Notice that the sequence (||&;||% — E|l€:[/%)i>1 is independent and mean zero.
Therefore, by applying Lemma 1.12 if p < 2s and Theorem 1.13 if p > 2s, we
obtain

(] Xl - Eleals
oo max {( TE el - Elledk

;)%)
Ko@) (S E(le ~Bllx)) -

We estimate the two terms on the right hand side separately. For the first
term, we have by the triangle inequality and Jensen’s inequality,

< (Eaik)’ + (L Eiaint)’
<2( Y Elels)’.

For the second term, suppose that p > 2s. By the triangle inequality in

P(L3(2),
(SE(el - Bletx))’ < (D) + (SEkl?)

(S E|lls ~ il

[N

< (YElel)” + Y Elels
<omax { (T EII) (TEllx) )

where in the final step we use the contractive embedding
I*(L°(£2; X)) N 1P(LP($2; X)) C 125(L**(62; X)),

which follows from Hoélder’s inequality. Collecting our estimates, we conclude
that

(E(Z ||&H§<)€)% <ps X max{(ZEHfng{)%, (ZEH@H%)%}.

Suppose now that 1 < p < s. In this case we have the contractive embeddings
L*(£2) C LP(£2) and [P C [°. Hence,

p

(E(; l&ilix)”

1
s

) < (ZElks)
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and
p 1 1
s\ p P
(BE(lals) )" < (T EIalk)"
i i
The result now follows by the triangle inequality. O

By combining Lemmas 1.12 and 1.14 we obtain the following estimates.

Theorem 1.15. Let X be a Banach space with type 1 < s < 2 and (&;) be
a finite sequence of independent, mean zero X -valued random variables. If
s < p< oo, then

(B S6])" S max { (S EI1E ) (S Elel)
i i i
On the other hand, if 1 < p <'s, then
(B 2 ])” Spr e { (SRl + (S mhouls)

where the infimum is taken over all sequences (n;) € IP(LP(£2; X)) and (0;) €
I5(L5(£2; X)) such that & = n; + 6;.

1
s

Remark 1.16. Note that if the &; in Theorem 1.15 are in addition symmetric,
then the conclusion also holds for any quasi-Banach space with type 0 < s < 2
and any 0 < p < co. Indeed, the only place in the proof where it is required
that X is a normed space and p > 1 is in the application of Corollary 1.10.
For symmetric random variables, however, the conclusion of Corollary 1.10 is
trivial.

Specialized to Li-spaces we obtain the following result.

Corollary 1.17. Suppose S is a o-finite measure space and let (§;) be a finite
sequence of independent, mean zero L1(S)-valued random wvariables. If 2 <
p<ooand2 < q< oo, then

(el () ()

Ifl<g<2and q<p< oo, then

(EH Z& ;(S)y e max{(Z]E”&”iq@)%’ (ZEH&Hqu(S))é}.

If1<p<q<2, then

], o) oot { () + () )
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where the infimum is taken over all sequences (n;) € P(LP(§2; L1(S))) and

(0;) € 19(L9(£2; LI(S))) such that & = n; + 6;.
Finally, if 1l <p <2 and 2 < g < 00, then

( H Z&Z Le S>); e mf{(ZE”m”L%S )% * <;E||9i||iq<s))é}7

where the infimum is taken over all sequences (n;) € IP(LP(£2;L4(S))) and
(0;) € I2(L*(2; L9(S))) such that & = n; + 0;.

We will now deduce lower bounds for (E|| ", §1||§()% by duality from Theo-
rem 1.15. We first recall some preliminary facts on duality for intersections
and sums of Banach spaces.

Let (X,Y) be a compatible couple of Banach spaces (or more briefly, couple
of Banach spaces), i.e., X,Y are continuously embedded in some Hausdorff
topological vector space. Then the intersection X NY and the sum X +Y are
Banach spaces under the norms

2]l xry = max{||z||x, [|z[|v }

and
[zl x+y = inf{{lz]x + lylly : 2 =2 +y, v€ X, ye Y}

Suppose that X NY is dense in both X and Y. Then we have
(XNY)"=X"4+Y", (X+Y) =X"nY” (1.7)
isometrically. The duality brackets under these identifications are given by
(x,2") = (x, 2| xny) (z" e X*4+YY)
and
(x,2") = (y, ™) + (z,27) (zreX'NY*", z=y+2€ X+Y), (1.8)

respectively, see e.g. [85], Theorem 1.3.1.
Recall that a subset F' of X* is called norming for X if

2] = sup{[{z,2%)| : 2™ € F, [la"[| < 1}.

Let (S P ) be a o-finite measure space and suppose 1 < p,p’ < co satisfy
= + p = 1. Then every function g € L¥’ (S; X*) defines an element of ¢, €
( X)* through the duality bracket

(f.69) = /S (F(s)g(s) du(s)  (f € IP(S: X)),

In fact, [|@g|[rr(s;x)- = HgHLp,(S;X*). It may be shown that the map g — ¢,
defines an isometry onto a closed subspace of LP(S;X)* which is norming
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for LP(S; X). In general, this map is not surjective onto LP(S; X)*. If 1 <
p < oo, then the latter holds if and only if X* has the so-called Radon-
Nikodym property with respect to (S, X, u). In particular this is the case if
X* is separable or reflexive. We refer to [40], Chapter III for proofs of these
facts and a thorough treatment of the Radon-Nikodym property.

In the proof of Theorem 1.20 below we shall use the following observation.

Lemma 1.18. Let (S, X, u) be a o-finite measure space, X a Banach space
and suppose 1 < p,p’ < oco. If Xy is a sub-o-algebra of X, then, for any
e LP(2,50;X) andn € LP (2, X, X*),

E({€n)|%0) = (&, E(ml20)),
where (-,-) denotes the duality bracket for X, X*.

Proof. Suppose first that n is a simple function, i.e. n = Zj xB; ;. For any
A € Xy we have

[ teman= [ 3 x5
_ /A S (s, (¢ 25) [ Zo)d
- /A 3 (s | Z0) (€ 25)d
:/A<§,§j:E(XBj|EO)x;>d“
- / (&, E1| So)dp.
A

By approximation we conclude that

/<£,n>dﬂ:/<£,E(nlﬂo)>du7
A A

for any n € L¥' (£2; X*). O

The following lemma is probably known to experts. We provide a proof of this
result as we have not been able to trace a reference.

Lemma 1.19. Let X be a Banach space and let (S, X, 1) be a o-finite measure
space. Suppose 1 < p,p’,s,8' < oo satisfy % + ﬁ =1and i+ L =1. Then
the space L¥' (S; X*) N L¥ (S; X*) is norming for LP(S; X) + L*(S; X). The
corresponding duality bracket is given by

(f.g) = /S (F(s),9(s)) dpu(s), (1.9)

for any f € LP(S; X) + L5(S; X) and g € LP (S; X*) N L* (S; X*)).
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Proof. Note that the result holds if X is finite. Indeed, then
(LP(S; X) + L(S; X))* = LP(S; X)* N L*(S; X)* = L” (S; X*) N L* (S; X*).
For the general case we define a norm on LP(S; X) + L9(S; X) by
17l = sup{(f,2%) + &” € LP(S;X") N L* (5 X7), "]l <1},

Since L?'(S;X*) and L*(S;X*) isometrically embed into L?(S; X)* and
L#(S; X)*, respectively, we clearly have

[fll+ < sup{(f,z") : 2" € LP(S; X)" N L*(S; X)*, [l2"| < 1}
= [[fllee(s;x) 4L (5:3)-

For the reverse inequality, suppose first that f € LP(S;X) 4+ L*(S;X) is a
simple function and let g € LP(S; X) and h € L*(S; X) be such that f = g+h.
Then f =E(g|f) + E(h|f) and moreover,

IECgI ) e (sx) + IECRLS)]

Thus, we can compute the norm of f using only o(f)-measurable functions.
Since o(f) is finitely generated, we have

Lo(s;x) < lgllze(s;xy + 1RllLs(sx)-

Il e es;x)+L2 (8:)
= lfllLr o))+ Lo (o (1))
=sup{(f,z") : 2" € LP (o(f); X*) N L* (a(f); X7), [lz*[| < 1} < |[|f]].

If f e LP(S;X)+ L*(S;X) then there is a sequence of simple functions f,
such that f, — f in LP(S; X) 4+ L*(S; X). By the above,

> |Ifullzrcsix)+recsix) = If = falloe(six)+Lo(s:x)
= [ fllLr(s;x)+L5(55x) 5
as n — o0.

Finally, recall that for r = p, s the duality bracket between L"(S; X) and
the norming subspace L" (S; X*) of L"(S; X)* is given by

(f.9) = /S<f(5),9(8)> du(s)  (f € L7(S;X), g€ L (S8, X")).

Hence (1.9) follows immediately from (1.8). O

Theorem 1.20. Let X be a Banach space with cotype 2 < s < oo and (§;)
be a finite sequence of independent, mean zero X -valued random variables. If
s <p< oo, then
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mas { (S EIeN) " (L BIly) ) Spox (] Ze

On the other hand, if 1 <p < s and X 1is K-convez, then
: % S\ F N
inf { (Bl )" + (S EI%) "} Soex (B] 6]
i i P

where the infimum is taken over all sequences (n;) € IP(LP(£2; X)) and (6;) €
15(L5(£2; X)) such that & = n; + 6;.

Proof. Suppose first that s < p < co. Since X has cotype s, it also has cotype
p. Hence the first assertion follows immediately from Lemma 1.11.

We deduce the estimate in the case 1 < p < s by duality from The-
orem 1.15. Since X is K-convex and has cotype s, its dual X* has type
s’ < p < oo, where 2 + 1 =1 and 1—1—% = 1. Let (nf) be a finite se-
quence of X*-valued random variables satisfying

1

p)p
x .

1

Il = max { (S Elels- )7 (S mlely-) "} <1

Then (E(n;|&) — E(n})) is a finite sequence of independent, mean zero X*-
valued random variables. Therefore, by Lemma 1.18 and Theorem 1.15 we
have

(€, = D (&)

7

= YleEilE) — E))

?

= (6 EGrle) — EGr))

= 57]2&7;1@(77;@»—1@(77;)}

SNCHE
Sworx- (E| 6

< o] Tel)”

Taking the supremum over all (7)) as above we obtain by Lemma 1.19,

1
7

’
p >p
X*

") (] e — B0

X) "N E; 1) = Em))s

N
)",
X

as asserted. O

1 (Ellir (L (25x)) 415 (L5 (2:X)) Spys, X (EH Zfz‘



36 1 Vector-valued Rosenthal inequalities in LP-spaces

Specialized to L4-spaces Theorem 1.20 yields the following.

Corollary 1.21. Suppose S is a o-finite measure space and let (§;) be a finite
sequence of independent, mean zero L1(S)-valued random wvariables. If 2 <

q < p < OO, then
p )p

mas { (S BN ) (SDElElG o))

If1<qg<2and?2<p<oo, then

max {(Z]EH&H;ZQ(S))%v (ZM&H%N&)

If 1 < p,q <2, then

wr {( B s) + (B ) } 50 (2] 6, )
7 1 1

where the infimum is taken over all sequences (n;) € P(LP(§2; L9(S))) and
(0;) € 2(L%(2; LY(S))) such that & = n; + 6;.
Finally, if 1 <p < q and 2 < g < o0, then

i { (S EI) + (S E10089) '} 00 (2] 260 )

where the infimum is taken over all sequences (n;) € IP(LP(£2; L4(S))) and
(0;) € 19(L9(£2; LY(S))) such that & = n; + 0;.

Q=

} oo (2506

Nl

b
Lq(s)) '

} oo (56

In the case where X has both type 2 and cotype 2 we obtain two-sided esti-
1

mates for (E|| >, &%) 7. Recall that by Theorem 1.5 such a space is isomor-

phic to a Hilbert space.

Corollary 1.22. Let 2 < p < oo and H be a Hilbert space. If (&;) is a finite
sequence of independent, mean zero H-valued random variables, then

S el) mpmax{ (SRl (S EEE) ) @0
7 H 7 7
On the other hand, if 1 < p < 2, then
S el )~ it {(SEmZ) + (X E0IZ) )
(5] e, Z_ Z_

where the infimum is taken over all sequences (n;) € IP(LP(£2; H)) and (6;) €
12(L3(2; H)) such that & = n; + 6;.

The inequality <, in (1.10) was also obtained in [112], Theorem 5.2.
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1.3 Rosenthal inequalities for LP-valued random
variables

We now proceed to prove Rosenthal-type inequalities for random vectors in
L1(S), where S is a o-finite measure space. We start by making two elementary
observations. First, note that by combining Theorem 1.2 and Corollary 1.10
we obtain the following result.

Lemma 1.23. Let 1 < p < o0 and 1 < g < c0. Let (&) be a finite sequence
of independent, mean zero Li(S)-valued random variables. Then,
1 1

(]EHZ:& iq(s))p “ra (EH(Z:K”Q);‘ iq(s))g'

As a consequence, we find the following useful estimates.

Lemma 1.24. Suppose 1 < p,q < 2. Let (§;) be a finite sequence of indepen-
dent, mean zero L1(S)-valued random variables. Then,

P z 3
. P« |2
EISell, ) Sl (e
On the other hand, if 2 < p,q < co then
1
BIGE) ) S (B 2
H(; 68) . <o (] 2
Proof. Suppose 1 < p,q < 2. By Lemma 1.23,
p i 3||P s
B 26 ,.)" = B[ (Z16R) . )
( 2t ) e (B(0)
p 1
B 2] )
( ;‘€| L2(9)
3
El&)?]
Iseerl.,
3
(X Elal?)
i

Note that in the final inequality we apply Jensen’s inequality, using that £, 4 <
1. If we assume 2 < p, g < oo then this inequality is reversed. This completes
the proof. ([l

La(s)

b
Lq(S)) ’

IN

La(s)

The following Lemma is the key to the Rosenthal-type inequalities in the cases
where 2 < p,q < co.
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Lemma 1.25. Suppose 0 < s < 2 and s < p,q < oco. Let (&) be a finite
sequence of independent, mean zero L1(S)-valued random variables. Then,

(EH ;& ZQ(S));
Sy mae { (L)

Proof. By Lemma 1.23,

(5

Qs

—
o =

La(s)’ (E(zi:”&”qmw)) } (1.12)

=

') e ()
< (E(Xer)

By the triangle inequality we obtain
ip %
B[ (k) [,.)"
E(Cwr) .
- @ e,
( DI I
< (8| 1er —Eier|y )"+ | > Eler
7 Ls(S) p
Suppose first that ¢ < 2s. Then, by Lemma 1.12,
B| Zlel - Bt )’
(& X -mer],,
Spas (B( DI 16l ~ Bl

i

:;(S)>

! ) (1.13)
La(s)/) '

ol
D=

1
1.14
L%(S)) ( )

s

E%(S)) E) '
< (B(Xlehtus)")” + (B(X I=er
<2(&( Y lel) )"

where in the final step we apply Jensen’s inequality. By (1.13) and (1.14) this
proves (1.12).

Suppose now that ¢ > 2s. By applying Lemma 1.23 we find that

(B 31l ~ Elel

P
q

1 )%)%
L(S)

s
p

L%(S))
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=pae (] (S 16 -mier?) | )’
: (EH(Z]&'QS); 32(5)); * H(;|E|§is|2)é
: (EH@'@'QS);S ") | =ier

Since ¢ > 2s there is some 0 < 6 < % such that 2—18 = g + 1—;9. By applying
Holder’s inequality three times we obtain

<EH(;|@PS)* Nk
< (&) (Xer)” (qu)lqe Py
< (2 (H(Zlfz Yl (6 %] ))
< (2|(Zer)
(

L)

(1.15)

LE(s)

s(1—6)

_p_

1—6 P
. )

L1-96 (S)

wlo

‘ j%(s))% (EH(Z |§i|q)%
EH( €l )7‘L(I(S) ( H(ZKZ ) La s))b ” - (1.16)

Combining (1.14), (1.15) and (1.16) we arrive at the inequality
a20p2(1-0) 4 .2

2
a sp,q,s

where @ = (E||(3; |&]°)° )5, b = (B ll]s) )% and ¢ =
||(ZZIE\§Z|S) ||Lq(s). Notice that if @ < b then (1.12) immediately follows
from (1.13). Hence, we may assume a > b. Since 0 < 26 < 1 we then have

0429172(179) b2( )29 < ab.

Thus we obtain the inequality
a® Sp,gs ab+ 2.

Solving this quadratic equation we find that a <, , s max{b,c} and hence
2 2 2 .
as Sp g, max{bs, cE}. That is,

( H(ZK ) Lq<S>)p
Sy (( )’ bl DTN PN &

The result now follows from (1.13). This completes the proof. d

1

1
s
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We can now deduce estimates in the case where p,q > 2.

Theorem 1.26. Suppose 2 < q < p < oo. Let (&;) be a finite sequence of
independent, mean zero L1(S)-valued random wvariables. Then,

(E[2el, )"
~p g maX{H(Z]EKiF)% LQ(S)7(ZEH&”ILJ(S)> (ZE”&HM(S)) }

Proof. We have already proved that the maximum on the right hand side is
1
dominated by (E|[/ >, &-Hiq(s))?. Indeed, by Corollary 1.21 we have

max{(ZEHanLq(s )’1’, ( ZEH&HQLQ(S))%} o (B| 26, Q(S));

and in Lemma 1.24 we showed that
1 » 1
36 | S0 (5 )
(), ) 5o (| 6

For the reverse we apply Lemma 1.25 with s = 2 and obtain

eh

Lq(S)) '

Sha max{H(ZZ:JEMZ»F)é (B (ZII&II )’ )%}

The result follows by applying Lemma 1.14 with s = ¢ and X = L9(S). O

Remark 1.27.1f 2 < ¢ < p < oo and (§);>1 is an infinite sequence of in-
dependent, mean zero L7(S)-valued random variables, then it follows from
Theorem 1.26 that >, & converges in LP(£2; L(S)) if and only if

(&)iz1 € LI(S; 12(L2(02))) NIP(LP(£2; L(S))) N17(L(£2; L(S))).-

Theorem 1.28. Suppose 2 < p < g < oo. Let (&) be a finite sequence of
independent, mean zero L1(S)-valued random variables. Then,

(EHZ_:& Zq(s>); “pa maX{"(Xi:E|€i|2>é Li(s)’
it { (S BInlfs))” + (IR ) )

where the infimum is taken over all sequences (n;) € IP(LP(£2; L4(S))) and
(0;) € 19(L9(£2; L1(S))) such that & =n; + 6;.
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Proof. In Lemma 1.24 we proved

[(Zm6r) 0 500 (B]

and by Corollary 1.21,

» H
Lq(S)) ’

P b
Lq(S)) ’

For the reverse inequality note that by applying Lemma 1.25 with s = 2 we

obtain
N
Lq(S))

5
Sy {|(S6R) |, BT i) )}

The result follows by applying Lemma 1.14 with s = gq. (I

1€l (Lo (2519 (5))+1a (La(2:L(5))) Spoa (]EH > &
[

By duality we can deduce results for the cases 1 < p,q < 2.

Theorem 1.29. Suppose 1 < p < q¢ < 2. Let (&) be a finite sequence of
independent, mean zero L1(S)-valued random variables. Then,

Chee

1

iq(s)); =pa inf{”(?mmﬁ)é“m(s) - (zi:EHHill’zq(S))’l’
H(CElnls) '} 117

where the infimum is taken over all sequences (n;) € L1(S;1%(L*(12))), (0;) €
IP(LP(£2; L9(S))) and (k;) € 19(LI($2; LU(S))) such that & =n; + 0; + K.

Proof. Recall from Corollary 1.17 we have
(] e

and by Lemma 1.24,
(EISel,)" o |(Smer)’

Suppose we are given (n;) € L4(S;12(L?(2))), (6;) € IP(LP(£2; L4(S))) and
(k) € 19(L9(£2; L4(S))) such that & = n; + 6; + ;. Then

p
g < 3 P P La q q L4
Lq(s)) Sea 1€l e (@sLa(sy)iawa@szacs)),

La(s)
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& =EMmil&) — E(ni) +E(6:1&) — E(6:) + E(ki|&) — E(ki).
Moreover, (E(n;|€;) — E(n:)), (E(6:]€:) — E(6;)) and (E(s;§:) — E(ks)) are

sequences of independent, mean zero random variables. Therefore, by the tri-
angle inequality and the two estimates above,

Elzel.,)’
o | (S EEGE) ~EGP) s (ZEIIEGI& — B0} (s))

+ (D EIEGe) — E(so)lfcs)) "
< (EmR) |, () + (S Elilags))

where in the final estimate we apply Jensen’s inequality and contractivity of
1
conditional expectations. This concludes the proof that (E[ >, &}, S))p is

dominated by the infimum on the right hand side of (1.17).

We deduce the reverse inequality by duality from Theorem 1.26. Let 2 <
¢ <p’ < oo be such that % + 1% =1 and i + % = 1. Let (n}) be a sequence
satisfying ||(n])]|« < 1, where

()|l == max{H(ZEmﬂQ)%
(ZE”m o) (ZEnm )"

Then, by Lemma 1.18 and Theorem 1.26 we have

(&), ) = D (&ni)

= D (& Emile) — EGn)

= Y& Emjle) — E)))
(D& Y Erle) - E())
(EHEQ Z‘I(S)) ( HZEUJ|§J )‘
vor (B

|36, ) IE51e) - B

=

La'(s)’

—

3 e

IA

(S))
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1

= 2(EH zi:& ZG(S)) E

If we now take the supremum over all (}) as above we obtain

p )%
Lasy/ ’

as required. O

1€l La(si2 (L2 (@) +1r (Lr (@5La(8)+i (L (2:L9(S))) Spoa (EH > &

Theorem 1.30. Suppose 1 < q¢ < p < 2. Let (&) be a finite sequence of
independent, mean zero L1(S)-valued random wvariables. Then,

(B[ 6 ] ) e e (] (Zm02)
s { (B ) (S EIRIL.) )

where the infimum is taken over all sequences (n;) € L9(S;1?(L*(£2))) and
(0;) € IP(LP(§2; LI(S))) NI2(LI(£2; LI(S))) such that & =n; + 0;.

Proof. Let & = n; +0;, then & = E(n;|&;) — E(n;) + E(65]&;) — E(6;). Notice
that (E(n;|¢;) — E(n;)) and (E(6;1&) — E(6;)) are sequences of independent,
mean zero random variables. By the triangle inequality, Lemma 1.24 and
Corollary 1.17 we have

Exel,,)’
Soa || (S EEGiIE) —Em)P)

1
2

La(S)

+ max { ( Z E[E(0;) — E(ei”'iLI(S)) %’

(ZE”E(@I&) - E(ei)Hqu(s)) ;}
< H(ZEImP)% s T {(Z]E”@”iqw))%’ (Z]EHHZ‘H%‘?(S)) % }

where in the final step we use Jensen’s inequality and contractivity of vector-
valued conditional expectations. This proves that (E| >, @Hiq( S))% is domi-
nated by the infimum on the right hand side.

The reverse inequality follows by duality from Theorem 1.28. This argu-
ment is analogous to the one in the proof of Theorem 1.29. We leave the
details to the reader. O
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For the case 1 < ¢ < 2 < p < oo we shall use the following result, due to
J. Hoffmann-Jgrgensen [59]. The inequality appearing below with constant of
optimal order is due to M. Talagrand ([133], see also [95]). We refer to [90]
(see also [91]) for a different proof based on hypercontractivity methods.

Theorem 1.31. Let X be a Banach space and let (&) be a finite sequence of
independent, mean zero X -valued random variables. Then there is a universal
constant C' > 0 such that for oll p > 1,

ElZel)” <o Elzel +

Theorem 1.32. Let 1 < ¢ < 2 < p < oo. Let (&) be a finite sequence of
independent, mean zero L1(S)-valued random variables. Then,

(EH Z& iq(S)); “ra max{(ZE”&”ZL)q(SJ%’
e () + (S )},

where the infimum is taken over all sequences (n;) € L4(S;1%(L*(£2))) and
(0;) € 19(L9(£2; L1(S))) such that & = n; + 0;.

Proof. By Theorem 1.31 we have

( HZ& Lq(S))é ~P max{( HZ&

By Theorem 1.29 (with p = ¢) we have

(el

and obviously

(E ma ||&||§()%)-

Lq<s>>é7 (Emaxl6s) '}

1
(s)) " 2 1)l agse 2@ pac@izas)

(B 6l ) < (S Bl s) "

For the reverse inequality, note that

( HZ& La S’))p ( HZ& Li(s )é

~pg H(fi)Hm(s;zz(L2(9>>>+zq<m<n;u<s>>>~

Moreover, by Corollary 1.21,

(=]« o) Fn (;Emniq(s))?
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Theorem 1.33. Let 1 < p < 2 < g < oo. Let (&) be a finite sequence of
independent, mean zero L1(S)-valued random variables. Then,

Che

1

o) e { (S )
s {] (S0, (S 26)

where the infimum is taken over all sequences (n;) € L%(S;I%(L%*(£2))) N
19(L9(02; LY(S))) and (8;) € IP(LP(£2; L1(S))) such that & = n; + 0;.

Proof. By Theorem 1.28 (with p = ¢) we have

Gl = ElSsl

1
q

L‘I(S)>

Spg Max { H ( ZM@P) 3
On the other hand, by Corollary 1.17,
(EHZ& Lq(s)) Sna (ZEH&HU(S )%.

Let & = n;+0;. Then, & = E(n;|&) —E(n;) +E(6:]&:) — E(6;). By applying the
above to the sequences of independent, mean zero random variables (E(n;|&;)—
E(n;)) and (E(6;1¢) — E(6;)) we obtain using Jensen’s inequality

CH3T
Soa (S Emtaie) - 500R)

+ (S BIECE) - Bl )’ + (SEIEE) - 501 s )
smac {[(SZEE) [, g (ZBIE0) |+ (S BI0s)°

The reverse inequality follows by duality from Theorem 1.32. We leave the
details to the reader. (]

sy (2F El6l%) ' )
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Vector-valued Poisson stochastic integration

This chapter is devoted to the study of vector-valued stochastic integrals with
respect to a compensated Poisson random measure. Motivated by applications
of vector-valued stochastic integration to the study of stochastic partial dif-
ferential equations, we aim to prove two-sided estimates for the p-th moments
of a Poisson stochastic integral in terms of a suitable norm on the integrand.
First we consider estimates for Poisson stochastic integrals of processes taking
values in a Banach space. Depending on whether the Banach space satisfies a
type or cotype restriction we obtain an upper or lower estimate, respectively,
for the p-th moment of the stochastic integral. Only in the special case where
the Banach space is a Hilbert space, our approach yields two-sided inequali-
ties.

In the final section we consider Poisson stochastic integrals in LP-spaces.
We will restrict ourselves to classical LP-spaces, as our main motivation is the
application of moment estimates to stochastic partial differential equations.
However, with some extra effort the results below can be deduced for processes
taking values in a noncommutative LP-space as well, using the results from
Chapter 3. We leave this up to the interested reader.

Roughly speaking, the moment estimates for stochastic integrals are
proved in three steps. First, by using decoupling inequalities (see Theorem 2.3
below) we reduce the problem of deriving moment estimates for stochastic
integrals of simple processes to corresponding estimates for sums of indepen-
dent, mean zero LP-valued random variables, which were already obtained
in Section 1.3. After applying the latter estimates to the decoupled stochas-
tic integral, we finally use some elementary inequalities for Poisson random
variables (Lemma 2.2 below) to obtain a suitable norm on the integrand.

2.1 Preliminaries

We start by giving a brief introduction to Poisson random measures.
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Definition 2.1. Let (2, F,P) be a probability space and let (E,E) be a mea-
surable space. A random measure M is a collection {M(B) : B € £} of
random variables such that

(1) M(0) = 0;
(ii) For any disjoint A, B € £ we have

M(AUB) = M(A) + M(B).

Let p be a measure on (E,E). We say a random measure N is a Poisson
random measure if the following conditions hold:

(1ii) For disjoint sets Ay, ..., A, in & the random variables N(A1), ..., N(Ay)
are independent;

(iv) For any A € & with p(A) < oo the random variable N(A) is Poisson
distributed with parameter u(A).

The measure p is called the intensity measure of N.
LetE, = {Ac €& : u(A) < oo}. Then the random measure N on (E,E,,, 1)
defined by y
N(A) = N(A) — u(4)  (A€E,),

1s called the compensated Poisson random measure associated with N .
Let N1, Ny be independent copies of the Poisson random measure N above.
Then the random measure

NJ(A) = Ni(A) = Na(4) (A €€) (2.1)
1s called the symmetrized Poisson random measure associated with N.

Given a o-finite measure space (E, &, 1) one can always construct a Poisson
random measure with intensity measure pu, see e.g. [123], Proposition 19.4.
We now describe how (compensated) Poisson random measures arise nat-
urally in the study of Lévy processes. Let (£2, F,P) be a probability space and
let (Fi)i>0 be a filtration satisfying the usual conditions, i.e. it is complete
and right-continuous. Let L = (L);>0 be a stochastic process adapted to this
filtration. We will say L is a Lévy process if the following properties hold:

(i) Lo =0 a.s;

(ii) L has a.s. cadlag sample paths;

(iii) Ly — L is independent of F for any 0 < s < ¢;

(iv) Ly — Ly and Ly, are identically distributed for any 0 < s < ¢;
(v) L is stochastically continuous, i.e. for v > 0 and s > 0,

lim P(|L; — Ly| > v) = 0.

In the literature Lévy-processes are usually defined under somewhat weaker
assumptions (see e.g. [5], [123]).
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Let L be a Lévy process and let {2y be the set on which L has cadlag
paths. We can define the jump process AL of the Lévy process by

o Lt(OJ) — Lt_(w), if ¢ > O7 w e .Qo,
ALt(“’)_{ 0, ift>0, we 2,

where Ly = limgy L. Then, for any 0 <¢ < 0o, A € B(R—{0}) and w € 2
we define
Nt A)(w)=#{0<s<t : ALs(w) € A}

and we set N (¢, A)(w) = 0if w € £2§. That is, N (¢, A)(w) counts the number of
jumps of a specified size in the interval [0, ¢]. It can be shown ([123], Theorem
19.2) that the map

N((s,t] x A)=N(t,A) — N(s, A)

extends to a o-additive Poisson random measure on (R x R — {0}, B(R x
R — {0})). Its intensity measure is given by dt x v, where v is the o-finite
measure

v(A) =E(N(1,A4)) (A e B(R—{0})).

In fact, v is precisely the Lévy measure of L. Moreover, one can show (see [123],
Theorem 19.2) that there is a standard Brownian motion W and parameters
o >0 and b € R such that

Ly = bt + oW, + / zdN + / xdN. (2.2)
[0,4]x{|e|<1} [0.6]x{|z|>1}

This is called the Lévy-It6 decomposition of L. Thus, together with Brown-
ian motions, (compensated) Poisson random measures are the basic building
blocks of Lévy processes.

We now discuss two results that we will be frequently used throughout
this chapter. First we record the following elementary lemma.

Lemma 2.2. Let N be a Poisson distributed random variable with parameter
0 <A< 1. Then for every 1 < p < oo there exist constants by, c, > 0 such
that

bod < IV = AlZ < ). (2.3)

Proof. The inequalities are trivial if A = 0, so we may assume A > 0. We
first prove the inequality on the left hand side of (2.3). Suppose first that
2 < p < 00. Then we have

P S p)‘ke_/\ S p At Pe=A P~
EIN = AP =" |k— )| i > k=) AP LA
k=0 k=2

Hence,

E|N — AP >E[N — A2 = [MPe ™ — [T = A2xe ™ + [APe™ +]1 — APAe™
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= A+ MEA= (1= A2+ A4 (1= 0)P)
AL+ e (),
where
FoA) =21 A2 X — 1+ (1 - NP, (2.4)
One easily sees that ming< <1 (1 + e~ f,())) = b, > 0. Indeed,

T+e (M) >14+eM(=A2+A—1) +e M1 - NP,

Now,
I+eM=NHA-1D+eM(1-AP>0

if and only if

/\2 )\3 /\4
L=AP > -+ A2 - At l=-22+F - —— — ... :
(I=XNP>—-e"+X =X+ A+ 5 Y
Clearly this holds if 0 < A < 1. This proves the left hand side inequality if
2 <p<oo.
Suppose now that 1 < p < 2. Then, by the Cauchy-Schwartz inequality,

A=E|N - AP =E|N - A|Z|N —\?*%
< (E|N = A]P)2(E|N — A[*~P)2.

Since 4 — p > 2 we find by the above that
A < E|N = APE|N — A[*"P <E|N — APeg_p.

We now consider the right hand side inequality of (2.3) for 2 < p < oc.
Clearly it suffices to prove this in the case where p is an even integer n. We
first compute the moment generating function of N — A.
‘ ‘ o 1"
J Y - N —Xt A(ef—1 Aef—1—
E(elNN) = e ME(etY) = e MeAE— = oAe = exp()\z E)
n=2

It is now easy to see that the n-th moment of N — A can be written as Ap,, ()
for some polynomial p,, with positive coefficients. Since maxg<<1 [pn(A)| < ¢
for some constant ¢, > 0, our proof for the case 2 < p < oo is complete. If
1 <p < 2then

Aee=A
k!

EIN — AP =Y |[k— AP
k=2

+ [APe™ + |1 = APAe™?

= g Ae™? A A
<> k=2 T T AP L= AP
k=2
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=E|N =2 = |A2e™ = [1 = APAe ™ + [APe ™ 4+ [1 = APre™
_ - -
= )‘(1"’6 fpo‘)) < )‘0?)5\1%(1(1"‘@ pr‘)L

where f, is the continuous function defined in (2.4). O

We end this section by discussing a decoupling result that will be used inten-
sively throughout the chapter. Its proof can be found in [138], Theorem 2.4.1.
Let (£2, F,P) be a probability space and let (F;), be a filtration in F. Fix
1 < p < ooandlet (&), be asequence of mean zero, F;-measurable random
variables in LP(2) such that ¢; is independent of F; for all 1 < j < ¢ < n. Let
2 be a copy of 2. We define two independent copies of the sequence (&) on
the product probability space {2 x Q by setting

§i(w,0) =&i(W)lp@),  &Giw,w) =&(@)la(w).

Let X be a Banach space and let (v;)}_; be a sequence of F;_j-measurable
random variables in L% (f2; X). We identify v; with its copy v;(w,®) =
v;(w)15(@) in L(92 x 2; X).

Theorem 2.3. (Decoupling) Fiz 1 < p < oo and let (&), (&)™, and
(vi)f_y be as above. If X is a UMD Banach space then
1

(S el)? o (25w )’

Remark 2.4. In some applications one is only interested in the one-sided de-
coupling estimate
1

(135 ) o (58S

This inequality can be proved under less restrictive assumptions on p and X,
for example for 1 < p < co and X = L'(S), where S is a o-finite measure
space. We refer to [36] for results in this direction.

2.2 Poisson stochastic integration in Banach spaces

Let X be a Banach space and let (J,J,v) be a o-finite measure space.
Throughout this chapter we fix a Poisson random measure N on (Ry X
J,B(R}) x J,dt x v). Moreover, we make the following assumption.

Assumption 2.5 Throughout this chapter we fiz a filtration (Fi)i>o0 such

that for any 0 < s < t < oo and any A € J the random variable N((s,t] x A)
is independent of Fs.
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Definition 2.6. Let F': £2 x [0,00) x J — X. We say F is a simple, adapted
X-valued process if there is a finite partition 7 = {0 < t; < ... < t;41 <
oo} of [0,00), Fyp € L™®(Fy,), xijk € X and disjoint sets Aq,... An in J
satisfying v(A;) < oo fori=1,...,l,j=1,...,mand k=1,...,n such that

I m
F= Z Z Fi kX (t:,ti01)XA; Ti g o (2.5)

Lett > 0 and B € J. We define the (compensated) Poisson stochastic integral
of F on [0,t] x B with respect to N by

l m n
/ F dN = ZZZFZ*kN((tZ A\ t, ti+1 /\t] X (A] n B))‘ri,j,lw
[0,t]xB

i=1 j=1 k=1

Remark 2.7. By refining the partition 7 in Definition 2.6 if necessary, we can
and will always assume that (t;31 — ¢;)v(4,;) < lforalli=1,...,1,j =
1,...,m. This will allow us to apply Lemma 2.2 to the compensated Poisson
random variables N ((t; A t,ti11 At] X (A; N B)).

From now on we will write N; ; := N((t;,t;41] x A;) for brevity.
We will make use of the following inequality due to E.M. Stein (see [128],
Chapter IV, the proof of Theorem 8).

Theorem 2.8. (Stein’s inequality) Let 1 < p < o0 and 1 < s < oo. Let
(2, F,P) be a probability space and let (F;);>1 be a filtration in F with cor-
responding conditional expectations (E;);>1. Suppose (fi)i>1 is a sequence of
F-measurable functions. Then,

H(Z:|Ez(fz)|s)l

Lemma 2.9. Fiz 1 < p < 0o and let X be a Banach space. Let 0 <ty < t1 <
s <ty <00, Fip € L°(02), xijr € X, and let Ay, ... Ay, be disjoint sets
in J satisfying v(A;) < oo fori=1,...,l,j=1,....mand k=1,...,n.
Define

L ()

(Tisr)°

%

Sp.s

L ()

F = : :Fivkx(tiati+l]x‘4jxivjvk
0,5,k

and let F be the associated simple adapted X -valued process given by

F = ZE(Fi,k|~Ft7‘,)X(ti,ti+1]Xiji7j7k'
1,5,k

Then, if l <p<ooand 1< s < o0,

1E )| Lo (s (0.1x.:)) Spos 1| o (2520 (10,61 7:))
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Proof. We may assume ¢ = t;,1. By Stein’s inequality (c.f. Theorem 2.8) we
have

1E N 2o (;5 (10, 7:))

N[O STERINI) SETENN

1
s

(St (SR ),
(- S s )V
t;m—t S ainl)

= [[1Fll o (@:s (0.41% 7)) -

We will often use the following trivial observation.

Lemma 2.10. Suppose (S, X, u) is a o-finite measure space and let X be a
Banach space. Let Ay, ..., A, be disjoint sets in X with u(A;) < oo and let A
be the o-algebra generated by Ai, ..., A,. Then, for any G € L'(S; X),

E(G|A) = ZXA Yis

for some y; € X.

Proof. Notice that since A1, ..., A, are disjoint, A is actually a finite algebra,
consisting of A4;,..., A4, and all their possible unions. Moreover, if u(A;) > 0

then
/AiG dp = (M(Aj))_l/Ai

EGA) = S (u(A) xa, /A G dp.

{J + n(A;)#0}

n

( / G du) XA; dit,
(G : n(Ayz0y A

SO

O

Theorem 2.11. Let X be a UMD Banach space with type s € (1,2] If s <
p < oo we have, for any simple, adapted X -valued process F, any B € J and
anyt >0,
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H/[Ot

On the other hand, if 1 < p < s then

1
[0,t]xB

SP,S,X HFHLP(Q;LS([O,t] x B;X))4+Lr(2;L7([0,t]x B; X)) - (2.6)

LP(Q;X)

Spos,x Max {”F”LP(Q;LS([O,t]><B;X))a ||F||LP(Q;LP([o,t]xB;X))}~

Lr(2;X)

Proof. Let F be as in (2.5), taking Remark 2.7 into account. Without loss of
generality, we may assume t = t;y; and B = J. Let (£2, F,P) be a copy of
(2, F,P). By Theorem 2.3 we have

‘/ FdN‘
Ot

where we use the same letter Ni,j to denote its copy on f2. Suppose first that
s < p< . Fix w € 2 and define

ylj § Flk‘ x1,j,k'

sz,J i,J, k‘

Ly .OX) Lr(2x X))

It suffices to show that

I )
]

Sposx max { | F(w)]

Le([0,4] X J:X) s ”F(W)”LP([O,t]xJ;X)}' (2.7)

The result then follows by taking LP((2)-norms on both sides. Define §; ; =
N; ;yij(w). Then (& ;) is a doubly indexed sequence of independent, mean
zero X-valued random variables. By Theorem 1.15 we have

(EH Z &i.j ‘i)i Sps,x Max { ( Z ]E||€””§(> %’ (ZINE||&7J||§() 1 }
ij — 2

If » = s, p we have by Lemma 2.2,

1
T

1
(X Bllgalz)" = (D EINI gk )
i,j ,J

= (D (tisr = (Al ()%
= [[F (W)l o,6x7:x)- (2.8)

I
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Thus (2.7) holds and our proof in the case s < p < 0o is complete.

Suppose now that 1 < p < s. Again set & ; = v ; (w)Ni,j. If r = p,s then
by applying Theorem 1.15 to (&; ;) and using (2.8) we obtain

~ =~ p % | AT r r " %
(]EEHZNi,jym X) Spor X (E(ZE\Ni,j ||2Ui,j||X) )
B i

~r |FllLe(2sero,4x7:x))-

Since L*>(2)@ L>(]0,¢])® L (J)® X is dense in both LP(§2; LP([0,t] x J; X))
and LP(§2; L*([0,t] x J; X)), we have, for F'in L= (£2)@L>([0,t])@L>(J)®X,

Il e (2510 (0,61 J3X)))+ L2 (2512 ([0, x J; X))
= inf { IEL Lo (2520 (0,0 % 75x)) + HFz\lm(n;Ls([o,thJ;X))}’

where the infimum is taken over all decompositions F' = Fy 4+ F5 in L (2) ®
L>([0,t])®@ L>=°(J)® X . Fix such a decomposition. Let A be the sub-o-algebra
of B(R,)x 7 generated by the sets (¢;,t;41]xA;. Then F' = E(F; | A)+E(F5|.A)
and by Lemma 2.10 E(F;|A), E(F5|A) are of the form

Fo = Z Fi(ka(ti,tiﬂ]Xijiojﬁk (a =1, 2)'
1,5,k

Let Fy, F5 be the associated simple adapted processes

Fa = Z E(Fi?é’f“Fti)x(ti,twﬂxf“szqjj,k (a=1,2),
i,5,k

then F' = Fl + FQ. By the above,

[0,t]xJ

SH/ By a| +H/ Py d|
[0,¢]x.J Lr(£2;X) [0,¢]xJ

Spus X 1P Lo (2snr0,x 7,30 + 12l Lo 200 (0,41 7:%))

Lr($2;X)

Lr(2;X)

Spos IB(ELA | Lo (2507 (0,6 x 75x)) + IEFEA) | 2r (210 (0,6 x J5X))

< 1Bl e @;e(o,0x0:x)) + 12l Lo (2;0 (0,4 x.7:%))

where in the final two steps we use Lemma 2.9 and contractivity of vector-
valued conditional expectations, respectively. Thus, taking the infimum over
all decompositions F' = F} 4+ F5 as above yields

1,5
[0,t]xJ

as asserted. O

Spos X 1F Lo (200 (0,6 % 7:)) + e (2515 (0,81 J3X))

Lr($2;X)
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Remark 2.12. Note that for the second part of Theorem 2.11 to hold it is
necessary that X has type s. Indeed, if the estimate (2.6) holds for some
1 < p < s, then in particular,

FdN‘ Sp.s, H / Fl|5dt x dv
H/[O,t]xJ Lr(o;x) P ( [o,t]xJH 1% )

for any simple, adapted X-valued process F' and any ¢ > 0. By taking F' =
o X(i,i+1)Ti in this inequality we obtain

n 1 n 1

- PNp s\ °

(B S aw)” oo (3 Meilli) "
i=1 X =1

where (72;) is a sequence of independent compensated Poisson random vari-
ables with parameter 1. By [95], Proposition 9.15, we have

n pal n pA L
P ~ P
1,00 (EH E TiT; ) S (EH E T4 ) ;
‘ X ‘ X
=1 =1

and hence X has type s by Kahane’s inequalities.

1
s

)

Lr(2)

(721

Remark 2.13. Using an entirely different approach, it is shown in [143] that
Theorem 2.11 holds under the condition that X has martingale type s. This
result is slightly more general, as every UMD space with type s automatically
has martingale type s.

Specialized to L9-spaces we obtain the following result.

Corollary 2.14. Let S be a o-finite measure space. If 2 < p,q < co we have
for any simple adapted L1(S)-valued process F, anyt >0 and B € J,

H/ F an|
[0,t]xB

Spaa max{||FHLP(Q;L2([O,t]><B;L‘Z(S)))a ||F||LP(Q;LP([O,t}><B;L‘1(S)))}~

Lo (25L9(5))

Ifl<qg<?2and qg<p<oo then

H/ F an|
[0,t]xB

Sp.a maX{||F||LP(Q;LQ([O,t]xB;Lq(S’)))7 ||F||LP(Q;LP([O,t]xB;Lq(S)))}~

Ly(2;L4(S))

If 1 <p<q<2then

”/ F dN’
[0,¢]xB

Lr(£;L9(5))
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Spaa IF | o (2:0a(10,6)x B;La(5))) +Lp (2517 ((0,8] x B; La(S)))

Finally, if 1 <p <2 and 2 < g < oo then

H/ F dN’
[0,t]xB

Spa IE Lo (92,0210, x B;La(S))) 4+ LP (217 ([0,] x B; L4 (S))) -

Lr(25L9(S))

We now consider the ‘dual’ situation. From Theorem 1.8 it follows that the
dual X* of any UMD space X is reflexive and hence has the Radon-Nikodym
property. By (1.7) we obtain

*

(L2025 L2([0,1] % J5 X)) 0 LP(2 L*([0,] x J; X))

—_ —

=L (2, L7 ([0,8] x J; X*)) + L (92; L* ([0,] x J; X*)), (2.9)

where 1 §p,s<ooand1<p’,s’Soosatisfy}%Jri:land%Jri =1.
Using this duality we obtain the following result.

Theorem 2.15. Let X be a UMD Banach space with cotype 2 < s < oo. If
s < p < oo we have, for any simple, adapted X -valued process F,

max {”FHLP(Q;LS([O,t]xB;X))7 HF”LP(Q;LP([O,t]xB;X))}

<, / F dN‘ . (2.10)
[0,t]xB Lr(£2;X)
On the other hand, if 1 < p < s then
I | o (2 (10,1 x B X)) 4 Lo (2 L2 ([0,6)% BiX)) S /[O,t]xB r dN‘ Lr(2:X)

Proof. Let F be the simple adapted process given in (2.5), taking Remark 2.7
into account. We may assume that ¢ = t;41; and B = J. By Theorem 2.3,

H/ Fd]\?‘ ZFi,kNi,jxi,j,k‘
[0,¢]xJ igk
. - P\7
- (58] S o)’
%

where y;; = > p_, Fixxi k. Suppose that s < p < oo. Set & j(w) =
Yi,;(w)N; ;. By applying Theorem 1.20 for the sequence (§; ;(w)) and using
Lemma 2.2 we obtain for r = p, s,

p)%

(8] 3 Ny
iJ

~
—-bp

LP(£2;X) LP (2% 2;X)

p

1
) v (B DD EING I il
(2]
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= (B D (e — (4 s Ik
1,7

= | Fllzr@cr(o.4x 7:x))-

Taking the maximum over r = p, s gives the result.

We deduce the inequality in the case 1 < p < s by duality from Theo-
rem 2.11. Since X is a UMD space, it is K-convex (c.f. Theorem 1.8). Hence,
by Theorem 1.6 we find that X* has type 1 < s/ < 2 and s’ < p/, where
%+Si,:1and%+][%:1.

Let G be an element of the algebraic tensor product L (£2) @ L>([0,t]) ®
L>(J)® X*. Let A be the sub-o-algebra of B(R;) x J generated by the sets
(ti,tiy1) X A;. By Lemma 2.10 E(G|A) is of the form

E(G|A) = Z GLkX(ti,tHl]XAJ'I;J'JC’
N

where G, € L>®(£2). Let & be the conditional expectation with respect to
Fi, and let G be the simple adapted process defined by

é = Z gi(Gi’k)X(tiyti+l]XAjw;j,k'
igk
Let (-,-) denote the duality bracket for (2.9). By Lemma 1.18 and Theo-
rem 2.11,
(F,G)

= (F,E(G|A))

= Z E(F; xGir)dt x dv((tistivi] X Aj) (@i gk, T %)
N
Z E(F; k&i(Gik))dt x dv((tistiv1] X Aj)(@ijn, T %)
N

Z E(F; k&5 (Grn) YE(N; 3 Num ) (@i oy T )
i,5,k,l,m,n

> EE(FikNi;E/(Gran) Num (@i ks T )

.5,k l,m,n

- IE]E<< Z Fy 1k Ni i gk, Z El,n(Gz,n)Nz,mximm>)

N l,m,n

< H E Fz‘,kNi,jwi,j,k’

295

Spos,X H > Fi,kNi,ﬂvz,j,k’
ik

Z gl,n(Gl,n)Nl,mx;mm

,m,n

Lp(nxfz;x)Hl LP' (2x$2;X*)

LP(02x82;X)

max {”éHLP’(.Q;LP'([O,t]xJ;X*))v ”é”LP’(Q;LS'([O,t]xJ;X*))}
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Spis Fy 1 N; jai )
P, Z KAV, 05,k Lo (2% 2:X)
0,5,k
max {HE(G‘A)HLP’(Q;LP/([O,t]xJ;X*))’ H]E(G|A)HLp’(Q;Ls/([o,t]xJ;X*))}7
Sps F; Ni' i,j ’
~P, ”Zk K 7]x737k LP(QXQ;X)

max {”G”LP’(.Q;LI"([OJ]XJ;X*))’ ”G”LP’(Q;LS/([O,t]xJ;X*))}’

where the penultimate inequality follows by Lemma 2.9. Since L*(f2) ®
L>([0,t])®L>®(J)®@X* is dense in LP (£2; LP ([0, t]x J; X*))NLP (£2; L* ([0, t] x
J; X*)), we conclude that

N Lo (2;10 ([0,6] % 5125 X )+ L (2;L° ([0,6] x T3 X))

‘ E Fi,kNi,jfi,j,k’

4,5,k

<p )
~ LP (2% 2;X)

O

Remark 2.16. Suppose X has finite cotype. Then, for the first part of Theo-
rem 2.15 to hold it is necessary that X has cotype s. Indeed, suppose (2.10)
holds for some p > s, then in particular

1
Fl5cdt x dv) SS’XH/ FdN’
H(/[o,t]xJ” I% (@) ™ [0,t]xJ

holds for any simple, adapted X-valued process F' and any ¢ > 0. By taking
F =31 X(i,i+1]% in this inequality we obtain
1

n 1 n p
(Xlailixc)” S (B ]| )"
=1 i=1

where (72;) is a sequence of independent compensated Poisson random vari-
ables with parameter 1. Since X has finite cotype ¢, we find by [95], Proposi-

tion 9.14 that
L p %< ~ n PNz
(]E”Zlnvfm X) ~ ||n1r,1(EH;7'ixi X) )

where r = max{p, ¢}. By Kahane’s inequalities we conclude that X has cotype
s.

Lr($2;X)

Specialized to Li-spaces Theorem 2.15 yields the following.

Corollary 2.17. Let S be a o-finite measure space. If 2 < g < p < 0o we have
for any simple adapted L(S)-valued process F, anyt > 0 and any B € J,



60 2 Vector-valued Poisson stochastic integration
maX{||F||Lp<rz;m<[o,t1xB;Lq<S>>>’ ||F||LP<9;LP<{0¢1x&m(sm}

/ F dN‘
[0,t]xB

<
~P,q

Lr(2;L4(S))

If1<qg<2and?2<p<oo then

masc {||FllLo(@z201xB:acsm s Il oaiws o zanisy) |

S | / F an|
[0,t]xB

Lr(2;La(S))
If 1 <p,q <2 then

| Lo (0222 (10,6 % B; L9 (8)))+ Lo (2 Le ([0, x B; L9 (S))

/ ja dN‘
[0,t]xB

< .
~p L(2;L9(S))

Finally, if 1 <p < q and 2 < q < oo, then

| Fl| Lo (2500 ([0,6]x BsLa(8)))+LP (2:LP ([0,¢] x B;La(S)))

/ ja dN‘
[0,t]xB

In the case where X has both type 2 and cotype 2 we obtain two-sided esti-
mates for the LP-norm of the stochastic integral with respect to a compensated
Poisson random measure. By Theorem 1.5, such a space is isomorphic to a
Hilbert space.

< .
~pd L(2;L9(S))

Corollary 2.18. Let 2 < p < oo and let H be a Hilbert space. Let N be a
Poisson random measure. Then for any simple, adapted H-valued process F,
any B € J and any t > 0 we have

H/ F an|
[0,t]xB

&~ max{||FHLP(Q;L2([O,t]><B;H))7 ||FHLP(Q;LP([O,1‘,]><B;H))}- (2.11)

Lr(2;H)

On the other hand, if 1 < p < 2 we have

H/ F dN‘
[0,t]xB

~, inf {||F1||LP(Q;L2([0,t]><B;H)) + ||F2||LP<9;LP([0,t]xB;H))}a (212)

Lr(2;H)

where the infimum is taken over all F = Fy + Fy with Fy € LP(£2; L?([0,t] x
B;H)) and Fy € LP(£2; L*([0,t] x B; H)).
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Remark 2.19. In the special case where H = R™, the upper estimate in (2.11)
was obtained in [89], p.335, Corollary 2.12, by a completely different argument
based on Itd’s formula. Rather surprisingly, the other estimates in Corol-
lary 2.18 seem to be unknown even in the scalar-valued case.

Motivated by Corollary 2.18, we introduce the notation

ST LP(2; LRy x J; H))NLP(£2; LP(Ry x J; H)), 2 < p < oo,
PHTAVLP( 2Ry x J; H)) + LP(2; LP(Ry x J; H)), 1<p<2.

We can now extend the class of stochastically integrable processes through
the Ito-type isomorphism found in Corollary 2.18.

Definition 2.20. Let 1 < p < oo, let H be a Hilbert space and let S be
a o-finite measure space. Let (J, J,v) be a o-finite measure space and let
N be a Poisson random measure on Ry x J with associated compensated
Poisson random measure N. Let t >0 and B € J. We say that an element
F € 81, i is LP-stochastically integrable on [0, t] x B if there exists a sequence
of simple, adapted H-valued processes (F,,) such that F, — Fxjo4xp i STy
as n — 0o. In this case we define the LP-stochastic integral of F' on [0,t] x B
with respect to N by

/ F dN = lim F, dN,
[0,t]xB

n=0 Ji0,t]x B

where the limit is taken in LP(£2; H). We let SI;}fiH denote the space of all
LP-stochastically integrable elements on Ry x J.

Corollary 2.21. If 1 < p < oo and H is a Hilbert space, then Slgf}{ s a

Banach space. Moreover, if F € SIS,%LI and 2 < p < oo, then (2.11) holds. On
the other hand, if 1 < p < 2, then (2.12) holds.

2.3 Ito isomorphisms for LP-valued stochastic integrals

We now focus on Poisson stochastic integration in the special case where the
integrand takes values in L?(S), where S is a o-finite measure space. The main
aim is to improve the results in Corollaries 2.14 and 2.17 and obtain two-sided
estimates for the p-th moments of Poisson stochastic integrals. Throughout,
we let N be a Poisson random measure on (R; x J,B(Ry) x J,dt x v) and
let N be the associated compensated random measure. We also fix a filtration
(Ft)t>o0 in (£2, F,P) such that Assumption 2.5 holds.

Theorem 2.22. Suppose 2 < q < p < oo. Then for any simple, adapted
L1(S)-valued process F', any B € J and any t > 0 we have

H/ F an|
[0,t]xB

Lr(£2;L9(S))
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g max { | F o @20(5:22(0.0xB)):
1| o 2520 (0,0% BsLa(5)) ||F||Lp<n;m<[o,t1xB;L%sm}-

Proof. Let F be the simple adapted process given in (2.5), taking Remark 2.7
into account. We may assume that ¢t = t;41 and B = J. By Theorem 2.3,

FdN‘ F; xNijzi; ‘ )
H/[O,t]xJ ZXJ;C kg ik LP(2x£2;L1(S))
P 1
’L(I(S)) ’

where y; ; = > 1 Fi 5% j k. Fix w € 2 and set & j(w) = yi7j(w)]§7i7j. Then
(&;,j(w)) is a sequence of independent, mean zero L?(S)-valued random vari-
ables for every w. Hence we may apply Theorem 1.26 pointwise and use
Lemma 2.2 to obtain

P ) 5

La(S)

(IEH > Nijwii(w)
,J
1
g max { (S BIF: PPl ()55
0,J
(S BN Plyas @)P)
,J

g max { (0 (tien =t (A Iy (@) gs))

4]

(Xt = Al s@)acs)) "

~

Lr(2:L9(S)

e
5,7

1
)

(D BN i @) s )
(2]

LLI(S)}

=

Q-

LQ(S)}

H ( Z(ti“ - ti)V(Aj)|yi,j(w)|2) :

= max { |1 (@) La(s;02 ([0, %.7)) 5
[ F(W)llze(0.x 7:L9(5)) ||F(W)||L<I([O,t]xJ;LfI(S))}~
The result now follows by taking the LP({2)-norm on both sides. O

We can deduce estimates in the case 1 < p < g < 2 by duality from Theo-
rem 2.22. First we need the following two lemmas.

Lemma 2.23. Let 1 < p,q < 2. Then for any simple, adapted L1(S)-valued
process F', any B € J and any t > 0 we have
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H/ F an|
[0,t]xB

On the other hand, if 2 < p,q < o0,

< Fllre(a:.ras: .
Le(@:pa(s)) ~P4 [ F[| Lo (0;19(5322(10,6x B)))

F dN’

IF | e (2;Lassz(0,4x B))) Spa H/[

0,{]x B LP(2;L4(S))

Proof. Suppose 1 < p,q < 2 and let F be as in (2.5). We may assume ¢t = t;41
and B = J. Let y; ; = > _, Fi ki j k. By subsequently applying Theorem 2.3
and Lemma 1.24 we obtain

. - - P :
FdN‘ ~ (E]EH Ny i )P
H /[O,t]xJ Le(esLa(s)) Y Z]: 5353 || Las)
I Tup 1
Spa (EH(ZE|N2‘,J‘|2|%,]‘|2) Lq(S))
1)
_ o, N 3P 1
- (S,
= NFllr@szacsszz(o.nx0)-
If 2 < p,q < oo then the inequality <, , above is reversed. ([

Lemma 2.24. Fiz 1 < p,qg <oo. Let 0 <tg <t; < ... <141 <oo, Fyp €
L>*(£2), ;56 € LI(S), and let Ai,... A, be disjoint sets in J satisfying
v(Aj)<oo fori=1,...,0l,j=1,...,mand k=1,...,n. Define

F= E Fi,kX(ti,t,;+1]Xiji,j,k
1,5,k

and let F be the associated simple adapted L1(S)-valued process given by

F = B(F; k| Fe)X (0411 XA, T ok
N

Then,
IF || 2o (0:pa(s:p2(0.0x 7)) Spva IF o (@:za(s:22(0.4% 7))-

Proof. We may assume ¢ = t;11. Let (r; ;) be a doubly indexed Rademacher
sequence. By Theorem 1.2 we have

1E || Lo (2:L9 (5522 (0,41 % 7))

= (EH (Z(ti+1 - ti)V(Aj)) ZE(FM
0 k

2 2
fti)wi,j,k‘ )

1 1
ZG(S)) '
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N
LQ(S’))

~pq (ET]EH S vt — )2 v(A))* ZE(FLH}L)%M‘
5 &

p )%
La(S)

1 1
= (ETEH D rig(tisr — 6)20(A)% Y Fipaign
4,J k

~pq 1F || Le(0ina(s;02((0,8% 7))
where we use that E(-|7;,) extends to a contraction on LP(£2; L4(S)). O

In the proof of Theorem 2.25 below we will use the fact that the dual space
of

LP(£2; L(S; L*([0,1] x J)))
+ LP(2; LP([0,4] x J3 L9(S))) + LP(82; L([0,] x J; L9(S)))  (2.13)

is isometrically isomorphic to

LV (L9 (S; L*([0,1] x J)))

ALY (02; LY ([0,8] x J; LY (S))) N LP' (2, L7 ([0, 1] x J; LY (S)))
whenever 1 < p,p’,q,q¢ < oo satisfy % + 1% =1 and % + % = 1. Indeed, the
three spaces in (2.13) have a dense intersection (in fact, L>(£2) ® L*°([0,t]) ®
L*°(J) ® L>(S) is dense in each of the spaces) and LP,L? and L? are all
reflexive. Hence, the asserted duality follows from the general principles set
out in Section 1.2. Moreover, it is clear from Fubini’s theorem that for F, G in
L>(2) @ L*™([0,t]) ® L>®(J) @ L>=(S), say, the corresponding duality bracket
is given by

(F,G) = ////Ox[O,t]XJxSF(S)G(S) dPdtdvdp. (2.14)

Analogous remarks apply for similar spaces considered below, for example the
dual of

LP(£2; L(S; L*([0,1] x J)))
+ (LP(82; LP([0, 8] x J; L9(S))) N LP(£2; LU([0,¢] x J; L1(S5))))

is isometrically isomorphic to

LY (2, L9 (S; L2([0, 1] x J)))
N (L (2, L7 ([0,4] x J; L7 (S))) + LP (2 L7 ([0, ] x J; LY (S))))

and the corresponding duality bracket again satisfies (2.14) for F,G in
L(02) @ L([0,¢]) @ L*(J) @ L>(S).
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Theorem 2.25. Suppose 1 < p < q < 2. Then for any simple, adapted L(S)-
valued process F, any B € J and any t > 0 we have

H/ F dN)
[0,t]xB

g i0f { 1Bl @522 0% B7)

Lr(25L9(5))

+ |1 Fal Lo (o;e (0,4 x BsLa(3))) + IIFsIIme;L«([o,tJxB;m<S>>>}7

where the infimum is taken over all decompositions F = Fy; + F» + F3 with
Fy € LP(02; L9(S; L2([0,t] x B))), Fy € LP(£2; LP([0,t] x B; L(S))) and F3 €
L7(@: L9([0, ]  B; L1(S))).

Proof. We first show that the infimum on the right hand side dominates the
p-th moment of the stochastic integral. Let F' be the simple adapted process
given in (2.5), taking Remark 2.7 into account. We may assume that ¢ = ¢;41
and B = J. By Theorem 2.3,

H/ F dN‘
[0,t]xJ

~ ZFkN Ik‘ -
L (2;L9(S)) pHijk PRI Lo (% 2;104(S))

- - P :
1,7

La(S)

where vy;; = > 0y Fixxijr Set & j(w) = yiﬁj(w)Ni,j. By applying Theo-
rem 1.29 for the sequence (; j(w)) and using Lemma 2.2 we obtain for r = p, g,

. - P P\ F
(E]EHZN%‘J%J Eq(s)‘ )
,J

1
< (E( BN | lys.
L’I(S)> ~NP,q ; | ,j| ||y,J|

N
(B Yot — (A s s | )
0]

= | Fllze2;rrox7:0a(5))-

Similarly, by Theorem 1.29 we obtain
(58] 3 Ny

.
Since L (£2)® L>([0,t]) ® L>(J)® L>°(S) is dense in LP(£2; L(S; L*([0, ] x

J))), LP(£2; LP([0,¢] x J; L9(S))) and LP(£2; LI([0,¢] x J; L4(S))), we have, for
Fin L*™(02) ® L*>=([0,t]) @ L>(J) @ L>=(9),

b
) S_,p,q ||F||LP(Q;L‘1(S;L2([O¢]><J)))'

La(S)

1l Lo (92;2 (5522 ([0,4] x J))+LP (2:LP ([0,6] x J: L3 (S))) 4+ LP (2: L9 ([0,4] x J; L9 (S)))

= inf {||F1HLT’(Q;L‘I(S;LZ([Qt]><J)))
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+ 1Fa || o (2520 (0, x JsLa(s))) + HF3HLP(Q;Lq([O,t]xJ;Lq(S)))},
where the infimum is taken over all decompositions F' = F; + F» + F3 in

L>(2)®L>([0,t])QL>®(J)QL>(S). Let A be the sub-c-algebra of B(R4)x J
generated by the sets (¢;,t;11] X A;. By Lemma 2.10 E(F,|.A) is of the form

E(FalA) =Y FikoX(titi XA, Tigha (@ =1,2,3).

.5,k
For o = 1,2, 3 we let F,, be the associated simple, adapted process

FD& = Z E(Fi,k,a|]:tz‘)X(tnti-;-l]Xiji’j,k,OH

.5,k

then F = Fy + F + Fj. By the triangle inequality and the above,

H/ FdN‘
[0,t]xJ
3
S, A
; [0,t]xJ

Spwa 1F1 o (@ipas;z(o.x ) + 1 F2ll Lo 0, % 7:Lr (2:09(5)))

Ly (2:L9(S))

Lr(£2;L9(S))

H1E3 ]| o (pa (o, < gi2a(5)))
Spoa IE(FLA) || o (209 (830210, % 9))) + IE(F2A)| e (0,6 x 7,0 (250(5)))
+ NECES| A e (2:La (0.4 x 5L9(9))
<N Fillpe(@:nacs:L2o.x0)) + 12l e o.0x g:e (2:10(5)))
+ 1F3l e (2sLa (0,6 x J:La(5)))»
where the penultimate inequality follows from Lemmas 2.9 and 2.24. By now

taking the infimum over all decompositions F' = F; + F; + F3 as above we
obtain

H/ F dN‘
[0,¢]xJ

Spog WF N e (0200 (S512 ([0,6]x 1)) +LP (2317 ([0,8] % T L9 (S)))+LP (2:L4 ([0,6] x J3L4(S))) »

LP(2L9(S))

as asserted.

We deduce the reverse inequality by duality from Theorem 2.22. Let p/, ¢/
be the Holder conjugates of p and ¢, i.e. %—!— 1% =1and %—&— % = 1. Let G be an
element of the algebraic tensor product L™ (£2)® L ([0,t])® L (J)® L>(S).
Then by Lemma 2.10 E(G|.A) is of the form

E(GIA) =Y GikX(titsn] XA T ko
N
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where G, € L™(2). Let & be the conditional expectation with respect to
Fi, and let G be the simple adapted process defined by

G = Z gi(Gi,k)X(ti,tiJrl]Xij:,j,k-
ig.k
Let (-,-) be the duality bracket in (2.14). Then, by Lemma 1.18 and Theo-
rem 2.22,
(F,G)
= (F,E(G|A))
= ZE(Fz’,kGi7k)dt X dl/((ti,ti_H} X Aj)<xi,j,k7x:7j,k>
i,k
= E(Fix&i(Gig))dt x dv((ti, tisa] ¥ Aj) (@i 275 5)
ingok
= Y EFikE(Grn))EWN: j Nim) (@i ko T )
i,3,k,l,m,n

= Y EEFixNiiE/(Grn) Num @ik T n))

0,g,k,l,m,n

= EE(< Z Fy 1o Ni 55 j 1 Z gl,n(Gl,n)Nl,mxzm,n>>

1,5,k l,m,n
< H E Fi,kNi,jxi,j,k‘ 3
_ LP(2x2;L9(8))
1,5,k
E 51 Gl Nl T ~
H (Gt ) Nim i m LY (2% ;L7 (S))
l,m,n
Spa E Fi,kNi,jmiJ,k‘Lp(gxﬁ_Lq(S))maX{HG”LP’(Q;Lq’(S;LZ([o,t]xJ)))’
1,5,k ’

HGHLP’(Q;LP'([O,t]><J;L‘1'(S)))7 ||GHLP’(Q;Lq’([o,t]xJ;L«’(s)))}

Spa H § Fi,kNi,jxi,j,k’
ijok

LP(2x82;La(S))
max { NE(GIADI Lo (219 (8522 ([0, x 7))

IEGIAN Lo (10 (0,1 x I3 (5)))» ||E(G|-A)HLP’(Q;LQ’([O,t]xJ;L‘I'(S)))}

< H Z Fi,kNi,jxi,j,k H

1,5,k

Lo (axBipasy T { Gl (020 5:22(10,61% 7))

||G||Lp’ (£2;LP" ([0,t]x J; L9 (S)))> ”GHLP/ (2;L9 ([0,t] x J; L' (S))) }7

where the penultimate inequality follows by Lemmas 2.9 and 2.24. Since
L>(2) @ L*(]0,t]) ® L>(J) @ L*>(S) is dense in
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LV (02; L7 (S; L2([0,] x J)))
ML (Q; 17((0,4] x J; L9 (S))) N LP (25 LY ([0, 8] x J; LY (S)),
we conclude that

1 F'[| Lo (2509 (5512 ([0,6)x J)))+ L2 (2L ([0,6] x J: L4 (S)))+LP (2:L9([0,¢] x J; LA (S)))

Spa H > Fz;kNi,jf'fi,j,k’

1,5,k

LP(2x2;La(S))

By (2.15) our proof is complete. O

Theorem 2.26. Suppose 2 < p < q < oo. Then for any simple, adapted
L1(S)-valued process F, any B € J and any t > 0 we have

H/ F an|
[0,t]xB

~p,q TAX { 1N o (2052 0,0x )

Lr(25L9(S))

inf {||F1||Lp(Q;LP([0,t]xB;Lq(S))) + ||F2||L1’(Q;L‘1([071‘/]><B;L‘1(S)))}}7

where the infimum is taken over all decompositions F = Fy + Fy with Fy €
LP(£2; LP([0,t] x B; LI(S))) and Fy € LP(£2; L1([0,t] x B; L1(S))).

Proof. By Corollary 2.17 we have

| Lo (2519 ([0, % B3 L (8))+ Lo (2 Le ([0,t] x B; La(S)))

/ F dN’

[0,t]xB

/ F dZ\?‘
[0,t]xB

We now prove the reverse inequality. Let F' be the simple adapted process
defined in (2.5), taking Remark 2.7 into account. We may assume ¢ = ;41 and
B =J.Let F = F,+ F, with Fy, F5 in L (2)® L>*([0,t]) @ L>=(J) ® L>(S).
Let A be the sub-o-algebra of B(R.) x J generated by the sets (¢;,t;11] X 4;.
By Lemma 2.10 E(F;|A), E(F»|A) are of the form

< .
~p LP(25L9(S))

On the other hand, by Lemma 2.23,

| F'l| Lo (2s0a(5:L2 ([0, % BY)) Spaa

LP(2;L4(S))

E(F,|A) = Z Fi k,aX(ts,ti01]XA; Ti g ko (a=1,2).
1,5,k

For a = 1,2 set y; jo = 21 Fik,ai jk,a- By Theorem 2.3, Lemma 1.25 (with
s = 2) and Lemma 2.2 we obtain
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| fo”
[0,¢4]xJ Lr(£2;L9(S))

“pa (EEH ZNi’jyi’j iq(s)é
Npqmax{( H(ZE‘Nlj‘ |Yi,j ) L(S)) )
(BE( Y 1559105 s))

o =

P
aq

S

)’y

ij
{<EH(ZE|NJ| |yW|> Lq(s)) ’
(S NE (e k "
(EE(ZHNi,jyi,jJH%q(s)) ) +(EE(ZHNi,jyi,jQ”%q(S)) ) }
1,7 1,7
1 1
< max { (E (ZIE|N”| i) Lq(s))”,
5 _ . P 1
( ZE|N,j|p”yi,j,1||iq(5)> b (E(ZE|Ni,j|q”yi,j,2 |qu(5)) q)P}
4,7
2\ 2P ;]
=p.q max{( H( (tivs — t)v(A))|yi ) L‘I(S)> )
(]E Z(ti+1 - ti)I/(Ajwyi,j,lHiq(S)) ’
%,
p_ 1
+ (E(Z(ti-i-l — ti)l/(Aj)Hij,QH%q(s)) q) p}

i

= max {||F||Lp(g;Lq(s;Lz([o,t]x,m), IE(F A Lr (25Lr(0,41x J:La(5)) +
||]E(F2|A)HLp(Q;Lq([o,t]xJ;Lq(S)))}

Spa max{HFHLP(Q;L‘J(S;L?([OJ]><J)))a |l Lo (2500 (0,6 x J529(5)))

+ HF2HLp(n;Lq([o,t]xJ;Lq(S)))}'

The result now follows by taking the infimum over all decompositions F' =
Fy + F5 as above. O

Theorem 2.27. Suppose 1 < g < p < 2. Then there exist constants depending
only on p and q such that for any simple, adapted L(S)-valued process F,
any B € J and any t > 0 we have

H/ F an|
[0,t]xB

Lr(§2;L9(8S))
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~p,q inf {||F1Hmm;ws;mo,t]xB)))
+ max { |1 P2l Lo (:Le ((0.6x B:La(5)))s | Fell e (@:La((0.4)x B:La(5)) } }

where the infimum is taken over all decompositions FF = Fy + Fy with
Fy € LP(02; L9(S; L%([0,t] x B))) and Fy € LP(2;LP([0,t] x B;L4(S))) N
(25 L9([0,1] x B; LA(S))).

Proof. We first show that the p-th moment of the stochastic integral is domi-
nated by the right hand side. Let F' be the simple adapted process defined in
(2.5), taking Remark 2.7 into account. We may assume ¢t = ¢;41 and B = J.
Let F = Fy 4+ Fy with Fy, F5 in L*°(2) ® L*°([0,t]) ® L>°(J) @ L>=(S). Let A
be the sub-o-algebra of B(Ry) x J generated by the sets (t;,t,4+1] X A;. By
Lemma 2.10 E(Fy|A),E(F»|A) are of the form

E(F,|A) = Z Fi k,aX(ts,ti41)XA; Ti g ko (a=1,2).
1,5,k

For o = 1,2 set y; j.0 = Zk Fi k.a%i j ko By Theorem 2.3, Corollary 2.14 and
Lemma 2.23 we have

H/ F dN’
[0,t]xJ

“p.q (EEH Z Ni,jyi,j
.3

Lr(2L9(S))

PNY
N

P 1

= (EEH Zﬁi,a‘ym,l LG(S))p + (EEH ZNi,jyi,m
.5 ,J

Seoa IBE A o (2,10 (5522(10,0% 7))

p ) 5
L4(S)

+ maX{||E(F‘A)||LP(Q;LP([0¢]><J;L‘?(S)))v ||F2|\LP(9;LQ([0¢]xJ;LLI(S»)}
< NPl ze(ospacs;ce (o, x.)))
+ maX{||F2||Lp(Q;LP([O,t]><J;L<1(S)))7 HFzHLp(n;Lq([o,t]xJ;LfZ(S)))}'

The asserted inequality now follows by taking the infimum over all decompo-
sitions F' = Fy + F5 as above.

The reverse inequality can be deduced by duality from Theorem 2.26. As
the argument is very similar to the proof of Theorem 2.25 we leave the details
to the reader. (]

We now formulate the results for the remaining two cases.

Theorem 2.28. Let 1 < ¢ < 2 < p < . Then for any simple, adapted
L4(S)-valued process F, any B € J and any t > 0 we have

H/ F aN|
[0,t]xB

Lr(£2;L9(S))
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=), ¢ Max { inf {IIFlIILP(n;m(s;Lz([O,t]xB))) + ||F2||LP((2;L‘1([O,t]xB;Lq(S)))}a
HF”LP(Q;LP([OJ,]><B;L<Z(S)))}7

where the infimum is taken over all decompositions F = Fy + Fy with Fy €
LP(£2; L9(S; L?([0,t] x B))) and Fy € LP(£2; L1([0,t] x B; LY(S))).

Proof. We first show that the LP-norm of the stochastic integral is dominated
by the maximum on the right hand side. Let F' be the simple adapted process
defined in (2.5), taking Remark 2.7 into account. We may assume t = t;41
and B = J. Let y; j = >, F; ki j k. By Theorem 2.3 and Theorem 1.31 we
have

H / F dN‘
[0,t]xJ
BE| S M| )
T < H ; B3Yi.7 Lq(S))
. - a
S { (2 (B M, )
4,3
- - q s
< max { (E<EH ZNi’jyi’j La(S )
i (€))
By Lemma 2.2 we have

(EZE||Ni,jyi,j|

.3

Lr(25L9(5))

P
q

)" (BEmax [Ny 50cs)” |

1 1
) (B BN i)}
4,J

-

1

iq(s)) " o |F | Lo (one(o.0x gia(s)))-

Let F = Fy + F, with Fy, Fy in L>(2) @ L=([0,1]) ® L®(J) ® L=(S). Let A
be the sub-o-algebra of B(Ry) x J generated by the sets (t;,t;11] X A;. By
Lemma 2.10 E(Fy|A),E(F»|A) are of the form

E(Fa|‘A) = Z Fi,k,aX(ti,ti+1]XAj xi7j,k,l)é (a = 1) 2)
.5,k

For o = 1,2 set y; 0 = Zk F 1..aTij ko By the triangle inequality and
Theorem 1.29 we obtain
)%

~ ~ q
RC DILEH
~ ~ q
S G DL
i
1
- 3
Spa (EH(ZE\Ni,jyi,j,l 2)
i

P
q

P b
q q

’ :
Lq(S)) >
1
q q P
b))

l ~ ~
)"+ (B(E] X oo
i

P i L.
’ IE( E||N: v s
roisy) |+ (B BIN: sl

(2]
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>~y (EH (Z(t”l - ti)l/(Aj)lyi,jJP)% T;q(s)>1{
,J
+ (E( Z(tz‘-H — ti)V(Aj)”yi,jQ”%q(S)) %)%

4,
= [E(Fy A [ Lr(2sza(si2(0.1x ) + IEE2[A) | Lr (229 (0.6x 15La(5)))
<\ Fullzr@snacs:z2o.0x ) + 1F2llLe(aspao,gxasna(s)))

Taking the infimum over all Fy, F; as above yields the first inequality.
For the reverse inequality, note that

H/ F dN(
[0,t]x J

- - p 5
~pg (EEH ZZJ: Ni jyi Lq(s))

> (B(F] o))
3

Zpsa 1F || e (@sna(s;02 ([0, )+ Lo (2L ([0, x J5L9(5)))

LP(25L9(5))

where the final inequality follows as in the proof of Theorem 2.25. Moreover,
by Corollary 2.17,

If,,.,Fa
[0,t]xJ

> Fllroco.Le L )
Lo (2:L9(S)) ~P,q H ||L (£2;LP([0,t]x J;L1(S)))

O

Theorem 2.29. Let 1 < p < 2 < g < 0. Then for any simple, adapted
L4(S)-valued process F, any B € J and any t > 0 we have

H/ F an|
[0,t]xB

~p,q inf { maX{HF1||Lp(9;Lq<s;L2([o,t1xB)))v ||F1||Lp<n;Lq<[o,t1xB;Lq(sm}

Lp(2:L9(S))

+ ”FQ”LF(Q;LT’([O,t]><B;L‘1(S)))}a

where the infimum is taken over all decompositions F = Fy + Fy with
Fy € LP(2;L4(S; L2([0,t] x B))) N LP(82; L4([0,t] x B; L(S))) and Fy €
Lr($2; LP([0,t] x B; L4(9))).

Proof. Let F' be the simple adapted process defined in (2.5), taking Re-
mark 2.7 into account. We may assume t = #;11 and B = J. Let y;; =
>k Fi ki j . We first show that the LP-norm of the stochastic integral is dom-
inated by the infimum on the right hand side. Let F' = F} + F» with Fy, F5 in
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L>(2)®L>®(]0,t]))@L>®(J)®L>*(S). Let A be the sub-o-algebra of B(R)xJ
generated by the sets (¢;,t;+1] X A;. By Lemma 2.10 E(F}|A), E(F|A) are of
the form

]E(FCV|‘A) = Z Fi7k701X(ti,ti+1]XAj'r’i7j7k104 (a =1, 2)
4,7,k

For o = 1,2 set y; j o = Zk F; k.o j k- By Theorem 2.3 we have

| / F dN|
[0,t]xJ

Lp(2:L9(S))

. - P v
~ (EEH ZNjyj Lq(s))
. ]~ P s . - P :
< ]S Sl )+ (S sl
- . a N . . P b
< CEIS Sl ) (]SSl )

By Theorem 1.28 and Lemma 2.2,
~ ~ q 1
B(E| M| s) ")’
- - P 1
s (S, )
- ~ )
(E(ZEIINi,jym,lH%q(s)) ) }
o)
rasy/ ’

0,J
1

S

Wl
D=

~, max { (EH ( Z(ti+1 —ti)v(A;)|yi 1 |2>

(B( X e = (A i s,

i
= max{I\]E(FlIA)IILv(n;m(s;Lmo,t]xJ)))v
[IE(Fy IA)||Lp(Q;Lq([o,t]xJ;Lq(S)))}

< max { | F1 1| e 25na (5502 ([0,6)x ) |1 F HLT’(Q;L‘J([OJ]XJ;L“(S)))}

On the other hand, by Corollary 1.17 and Lemma 2.2,

(58] 5 s
4,7

P 1 o
"< s olIP
Lq(S)> ~D,q (EZE||N7,,]yZ,],2||Lq(S)>

,J

Tl=
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1
=, (EY (b1 — tv(A) i lhags) )
2,7

= EF]A) e (2520 (0,4 x7529(5)))
< NE2 e (osnr ([0, % J519(8))) -

Taking the infimum over all Fy, F> as above we obtain the result.
The reverse inequality follows by duality from Theorem 2.28. O

Remark 2.30. Using the one-sided decoupling inequality stated in Remark 2.4
one can show that the upper estimate given in Theorems 2.25, 2.27, 2.28 and
2.29 for the p-th moment || f[o.t]xB F dN||p(0;a(s)) remains valid if either

p=1orqg=1 (or both).
We now summarize the main results of this section.
Theorem 2.31. Let 1 < p,q,r < 0. We set
SP = LP(2; LU(S; L*(Ry x J)));
DY, = LP(2; L"(Ry x J; L9(S))).
Then for any B € J, any t > 0 and for any simple, adapted L1(S)-valued
process I,

P 1
(S)) "y 1FX0,x8ls1,., (2.16)

(E sup
0<s<t

La

/ F d]\?‘
[0,s]xB

where S1, , is given by
StnDy NDEif 2 <q<p<oo;
SEn(Dy,+Dy)if 2<p<q<oo;
(SPnDE )+ Db if 1<p<2<q<oo;
(SE+DE )NDP if 1 <q<2<p<oc;
SY+ (DY, ,NDp )if 1<qg<p<2
S+ Db + Db ifl<p<qg<2

Proof. Observe that the map

s»—>H/ FdN‘
[0,s]xB

defines a positive submartingale in LP({2) and hence by Doob’s inequality (see
e.g. [119], Theorem 1.7) we have for any p > 1,

P ) >

rasy/ ’

/ Fan|” )Egp/(EH/ FdN
[0,s]x B La(S) [0,t]x B

where %—l— 1% = 1. The result now follows from Theorems 2.22, 2.25, 2.26, 2.27,
2.28 and 2.29. u

La(S)

(IE sup

0<s<t
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We can now extend the class of stochastically integrable processes through
the Ité-type isomorphism stated in (2.16).

Definition 2.32. Let 1 < p,q < oo and let S be a o-finite measure space. Let
(J,J,v) be a o-finite measure space and let N be a Poisson random measure
on Ry x J with associated compensated Poisson random measure N. Lett >0
and B € J. We say that an element F' € S1, , is LP-stochastically integrable
on [0,t] X B if there exists a sequence of simple, adapted L4(S)-valued processes
(Fn) such that F,, = F'x[0,qxp in SI, 4 asn — oo. In this case we define the

LP-stochastic integral of F' on [0,t] x B with respect to N by

/ F dN = lim F, dN,
[0,t]xB

=90 J10,t]x B

where the limit is taken in LP(£2; L9(S)). We let SIg’dq denote the space of
LP-stochastically integrable elements on Ry x J.

Corollary 2.33. If 1 < p,q < oo, then SIZ,% is a Banach space. Moreover,
Jor any F € SI%% the inequalities (2.16) hold.

Remark 2.34. The results of this chapter are still valid if we replace the com-
pensated Poisson random measure N associated with N by the symmetrized
Poisson random measure N, defined in (2.1). Indeed, the following two prop-
erties of Ny, which it shares with N, are needed in the proofs.

(i) If Ay, ..., Ay in &, are disjoint then Ny(A;),..., Ns(A,) are independent,
mean zero random variables;

(ii) For every 1 < p < oo there exist constants b, ¢, > 0 depending only on p
such that whenever A € £, we have

bpii(A) < E|N,(A)P < cppu(A).
The proof of the second property is similar to the proof of Lemma 2.2.

Remark 2.35. Let us recall the following well-known result for vector-valued
Gaussian stochastic integrals (see [106] for a more general statement). Suppose
that 1 < p,q < co and let S be a o-finite measure space. If W is a standard
Brownian motion and F' is a simple adapted L?(S)-valued process, then for

any t > 0,
P » 9 .\ 2
Lq(S)) =p.a (EH(/[OJ] 17l dt)

(el ], 7]

If L is a Lévy process without drift, then, under suitable assumptions on the
Lévy measure of L, we can combine the Lévy-1t6 decomposition (2.2) of L with
the It6 isomorphisms induced by (2.16) and (2.17) to obtain It6 isomorphisms
for Li(S)-valued stochastic integrals with respect to L. The details of this
procedure will be explained in future work.

1

p P
. 2.17
L(I(S)) ( )







3

Vector-valued Rosenthal inequalities in
noncommutative LP-spaces

We continue our investigation of Rosenthal-type inequalities for vector valued
random variables. The main purpose of this chapter is to generalize our results
of Section 1.3 to random variables taking values in a noncommutative LP-
space. Although the spirit of the proof will be the same as in the case of
classical LP-spaces, different arguments and additional machinery are required
in the noncommutative setting. As a result, the proof will be different from the
one presented in Section 1.3 even for a commutative von Neumann algebra.
The results presented in Section 3.2 can be applied to derive some estimates
for the p-th moments of the operator norm, or equivalently, the largest singular
value, of a sum of independent, mean zero random matrices in terms of the
individual matrices. In particular, for a random matrix with independent,
mean zero entries we find two-sided estimates for the p-th moments of the
largest singular value of the matrix in terms of a suitable norm on its entries.

3.1 Noncommutative LP-spaces

Throughout this thesis, we will use standard terminology and results from the
theory of von Neumann algebras, which can for example be found in [131, 132]
or [72, 73]. Let M be a von Neumann algebra acting on a complex Hilbert
space H, which is equipped with a normal, semi-finite faithful trace 7. We say
that a closed, densely defined linear operator x on H is affiliated with the von
Neumann algebra M if uz = zu for any unitary element u in the commutant
M’ of M. For such an operator we define its distribution function by

d(v;w) = ("l (v,00))  (v>0),

where el®! is the spectral measure of |z|. The decreasing rearrangement or
generalized singular value function of x is defined by

pe(x) =inf{fv >0 : d(v;z) <t} (t>0).
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We call x 7-measurable if d(v;x) < oo for some v > 0. We let S(7) denote
the linear space of all 7-measurable operators. One can show that S(7) is a
metrizable, complete topological x-algebra with respect to the measure topol-
ogy. Moreover, the trace 7 extends to a trace (again denoted by 7) on the set
S(7)4 of positive 7-measurable operators by setting

T(z) = /OOO pe(x) di (x € S(T)+). (3.1)
For 0 < ¢ < 0o we define

lzllocany = (r(l2))7 (2 € S(7)). (3-2)

The linear space LY(M, ) of all x € S(7) satisfying ||z||fa(r1) < 00 is called
the noncommutative L-space associated with the pair (M, 7). We usually
denote LI(M, 1) by L9(M) for brevity. The map || - || La(rq) in (3.2) defines a
norm (or g-norm if 0 < ¢ < 1) on the space L?(M) under which it becomes
a Banach space (respectively, quasi-Banach space). It can alternatively be
viewed as the completion of M in the (quasi-)norm || - |[La(aq). We use the
expression L>°(M) to denote M equipped with its operator norm. By (3.1)
and using that u(|z|?) = p(z)?, the noncommutative LI-(quasi-)norm can
alternatively be computed as

el = ([ merar)’ @eran @y

We recall two familiar examples which are relevant to this chapter.

Ezample 3.1. (Lebesque spaces) Let (S, X, u) be a o-finite measure space.
Identify f € L°°(S) with the multiplication operator My on the Hilbert space
L?(S) given by
My (h) == fh  (h € L*(S)).
One can show that
M:={M;y : feL*()}

is a von Neumann subalgebra of B(L?(S)). We will identify L>°(S) with M.
The functional

o(f) == /S fdu  (feL®(S.5 1))

defines a normal, semi-finite faithful trace and the associated noncommutative
L%-space coincides with the Lebesgue space L1(S), where the functions in
L4(S) are identified with, in general unbounded, multiplication operators on
L?(S).

Ezample 3.2. (Schatten spaces) Let H be a complex Hilbert space and let (e,,)
be a maximal orthonormal system in H. The space B(H) of bounded linear
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operators on H is a von Neumann algebra, which can be equipped with the
normal, semi-finite faithful trace

Tr(x) = Z(xea7ea> (x € B(H)4).

«

This is called the standard trace on B(H). The associated noncommutative
Li-spaces, denoted by S?(H), are called the Schatten spaces.

We shall be interested in the space M,, of n X n matrices with complex
coefficients, which can be identified with the von Neumann algebra B(I2).
Under this identification Tr coincides with the usual trace on matrices, i.e. if

x = (i)} =1 then
Tr(z) = Zx”
i=1

The associated noncommutative L%-space is called the n-th Schatten space
and denoted by SZ. Let x be an n x n matrix and let py > ... > p, be
its singular values, repeated according to multiplicity. Then its singular value
function p(x) is given by

() = Z/ffiX[i—l,i) (t) (t>0).
i=1

According to (3.3) we have

]

n 1

— q\1

S;IL_(Z/J%) )
i=1

and moreover,
[z = max p;.
i=1,...,n

Let us note that if n > 2 and r > logn then for any sequence (x;)"_; of
complex numbers we have

n 1

s ol < (k) < ma o] B4

! i—1
In particular, if x € S we obtain by taking r = logn and x; = p;,

lzllsg <ellzl| <ellzllss  (if ¢ =logn). (3.5)
This fact will be used frequently in Section 3.3 below.

Let us now state some properties that noncommutative L?-spaces share with
their classical counterparts. These facts can, for example, be found in [115].
First recall that Holder’s inequality holds: if 0 < ¢,r,s < oo are such that
i=14landze L' (M), ye L(M), then zy € LI(M) and

q T
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lzyllar) < llzllnrnllylls - (3.6)

For 1 < ¢ < oo and % + % = 1, the familiar duality LI(M)* = L% (M) holds
isometrically, with the duality bracket given by (x,y) = 7(xy). In particular,
L9(M) is reflexive if and only if 1 < ¢ < oo and L'(M) = M, isometrically,
where M, is the predual of M.

The noncommutative L?-spaces form an interpolation scale with respect
to both the real and complex interpolation method. Moreover, we recall that
L1(M) is K-convex if and only if 1 < ¢ < oo and it is a UMD Banach space
if and only if 1 < ¢ < co. Finally, it is known that noncommutative L?-spaces
have the same type and cotype as their commutative versions, but the proof
is more involved than in the commutative case (see [52] or [115], Corollary
5.5). We state this result as a theorem for future reference.

Theorem 3.3. If M is a semi-finite von Neumann algebra and 1 < q < oo,
then L1(M) has type min{q,2} and cotype max{q,2}.

In other respects noncommutative L?-spaces are radically different from their
commutative counterparts. In particular, the isomorphism theory of these
spaces is much more involved. We refer to the survey [115] and the references
therein for a discussion of the differences and similarities between noncommu-
tative and classical L?-spaces.

‘We conclude this section by describing the column and row spaces and their
conditional versions. Let 1 < g < oco. For a finite sequence (x;) in LY(M) we
define

.\ 2

||(l‘z')HLq(M;lg) = H(szmz>
l 3

Il = | (D wiar)

Given 1, ..., x,, we let diag(x;), row(z;) and col(x;) denote the n x n matrix
with the z; on its diagonal, first row and first column, respectively, and zeroes
elsewhere. Let M, (M) be the von Neumann algebra of n x n matrices with
values in M, equipped with the trace Tr®7, which it inherits when we identify
M,,(M) with the von Neumann tensor product B(I2)®@M. By noting that

I($50)
|(0)

one sees that the expressions in (3.7) define two norms on the linear space of
all finitely nonzero sequences in L%(M). The completion of this space in these
norms are called the column and row space, respectively.

Lq(M); (3.7)

La(M)’

= 1(2:)|| L )
La(M) [[col(zi)]| (M, (M)

oy — o @)lze i, )
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We shall need a conditional version of these two spaces. Let us first state
a well-known result on the existence of noncommutative conditional expecta-
tions (see e.g. [136]).

Proposition 3.4. Let M be a von Neumann algebra equipped with a normal,
semi-finite, faithful trace 7 and let N be a von Neumann subalgebra of M
such that the restriction of T to N is again semi-finite. Then there is a unique
linear map &€ : LY (M) + L>®°(M) — LY(N) + L*(N) satisfying the following
properties:

(a) E(a%) = £(2)";

(b) E(x) >0 if 2 > 0;

(c)if x >0 and E(x) =0 then z = 0;

(d) E(z) = x for any x € LY(N) + L= (N);

(e) E(x)*E(x) < E(x*x) for x € M;

(f) € is normal, i.e., xo T x implies E(xq) T E(x) for (xq),z € M;

(9) l€@)]Ix < ||zlly, for allz € LY (M) and |E(z)ls0 < [|7]l0, for all z € M;

(h) E(zy) = 2E(y) if v € LY(N),y € L>®(M) and E(xy) = E(z)y whenever
z € LY(M),y € L=(N).

Moreover, for any x € LY(M) + L>*(M), E(z) is the unique element in
LY(N) + L>(N) satisfying

7(zy) = 7(E(2)y), (3.8)
for all y € LY(N) N L (N).

The inequality in (e) of Proposition 3.4 is called Kadison’s inequality.

Let 1 < g < co. Suppose that N is a von Neumann algebra equipped with
a normal, semi-finite faithful trace ¢ and let K be a von Neumann subalge-
bra such that ok is again semi-finite. Let £ : N/ — K be the conditional
expectation with respect to K. For a finite sequence (z;) in N we define

1
(@) llLanvie 2y = H(Z€|3«”i|2) ’

1
@l = (3 eRi)”

Loy’

L)’
Using techniques from Hilbert C*-modules it was shown by M. Junge [68] that

{(@i)izy = €N, n>1, |[(@)llpavie2) < oo} and
{(@i)izy + i €N, n> 1, (@) Lavie 2y < oo}
are normed linear spaces. By taking the completion of these spaces we obtain

the conditional column and row space, respectively. Moreover, we have for
1<q,q’<oowith%—|—$:1
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(LYNGE,12)" = LY (N3 E,17)

isometrically, with the duality bracket given by
(i), (y:)) = ZT(%Z/:’)~

We shall use these results in the particular case where (2 is a probability
space, M is a semi-finite von Neumann algebra and N is the tensor product
von Neumann algebra L ®M, equipped with the tensor product trace EQ 7.
Let us recall that, for any 1 < ¢ < 0o, the map defined on simple functions in
the Bochner space L?(£2; L1(M)) by

Iq(ZXAisz) = ZXAi QT

extends to an isometric isomorphism
L2, LI(M)) = LI(L>®(£2)@M). (3.9)

Let K be the von Neumann subalgebra of A/ given by K = 1 ® M and let £
be the associated conditional expectation. Under the identification (3.9), the
element &(z) coincides with the Bochner integral E(z), whenever z € LI(N).
In particular, for any finite sequence (&;) in NV,

e = |2’

La(M)

With some abuse of notation we shall write L(M; E, [2) instead of LI(N; €, 12).

3.2 Main result

We prove our main result, Theorem 3.15 below, in several steps. Throughout,
we let M denote a semi-finite von Neumann algebra. Let us first recall the
noncommutative version of Khintchine’s inequalities [98].

Theorem 3.5. (Noncommutative Khintchine inequalities) If 2 < q < oo,
then, for any finite sequence (x;) in LY(M),

5l
< {[(S )
7

1

N

(3.10)

(1)
La(M) p

Lq(/\/l)}

and
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2 1 1
(EH zﬁ:n% LQ(M)> 2 2 maX{H(Z: |$Z|2) 2 La(Mm)’ <Z| il ) La(M) }
where By < C\/q, with C < 2’%\/§ < 1.
On the other hand, if 1 < q < 2, then
SN } !
(EHZL:T“T’ Lq(M)> Smf{H(zi:wi'Q) La(M) H(Z|Z |) La M)}
and
@\
(EHET’LQ% L‘I(M))
1 1
Zqunf{”(;|yi|2>2‘Lq(M)JFH(zi:W'Q)z Lq(M)}’

where the infimum is taken over all decompositions x; = y; + z; in LY(M).

Remark 3.6. It was first observed that the optimal constant in (3.10) is of order
V/q in [113], p.106 and independently in [67]. It was proved by A. Buchholz
([26], Theorem 5 and the remark following it) that if (v;) is a sequence of
independent standard Gaussian random variables, then

Gty

L
2n

o)

< ] (3 )

(S ki)

L21L(M) }7
(3.11)

r2n(m)’ }

where the given constant is optimal. As remarked in [135], Proposition 10, one
can deduce from (3.11) that the constant B, in 3.10 is bounded by PR VIV

In the proof of the next result we will use that if 0 < ¢ < 1 and £ €
LY (02; LY(M)4) then

Ellz][Lam) < B2l pam)- (3.12)
This follows by approximation by step functions using the inequality
12+ yllLaory = l1@llLaomy + IWllLamy  (@,y € LIM)4).

Lemma 3.7. Let (&) be a finite sequence of independent, mean zero LI(M)-
valued random variables. If 1 < p,q < 2, then

Ehy

Lq(M))

1
P
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< 4inf{H(§i:E|m|2)2‘ Leany | H(Z:EﬁF)Q L (M)}’

where the infimum is taken over all sequences (n;) € LY(M;E,12) and (6;) €
LY(M;E,12) such that & = 1; + 6;.
On the other hand, if 2 < p,q < co, then

2(5] e

L’I(M))

o {[(ZE) |, 0 [ (Zm6E)

Proof. Suppose 1 < p,q < 2. Let (a;) be a finite sequence in LI(M;E,[?) of
independent, mean zero L?(M)-valued random variables. By Corollary 1.10
and Theorem 3.5,

&>

1
P

La(M)’ Lq(M)}'

p 5 p 3
Q; ) <2 Tz i )
Li(M) Li(M)

(EE.
P 1
§2(IE (Z;|0”|) Lq(M))
N
(E Z|ai|2 L%(M))
<o(e] i)
SQHZE‘ ig(/w)

o ()

Note that in the final two inequalities we apply Jensen’s inequality and (3.12),
respectively, using that £,2 < 1. Similarly, if (o;) is a finite sequence in
Li(M;E,12) of independent, mean zero L?(M)-valued random variables, then

1 1
(Bl o) < (i)

Let (n;) and (6;) be finite sequences in LI(M;E,12) and LI(M;E,[?), respec-
tively, such that & = n; +60;, then §; = E(nz‘&) —E(UZ‘) —|—]E(02|€Z) —]E(Gi). Since
(E(n; &) — E(n;)) and (E(0;|¢;) — E(;)) are sequences of independent, mean
zero random variables, we obtain by the triangle inequality and the above,

B2 0)

Nl

Lq(M

La(M)
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<2|(SEEmE) - Emor)’

La(M)

La(Mm)

+2|( L EE@e) - E(e;‘)ﬁ)%

Therefore, by the triangle inequality in LI(M;E,[?) and LY(M;E,12) we find
p P
(EH;& L’I(./\/l))
1
<2(| (X EEMmI&)P)|
i
1 1
* 2 * 2
+ (;m(ei 60P) |00 | (;mwmﬁ)
1 1
o)), (e

Note that the final step follows directly from Kadison’s inequality for (non-
commutative) conditional expectations if 7;,6; are, in addition, in L*°®@M.
For general 7; and 6; as above the asserted inequality then follows by a density
argument. This proves the first statement.

Suppose now that 2 < p, g < oco. By Corollary 1.10 and Theorem 3.5,

55

> (EE,

Loy T H (;EIE(W)IQ);

La(M)

L‘I(M))

Lq(M))'

1

P )p
La(M)

; ;& I;q(M));
(S ) ) IS )

_maX{OEHXi:Ki'Q j%(M));’(EHXi:K;F ig(M)>p}
>max{“zi:E|fi|2 ig(M)’ ;E|f§|2‘ig(M)}

- { ()’ (T mer)’

This completes the proof. ([

Lam)’ LQ(M)}'

For our discussion in Section 3.3 below, we will keep track of the dependence
of the constants on p and ¢ in the inequalities (3.13) and (3.14) below.
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Theorem 3.8. Suppose 2 < p,q < co. If (&;) is a finite sequence of indepen-
dent, mean zero L1(M)-valued random variables, then

(EH;& ;(m); < Cog(14V2) maX{H(zi:E&F) La(M)
[(S 7))oy Cra (B l6i0) )

where Cpq = 2ByK,, < max{2v2yp—1,2,/q} and B, and K, , are the
constants in (3.10) and (1.3), respectively. Moreover,

E| Sl .)" = pmex {0 (B(Slelhn) ) @1
(Ceer)’ (Cmer)’
Proof. We first prove (3.14). By Lemma 3.7,

ma ([ (S me?)’ (T mer)’

1
2

, (3.13)

La(M)’ Lq(M)}'

Lq(M)}
N
< Q(EH Zi:gi Lq(M)) .
Moreover, since L9(M) has cotype ¢ (cf. Theorem 3.3), it follows that
2.1 P 1
(E(;H&II“WM))“)” < (e(E, ;m& qu(M))")”. (3.15)

We refer to [52] for a proof that (3.15) holds with constant 1. By successively
applying Kahane’s inequalities and Corollary 1.10 we see that

21
(Bl tun) ") < Ko (BE S ric

< 25, (B

We now prove (3.13). By Corollary 1.10 and Theorem 3.5 we have

1SS ) 22K (£ (S i58)’
Gl )

La(M)’

p )%
La(M)

1
P

ZG(M))

1

P >p
Limy/

B =

iq(M)) } (3.16)



3.2 Main result
By the triangle inequality in L% (£2; L% (M)) it follows that

(E|(Srer)’ W))p
( Hz:Igz ))é
< (&) X le - Bl

1

E|&|?
L%(M)) +HZ: &

87

M))é. (3.17)

We now estimate the first term on the far right hand side. By applying Corol-

lary 1.10 and Theorem 3.5 we obtain
(Bt - w3,
< 2K,,B, (E H(Z| &~ Bl PR)’
<ol (E|(Z )

2

L(M))p
i) (T merE)’

where the final inequality is a consequence of the triangle inequality in
P . g

(£2; Lz (M;12)). Notice that the second term on the right hand side is
smaller than the first one. Indeed,

(S mee),

1
L%(M)), (3.18)

p— ] 2 q
oy = NOUEIE 1 (17 rnyy

— |UE(COI(|§Z'|2))HL%(MH(M))
< E||c01(|§i|2)HL%(M (M)

< (Elcol(&[* )IIE% M)))%
Gl

2
)’”. (3.19)
). By the noncommutative Holder in-

Nl

Write = col(|&]) and y = diag(|¢;]
equality (3.6),
)%
£#(m)

El(Swer)’;

= (El|(z"y"yx)2 ||

LN

)

%
L3 (M, (M)

— (Bl|ya]|®, )7

L8 (M, (M)
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P2
< (B[ [lyll Lo (az, (m) IIwIILq nM[2)7

1
< (EH?JHZEq(Mn(M))) (Enmum M)))”

= (B 16an) ) EI(Z )

Collecting our estimates (3.17), (3.18), (3.19) and (3.20), we obtain the
quadratic equation

1

. 3.20
LQ(M)) ( )

a? < (20, 4)ab + ¢,

P 1
where we set a = (EH(ZZ |§z| ) ”Lq(M)) b = (E(ZZ ”fz”Lq(M))")p and
c=10>2; El¢;[?)2 || La(a)- Solving this quadratic equation we obtain

1++2
2

—_

*(2017 qb + ((ch,qb) +4c )%)

max{2C, ,b, 2c},

[\V]

that is,

( H(Z|€ ) Lq(M))p
< (v ([ (S BR) |, O (B W)

Applying this to the sequence (&) we obtain

EIZ R,
§(1+\f2)max{H(zi:]E|§;|2>l oy pq( (ZH&”U:(M))

The inequality (3.13) now follows from (3.16).
Let us finally observe that C,, = 2B,K,, < max{2v2yp—1,2,/g}.
Indeed, if p < ¢, then it is clear that C), , = 2B, < 2,/q. If p > q¢ > 2 then

the optimal constant in Kahane’s inequality satisfies K ; < ,/f;_;} (see e.g.

the proof of [96], Theorem 1.e.13). Hence, in this case we can estimate C, 4
by 2«/p—11/qg—1§2\/§\/p—1. O

We are now ready to deduce the Rosenthal-type inequalities in the cases where
P, q =2

1

Sl

—
=
H,_/

<3
=

Theorem 3.9. Suppose 2 < ¢ < p < oo. Let (&) be a finite sequence of
independent, mean zero LI(M)-valued random variables. Then,

(5s

1

I;q(M))E =pq maX{(;Efi”iq(M));, (;EH&”(]L‘I(M));’
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: :

BIGP) 0 | (B
|(mer) . | (Xt

Proof. By Lemma 1.14 and Theorem 3.8 we obtain

(5s

Lq(M)}'

1

ZQ(M))E /Sp,q maX{(ZEH&HIE‘I(M))%’ (ZE”&H%Q(MJ%’
[(SEer) ], (S Eer)

The reverse inequality follows from Lemma 3.7 and Theorem 1.20 (as LY(M)
has cotype q). O

Lq(M)}'

Theorem 3.10. Suppose 2 < p < q < oo. Let (&) be a finite sequence of
independent, mean zero L1(M)-valued random variables. Then,

EIsl,,)
:p,qmax{inf{(ZE\lMquw)f (ZEnein‘zq(M))%},
IS0, ()

where the infimum is taken over all sequences (n;) € IP(LP(§2; LY(M))) and
(0;) € 19(L9(£2; LY(M))) such that & =n; + 0;.

1
P

La(M)’ La M)}

Proof. By Lemma 1.14 and Theorem 3.8 we obtain

el

Soa max{inf{(ZEumniq(M)f # (SR )},
(S =)’ (X mer)’

The reverse inequality follows from Lemma 3.7 and Theorem 1.20 (as LY(M)
has cotype q). O

La(M)’ Lq(M)}’

We deduce estimates for the cases 1 < p < ¢g<2and 1 < ¢ <p<2by
duality from Theorems 3.9 and 3.10, respectively.

Theorem 3.11. Suppose 1 < p < g < 2. Let (&) be a finite sequence of
independent, mean zero LI(M)-valued random variables. Then,
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p 1
B 326 ],0)"
S PR
: :
i {[| (S Bel?) |, o,y + | (S B F)
psq ; [Mi,c| La(M) zl: 750 Le(A)
1 1
+ (B a) " + (X Ellmillfagnn) "} (3:20)

where the infimum is taken over all sequences (n;.) € LYM;E,12), (n;,) €

LYM;E,12), (6;) € IP(LP(£2;LI(M))) and (k;) € 19(LI(£2; LI(M))) such
that & = nic + iy + 0; + Ki.

Proof. Let (n;.c) € LY(M;E,I2), (mir) € LI(M;E,17), (0;) € IP(LP(£2; L1(M)))
and (k;) € 19(L9($2; LI(M))) be such that & = ;. + nir + 6; + ;. Then,

& = Emi,cl) —E(i.c) FEMi,r1 &) —E(ni,r) FE(0:]€) —E(0;) +E(k;|&s) —E(ks).

By the proof of Lemma 3.7 we have

(EH;E(W,J&)—E(WC) L (M)>;) 4H<ZE\77Z el )%

La(M)

and

E(7i,r)

(e S zmoteo ~En ) < 4| (Si, )

Since L?(M) has type ¢ we obtain by Theorem 1.15 and contractivity of
vector-valued conditional expectations

(B S0t -=@[, )" Soa (S EIEG) - B0 )

< 2(Z]E||9 2, )%

La(M)

D=

Similarly,

( HZE ’%1|§z - z) La(M) )% S:D,q (ZE|‘ni||iq(M)>%

The upper estimate in (3.21) now follows by the triangle inequality.
We deduce the reverse inequality by duality from Theorem 3.9. Let 2 <
¢ < p' < oo be such that %—i—ﬁ =1 and %—I—% = 1. Let (1;) be a finite

sequence of L7 (M)-valued random variables satisfying ||(n;)||» < 1, where

()1« :max{“<ZE|m|2>% (Z]Ehmz)%

La' (M La' (M)’
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1
7

1
(B an) ™ (I ) -
Then, by Theorem 3.9 we have

(€. = S E@TEm)

Z E® 7(&(Emi|&) — E(n:)))

>_E@7(&(E(n;E;) — E(y))
oo () (Szie) - 20)
(¥ Zg
S (2] e

< oE]Ze,,)"

The asserted inequality now follows by taking the supremum over all (7;) as
above. (]

e

IA

o)
L' (M)

’;(M));(E\];Ewmj) — 5|

)N Esles) — Emy)ll.

p
La(5S)

Theorem 3.12. Suppose 1 < q¢ < p < 2. Let (&) be a finite sequence of
independent, mean zero LI(M)-valued random variables. Then,

(EHZ§ ;m@)
=p,q inf{H (Z]E|m’cl2)% La(M) + H(ZEM;T‘Q)% La(M)
p %
o { (B0 (B}

where the infimum is taken over all sequences (1;.) € LYM;E,1?), (n;,) €
LYM;E,12) and (6;) € IP(LP($2; LY(M))) N12(LY(§2; LY(M))) such that & =
Ni,c + Ni,r + 92

1
P

Proof. The proof is very similar to the one presented for Theorem 3.11. The
upper estimate follows from Lemma 3.7 and the first part of Theorem 1.15.
The lower estimate can be derived by duality from Theorem 3.10. We leave
the details to the reader. (I
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Theorem 3.13. Let 1 < ¢ < 2 < p < oo. Let (&) be a finite sequence of
independent, mean zero LY(M)-valued random variables. Then,

» 1
Elsel,
1 3
N f{H( E ”2) ‘ H( E|n* 2)
p.q max{m zl: |7l La(M) + zl: |771,r‘
1 1
(R0 )" (Bl )

where the infimum is taken over all sequences (1;.) € LI(M;E,12), (i) €

LY(M;E,12) and (0;) € 19(L9(82; LY(M))) such that & = n;c + 0ir + 0.
Proof. By Theorem 1.31 we have

(156, 5o (] S

By Theorem 3.11 (with p = ¢) we have

(5s

and obviously

Li(M)

TR 3
pown) " (Bl )

1
! =p.q ” (fl) ”L‘l (MGE,I2)+La(M;E,12)+19(L9(£2;L9(M)))

o)

(Emas 60 00)” < (B0 )

For the reverse inequality, note that

Ezsl,) 2 EZ6l,.,)

~p.g (€l La(MmiEi2) 1 La(ME12) 119 (La(2;L9(M)))-

Moreover, as L?(M) has cotype ¢ we have by Theorem 1.20,

p % » %
(EHZ:& Lq(M)) Zp,q <zi:E|£i”Lq(M)> :

O

Theorem 3.14. Let 1 < p < 2 < q < oo. Let (&) be a finite sequence of
independent, mean zero LI(M)-valued random variables. Then,

(5s

1
P

wian)
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1

~pgq inf{max{H(ZE\m\2>% (ZEV%*P)?
(Z]EH?%H%q(M))%} + (ZEHQ:‘HZJ(M))%}’

where the infimum is taken over all sequences (0;) in IP(LP(2; LY(M))) and
(n;) in LYM;E, 12) N LY(M;GE, 12)N19(L(£2; LI(M))) such that & = n; + ;.

La(M)’ La(M)’

Proof. By Theorem 3.10 (with p = ¢) we have
EZel) = EZsl,)"
o) = — e
1
o max { (Bl nn)
o :
BIEE) e [ (BF)
[(mier) . | (e
On the other hand, as L9(M) has type ¢ we obtain by Theorem 1.15,
» 1 1
. r P P
EIl )’ e (SoteM)

Let & = i +0;. Then, & = E(n;[&) —E(n;) +E(6;]¢) —E(6;). By applying the
above to the sequences of independent, mean zero random variables (E(n;|&;)—
E(n;)) and (E(6;1¢) — E(6;)) we obtain

(e
Spa max {|| (S EIEGHS) ~E(m)I?)

Lq(M)}'

1
P

Z‘J(M))

1
2

La(M)’

(32 BB - B

La(m)’

1

(Z E||E(n;:|&:) — E(m:) ||qu(M)) i }

o=

+ (ZEHE(QJ&) - E(@‘)Hiq(M))
gmax{u(gwf Boaey (;Elm”f b’
(S Elnlaun) }+ (201 0)
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The reverse inequality follows by duality from Theorem 3.13. We leave the
details to the reader. O

We now summarize the main results of this section.

Theorem 3.15. Let 1 < p,q < oo. Let (£2, F,P) be a probability space and let
M be a semi-finite von Neumann algebra. Let £ be the conditional expectation
with respect to the von Neumann subalgebra 1 @ M of L°QM. Set

Sq.e = LYL®(2)QM; €, 1%);
Syr = LI(L®(Q)QM; E,12);
Dy q = IP(LP(£2; LY(M))).

If (&) is a finite sequence of independent, mean zero LI(M)-valued random

variables, then
S

where s, 4 15 given by

1

! =p.q ||(fz)||quv

o)
Li(M)

Sq.cNSqrNDggNDpy if 2<q¢g<p<oo;
Sq.cNSgrN(Dgq+ Dpy) if 2<p<q<oc;
(SqcNSqrNDyq)+Dpy if 1<p<2<g<o0;
(Sqet+Sqr+Dgq)NDpy if 1<g<2<p<o0;
Sge +8qr + (Dgg N Dpyg) if 1<qg<p<2

Sge+Sgr+Dgq+Dpy if 1T<p<g<a2.

If (S, X, p) is a o-finite measure space, then we obtain the results of Section 1.3
as a special case of Theorem 3.15 by viewing L4(.S) as a noncommutative L%-
space (as explained in example 3.1). Indeed, in this case S, . and S, , coincide
and are equal to LI(S;12(L?(£2))).

3.3 Application to random matrices

The purpose of this section is to derive two-sided estimates for the p-th mo-
ments of the largest singular value of a random matrix with independent,
mean zero columns or entries in terms of a suitable norm on its entries. The
main results are Theorems 3.20, 3.21 and 3.24 below. The principal tool in our
investigation is Theorem 3.8, used together with the estimate (3.5). Through-
out, we let e;; (i, = 1,...,n) denote the standard matrix units of M, i.e. e;;
is the n x n matrix with (4, j)-th entry equal to 1 and zero entries elsewhere.
We restrict our attention to random matrices with real-valued entries.

We shall use the following special case of [91], Proposition 1.1.1, which is
a consequence of the Lévy-Octaviani inequalities.
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Proposition 3.16. Suppose 1 < p < oo and let X be a Banach space. If
&1,...,&, is a finite sequence of independent, symmetric X -valued random
variables, then

1

1
)" <2 (B Xal,)"
(Ei:rrff{}_fnll&llx) <27 (E Z& .

By a randomization argument we obtain the following.

Lemma 3.17. Suppose 1 < p < oo and let X be a Banach space. If (&) is a
sequence of independent, mean zero X -valued random variables, then

(8 o, 160)’ <27 (5] )

i=1,...,
Proof. Let (r;) be a Rademacher sequence on a probability space ({2, F,, P,.).
Then, by Corollary 1.10 and Proposition 3.16 it follows that

1

1 1
(B max Jl&l%)" = (BE. max [ril%)"
i=1,....,n i=1,...,n

a7 <23 (m 1"y
Seall)! <2 |5l

<2 (EET

O

Lemma 3.18. Fizn € N and 2 < p < oo. If (z;) is a finite sequence of
independent, mean zero n X n random matrices, then
p)%

e (i) | () | <26

Proof. Observe that

(S’

)

1
2

= H]EET E T T;
%,J
Z "
rirjxixj
,J
2\ 3
§ Ti%4g )
i
n3
<2(s Xa])"
i

where in the final step we apply Corollary 1.10. The result follows by applying
this to the sequence (z}). O

)

< (EIE,.

- (EIET
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Lemma 3.19. Let 2 < p < co. If (z;)", is a finite sequence of independent,
mean zero n X n random matrices, then

S m P % m % m %
203 (6] S5 )} 2 | (S | (2 |
i=1 i=1 i=1

(B max i)} 2

and

€
i=1

P)% < e(1+\/§)ap7nmaX{H(iE|xi| ) (me | )%

oy (B max oif?)7}, (328)

with apn = Cp max{logn,2y < max{2y/logn,2v/2/p — 1}, where Cp.q 15 the
constant in Theorem 3.8.

Proof. Observe that (3.22) immediately follows from Lemmas 3.17 and 3.18.
By applying Theorem 3.8 with ¢ = max{logn,2} we obtain

(#] Salf) < Vi ms ey (53 1))
[(Seee) . (i)
< (14 v2)ay,, max {ap,n (E(Z IIxiHlog”)m)E,

(S ) o () )

where the final inequality is a consequence of (3.5). The inequality (3.23) now
follows by observing that

1
(X telto) )" < e i )

7

} (3.24)

=

S =

= eton (E max |l [|P )

O

Theorem 3.20. Let 2 < p < oco. Suppose x = (zi;)7 ;—; is a random matriz
with independent, mean zero columns and let y = (yik)?,kzl be the matriz

given by v, = E(Z?Zl zijxkj). Then,
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1 1 % 1
23 (Elja]”)? > max { max (ZE%) i,
n
E,mex (3ooh)
(B max (34

and

Nl

(EHJCHP)%Se(l—l—\/i)ap)nmax{ max (ZEJU”) ,||y|\%,
9 P
o (B mox (ah)")" }

T =1

with ay, ,, < max{2y/logn,2v/2y/p — 1} as in Lemma 3.19.

Proof. Let xj =, x;;®e;;, i.e. the nxn matrix with j-th column equal to the
j-th column of = and zeros elsewhere. Then (z;) is a sequence of independent,
mean zero random matrices and z = ) ; ;- Notice that

_— .. . .. . — 2 ..
€Ty = E TijTr; @ €jir; = E T & €jj4,

SO

Nl=
[SIE

®€jo= max (Z]EZ‘U)

(S

Moreover,

I2(Se)

;= E TijTr; @ €€ = E ZTijTr; @ ek
i,k ik

and therefore

w2\ 2 = 3 1
|(Zmsl) | = [ (R mums) @ )| = i
J ik j=1
Finally,
s _ 3 N
(= max lleilr)" = (5 max el 17)" = (& max (3oa%)")"
The result now follows from Lemma 3.19 (with m = n). O

Theorem 3.21. Let 2 < p < oco. Suppose x;; are independent, mean zero
random variables in LP(§2). If x is the n X n random matriz (z;);;_;, then
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21+%(EHx||P)% zmax{ max (Z]Exu) 7_1rnaX (ZE$1J> ,
1
(E max |xij|p)p},
6,J=1,...,n

and
(E||x||P)%§e(1+\/§)ap,nmax{ max (ZE.’L‘ )%, max (ZE%‘U) ,

1
et n (IE Jmax |xij|p> ! }, (3.25)

with oy, , < max{2y/Togn,2v/2y/p— 1} as in Lemma 3.19.

Proof. Set y;; = wij @ ez, then (yi;)7;_q

independent, mean zero random matrices and x = 3 j=1Yij- Notice that

is a doubly indexed sequence of

* 2 2 .
Yij¥ij = Tij & €ji€ij = Ty; @ €554,

SO
n 1 n n 1 n 1
2\ 2| _ 2 )2 _ 2 )2
032 Bmsl) | = [ 220 (2 Eet) @ = o, (322%)
7,7=1 j=1 =1 =1
(3.26)
Moreover,

*x 2 2
YijYi; = Ti5 @ €ij€55 = X5 @ €45

and therefore

1( 3 By

= H i (i]Emfj)%Q@e“
i=1  j=1

1,7=1 7j=1
Finally, it is clear that
1 1
(]E max ||yij||p)p = (]E max |xij|p)p. (3.28)
t,j=1,...,n t,j=1,...,n
The result now follows from Lemma 3.19, applied with m = n?. O

The constant o, ,, in (3.25) is of order v/logn as n — co. We shall now derive a
bound similar to (3.25), in which the constant «,, , is replaced by a constant
of order (logn)i. We use the following result due to Y. Seginer (see [125],
Theorems 3.1 and 3.2).

Theorem 3.22. [125] If (ai;)};—, is a fived matriz and (ri;) is a doubly in-
dexed Rademacher sequence, then there is a universal constant C > 0 such
that
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n

(E|(ryai7) )% < Cllogm)* (| max (wa) + @%XH(ZQU?J')%)’

provided p < logn?. Moreover, the order of growth O((log n)%) is optimal.

Let us recognize that the result above is actually a special case of the non-
commutative Khintchine inequality (3.10), with a constant of improved order.

Corollary 3.23. Let n € N and set ¢ = logn. If (%‘j)ﬁj:l is an n X n matrixc
and (r;;) is a doubly indexed Rademacher sequence, then there is a universal
constant C' > 0 such that

P 1 n 1
(EH Z Tz_]azj ®e7,] q)p < C(lOgn)% {H( Z |aij®eij|2)2 a’
i.j=1 & i.j=1 o
”( Z |(6Lij ®€z])*‘2)2 q}7 (329)
i,j=1

provided p < logn2. Moreover, the order of growth O((logn)3) is optimal.
Proof. By (3.5),

1 n 1
max(g a2)2* g ( a2)2®e
i=1,...n K K w

Jj=1 i=1 j=1
n 1
< E 2 ?
=~ Q;; ® e p
i,j=1 "
n
= (X tau @es?)’|
“ Sa
i,j=1
n
%2 2
=[|( 32 ey @ i) )
“ S3
7,7=1
Similarly,
n 1 n 1
9\ 2 3
max E a;; ) < g lai; ® el .
Jj=1l,..n = Sa
=1 3,j=1

We can now improve the order of the constant in Theorem 3.21.

Theorem 3.24. Let 2 < p < oo. Suppose x;; are independent, mean zero

random variables in LP($2). If x is the n X n random matriz (v;);;_;, then

(EHMVD)%SC(IO%”)i { a2 (ZEZ‘U) , Joax (ZE%)%
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(logn)* (E max \xij|p) z }, (3.30)

)=

where Cp, is of order as p — 0o.

P
logp
Proof. Set y;; = x;; ® e;5, then (yij)?,j:l is a doubly indexed sequence of
independent, mean zero S?-valued random variables, with ¢ = max{logn, 2}
and = ZZ;‘:1 ;5. To prove (3.30) we first apply Theorem 1.31 to obtain

E[a|P)s < & El«?)?, (E S

(Ellz]?)> < limax{( [«]I)Z, (B max [ly;[|”)>}.

i,j=1,...,n

By replacing the use of the noncommutative Khintchine inequality (3.10) by
(3.29) in the proof of Theorem 3.8, we see that

Nl

1

1ol 5 Gog e {32 )|, (3 i)

)

52’ 58
i,j=1 i,j=1
N 2 l
L q
(log n) 4( (Z IIyullsq) ) }
1,j=1

By (3.5) this implies that

1

(E|l2]|*)* < (logn)¥ m {H( E|ym|)

)

17

where the final step follows from (3.26),(3.27) and (3.28). O

Remark 3.25. If the entries x;; in Theorem 3.24 are, in addition, identically
distributed, then we can further improve the bound in (3.30). Indeed, by [125],
Corollary 2.2 there is a constant C' > 0 such that for any p < logn?,

E||x||P<C(Ez£1}axn(imfj> —HE max (wa) )
j=1

If we use this inequality to replace (3.16) in the proof of Theorem 3.8 and
follow the proof of Theorem 3.24, then we obtain

1 1 n ) 1
Bl < Cym{ e, (38a8)" e (3r3)"
J:
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(logn)* (E max |$ij|p)%},

)=

with C,, of order @ as p — oo. We leave the verification of the details to

the interested reader.

The results in Theorems 3.21 and 3.24 give upper bounds for the LP-norm of
the largest singular value of an n x n random matrix with independent, mean
zero entries, for any 2 < p < oo. However, these bounds are not of optimal
order in terms of the dimensions of the matrix. In fact, using concentration
inequalities for Gaussian random measures R. Latala proved in [93] that there
is a universal constant C' > 0 such that

n 1 n 1 n 1
22 22 4\1%
EIxIISC(igﬁﬁ(Z;E%) +j£?§n(;mij) + (> Eh)),
Jj= 1=

ij=1
(3.31)

for any random matrix z = (x;;)7",_; with independent, mean zero entries

ij=
in L*(£2). For comparison, observe that (3.31) implies together with Theo-

rem 1.31 that there is a universal constant C > 0 such that for all 1 < p < oo,

o (e, (205) e, (2m7)"

1,.

(5 m1) s (2 o))

3]
1,j=1

(Ellz]?)? < C

The upper bound in Theorem 3.21 exhibits different growth behaviour in p and
does not contain the factor (szzl Ex?j)%). In particular, the bound (3.25) is
applicable to random matrices having entries with infinite fourth moment. On
the other hand, we note that the bound in (3.31) is of order y/n. Through our
use of the noncommutative Khintchine inequality, we incur an extra factor of
order y/Togn (or at least (logn)7). Unfortunately, as the order (logn)i of the
constant in (3.29) is optimal, this additional factor is an inevitable product
of our method. Further investigation is needed to discover the ‘right’ bounds

for the moments of the largest singular value of a random matrix.
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4

Quasi-Banach function spaces

In this preliminary chapter we introduce symmetric quasi-Banach function
spaces and discuss their most important properties. These spaces play a piv-
otal role in many fields of mathematical analysis, especially probability theory,
interpolation theory and harmonic analysis. Although our main interest is in
symmetric Banach function spaces, we will find it necessary to work with the
more general class of symmetric quasi-Banach function spaces (see in partic-
ular the proof of Theorem 7.4). The results presented in Sections 4.1, 4.2 and
4.3 below are all well known for Banach function spaces, but not easy to find
for quasi-Banach function spaces.

Interpolation theory is a key tool in the analysis of symmetric spaces,
which will be used intensively in the chapters to come. In Section 4.5 we review
the basic definitions and collect several useful facts from this theory. As will
become apparent in later chapters, an important problem is to determine if
a particular symmetric quasi-Banach function space is an interpolation space
for a couple of LP-spaces. In the final section of this chapter we provide some
sufficient conditions, formulated in terms of the convexity, concavity and Boyd
indices of a symmetric space F, under which E has this property.

4.1 Basic definitions

Let us first recall some definitions and facts from the theory of quasi-Banach
spaces. Let X be a vector space over C (or R). A map ||| : X — [0,00) is
called a quasi-norm on X if it satisfies the following properties:

(i) ||z|]| = 0 if and only if z = 0;
(ii) ||ez| = |a| ||lz||, for all z € X and o € C;
(iii) There is a constant C' > 1 such that

e +yll <CUlzll +1yl) (2,9 € X). (4.1)
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The inequality (4.1) is called the quasi-triangle inequality. If the map || - ||
satisfies )
=+ yll < (=" +[lyl?)» (x5 €X)

instead of (4.1), then || - | is called a p-norm on X. A basic, but most useful
result is the following theorem due to T. Aoki and S. Rolewicz.

Theorem 4.1. (Aoki-Rolewicz) Let X be a quasi-normed vector space. Then
there is a C' > 0 and 0 < p < 1 such that for any x1,...,x, € X,

[ < (X er)”
i=1 =1

By the Aoki-Rolewicz theorem, we can always equip a quasi-normed vector
space with an equivalent p-norm, for a certain 0 < p < 1.
If X is a quasi-normed vector space which is complete for the metric

dz,y) =z -yl  (z,y€X)

induced by the quasi-norm |- ||, then we call X a quasi-Banach space. The stan-
dard results from Banach space theory which depend only on the completeness
of the space, such as the principle of uniform boundedness, the closed graph
theorem and open mapping theorem, continue to be valid for quasi-Banach
spaces. Results which rely on the convexity of the unit ball of a Banach space,
such as the Hahn-Banach theorem, do not hold for quasi-Banach spaces. For
example, if 0 < p < 1, the Lebesgue space LP(0, 1) is a quasi-Banach space. In
sharp contrast to the LP-spaces in the range 1 < p < oo, the space LP(0, 1) has
a trivial dual space if 0 < p < 1. We refer to [78, 80] for a thorough treatment
of the theory of quasi-Banach spaces. We shall be interested in quasi-Banach
function spaces, which we now describe, and their noncommutative versions
which will be introduced in Chapter 5 below.

Let 0 < a < 0o. For a measurable, a.e. finite function f on (0, «) we define
its distribution function by

d(v; f) = At € (0,a) = [f(O)| >v)  (v>0),

where A denotes Lebesgue measure. Let S(0, ) denote the space of measur-
able, a.e. finite functions f on (0, ) such that d(v; f) < oo for some v > 0.
For f € S(0,«) we denote by u(f) the decreasing rearrangement of f, defined
by

pe(f) =inf{v >0 : d(v; f) <t} (t >0).

For f,g € S(0,a) we say f is submajorized by g, and write f << g, if

t ¢
/ ws(f)ds < / us(g)ds, for all £ > 0.
0 0

Recall the following terminology. A (quasi-)normed linear subspace E of
S(0,«) is called a (quasi-)Banach function space on (0,«) if it is complete
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and if for f € S(0,a) and g € E with |f| < |g| we have f € E and
Iflle < llglle- A (quasi-)Banach function space E on (0,«) is called sym-
metric if for f € S(0,a) and g € E with u(f) < u(g) we have f € E and
Iflle < llglle- It is called strongly symmetric if, in addition, for f,g € E
with f << g we have || f||g < ||g||g. If, moreover, for f € S(0,«) and g € E
with f << g it follows that f € E and ||f|lg < ||lg|lz, then E is called fully
symmetric.

A symmetric (quasi-)Banach function space is said to have a Fatou (quasi-
Jnorm if for every net (fsg) in E and f € E satistying 0 < fg T f we have
Ifslle T Iflle- The space E is said to have the Fatou property if for every
net (fg) in £ and f € S(0,a) satisfying 0 < fz 1 and supg || f5]|z < oo the
supremum f = supg fs exists in £ and || fs||r T || f||z. We say that E has
order continuous norm if for every net (fg) in E such that fg | 0 we have
1fslls 1 0.

For further reference we record two elementary results on symmetric quasi-
Banach function spaces. The first lemma is a consequence of Theorem 4.1 (see
[103], Lemma 6).

Lemma 4.2. Let E be a symmetric quasi-Banach function space. Then, for
every p > 0 there exists a ¢ > 0 and 0 < r < p such that for all f; € F,

H(im'p); E§C<§:fi|;3>}h- (4.2)

The following elementary Holder-type inequality is well known for Banach
function spaces ([96], Proposition 1.d.2 (i)).

Lemma 4.3. Let E be a quasi-Banach function space and suppose f,g € E.
If0 <60 <1, then
0) |1—6 6 —6
I 1£1%191" e < ClAIENglE?,

where C' is the constant in the quasi-triangle inequality.

Proof. We may assume ||f||g > 0, otherwise there is nothing to prove. Using
that « — logx is concave on (0, c0), it follows that

sP 0 <0s+ (1-0)t, s,teRl.
Applying this inequality pointwise it follows that for any a > 0 we have
_ 1 1 g 1 1
L1910l = Il la® f°la™ ™7 g|* "% e < Ca 8] fll& + (1 — )™ =7 [|g]| &)
By setting a = (|9l /|| f]|£)?*~? we obtain the desired inequality. O

Let us finally discuss some results specific for symmetric Banach function
spaces. The Kothe dual of a symmetric Banach function space F is the Banach
function space E* given by
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B ={ges0.0) s sw{ [ 17090 d : |7z <1} <o)
0
lollsx =sup{ [ Il de  Ifle <1} ge B
0

The space E* is fully symmetric and has the Fatou property. It is isomorphic
to a closed subspace of E* via the map

oLy L= [ " Fg() dt (f € B).

A symmetric Banach function space on (0, «) has a Fatou norm if and only if
E embeds isometrically into its second Kothe dual E** = (E*)*. It has the
Fatou property if and only if £ = E** isometrically. It has order continuous
norm if and only if it is separable, which is also equivalent to the statement
E* = E*. A symmetric Banach function space which has a Fatou norm is
strongly symmetric. Moreover, a symmetric Banach function space which is
separable or has the Fatou property is automatically fully symmetric. For
proofs of these facts and more details we refer to [18, 85, 96, 142].

4.2 Boyd indices

We now discuss the Boyd indices, which were introduced by D.W. Boyd in
[23]. Fix 0 < a < oo and let E be a symmetric quasi-Banach function space
on (0, ). For any 0 < a < oo we define the dilation operator D, on S(0, «)
by

(Daf)(s) = Flas)xom(as) (s € (0,a)).

The following lemma is well known for symmetric Banach function spaces (cf.
[85]).

Lemma 4.4. Let E be a symmetric quasi-Banach function space on (0, ).
Then, for every 0 < a < oo, D, defines a bounded linear operator on E.
Moreover, a — ||D,|| is a decreasing, submultiplicative function on (0, 00).

Proof. Since u(f) is decreasing, we have for any a < b,

Dyp(f)(s) = 15 ()X (0,0) (08) < pas(F)X(0,0)(as) = Dap(f)(s).

Hence, if D, is bounded on E, then D is bounded on E as well and || Dyl <
|| Dol- In particular, | D,]| is bounded on E if a > 1 and || D,|| < 1. Moreover,
it suffices to show that D1 is bounded on FE for every n € N.

Suppose first that o = oc. Fix n € N, let f € E; and let f;, 1 <4 < n, be
mutually disjoint functions having the same distribution function as f. Then
D 1 fand Y., fi have the same distribution function. Indeed,

At € (0,00) : (D%f)(t) >v) =nAt € (0,00) : f(t) >v)
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n
=D Ate(0,00) : fi(t) > )
i=1

- )\(t € (0,00) : ifi(t) > v). (4.3)
=1

Since E is symmetric it follows that D1 f € E. Moreover, by Lemma 4.2,
there exists some ¢ > 0 and 0 < p < 1 such that

1Dy flle = |32 5
=1

Suppose now that 0 < a < oo. Observe that if f € E then Dif and
D1 (x(0,)f) have the same distribution function. Indeed,

B> C(Z} 1£illl)” = en® |1 £1l- (4.4)

MEE(0,0) ¢ f(5)>0) = A€ (0,0) ¢ xo) ()

—A(t€(0,0) : Dilxo,a)f)(t) >v). (45)
Therefore, by the argument given above,
1 1
ID1flle =D (fx©,2)le < cen?|fxo2)le < cn?|fle.

We conclude that D, is a bounded linear operator on FE, for every 0 < a < oo.
From the above it is clear that a — ||D,|| is decreasing and, since Dy, =
D, Dy if a < b, submultiplicative. O

) >v)

Define the lower Boyd index pg of E by
pE = sup {p >0: 3e>0Y0<a<1|Doflle < ca—%|\f||E}
and the upper Boyd index qg of E by
g = inf{q >0: 3¢>0Va>1|Duoflls < ca*%|\f||E}.

It will be shown below that 0 < pp < qg < oo. Moreover, we will see in
Lemma 4.9 that if F is a symmetric Banach function space then 1 < pp <
qre < oo. In this case it is customary to say that E has mon-trivial Boyd
indices if 1 < pp < qg < co. We will now deduce several different expressions
for the Boyd indices.

The following lemma follows from a well-known property of submultiplica-
tive functions, see [85], Theorem II.1.3.

Lemma 4.5. If E is a symmetric quasi-Banach function space on (0, ), then

. log s log s
I —— 0 = SUp 77—
S log [D1]| ~ 5% log | Dx ]|
log s . log s

lim ——2% = _08%
510 log [[D1]| ~ 0<s<1log|[D1]]
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Proposition 4.6. If E is a symmetric quasi-Banach function space on (0, a),
then

pr = lim _logs = suploi'
sooclog|[Dy]l o>1 log || Dy’ (16)
. log s . log s ’
ae =l iy IDL]] ~ ofs<1log [ D]

Proof. Observe first that since a — || D, || is decreasing, we have log ||D,|| > 0

if 0 < a <1andlog|D,| <0ifl < a < oco. Set pp = sup,~; %.
Suppose first that pg, pp < co. For any € > 0 there exists a ¢, > 0 such that

for all 0 < a < 1 we have || D,|| < cca™/(P#=2) Hence,

log || Del| < , loga + c.

E — &
and so
—loga —loga 1
—e< Ce
log || Da| log || Da| —loga

By taking the limit for a | 0 we obtain by Lemma 4.5 that pg —e < pg. Since
€ > 0 was arbitrary, we conclude that pg < pg.

On the other hand, for a given € > 0 we can find 0 < a, < 1 such that for all
0 < a < a, we have

PE (pE —¢).

loga=! o5
——— > pp — €.
log || Da ||

This implies ~
log ”Da” < log a_l/(PE—a)7

and so ||D,|| < a=Y/®==) for any 0 < a < a,. Pick m € N such that
2™ < ay. Then for any 0 < a < 1 we have

[1Daflle = |1Dam D . fll&
< ||Dzm||(2%)‘1/(5E‘5)||f||1; = || Dgm ||27/ PE=E) 0= PE=S) | || 5.
In other words, pg — € < pg. Since this holds for any € > 0 we get pg < pg.
Similarly, one may show that pg = oo if and only if pp = co.

The proof of the equalities for g are similar and left to the interested
reader. (]

Corollary 4.7. Let 0 < p < 1. If FE is a symmetric p-normed quasi-Banach
function space on (0,«), then pg > p. As a consequence, every symmetric
quasi-Banach function space satisfies pg > 0.

Proof. It was observed in (4.4) that for every n > 1,

1
11 flle <0t lflle
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and therefore

log D] 1
n < .
logn ~ p
By taking the limit for n — oo we see using Proposition 4.6 that pgp > p.
Since every symmetric quasi-Banach function space can be equipped with an

equivalent p-norm for some 0 < p < 1 (cf. Theorem 4.1), the second assertion
is an immediate consequence of the first statement. (I

Remark 4.8. In many texts, the lower and upper Boyd indices of F are alter-
natively defined as the quantities

ogD:l  _ log|Ds]
Qp = sup — =, ap = inf ——.
o<s<1 logs I<s<oo logs
It is clear that ap = —E and ap = Z%E.

Finally, we recall the following duality for Boyd indices (see [85], Theorem
I1.4.11). If E is a symmetric Banach function space with Fatou norm, then
1 1 1 1

PE qEx PEx qE

4.3 Convexity and concavity

Let 0 < p,q < co. A symmetric quasi-Banach function space FE is said to be
p-convez if there exists a constant C' > 0 such that for any finite sequence
(fi)i, in F we have

()],

< C(Z ||fi||ffE)5 (if 0<p < o0),
i=1

or,

| max 1

< i = .
| <Cmax fille  (ifp=o0)
The least constant M®) for which this inequality holds is called the p-
convezity constant of E.

A symmetric quasi-Banach function space FE is said to be g-concave if there
exists a constant C' > 0 such that for any finite sequence (f;)7; in E we have

(anzuE) <CH( i ).

(if 0 < ¢ < ),

or,

< ; i = .
max [flle <O max £l |, (fg=o0)
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The least constant M) for which this inequality holds is called the g-concavity
constant of E. It is clear that every quasi-Banach function space is co-concave
with M(y =1 and any Banach function space is 1-convex with M® =1,

For 1 < r < o0, let the r-concavification and r-convezification of E be
defined by

1 1,

Ewy={9€500,a): [g|" € E}, lgle,, = 19" &,
1

EW = {g€5(0,0): lgI" € B}, lglper =1 lol" I3,

respectively. As is shown in [96] (p. 53), if E is a Banach function space,
then E(") is a Banach function space. In general, E(; is only a quasi-Banach
function space. Using that u(|f|®) = p(f)® for any f € S(0,a) and 0 <
s < 00, one sees that E() and E(,) are symmetric if F is symmetric. From
the definitions one easily shows that if £ is p-convex and g-concave for 0 <
p < ¢ < 00, then E™ is pr-convex and gr-concave and E(,y is B-convex and
4-concave. It is also follows from the definitions that

1
PE, = ;pE, 4B, = ;(JE, Pe(t) =TPE, 4gt) = T4E-

The following lemma states a relationship between the convexity and concav-
ity of a space and its Boyd indices. For symmetric Banach function spaces
this result is classical (see e.g. [96]).

Lemma 4.9. Let 0 < p,q < oo and suppose E is a symmetric quasi-Banach
function space on (0,a). If E is g-concave, then qg < q. On the other hand,
if B is p-convex, then pg > p.

Proof. Suppose first that E is a g-concave and a = co. Fixn € N, let f € E
and let f;, 1 < ¢ < n, be mutually disjoint functions with the same distri-
bution function as f. As observed in (4.3), D1 f and Y ., f; have the same
distribution function. Since F is g-concave, !

107l = | 18] = (1)
i=1 i=1

- : .
> Mgy (Y IAI1E) " = Mgt lif s
=1

E

Letting f = D,,¢g and using D1 D, g = g, we obtain

-1 -1
|Dugll < Mt ¥ [glls.
Since this holds for all g € E we obtain log || D,,|| < fé logn—log M. Hence,
for any n € N we have
log || Dn| 1 log M

logn=t ¢ logn=1’
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Taking the limit for n — oo we obtain by Proposition 4.6 that q% > Lo

q
qe < q.

Suppose now that F is g-concave and a < oo. Notice that the norm of D1 can
be computed using only functions supported on (0, ¢). Indeed, if f € E then
by (4.5) D1 f and D1 (x(0,2)f) have the same distribution function. Hence,

1Dsflle D3 flle  IP:(fIx0.2)le

Ifle = I fIxolle 1 [flxo.e)

'n '

e

a0 1D, £1
1flE
D]l = sup —_—a

" supp(f)C(0,%) ”fHE

‘n

The argument above now yields | D1 | > Cni, which completes the proof of
the first assertion.
The proof of the second assertion is similar. O

The following observation was originally made by J.L. Krivine for Banach
lattices [86]. We shall use the following extension for quasi-Banach function
spaces.

Proposition 4.10. Let E be a quasi-Banach function space. If E is p-convex
for some 0 < p < oo, then E is r-convex for any 0 < r < p and M) < M®),
If E is q-concave for some 0 < ¢ < 0o, then E is s-concave for any g < s < 0o
and M(S) < M(q).

Proof. Notice that for any 0 < p < oo,

n 1 n
M® =sup {|| (X 1P)7] ; fe B YA =1}
i=1 i—1
n 1 "
— iipp ] ieE, i <1’ 'L>0, 'L:l}
S“p{H(;W') HE 9 lgile <1, a;20, > a

=1

Fix g1,....9n € E, ||lgile < 1 and ay,...,a, > 0 with >"" ; a; = 1. Let
{2 be the probability space consisting of n atoms, indexed by ¢ = 1,...,n,
with weights aq,...,a,. Let a1,...,a, € C and let h : 2 — C be given by
h(i) = a;. If 0 < r < p, then by Hélder’s inequality,

n 1 n
(S aidaal”)” = Whllzra) < Ihllznoy = (D aidat”)
i=1 i=1

Since || - ||z respects the order on E, we obtain

n 1
< ; Z_p)’)H < M®,
(e, <

=

1

[(etar)’
=1
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Taking the supremum over all a4,...,a, and ¢, ..., g, yields the first state-
ment. The modification of the proof for the case p = oo is obvious.
For the second statement we note that for any 0 < p < oo,

i == (S )’

1

n
=

g REE LI =1

n 1 n
:inf{H<Zai|gi|p)PHE; giGE,HgiHESL a; > 0, Zai:l}'
i=1

i=1

Let 0 < ¢ < s < o0. By the above, we have for arbitrary gi,...,9, € E with
lgille <1 and aq,...,a, > 0 satisfying 1" | a; = 1,

1 n % n
i1y < | (Sadad)"|, < [ (X alar)
i (VSO R WY [0 9

By taking the infimum we obtain M) < M), as desired. O

1
s

E.

Remark 4.11. By using the functional calculus for Banach lattices (see e.g.
[124]) one easily deduces from the proof that Proposition 4.10 holds for any
quasi-Banach lattice.

Lemma 4.12. If E is a symmelric (quasi-)Banach function space which is
q-concave for some q < oo, then E has order continuous (quasi-)norm.

Proof. By [2], Theorems 10.1 and 10.3, it suffices to show that if (f;)72, is a
disjoint sequence in E with 0 < f, < f for some f € E and all £ > 1, then
Il fxllz — 0. Since E is ¢-concave, we have for any n > 1,

(ki I£lls) " < My (B (}i 57)

=], <1

Thus,
e 1
(D I5el)" < 1flle < o
k=1

and the assertion follows. O

Finally we mention the following duality result due to J.L. Krivine ([86],
théoréme 6, see also [96], Proposition 1.d.4), which holds in fact for general
Banach lattices.

Theorem 4.13. Let E be a Banach function space and suppose 1 < p,p’,q,q <
oo are such that % + 1% =1 and % + % = 1. If E is p-convex then E* is p'-

concave and M, (E*) = M®)(E). On the other hand, if E is q-concave then
E* is ¢'-convex and M(?)(E*) = My (E).
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4.4 Examples

Let us now look at some interesting classes of symmetric quasi-Banach func-
tion spaces.

Ezample 4.14. (Lorentz spaces LP?) Let 0 < p,q < oco. The Lorentz space
LP9(0, o) is the subspace of all f in S(0, «) such that

Fllne = { (o B8l dF (0<q< o)
SUPg<t<q t? pt(f) (g = 00),

is finite. If 1 < ¢ < p < o0 or p = ¢ = oo, then LP? is a fully symmetric
Banach function space. If 1 < p < co and p < g then LP+9 can be equivalently
renormed to become a fully symmetric Banach function space ([18], Theorem
4.6). However, in general L?? is only a symmetric quasi-Banach function space
[77]. By the monotone convergence theorem, LP*¢ has the Fatou property. Its
Boyd indices are determined by the first exponent, pyr.a = qrr.a = p.

The Lorentz space LP'P coincides with the Lebesgue space LP. The spaces
LP>° are referred to as weak LP-spaces. Observe that the weak LP-spaces
are not g-concave for any ¢ < oo. Indeed, if we define f,(t) = t_%x[()’%)(t),
then || fp|/zre = 1 for all n, but f, | 0. Thus the assertion follows from
Lemma 4.12.

Ezample 4.15. (Lorentz spaces AP"") Let 0 < p < oo and let w be a positive
decreasing function on (0, &) such that [ w(t) dt = oo if & = co. The Lorentz
space AP* is the subspace of all f in S(0, «) such that

1

e = ([ atsyruce ar)”

is finite. Note that if p < g and w(t) = ta~! we have AW = L4P If1 < p < o0
then LP" is a symmetric Banach function space with the Fatou property. It
is p-convex with convexity constant equal to 1, but is not r-convex for any
r > p. One can characterize the concavity of the space in terms of p and w
(see [82], Theorem 7).

Ezample 4.16. (Orlicz spaces) Let @ : [0,00) — [0, 00] be a Young’s function,
i.e., a convex, continuous and increasing function satisfying ¢(0) = 0 and
lim;_, oo @(t) = 00. The Orlicz space Lg(0, o) is the subspace of all f in S(0, @)

such that for some k& > 0,
el
/0 (15( 3 )dt < 00.

If we equip Lg with the Luxemburg norm

Ifle =int {k>0 5 [ a(F)ar <1},
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then Lg is a symmetric Banach function space with the Fatou property [18,
96]. If we weaken the convexity condition on ¢ then we obtain examples of
symmetric quasi-Banach function spaces [75]. The Boyd indices of Lg can be
computed in terms of @, see e.g. [18], Theorem 8.18. A wealth of information
on Orlicz spaces can be found in the monograph [118].

We refer to [18, 19, 85, 96] for many more concrete examples of quasi-Banach
function spaces.

4.5 Fundamentals of interpolation theory

In this section we gather all the fundamental results we need from interpo-
lation theory. Let (X, X1) be a compatible couple of (quasi-)Banach spaces
(or, stated more briefly, couple of quasi-Banach spaces), i.e. Xg, X7 are con-
tinuously embedded in some Hausdorff topological vector space. Then the
intersection Xy N X; and the sum Xy + X; are (quasi-)Banach spaces under
the (quasi-)norms

[ lxonx, = max{[| fllxo, 1], }

and

1fllx0+2, = inf{[[ follxo + [[f1llx, = f = fo+ f1, fo € Xo, f1 € Xu}

A quasi-Banach space X is called an intermediate space for the couple
(Xo,X4) if
XonX; Cc X C Xo+ Xy,

with continuous inclusions. Let ((Xo, X1), (Yo, Y1)) be an ordered pair consist-
ing of two couples of quasi-Banach spaces. A linear map T : Xo+ X7 — Yp+Y1
is called admissible for the pair ((Xo, X1), (Yo, Y1)) if T|x, is a bounded linear
operator from X; into Y; for ¢ = 0,1. An admissible map T is called a con-
traction for the pair ((Xo, X1), (Yo, Y1)) if T'|x, is a contraction for ¢ = 0,1. If
X and Y are intermediate spaces for (Xo, X1) and (Yp, Y1), respectively, then
(X,Y) is called an interpolation pair for the pair ((Xo, X1), (Yo, Y1)) if every
admissible operator 7" maps X into Y. It is then automatically bounded on
X (c.f. the proof of [18], Proposition 1.11) and

1T x v < Cmax{[|T]xg—x1, | Tvo-v1 }, (4.8)

for a certain constant C' > 1, called the interpolation constant, which depends
only on the spaces involved. The pair (X,Y) is called an interpolation pair of
exponent 0 < 0 < 1 if, moreover,

IT x5y < CITI% - x, T3, v, (4.9)
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If C =1 in (4.8) (respectively, in (4.9)), then (X,Y) is called an ezact inter-
polation pair (respectively, exact interpolation pair of exponent 0) for the pair
((Xo0,X1), (Yo,Y7)). In the special case where X =Y, Xy =Y, and X; = Y7,
we call X an (exact) interpolation space for the couple (X, X1) if (4.8) holds
(with C = 1) or an (ezact) interpolation space of exponent 6 if (4.9) holds
(with C' =1).

The K-functional for a couple (Xg,X;) is defined for each ¢ > 0 and
feXo+ X1 by

K(t, f; Xo, X1) = inf{[| foll x, + tl|lf1llx, : f = fo+ f1, fo € Xo, f1 € X1}

We say that an interpolation space X for the couple (Xo, X1) is given by a
K-method if there exists a (quasi-)Banach function space Y on (0,00) such
that f € X if and only if K(¢, f; Xo,X1) € Y for all ¢ > 0 and there exist
constants ¢, C' > 0 such that

cllt = K(t, f; Xo, Xo)lly <|[[fllx < Cllt = K& f; Xo, X1) |y

The Gagliardo completion Xy of Xy is defined as the space of all f € X+ X,
for which K (¢, f; Xo, X1) is bounded, which is a (quasi-)Banach space under
the norm

I fllss = 0<811<POOK(757f;X0,X1) = }ggoK(t»féXle)-

The Gagliardo completion X is defined analogously as the space of all f €
Xo+ X1 such that K (¢, f; X1, Xo) is bounded, which is a (quasi-)Banach space
under the norm

||f||X—1: sup K(tvf;XlaXO) = hm K(tvf;leXO)'
0<t<oo t—o0

Using the identity
K (t, f; Xo, X1) = K(t71, £; X1, Xo) (t >0)
we obtain the alternative expression

|fll== sup ¢t K(t, f; Xo, X1) = limt 'K (t, f; Xo, X1),
b o<t<oo tl0

where the last equality follows as t — t 'K (¢, f; X0, X1) is decreasing.

A couple (X, X1) is called a Gagliardo couple (or Gagliardo complete) if
Xo = X and X; = X;. One can show ([18], Theorem V.1.4) that (Xo, X1) is
Gagliardo complete precisely when the unit balls of Xy and X; are closed in
the topology of Xg + X;.

An interpolation space X for a couple of quasi-Banach spaces (X, X1) is
called K-monotone if there exist a constant C' > 0 such that if f € Xg+ X,
and g € X satisfy
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K(tmf;XO)Xl) < K(tmg;XOaXl) (t > 0)7

then f € X and | f|lx < Cllgllx- A couple (X, X7) is called a Calderdn
couple if every interpolation space for (Xo, X7) is K-monotone.

A couple (X, X1) is said to be divisible if there is a constant ¢ > 0 such
that, whenever f € Xo+ X, and w;, j > 1, are nonnegative concave functions

on (0, 00) satisfying >~ w;(1) < co and
K(t, f; X0, X1) <Y _wj(t)  (t>0),
Jj=21
there exist elements f; € Xo + X; for which f =3, f; in Xo + X7 and
K(t,fj;Xo,X1> < ij'(t) (j >1,t> 0)

For a proof of the following theorem, due to J. Brudnyi and N. Krugljak we
refer to [18], Theorem 5.3.6. One easily checks that this proof remains valid
for a couple of quasi-Banach spaces.

Theorem 4.17. (Brudnyi-Krugljak) Every Gagliardo couple is divisible.
In the proof of Theorem 4.19 we use the following lemma.

Lemma 4.18. Let 0 < p < 1 and let E be a p-normed quasi-Banach function
space on (0,«). Then the following are equivalent:

(i) E is complete;
(ii) For any sequence (f,) in Ey satisfying > ooy | fulln < oo the element

[e'e] . . %) fe'e) 1
Y onet Ju exists in Eand || 3502 folle < (2021 [1/nllE)?-

Proof. (i) = (id): If 307 | falllz < oo then the sequence (37" | fn)m>1
is Cauchy in E and hence converges in norm to an element f € E. Since
(>om | fu)m>1 is increasing, we must have f =" fn.

(4i) = (4): It suffices to show that if (f,) is a sequence in E then > 7, f,
converges in E whenever > >° || f,||; < oo. Clearly we may assume f, > 0
for all n. By (ii), gm = >.,—,, fn exists in E for any m > 1. Moreover,

m—1 oo 1
lor =32 2], = gl < (D2 1507) "
n=1 n=m

$0 >, fn converges in E. O

A proof of the following result, also due to J. Brudnyi and N. Krugljak, for
Banach spaces may be found in [79], Theorem 6.3. For the convenience of the
reader we provide a detailed proof for a couple of quasi-Banach spaces.

Theorem 4.19. (Brudnyi-Krugljak) If (Xo,X1) is a Gagliardo couple, then
every K-monotone interpolation space X for (Xo, X1) is given by a K-method.
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Proof. By Lemma 4.2, we may assume X is p-normed for some 0 < p < 1 by
passing to an equivalent norm. For g € S(0, c0), define

lglly =it {(SIAIR) "+ lo@®)] < 30Kt fis Xo, X1), >0}
i>1 i>1

and set
Y ={g € S5(0,00) : [|g]ly <oo}.

We will show that Y defines a p-normed quasi-Banach function space on

(0,00). Let g1,g2 € Y. Then, for every e > 0 there exist sequences (f}), (f?)

in X such that for j = 1,2,

;O <Y K(t, f: X0, X1)  (t>0),

i>1
and Hg]”p S Zi21 HijH:g( +e. Since

91(t) +g2(0) < Y YKt [l X0, X1) (>0

j=1,2i>1
we find that g; + g2 € Y and
llgr + 92115 < llgally + g2y + 2,

for every € > 0. Hence Y is p-normed. We will show that Y is complete by
means of Lemma 4.18. Let (g,,) be a sequence in Yy such that > oo, [gal/} <
oo. Pick sequences (f7') in X such that

oo

€
DI < lgally + 55
j=1

Note that g = > | g exists in S(0,00) and, moreover,

gt)=> gn(t) <> ZK(t, o)

and also

[e Sle e} (%)
SO < S llgally +e.
n=1

n=1j=1

This implies g € Y and, since € > 0 was arbitrary,

o0
lglls <> llgnlls-
n=1

By Lemma 4.18 we conclude that Y is complete.



120 4 Quasi-Banach function spaces
We claim that there are constants ¢, C' > 0 such that
clt = K(t, f; Xo, Xa)lly < [[fllx < Cllt = K(t, f; Xo, X1)]ly-

Clearly, if f € X, then K(-,f) € Y and ||K(-, f)lly < ||f]lx- Suppose now
that f € Xo+ X; and K(-, f) € Y. Let ¢ > 0. Then there is a sequence (f;)
in X such that

K(t, f) SZ (t,f;)  (t>0)

and

Z 1fill5 < (L+e)llt = K(& I

Since (X, X1) is divisible (c.f. Theorem 4.17), we can find a decomposition
f= Z;’;l hj in Xo+ X7 such that K (¢, h;) < CK(t, f;), where C is a constant
which does not depend on f. Since X is K-monotone, this implies that h; € X
for all j and ||h;]|x < Cx|f;l|x, for some constant C'x depending only on X.
By completeness this implies f = Zjoil h; is in X and

1A% < DIl < C% DIl < CR (A +e)llt = K (2, f)I5-

j=1 j=1

Hence ||f]lx < Cx||K(, f)|ly, as asserted. O

4.6 Interpolation spaces for couples of LP-spaces

The purpose of this section is to give sufficient conditions for a symmetric
quasi-Banach function space E to be an interpolation space for a couple of
LP-spaces. Throughout, we let 0 < o < o0.

Let us first recall the celebrated Calderén-Mitjagin Theorem, which gives
an exact description of the interpolation spaces for the couple (L', L°°). For
a proof see e.g. [85], Theorem I1.4.3.

Theorem 4.20. (Calderén-Mitjagin) Let T : L' + L>(0,a) — S(0,a) be a
linear operator. Then T is a contraction for the couple (L', L>) if and only
if
Tf=<<f (felL'+L>).

Moreover, if f € L' + L>*(0,a) and g € S(0,a) are such that g << f, then
there is a contraction T for the couple (L', L) such that Tf = g.

Consequently, a symmetric quasi-Banach function space E on (0,«a) is
an ezact interpolation space for the couple (L, L>°) if and only if E is fully
symmetric.
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In the remainder of this section we provide four different sufficient conditions,
formulated in terms of the convexity, concavity and Boyd indices of E, which
ensure that F is an interpolation space for a couple of LP-spaces. The main
results are summarized in Theorem 4.31 below. This theorem was announced
in, [79], Theorem 7.3, but a complete proof has not been published. We are
grateful to S. Montgomery-Smith for providing a sketch of the proof [102].

As a first step, we will establish that if a (quasi-)Banach function space is
an interpolation space for a couple of LP-spaces, then all its concavifications
and convexifications are interpolation spaces for a (different) couple of LP-
spaces. We shall use the following result, due to G. Sparr [127].

Theorem 4.21. (Sparr) If (S, X, 1) is a o-finite measure space, then the cou-
ple (LP(S), L1(S)) is a Calderdén couple for any 0 < p,q < oo.

In fact, the above theorem even holds for a couple of weighted LP-spaces with
different weights.
Theorems 4.19 and 4.21 together imply the following result.

Corollary 4.22. Let (S, X, 1) be a o-finite measure space and let 0 < p,q <
oo. Then every interpolation space for the couple (LP(S), L1(S)) is given by a
K-method.

Proof. By Theorems 4.19 and 4.21, it remains to show that (LP,L?%) is
Gagliardo complete. Let (f,,) be a sequence in the unit ball of LP and suppose
that f, — f in L? 4+ L9. Then in particular, f, — f in measure. Since LP
has the Fatou property, its unit ball is closed for the measure topology and
therefore f € LP and ||f||L» < 1. By [18], Theorem 5.1.4, we conclude that
(L?, L?) is Gagliardo complete. O

We are now ready to prove the announced observation.

Proposition 4.23. (S. Montgomery-Smith) Let 1 < p < ¢ < co. Suppose E is
a symmetric quasi-Banach function space on (0, ) which is an interpolation
space for the couple (LP(0,a),L%(0,c)). Then, for any 1 < s < oo, E
(respectively, E®) ) is an interpolation space for the couple (L= (0,a), L= (0, a))
(respectively, (LP*(0,«), L9%(0,a)) ).

Proof. By Corollary 4.22, there exists a quasi-Banach function space F' such
that
1flle ~e It — K& f; L7, L) p-

Observe that

K(t, f;LP,L9) = inf A+t 0). 4.10
(¢35 0,19 = it (lfolls + tlullce) (410)

Indeed, if fo + f1 > f, then by the Riesz decomposition property (c.f. [3],
Theorem 1.9) there exist gg, g1 such that |go| < |fol, [91] < |f1] and f = go+g1.
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Using (4.10) and the Riesz decomposition property one also easily sees that
K(t, f; L7, L) = K(t, | f]; L, L9).

For any a,b > 0 we have a,(a® + b°) < (a +b)° < B,(a® + b®), for some
constants o, 85 depending only on s. Let f € E(,) and pick fo € LP, f; € L?
such that fo + f > |f]*. Then B,(|fol* +1/1*) > | ] and so

1
s

- " "
Vollws + llfullze = 5 (165 Fol*11 7 + e8I )
Bolfolll 2 + ¢ 1Bl Al o)

_1 1
>a7'8; ¢ inf » 4+ 1° a)s
> a; s g0+lgr12|f‘(||go||Lg + gl ¢)

1
s

_1
> a7t 7 (
1

1
s

= a7lB K (0 £ LE L)Y
Hence,
_1 P a1
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If T is an admissible linear operator for the couple (L%, L?), then

K¢, T ;L%’L% = inf 2 +1 q
t,Tf ) f0+f1:Tf(Hf0||Ls Ifll, o)

< inf T » +t||T q
<l (1Tl 2 + 7ol 2)

< max{|[T]|e, T

a inf p +1 q

) (ol + tloal2)
= max{||T|[z, |||« }K (¢, f; L=, L7).
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We now state the first sufficient condition for a space to be an interpolation
space for a couple of LP-spaces. This result was proved for rearrangement in-
variant symmetric spaces by D.W. Boyd [23] and later extended to symmetric
quasi-Banach function spaces in [103], Theorem 3. We will present a different
proof in Section 5.2 below, which also applies for noncommutative symmetric
spaces.
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Theorem 4.24. (Boyd’s theorem) Let 0 < p < ¢ < oo and let E be a sym-
metric quasi-Banach function space on (0, ) with p < pg < qg < q. Then E
is an interpolation space for the couple (L?(0, «), L(0, @t)).

In the proof of Theorem 4.26 we use the following notion.

Lemma 4.25. Let E be a separable Banach function space on (0,«) and let
T:E — FE be a bounded linear operator. Then there exists a unique bounded
linear operator T : E* — E* such that for all f € E, g € E*,

/ " Fs) (T ) (s)ds = / C(T)()g(s)ds.

We call the operator T the associated operator to T. The existence and
uniqueness of T follows from the existence and uniqueness of T* and the
isometric identification E* = E*. Note that || 7| = ||T*|| = ||T||- The fol-
lowing result appears implicitly in the proof of Theorem 1 in [8].

Theorem 4.26. Let 1 < p < q < o0 andi—&—%:l, %—f—%:l. Let E be
a separable Banach function space on (0,«). If E* is an interpolation space
for the couple (L7 (0,a), LP (0,x)), then E is an interpolation space for the

couple (LP(0, ), L1(0, ).

Proof. Let T be an admissible operator for the couple (LP, L9). We claim that
it suffices to show that T'|g : E — E** is bounded. Indeed, let f € E and let
(fn) be a sequence in L'NL> such that f,, — fin E. ThenT'f,, € LPNLY C E
and the claim implies that T'f,, — T'f in E**. Since F isometrically embeds
into E** and (T'f,) is Cauchy in E**, we find that (T'f,) is Cauchy in E as
well. This implies that Tf € E and T'f,, — Tf in E.

We now prove our claim. Let T),,7T, be the restrictions of 7' to L” and
L, respectively, and let T),T* be the corresponding associated operators.

Suppose that f € LP N L7 and g € LP N LY. Then,

/0 "7 1)(s)g(s)ds = / " F(8) (T ) (s)ds = / " F()(T ) (s)ds.

By density of LP N L? in both LP and L%, we see that T and T, coincide
on LP N LY. In fact, we can extend both operators by density to a bounded
linear operator T : L + L9 — [P 4+ L9 Since T* is bounded on L? and
L7, we obtain by assumption that T is also bounded on E*.

By Lemma 4.25 there exist bounded linear operators T,;*, T, * associated to

T, T). For fe LP N L% and g € LP N LY we have

/0 F(5)(Tg)(s)ds = / (T35 ) (s)g(s)ds = / (5% £)()g(s)ds.

We find that Tpx,X , qu, * coincide on LP N LY and hence can be uniquely ex-
tended to a bounded linear operator T>** on LP + L. In fact, if f € LP N L9
and g € LP N LY, then
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[0}

/0 (T f)()g(s)ds = / £(5)(Tg)(s)ds = / (TF)(s)g(s)ds,
soin fact T** =T.If h € L' N L™, then

[Thlg- = sup | / " (Th)(s)g(s)ds|

llgll mx <1

~ swp_| / R()(T* g)(s)ds| < IT |l |l
0

llgll zx <1
which proves our claim. (I

Theorem 4.27. Let 0 < p < g < oo and suppose that E is a symmetric
quasi-Banach function space on (0,a) which is either separable or has the
Fatou property. If E is p-convexr with convexity constant equal to 1 and g-
concave, then E is an interpolation space for the couple (LP(0, «), L1(0, @)).

Proof. Suppose first that p > 1,q = oo. In this case E(,) is a symmetric
Banach function space which is either separable or has the Fatou property
and is therefore fully symmetric. By Theorem 4.20 it follows that F(,) is an
exact interpolation space for the couple (L', L°). By Proposition 4.23 we
conclude that F is an interpolation space for the couple (LP, L™).

Suppose now that p = 1, ¢ < co. By Lemma 4.12 we see that E is a separa-
ble symmetric Banach function space and hence, by Theorem 4.13, E* = E*
is ¢’-convex and oco-concave. By renorming E* if necessary, we may assume
that the ¢’-convexity constant of E* is equal to 1. By the above, E* is an
interpolation space for the couple (Lq', L*). The result now follows by The-
orem 4.26.

Next assume that 1 < p < q < co. Then E(;, is a symmetric Banach

q

function space which is 4-concave and therefore separable by Lemma 4.12.

Therefore, E(,) is an interpolation space for the couple (Ll,L%). By now
applying Proposition 4.23 we obtain the result.

Finally, if 0 < p < 1 and p < q¢ < oo, then EG) is a symmetric Banach
function space which is either separable or has the Fatou property. Moreover,
EG) s %—concave. By the above we conclude that E%) is an interpolation
space for the couple (L1, L%). The result now follows by Proposition 4.23. [
Theorem 4.28. Let 0 < p < q¢ < oo and suppose that E is a symmetric quasi-
Banach function space on (0,«) which is either separable or has the Fatou
property. If E is p-conver with convexity constant equal to 1 and qg < q, then
E is an interpolation space for the couple (LP(0, a), L1(0, @)).

Proof. The case p = 1 is proved in [7], Theorem 1. If p > 1, then E, is a
symmetric Banach function space which is either separable or has the Fatou

property. Moreover, g, < %, and therefore F is an interpolation space for the
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couple (L', L%). By Proposition 4.23, this implies that E is an interpolation
space for the couple (L?, L7). Finally, if 0 < p < 1, then EG) s a symmetric
Banach function space which is either separable or has the Fatou property.
Moreover, VINES < %, and therefore F is an interpolation space for the couple

(L', L%). By Proposition 4.23, this implies that E is an interpolation space
for the couple (L?, L9). O

Lemma 4.29. Let 0 < p < oo. If E is a symmetric quasi-Banach function
space on (0,«) with pg > p, then E is an interpolation space for the couple
(LP(0, @), L>(0, @)).

Proof. Suppose first that pp > 1. We claim that F is fully symmetric up to
a constant, i.e. there is a constant cg > 0 depending only on F, such that if
f€85(0,a), g€ Fand f << g, then f € E and | f|lg < celglE-

Let g**(t) = % fg ws(g)ds be the Hardy-Littlewood maximal function of g.
By [103], Theorem 2i), the map g — ¢** is a bounded quasi-linear map on F
and therefore ¢** € E and ||g**||g < cg|lg||g. By assumption f** < g**, so
e Eand || f**|eg < |lg**|lg, as E is symmetric. Finally, u(f) < f**, so
feFEand | fllg=u(H)le <|f*|e. This proves our claim.

Now let T be a contraction for the couple (L(0,a), L>°(0,)). Then, by
Theorem 4.20,

Tf<<f (feL'+L®0,a).

By our claim we obtain ||Tf||g <k ||f||g for all f € E. This proves the case
p=1.

Suppose now that pp > p. If p > 1 then pg,, > 1 and by the above E(,)
is an interpolation space for the couple (L', L>°). On the other hand, if p < 1
then E(+) is an interpolation space for the couple (L', L°°). The result now
follows by Proposition 4.23. O

Theorem 4.30. Let 0 < p < q¢ < oo and suppose that E is a symmetric
quasi-Banach function space on (0, ) which is r-conver with convexity con-
stant equal to 1, for some 0 < r < oo. If E is q-concave with concavity con-
stant equal to 1 and pg > p, then E is an interpolation space for the couple
(LP(0, ), L9(0, ).

Proof. The case where ¢ = oo is proved in Lemma 4.29. For the remaining
cases we may assume, by Proposition 4.23, that » = 1. Under this assump-
tion, F is a symmetric Banach function space and hence we can deduce the
result by duality. Since ¢ < oo it follows by Lemma 4.12 that E is separable.
Moreover, by Theorem 4.13 the Kothe dual E* = E* is ¢’-convex with con-
vexity constant equal to 1 and by (4.7) we have ggx < p’, where i + % =1,

- 2 = 1. By Theorem 4.28 we obtain that £ is an interpolation space for
the couple (Lq/,Lp,). The result now follows from Theorem 4.26. O

We now summarize the main results of this section.
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Theorem 4.31. [79] Let E be a symmetric quasi-Banach function space on
(0, ) which is either separable or has the Fatou property and let 0 < p <
q < co. Then E is an interpolation space for the couple (LP(0, ), L1(0, )
whenever one of the following conditions holds:

(i)p <pe <qr <q;
(i) E is p-convex with convezity constant equal to 1 and qg < q;
(iti) E is r-convex with convexity constant equal to 1, for some 0 < r < oo, E
is q-concave with concavity constant equal to 1 and pg > p;
(iv) E is p-convex with convezity constant equal to 1 and g-concave.

Note that the conditions on the p-convexity and g-concavity constants in (ii)-
(iv) are redundant if E is a symmetric Banach function space and 1 < p, ¢ <
oo. Indeed, in this case it is well known that one can renorm the space to

obtain a symmetric Banach function space with p-convexity and g-concavity
constant equal to 1.



5

Noncommutative symmetric spaces

Every symmetric quasi-Banach function space on the positive real line sat-
isfying a mild convexity condition induces a noncommutative function space
of operators associated with a von Neumann algebra, called the associated
noncommutative quasi-Banach function space. These noncommutative func-
tion spaces are the principal examples of noncommutative symmetric spaces.
In the first section of this chapter we give a brief introduction to the basic
properties and interpolation theory of these spaces. In the second section we
present a new, direct proof of a noncommutative version of the celebrated
Boyd interpolation theorem. In the third section we give a rigorous treatment
of Hilbert-space valued noncommutative symmetric spaces. The special case
where the Hilbert space is [? gives rise to the row and column spaces, which
play a prominent role in the noncommutative version of Khintchine’s inequal-
ities. In the final chapter on noncommutative stochastic integration theory we
will naturally encounter L2-valued noncommutative symmetric spaces. The
final section gives a brief treatment of conditional versions of the row and col-
umn spaces. These conditional sequence spaces will appear in our formulation
of Rosenthal-type inequalities in noncommutative symmetric spaces.

5.1 Definition and basic properties

Let us first recall the terminology introduced in Section 3.1. Fix 0 < a < 0.
Let M be a semi-finite von Neumann algebra acting on a complex Hilbert
space H, which is equipped with a normal, semi-finite, faithful trace T satisfy-
ing 7(1) = a. The distribution function of a closed, densely defined operator
x on H, which is affiliated with M, is given by

d(v;z) = 7(e®l(v, 0)) (v >0),

where el*! is the spectral measure of |z|. The decreasing rearrangement or
generalized singular value function of x is defined by
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pe(x) =inf{fv >0 : d(v;z) <t} (t >0).

We say that z is 7-measurable if d(v;z) < oo for some v > 0. We let S(7) be
the linear space of all T-measurable operators, which is a metrizable, complete
topological *-algebra with respect to the measure topology. We denote by
So(7) the linear subspace of all x € S(7) such that d(v;z) < oo for all v > 0.
Moreover, let F(7) be the linear subspace of all € M with 7(s(z)) < oo,
where s(z) is the support projection of z. One can introduce a partial order
on the linear subspace S(7);, of all self-adjoint operators in S(7) by setting,
for a self-adjoint operator x,

x > 0 if and only if (z€, &)y > 0 for all £ € D(z),

where D(z) is the domain of z in H. We write x < y for z,y € S(7), if and
only if y —x > 0. Under this partial ordering S(7); is a partially ordered
vector space. Let S(7)+ denote the positive cone of all z € S(7);, satisfying
x > 0. It can be shown that S(7); is closed with respect to the measure
topology ([49], Proposition 1.4).

Throughout our exposition, we will tacitly use many properties of distri-
bution functions and decreasing rearrangements. For the convenience of the
reader we collect these facts in the following two propositions. The first result
is essentially contained in the proof of [107], Theorem 1.

Proposition 5.1. If x,y € S(7) and p is a projection in M, then:

(a) d(v;x*) = d(v;x) for all v > 0;

(b) d(v;x) = d(v; p(x)) for all v > 0;

(c) d(v+w;z+y) < d(v;z) + d(w;y) for all v,w > 0;
(d) d(v;zp) < 7(p) for all v > 0;

(e) if |x| <y| then d(v;x) < d(v;y) for all v > 0.

The following properties of decreasing rearrangements can be found in [53].
If p is a projection in M, then we let p- := 1 — p denote its orthogonal
complement.

Proposition 5.2. If z,y € S(7) and p is a projection in M, then:

(a) pe(Ax) = |A|pe(z) for all A € C and t > 0;

(b) pe(x*) = pe(x) for allt > 0;

(¢) psvt(x +y) < ps(@) + pe(y) for all s,t > 0;

(d) p(xp) =0 for all t > 7(p);

() if lal < ly] then pu() < pe(y) for all t > 0;

(1) (o) < ull ) Iyl for all v € M and ¢ > 0;
(g) pe(x*x) = pe(za™) for all t > 0.

(h) If xo, 1z in S(7)4, then pi(zy) T pe(x) for allt > 0.

If e = el®l(v,00), then

(1) me(lzle) = pe(2)X[0,7(e)) (t) for all t >0
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() pe(|xlet) = pisr(e)(x) for allt >0, provided (e) < oo.

Finally, suppose that ¢ : [0,00) — [0,00) is left-continuous on (0,00) and
satisfies $(0) = 0. If we define ¢(o0) := limy_o0 ¢(t), then

(k) w(6(|])) = ¢(u(x)) on [0,00).

For a symmetric (quasi-)Banach function space E on (0, «), we define
EM,7):={z € S(1): |p)e < cc}.

We usually denote E(M, T) by E(M) for brevity. The following fundamental
result is proved in [81], Theorem 8.11 (see also [49, 141] for earlier proofs of
this result under additional assumptions).

Theorem 5.3. If E is a symmetric (quasi-)Banach function space E on (0, «)
which is p-convex for some 0 < p < oo, then E(M) defines a p-convex (quasi-
)Banach space under the (quasi-)norm ||z|| gaq == ||u(@)|| . The space E(M)
is continuously embedded in S(7) with respect to the measure topology.

We call E(M) the noncommutative (quasi-)Banach function space associated
with £ and M. Using the construction above, we obtain noncommutative
versions of many important spaces in analysis, such as LP-spaces, weak LP-
spaces, Lorentz spaces and Orlicz spaces. In particular, taking F = LP yields
the noncommutative LP-spaces introduced earlier in Chapter 3.

It is possible to define noncommutative symmetric spaces of measurable
operators by analogy with the classical definition presented in Chapter 4. We
refer to [49] for a detailed exposition of this approach. Although we shall
restrict ourselves to the special class of noncommutative symmetric spaces
which are induced by a classical symmetric space, we implicitly use some
results from the general framework. Most importantly, we frequently use the
following fact, which is established in [49], Theorem 5.6 and p. 745.

Theorem 5.4. If E is a symmetric Banach function space E with order con-
tinuous norm, then E(M)* = E*(M). The associated duality bracket is given
by

(,y) =7(zy) (v € EWM), y € EX(M)).

From this result it is possible to deduce that F(7) is norm dense in E(M) if
FE has order continuous norm.

A natural question to ask is whether the interpolation results presented
for symmetric quasi-Banach function spaces in Chapter 4 also hold for their
noncommutative counterparts. The following theorem states that for fully
symmetric Banach function spaces, one can always ‘lift” interpolation results
for commutative function spaces to their noncommutative versions. For the
proof see [48], Theorem 3.4.

Theorem 5.5. Let M, N be von Neumann algebras equipped with normal,
semi-finite faithful traces T and o, respectively, satisfying 7(1) = o(1) = a.
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Suppose that Ey, E1, Fy, F1 are fully symmetric Banach function spaces and
that E, F are symmetric quasi-Banach function spaces on (0, «) which are p-
convez for some 0 < p < oco. If (E, F) is an (exact) interpolation pair for the
pair ((Eo, Ev), (Fo, F1)), then (E(M), F(N)) is an (exact) interpolation pair
for the pair

(Bo(M), Ex(M)), (Fo(N), F(A)).

Moreover, if (E,F) is an (exact) interpolation pair of exponent 0 < 6 < 1,
then (E(M), F(N)) is an (ezact) interpolation pair of exponent 6.

Usually we will only need the following special case.

Theorem 5.6. Fiz 1 < p < q < co. Suppose E is a symmetric quasi-Banach
function space on (0,«) which is r-convex for some 0 < r < oo. Let M
be a semi-finite von Neumann algebra equipped with a normal, semi-finite,
faithful trace T satisfying 7(1) = «. If E is an interpolation space for the
couple (LP(0, o), LU0, @), then E(M) is an interpolation space for the couple
(LP(M), LA(M)).

For more details on measurable operators we refer to [50, 53, 107] and for the
theory of noncommutative symmetric spaces to [32, 47, 48, 49, 50, 81, 129].

5.2 Noncommutative Boyd interpolation theorem

From the classical Boyd interpolation theorem and Theorem 5.6 one can de-
duce the following noncommutative version of the Boyd interpolation theorem.

Theorem 5.7. Fiz 1 < p < g < 0co. Suppose E is a symmetric quasi-Banach
function space on (0, ) which is r-convez for some 0 < r < oco. Assume that
FE has either the Fatou property or has order continuous quasi-norm. Let M
be a semi-finite von Neumann algebra equipped with a normal, semi-finite,
faithful trace T satisfying 7(1) = . If p < pp < qr < q, then E(M) is an
interpolation space for the couple (LP (M), LY(M)).

In this section we give an alternative, direct proof of the noncommutative
Boyd interpolation theorem, which avoids the use of Theorem 5.6. In fact,
apart from the use of the basic properties of distribution functions of operators
given in Proposition 5.1, our proof is completely elementary. Our new proof
yields three improvements of Theorem 5.7. Firstly, we show that the result
holds for any 0 < p < ¢ < oo and any symmetric quasi-Banach function
space E on (0,00) which is r-convex for some 0 < r < co. Secondly, we can
interpolate (midpoint) convex and subconvex operators which are only defined
on the positive cone of a couple of noncommutative LP-spaces. Finally, in
contrast to the classical version of Boyd’s theorem, a noncommutative version
of Lemma 4.29 is part of our result in a natural way. Our main results are
stated in Theorems 5.19 and 5.21 below.
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Our first observation is part of the argument in [96], Proposition 2.d.1.
Since we deal with quasi-Banach function spaces, we give a full proof for the
reader’s convenience.

Lemma 5.8. Fiz 0 < a < 00. Let E be a symmetric quasi-Banach function

space on (0, ). For any 0 < g < oo define ¢q : (0,1) — (0,00) by ¢q(t) =1t 4
If g < q, then there is a constant cq. i > 0 such that

If ® bqll E((0,0)x(0,1)) < Cq.Ellf|E(O,0): (5.1)

forall f e E.
Conversely, if (5.1) holds for every f € E then qg < q.

Proof. Suppose that qg < q and let f € E,. Notice first that

Ilf ® bqllE(0,0)x0,1)) = 1F(8)t™ 9| E(0,0) % (0,1))
a1
< Hf(8)22 T X(2-n-1,2-7(t)

n=0

oo 1
r(nt1) , 1
<o X2 et oo O 0mxoy)

n=0

HE((QO&)X(OJ))

where ¢ > 0 and 0 < r <1 are as in (4.2).
Fix ¢ > go > qg, then by definition of gg there exists a constant Cy, > 0
such that )
[Dull < Cyou™ %,

for any 1 < u < co. Observe that f(s)x(-n-1,2-»(t) has the same distribution
on (0,a) x (0,1) as Dan+1 f on (0, ).
Hence, as F is symmetric, we finally obtain

Sl

e r(n+1) r
1f ® dgllomxory < e 3257 1Deis k)
n=0

1

O st _r(ntd)
Co (D277 20
n=0

Se.2 1 fllE@©,0)

IN

f”E(O,a)

as ¢ > qo.
To prove the second assertion, notice first that since u(Ds(f)) < Dsu(f)
for all s € (0,00) and f € E, it suffices to show that there is a constant

¢ > 0 such that for all s > 1 and f € E; we have |D,f||g < cs_%||f||E. Fix
a € (0,1] and observe that

_1
Ilf ® bqllE((0,0)x0,1)) = IIF(8)t™ 7| E((0,a)x (0,1))
_1 _1
= [f(s)a” 7 x(2,a Dl E(0,00x(0,1)) = @ 1Dz fllE0,0);
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where in the final step we use that f(s)x(a 4)(¢) has the same distribution on
(0,) x (0,1) as Dz f(¢) on (0, @).
Hence, '

ID:2flle < at|lf ® ¢glle < cqu(3) 72| flle-

In other words, for any s > 2 we obtain

11
1D flle < cqu27s 4] flle
Clearly this implies that gg < ¢. (I

The corresponding result for the lower Boyd index reads as follows.

Lemma 5.9. Let E be a symmetric quasi-Banach function space on (0,00).
For any 0 < p < oo define ¥, : (0,00) — (0,00) by 9,(t) = tiéx(l,oo)(t). If
p < pE, then there is a constant c, g > 0 such that

1 @ ¥pllB(0.00)2) < o.Ml (0,00 (5:2)

forall f € E.
Conversely, if (5.2) holds for every f € E then p < pg.

Proof. Fix p < pg < pg. It clearly suffices to prove (5.2) for f € E,. Observe
that fx(zn 2nt1) has the same distribution on (0, )% as Dy—n f on (0,00).
Hence,

_1 > _n
1F 6 Ipoc0m < [[£65) D27 xam pen 8

=~ E((0,50)?)

1
=

< c( Z 27 ||f(S)X(2n,2n+l] (t)H%((O,oo)z))

n=0
1

= C( Z 27% |D27"f||7E.'(O,OO)) T,
n=0

where ¢ and 0 < r < 1 are as in (4.2). By the definition of pg, there is some
constant Cp, > 0 such that

1Dl < Cpou™70 (0 <u<1).

Hence,

1F6 lpoorn < eCoa( D2 F 201 fllp0.0))
n=0

S8 [ fllE0,00)5
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For the second assertion, notice first that u(Ds(f)) = Dsu(f) for all 0 <
s < oo and f € E. Therefore, it suffices to show that there is a constant ¢ > 0

such that for all 0 < s < 1 and f € E; we have |Dsf|lp < csfi||f|\E If
1 < a < oo, then
_1 _1
1£($)t™ 7 | E(0,00)2) = I1F(8)E™ % X(a,2a) ()| E((0,00)2)
_1
> || f(5)(2a)" 7 X(a,2a] ()| E((0,00)2)
_1 1
=2 ra>r ||Da_1f||E(0,oo)7

where we use that f(s)x(q,24(t) has the same distribution on (0, o0)?as Dy f
on (0,00). By (5.2) we arrive at

11 1
[1Da-1flle < 27a? | f @ Yplle Spe a” | flle-
Since this holds for any 1 < a < oo, we conclude that p < pg. O

Combining Lemmas 5.8 and 5.9 yields the following.

Corollary 5.10. Let 0 < p < ¢ < oo and let E be a symmetric quasi-Banach
function space on (0,00). Let 6,4 : (0,00) — (0,00) be defined by 0, , =
Gq+Vp. If p <pE < qE < g, then there is a constant cp q. g > 0 such that for
any f € E we have

1f ® bpqllE((0,00)7) < Cp.a0. Bl f | B(0,00)- (5-3)
Conversely, if (5.3) holds for all f € E, then p < pp < qg <q.
We now compute the distribution function of f ® ¢4, f ® 1, and f ® 0, 4.

Lemma 5.11. Let 0 < o < 00. For 0 < g < oo let ¢ : (0,1) — (0,00) be

given by ¢q(t) = 7. If f: (0,a) = [0,00] is measurable and a.e. finite, then
for every v > 0,

(E)qu +d(v; f).

v

d(v;f®¢q)/{f<}

Proof. By a change of variable,
M(s,0) € (0.0) x (0,1) + J()04(t) > v}
:/0 )\(se (0,a) : f(s)tii >v)dt
1
:/O )\(s € (0,a) = f(s) > vu)quqfldu
= /000 )\(s € (0,) : min (@, 1) > u)quq_ldu
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= min (5.1
v L1(0,c)

:/{fgv} (ﬁ)quﬂ(se(o,a) . f(s) > ).

v

q

d

Lemma 5.12. Let ¢, : (0,00) — (0,00) be defined by ,(t) = t_%x(lm)(t),
If f € Sp(0,00), then for any v > 0,

(s f © 1) = /{ . L )

Proof. By assumption we have d(v; f) < oo for all v > 0. Using a change of
variable,

M(s,0) € (0,007 ¢ f(s)i5(1) > v}

:/OOA( € (0,00) + f()TF > v)dt

:/joA L f(s) > th0)de

_ /100)\<s e ( ) > uv)pup—ldu

- /100 A5 € (0.00) @ > u)pu’du
:uéww- /Ou<se<o,w> -

LP(OOO)—/{fSU} (fvS)) ds — d(v; f)
N
=) () s awip,

where in the penultimate step we apply Lemma 5.11. O
Corollary 5.13. Let 6,4 : (0,00) — (0,00) be defined by

_1 _1
Op,q(t) =77 x(0,1 () + 177 X(1,00) (1)-
If f € Sy(0,00), then for any v > 0,

dv; f®6p,4) = /{f>v} (%{g))pds + /{f<v} (@)qu.

Proof. Since f € Sp(0,00) we have dy(v) < oo for all v > 0. Since dygg, and
dyey, have disjoint supports we have dfgy, + dfgy, = dfge, - The result
now follows from Lemmas 5.11 and 5.12. O
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Lemma 5.14. Let 0 < p < ¢ < 00 and let E be a symmetric quasi-Banach
function space (0,00) which is r-convez for some 0 < r < oco. If E(M) C
LP(M) + LI(M), then

lzll 2oy Spoae 12l Lo M)+ Lar) for allz € X.

Proof. By Theorem 4.1, there exists an equivalent s-norm on E(M) for some
0 < s < 1. Suppose the assertion is not true. Then there exist =, € E(M)4
such that ||2,| gy < 1, but |z, || ze(my+pamy > n?/*F! for all n > 1. By
completeness it follows that >, -, n~?/z, converges in E(M) to some z €
E(M), and since E(M) C LP(M)+L4(M) we have z € (LP(M)+LI(M))+.
But n=%/52, < z and so n < n’2/5||zn||Lp(M)+Lq(M) < [zl e (Mmy+La(m), @
contradiction.

Lemma 5.15. Let 0 < p < ¢ < 00 and let E be a symmetric quasi-Banach
function space (0,00) which is r-convex for some 0 <r < o0. If 0 < p < pg
and either qg < q < 00 or g = 00, then for every semi-finite von Neumann
algebra M we have

LP(M)Nn LY(M) C E(M) C LP(M) + LI(M),
with continuous inclusions.

Proof. Suppose first that ¢p < ¢ < co. Observe that F(M) C Sy(7). Indeed,
otherwise we would have 1 € F(M) and hence qg = co. If z € E(M), then
by Corollary 5.10 we have p(x) ® 0, , € E and hence d(v; p(x) ® 0, 4) < 00
for all v > 0. If e, = el*![0,v], then by Corollary 5.13

v ze, |2 + 0P ||zet |2 = v /{ o
p(x)<v
= d(v; p(x) @ O q) < 00.

() 0dt 4 v / ()Pt

{u(z)>v}

Hence z € LP(M) + L9(M). By Lemma 5.14 this implies that E(M) embeds
continuously into LP(M) + LI(M).

Suppose now that ¢ = co. Pick v > 0 such that d(v; u(z)®y), d(v; u(z)) <
0. Then ze, € M and xer € LP(M) since by Lemma 5.12,

Ve g =0 [ et < dosa(e) @ ) + d(ws (o).
{u(z)>v}
By Lemma 5.14 we conclude that E(M) embeds continuously into LP(M) +
M.
For the first inclusion we observe that, by the proof of [96], Proposition
2.b.3., there exists a constant c,q g such that for any nonnegative simple
function f in LP N LY we have || f||g < ¢p .6l fllzrnLe. Let f be a nonnegative

function in IL” N LY. Then there is a sequence of nonnegative simple functions
fn T f. Hence (f,,) is Cauchy in LP N L? and therefore also in E. Hence f,, — ¢



136 5 Noncommutative symmetric spaces

in E for some g € E. Since this implies that f, — ¢g in measure, we must have
f=gand | flle < cpqelfllLrare. Hence LP(M)NLY(M) = (LPNLI)(M) C
E(M) continuously. O

Remark 5.16. 1t is readily verified that LP(M) 4+ LI(M) C (LP + L9)(M)
for any 0 < p,q < oo. Therefore, it follows from Lemmas 5.14 and 5.15 that
LP(M) + LY(M) = (L? + L9)(M) isomorphically.

To formulate our main results the following definition is convenient.

Definition 5.17. Let M and N be von Neumann algebras equipped with nor-
mal, semi-finite, faithful traces T and o, respectively. Let D be a convex subset
of S(1). Amap T : D — S(o)p, is called midpoint convex if

T(32+ 5y) < 3T(2) + 5T(y)

for all x,y € D. A map U : D — S(o) is called midpoint subconvex if for
every x,y € D there exist partial isometries u,v € N such that

Utz + Ly)| < 2u*|Uz|u+ J0*|Uylv.
It is a well-known fact (see e.g. [53], Lemma 4.3) that for any z,y € S(o)
there are partial isometries u,v € N such that

|z +y| < u*lz|u+ v |ylv.

Therefore, any linear map is (midpoint) subconvex.
For further reference we state Chebyshev’s inequality and include a short
proof for the reader’s convenience.

Lemma 5.18. (Chebyshev’s inequality) Let 0 < g < oo. If x € LI(M), then
for any v >0,

q
X
dosz) < Moo

v4

Proof. Let v > 0. Then,
vid(v;z) = vIA(t € (0,00) : pe(z) >v) = / vl dt
{p(z)>v}

< ) dt < [ o) de = ol
/{u<w>>v} 0 L

Observe that for any 0 < r < oo,

1 1
lz|| Lroe () = suptr pe(z) = supv d(v;z)~, (5.4)
t>0 v>0

so Chebyshev’s inequality implies that L"(M) C L™ (M) contractively.
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Theorem 5.19. Let E be a symmetric quasi-Banach function space on (0, 00)
which is s-convex for some 0 < s < co. Let M, N be von Neumann algebras
equipped with normal, semi-finite, faithful traces T and o, respectively. Suppose
that 0 < p < g < oo and let T : LP(M)4 + LI(M)y — S(o) be a midpoint
subconvexr map such that for some constants C,,Cy > 0 depending only on p
and q, respectively,

1Tz proe )y < Crllzl|Lr ) (v e L" M)y, r=p,q). (5.5)

If 0 < p < pg and either qg < q < 00 or q = 00, then there is a constant
Cp.q.E depending only on p,q and E such that

1Tzl pvy < €pg,pmax{Chp, Cg} [|l2[lrgy  (x € E(M)4).

The same result holds if T : LP(M)+LI(M)1 — S(o)p is a midpoint convex
map satisfying (5.5).

Proof. We may assume that max{C,,C,} < 1. By Lemma 5.15 T is well-
defined on E(M);. Let z € E(M), and let e, = €*[0,v]. By midpoint
subconvexity, there exist partial isometries ui,us € N such that |Tz| <
sui|T (2zey)|ur + Fu3|T(2xey ) |uz. It follows that

< d(v; gui|T(2xe, )Jur) + d(v; gus | T (2e;) uz)
< d(2v; T(2ze,)) + d(2v; T(2xey)). (5.6)
Suppose first that gg < ¢ < c0. By (5.4) and (5.5) we have

AW Ty) <oyl oy (0> 0 y € L' (M)s, 7 = pag).
Therefore,

A(20; Tw) < max{CJ, o} ((20) M 2eu |3, ) + (20) P N20¢L 1, ) )
and from the Proposition 5.2 it follows that
ey = [ mlaat et = [
La) {p(z)<v} L) {u(z)>v}
Therefore, by Corollary 5.13,
d(2v; Tz) < v*q/

{n(z)<v}
= d(v; u(r) @ ap,q)~

we(x)4dt +v7P / we(z)Pdt
{u(z)>v}

Hence,
() < 2 (ule) @ 6,,) (62 0).

As F is symmetric, it follows that Tz € E(N') and moreover,
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1Tz||zy < 200(z) @ 0p4llE(0,00)2) Spaa.E 12 B

where the final inequality follows from Corollary 5.10.
Suppose now that ¢ = co. Then

130T (2ze, )ur || Lo () < Coollzen | L= my < v,
so d(v; 2ujT(ze,)u1) = 0. By (5.4) and (5.5) we have
A Ty) vyl (>0, y € L2 (M),
and therefore (5.6) implies that
. - 1
d(2v; Tz) < CP(2v) 7P| 2xe; ||1£p(N)

<v7? / we(z)Pdt
{n(@)>v}

Observe that
o [ et < dlvsle) @ ) + d(wi ),
{n(z)>v}

Indeed, if d(v; u(x)) < oo then this holds (even with equality) by Lemma 5.12
and if d(v;pu(x)) = oo then the inequality holds trivially. Since p(x) and
p(r) ® X(0,1) are identically distributed, we conclude using Proposition 5.1
that

(203 Tz) < 2d(v; () @ p + () @ X(0,1))-
)

d
Thus, Tz € E(N) and by Lemma 5.9,

1Tz By < 2Dy p(i(z) © Py + p(z) @ X002 Sp.i 2] B
as asserted. d
The same proof gives the following result for midpoint convex and subconvex
maps defined on self-adjoint elements.

Corollary 5.20. Let E be a symmetric quasi-Banach function space on (0, 00)
which is s-convex for some 0 < s < oco. Let M, N be von Neumann algebras
equipped with normal, semi-finite, faithful traces T and o, respectively. Suppose
that 0 < p < ¢ < o0 and let T : LP(M)y, + LY(M)y, — S(o) be a midpoint
subconvexr map such that for some constants C,,Cy > 0 depending only on p
and q, respectively,

Tz proe )y < Crllzl|Lr ) (v € L"(M)n, r =p,q). (5.7)

If 0 < p < pg and either qg < q < 00 or ¢ = oo, then there is a constant
Cpq.E depending only on p,q and E such that

1Tzl 5y < epg.p max{Cp, Co} [[2zrg — (x € E(M)n).

The same result holds if T : LP (M), +LY(M)y, — S(0)y is a midpoint convex
map satisfying (5.7).
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Finally, we obtain the following noncommutative version of the Boyd interpo-
lation theorem, which generalizes Theorem 5.7. Observe that Theorem 5.21
incorporates a noncommutative version of Lemma 4.29.

Theorem 5.21. Let E be a symmetric quasi-Banach function space on (0, 00)
which is s-convex for some 0 < s < oo. Suppose 0 < p < q < oo and
let M,N be semi-finite von Neumann algebras. If 0 < p < pg and either
qg < q < 00 or q = oo, then (E(M), E(N)) is an interpolation pair for
the pair ((LP(M), L1(M)), (LP>°(N), L2°°(N))), with interpolation constant
depending only on p,q and E.

Proof. Let T be an admissible linear operator for the pair of Banach couples
(LP(M), LY(M)), (LP>*(N), L2>°(N)). Fix z € E(M) and let Re(z), Im(z) €
E(M)}, be its real and imaginary part. By Corollary 5.20,

ITzlpmy S [ITRe(@)ll B + 1T (Im ()] B
Spa.k [IRe(@) [z + Mm(@) By < 2[|l e
O
To illustrate the usefulness of the method used to prove the noncommutative
Boyd interpolation theorem, we modify it to prove the dual version of Doob’s
maximal inequality in noncommutative symmetric spaces, see Theorem 5.24

below. Let us first recall the original result for noncommutative LP-spaces,
due to M. Junge.

Theorem 5.22. [68] Let M be a finite von Neumann algebra and let (£;);>1
be an increasing sequence of conditional expectations in M. If 1 < p < oo,
then for any sequence (x;);>1 in LP(M)4,

s

We shall need the following observation.

Sp

LP(M) Lr(M)

D i
i

Lemma 5.23. Let x € S(7)4. If e is a projection in M, then
z < 2(exe + etxel).
Proof. By writing
r = exe + etre + exet + elaceL,
we see that the asserted inequality is equivalent to
exe —etre — exet + etxet > 0.
But z > 0, so
exe — etxe — exet 4 etaet = (x%e — x%el‘)*(x%e - x%eJ‘) >0

and the result follows. O
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Theorem 5.24. Let E be a symmetric quasi-Banach function space on (0, 00)
which is s-convex for some 0 < s < co and let M be a finite von Neumann
algebra. Let (&;);>1 be an increasing sequence of conditional expectations in
M. If1 < pg < qp < oo, then for any sequence (x;);>1 in E(M)L,

where the sums converge in norm.

. (5.8)

Proof. By completeness it suffices to prove (5.8) for a finite sequence (z;) in
E(M)4. Set x =), x;. For any v > 0, let e, = €”[0,v]. By Lemma 5.23 and
positivity of &;,

Z&(xl) < 2( Z Eileyxiey) + Z &(ejxmj‘)).

Therefore,

d<4v;z&(:ﬂi)) ( ZS (epxi€y )—l—d( ZE e xie, )
By Chebyshev’s inequality and Theorem 5.22,

d(4v; Z&‘(l‘i))

< quH Z&(evxiev)
Z €yTiCy )
= qu/ pe(z)ddt + vfp/ pe()Pdt
{u(z)<v} {u(z)>v}

= d(v; u(z) @ Op.q),

where the final equality follows from Corollary 5.13. Since F is symmetric, we
conclude that >, & (z;) € E(M)4 and by Corollary 5.10,

H Z&(xl) (@) ® Opqlle Spa.E H sz

ey

q P
—|—1F”H Eilefziet
La(M) Z emie)l| L,

< —q
p,q U

~.

L‘I(M

<
BE(M) P4 HM

5.3 Hilbert space-valued symmetric spaces

In this section we construct noncommutative Hilbert space valued symmetric
spaces associated with a symmetric Banach function space E on (0,00) and
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a semi-finite von Neumann algebra M. These spaces were first defined for
E =1PF (1 < p < ) in [69]. For our purposes in Chapter 8, the main
point of this endeavour is to make rigorous sense of the spaces of all functions
f:[0,T] = E(M) such that the ‘square function norms’

H(/OT f(t)*f(t)dt)éuE(M) and H (/OT f(t)f(t)*dt)%

are finite. These spaces will later on be denoted by E(M;L?(0,T).) and
E(M; L*(0,T),), respectively. Throughout, we will assume that E is sepa-
rable. Recall that this implies that F(7) is dense in E(M) and E(M)* =
E*(M). We closely follow the exposition of [69].

Let H be a complex Hilbert space and let H denote its conjugate Hilbert
space (i.e., its dual space). Let M®&B(H) be the von Neumann tensor product
equipped with the product trace 7 ® tr. For any vectors £, € H we let £ ®7
denote the rank one projection (£ ® 7)¢ = ((,n)¢ in H. Similarly, we let
& ®n denote the rank one projection (¢ ® )¢ = (¢,7)~¢ in H, where (-,-)~
denotes the inner product in H (i.e. the conjugate inner product). Let e be
a unit vector in H, let p. be the rank one projection in H onto span{e} (i.e.
pe = e ®€) and let pz be the rank one projection in H onto span{e} (i.e.
pz = € ® e. Then the column and row spaces associated with £ and H are
defined as

E(M)

E(M;H,) = E(M@B(H)) (1pm @ pe)

and
E(M; H,) = (1pm ® ps) E(M®B(H)).

Our first goal will be to show that these definitions are essentially independent
of the choice of the unit vector e.

By identifying € E(M) with z ® p. and = ® pg, we obtain an isometric
embedding of F(M) into E(M; H.) and E(M, H,.), respectively. For the col-
umn space this is seen as follows (the row case is analogous). Notice first that
for any v > 0, el#I®Pe (v, 00) = el*l(v, 00) @ p.. This implies that

T® Tr(elm@pﬁ (v,0)) =7T® Tr(elm‘(v, 00) ® pe) = T(em(v, 00)) (v >0).

Hence, p(t; 2®@p.) = pu(t; x) for every t > 0 and therefore ||z @pel| p vz p ) =
]| 2y

Lemma 5.25. The algebraic tensor product E(M)® F(B(H)) is norm dense
in E(M®B(H)).

Proof. If (p.) is the net of all finite rank projections in B(H), then 14 ® pq
converges to 1,(®1 gy with respect to the ultra-strong operator topology. In
particular, for any x € L°NLY(M®B(H)) we have (1y®pa)z(Ipm®pa) —
in the ultra-strong operator topology and hence in the ultra-weak operator
topology. Hence, if ¢ € E*(M®B(H)) = EX(M®B(H)) is zero on
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(1/\/1 ® pa)Loo n Ll(M®B(H))(1M ® pa)a

for all o, then it is identically zero, as L>° N LY (M®B(H)) is norm dense in
E(M®B(H)). By the Hahn-Banach theorem,

UJ@m @ pa) L 0 LHMBB(H))(1pm @ pa)

[0

is norm dense in E(M®B(H)) (c.f. [33], Corollary II1.6.14). Since, for all a,
(1p ® pa) L N LY MBB(H))(Lm ® pa) C E(M) ® F(B(H)),
the assertion follows. O

Let us observe that
EM) = (1pm ® pe) E(M@B(H))(1pm @ pe), (5.9)

where we identify x € E(M) with 2 ® p. as above. Indeed, it is clear that the
inclusion ‘C’ holds. On the other hand, if a« € B(H), then p.ap. = (ae, e)p..
Thus, for finite sequences (z;) and (a;) in E(M) and E(B(H)), respectively,
(A ®@pe) Y i ®ai(Ip @ pe) is in E(M). Since x — (I @ pe)x (I @ pe)
is a contractive projection on E(M®DB(H)), it follows by Lemma 5.25 that
(1 @ pe) EIMRB(H))(1pm ® pe) C E(M).

If w e E(M; H,.), then by (5.9),

uu € (Ia @ pe) o) (MBB(H))(1m @ pe) = E2)(M)

and so |u] € E(M). Similarly we have E(M) = (1yp®pg) EMRB(H))(Ipm®
pe), where we identify z € E(M) with z ® pe, and so |[u*| € E(M) whenever
u € E(M; H,).

For u € E(M) ® H given by u =), x; ® &;, we define the element @ by

i = Zx ® (& ®e) = (Zw ® (& ®€)) (1 @ pe).

Identifying u and 4 gives a set inclusion E(M) ® H C E(M; H,.). Similarly,
we can identify u with

=Y 2,0E0&) =Audp) Y 20 €D E)
to obtain an inclusion of F(M)®H into E(M; H,.). Under these identifications

we have the following.

Lemma 5.26. The algebraic tensor product E(M)® H is norm dense in both
E(M; H.) and E(M; H,).
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Proof. We only prove this for E(M; H.). If (p,) is the net of all finite rank
projections in B(H), then, by the proof of Lemma 5.25, we have for any
x € E(M®B(H)),

i [[(1ae ® pa)2(Im © pe)(Am © pa) = 2(Im © pe)ll povs ) = 0-

Using that p.ap. = (ae, €)p. for a € F(B(H)) it is straightforward to calculate
that
(Arm ®@pa)z(Ipm @ pe)(Ipm @ pa) € E(M) ® H,

whenever p, > pe. O

By calculating the norm of || and |4*| in E(M®&B(H)) we obtain

szk®§kHE(MH)—H( §j,€z> ; ]>% (5.10)

E(M)

and .
HZ”@%’“H E(M;H,) _H( g“fj L )2HE(M)7 (5.11)

respectively. By Lemma 5.26, we conclude that the definitions of E(M; H,)
and E(M; H,.) are essentially independent of the choice of the unit vector e,
since we always obtain the completion of E(M) ® H in the respective norms
given above. If e, ..., e, is an orthonormal system in H, then

n n 1

2

|2 etliagny = (X i)
k=1 (M;He) k=1

n n 1

2

DILLL i (O3LE)
=1 (MGH;) =1

Observe that the column and row spaces are complemented subspaces of
E(M®B(H)) and E(M®B(H)), respectively. Therefore, by Theorem 5.6
we find that if E is an (exact) interpolation space for the couple (LP, L),
1 <p<gq< oo, then E(M;H,) and E(M; H,.) are (exact) interpolation
space for the couples (L?(M; H.), LY(M; H.)) and (LP(M; H,), LY(M; H,.)),
respectively.

We have the following useful duality for column and row spaces.

(M)

(5.12)

Lemma 5.27. If E is a separable symmetric space on (0,00), then
E(M;H.)* = E*(M;H,)

isometrically.
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Proof. Let ¢ € E(M; H,)*. Then ¢ induces a continuous linear functional ¢
on E(M®B(H)) given by
$(a) = pla(lp @pe))  (a € E(MBB(H))),

which, as E(M®B(H))* = E*(M®B(H)) by Theorem 5.4, is in turn given
by
¢(a) = 7 @ Tr(ab),

for some b € EX(M®B(H)). If a € E(M; H.), then
#(a) = dla(lp @ pe)) =7 @ Tr(a(lag @ pe)b) = 7 @ Tr(ab),
where b := (1 ® pe)b € EX(M; H,). Now,

||6||E><(M;ﬁT) = [(Tm @ pe)bll gz B (H)) >

= sup |7 ® Tr(a(1ap ® pe)d)]
lall g vz p ) <1
= sup |p(a(lm @ pe))l

”a”E(M@B(H))Sl

L Ba(im @ pe)] = 119

a€E(M®B(H)) ||aHE(M®B(H))

This proves the desired isometric identity. O

Lemma 5.28. If E is a separable symmetric space on (0,00), then E(M; H,.)
and E(M; H,) can be contractively embedded in the injective tensor product
E(M)®y H. In particular, (E(M; H.), E(M; H,.)) is an interpolation couple
of Banach spaces.

Proof. Let (z1) C E(M) and (&) C H be finite sequences. By (5.10),

21 ® & llevsm,) = Sl mllzil 2,

so the norm || - ||gas;m,) 18 @ cross-norm on the algebraic tensor product
E(M)® H. Similarly, by (5.11) we see that || - || g(as;1,) defines a cross-norm
on E(M) ® H. Recall that E(M)* = EX(M) and H* = H. Define the map
I+ [l on E(M)* ® H* = EX(M) ® H by

szk®nkH* ZSUP{‘<U»ZZ/1@®W>‘ cu € E(M)® H, ||ull g,y < 1}.
3 k

Since E(M) ® H is dense in E(M; H.) and by the duality E(M;H.)* =
EX(M;H,) we obtain || - |l = | - HEX(M;F,)? which is a cross-norm on
E*(M) @ H. In other words, | - |[gam;m.) is a reasonable cross-norm on
E(M) ® H in the terminology of [131], Section IV.2. For = = ), z1 ® &
let



5.3 Hilbert space-valued symmetric spaces 145
ol = sup {| S (@r,v)insm)| -y € BX(M)1,m € Hy )
k
be the injective cross norm on E(M) ® H. Then

Il < sup{llzll o ly @ lls : y € EX(M)1,n € Hi} < [zl povin.),

since || - ||« is a cross-norm. We conclude that the identity map on E(M)® H
extends to a contractive linear map ¢ : E(M; H,) — E(M) ®x H. To see that
this map is injective, let v* : (E(M)®x H)* — EX(M; H,) denote the adjoint
of 1. If y € EX(M); and n € Hy, then y ® n satisfies

(zy@n| <lzlx  (ze EM)®H)

and therefore uniquely extends to an element of (E(M) ®y H);. Moreover,
y®n € EX(M;H,) and it is easily seen that t*y ® n = y ® 1. Indeed, this
holds on E(M) ® H, which is dense in E(M; H.). Suppose now that tx = 0
for some x € E(M; H,.). Then for y € E*(M); and n € H,

(r,y@n) = (r, 'y @n) = (tx,y @n) = 0.

Thus, for any yi,...,y, € EX(M) and ny,...,n, € H we have
<$azyk®7lk> =0
k

and by density of EX(M) ® H in E*(M; H,) we obtain x = 0. Hence ¢ is
injective and our proof is complete. ([

From now on, we identify E(M;H.) and E(M; H,) with their images in
E(M) @\ H.

By Lemma 5.26, the space E(M; H.) N E(M; H,.), with the intersection
taken in E(M)®y H, is dense in E(M; H.) and E(M; H,) and therefore (see
e.g. [85], Theorem 1.3.1),

(EIM;H.)NE(WM;H,.))* = EM;H.)*+ E(M; H,)*
= EX(M§FC) +EX(M;Fr)a

and

(E(M;H.)+ E(M;H.))" = EWM;H.)*NEM;H,)*
=E*(M;H,)NE*(M;H,), (5.13)

if F is separable.

By taking the standard orthonormal basis for i? in (5.12) and using the
density of E(M)®1? in both E(M;[2) and E(M;I?), we can alternatively de-
scribe these spaces as the completions of the linear space of all finite sequences
(xk)p_, in E(M) in the norms
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1

n * 2
il = | (3 #ian)
k=1

= |lcol(zk) | £(as,, (M)

E(M)
(5.14)

1
3
= |lrow (i) | E(ar, (M)

Nzl = || (D0 weat)
=1

E(M)

Observe that these expressions define two norms even if E is not separable.
The spaces E(M;[?) and E(M;I?) will be main characters in Chapter 6.

5.4 Conditional sequence spaces

For our discussion in Chapter 7 we introduce conditional versions of the norms
in (5.14). Let M be a von Neumann algebra equipped with a normal, semi-
finite, faithful trace 7 and let (My)r>1 be an increasing sequence of von
Neumann subalgebras of M such that the restriction of 7 to My, is again
semi-finite, for all & > 1. Let & denote the conditional expectation with
respect to M. In this section we give an elementary proof of the fact that
the expressions

1
(@)l B, (0)52) = H ( Z5k\xk|2) ’ (5.15)
k

E(M)

and

5.16
B (5.16)

1
* 2
l@o)l e = || Edail?)
k

define norms on the space of all finite sequences in F(M), whenever FE is a
symmetric Banach function space on (0, 00) which is 2-convex with convexity
constant equal to 1 and E(y) is fully symmetric. For £ = L? this result was
obtained in [68] using a different method.

Proposition 5.29. Let M be a semi-finite von Neumann algebra equipped
with o normal, semi-finite, faithful trace T and let (My)r>1 be an increasing
sequence of von Neumann subalgebras of M such that the restriction of T to
My, is again semi-finite, for all k > 1. Let & denote the conditional expecta-
tion with respect to M. Suppose E is a 2-convex symmetric Banach function
space on (0,00) with 2-convexity constant equal to 1 and suppose E(g) is fully
symmetric. Then (5.15) and (5.16) define norms on the linear space of all
finitely nonzero sequences in E(M).

Proof. 1t suffices to prove the assertion for (5.15). It is clear that ||| g4, (e,)12)
is positive definite and homogeneous. It remains to show the triangle inequal-
ity. Let (x)) and (yx) be finite sequences in E(M) and fix @ > 0. Using that
|axy, — a~tyx|? > 0, it follows that for all k > 1,

|2k + yl® < (14 )|z + (1 + a7 )|yl
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As &, is positive for k£ > 1, this implies that
D Erlzk oyl < (L4+0)) - Elawl® + (1+a72) Y Exlyxl®.
k k k
Since F is 2-convex with 2-convexity constant equal to 1,
| 3 enlon + uel?
A E(2y(M)
< (1+a? H gk:ckQH +(1+a? H EkkaH .
e DTS MR (e DL
Taking the infimum over all a > 0 gives
3 3 \2
aoc |, < ([ Eadel], +[Eedwr], )
H Z klTr + Ykl By Z kK] B + Z kY| oo,

which yields the result. ([l

The conditional column space E(M, (Ex);1?) and the conditional row space
E(M, (&);12) are defined as the completion in the norms given in (5.15)
and (5.16), respectively, of the linear space of all finitely nonzero sequences
in E(M). If M; = My, for all j,k > 1, then we set £ = & (k > 1)
and simply write E(M, &;12) and E(M,&;1?) instead of E(M, (&);1?) and
E(M, (Ek);12), respectively.
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Noncommutative Khintchine inequalities

In this chapter we study noncommutative Khintchine inequalities, which pro-
vide estimates for a randomized sum of elements of a noncommutative quasi-
Banach function space in terms of a noncommutative ‘square function norm’
of the elements in question. In the first two sections of this chapter we prove
two different types of noncommutative Khintchine inequalities for randomized
sums involving Rademacher random variables. The main results, Theorems 6.1
and 6.7, state that these inequalities hold for symmetric spaces with finite up-
per Boyd index and finite concavity, respectively. As will be seen in the third
section, the latter two conditions are necessary. In the fourth section we fo-
cus on Khintchine inequalities for randomized sums with operator coefficients
and apply these inequalities to derive some new results in the interpolation
theory for row and column spaces. In the final section we use Khintchine-type
inequalities to derive new Burkholder-Gundy inequalities for noncommutative
martingale differences sequences in a noncommutative Banach function space.

6.1 Spaces with finite upper Boyd index

Recall the notation
1
)2
Iz = |[(Xwie)

At the end of Section 5.3 we observed that, if E is a symmetric (quasi-)Banach
function space on (0,00) and M is a semi-finite von Neumann algebra, then
these expression define two (quasi-)norms on the linear space of all finite
sequences in E(M).

Throughout, we let (r;) be a Rademacher sequence defined on a probability
space (2, F,P).

We first focus on the proof of the following noncommutative Khintchine
inequality.

1
BEM)’ @l s = H(Zx‘”) 2

EM)’
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Theorem 6.1. Let 0 < a < 0o and let M be a von Neumann algebra equipped
with a normal, semi-finite, faithful trace T satisfying 7(1) = a.. Suppose E is a
symmetric quasi-Banach function space on (0, ) which is p-convex for some
0 < p < 0o and satisfies qg < 0o. Then

Hzri®$i

for any finite sequence (x;) in E(M).

Sp max {”(mi)HE(M;l%), ||(5Ei)||E(M;l$)}» (6.1)

E(L®®M)

For a fully symmetric Banach function spaces with 1 < pp < ¢g < 0o, which
is separable or the dual of a separable space, this result was obtained in [94],
Theorem 1.1. The case where 1 < pgp < qg < oo was left as an open question
there. Our approach is completely different from the one in [94].

The main idea of our proof of Theorem 6.1 is to deduce (6.1) by a trun-
cation argument from the case £ = L9, 1 < ¢ < oo, which is stated in
Theorem 3.5. We build on the work of ([96], Proposition 2.d.1), who used this
strategy to prove Theorem 6.1 for (commutative) symmetric Banach function
spaces.

Two key observations for our proof are Lemmas 5.8 and 5.11. Moreover,
we use Chebyshev’s inequality (Lemma 5.18) and the following result, which
allows us to reduce the proof of Theorem 6.1 to the case of self-adjoint ele-
ments.

Lemma 6.2. Let M be a semi-finite von Neumann algebra with a normal,
semi-finite, faithful trace T satisfying 7(1) = a. Suppose that E is a symmetric
quasi-Banach function space on (0, ) which is p-convex for some 0 < p < 00
and that for any finite sequence (xy) of self-adjoint elements in E(M) we

have )
noan|, o se](Zah)°
sz: R e ~F Zk: k

Then, for any finite sequence (zy) in E(M),

B(M)

< . 4oy b
H %Tk ® kaE(LO@M) SE maX{II(:ck)IIE(M,lg), ||($k)HE(M,zg)}

Furthermore, if

E(M)

1
B S, 5 [[(202)°
k B(M) k

for any finite sequence (xx) of self-adjoint elements in E(M), then for any
finite sequence (xy) in E(M),

]EH ZWMHE(M) SE maX{H(xk)“E(M;lﬁ)v ||(9Uk)HE(M;zg)}-
k
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Proof. Given a finite sequence (xy)p_, in E(M), set
Tp =Yk +i%s Yy =Yk 2 =2k 1<k<mn,
and notice that
0<yi,zt <yp+2p = 2(zpoe +apay), 1<k<n.

Hence, using that the square root is operator monotone,

1 1

% 2 * 2 * %
()" (2)" < (X Hml +12P) " = (Xl + 1)
k k k k
By our assumption,

|Xmen], <o ([Cnen],«[Enex],)
k k k
1 1
s )7L 1CZ4)7],)
< (IS, + ()],
(D laf? + ail?)
k
%
S fonl® + 72
& E2)
1
il |, + [ 20, )"
<H§ E(2) ; k E(2)
b2 :
I )|+ | (i)
k k
3
oo {| (S )
k

ol

A

E

A

2
(anxm?f

IN

o

)
E

We are now ready to prove the first main result of this section.

Proof. (of Theorem 6.1) By Lemma 6.2, it suffices to consider the case where
x1,...,&, are self-adjoint. Let B, be the constant in (3.10). We begin by
showing that for any ¢ € [1,00) and v > 0

A(Bos Ym0 w) < 3d(vi f @,), (6.2)

where f : (0,a) — [0,00] and ¢, : (0,1) — (0,00) are defined by f(s) =
,Us((zi x?)%) and qu(t) = tié.
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1
Fix v > 0. Define é, = 1 ® e,, where e, = e(>i 2?)? [0,], then éF = 1® e

1
1®eXi79)? (v, o). Since d(v+w;a+b) < d(v;a)+d(w;b) for any a,b € S(T)
and v, w > 0, we have

d(qu; Y e x) < d(qu; &> e :ce) n d(O; &> e xiéj)
—|—d(0; évL Z i ® xiév> + d(O; éi Zri ® a:iévl)

Recall that if y € S(7) and e is a finite trace projection in M, then d(v;ye) =
d(v;ey) < 7(e). Hence,

a(0:er Yomowe,) <Eor(el) = r(e) = d(v: (ZW)%) 1),

K2

and analogously,

d(O;éin:m@xiév) (O éLZn@xe) ( (Zm ) )—d i ).

We estimate the remaining term using the noncommutative Khintchine in-
equality in LI(M) (Theorem 3.5) and Chebyshev’s inequality (Lemma 5.18).

d<B ;Av( 4 i)Av) < (B 1 3 vLiCy
qU; € Zr ® x; )€y ) < (Byv) Z ® eyie o)
2\ 2|
<yt .
<w <;|evxzey|) ‘Lq(M)7

Observe that E(M) C Sp(7). Indeed, otherwise we would have 1 € E(M)
and hence g = oo. Thus we have 7(e}) < oo for all v > 0 and so

1 1

() e) = (S22)') w20
i :
Moreover, Y, leyzie,|? < |(X2, 22)% e, |?, and hence we obtain
(S reveiet) o < () el
_ /M((E GE?)%)SUNS((Z:QCZZ)%)“CIS. (6.3)

Collecting our estimates we obtain, using Lemma 5.11, for any v > 0 and
q € [1,00)

q
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f(s)\
d(Byv; y mQz;) < / —=) ds+3d(v; f) ) < 3d(v; f ® @),
(serSron) = ([, (22 s
which proves (6.2). It follows that
(Yo ri@n) <Baps(F@)  (t>0),
i
Since F is symmetric and D% is bounded on E, we have

H Zi:”@mi B(L=8M) ““(;Ti@xi) ’E(O,a)

< Byl|Dille—Ellf ® dqllE((0,0)%(0,1))-

In particular this holds for any ¢ > ¢g and hence, by Lemma 5.8, our proof
is complete. (I

By an argument similar to the one in Theorem 6.1 we obtain the following
result for spaces with g < 2. We provide the full details for the reader’s
convenience.

Theorem 6.3. Let M be a von Neumann algebra equipped with a normal,
faithful trace T satisfying 7(1) = «, E is a symmetric quasi-Banach function
space on (0, ) which is p-convex for some 0 < p < oo and suppose qp < 2.
Then for any finite sequence (z;) in E(M) we have,

Hzi:rﬂ@

where the infimum is taken over all decompositions x; = y; + z; in E(M).
If E is a symmetric Banach function space on (0,00) which is separable or
the dual of a separable space and satisfies qg < 2 then

HZM@

Proof. Fix y;,z; in E(M) such that z; = y; + z; for 1 < i < n. Fix v > 0
and gp < q < 2. Define y = (3 |:2)2, z = (X |27[?)2 and set é¥ = 1 ® Y,

6 = 1® ¢z Set fy(s) = 1y (0), -(5) = pis(2) and £(5) = po(y + 2). We first
note that

< f{ ’ ; } 6.4
BLoFM) cginf < [(¥i) |l eovzy + 11 (z)ll B2y (6.4)

7 g =2 W@z + 1 mov |

d( r; @ x;
(;6,@% (X on)e) + (e (S on)ae!)
+d(7,egéi( rz®xl) ey)l) +d(%;ég(éf})l‘(2m®xi))
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v
d(§;(e§j)l(2ri®xi)). (6.5)
A

Reasoning as in the proof of Theorem 6.1 we obtain by Chebyshev’s inequality
and the noncommutative Khintchine inequality for LI(M),

a(viee U(Zn © ) eles) S d(vi fy © 60) +d(vi f2 © 6,) < 2d(05 £ © 6,).

Moreover,

(g etes (Xrem)re’)

<E@7((€)") = d(v;2) < d(v; f. ® ¢g) < d(v; f © ¢),

and analogously it follows that that the remaining terms in (6.5) are bounded
by d(v; f ® ¢4). We conclude that there is a constant C, depending only on ¢
such that for all v > 0,

d(U;ZTi ® l‘i) < Cyd(v; f @ bg)-

Since the dilation DC;1 is bounded on E, we obtain by Lemma 5.8

|5

Ne@ezmy ~0F 1f ® @qllE((0,0)%(0,1)) Sa.E 1flE0,0)

() IO )

By taking the infimum over all possible decompositions x; = y; + z; in E(M)
we obtain (6.4).

The final statement follows from [94], Theorem 1.1 (1), which states that
the reverse of the inequality in (6.4) holds if E is separable or the dual of a
separable space and qg < oo. O

EM)

By a duality argument we obtain the following.

Corollary 6.4. Let M be a semi-finite von Neumann algebra. If E is a sepa-
rable symmetric Banach function space on (0,00) with pg > 1, then, for any
finite sequence (x;) in E(M),

inf {”(yi)HE(M;lg) + 11(z0) | Bz } Se H Zm ®

, 6.6
E(L>*®M) ( )

where the infimum is taken over all decompositions x; = y; + z; in E(M). If
pE > 2, then

max {|(z0)l| sy, | @)l b S | orie

ZT; o .
E(L>*®M)
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Proof. Since E is separable, we have by (5.13) the isometric identification
(B(M;12) + B(M;12)" = EX(M;1Z) 0 X (M:13).
If (y;) is a finite sequence in E* (M), then

T(zigi) = Y Blriy)7(2y;)
ij=1
- sor{($nen)(Fnon)
i=1 j=1
550
=1

n
<E H E T & T;
i=1

where the final inequality follows by Theorem 6.1. The first statement now
follows by taking the supremum over all finite sequences (y;) in E*(M).
The second statement follows similarly from Theorem 6.3. O

i=1

IN

n
T QY
E(LOC@M)H; 7Y px (Lmamny

[ (y;)l £ (MGIZ)NEX (M;12)5

E(L>®®M)

In the proof of Theorems 6.1 and 6.3 we can use the noncommutative Khint-
chine inequalities in [71], Remark 3.5, to obtain the following version where the
Rademacher sequence is replaced by a sequence of independent noncommu-
tative random variables (for the definition of independence see Definition 7.1
below).

Corollary 6.5. Let M, N be von Neumann algebras equipped with normal,
faithful, finite traces T and o, respectively, satisfying 7(1) = « and o(1) = B.
Suppose E is a p-conver (0 < p < oo) symmetric quasi-Banach function space
on (0,aB) with g < co. Let ¢ > max{2,qg} and (o;)i>1 be a sequence in
LY(N) which is independent with respect to o, satisfies o(a;) = 0 and is such
that dg = sup;> ||aillq < co. Then

|Seo
for any finite sequence (x;) in E(M). If qg < 2, then
H Z o QT4

where the infimum is taken over all decompositions x; = y; + z; in E(M).

< { ; 2, || (s _ }’
ENBM) ~Ed max < [|(@i)[| eomz)s (@) Bvz)

< inf i ‘ . ‘ 7
BNEMm) ~Pda {||(y ez + 11z )||E(M,zg)}

The dual version of this result reads as follows.
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Corollary 6.6. Let M, N be von Neumann algebras equipped with a normal,
faithful, finite trace. Suppose E is a separable symmetric Banach function
space on (0,00) with pg > 1. Let ¢ > max{2,qgx} and (a;);>1 be a sequence
in LY(N') which is independent with respect to o, satisfies o(a;) = 0 and is
such that dg = sup;s ||allq < co. Then

;o (67)

in {1150) e |l | Sra, pvean

Zai®xi
)

where the infimum is taken over all decompositions x; = y; + z; in E(M).

Proof. Since E is separable we have the isometric identification
(B(M;12) + E(M; 1)) = EX(M;12) N EX (M),

If (y;) is a finite sequence in E* (M), then

T(wy) = Y olaay)r(wy;)

n n
=1 ij=1

7

= U®T((Zai®$i)(204j ®yj))
i=1 j=1
H Zn:ai @ x;
i=1

n
Se H Z a; @ T;
i=1

where the final inequality follows by Corollary 6.5. The result now follows by
taking the supremum over all finite sequences (y;) in E*(M). O

IN

o5 ®Yj
E(N@M)H; 32V | px (v

E(A@M)H(yj)HEX(M;zg)mEx(M;zg),

6.2 Spaces with finite concavity

We now turn our attention to the following, different type of Khintchine in-
equality. Our proof proceeds along the same lines as in Theorem 6.1.

Theorem 6.7. Let M be a von Neumann algebra equipped with a normal,
semi-finite, faithful trace T satisfying 7(1) = «. Suppose E is a symmetric
quasi-Banach function space on (0, ) which is p-convex for some 0 < p < oo
and r-concave for some r < co. Then

EH Z’I’ﬂ?i

for any finite sequence (x;) in E(M).

< X .
s S8 max (@) e, 1@l | (68)
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Proof. By Lemma 6.2, it suffices to consider the case where z1,...,z, are

self-adjoint. Fix ¢ > 1 such that ¢ > r and define f : (0,0) — [0,00] by
,l

f(s) = us((Sa9)2) and ¢, ¢ (0,1) = (0,00) by ¢y(t) = ¢ 7. Since, by

Proposition 4.10, E is g-concave for any g > r,
q 1
B Sy = (E () )
zj:rx B = 1 Zirw PO
N
B (X))’
where M, (E) is the g-concavity constant of E. To see the last inequality,
note that
g 1
(X ) ol (X))’
bl (e,
(5 |(Sem)

(e)e{-1,1}"
)1

= Vi ()| (Bl (i)

o1

For any v > 0 we set e, = e(2: 171720, v]. Recall that psys(a+b) < ps(a) +
pe(b) and d(v+w;a+b) < d(v;a)+d(w;b) for all a,b € S(7) and s, ¢, v, w > 0.
Let By be the constant in (3.10). By the triangle inequality in L9({2), we have

for any > 0
(48,0 (Blu( ) [)" ) (69)

< a8 (B0 (e T e N

+a(0; (B[Dyu(et z)

(0 (E[yn(e. Soraier) )

oo eyt St )?).

Recall that if e is a finite trace projection we have u.(ye) = p(ey) = 0 for all
t > 7(e). Therefore,
)

d(O; (E‘D%p(ej‘ Z rixiev)

V= %

gi)€r—1,

1
q

< Mg (B)2 s

)

)
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1
<dr(er) = dd(v; (lail?)”) = 4d(w; ),
and analogously,
PN g\ L
(0 (E|Dyn(en Srer)[)°). (0 (EDyu(es Xrwer) )).

are bounded by d(v; f). We estimate the remaining term in (6.9) using Cheby-
shev’s inequality (Lemma 5.18) and the noncommutative Khintchine inequal-
ity in L9(M) (Theorem 3.5). We obtain

d<4qu; (E(Di,u(zi: rievxiev>q)) E)
< (4Bgv)~1 /OOO E(u% (Zrievxievy)dt

q

= (4qu)*qEHD%p( Z rievxiev>
’ Z 7€ L€y
l 3
(St
i
< v_q/ f(s)lds,
{f<v}

where the last inequality follows by (6.3).
By Lemma 5.11 we have

L1(0,00)

= (B,v)"E !

La(M)

q

La(M)

v [ () (o £) = d(wi £ 2 64)
{f<o}
for all v > 0 and so,

(Sw)

a(4B,v; (E

ay = _
)Y <ot [ s+ 12d00s )
{f<v}
< 12d(v; f ® dg).

Since the dilation operator D% is bounded on E we obtain

()

By Lemma 4.9 the r-concavity of E implies that gz < r < ¢ < oo and hence
the result follows from Lemma 5.8. O

N
)|, Sar 15 @ 64ls.
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By a duality argument we obtain the following.

Corollary 6.8. Let M be a semi-finite von Neumann algebra. Suppose E is
a separable symmetric Banach function space on (0,00) which is p-convex for
some p > 1. Then, for any finite sequence (x;) in E(M),

, (6.10)

inf {J|(v:)llswear) + 1l s} S B L I

where the infimum is taken over all decompositions x; = y; + z; in E(M).

Proof. Since FE is p-convex for p > 1, its Kéthe dual E* = E* is g-concave,
where % + % =1 (cf. Theorem 4.13). Moreover, as E is separable we have the
isometric identification

(B(M;12) + E(M;12))" = EX (M;12) 0 EX (M 17).

If (y;) is a finite sequence in E* (M), then

ZT(%%) = Z E(rir)7(ziy;)

= B(((Xre) (Srm)

(S | 0], 00)

EIS ) EIZ ] )
o (8] ) N0 e

n
1=1

where in the last two steps we used Theorem 6.7 and Kahane’s inequalities.
The result now follows by taking the supremum over all finite sequences (y;)

in EX(M). O

IN

IA

Nl

BE(M) [ (Z/j)”EX (M;I2)NEX (M;12)5

Finally, we obtain a new proof of the following known result (see [99], Theorem
1.3(ii) for the first equivalence in (6.12) and [94], Corollary 4.3 for the second).
In the proof we use the following facts on Rademacher subspaces. Let (r;) be
a Rademacher sequence defined on (2, F,P). Since LP(M) is K-convex for
1< p< oo (see e.g. [39]), it follows from the isometric identification

LP($2; LP(M)) = LP(L=(2)@M)
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that the n-th Rademacher projection

n

Ru(z) = 71 @ Ecygpm((ri @ 1) (6.11)

i=1

is bounded on LP(L*>°(2)®@M) for any 1 < p < co. Moreover, for all n > 1
we have ||R,| < C,, for some constant C), depending only on p. If E is a
symmetric quasi-Banach function space on (0, «) with 1 < pg < gg < 00, we
find by Theorem 5.21 that R,, defines a bounded projection in E(L*(2)@M)
and ||R,|| < Cg for all n > 1, where Cg is a constant depending only on E. We
let Rad,(E) denote the image of R,, i.e. the closed subspace of E(L*®M)
spanned by the elements >, r; ® z;, where z1,...,z, € E(M).

Corollary 6.9. Let E be a symmetric Banach function space on (0,«) and
suppose E is 2-convex and q-concave for some q < oo. Then, for any semi-
finite von Neumann algebra equipped with a normal, semi-finite, faithful trace
T satisfying (1) = a and any finite sequence (x;) in E(M) we have

E(L®Q@M)
(6.12)

s =2 @l Eanoea = | LR

Proof. Since E is g-concave, it has order continuous norm and gp < g < o0
by Lemmas 4.12 and 4.9, respectively. Hence, by Theorems 6.1 and 6.7, it
remains to show that

(6.13)

(@)l B2y nEwMmz) SE EH XZ:TzIz B

(6.14)

(@)l emszynBMm2) SE H ;7‘1 ® z; BB

To prove (6.13), recall the fact that F(M) is 2-convex whenever E has Fatou
norm and FE is 2-convex (see e.g. [50] for a proof of this fact). This implies
that

)

[
EM)’

N|=

E(M)

1
IS ) ]
= iy = TiZ;
2 1

where in the final inequality we apply Kahane’s inequality. By applying this
to (xF) we see that (6.13) holds.

Since LP(§2; LP(M)) = LP(L*>°(£2)®@M) isometrically for 2 < p < oo, the
above shows that for any finite sequence (z;)?; in LP(M),

l@) ooz S | Yo r @
7

. 6.15
Lr(L>®M) ( )
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Since F is 2-convex and g-concave, E is an interpolation space for the couple
(L?, L) by Theorem 4.31. Hence Rad,,(E) is a complemented subspace of
E(L*®M) and by Theorem 5.5, we obtain

j 22) S i @ T

@)l ez Se H zi:r e B(L=EM)
by interpolation from (6.15). By applying this to (x}) we see that (6.14) holds.
O

6.3 Optimality of the results

We shall now demonstrate that the results in Theorems 6.1 and 6.7 are, in a
sense, the best possible.

The following result is shown in [96], Propositions 1.f.12 and 2.b.7, for
symmetric Banach function spaces which are separable or have the Fatou
property. The proof of these propositions goes through verbatim for symmetric
quasi-Banach function spaces.

Lemma 6.10. Let E be a symmetric quasi-Banach function space on (0, ).
Then the following hold:

(i) E is not qg-concave for any q < oo if and only if for every e > 0 and any
n € N there exists a sequence (x;):2, of mutually disjoint elements in E
such that ||z;|| = 1 for all i > 1 and

n
<3
=1

(ii) qg = oo if and only if for every ¢ > 0 and any n € N there exists a
sequence ()52, of mutually disjoint and identically distributed elements
in E such that ||z;|| =1 for allt > 1 and

n
|3
=1

The following observation is stated, without proof, in [100]. Let sign denote
the sign function, with sign(0) := 0.

1+4e¢.

<
E(0,a)

1+e¢.

<
E(0,a)

Lemma 6.11. Let 1,...,e, € {=1,1}". Then, for some 1 < k < 2", we

have
. . km
£y = casion(sn (25,

forallj=1,... ,n.
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Proof. We prove the statement by induction. Note first that if n = 1 we can
simply take £ = 1. Suppose now that the statement holds for n = m. Let
€1,...,Em+1 be a sequence of signs. By applying the induction hypothesis to
€2,...,Em+1, we can find some 1 <[ < 2™ such that

: . Im ‘
Ejt1 = 5m+181gn(sm (Qm_j)), j=1...,m+1.

Case I: €1 = €,,,+1. In this case we may take k = [. Indeed, then by our choice
of | we clearly have

_ : : km o 1
5‘7‘—(C.\»,n_l,_lslgn(Sln(W>)7 ] = ,...,m—l— 5
and also,
. . (kT
5m+181gn(sm (2?)) = Em+1 = €1.
Case I: ¢; = —¢,,41. In this case we may take k = [+ 2™. Indeed, then

. . km
€m+181gn(81n (2771_"_71_]))
I .
= €m+1Sign(Sin (2"1_"_771—1_] + 2j71ﬂ'))

—Em41 = €1 if j =1,
Em41sign(sin(gmii=)) =¢; if j=2,....m+1.

This completes the proof.

We obtain the following two implications. The proof of the first statement is
due to B. Maurey ([100], Corollaire 1). We refer to [6], Theorem 7.1, for a
different proof of the second statement if E has the Fatou property.

Proposition 6.12. Let E be a symmetric quasi-Banach function space on
(0, ). If E satisfies the Khintchine inequality

n 1
o Sorel 50 (S 0)

then E is q-concave for some q < oo. On the other hand, if E satisfies the
Khintchine inequality

|Sron

then qp < 0.

(6.16)

E(0,a)

(6.17)

n 1
<o [ (2 1) oy
E((0,1)x(0,a)) E ;‘ | E(0,a)
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Proof. To prove the first statement, suppose F is not g-concave for any ¢ < co.
We will show that (6.16) cannot hold. By Lemma 6.10 we can find, for any

n > 1, disjoint elements x1,...,2s» in E with ||z;|| = 1 and || Zf; x| < 2.
Define L
j . . i .
6%) = s]gn<sm (2n_j>> (k=1,...,2", j=1,...,n)
and set
on
b= =1,
k=1
As the z; are disjoint, we have |y;| = | Zfil x;| and so
n . on
2\ 2 1 1
(S, = o, <o
j=1 =1
Let €1,...,e, be any sequence of signs. By Lemma 6.11, there is some 1 <
k < 2™ such that _
gj=ene?) j=1,... n.

Hence,

n n n 2"
> e = | Do el = Yo > V]
j=1 j=1 j=1 i=1

- i igéﬂgwxi

i=1 j=1
n . .
= \nwk| + ‘ ZZEI(CJ)EEJ)J%
itk j=1
> nlzgl.

It is now clear that for any Rademacher sequence (7;),>1,

n
]S, >

which shows that (6.16) cannot hold.

Suppose now that ¢ = oco. We will show that (6.17) cannot hold. By
Lemma 6.10 we can find, for any n > 1, disjoint, identically distributed ele-
ments z1,...,2en in E with ||z;|| =1 and || Zf; z;|| < 2. Defining y1,...,yn
as above, we have [|(3°7_, ly;12)2 ||z < 2n2 and, for any ey, ..., e, € {—1,1},
we can find a 1 < k < 2™ such that

n
‘ E €Y
j=1

> n|zgl.
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Since the x; are identically distributed this shows that

d(v;isjyj) > d(v;n|z1]) (v>0).

j=1

Let (r;)72; be any Rademacher sequence. Then, for any v > 0,

d(v; Zn:rjyj) = E(d(v; zn:rjyj)) > E(d(v;n|x1])) = d(v;n|zq|).
j=1 j=1

As F is symmetric, it follows that

n
H er @ yj
j=1

Since n > 1 was arbitrary, we conclude that (6.17) cannot hold. O

> =n.
B Xy = "IE1lEC) =7

We have obtained the following two characterizations.

Theorem 6.13. Suppose that E is a symmetric quasi-Banach function on
(0, 00) which is p-convezx for some 0 < p < 0o. Then the following are equiva-
lent.

(i) The inequality (6.1) holds for any semi-finite von Neumann algebra M;
(i) qg < c©.

Moreover, if this is the case and if E is either a separable symmetric Banach
function space or the dual of a separable symmetric space, then

S (@) | Bovsiz)nEms2)-

. g2y < ® H
||(17k)||E(M,l§)+E(M,la) ~E sz:hc T B(L=FM)

Note that the final assertion follows by [94], Theorem 1.1. (1).

Theorem 6.14. Suppose that E is a symmetric quasi-Banach function space
on (0,00) which is p-convex for some 0 < p < oo. Then the following are
equivalent.

(a) The inequality (6.8) holds for any semi-finite von Neumann algebra M;
(b) E is q-concave for some q < co.

Moreover, if this is the case and if E is a separable symmetric Banach function
space and p > 1, then

Se @)l eovaznemsez)

||(x¢)||E(M;lE)+E(M;l3) SE EH Zrlzz E(M)

for any finite sequence (x;) in E(M).
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6.4 Khintchine inequalities with operator coefficients

In this section we obtain some Khintchine-type inequalities for random sums
with operator coefficients. These inequalities are utilized to give an alternative
proof of a special case of Theorem 6.1. Even though this method does not cover
the full result, it yields a better estimate on the constant in (6.1). At the end
of the section we formulate a general interpolation result for intersections of
row and column spaces. Throughout, we let M denote a von Neumann algebra
equipped with a normal, semi-finite faithful trace 7.

Theorem 6.15. Let N be a von Neumann algebra equipped with a normal,
faithful trace o such that o(1) = 1. Suppose (¢;) is a sequence in N and C' a
universal constant such that for any finite sequence (x;) in M,

HZQ@%

If E is a symmetric quasi-Banach function space on (0,7(1)) which is p-convex
for some 0 < p < o0, then, for any finite sequence (z;) in E(M) we have

HZQ‘@%’

where Cp < C||Dy |5—5(2DE)?2, with Dg the constant in the quasi-triangle
inequality for E. In particular, if E is a symmetric Banach function space,
then Cg < 4v/2C.

< Cmax { 1@ sz, | @0l |- (6.18)

<C { - o (@ y } 6.19
pEay = CFmAX (@)l B2y (@)l 2oz (6.19)

Proof. At the cost of a factor (ZDE)%, we may assume that the x; are self-

adjoint (c.f. the proof of Lemma 6.2). Moreover, it suffices to prove that

d(C’v; Zci ® xz) < Qd(v; (me) %> (v >0). (6.20)

Indeed, then by taking the right continuous inverse on both sides we obtain

,ut<Zci®:ri) SCM%((Z%Z)%) (t > 0). (6.21)

Since F is symmetric it follows that

1
<clpin((52)")]
HZ:C v B(L>(Foo)®M) — s Zx E
1
< CID llsos]| (Yo a2)”

EM)

1
To prove (6.20), fix v > 0 and let e, = (i 1712 [0, v]. We make the decom-
position
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d(CU; Z G ® wi) < d(O; Z G ® (eleieﬁ + evmieﬁ)>
% i
+ d(O; Z G ® ejxiev) + d(C’v; Z G ® evxiey).
i i

It is clear that

d((); Z G ® (ej‘xiej‘ + evmieﬂ‘)>, d(O; Z G ® ej‘xiev>

< (ed) = d(v (ng)%).

K2

Moreover, from (6.18) it follows that for any ¢ > 0,

/’Lt(zci ® evxiev)
i
S H Zci K eyTiey
7

< Cw.

(S| <e()

Hence,
d(C’v; Zci ® evxiev> = )\(t € (0,7(1)) : ,ut(Zci ® evxi@,) > Cv) =0.

This completes the proof. O

Ezample 6.16. (Free group unitaries) Let G be a discrete group and let CG
be the associated group ring defined by

CG = { Z agg : ag € C,finitely many a, nonzero}.
geG
The multiplication on CG is defined by
(Zagg) (Zb;JL) = Z ( Z agbh)k
g h k  gh=

We can define an involution on CG by setting
(o) = Yo
g g

Consider the Hilbert space [?(G) with its canonical basis {d, : g € G}. The left
regular representation of G is the linear *-homomorphism A : CG — B(I%(Q))
which is defined by

AMg)on :=dgn (9,h € G)



6.4 Khintchine inequalities with operator coefficients 167

and extended by linearity. Its image, im(\), is a *-subalgebra. The von Neu-
mann algebra

L(G) = im(\)" € B(I*(@))

is called the group von Neumann algebra associated with G. Let e be the
identity in G. If we define

Te(x) == (v, 0.)  (x € L(G)),

then 7¢ is a normal, faithful trace on L(G) satisfying 7¢(1) = 1.

If F is the free group with countably many generators (g;), then L(Fo.)
is called the free group von Neumann algebra. In this case we use 7, to denote
the trace on L(Fu). The elements \(g;) are called free group unitaries. It is
shown in [57], Proposition 1.1, that (6.18) holds with C' = 2 if the ¢; are equal
t0 Algi) or Alg;)).

Remark 6.17. Tt is furthermore known that (6.18) holds if the ¢; are elements
of the semi-circular system, the circular system ([57], Proposition 4.8) or if
the ¢; are g-Gaussians, for some —1 < ¢ < 1 ([24], Theorem 4.1).

From now on, we focus on the case where the ¢; are the free group unitaries
A(gi). By a duality argument analogous to the one in the proof of Corollary 6.4
we obtain the following consequence of Theorem 6.15.

Corollary 6.18. If E is a separable symmetric Banach function space on
(0,00), then for any finite sequence (x;) in E(M) we have

, . . <0H Agi) ® x; :
(i)l B2y + B2y < 21: (9:) ® z; BLE B

with C < 8v/2.
We will use the following inequality, which is the reverse of (6.18).

Lemma 6.19. Suppose E is a 2-convex symmetric Banach function space on
(0,7(1)) such that Eoy is fully symmetric. Then,

mas {0 pove. @l | < || 30 Mg @

B(L(Foo)BM)

Proof. Let £ denote the conditional expectation onto the von Neumann sub-
algebra C1® M. Then,

()’

1
2

E2)(M)

_ 12
E(M) Hzi:mll

1
= [ e @
HZ e @il wwmm
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- el o

2
HE@)(L(]FOO)@M)

B(L(Foo)BM)

< H Z Agi) ®

Similarly,

e
H(Z =i *) B H ;A(gi) ® U e aymrn’

O

By combining Theorem 6.15 and Lemma 6.19 we obtain the following gener-
alization of the result for LP-spaces given in [113], Theorem 8.4.10.

Theorem 6.20. Suppose E is a 2-convex symmetric Banach function space
on (0,7(1)) such that Ey is fully symmetric. Then, for any finite sequence

H Z/\(Qi) @ T5

We shall use two results from [94], see Lemmas 6.21 and 6.22 below. To make
our exposition self-contained, we reproduce the proofs of these results here.

Let a € L(Fy) and let ¢, : L' (L(F4)) — C be the linear functional given
by

= ma, ( sLE)o 7 : .
E(L(Foo )®M) m X{H(x )”E(M’li) [€3 )||E(M,zg)}

Pa(r) = Too(wa) (v € L'(L(Fx))).

Since L'(L(Fo)) ® M is dense in L'(L(Foo)®M), the map ¢q @ 1p(u)
uniquely extends to a bounded linear operator T : L' (L(Fs)@M) — LY(M)
with ||T']] < |la||. On the other hand, L(Fo) ® M is dense in L(Fo,)@M
with respect to the ultra-weak operator topology. Since ¢,|pm ® 14 is a nor-
mal map, it uniquely extends to a normal operator T.° : L(Fyo)@M — M
with | 7] < || z1(..). The maps T} and T3° coincide on the intersection of
LYL(Fs)®M) and L(Fo,)®M and hence there is a bounded linear map

T, : LNL(Foo)®M) + L(Fo &M — LY (M) + M

which extends both these maps. For brevity, we write (z,a) = T,(x).
For any n > 1 we define a projection

P LHL(Foo )&M) + L(Foo )M — LYNL(Foo)@M) + L(Foo )M
by

n

Py(w) =) Mgi) ® (2, M(9:)")-

=1

The following result is proved in [94], Lemma 5.4.



6.4 Khintchine inequalities with operator coefficients 169

Lemma 6.21. If E is a fully symmetric quasi-Banach function space on
(0,7(1)), then P, is a bounded projection on E(F.®@M) with ||P,|| < 2.

Proof. Let P> and P} denote the restriction of P, to L(Fs)®M and
LY (L(Fs)®@M), respectively. Let 1 € L(Fy), 22 € M, y1 € LY(L(Fx))
and yp € LY(M) and set * = 21 @ T2, y = y1 ® y2. It is not difficult to
calculate that

Too ® T(P(2)y) = Too @ T(x(Pa(y"))").

By density it follows that P2° is the adjoint of the map = — (Pl(z*))* and
hence ||[P°|| = ||PL||. Let S = span{\(g) : g € Fo}. By [57], Proposition
1.3, the restriction of P, to S ® M is bounded and has norm at most 2.
Since S ® M is ultra-weakly dense in L(F.,)®M, it follows from Kaplan-
sky’s theorem that the unit ball of S ® M is ultra-weakly dense in the unit
ball of L(Fs)®M. Since P is ultra-weakly continuous, we conclude that
|1Ps°|| < 2. Since E(L(Fo)®M) is an exact interpolation space for the cou-
ple (LY (L(Foo)®M), L(F»)®M), the result follows. O

The following result is essentially proved in [94], Lemma 5.5.

Lemma 6.22. Let 1 < py < p; < o0. Suppose E is a fully symmetric quasi-
Banach function space on (0,7(1)). If E is a k-interpolation space for the
couple (LP0, LP1), then for any finite sequence (x;) in E(M),

HZH@% ’Z)\(gi)‘@xi
i i
and if E is a k-interpolation space of exponent 8, for some 0 < 0 < 1, then
H Z Ty QT4
i

where By is the constant in (8.10).

<92 B, ,B
L = r max{By,, By, } B(L(Fe)@M)’

< angoB;;“’H 3" Mgi) @ @
i

L=BM B(L(Fe)BM)

Proof. We only prove the first statement, the proof of the second statement
is similar. For n > 1 we define

Qn : LNL(Fso)@M) + L(Fs @M — LY (L™ (2)BM) + L= (2)&M
by
Qu(z) = 1 ® (x,\(9:)")
i=1

If 1 < p <2, then it follows from the noncommutative Khintchine inequalities
and Corollary 6.18 that

|50
i

< B (M- (M-
Lo (LB S oIl (@) | Lr (i) 4 Lo (M22)
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Z/\(gi) X T

<CB,

LP(L(Foo)BM)

and if 2 < p < oo we obtain using Lemma 6.19,

HZH@%

LP(LoBM) < BpH(mk)”LP(M;lg)mLp(M;lg)

LP(L(Foo )®M)

< By|| S Mg @

Together with Lemma 6.21 these estimates imply that
1Qn : LP(L(F)EM) — LP(L¥(2)BM)|| < 2B,
By interpolation we obtain

1@n = E(L(Foo )&M) — E(L™(2)@M)|| < 2max{By,, By, }

and since . .
Qn(z)\(gz‘) ®$i) = Zn ® x
i=1 i=1
for any z1,...,x, € E(M), the conclusion follows. O

We obtain the following extension of Theorem 6.13.

Corollary 6.23. Let E be a rearrangement invariant Banach function space
on (0,00). Then the following are equivalent.

(i) The inequality
H Z T @ T
i

holds for any semi-finite von Neumann algebra M;
(ii) The inequality (6.1) holds for any semi-finite von Neumann algebra M;
(1i1) qp < o0.

< H Agi) ® x;
E(L>*g@M) ~E ZZ: (9:) E(L(Foo)®M)

Proof. The equivalence of (ii) and (iii) was observed in Theorem 6.13. If (i)
holds then, by Theorem 6.15, we find that (6.1) holds for any semi-finite von
Neumann algebra. On the other hand, if gg < oo, then by Theorem 4.31 we
find that E is an interpolation space for the couple (L', L9) for any q > ¢g.
By Lemma 6.22 we conclude that (i) holds. O

Lemma 6.22 and Theorem 6.15 together yield the following special case of
Theorem 6.1. Recall that the constant B, in (3.10) is (strictly) less than ,/g.
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Theorem 6.24. Let 1 < py < p; < 0o. Suppose E is a fully symmetric quasi-
Banach function space on (0,c) and let Cg be the constant in (6.19). If E is
a k-interpolation space for the couple (LP°, LP1), then

H Z Ty @ T
i
and if E is a k-interpolation space of exponent 6, for some 0 < 0 < 1, then
|Se
i
0

1-6
< 2Cgpk(po)? (p1) 2 maX{H(SUz‘)HE(M;zg)a||($i)||E(M;zg)},

< i . i .
pemng < 20V mas {1l s | @)l |

E(L®®M)

for any finite sequence (x;) in E(M).

We conclude this section by proving the following interpolation result for
intersections of column and row spaces.

Theorem 6.25. Let M, N be semi-finite von Neumann algebras and let
E, Ey, E1, F, Fy, F1 be fully symmetric Banach function spaces on (0,00). Sup-
pose (E,F) is an (exact) interpolation pair for the pair ((Ey, E1), (Fo, F1)).
If Ey, Ey are 2-convex and (Ey) 2y, (E1)(2) are fully symmetric, then

(BE(M;12) 0 E(M;13), F(N))
is a (C-)interpolation pair for the pair
((Eo(M;12) 0 Eo(M;12), By (M I2) N Ex(M5 1)), (Fo(N), F1(N),

is an (exact) interpo-

)
NEWM;2),F(N)) is a

where C' is an absolute constant. Moreover, if (E,
lation pair of exponent 0 < 0 < 1, then (E(M;I?
(C-)interpolation pair of exponent 0.

F
)

Proof. Suppose (E, F) is an exact interpolation pair. For n > 1 let
L, : (L' + L) (L(Foo)®M) — (L' + L®)(M;12) N (LY + L) (M;13)

be given by
In(@) = ((2, A(9:)"))izr-
By Lemma 6.19,

||I7L|Ran(P”) : El(L(]Foo)gM) — Ez(MylS) N Ez(Myl?)” < 17 1= 07 1.
Let T be a contraction for the pair
((Bo(M;12) N Eo(M;17), By (M 12) N Ex(M; 7)), (Fo(N), F1(N)).

Then, for ¢ = 0,1, the linear operator 71, P, is a bounded linear operator
from E;(L(Fs)®M) into F;(N). By Theorem 5.5, we obtain
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ITIn Pl pvy < max [TL Py i Bi(L(Foo )&M) = Es(N)|| |2l pe.cymamn
< 2[z| prE)@m)
where we use that || P, : E;(L(Feo)®M) — Ei(L(Foo )@M)|| < 2 for i = 0,1
by Lemma 6.21. Taking . = > ; A(¢;) ® x;, with z1,...,z, € E(M) yields

IT (@) ey < 2| > M) © 2

i=1

E(L(Foo)®M)
< 2Cp max{||(@:)iZ | Bomgzy, [|(@a)is [ Bz )

where Cg is the constant in (6.19). Since the finite sequences (x;)_; in E(M),
n > 1, are dense in E(M;I2) N E(M;I2), the result follows. O

6.5 Burkholder-Gundy inequalities

We apply the noncommutative Khintchine inequalities in Theorems 6.1 and
6.7 to prove Burkholder-Gundy inequalities for martingale difference se-
quences in certain noncommutative symmetric spaces. These inequalities will
be utilized in the proof of the noncommutative Burkholder-Rosenthal theorem
below (Theorem 7.6). The additional ingredient needed for the proof is the
following randomization trick, explained in Lemma 6.27.

First recall the following definitions. Let E be a symmetric quasi-Banach
function space on (0,«) which is p-convex for some 0 < p < oo and let
M be a von Neumann algebra with a normal, semi-finite, faithful trace 7
satisfying 7(1) = «. Suppose that (M)32, is a (discrete-time) filtration,
i.e. an increasing sequence of von Neumann subalgebras such that 7|, is
semi-finite, and let & be the conditional expectation with respect to M.
Then a sequence (z) in E(M) is called a martingale with respect to (My,) if
Er(apy1) = xy for all k > 1. A sequence (yg) in F(M) is called a martingale
difference sequence if y, = x — xp_1 for some martingale (zy), with the
convention g = 0 and My = C1. It is called finite if there is some N > 0
such that yr =0 for all £ > N.

The next proposition follows by interpolation, i.e. using Theorem 5.21,
from the boundedness of martingale transforms in noncommutative LP-spaces
with 1 < p < oo (c.f. [114], p. 668).

Proposition 6.26. Let E be a symmetric quasi-Banach function space on
(0,a) satisfying 1 < pp < qg < co. For every k > 1, let & € Mg_1 and
suppose that ||€k|| < 1 and & commutes with My. Then, for any martingale
difference sequence (yi)5, with respect to (My)32, in E(M) and anyn > 1
we have

n n
Hz&cka SE HZ%H -
=1 E(M) = E(M)
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In particular, taking & € {—1, 1} yields the well known fact that noncommu-
tative martingale difference sequences are unconditional in F(M).

Lemma 6.27. Let E be a symmetric p-conver (0 < p < oo) quasi-Banach
function space on (0, ) with 1 < pg < qg < 00 and suppose M is a von Neu-
mann algebra equipped with a normal, semi-finite, faithful trace T satisfying
7(1) = a. Let (My)2, be an increasing sequence of von Neumann subalgebras
such that T|am, is semi-finite. Then we have the equivalences

EH TR H ~ H T H ~ H T QX H , 6.22
’; kk E(M) B ; k E(M) B 1; k k E(L®®M) ( )

for any Rademacher sequence (ry) and any martingale difference sequence

(a1)jy in E(M).

Proof. The first equivalence in (6.22) follows directly from the uncondition-
ality of noncommutative martingale difference sequences in E(M). For the
second equivalence, observe that (y;) = (7, ® ) is a martingale difference se-
quence with respect to the filtration (L°®My). By applying Proposition 6.26
with &, = rr, ® 1 we obtain

H; aone H;u ] R DL .

The reverse inequality follows similarly from Proposition 6.26 with (yx) =
(1®z) and & =1, @ 1.

Let E be a symmetric Banach function space on (0,00). For any finite mar-
tingale difference sequence (zy) in E(M) we set

I(@e)llze = 1(@e)llBmaz); [@)llae = (@)l Bz

These expressions define two norms on the linear space of all finite martingale
difference sequences in E(M).

For future reference we state the following version of Stein’s inequality for
noncommutative symmetric spaces. This result follows directly by interpola-
tion from the Stein inequality for noncommutative LP-spaces proved in [114],
Theorem 2.3.

Lemma 6.28. Let E be a symmetric quasi-Banach function space on (0, 00)
which is s-convex for some 0 < s < oo and let M be a semi-finite von Neu-
mann algebra. Let (Ex)k>1 be an increasing sequence of conditional expecta-
tions in M. If 1 < pg < qg < 00, then for any finite sequence (zy) in E(M),

(@)l emz) SE 1@e)llevzys 1E(@)llemaz) Se (@) lemme)-

Consequently, the map (xx) — (Ex(zk)) extends to a bounded projection on
both E(M;12) and E(M;1?).



174 6 Noncommutative Khintchine inequalities

As was already noted in [14], if 1 < pgp < gg < oo then it follows from
the noncommutative Stein inequality that for any finite martingale difference
sequence we have

H(xk)||Hf+HF =E ||(33k)|\E(M;lg)+E(M;z;%)-

By combining Lemma 6.27 with Theorems 6.1 and 6.3 and Corollary 6.4, we
obtain the following result, which generalizes the Burkholder-Gundy inequal-
ities for noncommutative LP-spaces [114]. Part of this result was obtained in
[14], Theorem 2.2.

Theorem 6.29. Let E be a symmetric Banach function space on (0, 00) with
1 < pg < qg < o0 and suppose that E is either separable or is the dual
of a separable space. Suppose M is a von Neumann algebra equipped with a
normal, semi-finite, faithful trace 7. Let (My)?2 | be an increasing sequence of
von Neumann subalgebras such that T|am, is semi-finite. Then, for any finite
martingale difference sequence (xy) in E(M) we have

(@) lgEnme-

N lae e S || D o
k

SE |l
E(M)

Suppose that E is separable. If pg > 1 and either qg < 2 or E is 2-concave,
then

X ~ x .
H; g == @) iz e

On the other hand, if either E is 2-conver and qg < 00 or 2 < pg < qg < 0
then

N . 6.23
DR e (623
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Noncommutative Burkholder-Rosenthal
inequalities

In this chapter we derive two different Rosenthal-type of inequalities. In the
first part we derive new inequalities, stated in Theorem 7.4, for sums of inde-
pendent noncommutative random variables which are elements of a noncom-
mutative symmetric space. Under certain conditions we will, more generally,
obtain Burkholder-Rosenthal inequalities for noncommutative martingale dif-
ference sequences. We present two applications of these results. Firstly, we
give a new proof of the noncommutative Burkholder-Rosenthal inequalities in
Haagerup LP-spaces, which were established in [70]. Secondly, we derive new
Khintchine-type inequalities with operator coefficients. The latter inequalities
play an important role in Chapter 8.

In the final section of this chapter we return to the setting of Chapter 3 and
consider sums of independent random vectors in a noncommutative symmetric
space. Using similar techniques as in the first part, we can extend the result
for random vectors in a noncommutative LP-space established in Theorem 3.8.

7.1 Inequalities in noncommutative symmetric spaces

In the formulation of our noncommutative Rosenthal inequalities we use the
following notion of conditional independence, which was introduced in [71].
Given a sequence (Ng) x>1 of von Neumann subalgebras of a von Neumann al-
gebra M, we let W*((Nj)x>1) denote the von Neumann subalgebra generated
by Ug>1/Ng.

Definition 7.1. Let M be a von Neumann algebra equipped with a mormal,
semi-finite, faithful trace 7. Let (N}) be a sequence of von Neumann subalge-
bras of M and N a common von Neumann subalgebra of the N, such that
TIn s semi-finite. We call (Ny) independent with respect to Enr if for every
k we have Enr(zy) = En(2)En(y) for all x € Ny and y € W*((N;) jzk)-

Lemma 7.2. Suppose that (Ny) is a sequence of von Neumann subalgebras
of M which is independent with respect to Enr. Let My, = W*(Nq, ..., Ng).
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If ) € (LY + L) (N}) satisfies Enr(xy) = 0 for all k > 1, then (x1) is a
martingale difference sequence in (L + L°°)(M) with respect to the filtration
(M)

Proof. Suppose first that z; € N and En(zr) = 0 for all k£ > 1. Let &
denote the conditional expectation with respect to My. Fix ¢ > 1 and let
y € L' N L>(M;_1). By independence,

T(ziy) = 7(En(2iy)) = 7(En (21)En(y)) = 0.

By (3.8) in Proposition 3.4 this implies that &_4(z;) = 0.

Suppose now that xj € (L' + L°)(N}) for all k > 1. Since N, is dense in
(L' + L) (Ny), for every i > 1 there is a sequence (z; j);>1 in N; converging
to x; in (L' + L®)(N;). Since Ey is a contraction on (L! + L°°)(M) and
En(z;) = 0, it follows that x; ; — Ear(x;,;) converges to x; for j — oco. By
the above, &_1(x;; — Ex(z;;)) = 0 for all j > 1 and by taking the limit for
j — oo we conclude that &_q(z;) = 0. Therefore, (x)r>1 is the martingale
difference sequence for the martingale defined by y; = Zle x;. O

The following observation has its origins in [71] and [121].

Lemma 7.3. Let (M, ) be a von Neumann algebra equipped with a normal,
semi-finite, faithful trace T satisfying 7(1) = « and let E be a p-convez (0 <
p < 00) quasi-Banach function space on (0, «) which is an interpolation space
for the couple (L', L>). Let (N%) be a sequence of von Neumann subalgebras of
M and N a common von Neumann subalgebra of the Ny, such that T|xr is semi-
finite. Suppose that (Ny) is independent with respect to Enr. If x1, € E(Ng)
satisfy Enr(xy) = 0, then

D I DL
="l prrB F10%

If E is moreover q-concave for some q < co, then

n 1 1

2 «12) 2

S|, Semax{[| (X lel?) (X lip)
szl sy 58 ) N ) 7|

Proof. Tt suffices to show that for any sequence of signs (ex)p_, C {—1,1}",

n n
[DOEE L] DIE P
ot w0 7 =

Define Ny = W*({Ny : e = 1}) and No = W*({N, : e = —1}).
Note that if £; = —1, then by independence and (3.8) it readily follows that
En,(x;) = En(x5) = 0. Hence,

EM)’ E(M)}'
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n

e (L) = Xaet 3 avlo) = Yoo

k=1 = er=—1 er=1

and analogously, Ex_(3-,_; ¥k) = >, __; ¥k. Since F is an interpolation
space for the couple (L', L>°), it follows from Theorem 5.5 that E(M) is
an interpolation space for the couple (L'(M), M). By Proposition 3.4 we
find that conditional expectations are bounded on E(M) by a constant cg
depending only on E. This implies that

H ’;EkkaE(M) - Hgkzz:lxk N Z kaE(M)

ep=—1
gl CORCSLOWER] WS DS

The final statement follows from Theorem 6.7. O

We are now ready to prove the main theorem of this section. For any n € N
we let M,, (M) be the von Neumann algebra of all n x n matrices with entries
in M, equipped with its natural non-normalized trace. For a finite sequence
(xk)p_, we denote by diag(zy),col(xy) and row(xy) the n x n matrix with
the z’s on its diagonal, first column and first row, respectively (and zeros
elsewhere).

Theorem 7.4. (Noncommutative Rosenthal inequalities) Let M be a semi-
finite von Neumann algebra equipped with a normal, semi-finite, faithful trace
7. Suppose that E is a symmetric Banach function space on (0,00) satisfying
any of the following conditions:

(i) E is an interpolation space for the couple (L%, LP) for some 2 < p < oo
and E is q-concave for some q < 00;
(ii) 2 < pg < qg < 0.

Let (N%) be a sequence of von Neumann subalgebras of M and let N be a
common von Neumann subalgebra of the (Ny) such that 7| is semi-finite.
Suppose that (N) is independent with respect to € = Enr. Let (zx) be a
sequence such that z, € E(Ny) and E(xy) =0 for all k. Then, for anyn > 1,

n n 1
. n 2
| Do ]| = maoe {liamCen)iicsllan, oo, | (3 Elan?)
k=1 k=1

"(;5|$Z|2>2 E(M)}' (7.1)

Remark 7.5. Note that if 2 < pp < gg < 0o, then FE is an interpolation space
for the couple (L2, L), for any p > qg. However, there are such spaces which
are not g-concave for any g < oo. Indeed, recall the Lorentz spaces LP'? on

EM)’
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(0,00) introduced in example 4.14. The space E = L3° has Boyd indices
pE = qg = 3, but is not g-concave for any ¢ < co. On the other hand, there
are spaces which satisfy condition (i), but not condition (ii). For example,
take E = L7 for 2 < r < oo.

Theorem 7.4 generalizes the Rosenthal inequalities for commutative Banach
function spaces ([64], Remark 7) and for noncommutative LP-spaces ([71],
Theorem 2.1). These two results can be recovered by taking M = L*®(£2),
N = C in the first case and by setting £ = L? in the second.

We first prove Theorem 7.4 under condition (i).

Proof. (of Theorem 7.4, condition (i)) By Lemma 4.12 the space E has order
continuous norm and therefore L' N L (N}) is dense in E(N},) for all k > 1.
Therefore, by approximation it suffices to prove the result in the special case
where the x; are bounded.

By assumption, E is an interpolation space for the couple (L2, L?) for some
p < oo and hence, by Proposition 4.23, the space F(3) is an interpolation space
for the couple (L', LZ). By Theorem 5.5 and Proposition 3.4 we find that £
is bounded on E3y(M).

We first prove that the maximum on the right hand side is dominated
by || > k|l E(m)- By our discussion preceding Corollary 6.9, the n-th Rade-
macher subspace Rad,,(E) is Cg-complemented in E(L>*®M), for some con-
stant Cp > 0 independent of n. Recall from Theorem 3.3 that LI(M) has
cotype ¢q if 2 < g < o0, i.e.,

skt = (£ 1) <[l
[ diag (k) =1 | Lo (az, (M) ;HMHM(M) < ;Tk@)xk B

By Theorem 5.5 we can interpolate this estimate for ¢ = 2 and ¢ = p to obtain

di T < ” g ® H . 7.2
|diag(zk)r=1ll B, (M) SE k:lrk Tk BLoFM) (7.2)

Moreover, by Lemma 6.27,
g ® H ~p H E H . 7.3
H "k Tk E(L>®M) & Tk E(M) ( )

Since the (M) are independent and £(zx) = 0 for all k, it follows that
E(zpzy) = E(xy)E(xy) = 0if j # k. As £ is bounded on E9)(M), we find
that

Nl

(3 etwian)

1
= E(z3xy Hz
E(M) sz: S P

() ()

1
2

E2)(M)
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~E g k
e’

*

and by applying this to the sequence (z}) we get

%
H(zk:g(xkxk)) HE(M) SE H zk:mkHE(M)'

We now prove the reverse inequality in (7.1). By Lemma 7.3,

52 2y 5 e {52 ) g (S esi)

By the quasi-triangle inequality in E3)(M) we have

. \?
X1 T
H(Zk: k k) HE(M)

<6 (| ;x;‘;zk - S(xek)HE(z)(M) +| ;mzxk)HE(z)(M)) . (75)

E(M)}. (7.4)

EM)

Notice that (|zgx|* —E(|zk|?))k>1 is independent with respect to £, self-adjoint,
and, moreover, &(|zx|? — E(|xx|?)) = 0 for all k. By again applying Lemma 7.3
we find that

1
2

E2)(M)

|-t 50 (St - tiony?)
k 2 k

S | (Zk: oul*)” HE(2)(M) - H<Zk:(g(|x’“|2))2)

where in the final inequality we use the quasi-triangle inequality in F(9)(M; 12).
Let & = col(|zk|) and y = diag(|zx|). Since u(xy) << p(z)u(y), it follows from
Theorem 4.20 that there is a contraction 7" for the couple (L', L>) such that

p(zy) = T (u(z)pu(y)). Therefore,

(>N

Nl

b
E(2)(M)

* ok 1
= 2
Fin (M) 1"y y2) 2 || B o) (M (M)

= [ly2ll £y (1, (M) SE @)Y B,
1 1
= |lu(z)2 puy)?

1
el H o2 2H , (7.6
[diag(z ) || (a1, (M) (;' ’“') E(M) (76)

1% < Wyl e, v 12| B, (a0

where in the final inequality we use the Holder-type inequality in Lemma 4.3.
Let &, be the conditional expectation in E(M,(M)) with respect to the von
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Neumann subalgebra M, (N), i.e. &, = € ® 1y, (). Writing z = col(|z|?),
we have £,(z) = col(€(|xx|?)) and so by boundedness of £, in Ez)(M,(M)),

1

(S cemy?)”

= [1((En(2))*En(2))E |50y (311

E)(M)

= €2 B (1. (M)
1
2
Se 2l B (v, (m)) = H(Z ka|4)
k
Putting our estimates together, starting from (7.5), we arrive at

[(Sear)

SE (||diag($k) | B0, (M) H (Z |$k|2> ’
k

E(2)(M)'

() )"

In other words, if we set a = [|(},, |zk|? )2 ey, b = |diag(xr)|l B, (M)

and ¢ = [|[(X,. £(|z&l?))? | £y, we have a? Sp ab+c?. Solving this quadratic
equation we obtain a S max{b,c}, or,

()

E(M)
S max { [ diag (i)l par, (w0 (Ze 24) | s
Applying this to the sequence (z}) gives
%
[(3 i)
k
1
3
S max { [ diag ()| mas, (w0 (Ze 7)) pon
The result now follows by (7.4). d

The result in Theorem 7.4 under condition (ii) follows directly from Lemma 7.2
and the following noncommutative version of the Burkholder-Rosenthal in-
equalities.

Theorem 7.6. (Noncommutative Burkholder-Rosenthal inequalities) Let M
be a semi-finite von Neumann algebra equipped with a normal, semi-finite,
faithful trace T. Suppose that E is a symmetric Banach function space on
(0,00) satisfying 2 < pgp < qg < 0. Let (My) be a filtration in M and, for
every k > 1, let &, denote the conditional expectation with respect to My,.
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Let (x1,) be a martingale difference sequence in E(M) with respect to (My,).
Then, for anyn > 1,

(3 eecse)’

z =g ma diag(zr )7 ’

I($ i)
k=1

Proof. We first prove that the maximum on the right hand side is dominated
by [| >, xllEmy- By (7.2) and (7.3),

EM)

E(M)}. (7.7)

dia (i) 1 DI (S
[ lag(fk)k_1\|E(Mn(M)) ~E ;xk EM)

Since 1 < PE@my < 4B, < 00, we obtain by applying the noncommutative dual
Doob inequality (Theorem 5.24) in E(9)(M),

Rt ~ R
(5 ety = [l

1 1
2 2
A E(3y(M) =

EM)

Therefore, by the Burkholder-Gundy inequality (6.23) in Theorem 6.29 we
conclude that

[(Zsteion) |, 0 | (S i)

and by applying this to the sequence (z}) we get

() 5

We now prove the reverse inequality in (7.7). By Theorem 6.29,

1 1
|32y o | (i) |y [ (BDmri)”
; k B(M) E ; kLk ; kLE

By the quasi-triangle inequality in E2)(M) we have

1
. 3
H (Zk:xkxk) E(M)

1
o (| Seio-ssvis, o[ Serotsiao )
<p zk:kak w1 (ThTE) B (M) zk: k—1(TpTE) iy (M)

(7.9)

<
E(M) ~E H zk:$k“E(M)

E(M)}. (7.8)

EM)’
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Notice that (|zx|*> — Ex—1(|zk]?))k>1 is a martingale difference sequence in
E(2)(M). Since 1 < pp,,, qp, < oo we find by Theorem 6.29

(St et

k
se | (; i) HE@)(M) - H(;wk_luxw»?)z

where in the final inequality we use the quasi-triangle inequality in E(2)(M;[2).
By applying the noncommutative Stein inequality (Lemma 6.28) to the second
term on the right-hand side, we find that

| v aina], 5o (S i)

As observed in (7.6), we have

[(Seart)

Putting our estimates together, starting from (7.9), we arrive at
3
(3
k

e (ldiag(@n)llpo, o | (D 2x2)
k

1
2

* *
Z xpTE — Ek,l(xkxk)H
H . E(2) E(2)(M)

b
E)(M)

[N

By (M)

E(M)

St [ (X tt?)”
B (M) SF diag (k)| £(ar, (M) zkzll’ﬂ

A (Setmm) [L)

In other words, if we set a = ||(3_, ENRE | By, b= ||diag(xr) || B(ar, (M) and

c= >k Ex—1(Jak] 2))z | £(m), we have a? S ab+ ¢®. Solving this quadratic
equation we obtain a <g max{b, c}, or,

[N

<E maX{”diag(xk)”E(Mn(M))z ‘

E(M)

(o) 0}

Applying this to the sequence (z}) gives

(i)

S max { | diag(@n) | p(ar, o) |

E(M)

(2 8eaei) 0}

The result now follows by (7.8). O
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Remark 7.7. Notice that in the proof of Theorems 7.4 and 7.6 we cannot
simply renorm F(3) to become a Banach space. Consider the Lorentz space
E = LP%(0,00), with p > 2 and 1 < ¢ < 2. Then FE is a fully symmet-
ric, separable Banach function space with pgr = qg = p > 2. However, the
space E(g) = L%'% contains a copy of I3 and since % < 1, L%% cannot be

isomorphically embedded into a Banach space (as ! % is not locally convex).

The result in Theorem 7.6 generalizes the Burkholder-Rosenthal inequalities
for noncommutative martingale difference sequences in noncommutative LP-
spaces and noncommutative Lorentz spaces found in [70], Theorem 5.1, and
[63], Theorem 3.1, respectively. Note, however, that the result in [70] is also
valid for Haagerup LP-spaces (i.e., if 7 is not a trace). We now sketch how to
recover the noncommutative Burkholder-Rosenthal inequalities for Haagerup
LP-spaces from our result for noncommutative symmetric spaces.

7.2 Inequalities in Haagerup LP-spaces

Let M be a von Neumann algebra equipped with a normal, faithful state ¢.
Let ¢ = 0% denote the modular automorphism group of R on M associated
with ¢. For any von Neumann subalgebra N of M satisfying o(N) C N, we
let R(N) = N x, R denote the von Neumann crossed product. It is known
that R(M) is a semi-finite von Neumann algebra and that there exists a
canonical normal semi-finite faithful trace 7 on R(M) such that

Tob  =e 't (t eR),
where & is the dual action of R on M corresponding to o. The Haagerup L?-
space LP(M, ¢) is defined as the space of all elements x € S(7) which satisfy
oi(x) = e »x. We let D denote the Radon-Nikodym derivative of the dual
weight ¢ with respect to 7, i.e.,

b(z) =7(Dz) (¥ € R(M)).

The operator D is in S(7), and, moreover, D € L*(M, ). If N is any von
Neumann subalgebra of M, then the Radon-Nikodym derivative of ¢|n with
respect to 7 is again equal to D. In particular, D € S(R(N), T|g ) for any
von Neumann subalgebra N of M.

Let N be a von Neumann subalgebra of M and suppose that A is in-
variant under o, i.e., o(N) C N. Then there exists a unique normal, faith-
ful conditional expectation & : M — N such that ¢ o & = ¢ (c.f. [130]).
One can show that £ extends to a normal faithful conditional expectation
£ : R(M) = R(N) which satisfies 7 0 & = 7 (see e.g. [56], Theorem 4.1).
One can then further extend & as usual to a map on L' + L°(R(M)) which
satisfies the properties in Proposition 3.4. We refer to [56, 70] for more details
on Haagerup LP-spaces.
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Recall that the Lorentz space LP:>°(0, 00) consists of all f € S(0,00) such
that

1
[fllpoc = sup &7 pi(f) < oo.
0<t<oo

If 1 < p < oo then LP*°(0,00) can be equipped with an equivalent norm

t
1_
1fllpoe) = sup £371 / 1s(f)ds.
0<t<oo 0

Under this norm LP-*°(0,00) is a fully symmetric Banach function space.
Moreover, LP'*° has the Fatou property and prr.~ = qrr.~ = p. We wish
to obtain the Burkholder-Rosenthal inequalities for Haagerup LP-spaces by
using the following embedding result due to H. Kosaki (see [84], Theorem
3.2).

Proposition 7.8. If 1 < p < oo, then the Haagerup space LP(M, ) is a
closed subspace of LP*>°(R(M), ). Moreover, zf%7 + 1% =1, then

lzllzemg) = Pllzllemry,y  (z € LP(M, 9)).
The following corollary yields an alternative proof of Theorem 5.1 from [70].

Corollary 7.9. Fiz 2 < p < co. Let M be a von Neumann algebra equipped
with a normal, faithful state ¢. Suppose that (My) is an increasing sequence
of von Neumann subalgebras of M. Suppose that, for every k > 1, My is
mwvariant under o and let & denote the associated conditional expectation. If
(x) is a finite martingale difference sequence in LP (M, @) with respect to the
filtration (My,), then

b

1
o~y max{”(xk)Hlp(Lp(M@)), H (Zék—1|$k|2) ’
k

(3 icoz)’
k

Proof. The case where p = 2 is trivial, so suppose that 2 < p < co. We can
view (x) as a martingale difference sequence with respect to the increasing
sequence of conditional expectations (£;). Therefore, Theorem 7.6 applied for
in LP>°(R(M)) yields

e

=, max { [[diag ()| (a1, (R )

LP(M,¢) Lr(M,0)

LP(M,as)}'

Lre= (R(M))

@0 2o . 8oz N e rr0) 6y - (7-10)
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Consider the normal, semi-finite, faithful weight ) = ¢ ® Tr on M®@B(I?). As
observed in [70], p. 995, the modular automorphism group ¥ associated with
¢ is given by o ® 1p(;2y and consequently,

(MBB(I?)) Xyv R = (M x, RY®B(I*) = RIM)BB(I?).

Moreover, the canonical normal, semi-finite, faithful trace on R(M)@B(I?) is
given by 7 ® Tr. By Proposition 7.8 we obtain

p'||diag(ze )l Lo (a1, (R(M))) = | diag(@e)] Le (a1, (M), 60Tr)-

Finally,
|diag(zr )| Le (a1, (M),00Te) = 1@k lip (P (A, 0))-

Therefore, we obtain (7.10) by applying Proposition 7.8 to every term in
(7.10). O

By duality one can also deduce a version of Corollary 7.9 for 1 < p < 2. We
refer to [70], Theorem 6.1, for details.

7.3 Khintchine inequalities revisited

As an application of Theorem 7.4 we derive noncommutative Khintchine-type
inequalities in which the Rademacher sequence is replaced by a sequence of
independent noncommutative random variables. Similar inequalities in non-
commutative LP-spaces were considered in [71].

If (z4) is a net in S(7), then we say that z, converges locally in measure
to x € S(7) if exqe — exe in S(1) for every projection e € M with 7(e) < oo.

Lemma 7.10. Let M be a semi-finite von Neumann algebra and let p, be a
net of projections such that po, T 1. Then poxps — T locally in measure, for
any x € S(7).

Proof. Let e be a finite trace projection. If y € So(7) and z,, is a net in S(7) 1
such that z,, | 0, then one can show (see e.g. [50]) that zoy — 0 and yz, — 0
in measure. In particular, ep, — e and p,e — e. Since multiplication is
bicontinuous with respect to the measure topology we obtain ep,xp.e — exe,
as asserted. (]

For any 1 < ¢ < oo and any sequence (ay,) in L?(M) we use the notation

Cq 1= i%f lakllg, dg = sgp vkl -

Corollary 7.11. Suppose that E is a symmetric Banach function space on
(0,00) which satisfies condition (i) or (ii) of Theorem 7.4 and let 2 < p <
oo be such that E is an interpolation space for the couple (L*, LP). Suppose
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that E is either separable or has the Fatou property. Let N be a finite von
Neumann algebra equipped with a normal, faithful, finite trace o and let (o)
be a sequence in LP(N') such that

Co 1= iI;%f llakllz >0, d, :=sup||ag|l, < oc.
k
Assume that (ay) is independent with respect to o and that o(ay) = 0 for

all k > 1. Let M be a finite von Neumann algebra equipped with a normal,
faithful, finite trace T and (xy) be a finite sequence in E(M). Then,

~ e . (711
H;akmka@M) Besdy wax {20 a1 @)l mouas) b (7.11)

Proof. Note that for (z)p_, in E(M) it is a priori not clear that > ap ®
x) defines an element of F(N®M). We deduce this via an approximation
argument. Suppose first that the a; and x are bounded. Identify M with
Cly®@M C NRM. It is easy to see that

Emla@z)=0c(a)ly @z (a € LP(N), z € M).

Since (o) is independent with respect to o, it follows that (aj ® xy) is in-
dependent with respect to Eaq and, moreover, Eaq(ay ® x) = 0 for all k. By
Theorem 7.4,

H dar® wkHE ~p max {lldiag(ak & o) | p(ar, WEM))»
k
(@ ® o) | g anenzy: |l @k © o) lEvEane s |-

Now,

1
2

e @ 20l pvaatens = || (D2 Emllan @ larf?)
k

E(M)
%
= Trak|lo 2) ,
| (X aianlont)” ..
k
so by assumption,
(o @ i) | VB M Ens12) Zeanda [[(@0) | BAM2)-
Applying this to (af ® x}), we obtain
[k @ i) | BB M Ens12) ooz [[(@R) [ E(AM;2)-
Notice that for any 2 < ¢ < oo we have [Jag ® zilq = |lakllqllzk|ly and

therefore,
[k @ k)10 (Lo nBMY) Zeardy (@R [l1a(La 1))
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Also, [[(@x)|lia(zamy) < 1(@x) || La(az12), which follows by interpolation of the
cases ¢ = 2 and ¢ = oo. Hence, for any 2 < ¢ < oo, the map (xg) —
diag(ax ®xy) extends to a bounded map from L9(M;1?) into LY(M,,(N@M))
with norm bounded by d,. By interpolation, i.e., using Theorem 5.5,

[diag (o @ zi)|| poar, waM)) SEA, (@) B(A2)-

By approximation (7.11) holds for ay, € LP(M) with ¢z > 0 and d,, < .
Suppose now that E has the Fatou property and let (x)7_, be a finite

o 1
sequence in E(M). For every n > 1 set e,, = (X lonl*)2 [0,n]. Then e,xke,
is bounded for all &k and n, so by the above,

H E ap Q e, Tren
k

ENBM) 5E7C27dp H <enxken)HE(M;l?)ﬂE(M;lg)

< @)l Eovsz)nEmse)-

By Lemma 7.10 we find that )", cp®epzre, — Y, ar®xzy locally in measure.
Since the closed unit ball of E(M) is closed in S(7) for convergence in the
local measure topology if E has the Fatou property ([49], Proposition 5.14),
we deduce that ), ap ® x;, € E(M) and

< . . .
| Pawe 7| g SEents max LNl iz @) lpo |

The reverse estimate is proved similarly.

Suppose now that E is separable. Then there exists a sequence (z}') in
E(M;12)N E(M;12) such that 27" is bounded and (z7*) — (z) in BE(M;12)N
E(M;1?). By the above, the sequence (3> oy ® ) is Cauchy in E(N@M)
and hence converges to some y € F(N®M) in norm and hence also with
respect to the measure topology. On the other hand, it is clear that zj* —
in measure for all k and so ) ag @ )" — > ax ® x}* in measure. Therefore
y = > ar @z and we conclude that > ay ® xy is in E(N®M) and that
(7.11) holds. O

By a duality argument we can now deduce the following result.

Corollary 7.12. Let E be a separable symmetric space on (0,00) which is
either p-convex for some p > 1 and 2-concave or satisfies 1 < pg < qp < 2.
Let 1 < r < p (respectively, 1 < r < pg) and let v’ be such that % + % =1.
Let N be a von Neumann algebra equipped with a normal, faithful, finite trace
o and let (o) be a sequence in L (N) such that

Cy = iréf lakllz >0, dpr = szp lag |l < oo.

Assume that (oy) is independent with respect to o and that o(oy) = 0 for
all k > 1. Let M be another von Neumann algebra equipped with a normal,
faithful, finite trace 7. If (x1) is a finite sequence in E(M), then
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o~ , i f{ . . },
| Mawe 4] | p ey =Pt {100 v + 1) v

where the infimum runs over all decompositions x =y + 2z in E(M).

Proof. Suppose first that (oy)}_; and (xy)}_, are finite sequences in N and
M, respectively. Let £r( denote the conditional expectation onto the von
Neumann subalgebra C1y®M. Let 1 < ¢ < 2, then 4 < 1 and it follows by
[68], Theorem 7.1, that

n 9 n 2 n 2
| aon],=[[Eaen], < e Zaenl],
k=1 4 k=1 2 k=1 2
n
_ ¥r || 2 < 2 2
= | S wtanlont]], < ( s N3 @) 2ogare)-
=1 bl 1<k<n

By approximation, the estimate

n
2
a®x” §(sua2)x 2 .
Hki_l EO k|| kzl?” k2 ) @) e (asi2)

holds for any sequence (ay)r>1 in L?(M) such that supy, [|ak||2 < co. Hence,
for any 1 < ¢ < 2, the map (zx) — >, o ® xj, extends to a bounded map
from L(M;1?) into LY(N®M) with norm bounded by ds. Notice that E(M)
is an interpolation space for the couple (L"(M), L?(M)) by Theorems 4.31
and 5.5. By interpolation we obtain,

ap ®x H < x 42).
H zk: k k ENEM) do (@)l vz
Applying this to (o) ® x}) yields
ap T H < x 42)-
H Dok k] g St IE0llmay
By the triangle inequality, we arrive at
<o {100 »).
| S aroa], o Se mf (Il + e
where the infimum runs over all decompositions zy = yi + zx in E(M).
We deduce the opposite inequality by duality. Since ¢ > 0, we may assume
that [Jag||2 = 1 for all k. Let (x;') be a finite sequence in E*(M). Notice that
E* = E* is either 2-convex and p’-concave for p’ < oo (c.f. Theorem 4.13) or

satisfies 2 < ppx < gpx < oo by (4.7). Moreover, E* has the Fatou property.
Therefore we can apply Corollary 7.11 and obtain

ijr(xkx;f) =0®T<(Zk:ak®xk)(zj:aj®x;))
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S DICTCEN N DICEEA
- zk: k k EN®M) zj: J Il Ex (NaMm)

X X
[ S ([ PRavA [l vy

Taking the supremum over all finite sequences (z;') in E* (M) and using that
(BE(M;12) + E(M;12)* = EX(M;12) N EX(M;1?) isometrically, we obtain
the desired inequality. O

In Corollary 8.20 we will use Theorem 7.4 to derive Khintchine-type inequal-
ities for free product von Neumann algebras.

7.4 Independent vectors in a noncommutative
symmetric space

We return to the setting of Chapter 3 and consider sums of independent ran-
dom vectors in a noncommutative Banach function spaces. The main result,

Theorem 7.14, is an extension of the result for L%-spaces stated in Theo-
rem 3.8.

Lemma 7.13. Suppose that M is a semi-finite von Neumann algebra and let
E be a 2-convex symmetric Banach function space on (0,00) with Fatou norm.
If (&) is a finite sequence of independent, mean zero E(M)-valued random
variables, then
1
) 2
(M)

max{”(;EKi'Q)% B(M) (Ei:E'S'Q)é E(M)} SE (]EH;& j;

Proof. Since E is 2-convex and has Fatou norm, it follows that E(M) is 2-
convex as well (see e.g. [50]). By Corollary 1.10 and (6.13),

(56,0,
= ( LW
Emax{< () [l El () L))
(B S, ) S, ')

12 % * |2 %
ZEmaX{Hzi:EKz E@)(M)’HZ:ElEi HE(2)(M)}

1
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= max {[(Zm) ], (S mr)’

where the final inequality follows by 2-convexity of E(M). O

EM) E(M)}’

Theorem 7.14. Suppose that 2 < p < oo and let E be a symmetric Banach
function space on (0,00) which is 2-convex and g-concave for some q < o©.
Let M be a semi-finite von Neumann algebra. If (&) is a finite sequence of
independent, mean zero E(M)-valued random variables, then

(s

n

(TEer)’

i=1

1

)} ] ()

(B diag (&) [ ar, ey |- (7.12)

E(M)” EM)’

Proof. By renorming we may assume that the 2-convexity constant of E is
equal to 1. Note that E has Fatou norm by Lemma 4.12. We first show that the
maximum on the right hand side dominates (E|| >, & ||€E(M))%. In Lemma 7.13
we observed that

el (), (26, 0 20 (6, )

By Theorem 4.31, E is an interpolation space for the couple (L?, L?). There-
fore, by our discussion preceding Corollary 6.9, the n-th Rademacher subspace
Rad,,(F) is Cg-complemented in E(L*°®M), for some constant Cg > 0 inde-
pendent of n. Recall from Theorem 3.3 that L™ (M) has cotype r if 2 < r < oo,
ie.,

1

) <[ o
=1

By interpolation of this estimate for » = 2 and r = ¢ we obtain

[diag(&)ie1llr(ar, (M) = ( >l
=1

LT (L*BM)

diag (&) < H T @& .
|diag(&)izy | B, (M) SE ; 3 BL=EM)

Moreover, by Corollary 6.9,

n
H d ek
i=1

By Corollary 1.10 we conclude that

n n

> i < (Er > ri

=1 i=1

P 1
E ]ET ) ! .
E(M)

E(L®®M) E(M)

» 1
E||diag(&), ||” » <p (EE, ’
(Elldiag(€:)is B ar, ovn)) S ( s

n
Zﬁfi
i1
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n P 1
~ IEH : )
DI

We now prove the reverse inequality. By randomization (c.f. Corollary 1.10)
and Theorem 6.7 we have

Elzel.,)’
e o { (B (S )’

1
};‘(M))p}.

(7.13)

S

(e

%

Z?(M))

We estimate the first term on the right hand side. By the triangle inequality
in E3)(M) we obtain,

Gl ],

s((lEHXi:I&Q—EI&IQ E@)(M)) +H;E|si|2HE(2>(M)) . (7.14)

We focus on the first term on the right hand side. By randomizing and applying
Theorem 6.7 we find that

(]EH XZ: &2 — E|&)1? E(z)(/\/l)) !
e (E|( 116 - mel?) L )7
< (= (1)1}, )+ | (Srmere)

where we use the triangle inequality in Ez)(M; 12). Notice that the second
term on the right hand side is smaller than the first one. Indeed,

|(ZiEeee)

P 2
2

P
2

b
E2)(M)

= 1(E 12
E(2y(M) HCO( |§’L| )HE(Z)(Mn(M))

= [[E(col(|& )| 5y (a1 (M)
2

< (Elcol(|&[*)1 7, (a1, ry)*
- (E(Zer)’

Write 2 = col(|§;]) and y = diag(|&;]). Since E(yy is a Z-concave symmetric
Banach function space, it is separable by Lemma 4.12 and therefore fully
symmetric. Using that pu(yx) << p(y)p(z), we obtain

P 2
2

E<2><M>) '
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(E|(Ser)’

2
P

El@y y2) 21 3, v any) ?

E(2>(M)>

2
P

Ellyzl £ ) a1, (M)
L 2

e Elp@)u@)lz,)?
1 1 2

= (El|lp(y)zp(z)z|5)?.

By Lemma 4.3 this implies that

(EI(Z ),

2.2

< (B[ llyllear, mpllzll e, (vl 2)
1 1
< (EHyH%(M”(M)))P(EHLEH%(MH(M)))P

— (E|ldiag(€:) % ar, ar))) (B (ZI&IQ)

Collecting our estimates, starting from (7.14), we obtain the quadratic equa-
tion

2

) P
Ey(M)

1
P

E(M))

a? Sp.E ab+ 2,

~

1 : 1
where we set a = (E||(3_, |§i|2)%||%(M))p b= (E||d1ag(§i)||’];(M (Mmy))? and
c= |, El&)? )2 | E(Mm)- Solving this quadratic equation we conclude that
a <p g max{b, c}, i.e.

( H( <l ) (M));
oo { (i)’

Applying this to the sequence (£}) we obtain

EI R,
Spib max{H(;mgz‘F)

By (7.13) our proof is complete. O

. 1
povey EIiR(E s, 00 -

1

=

[ R a0 -
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Noncommutative stochastic integration

In this final chapter we apply the Khintchine-type inequalities obtained in
Section 7.3 to prove [t6-type isomorphisms for stochastic integrals with respect
to Boson and free Brownian motions. The key additional ingredients used to
prove these results are two novel noncommutative decoupling inequalities,
presented in Theorems 8.14 and 8.15.

8.1 Noncommutative decoupling inequalities

We start by discussing two preliminary notions from noncommutative prob-
ability theory. Firstly, we consider two ‘strong’ forms of independence and,
secondly, we define probability distributions for normal operators affiliated to
a finite von Neumann algebra. In the final part we prove two noncommutative
decoupling inequalities.

8.1.1 Tensor and free independence

For the purpose of this section we introduce the following terminology.

Definition 8.1. A pair (M, 7) consisting of a finite von Neumann algebra
and a normal, faithful trace 7 on M satisfying 7(1) = 1 is called a noncom-
mutative probability space.

In this chapter we are concerned with the following two specific notions of
independence: tensor independence, which is a straightforward generalization
of the notion in classical probability theory and free independence, which was
introduced by D.V. Voiculescu and led to the development of free probability
theory which takes free independence as its axiom (see [140] and [109] for
this beautiful theory). By axiomatizing the intuitive requirements a notion of
independence should satisfy, one can in fact show that, in a sense, these are
the only possible notions of independence in a noncommutative probability
space (c.f. [17]).
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Definition 8.2. Let (M, 1) be a noncommutative probability space. The von
Neumann subalgebras Az, ..., An of M are called tensor independent if we
have the following factorization:

n N N n

T(H (H%)) :HT<H%‘>’

j=1 =1 =1 J=1

whenever a;; € A; (j=1,...,n; i=1,...,N; n,N € N).
The von Neumann subalgebras Ay, ..., An are called freely independent if

T(jljlaj) =0

whenever the following conditions hold:

(a) n is a positive integer;

(b) aj € Ajyy forallj=1,...,n;

(¢)T(a;) =0 forallj=1,...,n;

(d) neighboring elements are from different subalgebras, that is i(1) # i(2),
1(2) #4(3),...,i(n —1) #i(n).

A collection {A;}icr of von Neumann subalgebras of M is called (ten-
sor/freely) independent if every finite subcollection is (tensor/freely) indepen-
dent.

One should observe that both tensor and free independence imply indepen-
dence in the sense of Definition 7.1 with respect to the trivial von Neumann
subalgebra C1.

Suppose that A;, As, A3 are von Neumann subalgebras of M. Then A;
is (tensor/freely) independent of As if and only if Ay is (tensor/freely) inde-
pendent of A;. If this is the case, then any von Neumann subalgebra of A;
is (tensor/freely) independent of any von Neumann subalgebra of 4. More-
over, we note that A, Ay, As are (tensor/freely) independent if and only if
Aj, Ay are (tensor/freely) independent and W*(A;,As) and Aj are (ten-
sor/freely) independent if and only if As, As are (tensor/freely) independent
and W*(As, A3) and A; are (tensor/freely) independent. That is, tensor and
free independence carry over to subalgebras, are commutative and associative.

Remark 8.3. For a t-measurable operator a independence is always under-
stood in terms of the von Neumann subalgebra W*(a) it generates. That is,
we call a sequence (ai)52, in S(7) (tensor/freely) independent if the sequence
(W*(ag))52, of von Neumann subalgebras in M is (tensor/freely) indepen-
dent.

Roughly speaking, tensor and free independence correspond to two different
ways of constructing products of noncommutative probability spaces. Sup-
pose we are given some finite set (My,71),..., (M4, 7,) of noncommutative
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probability spaces. We wish to define a product probability space, that is, a
noncommutative probability space (M, 7) such that the M; are contained in
M, Tequals T, on M; (i=1,...,n), My,..., M, generate M as a von Neu-
mann algebra and My, ..., M,, are independent in a certain sense in M with
respect to 7. We will consider two types of product probability spaces: the
tensor product of noncommutative probability spaces, which corresponds to
tensor independence and is a generalization of the product of classical prob-
ability spaces, and the free product of noncommutative probability spaces,
in which case My, ..., M, are freely independent in the product space. The
tensor product construction is classical, see e.g. [131].

Theorem 8.4. (Tensor product probability space) Let (M1, 71),...,(Mp,Tn)
be noncommutative probability spaces (i =1,...,n). Set M = M1®--- @M,
the von Neumann algebra tensor product of My,.... My, T=T1 Q- @ Ty
and define the maps W : M; = M by Wi(a) =1® - ®1@ae®1---®1 (a
on the i-th spot). Then (M, T) is a noncommutative probability space and the
following properties are satisfied:

The maps W; : M; — M are normal, injective, unital x-homomorphisms;
The von Neumann algebras W;(M;) are tensor independent with respect

to T;
Ul Wi(M,) generates M as a von Neumann algebra;
ToW;, =1 fori=1,...,n.

The following lemma is a direct consequence of the associativity of tensor
independence.

Lemma 8.5. Let (M1, 71),..., (M, 7,) be noncommutative probability spaces
and (M, 1) be their tensor product probability space. For each i, let A;, B; be
von Neumann subalgebras of M; such that A; is tensor independent of B; with
respect to 7;. Then A1®---®A, is tensor independent of B1® - - - ®B,, with
respect to 7.

The construction of a free product of C*-probability spaces, i.e. C*-algebras
equipped with a state, is well-known (see e.g. Section 7 of [109]) and can be
easily adapted to our present setting. We leave the details to the reader.

Theorem 8.6. (Free product probability space) Let (My,71),...,(Mp,Ts) be
noncommutative probability spaces (i = 1,...,n). Then there exists a non-
commutative probability space (M, 1) and a family of normal, injective, unital
x-homomorphisms W; : M; — M such that

e The von Neumann algebras W;(M,;) are freely independent with respect to

T;
Ur_ Wi (M) generates M as a von Neumann algebra;
ToW; =1, fori=1,...,n.

In what follows, we shall identify M, with its image W;(M;) in M. Note that
this identification is trace preserving, since 7; = 70 W;.
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The following lemma is the equivalent of Lemma 8.5 for free product prob-
ability spaces and a consequence of the associativity of free independence.

Lemma 8.7. Let (M1, 71),...,(My,7,) be noncommutative probability spaces
and (M, T) be their free product probability space. For each i, let A;, B; be von
Neumann subalgebras of M; such that A; is freely independent of BB; with re-
spect to ;. Then Ay x*---x A, is freely independent of By *- - - x B, with respect
to T.

For clarity, we shall write a * b for the product of two elements ¢ and b in a
free product probability space.

8.1.2 Probability distributions

We now turn to the problem of defining probability distributions for random
variables associated with a noncommutative probability space. We begin by
recalling the following definition.

Definition 8.8. Let (£2, F) be a measurable space, 7 a complex Hilbert space
and let P(S) denote the set of (orthogonal) projections in €. Then a spec-
tral measure e on (§2,F) is a set map e : F — P(H) satisfying

o c(2)=1;
o ¢(ANB)=¢e(Ae(B) =

=e
e for any sequence (A,)32,

(B)e(A) for any A,B € F;
of disjoint elements of F we have

oo (oo}
e(JAn) =D eldn),
n=1 n=1
where the sum on the right hand side converges in the strong operator

topology.

It is well-known that we can define a spectral integral with respect to a spectral
measure e for any F-measurable function f : 2 — C, which we denote by

/Q FOV de(N).

This defines a normal operator on ., which is self-adjoint if f is real-valued
and bounded if f is.

Conversely, suppose that a is a normal operator. By the spectral theorem,
there exists a unique spectral measure e® on the Borel subsets B(C) of C such

that
a= / A de®(N).
C

Moreover, for every Borel function f : C — C,

f(a) = /@ ) de? ()
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defines a normal operator.
If e is any spectral measure on a measurable space ({2, F), f: 2 — C an F-
measurable function and z = [ f de, then the spectral measure of z is given
by

e"(B)=e(f7'(B))  (BeB(C)).

If M is a von Neumann algebra, then a normal operator a is affiliated with
M if and only if e*(B) € M for every B € B(C). If this is the case,

W*(a) = W*({e"(B) : B € B(C)})

and moreover f(a) is affiliated with W*(a), for any Borel function f : C — C.
We can use the spectral measure e® to define a probability distribution for a.
Indeed, by the properties of e* and 7 it is not difficult to see that the map

(re")(B) = 7(e"(B)) (B € B(C))

defines a Borel probability measure on C. Indeed, countable additivity follows
by countable additivity of e and complete additivity of 7. We will call this
the probability distribution of the normal operator a. The following property is
well known and not difficult to prove using normality of 7 and the monotone
convergence theorem.

Lemma 8.9. Let (M, 1) be a noncommutative probability space and suppose
a is a normal operator in S(t). Then, for any Borel function f : C — C,
f(a) € LY(M) if and only if f € L'(C,7e*) and in this case

(f(a) = /@ O d(re?) (V).

We shall call two normal operators in S(7) identically distributed if their prob-
ability distributions coincide.

For elements of L'(M) which are not normal, we cannot define a probabil-
ity distribution as above. For an element a € M we can still look at its -
moments, by which we mean the complex numbers 7(M (a, a*)), where M(z,Z)
is any monomial in z and Z. For normal elements in M, the probability dis-
tribution is completely determined by its *-moments.

Proposition 8.10. Let (M, 1) be a noncommutative probability space and let
a,b € M be normal elements. If a1 and as have identical x-moments and their
spectra o(a1) and o(az) coincide, then they are identically distributed.

Proof. Set ¢ = o(a1) = o(az). By the Stone-Weierstrass theorem, we
can approximate any f € C(o) uniformly on o by a sequence (p,)>2; of
polynomials in z,Z. In particular, the set {(p,), f} is uniformly bounded
on o. By the Borel functional calculus for normal operators, for i = 1,2
we have pp(a;,af) — f(a;) in the strong operator topology and since
{(pn(a;s,al), f(a;)} is norm bounded, this convergence actually holds in the
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ultra-strong operator topology. Since a1 and as have identical *-moments, we
have by linearity 7(py(a1,a3)) = 7(pn(az,al)) for all n. By ultra-weak conti-
nuity of 7 we obtain 7(f(a1)) = 7(f(az)) for every f € C(0).

Let any open subset B C o(a) be given and let (f,,)52, be a sequence in C(0)
approximating x g pointwise from below. Then f,(a;) 1 e (B) (i = 1,2) and
by normality of 7 we obtain that a; and as are identically distributed. O

8.1.3 Decoupling

As a first step towards defining stochastic integrals, we now prove two de-
coupling results for stochastic integrals of simple adapted processes. The key
results are Theorems 8.14 (for integrators with tensor independent increments)
and 8.15 (for integrators with freely independent increments).

We need two preliminary observations. The first result generalizes the clas-
sical statement that conditioning on an independent o-algebra is redundant.
To facilitate computations with freely independent von Neumann algebras we
use the notation a® := a — 7(a) for a € L'(M). Moreover, throughout this
section we write 7(-|.4) to denote the conditional expectation with respect to
a von Neumann subalgebra A of M.

Lemma 8.11. Let (M, 7T) be a noncommutative probability space. Fiz u €
LY(M) and let Ay, Az be von Neumann subalgebras of M such that W*(u, A;)
and Ay are either tensor independent or freely independent. Then,

7(7(ulA1)v) = 7(uw) (v e L®(W* (A, A)). (8.1)

In other words, T(u|A1, A2) = 7(u|lA1). In particular, if 1 < p < co and
u € LP(M), then (8.1) holds for any v € LP (W*(Ay, Ag)), where I%—i— L =1

p

Proof. Notice that to prove (8.1) it suffices to show for u € M that

T(T(u|A1)v1,102.1 - - V1 kU2 k) = T(UV11V21 - - V1 kV2E);

(8.2)
T(T(uAr)v2,101,1 - - 2 k1K) = T(UV2,101,1 - - - V2KV k),

for any k € N and where v; ; € A, for i = 1,2, j =1,...,k (note that the v, ;
are allowed to be equal to 1 as 1 € A; for ¢ = 1,2). Indeed, suppose this is
true. Then by linearity, we have

7(1(ulA1)g) = 7(ug),

for any polynomial g in elements of .4; and As. Since such polynomials (i.e.
the algebra generated by A; U As) are ultra-weakly dense in W* (A, As), we
obtain

7(1(u|A1)v) = 7(Wv),

for any v € W*(Ay, A2). Now (8.1) follows for u € L'(M) by a density
argument and L!-contractivity of 7(-|.A;).
Suppose first that W*(u,.A;) and Az are tensor independent. Then,
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T(uv11v2,1 - V1 V2 k) = T(uv11 -+ 01 k)T (V2,1 - - V2 k)
(7 (ulA1)v1,1 - v1) T (V2,1 v2,k)
-

(T(U|A1)Ul,1v2,1 T vl,k'UQ,k)~

This proves the first equation of (8.2) in the case of tensor independence, the
proof of the second is analogous.

Suppose now that W*(u,.A;) and As are freely independent. We will prove
(8.2) by induction on k. Notice first that for v € Ay we have 7(uwv) =
T(w)r(v) = 7(r(ulA1))7(v) = 7(7(u|A1)v). For v € A; we have T(wv) =
7(7(u|A1)v) by (3.8). Suppose that (8.2) holds for k = n. For the first equa-
tion of (8.2) we have

T(UU1,1U2,1 e 'U1,n112,n111,n+1) = T(UU1,1U2,1 e 'U1,nv2,n(111,n+1)0)
+7(uv1 12,1 ¢+ V1,0V2,0)T (V1 nt1)
= T(UU1,102,1 . ‘vl,nUQ,n(vl,n+l)o)
+7(7(u]A1)v1 1021 - - - U1 nV2,0) T (V1 041),
where in the last step we use the induction hypothesis. We now proceed by

writing ve , = (v2,,)° + T(v2,,) in the first term on the far right hand side to
obtain

T(uv1,102,1 - V1,002, (V1,041)°) = T(u01,102,1 - - V1,0 (V2,0)° (V1,041)°)
+7(uv11v2,1 V1,0 (V1,041)°) T(V2,0)-

We can now write vi ,, = (v1,,)° + 7(v1,) in the first term on the right hand
side and expand by linearity. Continuing in this fashion we arrive at

T(uv1,1v2,1 V102001 n41) = T((wv1,1)°(02,1)°  (V1,0)° (V2,0)° (V1,041)°)

~+lower order terms,

where the lower order terms are products of elements of the form 7(v; ;) with
Jj<n-+1and 7(uvi 1wz - wiwe,) with I < n and wy; € A, (k =1,2).
To these terms we can apply the induction hypothesis, i.e. we can replace u
by 7(u|A;). For the first term in the above equation we note that by free
independence,

T((UU1,1)O(02,1)0 s (U1,n)o(v2,n)o(vl,n+1)o) =0
7((7(u[A1)v1,1)%(v2,1)° - (V1,0)°(V2,0)° (V1,041)°) =0

Now apply the above argument backwards with 7(u|.4;) instead of u to obtain
T(T(U|A1)U1,1U2,1 o 'U1,n112,n111,n+1) = T(uU1,102,1 te U1,nU2,nU1,n+1)-

For the second equation of (8.2) we use the same argument, with the only
minor difference that we use the expansion
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T(uv2,1v1,1 V2, V1 nV2,n4+1) = T(u®(02,1)°(v1,1)° + (V2,0)° (V1,0)° (V2,0 41)°)

+lower order terms.
By induction, we have proved (8.2). O

The following technical lemma is used to handle the case where the integrator
has tensor independent, normal, but unbounded increments.

Lemma 8.12. Let (M, 7) be a noncommutative probability space. Suppose a,b
are commuting normal elements in L'(M), which are identically distributed
and tensor independent. Then,

7(a —bla+b) =0.

Proof. Let e, e’ denote the spectral measures of a and b, respectively, then
there is a unique product spectral measure e = e xe? on (C2, B(C?)) (c.f. [21]).
Let e®t® be the spectral measure of a + b. Clearly, by ultra-weak continuity
of the map ¢ — 7((a — b)c) on M, it suffices to show that

7((a — b)e***(B)) = 0, (8.3)

for every B € B(C).
Let B € B(C) be arbitrary and set A = {(21,22) € C?: z; + 23 € B}. By the
joint functional calculus of a and b,

(=00 (B) = [ (1= sa)aten,a) de)an, ),

and by Lemma 8.9,

7((a — b)e***(B)) = /(CZ (21 — z2)xa(21, 22) d(T€)(21, 22).

For any Cy,Cy € B(C),
Te(C1 x Cy) = (e x e?(Cy x Cy))
= 7(e%(C1))7(e’(Cy)) = Te® x Te’(Cy x Cs),

so Te is equal to the product probability measure Te® x Teb. Since Te* = Te?

and (z1,22) € A if and only if (29, 21) € A, we obtain

/ (21— za)xa(z1, 20) d(re) = / (22 — z1)xalzz, 1) d(re® x 7¢)
Cz

C2

- _/ (21— 22)xa(21, 22) d(7e).
(CZ

Hence, 7((a — b)e?T?(B)) = 0 and our proof is complete. O
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Definition 8.13. Let (M, 1) be a noncommutative probability space and let
(Mp)22, be a discrete-time filtration in M. A sequence ()22, in M is

called predictable with respect to (Mp)S%q if ©n € My for alln > 1.

The following two decoupling theorems are noncommutative versions of The-
orem 2.3. The argument used to prove these results has its roots in [104],
Theorem 6.1 (see also [106], Lemma 3.4).

Theorem 8.14. Let E be a symmetric Banach function space on (0,00) with
1 < pg < qg < oco. Suppose that (M,7) and (M,7) are noncommutative
probability spaces. Let (My)N_o,(Mn)N_ be filtrations in M and M, and
let (vo)M_, (wn)D_, be (Mn),]yzo—predic’tgble sequences in M. Suppose that

£, N €EE(M) and &y, ... ,Ex € E(M) satisfy the following conditions:
o &n,&, are centred, ie. T(£,) = 7(£,) =0 (n=1,...,N);

o (€ EWM,), & € E(M,) forn=1,...,N; N

o &, is tensor independent of M,_1 and &, is tensor independent of M,,_1
form=1,... N;

o If&, and §~n are bounded operators for everyn = 1,..., N, then we assume
that &, and &, have identical x-moments. Otherwise, we assume that for
everyn=1,...,N, &, and én are normal and identically distributed.

Under these assumptions,

N
H > vnénwn
n=1

where (M,T) denotes the tensor product probability space of (M,T) and
(M, 7).
Proof. Forn=1,..., N define

(8.4)

N
~FE H Vnp Wy & én —
E(M) ; E(M)

1 1 ~
dop—1 := “U&nWn @ 1+ zvwy, @ &y,

2 2
1 1 ~
dop = §Un§nwn ®1— §Unwn ® &n

and

Doy 1 = W My 18Mpy 1, {€n @ 1+ 10 E,}),
Day, = M7L®Mn-

Then (D,,)2Y, is a filtration in M and

n=1

2N

N 2N N
D s @ 1= 3 du 3 vnn @6y = D o(-1)"
n=1 n=1 n—1

n=1
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Since noncommutative martingale difference sequences are unconditional in
E(M) by Proposition 6.26, it suffices to show that (d,)2Y; is a martingale
difference sequence with respect to the filtration (D,,)2%,.

Clearly, (d,)?Y, is (D,)2Y,-adapted. Due to Lemma 8.5 the von Neu-
mann algebras W*(fn)@W*({n) and Mn,@ﬂn,l are tensor independent
and hence, W*({&, ©®1 - 1® £p, 6, ® 1 +1® &,}) and M, @M, are

tensor independent. By Lemma 8.11 we have
7(don|Dan-1)

1 ~
= 57- ® %('Uné-nwn & 1-— VW, ® é-n

Do)

1 ~
= 57- X %(’l}ngnwn & 1-— VW, ® gn

%(@n®n7®%@n®1—1®&

W (Mo aB Mo, {6 ©1+19,)))

@@1+1®&J@m®u)

We claim that the latter expression is zero. Suppose first that gn,én are
bounded and have identical *-moments. Note that the map ¢ — 7 ® 7((§, ®
1 —-1®¢&,)c) is linear and ultra weakly-continuous and it is therefore suffi-
cient to show that 7 ® 7((&, ® 1 — 1 ® £,)P) = 0 for any *-monomial P in
& ®1+1®E,. This follows by direct calculation, using the fact that &, and
&, have identical *-moments. ~

On the other hand, if &,,§, are normal and identically distributed, we
apply Lemma 8.12 with a = &, ® 1 and b =1 ® £, to prove the claim.

Similarly we have,

—_

?(d2n71|D2n72) =-T® %(Ungnwn ® 1 + UpWn ® gn

Mn,@ﬂn,l)

N

:7r®%@ﬁ®1+1®é0wwn®1:a

[\

where we use that &, and én are centred.
Thus (d,)2Y, is the martingale difference sequence of the noncommutative
martingale (Y, _, dj)2Y, and our proof is complete. O

The free version of Theorem 8.14 reads as follows.

Theorem 8.15. Let E be a symmetric Banach function space on (0,00).
Suppose that (M, T) and (M, 7) are noncommutative probability spaces. Let
(M), (/\7”)5:0 be filtrations in M and M, and let ()N, (wn)N_; be
(M) -predictable sequences in M. Suppose that the elements &1, ..., En €

M and &, . .. ,§~N eM satisfy the following four conditions:

o &n,&, are centred (n=1,...,N);

o & eEM,, E €M, forn=1,...,N; -

o &, is freely independent of M,_1 and &, is freely independent of M,_q
form=1,... N;
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o Foreveryn=1,...,N, &, and én have identical x-moments.

Under these assumptions,

N
H > vnénwn
n=1

where (M,7) denotes the free product probability space of (M, ) and (./W, 7).

(8.5)

N
~ Unp * én * Wy I
By H nz::l E(M)

Proof. The proof is the same as the one for Theorem 8.14, once we replace all
tensor product probability spaces by free product probability spaces and use
Lemma 8.7 instead of Lemma 8.5. (I

8.2 It6 isomorphisms

In this section we prove Ito-type isomorphisms for noncommutative stochastic
integrals with respect to Boson and free Brownian motions. We extend the
results obtained for LP-spaces in [43].

Let M be a noncommutative probability space and let E be a separable
symmetric Banach function space on (0, c0). Recall the following terminology.
A (continuous-time) filtration is an increasing family of von Neumann subal-
gebras (My)>0 of M, i.e., My C M, whenever 0 < s < ¢, which generates M,
M = (UgsoMy)". An E(M)-valued process adapted to the filtration (My)e>o
isamap f: Rt — F(M) such that f(s) € F(M;) for every s > 0. We call an
(My)>o-adapted E(M)-valued process f simple if it is piecewise constant,
i.e. if there exists a finite partition 7 = {0 = tg < t1 < ... < tpy1 < 00} of
R* such that

FO) =D Ft)X tetsn) () (E>0),
k=0

Notice that adaptedness of f means in this case that f(t;) € E(My, ) for all
k>0.

Definition 8.16. Let M be a noncommutative probability space and (Mq)i>o
be a filtration in M. A process (®;)¢>0 in L*(M) (respectively, M) is called
a Boson (free) Brownian motion if

o &, — Dy is tensor (freely) independent of M for all 0 < s < t,
o Forany0<s<t, &, —Ps has a normal (semicircular) distribution with
mean 0 and variance t — s.

Examples of Boson and free Brownian motions can be explicitly constructed
using creation and annihilation operators on symmetric and full Fock spaces,
see [43].

Let @ be a Boson or free Brownian motion and let (M,);>¢ be the filtration
generated by @. Following the classical approach of K. 1t6, we define the left
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and right stochastic integral of a simple adapted E(M)-valued process f with
respect to @ by

| 1w =Y s @ ) o nn)
k=0

n

/Ot (d® f) =" (Bt Atrsr) — D(EA L)) f(E),

k=0

respectively, where ¢ Aty denotes the infimum of ¢ and t,. We let SZ,(0,T) be
the linear space of simple adapted E(M)-valued processes supported on [0, 7.
Let #Z(0,T) and HF (0, T) be the closure of S&,(0,T) in E(M; L*(0,T).) and
E(M;L*(0,T),), respectively. We define

HEO,T) +HE(O,T), fl<pr<qr<2,

E —
HE(0,T) = { HEO,T)NHE(0,T), if2<pp<qp < .

In the proof of Theorem 8.17 we shall use that SZ°(0,T) is dense in H*(0,T)
and that

||f||7-tE(0,T) =E inf{”9| HE(0,T) T ||h||HE(O,T)}a (8.6)

where the infimum is taken over all g, h € SZ,(0, T) such that f = g-+h. These
facts were proved in [114], p. 687-688, for E = LP and can be obtained in the
general case needed here by a straightforward modification of their argument.

Let Hf.(RT) denote the linear space of all processes f : Rt — E(M)
such that, for every T' > 0, the restriction of f to [0, 7] belongs to HE(0,T).
Analogously we define H,  (RT) and H,.(RT).

The following two theorems establish It6-isomorphisms for E(M)-valued
processes.

Theorem 8.17. Let M be a noncommutative probability space and E be a
separable symmetric Banach function space on (0,00). Suppose that either
1<pp<qp <2o0r2<pg <qp < . IffeSfdw(O,T) and P is a Boson
Brownian motion, then

T T
ao| = ~ H/ awpn| .ooo®7
| [ raa,,, =elibeon = [ @], . @5

Hence, by density of SL7(0,T) in HF(0,T), for any f € HE(0,T) we can
define the left and right stochastic integral fOTf dd and foT (d® f) and (8.7)
holds. Moreover, if f € HE (RT), the processes (fotf dd);>0, (fot (dD f))i>o0

loc
are continuous E(M)-valued martingales.

Proof. We only prove the first equivalence in (8.7), the second is proved anal-
ogously. Suppose f € SE7(0,T) is given by

f = Z f(tk)x(tk7tk+1]7

0

n
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where, refining the partition of RT if necessary, we may assume that T' = ¢,, 1.
Then,

T n
/0 Fap =S Ft)@(ti1) - B(ty)).
k=0

Let (M, 7) be a copy of (M, 7) and @ a copy of & in (/T/T, 7). By decoupling
(cf. Theorem 8.14) we obtain

T
1) 1 el

=B H Z f(te) @ (P(tps1) — P(tr))
k=0

Tpt1 — Lk HE(M@KZ)'

= |30 Vi = 1) © e (Blti) — (1)
k=0

Suppose first that 2 < pp < gg < co. By Corollary 7.11 we have

T
I, 1,

~p maX{H(\/ ter1 — tef (t)) Bovaz)s 1Vt — tkf(tk))HE(M;za)}-

It follows from (5.10) that
(V1 — tef (te) [ Bz
= H z": Vierr =t f(th) ® ;X(tk tror1]
Pt Vietr —te

= [|fll#20,1); (8.9)
and by (5.11),

E(M,L2(0,T).)

I(Vtksr = tef ()l Brmazy = [ fllaez 0.1)- (8.10)

Therefore,

T
d@H ~ .
| [ raol,,, ==l

Suppose now that F is 1 < pg < ¢ < 2. By (8.8) and Corollary 7.12 we have

T
d@H
1 700l
~p inf {H(\/ trhr1 — tear) | By + (kg — tkbk)HE(M;l%)}’ (8.11)
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where the infimum is taken over all decompositions f(tx) = ag + by in E(M),
0 <k <mn. Let f(tx) = cx +di, 0 < k < n, be any such decomposition.
Then, since f(tx) € E(My,), f(tr) = T(ck|My,) + 7(di|My,) and by the
noncommutative Stein inequality we have

||(T(Ck|Mtk))||E(M;zg) SE ||(Ck)||E(M;l§)§

(T (dIMe N B2y Se I1d)ll Bz
Hence, it is equivalent in (8.11) to take the infimum over all decompositions

f(te) = ag + by in E(My, ), 0 < k < n. But any finite sequence (cx)}_, with
cr € E(My,) can be identified with an element of g € SZ,(0,T) defined by

n—1
g = Z CkX(tk,tk.+1] .
k=1

Therefore, by (8.6), (8.9) and (8.10) we obtain

T
d@H ~ .
| [ raol,,, == flon

Suppose now that f € HE (RT) and let f, € S(fdm (0,T) converge to f in
HE(0,T). Then,

T T
| [ toao= [ guao, =&t~ fulsiom

and by completeness of H (0, T) the sequence ( fOT fn dP) converges to a limit
fOT f d® in E(Mr) which satisfies

T
d@H ~ .
H/O f P Il f e 0,1)

Since ( fg fn dP)i>0 is an (M,)-martingale for every n and conditional ex-
pectations are bounded on F(M) by a constant depending only on E (cf.

Proposition 3.4 and Theorem 5.21), we see that (f(;t f d®)i>0 is an E(M)-

valued martingale. To prove that the map ¢t — fot f d® is continuous, suppose
first that f € §29(0,T) and let u € [0, T]. By choosing 0 < s < u close enough
to u we may assume that fx (s = ax(s,) for some a € M. We have

u s T
e [ sl = |
H/o f o e o X

~p laxsulluzor) = Vu— sllall g,

so t fot f d® is continuous at u. The continuity of ¢ fot f d® for f €
HE(0,T) now follows by approximation. O
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Remark 8.18. From the proof of Theorem 8.17 it is not clear that for a simple
adapted E(M)-valued process f = >.}_, J (k)X (t,tr11) the stochastic inte-
grals fOT f d® and fOT (dP f) are given by (8.2). For the left stochastic integral
this can be seen as follows (the other case is analogous). Since E is separable,
M is dense in E(M) and so we can find a simple, adapted M-valued processes
Ji =3 n—0 filtk)X (b trsa) SUch that supgeyc, | (tk) — fi(te)lEomy < . Ob-
serve that f; — f in H¥(0,T) and through the isomorphism proved above we
obtain fOT fi AP — fOT [ d® in E(M) and hence also with respect to the mea-
sure topology. On the other hand, for every 0 < k < n we have f;(tx) — f(tx)
in E(M) and hence also in measure. Since addition and multiplication are
continuous with respect to the measure topology, we obtain

z_: [itr)(P(thy1) — P(tr)) — Z_: Fr)(P(trs1) — (tr))
k=0 k=0

in measure. Since the measure topology is Hausdorff, (8.2) holds.

To conclude this chapter we prove the free version of Theorem 8.17, see The-
orem 8.21 below. We make use of the following Khintchine-type inequalities.

Proposition 8.19. Fiz 1 < p < co. Let M and M be finite von Neumann
algebras equipped with a normal, faithful, finite trace T and T, respectively. Let
M be the free product von Neumann algebra of M and M and let T be the
corresponding free product trace. Suppose that (€,)72, is a freely independent

sequence in L (M) such that 7(&;) = 0 for all k > 1, co = inf{||&|]2} > 0
and deo = sup{||€kllec} < 00. Then, for any vi,...,v, € LP(M),

n
H ;U’“ ¥ kaLp(ﬂ) ~pcaides |1(VE) [l Lr(M152) (8.12)

and .
H gék ’ UkHLP(m) Sp.cadee | (08)[|Lr (M2)- (8.13)

Proof. Throughout we use the notation ¢, = inf{||¢x||} and ds = sup{||&k]|s}-
By assumption, ¢, > 0 for r < 2 < oo and dgy < oo for every 1 < s < oo0.
Observe that (8.13) follows from (8.12) by taking adjoints.

To prove (8.12), we may assume without loss of generality that |||z =1
for all £ > 1. Indeed, once we have proved the assertion under this additional
assumption, the general case follows from the observations

[ (11kll2vi) | r (Miiz) ~ea,ds [ (VR Le (Ms2).

and
sup{[|&ell5 1€k lloc} < doocy < o0
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Suppose first that 2 < p < oo. Recall the notation 7(-|M) = Epq. Observe
that Eaq(vj * &) = 0 for every j. Moreover, the finite sequence (vy * &) is
independent with respect to Eaq. Indeed, for j # k, let a € W* (M, W*(¢;)),
be W*(M,W*(&)) and ¢ € M be arbitrary. Then,

7(abe) = ’(’(G\M W™ (&k))be)
(7 (a| M)be) = T(T(a| M)T (b M)c),

where we use the free independence of W*(M,W*(¢;)) and W*(&;) and
Lemma 8.11 in the second equality. Since ¢ € M was arbitrary, we conclude
by Proposition 3.4 that Exq(ab) = Ear(a)Ear(b).

By the noncommutative Rosenthal inequalities (Theorem 7.4) we have

| 2 6] gy 2o {00 < 0 oy

0k &) (R, 2y 108 % €0l (R ) |-

We shall estimate the three norms on the right hand side using the free inde-
pendence of v, and &. First observe that

ok ) gampanny = [| (20 Emlve = &= € + ”?9)% ,
k
- (zkjvk*eM@k*fz)*vz);Hp
= (S wertetini)®
k

as ||€kll2 = 1 for all k. Using (3.8) one calculates that

Ep(&r v xop x &) = T(vpoe) T(E&k) (B =1). (8.14)

= [[(vg) | e (Mi2)5
P

Therefore,

N

1k €) | o (Rt ) = H(ZSM i vi v ) )

p

H( T(VpukR)T fkﬁk))

= ||(Uk)||l2(L2(M)) = ||l 2 (a2)-
It remains to estimate [|(vkx * &)l (ro 7)) AS vk * &kllp < llvkllpll€rllo it
follows that

(v fk)HzP(Lp(ﬂ)) S ||(Uk)Hzp(Lp(ﬂ))-

Moreover,
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(i) lir e )y < 1(Wr)llze(amsi2)-

For p = 2 this is clear. For p = oo we note that for any j we have v;v; <

>k Vkvy and therefore [|vj]loe < |32, vkvk) |lso- The remaining cases follow
by interpolation. We have obtained

| v x| e mae {10 oo ) sy N0 am e |
k=1

= |(vi)ller (2

To obtain (8.12) in the case 1 < p < 2 we use duality. Let vy, & be as above
and let p’ denote the Holder conjugate of p. Let (wy) be a finite sequence in
L? (M). Using free independence one calculates that

2 . _
gy = { TR 2 (5.15)

By assumption [|€g]l2 =1 for all k > 1, so

Srtonn] = F{(Soee) (Sew))
’ka *kaLll(m)H Zgwj‘ L

Spode ’ka *fk” _ || il a2y

IN

By taking the supremum over all finite sequences (wy) in v (M) satisfying
”(wk)”LT’/(M;ZE) < 1 we obtain

(i)l Lo M2y Sprdoe H > vk fk’
k

(M)’

For the reverse inequality, first suppose that vy,...,v, € L>(M). Then,

H;Wk*gk’ip(/w) (;vk*gk)(zw*&)* L3 )
en((Erere) (Xw-a) )],

- me*fk*fmv,’;)]

IN

2

LE (M)

= Z VRULT fk:fk)‘

By ”(Uk)H%P(M;l;%)’

where the inequality is a consequence of [70], Theorem 7.1, as £ < 1, and
the penultimate equality follows from (8.14). The asserted inequality for
V1y..., 0y € LP(M) now follows by approximation. This completes the proof.

O
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By interpolation and duality we obtain the following result for noncommuta-
tive Banach function spaces.

Corollary 8.20. (Free Khintchine inequalities) Let E be a separable symmet-
ric Banach function space on (0,00) with 1 < pg < qg < 0o. Let M and M
be finite von Neumann algebras equipped with a normal, faithful, finite trace
T and T, respectively. Let M be the free product von Neumann algebra of
M and M and let T be the corresponding free product trace. Suppose that
(&k)32 is a freely independent sequence in L™(M) such that 7(§) = 0 for
all k > 1, co = inf{||&k]l2} > 0 and deo = sup{||&x|lec} < o0. Then, for any
Viy.ooy Uy € E(M),

=E,.c : 8.16
H I;U’“ *&HE(H) E.eaidos ||(VE)[| E(AM2) (8.16)

and

hores
k=1

Proof. 1t suffices to prove (8.16), as (8.17) immediately follows by applying
(8.16) for the sequence (v;). Notice that by interpolation we immediately
obtain

Loy =Eios 10 a2 (8.17)

E(M)

n
| X vere], o Smcnte N NECare
k=1

from (8.12). For the reverse inequality we use the isometric identification
(E(M;12))* = EX(M;I?) observed in Lemma 5.27. By (4.7) we have 1 <
pEx < qpx < 00. Let (wg) be a finite sequence in E*(M). We may assume
that ||{x|l2 = 1 for all k. By (8.15),

‘ZT(U}gwk>‘ - ?((ka*gk)(zgwj))‘
k b ’
= ‘Z”k*5’“HEW>HZ§;WHEXW)

SEoca,des ‘ka*&cH (M)H I Ex (M)

By taking the supremum over all finite sequences (wy) in E* (M) satisfying
[(wi) | 2% (AMuz) < 1 we obtain

(W)l Evmzz) SE.ca,doc HZW*&H

We are ready to prove the final result of this thesis.
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Theorem 8.21. Let M be a noncommutative probability space and E be a
separable symmetric Banach function space on (0,00). If f € Scfdx (0,T) and
@ is a free Brownian motion, then

T
d@” ~ 7
H/O f sy F Il 132 0,1)

; (8.18)

| [ @ p),.,, ==l
Hence, by density of S (0,T) in HE(0,T) and HE(0,T), for any f in
HE(0,T) (respectively, HE(0,T) ) we can define the stochastic integral fOT fdo
(respectively, fOT (d® f)) and (8.18) holds. Moreover, if f € HE, (R*) (re-

r,loc

spectively, f € "Hfloc(R"’)), then (fotf dP)i>o (respectively, (f(;5 (dP f))i>0)
are continuous E(M)-valued martingales.

Proof. The proof is similar to, but simpler than, the one for Theorem 8.17.
In this case we use the free version of the decoupling inequalities in Theo-
rem 8.15 and the free Khintchine-type inequalities in Corollary 8.20 instead
of their tensor counterparts in Theorem 8.14 and Corollaries 7.11 and 7.12,
respectively. We leave the details to the interested reader. (]
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p-convex, 111
g-concave, 111
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fully symmetric, 107
strongly symmetric, 107
symmetric, 107

Rademacher sequence, 23
random measure, 48
Poisson, 48
compensated, 48
symmetrized, 48
random variable, 26
mean zero, 27
randomization, 28
row space, 80
associated with H, 141
conditional, 81, 147

Schatten space, 79
n-th, 79
spectral measure, 196
subconvex
midpoint, 136

theorem
Aoki-Rolewicz, 106
Boyd interpolation, 17, 122
noncommutative, 139
Calderén-Mitjagin, 120
type, 24
constant, 24

UMD space, 26



Summary

Noncommutative and Vector-valued
Rosenthal Inequalities

This thesis is dedicated to the study of a class of probabilistic inequalities,
called Rosenthal inequalities. These inequalities provide two-sided estimates
for the p-th moments of the sum of a sequence of independent, mean zero
random variables, in terms of a suitable norm on the sequence itself. Rosen-
thal inequalities are named after the mathematician H.P. Rosenthal, who first
discovered them for scalar-valued random variables around 1970. The main
results of this thesis extend Rosenthal’s inequalities in two different directions.

In Part I we consider sums of independent, mean zero random variables
taking values in a Banach space. The main results give Rosenthal-type in-
equalities in the case where the Banach space is either a Hilbert space or an
LP-space. The inequalities we develop in this setting are principally designed
to prove a novel It6 isomorphism for vector-valued stochastic integrals with re-
spect to a compensated Poisson random measure. These kind of isomorphisms
are a key tool for the analysis of stochastic partial differential equations.

The Rosenthal-type inequalities are further extended to apply to random
variables taking values in a noncommutative LP-space associated with a von
Neumann algebra. By specializing this result to the von Neumann algebra of
n X n matrices, we find quantitative bounds for the moments of the largest
singular value of a random matrix in terms of its entries.

Part II of this thesis is dedicated to a generalization of Rosenthal’s origi-
nal inequalities to sequences of noncommutative random variables. The main
result provides a generalization of Rosenthal’s theorem for elements of a non-
commutative symmetric space, which are independent in a noncommutative
sense. For a suitable class of noncommutative symmetric spaces we moreover
prove Burkholder-Rosenthal inequalities for noncommutative martingales.
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As is the case in Part I, we apply the noncommutative Rosenthal inequal-
ities to obtain norm estimates for stochastic integrals. We obtain It6 isomor-
phisms for stochastic integrals in a large class of noncommutative symmetric
spaces, in the case where the integrator is either a Boson or a free Brownian
motion.

For our proof of the noncommutative Rosenthal and Burkholder-Rosenthal
inequalities we develop several new tools which are interesting in their own
right. A good part of Part II is devoted to a new, direct proof of the ‘upper’
Khintchine inequalities for noncommutative symmetric spaces. Our results
improve the best known results in the literature in this direction and they
are shown to be optimal in a certain sense. The noncommutative Khintchine
inequalities are utilized to prove Burkholder-Gundy inequalities for martin-
gales in noncommutative symmetric spaces. Finally, we present several new
results in the interpolation theory for noncommutative symmetric spaces. In
particular, using a new method we find an extension of the noncommutative
Boyd interpolation theorem. This method is adapted to yield a dual version
of Doob’s maximal inequality in noncommutative symmetric spaces.



Samenvatting

Niet-commutatieve en Vector-waardige
Rosenthal Ongelijkheden

Dit proefschrift is gewijd aan de studie van een klasse van ongelijkheden in
de kansrekening, genaamd Rosenthal ongelijkheden. Deze ongelijkheden geven
tweezijdige afschattingen voor de p-de momenten van de som van een rij on-
afhankelijke, gecentreerde kansvariabelen, in termen van een gepaste norm
op de rij zelf. Rosenthal ongelijkheden zijn vernoemd naar de wiskundige
H.P. Rosenthal, die rond 1970 dergelijke ongelijkheden voor het eerst ondekte
voor scalar-waardige kansvariabelen. De hoofdresultaten van dit proefschrift
breiden Rosenthal’s oorspronkelijke ongelijkheden uit in twee verschillende
richtingen.

In Deel I beschouwen we sommen van onhankelijke, gecentreerde stochas-
ten die waarden aannemen in een Banachruimte. De hoofdresultaten geven
nieuwe Rosenthal-achtige ongelijkheden in het geval waar de Banachruimte
een Hilbertruimte of een LP-ruimte is. De ongelijkheden die wij ontwikke-
len in deze setting zijn hoofdzakelijk ontworpen om nieuwe It6 isomorfismen
te bewijzen voor vector-waardige stochastische integralen met betrekking tot
een gecompenseerde Poisson kansmaat. Dergelijke isomorfismen spelen een
belangrijke rol in de analyse van stochastische partiéle differentiaalvergelij-
kingen.

De vector-waardige Rosenthal ongelijkheden worden verder uitgebreid voor
stochasten met waarden in een niet-commutatieve LP-ruimte behorend bij
een von Neumann algebra. In het speciale geval waarin de von Neumann
algebra gegeven wordt door de n x n matrices geeft dit resultaat kwantitatieve
afschattingen voor de momenten van de grootste singuliere waarde van een
stochastische matrix in termen van de individuele elementen van de matrix.

Deel II van dit proefschrift is gewijd aan een generalisatie van Rosenthal’s
originele ongelijkheden voor rijtjes bestaande uit niet-commutatieve kansvari-
abelen. Het hoofdresultaat geeft een generalisatie van Rosenthal’s stelling voor
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elementen van een niet-commutatieve symmetrische ruimte, die onafhanke-
lijk zijn in een niet-commutatieve zin. Voor een geschikte klasse van niet-
commutatieve symmetrische ruimten bewijzen we bovendien de Burkholder-
Rosenthal ongelijkheden voor niet-commutatieve martingalen.

Net als in Deel I gebruiken we de niet-commutatieve Rosenthal ongelijk-
heden om norm afschattingen voor stochastische integralen te krijgen. We
vinden Itd isomorfismen voor stochastische integralen in een grote klasse van
niet-commutatieve symmetrische ruimten, in het geval waar de stochastische
integrator gegeven wordt door een Boson of een vrije Brownse beweging.

Voor het bewijs van de niet-commutatieve Rosenthal en Burkholder-
Rosenthal ongelijkheden ontwikkelen we verscheidene nieuwe instrumenten
die op zichzelf staand interessant zijn. Een groot gedeelte van Deel II is
gewijd aan een nieuw, direct bewijs van de ‘bovenste’ Khintchine ongelijkhe-
den voor niet-commutatieve symmetrische ruimten. Onze resultaten in deze
richting verbeteren de bekende resultaten uit de literatuur en we tonen aan dat
deze, in zekere zin, optimaal zijn. De Khintchine ongelijkheden worden vervol-
gens gebruikt om Burkholder-Gundy ongelijkheden voor martingalen in niet-
commutatieve symmetrische ruimten te bewijzen. Tot slot presenteren we ver-
scheidene nieuwe resultaten in de interpolatietheorie voor niet-commutatieve
symmetrische ruimten. In het bijzonder vinden we, via een nieuwe metho-
de, een uitbreiding van de niet-commutatieve Boyd interpolatiestelling. Met
behulp van deze methode wordt bovendien een duale versie van Doob’s maxi-
maalongelijkheid in niet-commutatieve symmetrische ruimten verkregen.
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