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Abstract

Mind-wandering happens when one’s current train
of thought, related to a specific task, is inter-
rupted, due to internal disconnected thoughts. This
phenomenon is highly subjective, and its detec-
tion is really important due to the internal under-
standing of the human mind that can be obtained.
Several methods have been used in order to de-
tect mind-wandering, such as thought probes, self-
reports, electrophysiological measures or even eye-
based tracking methods, however the detection of
mind-wandering solely from sound has not been
researched about. Therefore, this study is go-
ing to investigate if automatic detection of mind-
wandering through sound is feasible. In this work,
this question is tackled through a machine learn-
ing approach, where a linear SVM model is trained
through acoustic features. Two methods of over-
sampling are considered, due to the high data im-
balance between the classes, and these two are
evaluated and compared. The approach is evalu-
ated through different metrics, such as recall, pre-
cision, Fl-score and accuracy, but also a com-
parison with other techniques is done. Results
of this work show that sound as its own is not
a reliable way of automatically detecting mind-
wandering. These results however, might be im-
plementation specific, as the ground truth values of
mind-wandering were created through the means of
perceived mind-wandering, and the techniques of
random oversampling and SMOTE were also used.
These could be causes of unreliability of the re-
search. Future work should should take this into
consideration and also apply this approach to a dif-
ferent data set, to assess its feasibility.

1 Introduction

Mind Wandering is a phenomenon that 96% of adult Amer-
icans say they experience on a daily basis [1], and it is an
occurrence that takes up nearly 50% of the day [2-5]. De-
tecting and evaluating Mind Wandering is consequently re-
ally important, as it can be quite useful in deciphering the
attention regulation mechanism during specific focal tasks.
[6] and it is also a crucial and necessary step toward enhanc-
ing the effectiveness of attention training [7] and it may also
contribute to exploration of the neural mechanisms underly-
ing the regulation of sustained attention [8]. Research on
mind-wandering has thus seen a huge increase in recent years,
caused by Smallwood and Schooler’s integrated analysis of
related issues, which sparked a lot of interest [9]. An imme-
diate consequence of this is that many different definitions of
mind wandering have arisen, most of which are closely re-
lated to Smallwood’s and Schooler’s definition of mind wan-
dering [10]. The definition that will be used in this work is
: When mind wandering occurs, the executive components
of attention appear to shift away from the primary task, not
due to external factors or the person interacting with the ex-
ternal environment. The definition selected and formulated to

be used in this paper, is in alignment with the existing litera-
ture, whilst at the same time reflecting the difference between
mind-wandering and distraction.

This study investigates the “Detection of Mind-Wandering
through sound”, on the Mementos data set, and the research
question that will be tried to be answered is: “Is detection of
mind-wandering with sound feasible”. This data set is the first
multi-modal corpus for modeling emotion and memory pro-
cessing in reaction to music video content [11]. It contains
1995 individual responses collected from 297 unique view-
ers responding to 42 different segments of music videos, and
therefore the task at hand was: comprehending / watching the
videos at hand. What was specified in the definition was that
the cause of the attention being shifted away from the primary
task should not be due to external factors, or due to the person
interacting with external factors.

Mind-wandering is a concept that has not been studied or
researched about heavily, however more studies have been
done on the topic of cognitive task performance. Evidence
supports that background sounds have a negative impact on
cognitive task performance [12-15], playing an important
part in task performance, and also contributing to attention
loss. This, has thus, an immediate effect on whether the per-
son is more likely to mind-wander or not. Despite the ex-
ternal factors that play a part in this research, it is important
to note that the data set contains both people reacting to the
music videos whilst wearing some sort of headphones, and
also whilst not wearing headphones. There are instances of
people watching the videos whilst wearing headphones, one
or both earphones and also instances where they are listen-
ing to the audio through external speakers, or the device’s
built in speakers. Wearing any sort of earphones or head-
phones has the effect of making the person less susceptible
to external sounds, and thus, more likely to not be affected
by low volume external sounds. Headphones help to block
out outside noise, which in turn will help to keep the focus
on the task at hand. Due to these reasons, a working hypoth-
esis is that external sounds do play a role in the existence
of mind-wandering or not, and they might be more crucial
in detecting cases of non mind-wandering, rather than mind-
wandering. The research sub-questions that were formulated
were namely:

1. What is the accuracy of mind-wandering detection
through sound?

2. Does wearing headphones have an effect on mind-
wandering?

3. How well does mind-wandering detection through sound
do compared to other techniques?

Due to the fact of there not being many studies regarding
the effects of sound on mind-wandering, this paper will pro-
vide some more insight in this area, exploring this effect in an
“in the wild” environment. This will be done through a ma-
chine learning approach, where acoustic features are going to
be extracted from the respective audio files. A machine learn-
ing algorithm is going to be trained and tested on the data set,
to find whether there exists a link between mind-wandering
and sound. This will be explained further in section 3.



2 Related work

Mind Wandering is a vague term, which has different inter-
pretations according to the context it is proposed in. A com-
monly used definition is : When mind wandering occurs, the
executive components of attention appear to shift away from
the primary task, leading to failures in task performance and
superficial representations of the external environment [10].
Other definitions have also arisen, stating that the term “mind
wandering” refers to a flow of thought that is unrelated to the
current setting [16]. The definition that will be used in the
scope of this paper contains parts of the aforementioned def-
inition, with a slight modification. The second part of the
definition is really important in this specific case, due to the
nature of the data of the Mementos data set.

Studies with the aim of detecting mind-wandering have
taken place, mainly detecting it through thought-report meth-
ods, namely thought probes [17-20], and self-reports [10,
21]. With the first method, individuals are asked about their
subjective attentional states at random. This method however,
omits important details like the time of switching states, the
commencement time, and the duration of a mind-wandering
episode. Furthermore, the mental state of participants fol-
lowing a thought-probe cannot be assessed: whether they
continue mind-wandering, commence a new mind-wandering
episode, or return their attention to the activity [6].

Participants are asked to record the instant they become
aware of their mind wandering in spontaneous self-reports.
This approach allows the participant’s mind wandering to be
tracked in real time. However, because this tracking is sub-
jective, researchers are limited in their capacity to maintain
consistency in their evaluations of various individuals. Both
approaches share the issue of evaluating a participant’s mind
wandering completely by themselves, and individuals may
not be aware when their attention wanders [6].

A few studies have also been conducted around the rela-
tion of sound and mind wandering. A paper studying the ef-
fect of sad and happy music on mind-wandering, showed that
sad music has the effect of causing stronger mind-wandering,
in comparison to happy music, as music “is an effective tool
to regulate thoughts via emotion” [22], whilst another study
focused on students and how they mind-wander in a class-
room, showed that mind-wandering is more common when
speech is not clear [23]. The occurrence of mind wander-
ing or not in relation to sound has not been researched about
heavily though. For this reason, further research is required
and encouraged to show if there exists a correlation between
the two.

3 Methodology

To answer the research question formulated, the approach
consisted of several steps, all crucial in the process. The first
step consisted of preprocessing the video data of the Memen-
tos data set, and then followed the annotation of the video
data. These are the initial preparatory processes, which where
then followed by the audio feature extraction and finally the
process of mind-wandering classification.

3.1 Data preprocessing

The initial step of processing the Mementos data was to split
the initial data set into a smaller subset. This was done due to
the fact that the process of annotation meant watching every
single video, thus, watching all the 1995 videos in the time
frame of the project was not feasible. Therefore a smaller
subset of 633 videos was taken, however, this subset still
needed to be cleaned. The Mementos data set was constructed
under an experiment where people were given the task to give
their complete attention to watching the music videos and that
they should be the only person present in the video recording
[10]. However, some of the videos of the data set did not
adhere to these conditions, as in some cases people were dis-
tracted by other individuals during the whole entirety of the
video or in some extreme cases people would simply stand
up and leave the frame of the camera. Therefore, these type
of videos were removed, in order to have a clean data set,
resulting in 45 videos being removed, leaving 588 videos.

3.2 Annotation of videos

The next step that followed after the data preprocessing was
to annotate the data set, in order to create the ground truth
values for our mind-wandering classification. This annota-
tion consisted of watching every video of the subset, and an-
notating segments of the video where mind-wandering was
expected to be occurring. In order to make this annotation
more reliable, a rule book was initially created, stating signs
of mind wandering, that should be looked at for when anno-
tating the videos. These signs consisted of :

1. Smiling

2. Gazing

3. Squinting eyes

4. Person making sounds
5. Frowning

A smile can be indication of good memories, so if the smile
is very expressive and sudden / genuine smile, it could be a
reaction, or a response to the video. A very subtle smile,
could also be a form of reminiscing / remembering a memory
so this is also a form of recognizing mind wandering [24].

Gazing, refers to looking up for a longer time than just a
look to a direction that was caused by a distraction. Usually
trying to remember/recollect something comes with looking
up and to the side for some time, which is also the case for
squinting eyes, as it can indicate that that person is trying to
remember something [25].

When the person makes a sound, that is not caused by ex-
ternal stimuli, this can be an indication of mind wandering, as
it shows the person having some internal thought unrelated to
the video they are watching, which are being externalized in
the form of speech, or them making some sort of sound.

Frowning can be indication of bad or sad memories, so if
the frown is very expressive and sudden / genuine, it could be
a reaction, or a response to the video. However, a very subtle
frown, could also be a form of reminiscing / remembering
a memory. Frowning is thus a sign of negative emotional
experience recollection [26].



Thus, some ground rules were created as to what signs in-
dicate mind-wandering, as to guide us in the annotation pro-
cess. For the annotation, the VGG tool was used, as it is a “a
light weight, standalone and offline software package” [27],
which seemed like the appropriate choice, given the fact that
the work was done on the Mementos data set, which falls un-
der the GDPR regulations of personal data collection and pro-
cessing '. This annotation process consisted of splitting the
subset of selected videos across two teams of 2 and 3 mem-
bers, in order to have a second and third opinion and verifica-
tion when creating the ground truth data. The teams were reg-
ularly mixed up, and breaks were taken during the annotation
process, as to ensure the validity of the ground truth creation.
In this way all of the videos were mind-wandering occurred
were annotated, and the names of these files together with the
time period of annotated mind-wandering were exported to
csv files.

After the annotation process had finished, it was noticed
that out of all the input videos, only 52 videos contained an-
notations of mind wondering. This meant that our data was
imbalanced, and some over/under sampling or data augmen-
tation needed to be done.

3.3 Audio Feature Extraction

After having annotated the data, the step that followed was the
audio feature extraction, and therefore the wav files needed to
be extracted from the videos. During this process, some of the
audio files were corrupted and therefore some more input data
was deleted. 8 audio files in total were corrupt, leaving 580
wav files. The signals from all the audio files were not down-
sampled or up-sampled, and therefore the sampling rate of
the audio input was 44100 Hz. There are two stages in the
feature extraction methodology:

1. Short-term feature extraction
2. Mid-term feature extraction

For the short-term feature extraction, the input signal is
split into short-term windows (frames) and a number of fea-
tures for each frame is computed. This process leads to a
sequence of short-term feature vectors for the whole signal.

Regarding the mid-term feature extraction, the signal is
represented by statistics on the extracted short-term feature
sequences described above. A number of statistics, mean and
standard deviation are calculated over each short-term feature
sequence.

A frame size of 50 msecs and a frame step of 25 msecs
(50% overlap) was used and three types of acoustic features
were used in this work. One of the features used are spec-
trum envelope representations used in speech/speaker recog-
nition, namely the typical mel-frequency cepstral coefficients
(MFCC) plus the frame energy [28]. They will also be con-
sidered together with their first time derivative (the so-called
delta features). The second type of features are the so called
perceptual features, and are features that are not a part of the
above feature set, such as the zero crossing rate, energy and
different spectral features. The third type of features are the
chroma features, which are descriptors, which indicate the
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tonal content of a musical audio signal in a compressed for-
mat. As a result, chroma characteristics may be thought of
as a necessary precondition for high-level semantic analysis
such as chord identification or harmonic similarity estimation
[29]. These features were used as they are able to grasp the
harmonic and melodic qualities of music, and will therefore
be useful in this research, as the Mementos data set contains
peoples reactions to music videos. Namely, the features con-
sidered are the following:

1. Zero Crossing Rate: The rate of sign-changes of the sig-
nal during the duration of a particular frame.

2. Energy: The sum of squares of the signal values, nor-
malized by the respective frame length.

3. Entropy of Energy: The entropy of sub-frames’ nor-
malized energies. It can be interpreted as a measure of
abrupt changes.

4. Spectral Centroid: The center of gravity of the spectrum.

5. Spectral Spread: The second central moment of the
spectrum.

6. Spectral Entropy: Entropy of the normalized spectral en-
ergies for a set of sub-frames.

7. Spectral Flux: The squared difference between the nor-
malized magnitudes of the spectra of the two successive
frames.

8. Spectral Rolloff: The frequency below which 90% of the
magnitude distribution of the spectrum is concentrated.

9. MFCCs: Mel Frequency Cepstral Coefficients form a
cepstral representation where the frequency bands are
not linear but distributed according to the mel-scale.

10. Chroma Vector: A 12-element representation of the
spectral energy where the bins represent the 12 equal-
tempered pitch classes of western-type music (semitone
spacing).

11. Chroma Deviation: The standard deviation of the 12
chroma coefficients.

The beats per minute rate (BPM) of the signal were also
calculated, and a confidence score was also calculated. The
above described features are considered in the experiments
described in section 4. The mid-term features were taken for
classification, thus, long-term averaged audio features were
extracted, and it is important to note that one single feature
vector is finally extracted per wav file.

3.4 Machine Learning algorithm

The Support Vector Machine (SVM) paradigm has been
proven to be extremely effective in a variety of classifica-
tion applications. It may use far less data to conduct accu-
rate classification since it discriminates the data by defining
borders between classes rather than estimating class condi-
tional densities [28]. SVMs have also already been applied to
audio classification and segmentation tasks in the past [30—
32]. Due to these reasons, the SVM classifiers are used in
this study. The objective of the support vector machine algo-
rithm is to find a hyperplane in an N-dimensional space (N
— the number of features) that distinctly classifies the data
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Figure 1: SVM two-class linear classification [28]

points, as also shown in Figure 1. To separate the two classes
of data points, there are many possible hyperplanes that could
be chosen. The objective is to find a plane that has the maxi-
mum margin, i.e the maximum distance between data points
of both classes. Maximizing the margin distance provides
some reinforcement so that future data points can be classi-
fied with more confidence. Different variants of the SVM
technique were tried out, and used in different experiments,
as described in section (here reference the experiments sec-
tion). Not only were different variants of SVM tried out, but
also different data balancing techniques were also tried out,
due to the fact that the data was also imbalanced.

Both linear and rbf kernel SVM were tried out in this work.
Linear SVM is used for linearly separable data, which means
if a data set can be classified into two classes by using a sin-
gle straight line, then such data is termed as linearly separable
data. On the contrary, RBF kernel is mostly used for non-
linear data, and basically RBF kernels place a radial basis
function centered at each point, then performs linear manip-
ulations to map points to higher-dimensional spaces that are
easier to separate.

The kernel function, kernel parameters, and the soft margin
parameter C all influence the efficacy of an SVM [33]. The
error term’s penalty parameter is C. It manages the trade-off
between a smooth decision boundary and accurately catego-
rizing training points. For large values of C, the optimization
will pick a smaller-margin hyperplane if it performs a bet-
ter job of accurately classifying all of the training points. A
very small value of C, on the other hand, will encourage the
optimizer to seek for a larger-margin separating hyperplane,
even if it misclassifies more points. In order to choose the
best value for C, a cross validation procedure was performed
in order to select the optimal classifier parameter.

4 Experimental Work

Several different techniques and feature sets were used dur-
ing the experimentation process, consisting of using different
variants of the SVM algorithm, using different oversampling
techniques. All of these play an important role in obtaining
the final results.

Original Dataset

Generating Samples Resampled Dataset

Figure 2: Synthetic Minority Oversampling TEchnique (SMOTE)
[34]

4.1 Preparing the experiment

The first step in conducting the experiments is splitting the
data into train and test splits, in order for the classifier to be
trained, and then to be tested. The ratio of train and test data
selected was 80:20, and 10% of the training data was used for
validation. Therefore, the training data consisted of 422 wav
files with the “No mind-wandering” label, and 41 wav files
with the “mind-wandering” label. Each person in the Me-
mentos data set, reacted to 4-7 music videos, therefore mean-
ing that there were multiple instances of every person in the
data set. In order for there to not be any bias in the experi-
ment, one single person did not appear in both the train and
test split. This means that the data was split randomly into an
80:20 ratio, with the clause that if a person was selected to be
in the train split, all of that person’s videos would also go to
the train split (same goes for a person selected to be in the test
split). This was done, as the fundamental objective of testing
a model is to estimate how well it will perform predictions on
data that the model didn’t see.

4.2 Dealing with the data imbalance

Data imbalance was also an issue in this work. The pos-
itive class (mind-wandering class) initially consisted of 52
wav files, whilst the negative class (no-min-wandering) con-
sisted of 528 wav files. The remedy to this problem was to
over sample the minority class, and two separate strategies
were tried: Random Over-Sampling and Synthetic Minority
Oversampling Technique (SMOTE). Random oversampling
entails picking samples from the minority class at random, re-
placing them with new ones, and adding them to the training
data set until the required ratio is reached. Using the SMOTE
approach, new instances are synthesized from the minority
class, which is a form of data augmentation. SMOTE works
by picking instances in the feature space that are close to-
gether, drawing a line in the feature space between the ex-
amples, and drawing a new sample at a location along that
line, as also shown in Figure 2. To be more specific, a ran-
dom case from the minority class is picked initially. Then,
for that example, k of the closest neighbors are found. A ran-
domly determined neighbor is picked, and a synthetic exam-
ple is constructed at a randomly chosen position in the feature
space between the two instances.

Thus, the next step in preparing the experiment was the
process of oversampling the data. Initially Random Over-
Sampling was chosen, with which the positive class (mind-



MW NO-MW
MW 50.35 0
NO-MW 7.88 41.76
Best Macro f1 92.1
Best Macro f1 std 2.9
Selected C parameter 20

Table 1: Validation Results with oversampling

wandering label), was oversampled until the ratio between
the two classes was 1:1. Initially the linear SVM classifier
was trained, and the RBF kernel SVM was also trained on
the same data set, taking noticeably more time. Afterwards,
the initial training data set was also oversampled using the
SMOTE technique of data augmentation. This method of
oversampling was more time costly, and both the linear and
RBF kernel SVM were trained on this data.

4.3 Selection of Algorithm

The two different SVMs, namely the one trained on the data
where random oversampling was used and the other trained
on the data where SMOTE was used, were compared against
each other through the validation sets. As preliminary tests
with the SVM classifier showed a superiority of the linear
kernel over the RBF kernel, only the former was used in the
evaluation. An RBF kernel SVM is not a parametric model,
and the complexity of it grows with the size of the training
data. Not only is it more expensive to train an RBF kernel
SVM, but the kernel matrix also has to be stored, and projec-
tion into this “infinite” higher dimensional space where the
input becomes linearly separable is also more expensive dur-
ing prediction. Furthermore, because there are more hyper
parameters to tweak, model selection is more costly, whilst
overfitting a complex model is considerably easy.

The aforementioned beat extraction was technique, and
preliminary evaluated through the calculated confidence
value. The confidence value, was consistently low during the
preparation of the experiment, and therefore it was not used
in the procedure of obtaining the results. This is due to the
fact that the beat extraction technique is mainly useful for
music classification tasks, however in the wav files used in
this work, the music played through the device, was either of
low sound quality, or in many cases also not detectable, due
to the person using headphones. Due to these reasons, the
confidence value of the BPM was low, and decided not to be
used, as it could skew the data. This decision also reduced
the time of the feature extraction process, which helped in the
following step which was to actually run the experiments.

4.4 Implementation

The approach was implemented as a Python 3.9 project, and
the feature extraction and machine learning model training
and testing was done with the help of the open source pyAu-
dioAnalysis library [35], which is a library that provides a
wide range of audio analysis procedures.

As far as the implementation is concerned, after the data
was split into respective train, validation and test sets, ex-

MW NO-MW
MW 2.34 7.66
NO-MW 14.26 75.74
Best Macro f1 52.5
Best Macro f1 std 7.8
Selected C parameter 5

Table 2: Validation Results with SMOTE
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Figure 3: Confusion Matrix

periments were run using both random oversampling and
SMOTE. The linear SVM was trained on the train data, and
through a 10-fold cross validation, the soft margin parameter
C was chosen for both models. For the oversampled data set,
C =20 was chosen whilst for the model where SMOTE was
used, C =5 was chosen. These values were used, as they gave
the best results during the validation process, where a confu-
sion matrix was created, of the form showcased in Figure 3.
The results of the validation process are shown in Table 1 and
also Table 2.

5 Results and Discussion

This section outlines and discusses the results of the study
and the experiments that were taken place. Both the results of
the model that were trained using oversampling and SMOTE
are going to be analysed, and they are going to be compared
against each other. Section 5.1 also discusses the answers to
the research sub questions, whilst section 5.2 discusses the
answer to the main research question.

When evaluating the model, the result will either be a True
Positive (TP), True Negative (TN), False Positive (FP) or a
False Negative (FN) depending on the result the classification
of the model. These result classes are further showcased in
Figure 3.

A true positive means that the actual value of the file is
mind-wandering, and the model predicted mind-wandering.
A false negative means that the actual value of the file
is mind-wandering and the model predicted non-mind-
wandering, whilst a false positive is when the actual value
of the file is non-mind-wandering and the model predicted
mind-wandering. Finally a true negative is when the actual
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Figure 4: Results with oversampling

Confusion matrix, acc = 79.5%, F1 (macro): 54.1%
MW NO-MW
MW 4 7
NO-MW 17 89

Table 3: Confusion Matrix results with oversampling

value of the file was non-mind-wandering and the model also
predicted non-mind-wandering.
For this study 4 measures were used for evaluation:

* Recall: The ratio of accurately predicted positive obser-
vations to all observations in the actual class.

TP

—_— 1
TP+ FN M

* Precision: The ratio of accurately anticipated positive
observations to total expected positive observations is
known as precision.

TP

—_— 2
TP+ FP @

* Fl-score: The weighted average of Precision and Recall
is the F1 Score. As a result, this score considers both
false positives and false negatives.

2 % Recall * Precision

— 3

Recall + Precision 3

e Accuracy: This is the simplest intuitive performance
metric, which is the ratio of properly predicted obser-
vations to all observations.

TP+ TN

4
TP+ FP+ FN+TN )

There metrics where chosen because they are well-known
and produce normalized values for the model’s accuracy,
making comparison easier. The models were tested against
the test data set, which contained 117 wav files, consisting
of 11 cases of mind-wandering and 106 cases of non-mind-
wandering. Below, the results of the respective experiments
are shown. In the class-wise Performance measures plots,
namely Figure 4 and Figure 5, the green bar indicates recall,
the blue bar indicates precision and the red bar the f1-score.

Class-wise Performance measures
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Figure 5: Results with SMOTE

Confusion matrix, acc = 72.6%, F1 (macro): 49.7%
MW NO-MW
MW 3 8
NO-MW 24 82

Table 4: Confusion Matrix results with SMOTE

5.1 Research Sub-questions

5.1.1 Detection of accuracy of mind-wandering through
sound. The results of all metric can be found in Figure 4,
Figure 5, Table 3 and Table 4. Note that all the metrics have
a minimum value of 0 and maximum value of 1, O being a
complete lack of this metric and 1 being the optimal score.

When oversampling was used Table 3 showcases that the
overall accuracy of the model was 79.5%, with an f1 macro
score of 54.1%. This high accuracy is due to the fact that
the model had many true negatives, precisely 89, where the
videos the belonged to the negative class, that of non-mind-
wandering, got correctly predicted. However, the model had
a very low precision score (0.18) when it came to predict-
ing the correct output of the positive class, namely the mind-
wandering class. We see through Table 3 that the model
only had 4 true positives, whilst having 7 false negatives and
17 false positives. Similarly, the positive class has also low
scores for recall (0.251) and also a low f1-score (0.204). This
is most likely due to the fact that due to the little amount of
data, and also the quality of the data. Regarding the nega-
tive class, high scores were obtained, however the model per-
forms poorly in finding the cases of mind-wandering in the
test set. It is difficult to draw conclusions from the obtained
results, due to the low amounts of ground truth data regarding
the mind-wandering class. As explained above oversampling
was used to balance the data set, however the initial imbal-
ance of the data sets still plays a major role in the validity of
the results.

When SMOTE was used similar but slightly worse results
were obtained. When SMOTE was used, Table 4 showcases
that the overall accuracy of the model was 72.6%, and the f1
macro score of 49.7% was obtained. The true positives were
also lower, now being 3 instead of 4, whilst the true negatives
also decreased to 82. A consequence of this is that more false
negatives and false positives were observed, namely 7 and 24.
The general accuracy of the model is lower compared to the
oversampling technique, and the same goes for the f1-score.
SMOTE creates a trade off between a higher recall score and



a lower precision score, which is also what is noticed in the
obtained results of the positive class. Through Figure 5 it is
shown that the model obtained a slightly higher recall score
in the positive class (0.273), whilst having a lower precision
score (0.111) and also a lower f1-score (0.159). This is due to
the fact that SMOTE has a high chance to oversample the
samples with a small amount of information. It can also
increase the overlap between different classes around class
boundaries. This is because SMOTE can blindly oversam-
ple and it can oversample every single sample of the minority
class, without any reasoning or justification. This means that
only the number of samples in each class and the closeness
between the samples in the minority class are considered, and
other characteristics of the data are not considered by the al-
gorithm [36].

5.1.2 Effect of wearing headphones on mind- wandering.
In order to answer this research sub-question, a quantitative
approach was taken. The test split contained some cases of
people that were wearing some sort of headphones, whilst
also contained people that did not wear headphones, and were
listening to the music videos through speakers. When the
model was trained and tested against the test data, many false
positives were noticed. This means that the model predicted
many wav files as mind-wandering whilst in reality they were
non-mind wandering, however there was no connection be-
tween the use of headphones or not. The results obtained
showed no concrete connection between the effect of wear-
ing headphones on mind-wandering. This is probably due to
the quantity but also the quality of the data. What is meant
by this is that the data used in this study regarding the pos-
itive class was very little, and thus techniques such as over-
sampling and SMOTE were used to remedy this. Regarding
the quality of the data, this refers to the cases where peo-
ple were not using headphones, and the music videos were
played through speakers. In these cases, the quality of the
music played varied, due to various reasons such as intensity
of speaker volume, or microphone used. Thus, there were no
signs indicating a strict correlation between the two.

5.1.3 Comparison of mind-wandering detection through
sound with other techniques. Other techniques such as
thought probes and self-reports, as also mentioned in Sec-
tion 2, but also using electrophysiological measures [37] and
gaze-based eye tracking [38] are methods that have been used
to detect mind-wandering. These methods have proven to be
more reliable than the method proposed in this study.

Specifically, in the case of electrophysiological measures,
it was studies whether these can be used in machine learn-
ing models to accurately predict mind wandering states. It
was proven that through the recording of scalp EEG from par-
ticipants, non-linear and linear machine learning models de-
tected mind-wandering, above-above. This suggests that an
individuals attention state can reliably be detected based on
ERP patterns [37]. Similarly to this, eye-trackers have also
been used in order to detect mind-wandering. Through track-
ing eye-gaze, mind-wandering was able to be predicted with
an F1 score of 0.59, considerably better than chance which
had an F1 score of 0.24 [38].

The methods of thought probes and self-reports have also
been used extensively in the past, and despite having their

downsides, they give more reliable results than the use of
sound, as experimented in this work.

5.2 Research Question

Feasibility of mind-wandering detection through sound. Dur-
ing this study, it was found that the linear SVM model, us-
ing both techniques of random oversampling and SMOTE
for dealing with data imbalance, showcases low accuracy in
terms of detecting mind-wandering. Moreover, it was found
that both techniques provide similar results, with the model
using SMOTE for oversampling showing lower general re-
sults, however higher recall scores for the positive class, with
lower precision, which was expected, due to the nature of
the SMOTE algorithm. The hypothesis regarding these re-
sults is that this was caused due to the high data imbalance
between the two classes, and the use of oversampling meth-
ods. Also the initial hypothesis was that external sounds
play a more crucial role in detecting cases of non-mind-
wandering. This research has not been enough in order to
prove this hypothesis, as there where cases where external
sounds were present and those audio files were classified
correctly as non-mind-wandering cases, however there were
also many cases were the testing audio files were in the no-
mind-wandering class, however the classifier classified them
as mind-wandering. Therefore, the existence of many false
positives, as shown in Table 3 and Table 4 shows that many
actual non-mind-wandering audio files got classified as mind-
wandering. These audio files that were wrongly classified as
mind-wandering, contained also audio files that were silent,
due to people listening to the music video through head-
phones, and there were sudden sounds present, indicating ex-
ternal sounds. Therefore, there is not information to back up
the hypothesis that was initially proposed, however further
research could be helpful in proving more concrete evidence
that supports this hypothesis or disproves it.

A comparison was also done between the method of mind-
wandering detection through sound and also other techniques
that have been previously used. There is definitely a corre-
lation between mind-wandering and sound, as also shown by
previous research [22], however through comparison with the
other techniques (thought probes, self-reports, electrophysio-
logical measures, eye-based tracking) it was shown that auto-
matic mind-wandering detection through sound is not as ef-
fective as the aforementioned methods.

6 Responsible Research

Despite the experiments already described in this work, it is
important to also be able to further experiment, however there
are some limitations regarding this aspect in this work. The
Mementos data set being a sensitive data set, falling under the
GDPR regulations of personal data collection, manual anno-
tation and oversampling are all topics that need to be men-
tioned.

The videos that were used during the annotation and ex-
perimenting process are videos from the Mementos data set.
This data set contains sensitive data, that can not be accessed,
unless signed approval has been given. This means that the
data is not accessible to the open public. This complicates



the reproducibility of the research, as a EULA needs to be
signed in order to get access to the data. Even after obtaining
the data, the data can not be uploaded anywhere, or moved
from the local device. This restricts the use of tools and li-
braries, therefore if one were to reproduce the research, such
tools would not be able to be used. However, the library used
in this work, is an open source library, therefore if access was
given to the Mementos data set, this research could be repro-
duced. However, similar research could still be done, with the
use of this library, and a different data set.

The process of annotating the data set, was done manually
by watching the videos one by one, and annotating the time
stamps where mind wandering was expected to be occurring.
Therefore, the ground truth data was created by the means of
perceived mind wandering, and not by physiological data or
self reports, which is the case in other existing research [10,
39]. Therefore, this has negative consequences on the relia-
bility of the research. To mitigate this as much as possible,
the rule book was created, teams were constantly randomized
and breaks were taken during annotating sessions. For any
uncertainty, all of the 5 members of the research group were
consulted, and a group decision was taken. Another issue
arising from this way of creating the ground truth values, is
that during the process of annotation, the people watching the
videos and annotating them could also be mind-wandering. In
order to mitigate this as much as possible, teams were often
randomized, breaks were taken, and the mind-wandering an-
notation sessions were not too long, as also previously men-
tioned. Despite these efforts to mitigate this happening, it
could have still been the case in some sessions.

Another issue that needs to be mentioned is the imbalance
of the data. Due to the fact that the data set was imbalanced,
oversampling was used in order to balance the data set, in or-
der to be able to train the classifier. This has the advantage of
balancing the data, however, because it creates precise repli-
cas of the minority class samples, it may increase the chance
of overfitting. A symbolic classifier, for example, can gen-
erate rules that appear to be accurate but only cover one re-
produced example in this way. Two techniques were tested
and tried out for over sampling the minority class, in order
to evaluate both methods, however this is an issue that is still
worth mentioning.

7 Conclusions and Future Work

This study investigated the ability to recognise mind-
wandering through sound. To achieve this a linear SVM
model was chosen, and random oversampling and SMOTE
were the techniques used to handle the issue of having an un-
balanced data set.

An experimental study was conducted to showcase the fea-
sibility of using sound to detect cases of mind-wandering. To
achieve this the selected videos from the Mementos data set
were annotated, in order to create ground truth values. After
this the audio files were extracted from the respective videos
in order for the acoustic features to be able to be extracted.
With these videos the SVM models were trained and tested
to see if the detection of mind-wandering through sound was
feasible. The results showcase that through sound good re-

sults are obtained for non-mind-wandering cases, however
lower metric values are obtained for detecting mind wander-
ing, which is likely due to the imbalance in the non-mind-
wandering and mind-wandering test data.

This research suggests a method of binary classification, of
mind-wandering and non mind wandering. While it does have
the advantage of separating occurrences of mind-wandering
and occurrences of non mind-wandering, it does induce a
strict binary classification between these two classes, whilst
mind-wandering is a more complex state. Therefore, a
method of having a confidence score for each video instead of
a classification of yes and no could provide a good basis for
further extended research in this area. As mind-wandering is
a subjective process, which every person can display in dif-
ferent ways, a confidence score could mitigate some of the
errors of classification.

Methods for oversampling the minority class were used
in this work, due to the low amount of data in the mind-
wandering class, and the high amount of data in the no-
mind-wandering class. For a future study, a combination be-
tween oversampling and undersampling can be used, espe-
cially through the use of SMOTE, as the algorithm seems to
benefit from a combination with undersampling the majority
class. This could potentially also be optimized as a hyper-
parameter of the pipeline, in order to see what the effects of
ratios of undersampling and oversampling are.
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