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Preface 
 

This master thesis report is written as part of the CoSEM Master Thesis (SEN2331) at Delft 

University of Technology. 

Readers who are interested in the background information and relevance of this research project 

can refer to Chapter 1. Readers who are interested in the methodology of this research can refer 

to Chapter 2. Readers who are interested in the extraction method for energy carrier price 

information can refer to Chapter 3. Readers who are interested in the fully sector-coupled model 

can refer to chapter 4. Readers who would like to know more about the results, model 

limitations, conclusion and recommendations can refer to Chapter 5, 6 and 7 respectively. The 

links to models and the Python codes used in this project can be found in the Appendix. 

I hope you enjoy reading this master thesis report. 
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Executive summary 
Although there is a common understanding that the use of variable renewable energy sources 

(VRES) is needed in our collective attempt to decarbonise society, the type of technology that we 

should deploy, and where is not so clear. Stakeholders from real-world projects use the outcomes 

from optimisation models to aid their decision-making process. One of such outcomes that 

decision-makers use is the price information of energy carriers in the required temporal and spatial 

resolution. In the current state, price information is embedded in the form of shadow prices within 

linear optimisation problems. As a result, price information is relatively easy to extract for 

conventional, power-sector focussed energy system models. However, when these energy system 

models are multi-carrier and sector-coupled in which energy carriers undergo several conversion 

stages, the extraction of price information becomes less trivial. Furthermore, even when price 

information is extracted in the form of shadow prices, they might not represent real-world price 

information. This master thesis research aims to develop a generally applicable price information 

generation method to extend the use of shadow-price based methods in conventional models to 

more complex multi-carrier fully sector-coupled models. The price information generation method 

is developed in Python which is tested within the Calliope modelling framework for a multi-carrier 

fully sector-coupled energy system. It does this by extracting the shadow prices from a linear 

optimisation problem of the North Sea Euro Calliope model which is adapted from the Euro-

Calliope model. The shadow prices are then compared against current real-world prices for the 

energy carrier electricity. Results show that the shadow prices do not represent real-world prices 

accurately, however the use of shadow prices can be extended to understand trade-offs between 

different configurations of fully sector-coupled energy system models. A use case for the shadow 

prices has been conducted to analyse the price stability of Dutch electricity prices for different 

hydrogen shares within the energy system for different weather scenarios. Initial results show that 

the price stability of electricity in the Netherlands could be improved by increasing the share of 

hydrogen in the energy system. The increase of the hydrogen share within an energy system does 

not significantly affect the payback time of the energy system and the levelized cost of energy 

(LCOE) for electricity technologies. This research project shows that shadow prices could be used 

to understand trade-offs in different configurations of fully sector-coupled energy systems and aid 

the decision-making for the type and location of technologies to fulfil energy demands in the 

future. Recommended future research include an improvement of the North Sea Calliope model 

using a bottom-up approach and the analysis of other sectors within the fully sector-coupled energy 

system such as hydrogen and heat. 
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Chapter 1 – Introduction  
This chapter introduces the research topic and problem of this master thesis research project. It 

starts with background information in section 1.1 to motivate the relevance of the problem 

followed by some of the core concepts that are relevant throughout the research project in section 

1.2. In section 1.3 the knowledge gap is described and the main research question is formulated.  

Subsequently the sub questions are described in section 1.4. Section 1.5 briefly summarises the 

key deliverables of this master thesis project. 

1.1 Background 
The limited availability of fossil fuels, our ever-growing appetite for energy, and rising 

environmental concerns has left modern day societies with a challenging task. The Glasgow 

Climate Pact has reaffirmed the long-term global goal to hold the increase in the global average 

temperature to well below 2 oC above pre-industrial levels and to pursue efforts to limit the 

temperature increase to 1.5 oC above pre-industrial levels, recognizing that this would significantly 

reduce the risks and impacts of climate change. It also recognizes that limiting global warming to 

1.5 oC requires rapid, deep and sustained reductions in global greenhouse gas emissions, including 

reducing global carbon dioxide emissions by 45 per cent by 2030 relative to the 2010 level and to 

net zero around mid-century, as well as deep reductions in other greenhouse gases (Glasgow 

Climate Pact, 2021).  

The Netherlands has set a target to reduce greenhouse gas emissions by 49% by the year 2030 and 

95% by the year 2050 compared to 1990 levels and 100% renewable electricity production by the 

year 2050.  These legally binding targets have been laid down in the 2019 Climate Act 

(Klimaatwet, 2020). 

Although there is a common understanding that the use of variable renewable energy sources 

(VRES) is needed in our collective attempt to decarbonise society, the type of technology that we 

should deploy, and where is not so clear. Optimisation models are being developed and 

increasingly being used to aid decision-makers in answering this challenging question. Although 

recent developments have been made to account for higher spatial resolution (Hörsch & Brown, 

2017; Pfenninger & Keirstead, 2015; Lombardi et al., 2020) and sector coupling (Brown et al., 

2018; Maruf & Islam, 2019; Mangipinto, 2020; Pavičević et al., 2020), state-of-the-art models still 

focus primarily (often exclusively) on minimising the total cost to society, measured in terms of 

total investment and operation cost for the deployed infrastructure. As a result, they fail to provide 

information about how much electricity, heat or hydrogen will cost at the point of consumption, 

even though these prices will be critical for the political and social acceptability of any energy 

scenario. 

Detailed energy carrier price information of current energy modelling systems are generally only 

focussed on a single energy carrier, mostly electricity (Luz & Silva, 2021; Tröndle, 2020; Diaz et 

al., 2017; Laha & Chakraborty, 2021). Detailed price information for other energy carriers such as 
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heat (Lombardi et al., 2019) and hydrogen (Morgenthaler et al., 2020) is available to a lesser extent 

or not combined within a fully sector-coupled energy system.  

This master thesis project aims to bridge this gap by developing a method to extract price 

information in the form of shadow prices for fully sector-coupled energy systems. Furthermore, 

the method is then applied to answer a policy related research question to showcase the potential 

use cases of the energy carrier price information in the form of shadow prices. 

1.2 Core concepts 
This master thesis project is related to a design in a complex social-technical system. It includes a 

technical component operating from both the public and private domain. The most important core 

components are described in this sub section. The information on the core concepts has been 

gathered through short literature reviews. The main literature used are literature review papers 

sourced on Google Scholar and papers suggested by supervisors.  

1.2.1 Energy system optimisation tools 

Energy system optimisation tools are used to generate insights on energy systems on the supply 

and demand of energy (Pfenninger, 2014). They allow policymakers to explore the impact of their 

policies on the energy sector as well as assessing the efficacy of reaching certain policy targets by 

implementing their policy instruments (Lopion et al., 2021). In the past, previous studies are 

limited to a single sector analysis (mainly the power sector), reduced temporal and spatial 

resolution and limited time horizon of study (Aryanput et al., 2021). As the use of VRES has been 

increasing exponentially in the last years and production of energy are becoming more 

decentralised, higher spatial resolution in energy system optimisation models are needed for the 

efficient integration of these new resources (Martínez-Gordón et al., 2021). 

Pfenninger (2014) distinguishes four model groups: energy system optimization models; energy 

system simulation models; power systems and electricity market models; qualitative and mixed-

methods scenarios. This research will focus on energy system optimization models. Moreover, this 

research project focuses on the development of a method for the generation of price information. 

The developed method will then be applied to a fully sector-coupled energy system where the price 

information is used to analyse trade-offs between different configurations of energy systems. 

1.2.2 Sector coupling 

According to Maruf (2019, p22), “Sector coupling does not only refer to supply–demand relations 

but also considers the interlinkage between the consumption sectors like households, commerce, 

trade, services, industries, transports, etc. While the main objective of sector coupling is to reduce 

GHG emissions by substituting fossil fuels, the secondary objective is to provide flexibility, 

network optimization and increased efficiency to the energy systems”.  The additional flexibility 

provided by sector coupling proves to play an important role in providing cheaper and more 

efficient storage solutions, reducing the cost of the energy transition (Pavičević et al., 2020).  In 

current energy optimization models, price information is embedded in the form of shadow prices 
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within linear optimisation problems. As a result, price information is relatively easy to extract for 

conventional, power-sector focussed energy system models. However, when these energy system 

models are multi-carrier and sector-coupled in which energy carriers undergo several conversion 

stages, the extraction of price information becomes less trivial. Furthermore, although energy 

carrier prices in the form of electricity are represented quite extensively, non-electric carriers are 

not (Pickering et al., 2022). This research will therefore focus on fully sector-coupled energy 

system optimization models. 

1.2.3 Energy carriers 

Energy carriers allow the transport of energy from one place to another. The predominant energy 

carriers in conventional energy systems are in the form of hydrocarbons such as natural gas, coal 

and oil products. In the transition towards low-carbon energy systems, electricity, hydrogen and 

synthetic fuels are becoming more important and predominant as main energy carriers (Foxon et 

al., 2010; Møller et al, 2017). The key difference between the energy carriers found in conventional 

energy systems and energy carriers in future energy systems is the low emission of GHGs in the 

latter. Studies have shown that multi-energy carrier and sector-coupled energy systems such as 

power-to-heat, power-to-gas, power-to-hydrogen have the potential to increase the efficiency and 

reduce the overall cost of the whole energy system (Brown et al., 2018; Pavičević et al., 2020).  

Power-to-heat 

Power-to-heat options include centralised power-to-heat systems such as district heating. 

Centralised power-to-heat systems convert heat at a central location away from where the actual 

heat demand is. In contrast, for decentralised power-to-heat systems, use electricity to create heat 

at the location where the heat demand is. Decentralised power-to-heat options include direct 

heating systems such as electric heaters. Moreover, thermal energy storage could be present in 

both centralised and decentralised power-to-heat systems. Thermal energy storage options include 

heat pumps and hot water storage (Bloes et al., 2018).   

Power-to-gas 

Power-to-gas refers to the process of using electricity to create hydrogen or natural gas with 

hydrogen admixture through electrolysis or the creation of natural gas with methane admixture 

through a process called methanation (Schiebahn et al., 2015). 

This research will focus on multi-carrier fully sector-coupled energy systems. Considering the 

limited time available within this research project, the scope is of this project focusses on hydrogen 

more than other energy carriers. Hydrogen as an energy carrier and its position in the Dutch vision 

for future energy systems is elaborated further in the sub sections below. 

Hydrogen 

Hydrogen as an energy carrier can be stored, transported and it can be used as a fuel or it can be 

converted to electricity energy using a fuel cell. When hydrogen is used within a fuel cell to 

generate electricity, the only emissions are in the form of water and warm air (Mazloomi & Gomes, 
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2012). It is therefore often seen as an important energy carrier in the global decarbonisation efforts 

(Chapman et al., 2019; Rosen & Koohi-Fayegh, 2016; Møller et al, 2017). While the use of 

hydrogen is environmentally benign, the production of hydrogen might not always be free of GHG 

emissions. It is therefore important to note the distinction between green, blue and grey hydrogen. 

Green hydrogen is produced by fully renewable energy such as solar and wind using process called 

electrolysis. For the production of blue hydrogen, natural gas is needed where the released carbon 

dioxide is captured and stored underground. Grey hydrogen uses the same process as blue 

hydrogen except that the released carbon dioxide is not captured and is released into the 

atmosphere (TNO, 2022). 

Hydrogen in the Netherlands 

The Netherlands has strong ambitions on the medium-term (2030) and long-term (2050) to use 

hydrogen as an energy carrier for a number of key infrastructures within the Dutch energy system. 

Among others, hydrogen will be used as carbon-free feedstock for the industrial processes with 

the long-term goal to replace all feedstock in the chemical industry with carbon-free hydrogen. 

Hydrogen will also be used for high temperature industrial processes exceeding 600 degrees 

Celsius. Furthermore, the Dutch Climate Accord also states that hydrogen will also be used as a 

means for long-duration storage and used to decarbonise the mobility sector, particularly in the 

long distance and heavy transport options (Ministerie van Economische Zaken en Klimaat, 2019; 

Nationaal Waterstof Programma, 2022). The Netherlands has the ambition to use blue and green 

hydrogen for the energy transition (TNO, 2022). Furthermore, the Dutch government has ongoing 

studies to assess the feasibility of implementing the production of green hydrogen in combination 

with offshore wind farms in the North Sea region (RVO, 2022) 

1.3 Research question 
The knowledge gap within this research project is a void in modelling framework from which 

energy carrier prices cannot be extracted in the desired manner from multi-carrier fully-sector 

coupled energy optimisation models. Therefore, the objective of this research is to develop a 

method for the generation of energy-carrier prices within multi-carrier, fully sector-coupled energy 

systems models. In addition, this master’s thesis project also aims to provide an answer to how the 

extracted price information can be used in the policy domain. As this master thesis project focusses 

on the energy transition in Netherlands which has a strong ambition for the implementation of 

hydrogen-rich energy scenarios, the policy related part will address hydrogen related scenarios. 

Therefore, the main research question of this research project is:  

How can energy carrier price information be used to understand the trade-offs between different 

hydrogen configurations of a fully sector-coupled energy system model. 
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1.4 Sub questions 
In order to answer the main research question, the following sub questions have been formulated: 

1. What are the methods to extract energy carrier prices from fully sector-coupled energy 

systems in existing literature? 

2. How can energy carrier prices in the form of shadow prices be extracted within the 

Calliope framework in fully sector-coupled energy systems? 

3. How do the generated price information compare to the real-world price information? 

4. What are the price-related trade-offs when varying the share of hydrogen in a fully 

sector-coupled energy system?  

The sub questions have been drafted in such a way that they correspond to the flow of the design 

stages. These will be described further in detail in chapter 2. 

1.4.1 Research methods and research flow diagram 

The main resources used for the literary sources and literature review in this master thesis project 

are literary databases such as Google Scholar, governmental sources such as RVO and research 

organisations such as TNO. Since the Calliope modelling framework is Python-based, 

development hubs such as GitHub, Stack Overflow will be used as the main source for learning 

and developing the Calliope models. For validation processes of electricity prices, market data will 

be used from ENTSO-E. An overview of the sub questions and the main tools and resources used 

to answer these sub questions is shown in Figure 1. For the computation of the large complex 

models, the Delft High Performance Computing Centre (DHPC) is used. 

 

Figure 1: Research methods, tools and sources 
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1.4.2 Research flow 

The overall research flow of this research project in correspondence of the design stages is shown 

in Figure 2. The outputs of every design stage will be used in the subsequent design stage. At the 

end of all three stages, the design objective shall be met. 

 

Figure 2: Research flow diagram 

1.5 Deliverables  
In short, the research project can be divided into three deliverables. First, a literature review on the 

state-of-the-art knowledge on regarding the generation of price information in multi-carrier and 

sector-coupled energy models. Second, a state-of-the-art method to extract price information from 

multi-carrier and sector-coupled energy models within the Calliope framework. Third, a case-study 

to understand trade-offs within fully sector-coupled models using the price information.  
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Chapter 2 – Research methodology 
In this chapter, the research methodology for this master thesis project is described. In section 2.1, 

phase 2 of the research project is described. Then in section 2.2, phase 2 of the research project is 

described. In section 2.3, phase 3 of the research project is described. 

Research phases 

The project will be carried out using a design approach following the typical three stages of a 

design cycle. The stages are in sequential order the problem definition stage, the design and 

development stage and at last the design evaluation and communication stage. In the first stage 

which is set up to be more exploratory has the goal of answering the first sub question. The second 

stage is where the actual development starts from which we can answer sub question 2 and sub 

question 3. The third and final stage aims to answer sub question 4 using the developed method 

during the second stage. The total allocated time for the research project is 24 weeks. 

The process of this research project can be delineated into three logical milestones. The first 

milestone is reached when the shadow prices can be extracted from a multi-carrier sector-coupled 

model. As mentioned in chapter 1, even when the extraction of shadow-prices is successful, the 

obtained numbers might not be representative to real-world data. Therefore, a second milestone 

will be reached when the extracted shadow prices are evaluated against real-world data. After the 

second milestone, an additional step will be performed that focusses on the useability of the 

extracted shadow prices. Therefore, to conclude the third milestone, the extracted price 

information will be used for a policy related research question to assess the validity and useability 

of energy carrier price information. The phases of this research project along with the key tasks 

associated within each phase is presented in Figure 3. 

 

Figure 3: Overview of the design stages and the associated key tasks 
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2.1 Phase 1: Problem definition 
Sub question 1 aims to find state-of-the-art knowledge regarding the generation of price 

information of complex multi-carrier sector-coupled energy systems through literature study. 

Potential starting points are the use of shadow prices in multi-carrier sector-coupled models within 

literary papers, forums such as the Open Energy Modelling Initiative and documentation within 

the Calliope framework. 

2.1.1 Linear programming problem and shadow prices 

As mentioned in Section 1.2.1, this research project focusses on energy system optimisation 

models. Within these optimisation models, different optimisation techniques are available. This 

research project focusses on the linear programming (LP) method as the Calliope model that is 

used in this project is defined as a linear programming problem. 

A LP problem is a constrained optimisation problem. The objective function is a linear expression 

for which the maximum or minimum value has to be found given a number of linear constraints. 

A LP problem typically contains the following three elements: 

1. Objective function 

2. Decision variables 

3. Equality and/or inequality constraints 

Where the objective function 𝑍(𝑥) can be formulated as: 

 
𝑀𝑎𝑥 𝑍(𝑥) = ∑ 𝐶𝑗𝑥𝑗  

𝑛

𝑗=1

 

 

( 1 ) 

 

subject to a number of linear constraints of the form: 

 
∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 ≤ 𝑏𝑖,

𝑖 = 1, … , 𝑚 

 

( 2 ) 

 

 

where the non-negative variables 𝑥𝑛 are called the decision variables: 

 𝑥𝑗 ≥ 0, 𝑗 = 1, … , 𝑛 ( 3 ) 

 

The largest or smallest value possible is the optimal value for the objective function depending on 

whether the goal is to maximise or minimise. The collection of the decision variables that gives 

the optimal value is then called the optimal solution. 
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2.1.2 Duality in Linear Programming Problems 

A LP problem possesses the property of duality. The duality principle is a mathematical concept 

that enables the extraction of information of a mathematical structure using the information of 

another mathematical structure (Diewert, 1974). In relation to a LP problem, the first mathematical 

structure is the so-called the primal problem, the second mathematical structure is consequently 

called the dual problem. 

The equations (1), (2) and (3) as such can be seen as the primal problem and subsequently the dual 

problem can be formulated as: 

 

 
𝑀𝑖𝑛 𝐽(𝑦) = ∑ 𝑏𝑖𝑦𝑖

𝑛

𝑖=1

 
 

( 4 ) 

 

subject to: 

 
∑ 𝑎𝑖𝑗𝑦𝑖

𝑛

𝑖=1

 ≥ 𝐶𝑗 ,

𝑗 = 1, … , 𝑛 

 

( 5 ) 

 

   

 𝑦𝑖 ≥ 0, 𝑖 = 1, … , 𝑚 ( 6 ) 

 

   

It can be seen that the objective function is inverted. The objective function in the primal problem 

is to maximise the outcome whereas the objective function of the associated dual problem is to 

minimise the outcome. Furthermore, the decision variables in the primal problems become the 

constraints in the dual problem and the constraints in the primal problem become the decision 

variables in the dual problem. 

The dual variables for the primal problem can be interpreted as the marginal cost of the primal 

problem (Perry & Crellin, 1982) as they represent the change of the optimal value in the objective 

function to a unit increase of the right-hand side of the associated constraint equation. 

Consequently, the optimal values of the decision variables of the dual problem are equal to the 

shadow prices of the primal problem. The opposite also holds true and thus the shadow prices of 

the dual problem are equal to the solution of the primal problem.  

In linear programming, shadow prices are often used to identify the maximum price one should 

pay to obtain an additional unit of a constraint resource (Perry & Crellin, 1982). From the primal 

problem described above, it can be said that if constraint 𝑏𝑖 is changed by one additional unit, the 

change in 𝑍(𝑥) gives us the shadow price of the respective constraint.  
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In the literature (Lee & Zhang, 2012; Wei & Liu, 2013; Althammer & Hille, 2016), shadow prices 

are often used to assign monetary values to non-marketed resources in economic appraisals. Within 

the energy sector, it is often used to account for costs in emission related energy carriers such as 

CO2 emissions or other greenhouse gas emissions.  

2.1.2 Calliope  

Calliope is a Python-based open-source multi-energy modelling and linear optimization 

framework with high temporal and spatial resolution. This master thesis project will therefore be 

conducted around the Calliope framework due to its high flexibility and high-resolution 

capabilities. Furthermore, the Calliope framework is currently being used in several EU-funded 

projects with real-world stakeholders making it a highly relevant framework for research.  

In the very basics, the Calliope model is built from YAML files. These YAML files contain 

definitions and constraints for the technologies and locations within the model. These YAML files 

combined with demand profiles for all energy carriers form the basis of the model. By running the 

model, Calliope solves the linear optimisation problem by minimising or maximising the total 

system cost given the constraints. The full documentation on Calliope can be found on their official 

website and official publication (Pfenninger & Pickering, 2018). 

 

Figure 4: Simplified overview of the Calliope Modelling Framework 

Figure 4 represents a simplified overview of the Calliope Modelling Framework adapted from Luz 

& Silva (2021). The modelling framework indicated by the dashed box contains the following 

main elements: 
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1. Energy System Model. This includes the geographical representation such as locations of 

every node within the model; The technologies present within the model such as demand 

technologies, supply technologies, transmission technologies and conversion technologies; 

The network representation, such as the links and connections between the nodes. 

2. Optimisation Model. This is where the objective function is set along with the decision 

variables, constraints and solver options 

3. Outputs/Results. This includes timeseries data on carrier flows, resource usage, variable 

costs, installed capacities, production and consumption profiles. 

Outside the Calliope Modelling Framework, external data is used to define the coordinates of the 

nodes, specifications for the technologies (such as production capacities and costs) and 

transmission capacities for the links. Scenario overrides are used to define specific scenarios 

applicable to the model such as different supply and demand profiles for different years. A solver 

is then used to solve the LP problem given the configuration within the optimisation model from 

which the results can be extracted within the calliope modelling framework. 

In chapter 4, the exact Calliope model used for this master thesis project is further described. 

Other fully sector-coupled modelling frameworks 

Besides Calliope, there exists also other Python-based energy modelling frameworks suitable for 

fully sector-coupled modelling such as the Open Energy Modelling framework (oemof) and 

Python for Power System Analysis (PyPSA) (Ringkjøb, 2018). The reason for choosing the 

Calliope framework for this research project is due to the fact that method developed for the 

extraction of price information can also be applied to any other Python-based framework. More 

importantly, due to expertise in the Calliope framework from this thesis’ supervisor, it is possible 

to get full support with already full-scale models available such as the Euro-Calliope model. 

2.2 Phase 2: Design and development  
Sub question 2 coincides with the design and development stage in which the method to extract 

energy carrier prices is to be developed. In subsequence of sub question 1, the developed method 

shall be modified and implemented for the Calliope models within the Calliope modelling 

framework. 

Sub question 3 aims to validate the developed method against real-world price information. A way 

to assess the accuracy of the developed method is to assess the outcome with known and real-

world prices. Therefore, it seems logical to perform this research project for a model which reflects 

the current energy infrastructure with a good availability of data. The Dutch energy system is 

therefore a good candidate as they have good open-source data from recent years due to databases 

available such as on ENTSO-E and EPEX SPOT. Furthermore, defining the model constraints and 

geographic boundaries will be an important part of this sub question. In order to save time, it is an 

advantage to find existing models rather than building a model from scratch. The model should be 

a multi-carrier fully sector-coupled energy system. The base model used is the euro-calliope-2.0 



 

24 
 

model (GitHub, 2022) which is a fully sector-coupled model including transport, heat and industry 

sectors with their associated carriers and technologies.  

2.2.1 Working environments 

Throughout this master thesis project, there are mainly two environments on which the research 

will be conducted. The workflow and interaction between the working environments is shown in 

Figure 5.  

Since the Calliope modelling framework is developed in Python, the Integrated Development 

Environment (IDE) Spyder is used to develop, edit and debug the main python scripts to run the 

desired Calliope models. The same Spyder environment can also be used for data analysis as it has 

an integrated variable explorer and plots can be created. The Spyder environment alone on a laptop 

is powerful enough to perform and analyse low resolution runs. The full specifications of the laptop 

used during this project can be found in Appendix A – Laptop specifications. For higher resolution 

runs, the Delft High Performance Computing (DHPC) DelftBlue is used. To access the DHPC, the 

secure remote access software Bitvise SSH client is used to manage the file transfers between the 

local computer and the DelftBlue supercomputer. A sbatch script is then sent to the DelftBlue 

supercomputer to run the Calliope model. After successfully run of the models, DelftBlue returns 

a slurm output along with a netcdf file that contains the optimal values for the simulation as well 

as the dual variable values stored in a .csv file. These two files are then imported back to the Spyder 

IDE from which the data analysis is performed. 

 

Figure 5: Overview of the interactions between different working environments 
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Working environment limitations 

The DelftBlue supercomputer is limited to a maximum running time of 24 hours for each job with 

a total storage capacity of 8GB. For high memory jobs the DHCP has six nodes available with 

750GB and four nodes with 1.5TB of RAM (GitLab, 2022). 

2.2.2 Modelling process 

The modelling process can be described the following three distinct phases, Building the model, 

Running the model and Analysing the results. In the first stage, all the necessary files such as the 

YAML files, override files and demand profiles are loaded into the model. YAML files are used 

to define technologies, locations, constraints and costs variables. Override files are used to define 

year specific data such as the demand for hydrogen. One can imagine that the demand for hydrogen 

for example would be a lot more in 2050 than in 2020. After the model is built, the model is then 

run. During this step the solver is solving the LP optimisation problem and finds time optimal 

values for all the decision variables for the given objective function. During this same step the dual 

variables and its values are also extracted. The model results and dual variables are then both 

stored. The analysis of the results can be divided into two distinct steps. In the first step, the 

physical flows within the model such as carrier production and carrier consumption are analysed 

to make sure the model is a feasible and representative model. Once the physical model has been 

validated, the energy carrier prices are then analysed using the dual variables. Finally, the results 

are plotted and presented using charts and graphs. 

 

Figure 6: Overview of the modelling process 
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An overview of all the models run for this research is presented in Table 1. In order to capture the 

daily and seasonal effects of VRES, the resampling of the time resolution for all the models is set 

on 1 hour. The Simple model has its goal to test the extraction method for energy carrier prices 

within the Calliope modelling framework. This process is described further in detail in chapter 3. 

The 2020-1h model will be used in phase 2 for the validation process. The year 2020 has been 

chosen so that model data can be validated against real-world data. Technology data include 

technical constraints such as energy capacity, energy efficiencies and lifetime of the respective 

technologies. Moreover, monetary constraints such as cost initial investment cost and annual 

operation and management costs are also included.  Important to note is that in the 2020 model, 

hydrogen technologies, synthetic fuel production and batteries are not included as these are not yet 

widely adopted. In the 2050 models, the models in which the names start with 2050 do have these 

technologies enables as it is expected that these technologies will be widely adopted in 2050. Both 

the 2020 model and 2050 models uses technology data from the Danish Energy Agency. Weather 

data from 2020 is at the moment of research not available and thus weather data for the year 2015 

in coherence with the base year of the Euro-Calliope model. Furthermore, both the 2020 and 2050 

model are based on the North Sea Calliope model which is built from the Euro-Calliope model. 

The building of the North Sea Calliope model will be described in chapter 4. 

 

Table 1: Overview of all models runs for this research project 

Phase Model name Technology 

data 

Weather 

data 

Hydrogen 

technologies 

Synthetic 

fuel 

production 

Batteries 

2 
Simple NA NA No No No 

2020-1h 2020 2015 No No No 

3 

2050-2010 

2050 

2010 

Yes 

2050-2010-8030 

2050-2010-8030 

2050-2015 

2015 2050-2015-8030 

2050-2015-8050 

2050-2016 

2016 2050-2016-8030 

2050-2016-8050 

 

The different variations of the 2050 models are to assess trade-offs of different configurations of 

the energy system which will be part of phase 3 of this research project. This will be elaborated 

further in the next subsection. 
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2.1.3 Phase 3: Design evaluation and communication stage 
Sub question 4 coincides with the last design stage, the design evaluation and communication 

stage. It includes a refinement process of the developed method for the generation of price 

information. This refinement process is intended improve the meaningfulness of the extracted data. 

Therefore, for the third phase, a research scope is introduced to address the policy relevant research 

question. To cope with the interest of the Dutch energy transition and its high ambitions for a 

hydrogen-based energy system in the future, the North Sea region has been selected with an 

analysis of the supply and demand of energy in the Netherlands. This reduces the computational 

load and allows this research project to fit within the time limit of this master thesis project. A 

more detailed description of the North Sea region model can be found in chapter 4. In chapter 5, 

the trade-offs of different configurations of a fully sector-coupled energy system is analysed 

through varying the share of hydrogen within the energy system. Within this analysis, technical 

parameters such as infrastructure and capacity deployment are analysed. Economic parameters 

such as levelized cost of energy, cost recovery and price deviation of electricity prices in the 

different configurations are also analysed. The model results are then compared to literature and 

existing plans for offshore wind energy and hydrogen production in the North Sea. The comparison 

of model results and literature are discussed in chapter 6. The conclusion and recommendations 

are then finally described in chapter 7. Furthermore, the writing of the full thesis report and the 

preparation of presentation as part of the communication stage is also an important part of phase 

3. 
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Chapter 3 – Extracting price information from Calliope 
This chapter will provide the results from sub questions 1 and 2 regarding the extraction of price 

information from Calliope. It includes a description of how the method works and its application 

is tested on the tutorial models from Calliope. 

3.1 Literature review on extraction methods 
Since this research project is conducted around the Calliope framework, the scope of the literature 

review is reduced to the finding of existing shadow price extraction methods suitable for the 

Calliope framework. Moreover, the developers from the Calliope modelling framework 

recommend the use of Gurobi or CPLEX as these are significantly faster than the open-source 

solvers GLPK and CBC (Calliope, 2022). The Gurobi solver has been chosen over the CPLEX 

solver due to the already existing integration of Gurobi in the sector-coupled Calliope model of 

this research project. The Gurobi license is free for academic purposes. Therefore, the scope of the 

literature review on extraction methods is further reduced to finding existing shadow price 

extraction methods for the Gurobi solver.  

The idea of extracting shadow prices from LP problems is not novel. A search in Stack Overflow, 

a public platform where developers share programming codes, the term “get dual problem python” 

returns a total of 80 results. However, the extractions of shadow prices in Calliope returned a total 

of 0 results. This is due to the relatively limited research being performed using the Calliope 

modelling framework. From Stack Overflow, a reference to the Pyomo could be found which is a 

class within the Python language for optimisation modelling. The documentation of Pyomo then 

shows the Python script through which the dual values of a LP problem could be accessed (Pyomo, 

2022). The Python script can then be applied to the Calliope Modelling framework. Other 

optimization modelling libraries have also been found such as SciPy and PuLP. The Calliope 

modelling framework is built using the Pyomo optimization library, therefore the use of other 

modelling libraries have not been researched extensively in this research project. 

3.2 Mathematical formulation of the Calliope modelling framework 
As mentioned in section 1.2.4. Every LP problem contains the main following main elements, the 

Objective function, Decision variables and Constraints. The formulation of these elements are 

further described in this subsection. It is important to note that only the most relevant formulations 

for this research project are elaborated upon. The full mathematical formulation of Calliope can 

be found in the documentation on the Calliope website. 

3.2.1 Objective function 

The objective function in Calliope is to minimise total system cost for specified cost class or set 

of cost classes and can be formulated as follows: 
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 𝑚𝑖𝑛: 𝑧 =  ∑ (𝑐𝑜𝑠𝑡(𝑙𝑜𝑐 ∷ 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡𝑘) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑘

𝑙𝑜𝑐∷𝑡𝑒𝑐ℎ𝑐𝑜𝑠𝑡,𝑘

+ ∑ (𝑢𝑛𝑚𝑒𝑡_𝑑𝑒𝑚𝑎𝑛𝑑(𝑙𝑜𝑐 ∷ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑙𝑜𝑐∷𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

∗ 𝑏𝑖𝑔𝑀) 

 

 

 
( 7 ) 
 

 

where k denotes the cost class. 

3.2.2 Decision variables 

Table 2 presents an overview of all the decision variables in Calliope. The decision variable 

carrier_prod represent the total energy production from all energy carriers within an energy 

system. It is therefore the most important decision variable for this research project as the goal is 

to analyse the marginal price of energy carriers of the energy system. The energy carriers are 

available within the dimension carriers_prod of carrier_prod. 

Table 2: Overview of all decision variables within the Calliope model adapted from Calliope (2022) 

Decision variable Variable name in 

Calliope 

Dimensions 

Energy capacity  energy_cap loc_techs 

Carrier production  carrier_prod loc_tech_carriers_prod, timesteps 

Carrier consumption carrier_con loc_tech_carriers_con, timesteps 

Cost cost costs, loc_techs_cost 

Resource area resource_area loc_techs_area, 

Storage capacity storage_cap loc_techs_store 

Storage storage loc_techs_store, timesteps 

Resource 

consumption 

resource_con loc_techs_supply_plus, timesteps 

Resource capacity resource_cap loc_techs_supply_plus 

Carrier export carrier_export loc_tech_carriers_export, timesteps 

Variable cost cost_var costs, loc_techs_om_cost, timesteps 

Investment cost cost_investment costs, loc_techs_investment_cost 

Purchased purchased loc_techs_purchase 

Units units loc_techs_milp 

Operating units operating_units loc_techs_milp, timesteps 

Unmet demand unmet_demand loc_carriers, timesteps 

Unused supply unused_supply loc_carriers, timesteps 
 

3.2.3 Constraints 

The most important constraint for the analysis of shadow prices of energy carriers is the energy 

balance constraint. The energy balance ensures that, within each location, the production and 

consumption of each carrier is balanced. After all, the shadow price of an energy carrier is the 
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marginal increase of the objective function through the marginal increase of the production of the 

associated energy carrier. 

The energy balance is formulated as: 

∑ 𝒄𝒂𝒓𝒓𝒊𝒆𝒓𝒑𝒓𝒐𝒅(𝑙𝑜𝑐 ∷ 𝑡𝑒𝑐ℎ ∷ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑙𝑜𝑐∷𝑡𝑒𝑐ℎ∷𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑∈𝑙𝑜𝑐:𝑐𝑎𝑟𝑟𝑖𝑒𝑟

+ ∑ 𝒄𝒂𝒓𝒓𝒊𝒆𝒓𝒄𝒐𝒏(𝑙𝑜𝑐 ∷ 𝑡𝑒𝑐ℎ ∷ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑙𝑜𝑐∷𝑡𝑒𝑐ℎ∷𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛∈𝑙𝑜𝑐:𝑐𝑎𝑟𝑟𝑖𝑒𝑟

+ ∑ 𝒄𝒂𝒓𝒓𝒊𝒆𝒓𝒆𝒙𝒑𝒐𝒓𝒕(𝑙𝑜𝑐 ∷ 𝑡𝑒𝑐ℎ

𝑙𝑜𝑐∷𝑡𝑒𝑐ℎ∷𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡∈𝑙𝑜𝑐∷𝑐𝑎𝑟𝑟𝑖𝑒𝑟

∷ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) 

 

 

 

 
( 8 ) 
 

 

∀𝑙𝑜𝑐 ∷ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∈ 𝑙𝑜𝑐 ∷ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠, ∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 

 

 

3.3 Extraction method 
This section describes the process for the extraction method. When running the Calliope model, 

the solver is solving the primal and dual problem simultaneously, however the dual variables are 

not stored. In order to store the dual variable, the following steps are needed: 

1. Build the Calliope model without running it 

2. Create a dictionary variable to store the dual variables 

3. Load and display all dual variables 

After the third step, all dual variables are stored in a dictionary variable called duals containing 

data frames with the dual variables for all carriers. As described in section 3.1, the relevant dual 

variables for this research are the dual variables in the energy balance constraint which has the 

name system_balance_constraint. These dual variables are then stored it in a variable called 

system_balance_duals. 

However, the data in the system_balance_duals data frame were not yet presented in the right 

format as the energy carriers could not be analysed separately from each other. A new data frame 

is created with the columns region, carrier, timestep, dual-value. After the reformatting, the data 

frame has the format as presented in Figure 7. 

 

Figure 7: Duals data frame after reformatting 
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The new data frame now allows for the analysis of each energy carrier separate from each other. 

An overview of all the functions and code needed to extract price information from Calliope can 

be found in Table 3. 

Table 3: Overview of the Python code to extract dual variables from Calliope 

Function Code 

Building the model 

without solving it 

model.run(build_only=True) 

Creating a dictionary 

variable to store the dual 

variables 

model._backend_model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT) 

Display all dual variables duals = {}  

    for c in model._backend_model.component_objects(pyo.Constraint, 

active=True): 

        duals[("{} Constraint".format(c))] = [] 

        for index in c: 

            duals["{} Constraint".format(c)].append(("{}".format(index), 

model._backend_model.dual[c[index]])) 

        duals["{} Constraint".format(c)] = pd.DataFrame(duals["{} 

Constraint".format(c)]) 

system_balance_duals = duals['system_balance_constraint Constraint'] 

Isolating system balance 

duals 

system_balance_duals = duals['system_balance_constraint Constraint'] 

Reformatting the data 

frame of the system 

balance duals 

def process_system_balance_duals(system_balance_duals): 

    column=system_balance_duals[0] 

 

    info = column.str.split("[(::)]") 

    info = pd.DataFrame(info.tolist(), index= info.index) 

    info.drop([0,2,5],axis=1,inplace=True) 

     

    car_and_time = info[3].str.split(",") 

    info[['car','time']] = pd.DataFrame(car_and_time.tolist(), index= info.index) 

    info.drop([3,4],axis=1,inplace=True) 

    info.columns = ['region','carrier','timestep'] 

    info.region = pd.DataFrame(info.region.str.split("[']").to_list(), 

index=info.index)[1] 

    info.carrier = pd.DataFrame(info.carrier.str.split("[']").to_list(), 

index=info.index)[0] 

    info.timestep = pd.DataFrame(info.timestep.str.split("[']").to_list(), 

index=info.index)[1] 

    info.timestep = info.timestep + ':00:00' 

    info.timestep = pd.to_datetime(info.timestep) 

    info['dual-value'] = system_balance_duals[1] 

 

    return (info) 

 

3.4 Testing on simple Calliope models 
The developed method is first tested on smaller models. To keep things simple the method is 

applied on a single-region, non-sector coupled model with only the power sector available. The 

following simple model shown in Figure 8 has been created. 
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Figure 8: Overview of the simple model 

The simple model contains a region with a certain power demand profile and 1 combined cycle 

gas turbine (CCGT) plant at 1 location within the region. The full simple model can be found in 

Appendix B1 - Simple model. The CCGT has a maximum production capacity of 36kW and the 

power demand has at times a demand of great than 36kW. This is to analyse the effects of what 

would happen in case of unmet power demand. As there are no competing power production plants, 

it is expected that the dual value will be equal to the variable costs of the power plant. Furthermore, 

it is expected that the dual value would go to infinity when there is unmet demand as there is no 

power production capacity to fulfil the power demand and the value of power would skyrocket. 

The shadow price for power, power demand and power production of the CCGT are then plotted 

in Figure 9. It can be seen that as the power production from the CCGT plant is unable to fulfil the 

demand, the shadow price goes to 1e6, which is the maximum value possible within objective 

value range. For all other timesteps, the dual value remain constant at 10 €/kWh which matches 

exactly the set operational cost for the CCGT plant. 

 

Figure 9: Assessing power duals against power demand from the simple model 
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Chapter 4 – Price information in a fully sector-coupled 

Calliope model 
This chapter describes how the method developed in chapter 3 is now applied to a fully sector-

coupled energy system model. Section 4.1 described the process of building a suitable Calliope 

model for this master thesis project. Section 4.2 Describes the running process and section 4.3 

concludes with the validation process of the model. The Python scripts used for the analysis for 

the 2020 model can be found in Appendix S1. 

4.1 Building the model 
The developed method described in chapter 3 is applied to a multi-carrier and fully sector-coupled 

model. This section describes how the multi-carrier and fully sector-coupled Euro-Calliope model 

forms the basis of the North-Sea Calliope model which will ultimately become the main model for 

the validation and analysis aspects of this research project. 

4.1.1 Europe-Calliope 

The first European model in Calliope was developed by Tröndle et al. (2020) to analyse the 

European power sector. However, due to its focus on fully renewable electricity, the model did not 

have a realistic transmission topology. Pickering et al. (2022) have upgraded this European model 

to include all energy sectors with a realistic transmission topology. It includes all established and 

already commercially available supply and demand technologies for different sectors and regions. 

The 35 countries are represented by 98 nodes through which different energy carrier flows such as 

power, heat, hydrogen, synthetic hydrocarbons and biofuels can be analysed on an hourly 

resolution for an arbitrary year. The Euro-Calliope model contains 13 distinct carriers. From 

Pickering et al. (2022, p.15), these are “electricity, hydrogen, CO2, liquid and gaseous 

hydrocarbons (kerosene, methanol, diesel and methane), solids (residual biofuel and municipal 

waste), low-temperature heat (combined space heat and hot water, and cooking heat), and vehicle 

distance (heavy-and light-duty road vehicles).” These carriers can either be consumed by demand, 

transport or transformation technologies; produced by heat, legacy or renewable technologies; 

stored by storage technologies. It is also important to mention that trading of energy carriers 

outside the Euro-Calliope region is not enabled. The demand is fully met by the supply within the 

region. The YAML files containing the definitions and specifications of these technologies can be 

found in Appendix B2 - North Sea Calliope model. An overview for the transmission and node 

network for the Euro-Calliope model is presented in Figure 10.  

The demand data for the Euro-Calliope are sourced from Eurostat, JRC-IDEES and Open Power 

System Data databases (Pickering et al., 2022). The supply data such as technology costs are 

sourced from the Danish Energy agency technology catalog (Pickering et al., 2022). The multi-

carrier and fully sector-coupled Euro-Calliope model forms the ideal basis for this master thesis 

project. However, it is important to note that the focus of this master thesis project is not the actual 

building and development of the Euro-Calliope model but using the Euro-Calliope model that is 
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already presented to the public. Therefore, the in-depth details and methodology on the sourcing 

of data are therefore left out in this report, but they can be found in the paper published by Pickering 

et al. (2022) and the Euro-Calliope GitHub (GitHub, 2022).  

 

 

Figure 10: Overview transmission and node network from the Euro-Calliope model, figure from GitHub – Calliope project 

(2022) 

 

4.1.2 North-Sea Calliope 

One can imagine that running such a large-scale model is computationally burdensome. The 

European scale Calliope model has therefore been downscaled to the North Sea region covering 

all the major stakeholders within the North Sea projects, such as the North Sea Wind Power Hub 

Programme (NSWPHP, 2022) and the North Sea Energy organisation (North Sea Energy, 2022). 
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This North Sea Calliope model subsets the problem to what is most relevant for the Dutch energy 

transition. The North Sea Calliope consist of 10 nodes, one node for each country, covering all 

major stakeholders in North Sea projects. The included countries are Belgium, Germany, 

Denmark, France, Great Britain, Ireland, Luxembourg, the Netherlands, Norway and Sweden.  

Although Great Britain is not involved in some of the North Sea projects, it is still considered an 

important stakeholder due to its important presence in the region. An overview of the nodes and 

links of the North Sea Calliope can be found in Figure 11. 

 

Figure 11: Overview of the North Sea Calliope Model, figure from Lombardi (2022) 

The implications of the reduction in nodes for most countries mean that most energy carrier flows 

are reduced to a single flow to and from each country. Since the Netherlands was already 

represented by 1 single node in the larger European scale Calliope model, it is not expected that 

this would affect the carrier flow analysis. The internal transmission capacity of the Netherlands 

is among one of the best in the world it can therefore be assumed that there are no internal 
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bottlenecks (Statista, 2022). However, the transmission operator (TSO) in the Netherlands has 

indicated that the net capacity is reaching its limit in multiple provinces (TenneT, 2021). Within 

the North Sea Calliope model, inter-country bottlenecks can still be analysed through the 1 node 

representation of countries. Similar to the Euro-Calliope, the trading of energy outside the North 

Sea region is disabled. The demand is fully met by the supply from within the North Sea region. 

Ultimately, this North Sea configuration is designed so that it can be run on a laptop with 16GB 

of RAM at a 24-hour resolution within reasonable computing time. Note that a 24-hour resolution 

might not be accurate enough for the validation process, but it is good enough to gain insight on 

the feasibility of the model (e.g., whether the output of the objective function is a non-negative 

value). For the validation process, a 1-hour resolution run is conducted which will be further 

described in Section 4.2. 

Building the North Sea Calliope model 

The steps along with the associated override files needed to downscale the Euro-Calliope model 

to the North Sea Calliope model are presented in Table 4. The {} represent the specific year for 

which the North Sea Calliope model is build. The most important step is to remove all non-North 

Sea countries from the Euro-Calliope model while maintaining the operational feasibility of the 

model.  

Table 4: Overview of the steps to convert Euro-Calliope to North Sea Calliope 

Step Override file 

Removing all non-North Sea locations from the Euro-

Calliope model 

 

north_sea_overrides.yaml 

Removing all non-North Sea locations from bio-fuel 

supply  

biofuel-supply-{}.yaml 

Removing all non-North Sea locations from fuel group 

constraints 

fuel_group_constraints_{}.yaml 

Removing all non-North Sea locations from heat group 

constraints 

heat_group_constraints_{}.yaml 

Removing all non-North Sea locations from vehicle group 

constraints 

vehicle_group_constraints_{}.yaml 

 

North Sea Calliope 2020 model 

The next step is to validate the newly build North Sea Calliope model. Within the North Sea 

Calliope model, technology data for the year 2020 is used using technology data from the Danish 

Energy Agency (Energistyrelsen, 2021). It is important to note that the weather conditions for this 

model are taken from the year 2015. This is due to the fact that the index year for the models are 

set for the year 2015. In order to make the North Sea Calliope model with the all the definitions 

and characteristic from the year 2020, additional override files are needed. An overview of 2020 

specific override files are presented in Table 5. The key changes are the removal of non-widely 

available technologies such as hydrogen-based technologies, electric vehicles, the production of 
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synthetic fuels and the use of large-scale energy storage systems. Furthermore, the demand and 

supply profiles are set to the year 2020.  

 

Table 5: Overview of 2020 specific override files 

Step Override file 

Remove all future technologies such as 

hydrogen, large-scale synthetic fuels and 

energy storage 

kill-fancy-techs.yaml 

Demand share of technologies specific to the 

year 2020 

Fix-demand-share_min.yaml 

Production capacities of technologies specific 

to the year 2020 

fix-current-national-capacities.yaml 

Technology specifications specific to the year 

2020 

heat-techs.yaml, renewable-techs.yaml, 

storage-techs.yaml, transformation-techs.yaml 

Importing the 2020 specific yaml files model-2015.yaml 
 

The so-called scenario string to build the 2020 North Sea Calliope model is presented in Snippet 

1. Thereafter, the model is built using Snippet 2. The YAML files can be found in the main 

Calliope folder which can be accessed through Appendix B2 - North Sea Calliope model. A brief 

description of all the override files can be found in Appendix D – Description of North Sea Calliope 

2020 override files. The full North Sea Calliope model within the Calliope modelling frame is 

presented in Figure 12. 

 

 

Snippet 1: Define override scenarios 

 

 

Snippet 2: Generating and saving the model inputs 

scenario_string['2020'] = 

"industry_fuel,transport,heat,config_overrides,gas_storage,link_cap_1x,"\ 

                        "freeze-hydro-capacities,heat_techs_2020,"\ 

"renewable_techs_2020,transformation_techs_2020,"\ 

                        "fossil-fuel-supply,res_1h,"\ 

                        "add-biofuel,coal_supply,north_sea,"\ 

      "kill-fancy-techs,fix-generation-capacities,"\ 

      "demand_share_fuel_current_min" 

model_input = create_input.build_model(path_to_model_yaml, 

scenario_string[selected_scenario], path_to_netcdf_of_model_inputs)      
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Figure 12: 2020 North Sea Calliope model within the Calliope modelling framework 
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Units within the North Sea Calliope model 

An overview of the base units for the North Sea Calliope model is presented in Table 6. These 

units will be relevant when analysing the physical and duals values of the model. 

Table 6: Overview of the monetary and production variables and its unit 

Definition Variable Unit 

Monetary cost for installed capacity cost.monetary.energy_cap 10.000 

EUR/MW 

Monetary cost for O&M annually  cost.monetary.om_annual 10.000 

EUR/MW 

Monetary cost for O&M per production unit cost.monetary.om_prod 10.000 

EUR.MWh 

Production capacity constraints.energy_cap 100.000 MW 

 

From the equation ( 7 ) and the units given in Table 6, it can be calculated that the unit for the 

objective function is in Billion EUR (10.000EUR/MW * 100.000 MW) The shadow prices, 

therefore equal to Billion EUR per extra unit of carrier. A unit of carrier in the model equals to 

100.000 MWh as the production capacity is multiplied by the timestep in the post-process step. 

So, the base unit for shadow price is given in 10.000 EUR/MWh. The monetary value in the model 

has the base year in 2015. 

4.2 Running the North-Sea Calliope model 
In order to run the model, the Python code presented in Snippet 3 is used.  

 

Snippet 3: Running the model and extracting the duals 

For the validation of electricity duals, the hourly day-ahead-price for the Netherlands in the year 

2020 from ENTO-E is used. To run the model at an one-hour resolution, the DelftBlue 

Supercomputer (2022) was used. The job specifications are presented in Table 7. The specific 

job script can be found in Appendix E – Job script 2020 model 1h resolution. 

Table 7: Overview of DelftBlue supercomputer setup 

Definition Variable Value 

Type of job partition Compute 

Total run time for the job time 24:00:00 

Number of tasks ntasks 1 

Number of CPUs per task  cpus-per-task 16 

Memory per CPU mem-per-cpu 10G 
 

model_run, duals = run.run_model(path_to_netcdf_of_model_inputs, 

path_to_netcdf_of_results)  
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Solver settings 

Within the Calliope Modelling Framework, different solvers are available. For this research 

project, the Gurobi solver is used for its superior computing power compared to the default cbc 

solver. A downside for the Gurobi solver is that it is only commercially or academically available. 

While setting up the solver options, a good balance needed to be found between stability and speed. 

A high stability run would require more run time, and due to the hard limitation of 24 hours per 

run, this is not always possible. However, if the stability is not high enough, a numerical error 

would occur and the model would render itself infeasible. The solver settings used for the 2020 

North Sea Calliope model is presented in Table 8. The full documentation of the Gurobi solver 

options can be found in the documentation on their website (Gurobi, 2019). 

Table 8: Overview of the Gurobi solver options used 

Definition Variable Value 

Thread count Threads 6 

Algorithm used to solve continuous 

models 

Method -1 

Crossover basis construction strategy Crossover -1 

Primal feasibility tolerance FeasibilityTol:  1e-3 

Dual feasibility tolerance OptimatilyTol: 1e-4 

Barrier convergence tolerance BarConvTol: 1e-4 

Barrier homogeneous algorithm BarHomogeneous 1 
 

 

4.3 Validation of the 2020 North Sea Calliope model 
The validation process requires two steps. In the first step, the physical model is analysed to check 

on the feasibility of the model. The second step is to check the monetary model through the use of 

day-ahead prices and dual values for electricity. 

4.3.1 Physical model 

In order to validate the physical model, the total production from supply technologies from the 

Netherlands from the North Sea Calliope model will be evaluated against the total energy supply 

data from the IEA. The total energy supply data by source is presented in Figure 13. The notation 

for the carriers are a little bit different for the IEA data and the model data. Within the Calliope 

model, the VRES are grouped under the carrier name electricity. Methane in the model is 

equivalent to Natural gas in the IEA data. After synchronization, the supply shares are then 

compared to each other and presented in Figure 14. It is important to note that the IEA data and 

model data are not 1-on-1 identical to each other due to the simplifications made in the Calliope 

model. Furthermore, the model data doesn’t include import and export data from outside the 

region, whereas the IEA data does include import and export data. The difference for between IEA 

data and model data could therefore be explained by the fact the Netherlands is an important trade 
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hub for natural gas. The difference in the total energy supply for biofuel could be explained by the 

deliberate choice of removing synthetic fuel production in the model and being replaced by the 

traditional fossil fuels, coal, oil and natural gas. Nevertheless, the similarity in the share of supply 

is acceptable. 

 

Figure 13: TES by source in the Netherlands for the year 2020. Data from IEA (2022) 

 

 

Figure 14: Energy supply by source, comparison between IEA data and model data 
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4.3.2 Dual values for electricity 

As mentioned in section 4.1, the hourly day-ahead-price for the Netherlands in the year 2020 from 

ENTSO-E will be used to compare the dual values for electricity from the year 2015, because the 

weather data from the 2020 model is also from the year 2015. 

The electricity duals for the 2020 North Sea Calliope model has been plotted for the month March 

in Figure 15. The month March has been chosen arbitrarily. The electricity duals from the model 

are less dynamic than the real-world prices. It can be observed that the shadow price for electricity 

is more or less flat in the given timeframe. This implies that the demand for electricity is always 

sufficiently met and the price can therefore stay at the price of the variable costs of electricity 

production. 

 

Figure 15: Electricity duals plotted together with ENTSO-E day-ahead prices 

To test this hypothesis, a model that includes only the power sector is created. The electricity 

duals are again plotted in Figure 16. It can be observed that the price dynamics are still relative 

flat compared to the real-world prices. It does show however, that when the dependency on 

electricity increases, the prices are also more dynamic. 
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Figure 16: Electricity duals plotted together with ENTSO-E day-ahead prices with only power sector Calliope model 

It can be seen from Figure 15 and Figure 16 that shadow prices do not represent real-word prices 

perfectly. This is in some way expected as the model is not a perfect representation of the real 

world. The model is merely a simplified version without many variables such as ramping costs 

and shutdown costs of the production units. Furthermore, there are no transmission bottlenecks 

and grid congestions within the model. Moreover, as the demand is always met by the supply, the 

scarcity of electricity is never an issue and as a result, there is no reason for electricity prices to 

increase. 

Although the shadow prices do not reflect the real-world prices, the shadow prices can be used to 

analyse trade-offs within a fully sector-coupled energy system such as the influence of different 

hydrogen shares and its ability to absorb shocks in different scenario configurations. This unique 

use of price information is tested in chapter 5, where shadow prices are used to further explore the 

trade-offs in different hydrogen configurations. 

Limitations for LP problems in fully sector-coupled models 

The largest limitation in the validation of individual energy carrier prices is due to the nature of 

LP problems. A LP problems does not optimise each decision variable independently, rather it 

searches for an optimal objective value for the whole problem. Consequently, fully sector-coupled 

energy models do not focus on optimizing each energy carrier independently, but it finds a sector-

wide equilibrium. This implies that while some energy carrier prices might make sense, others 

may not.  
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Chapter 5 – Assessing trade-offs within different 

hydrogen configurations 
This chapter describes how the price information can be used to understand trade-offs between 

different hydrogen configurations of a fully sector-coupled energy system model. Section 5.1 

describes the experimental setup. Section 5.2 describes the results. The Python scripts used for the 

analysis for the 2025 model can be found in Appendix S2. 

5.1 Experimental setup 
In order to analyse trade-offs between different hydrogen configurations, first a set of hydrogen 

configurations is created. This is done in three consecutive steps. First, a base Calliope model is 

chosen from which the runs are performed. Second, by using the available weather data sets, a 

optimal hydrogen share configuration is found for every weather year. From these optimal 

hydrogen share configurations, it is possible to identify the years in which weather was bad, normal 

or good. Finally, these three optimal hydrogen share weather models form the basis for the 

different hydrogen configurations. For each weather scenario, the share of hydrogen is then 

increased incrementally to assess the effect of different shares of hydrogen within the energy 

system for each weather year. This will ultimately give a total of 9 different hydrogen 

configurations for the fully sector-coupled energy system from which the trade-offs can be 

analysed. The analysis includes technical parameters such as deployed capacity and economical 

parameters such as LCOE, cost recovery and price deviation across the different configurations. 

An overview of these 9 different hydrogen configurations are shown in Table 9. 

Table 9: Overview of the different hydrogen configurations 

 Bad weather Normal weather Good weather 

Optimal hydrogen 

share 

Configuration 1: 

Optimal hydrogen 

share in bad weather 

Configuration 2: 

Optimal hydrogen 

share in normal 

weather 

Configuration 3: 

Optimal hydrogen 

share in good weather 

Slightly increased 

hydrogen share 

Configuration 4: 

Slightly increased 

hydrogen share in 

bad weather 

Configuration 5: 

Slightly increased 

hydrogen share in 

normal weather 

Configuration 6: 

Slightly increased 

hydrogen share in 

good weather 

Increased hydrogen 

share 

Configuration 7: 

Increased hydrogen 

share in bad weather 

Configuration 8: 

Increased hydrogen 

share in normal 

weather 

Configuration 9: 

Increased hydrogen 

share in good weather 

 

5.1.1 Base model 

The base model for assessing trade-offs within different hydrogen scenarios will be the North Sea 

Calliope model for the year 2050. The 2050 model, unlike the 2020 model has the ability to 
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produce synthetic hydrocarbons such as methane, methanol, diesel and kerosene. Furthermore, in 

the 2050 model, the model is totally free from the use of traditional fossil fuels such as coal, natural 

gas and oil. Instead, the use of hydrogen, electric vehicles and large-scale energy storage system 

are widely adopted. This makes the 2050 model the ideal base model for the experimental setup. 

The building of the 2050 North Sea Calliope model is similar to the 2020 North Sea Calliope 

model. The main difference is that the 2020 override files that were used to set technology data to 

2020 values is not implemented for the 2050 model. Furthermore, for the demand data, annual 

demand and annual industry energy demand data is used for the year 2050. These demand profiles 

can be found in Appendix C, under the 2050 folder. The 2050 North Sea Calliope model within 

the Calliope modelling framework is presented in Figure 17. The key different YAML files 

compared to the 2020 North Sea Calliope model are presented in bold. 
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Figure 17: 2050 North Sea Calliope model within the Calliope modelling framework 
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5.1.2 Weather scenarios 

Energy output from VRES are dependent on weather (Pfenninger et al, 2014). Within the Calliope 

model, weather has therefore an effect on the capacity factors of hydro, PV (open-field and 

rooftop) and wind (offshore and onshore) power. Furthermore, it also has an effect on the demand 

for electricity, cooking, electric vehicles (heavy transport, light transport and plugin EV) and heat. 

Note that some of the YAML files in Figure 17 are in bold and contain {}. The {} represent the 

respective weather year for the 2050 model. For this master thesis, weather data from 2010 to 2018 

is available. The capacity factor time series for solar and wind power are from Tröndle et al. (2022). 

The respective YAML files and data files can be found in Appendix C under the folder 

2050/model/national. The methodology to acquire demand data is described in Pickering et al. 

(2022). In order to assess the stability of price dynamics in different hydrogen scenarios, three 

different weather types will be selected from the available data set. The weather types are classified 

as ‘good weather’, ‘bad weather’ and ‘normal weather’. One cost-optimal solution will be found 

for each of the weather years for the 2050 model. The version with the lowest objective value 

which equates to the lowest cost value is then considered a ‘good weather’ year. Naturally, the 

version with the highest objective value is considered as a ‘bad weather’ year. For the ‘normal 

weather’ year, the version closest to the median objective value is chosen. An overview for the 

objective value with the associated weather year is shown in Figure 18. It can be observed in Figure 

18 that the weather year 2010 has the highest objective value from all the different weather years, 

therefore the year 2010 is classified as a ‘bad weather’ year. The weather year 2015 has the lowest 

objective value from all the different weather years, therefore the year 2015, is classified as a ‘good 

weather’ year. The weather year associated with the median objective value is the weather year 

2016, therefore, the weather year 2016 is classified as a ‘normal weather’ year.  

 

 

Figure 18: 2050 North Sea Calliope model with different weather variations 
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5.1.3 Hydrogen configurations 

The goal is to create different configurations where the share of hydrogen is different in the total 

energy supply. To do this two separate steps are performed. The first step is related to the relative 

share of hydrogen compared to biofuels in the production of synthetic fuels. Within the model, 

hydrogen is mainly used for the production of the synthetic hydrocarbon fuels diesel, methane, 

methanol and kerosene. These synthetic hydrocarbons are then used in other demand sectors such 

as heat, transport and storage. Biofuel is also used for the production of the same synthetic 

hydrocarbons. This means that biofuel is a direct competitor for the production of synthetic 

hydrocarbon fuels. To vary the relative share of hydrogen in different configurations, it is therefore 

necessary to set the share of hydrogen in the production of synthetic fuels relative to biofuels.  

The second step is related to the relative share of synthetic fuels in the total energy supply. To 

make sure the that the share of hydrogen is actually increased or decreased when varying the share 

of hydrogen in the production of synthetic fuels, the fuel share demand for the synthetic fuels needs 

to be set. An overview of this methodology is presented in Figure 19. 

 

Figure 19: Methodology for varying the share of hydrogen in the model 

Hydrogen share for synthetic fuel production 

Figure 20 presents the hydrogen share for the production of synthetic fuel for the optimal hydrogen 

share configurations for the three defined weather scenarios. It can be observed that the share of 

hydrogen for the production of synthetic kerosene and synthetic methane is always 100% 

regardless of the weather type. This is due to the high cost for biofuel to convert to kerosene and 

methane when compared with hydrogen. The average share of hydrogen for the production of 

synthetic fuels are 90.7%, 87.8% and 92.4% for a bad, good and normal weather scenarios 

respectively. Since the average share of hydrogen in the production of synthetic fuel is already 

quite high, setting the inequality constraint to a minimum of less than 80% would not result into 

any significant changes compared to the optimal hydrogen share configuration. Moreover, in order 

to reduce computing time and ensure feasibility of the model, an inequality constraint is used 

instead of an equality constraint. The share of hydrogen in the production of synthetic fuel is 

therefore set to a minimum of 80%. Furthermore, since synthetic fuels can only be produced by 

either hydrogen or biofuels, it can be observed that hydrogen is predominantly used compared to 
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biofuels for the production of synthetic fuels. It is important to note that the supply of synthetic 

fuels is not constant for all weather years as can be seen in Figure 22, therefore a different share 

of hydrogen for the synthetic fuel production might not necessarily mean that the absolute value 

for the use of hydrogen is different.  The hydrogen share for the production of synthetic fuels 

relative to biofuels is set using an override file which is is presented in Appendix E. 

 

Figure 20: Hydrogen share for the production of synthetic fuels 

Synthetic fuel share in the total energy supply 

Figure 21 presents the synthetic fuel share in the total energy supply. It can be observed that the 

synthetic fuel share within the energy system ranges between roughly 2 and 10% for synthetic 

methane and synthetic methanol respectively. The combined share of all synthetic fuels will be set 

to a pre-determined value as the total share of synthetic fuels relative to the total energy demand. 

These pre-determined values are arbitrarily chosen as no prior information is available but should 

large enough to show significant changes relative to the optimal hydrogen share configurations. 

The values chosen are therefore an increase of 30% in the fuel share demand and an increase of 

50% in the fuel share demand. The fuel demand in all 2050 models is supplied by synthetic fuels, 

therefore the increase in the fuel share demand is equivalent to the increase in the use of hydrogen.  

The increase of fuel demand for synthetic fuels in the total energy supply is set using the demand 

share override file which can be found in Appendix G. Appendix G.1 presents the override file to 

increase the fuel demand share by 30%. Appendix G.2 presents the override file to increase the 

fuel demand share by 50%.  
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Figure 21: Synthetic fuel production share in total energy system 

5.1.4 Overview of the configuration sets 

The different hydrogen configurations are now defined and are presented in Table 10. The three 

scenarios chosen are therefore an optimal hydrogen share scenario, a scenario with a minimum of 

80% hydrogen share for the synthetic fuel production combined with a 30% fuel demand increase 

and a scenario with a minimum of 80% hydrogen share for synthetic fuel production combined 

with a 50% fuel demand increase. This would allow for the analysis of price dynamics relative to 

the increase of the hydrogen share in the total energy system.  

Table 10: Hydrogen configurations for the 2050 model 

 Bad weather Good weather Normal weather 

 H2 share for 

synthetic fuel 

production 

[%] 

Fuel 

demand 

increase 

[%] 

H2 share for 

synthetic fuel 

production 

[%] 

Fuel 

demand 

increase 

[%] 

H2 share for 

synthetic fuel 

production 

[%] 

Fuel 

demand 

increase 

[%] 

Optimal 

hydrogen 

share 

90.7 0 87.8 0 92.4 0 

Slightly 

increased 

hydrogen 

share 

80 30 80 30 80 30 

Increased 

hydrogen 

share 

80 50 80 50 80 50 
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5.2 Analysis of the results 
In this section, the results for different configurations of a fully sector-coupled energy system is 

described. It starts with an analysis of technical parameters such as total energy supply and capacity 

deployment within the energy system in section 5.2.1 through 5.2.3. Then From section 5.2.4 

through 5.27 economic parameters such as total energy system cost, levelized cost of energy, price 

stability and payback time are analysed.  

5.2.1 Total energy supply 

The total energy supply (TES) by source in the Netherlands for the 2050 model for different 

weather variations is presented in Figure 22. Some observations can be made when looking at the 

total energy supply for different weather types. In the optimal hydrogen share configuration, 

electricity supply is linearly dependent on the weather type. During good weather, the electricity 

supply is the highest, due to the high availability of VRES such as solar and wind and during bad 

weather the electricity supply decreases. Total energy supply in the Netherlands is 733, 762 and 

717 TWh for a bad, good, and normal weather scenario respectively.  

 

Figure 22: Total energy supply by source in the Netherlands in 2050 

The model data on the TES in the Netherlands for the year 2050 is compared against the 

Infrastructure Outlook 2050 from TenneT (TenneT, 2019). The comparison on the supply share 

within the energy system is presented in Figure 23. It can be observed that the supply share of 

electricity in both data sets is the highest, followed by hydrogen. This indicates that both in the 

North Sea Calliope 2050 model and Infrastructure Outlook 2050 report expect that these two 
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sources of supply will be dominant in the future energy infrastructure in the Netherlands. However, 

when looking at the other supply sources, the differences are much larger. Liquid fuels in the North 

Sea Calliope 2050 model for example presents a much higher percentage in the supply share 

compared to the Infrastructure Outlook 2050 data. Moreover, methane and other sources of energy 

supply which include biofuels and waste are lower when compared to the Infrastructure Outlook 

2050 data. Aside from the supply share within the energy system, the absolute value of energy 

supply is also compared. The Infrastructure Outlook 2050 reports a TES of 417 TWh whereas the 

model data has a TES of an average of 737 TWh across the three weather scenarios. The model 

data thus has an increase of almost 77% relative to the Infrastructure Outlook 2050 data.  

 

Figure 23: Comparing model data with Infrastructure Outlook 2050 Data on the TES by source 

When increasing the fuel share within the energy system, the energy supply share seems to be 

predominantly electricity as can be seen in Figure 24 where the TES by source in the Netherlands 

for 2050 is presented for increased fuel demand scenarios. The increased fuel demand seems to be 

fulfilled almost entirely by electricity. However, as a result, the energy supply shares within the 

energy system do not seem realistic nor in line with other 2050 scenario reports such as the 

Infrastructure Outlook 2050. 
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Figure 24: TES by source in the Netherlands 2050 with increased fuel demand 

The increase in of energy supply through electricity can be explained by the increase in electricity 

demand from electrolysis as can be seen in Figure 25. This is a direct result from the increase of 

hydrogen within the energy system. It can also be observed that the conversion of hydrogen to 

liquid fuels has also increased significantly compared to the optimal hydrogen share configuration 

to a total demand of 1108 TWh which is more than twice as high than the highest estimates from 

TNO (Detz et al, 2019). Furthermore, it can also be observed that the electricity demand for 

batteries has reduced. This could indicate that the conversion to hydrogen using excess electricity 

is more preferable compared to storing it in batteries. 

 

Figure 25: Comparison electricity demand by source optimal scenario vs +50% fuel demand 
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5.2.2 Capacity deployment 

Figure 26 presents the total electricity production by source from the whole North Sea region 

across the different weather scenarios. It can be observed that onshore wind is the main source of 

electricity production for the whole North Sea region followed by open field PV. This indicates 

that the energy production within the energy system is predominantly from VRES. Furthermore, 

it seems that onshore wind production is higher for both bad and good weather scenarios compared 

to a normal weather scenario. Open field PV is having the lowest and highest electricity production 

for bad weather and good weather respectively. Electricity production from wind will be analysed 

further in detail in the following subsection since it is the predominant source of electricity.  

 

Figure 26: Total electricity production by source North Sea region 

 

Wind: North Sea region 

The installed capacity for wind electricity production is calculated using the following formula:  

 
𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 =

𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝐶𝐹 ∗ ℎ
 

( 9 ) 
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Where 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑  is the installed nominal capacity in megawatt, 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  is the total energy 

generated in megawatt hour, 𝐶𝐹 is the average capacity factor and ℎ the time period in hours. The 

capacity factors from each country and average capacity factor across the entire North Sea region 

for both offshore and onshore wind energy can be found in Appendix H – Average capacity factors 

wind offshore and onshore.  

Applying equation ( 9 ) for the normal weather scenario then gives an installed capacity of 130 

GW and 1125 GW for offshore and onshore production respectively. Although there is a consensus 

that onshore electricity production will be greater than offshore electricity production in 2050 

(WindEurope, 2022; TenneT, 2019), the absolute values for installed capacity are different. 

WindEurope (2019) reports that 750GW of onshore wind production is needed for the entire 

European Union in 2050. Furthermore, WindEurope (2020) reports a total 380 GW of offshore 

wind production in the Northern seas and for the entire European Union, a total of 450 GW of 

offshore wind energy is installed by 2050. The actual difference between the installed capacities 

is even more as the WindEurope report includes offshore wind capacity from Poland, Finland, 

Lithuania, Latvia and Estonia as part of the Northern seas. The preference for onshore wind farms 

over offshore wind farms in the model can be attributed to the lower cost of onshore wind farms 

compared to offshore wind farms. The O&M for the production cost for onshore windfarms within 

the model is €1.22/MWh compared to the €2.40/MWh for offshore windfarms. Therefore, 

whenever onshore wind production is available, this will always be dispatched first whereas in real 

world scenarios the dispatch order might be influenced by factors other than cost alone. Figure 27 

present the total electricity production by source for the North Sea region for different fuel share 

demand increases. The nominal installed capacities in the normal weather scenario for onshore 

and offshore wind production for a 30% increase in fuel share demand are 2101 GW and 236 GW 

respectively. For a 50% increase in fuel share demand the installed capacities for onshore and 

offshore wind production are 2420 GW and 362 GW respectively. These nominal installed 

capacities exceed the currently planned infrastructure outlooks for 2050. However, they are within 

the total potential for onshore and offshore wind energy of 52TW and 8.6 TW across Europe 

(Caglayan et al., 2019; Enevoldsen et al., 2019). 
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Figure 27: Total electricity by source for the North Sea region for different fuel share demands 

Wind: The Netherlands 

The total electricity production by source in the Netherlands is also predominantly from wind 

energy followed by open field PV as can be seen in Figure 28. This is similar to the entire North 

Sea region. 

 

Figure 28: Total electricity production by source in The Netherlands (optimal hydrogen share) 

By using equation ( 9 ) and the capacity factors for the Netherlands, the nominal installed capacities 

for the Netherlands are also calculated. For a normal weather scenario and optimal hydrogen share 

the nominal installed capacities for onshore and offshore wind energy production are 140 GW and 
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11.1 GW respectively. Both these nominal installed capacities are higher than the reported 

capacities from the Infrastructure Outlook 2050 from TenneT (2019) which state capacities of 14 

GW and 53 GW for onshore and offshore wind respectively. Moreover, the Infrastructure Outlook 

2050 report a higher generation for offshore wind compared to onshore wind in the Netherlands. 

5.2.3 Total cost energy system 

In this sub section the total cost of the energy system is analysed. An overview of the change in 

total system cost is presented in Figure 29 for the different hydrogen configurations. The total 

system cost is equal to the objective value of the optimisation problem as the objective is to 

minimise to total system cost. It is expected that the system is higher for scenarios with a higher 

fuel demand as higher fuel demand requires more energy supply and therefore increases the total 

costs. Similar to the optimal hydrogen share configurations, the total cost for bad weather scenarios 

remain the highest and the total cost for good weather scenarios remain the lowest. It is interesting 

to note that the relative increase in total energy system cost is the lowest for bad weather scenarios, 

from 479 billion euros to 742 billion euros and the highest for normal weather scenarios, from 436 

billion euros to 694 billion euros. This equates to a relative change of 54.6% and 59.4% for a bad 

and normal weather respectively. This implies that the relative cost to improve price stability 

through an increase of hydrogen share within the energy system is lower for bad weather scenarios 

compared to good and normal weather scenarios. The relative cost increase for good weather 

scenarios compared to bad weather scenarios, however, is quite minimal with a relative increase 

of just 0.3%.  

 

Figure 29: Total energy system cost for different hydrogen configurations 

5.2.4 LCOE of technologies 

The levelized cost of energy (LCOE) of technologies for the production of electricity in different 

hydrogen configurations in a normal weather scenario has been calculated and presented in Figure 

30. The LCOE is a metric to measure the average cost to produce a unit of energy during its entire 
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lifetime. The LCOE for offshore windfarms are €47.05/MWh, €45.88/MWh and €45.78/MWh for 

the optimal, slightly increased and increased fuel demand respectively. For onshore windfarms, 

the LCOE are €28.84/MWh, €30.55/MWh and €31.60/MWh respectively and are thus cheaper 

than offshore windfarms. The LCOE for technologies do not differ much when increasing the fuel 

demand within the energy system except for batteries. From Figure 30 it can be seen that the LCOE 

for batteries decrease with increased fuel demand. Figure 25 shows that electricity demand from 

batteries is decreasing with increased fuel demands. A possible explanation for the reduction of 

LCOE for batteries could be an increased use of batteries for the same number of installed 

capacities. As electricity surpluses are more frequent, batteries are used more frequently as well. 

As a result, more energy is discharged during its lifetime lowering the LCOE. The energy flows 

for batteries should therefore be analysed in future studies to validate this hypothesis. 

 

Figure 30: Levelized cost of energy of technologies for the production of electricity in different hydrogen configurations 

The LCOE for electrolysis remain mostly stable for all configurations as can be observed in Figure 

31. The largest difference is observed in the normal weather configuration where the LCOE 

changes from €13.73/MWh to €15.01/MWh from the optimal hydrogen configuration to 50% fuel 

demand increase configuration respectively. For all other configurations the LCOE ranges from 

€14.13/MWh to €14.72/MWh. This indicates a relative stable capacity deployment of the installed 

capacity for electrolysis assuming that the installed capacity increases with increased demand.  
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Figure 31: LCOE for electroysis for different hydrogen configurations 

5.2.5 Price stability 

A boxplot is used to analyse the stability of electricity price in the Netherlands for the three weather 

scenarios. The median is represented by the green line, the mean is represented by the green 

triangle. It is possible to observe the change in the spread for shadow prices for electricity in 

boxplots and therefore give an indication of the stability of the price dynamics. From Figure 32, it 

can be observed that the price is the most stable for a normal weather condition with minimal 

spread. The average and median shadow prices for electricity are the lowest for good weather 

scenarios and the highest for bad weather scenarios. It is interesting to note that for a normal 

weather scenario, the shadow prices do not go to zero whereas for bad weather and good weather 

scenarios the shadow prices can be found more often to be zero. This could indicate that the 

surpluses of electricity in both bad weather and good weather scenarios is more frequent causing 

the shadow prices to drop. Moreover, in bad weather the shortage of electricity is more frequent 

compared to good weather and normal weather scenarios causing more frequent price peaks. 

 

 

Figure 32: Boxplot of electricity duals in NLD for different weather types 
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The boxplots for the full configuration set are presented in Figure 33. It can be generally observed 

that the spread of shadow prices decreases as the fuel demand increases. This implies that the 

increase of hydrogen share within an energy system contributes to a higher price stability meaning 

that the occurrence of extreme price peaks both towards the upside and downside is reduced. This 

improvement in price stability is more significant in bad weather scenarios relative to and normal 

weather scenarios. This can be seen by the relatively more occurrences of shadow prices above 80 

euros per MWh in the optimal scenario during bad weather compared to normal weather 

conditions. These extreme price peaks seemed to have disappeared when the fuel share demand is 

increased by 30% and 50%. Furthermore, the interquartile range for the bad weather scenario with 

50% increase in fuel share demand seems to be even the smallest amongst all data sets. Although 

all configurations seem to have improved price stability from the increase in hydrogen share within 

the energy system. The extreme weather cases such as the bad weather and good weather scenarios 

seems to benefit more relatively. 

Regarding the average shadow prices, it can be observed that the average prices are the highest 

and lowest for bad weather scenarios and good weather scenarios respectively. Furthermore, it can 

also be observed that the average shadow price is lower in all scenarios with an increased share of 

hydrogen compared to the optimal hydrogen configuration. This implies that although the total 

system cost might be higher for configurations with a higher hydrogen share, the average cost for 

specific energy carriers, electricity in this case, does not necessarily increase. On the contrary, the 

average shadow price for electricity decreases. More specially, the average shadow prices for 

electricity decrease by 1.9%, 3.2% and 2.7% for bad, good and normal weather scenarios 

respectively when comparing the optimal scenario against the scenario with 50% fuel demand 

increase. 
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Figure 33: Comparison of electricity duals between the optimal cost scenario and 80% hydrogen share scenario 

A closer look at peak electricity shadow prices 

To understand the nature of peak electricity shadow prices, the time-series data is plotted against 

the electricity production by the different sources. This time-series data for the whole year for a 

optimal hydrogen share configuration in normal weather scenario is presented in Appendix I – 

Electricity production vs electricity shadow price. 

It can be observed that the peak electricity shadow prices only occur during the winter months 

November through February. Furthermore, it can also be observed that during the summer months, 

the electricity shadow prices drops to near-zero values, but never negative. This indicates that 

during winter months, electricity supply is scarce resulting in higher electricity shadow prices and 

that electricity supply is in surplus during the summer months causing the electricity shadow prices 

drop. Such price behaviour is typical for VRES such as solar and wind. When looking at the 

electricity production, it can indeed be observed that wind is the dominant power source for 

electricity followed by solar. 

Electricity shadow prices with increased fuel demands 

To understand what happened to the peak electricity prices when fuel demands are increased, the 

time-series data is plotted against the electricity production by different sources for both the 

optimal hydrogen share configuration and +50% fuel demand configuration. The analysis is done 

for the normal weather scenario in both cases. The graphs are presented in Figure 34 for the optimal 

hydrogen share scenario and in Figure 35 for the 50% increased fuel demand. The time-series 
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graph are zoomed in on the month February where the occurrence of high electricity shadow price 

peaks are more frequent. 

 

Figure 34: Electricity production by source vs Electricity shadow prices in the optimal scenario 

 

Figure 35: Electricity production by source vs Electricity shadow prices (+50% fuel demand) 

The increase in the production of electricity through VRES is a direct consequence of the increase 

in fuel demand. This is because electricity is used to make hydrogen and hydrogen is used to create 

synthetic fuels. The significant increase of required VRES need in the form of wind and PV is a 

consequence of low employment of storage, biofuel, and curtailment. The increase of VRES 
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causes a longer duration of oversupply of electricity. As a result, the price peaks are eliminated 

and the average price of electricity decreases. 

5.2.6 Price and load duration curves 

Both the price duration and load duration curves from the Netherlands are analysed to get a better 

understanding of the electricity market for the different configurations.  

Price duration curves 

The price duration curve for the optimal hydrogen share configuration across the different weather 

scenarios is plotted in Figure 36. When looking at Figure 36, one can observe that the electricity 

shadow price has the longest duration within the 40 EUR/MWh and 60 EUR/MWh range. 

Moreover, for 70-80% of the time the electricity shadow price is in the range of 20 EUR/MWh 

and 40 EUR/MWh.  

 

 

Figure 36: Price duration curve for different weather scenarios 

The price duration curves for the increased fuel demands are plotted in Figure 37. It can be 

observed that with an increase of 30% in the fuel demand, price peaks disappear for the bad and 

normal weather scenarios. In good weather scenario, there are 4 hours in of price peaks where 

shadow prices exceed 100 EUR/MWh. Furthermore, it is interesting to note that the price peaks 

that were in the optimal hydrogen share configurations completely disappears when the fuel 

demand increases to 50%. The highest shadow price for electricity caps at roughly 80 EUR/MWh 

for all weather scenarios.  
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Figure 37: Price duration curve for different weather scenarios with increased fuel demands 

 

Load duration curves 

The load duration curve for the optimal share of hydrogen for all the weather scenarios is presented 

in Figure 38. The time within the duration curves can be divided into three periods. The off-peak 

hours which represents the 5000 hours per year with the lowest demand. The peak hours which 

represents the 160 hours per year with the highest demand and the shoulder hours, which represent 

the remaining 3600 hours in between off-peak and peak demand per year.  

 

Figure 38: Load duration curve for different weather scenarios (optimal hydrogen share) 

The load duration curves for the increased fuel demand are presented in Figure 39. It can be 

observed that the slope for off-peak hours in the increased fuel demand configurations are a lot 

steeper compared to the optimal hydrogen share configurations. The demand ranges for the periods 

can be found in Table 11. 
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Figure 39: Load duration curves for increased fuel demands 

 

Table 11: Demand range within the load duration curves 

 Demand range in MW 

Configuration Off-peak hours Shoulder hours Peak hours 

1 20.8 – 37.6 37.6 - 74.2 74.2 – 96.3 

2 20.4 – 34.5 34.5 - 69.2 69.2 – 85.9 

3 18.9 – 32.1 32.1 – 71.0 71.0 – 99.25 

4 61.69 – 188.7 188.7 – 244.5 244.5 – 337.9 

5 49.8 – 151.4 151.4 – 205.3 205.3 – 284.4 

6 29.4 – 151.6 151.6 – 206.1 206.1 – 253.4 

7 61.9 – 214.9 214.9 – 271.6 271.6 – 378.6 

8 58.0 – 175.9 175.9 – 232.6 232.6 – 303.8 

9 51.6 – 196.2 196.2 – 257.6 257.6 – 357.1 
 

5.2.7 Payback time 

The payback time is a metric to measure the length of time required to recover the cost of the initial 

investment. It can be used to test whether the total system will be profitable or not at the end of its 

lifetime. Here we analyse the difference in payback time for the different system configurations. 

The payback time can be calculated using the following equation: 

 
𝑡 =

𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝑅 − 𝐶𝑣𝑎𝑟
 ( 10 ) 

 

 

Where 𝑡 is the payback time in years, 𝐶𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 is the investment cost, 𝑅 the revenue and 𝐶𝑣𝑎𝑟 

the variable cost in €.  
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The revenue is calculated by multiplying the average shadow price by the total electricity supplied 

in the energy system. For simplification purposes, it is assumed that the whole region has a shared 

electricity price and the shadow price for electricity from the Netherlands is used. In the real-world 

electricity prices vary by country. An overview of the payback time for the different configurations 

is presented in Table 12. It can be observed that the payback time does not vary significantly across 

the different configurations. 

Table 12: Overview payback time energy system for the different configurations 

Configuration 1 2 3 4 5 6 7 8 9 

Payback time 

(months) 

10.1 9.9 9.7 10.0 9.8 9.6 9.9 9.6 9.6 

 

Validation of payback time 

Information on the payback time for an entire energy system cannot be found in the literature. 

However, the payback time for wind turbines is widely studied. Dammeirer et al. (2019) state that 

the payback time on wind turbines in north-western Europe average at 5.3 months. The model 

results for the payback time for onshore windfarms is 7.4 months. 
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Chapter 6 – Discussion 
This chapter discusses the outcomes of this master research project and highlights the key 

limitations of these outcomes. 

6.1 Extraction method for shadow prices within the Calliope modelling 

framework 
The first outcome of this study is the development of a method to extract shadow prices from a LP 

problem within the Calliope framework which has been described in chapter 3. Although the 

extraction method of dual variables is not unique, the successful implementation of the extraction 

method within Calliope is novel. This includes the storing of dual variables and the reformatting 

of data frames to ease data analysis processes. The second outcome is described in chapter 4 and 

it includes the refinement process of a North Sea Calliope model in which the already established 

Euro-Calliope model has been scaled down to a prototype North Sea Calliope model to focus on 

Dutch-related and North Sea related research questions. This includes an extensive debugging 

process where it is made sure that the model is scaled down properly from the Euro-Calliope 

model, making sure that the model was feasible and able to run at a 1-hour resolution for a whole 

year. The North Sea Calliope model is currently fully re-usable and can be uploaded on GitHub as 

an open-source model online in the academic community. 

6.1.1 North Sea Calliope 2020 model limitations  

The main limitation for North Sea Calliope model for the year 2020 is that the model is a difficult 

model to run due to the many constraints imposed on it. After an extensive debugging process, the 

model is currently debugged enough to produce feasible results in terms giving the right objective 

values, feasible dual variables values and similar physical total energy supply shares relative to 

real-world. However, the electricity duals currently seem not representative to the real-world 

values. Possible causes causing this mismatch in representation could be related to the important 

fact that the current North Sea Calliope models do not consider ramping costs, shutdown- and start 

up-costs, and cross region trading. Although the Euro-Calliope model is European-wide high-

temporal and high-spatial resolution sector-coupled model, one cannot forget that it is still a 

simplification of the real-world. It is expected that the issue lies at the 2020 model specially rather 

than the North Sea Calliope model. More specifically, the issues are only present when the model 

implements 2020 override files. The first problem occurs when removing sectors from the North 

Sea Calliope. In essence what happens when for example, the synthetic fuel production for 

hydrocarbons such as methane, methanol, kerosene and diesel production from biofuel gets 

removed, the demand for the hydrocarbon fuels have to be met with traditional fossil fuels. Forcing 

the model to have a higher share of fossil fuels without compensating for the loss of other 

production options leads to an unsolvable model. Moreover, in the default Calliope model, all fuel 

share constraints are set to be equality constraints. These stringent constraints have to be relaxed 

to a inequality constraint in order for the model to be solvable. In essence, the share of fossil fuels 

now only need to fulfil a minimum demand instead of an exact demand. The second problem is 
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related to the numerical issues where the solver is encountering a numerical trouble due to the high 

number of parallel constraints. This could be solved running a slower, but more stable Gurobi 

algorithm.  

6.1.2 Best method for the extraction of shadow prices within the Calliope 

modelling framework 

Within this research project, only the Pyomo class within the Python language has been used and 

tested for the extraction of shadow prices. Other classes used for optimisation modelling such as 

PuLP and SciPy have not been used nor been tested within the Calliope modelling framework due 

to project time constraints and misalignment of research scope. It is therefore not possible to 

determine whether the Pyomo class is the most efficient class for the extraction of shadow prices.  

6.2 Assessing trade-offs within different hydrogen configurations 

6.2.1 Weather 

The weather scenarios, bad weather, normal weather and good weather within this research project 

are defined based on the objective value of the optimization model rather than true meteorological 

data. It is assumed that during bad weather, cheaper sources for energy such as VRES are available 

to a lesser extent when compared to a good weather. From the results, such as Figure 26 it can be 

observed that in a good weather there is more onshore wind production compared to normal 

weather while one would expect that good weather is typically accompanied by less wind relative 

to normal weather.  

6.2.2 Capacity deployment in optimization models  

The North Sea Calliope model is a optimization model. It takes technology and demand data to 

solve a LP problem to find a region-wide optimal value for the objective function given the 

constraints rather than finding an optimal value for each region and each carrier independently. 

What this means is that the model always tries to deploy the cheapest technologies first as long as 

the constraints such as available energy capacity is not exceeded. The result of such optimization 

model is that technologies such as onshore wind are heavily favoured in comparison to offshore 

wind leading to a limited deployment of offshore wind. This leads to inaccuracies for not only 

location-specific capacity deployment such as in the Netherlands, but also region-wide for the 

whole North Sea region. While the Infrastructure Outlook 2050 from TenneT (2019) reports a 

higher share of offshore wind compared to onshore wind in the Netherlands, the model gives a 

higher share of onshore wind due to its lower cost. Moreover, the model overestimates to capacity 

deployment of onshore wind and underestimate the capacity deployment of offshore wind for the 

whole North Sea region. Furthermore, the hydrogen capacity for the North Sea region are also 

higher than the highest estimates of hydrogen use in future 2050 scenarios. 

6.2.3 Price stability and electricity shadow prices 

The first results from using electricity carrier price information in assessing trade-offs between 

different configurations have shown that different weather types affect the price stability of 



 

69 
 

electricity. It is not a surprise that electricity prices are affected by different weather conditions, 

but the use of shadow prices to assess these effects is unique. The results have shown that different 

shares of hydrogen within an fully sector-coupled energy system could potentially have a 

stabilising effect on electricity prices. Furthermore, the results have also shown that an increase in 

hydrogen shares could potentially reduce the average cost of electricity prices despite an increase 

in the total system costs. 

By using energy carrier price information, policymakers can now assess trade-offs in fully sector-

coupled energy models in a rather unique way. Where in the past shadow prices are mainly used 

to assess the hidden cost of non-marketable goods such as GHGs in policy implementations, this 

research project has shown that shadow prices can be used to analyse trade-offs in different 

configurations of fully sector-coupled energy models. More specifically, it analyses the stability 

in price dynamics in different hydrogen configurations in future energy system scenarios. Most 

energy optimisation models focus on the trade-off between total energy system costs and different 

energy system configurations, but not the trade-off between price stability and different energy 

system conditions. Having insights on the price stability of energy systems could potentially favour 

energy system configuration options where the total costs are higher, but the stability in price is 

also better. Although the effects on the electricity price dynamics could be analysed using shadow 

prices in different configurations of fully sector-coupled energy systems. The prices cannot be 

validated as the scenarios are future-based scenarios. Furthermore, in this study only price 

information of electricity has been studied extensively. Although the method described in this 

report could also be used on other energy carriers, this has not been done yet. Moreover, this master 

thesis project has mainly focussed on power-to-hydrogen and the effects of different hydrogen 

shares within an energy system. As mentioned in Section 1.2, other forms of sector coupling such 

as power-to-heat, power-to-gas also have the potential to increase the efficiency and reduce the 

overall cost of the whole energy system. Within the literature there is a wide consensus that the 

sector-coupling of the electricity sector and hydrogen sector would contribute to the 

decarbonisation of energy systems and reduction of electricity prices. Future studies could 

therefore include the analysis of these other forms of sector coupling to understand the full 

dynamics within fully sector-coupled energy systems.  
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Chapter 7 – Conclusions & Recommendations 
The goal of this master thesis project is to understand trade-offs between different configurations 

of a fully sector-coupled energy system model using energy carrier price information. In order to 

do this, a research proposal was submitted to answer 4 related sub questions and 1 main research 

question within a total time span of 24 weeks. The main research question stated is: “How can 

energy carrier price information be used to understand the trade-offs between different 

configurations of fully sector-coupled energy system models?”. The main research question and 

sub questions are revisited in this chapter. Also recommendations for improvements and future 

research is given. 

7.1 Sub question 1  
“What are the methods to extract energy carrier prices from fully sector-coupled energy systems 

in existing literature” 

It turned out that the method found need not to be novel in order to fulfil the main research 

question. It uses an existing method adapted from the Pyomo optimisation modelling package 

within the Python programming language. Other potential methods involve the use of the 

optimisation packages PuLP and SciPy, but these have not been used or tested in this research 

project since the scope does not include the modelling optimisation. Future research focussed on 

the optimisation of modelling methods can further analyse of the implementation of these 

optimisation modelling classes. 

7.2 Sub question 2 
“How can energy carrier prices in the form of shadow prices be extracted within the Calliope 

framework in fully sector-coupled energy systems?” 

To answer this sub question, first a small-scale Calliope model has been used to test the Python 

codes for the extraction of energy carrier prices. In the second step, the North Sea Calliope model 

has been created within the Calliope modelling framework to extract energy carrier prices within 

a large-scale fully sector-coupled energy system. The North Sea Calliope model is a scaled-down 

version of the Europe-Calliope model. It consists of 10 nodes, one node for each country, covering 

all major stakeholders in North Sea projects. The included countries are Belgium, Germany, 

Denmark, France, Great Britain, Ireland, Luxembourg, the Netherlands, Norway and Sweden. To 

run 1-hour resolution models, the DelftBlue supercomputer has been used. 

Due to the time constraints of this master thesis project, some of the presented methods are not 

optimised or are developed to perform a single task. Python code currently developed for 

reformatting the data frame of dual variables is done by looking manually which data and in what 

column the data should be split into. This is currently only tested on the system balance dual 

variables. It can therefore not be guaranteed that this method works for the analysis of other dual 

variables. A more general approach such as a general function in the post-processing step is 
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therefore recommended to reformat the data frame of dual variables. This could also potentially 

reduce the total running time of a model.     

7.3 Sub question 3 
“How do the generated price information compare the real-world price information?”. 

A North Sea Calliope model using technology data from the Danish Energy Agency for the year 

2020 has been used to create the North Sea Calliope 2020 model. In combination with weather 

data from the year 2015, the shadow prices for electricity for the Netherlands are extracted. The 

extracted data is compared to the ENTSO-E electricity day-ahead prices from the Netherlands for 

the year 2015, matching the weather year. It turned out that the model data is not an accurate 

representation of real-world prices. More specifically, the electricity prices in the model data are 

flatter and are less dynamic compared to real-world data. This could be caused by numerous things, 

among others, it could be caused by the fact that the model is a simplification of the real-world 

without ramping costs, shutdown costs and start-up costs. Furthermore, the 2020 North Sea 

Calliope model is a difficult model to run due to the many constraints what leads to more 

unrealistic dual variable values due to the manual disabling of locations, technologies and other 

constraints. The efficiency both numerically and size of the 2020 North Sea Calliope model could 

therefore be improved by applying a bottom-up approach to build a stand-alone North Sea Calliope 

model in future research. Also, the inclusion of non-linear constraints such as ramping costs, start-

up and shutdown cost is suggested for future research for a more complete model. 

7.4 Sub question 4 
“What are the price-related trade-offs when varying the share of hydrogen in a fully sector-

coupled energy system?”  

This master thesis project has tried to assess whether a higher share in hydrogen in the total energy 

system could lead to more stable price dynamics when looking at the shadow prices of electricity. 

More specifically, different hydrogen configurations where the fuel demand increases 30% and 

50% relative to the optimal hydrogen share configurations has been analysed for bad, good and 

normal weather scenarios. Improvement in the price stability was observed for all weather 

scenarios when fuel demand has been increased, meaning the occurrence of price peaks both to 

the top and bottom are reduced. Increased fuel demand is also coupled with an increase in the 

electricity supply by VRES resulting in a higher frequency of oversupply of electricity. The 

increased demand for electricity is caused by the increased demand for electrolysis to create 

hydrogen. As an effect, electricity shadow prices are more often zero when compared with optimal 

hydrogen share configurations. Furthermore, it has also been observed that the average electricity 

prices decreases with an increased fuel demand while the overall LCOE for the technologies and 

overall payback time for the energy system remain relatively unchanged. 
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7.5 Main research question 
“How can energy carrier price information be used to understand the trade-offs between different 

configurations of fully sector-coupled energy system models?”. 

This master thesis project has shown that it is possible to use shadow prices to analyse trade-offs 

between different configurations of a fully sector-coupled energy system model. This includes 

price stability, price peaks and price duration analyses of the energy system. Although the 

developed Calliope model is not yet entirely bug free, it offers a great start and foundation for 

future research. The Calliope modelling framework offers great flexibility in modelling from 

which many different parameters can be analysed including investment decision support, operation 

decision support and scenario analyses. The North Sea Calliope model can be used to research 

North Sea related topics. Furthermore, in this master thesis project, the energy carrier ‘electricity’ 

has been extensively researched using the developed methods. However, the same methods could 

also be applied to analyse the trade-offs in different configurations of fully sector-coupled energy 

systems for different energy carriers such as heat or hydrogen. 
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Appendices 
 

Appendix A – Laptop specifications 
System Manufacturer HP 

System Model HP ZBook Studio G3 

System Type x64-based PC 

Processor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 

2592 Mhz, 4 Core(s), 8 Logical Processor(s) 

Installed physical memory 16.0 GB 
 

Appendix B – Calliope models 

B1 - Simple model 

The files to the simple model can be accessed on: 

https://github.com/asow22/simple_model  

B2 - North Sea Calliope model 

The files to the North Sea Calliope model can be accessed on: 

https://surfdrive.surf.nl/files/index.php/s/GOophfS1FWu9dtr 

The North Sea 2020 Calliope model which is used in chapter 4 can be found in the 2020 folder. 

The North Sea 2050 Calliope model which is used in chapter 5 can be found in the 2050 folder. 

 

 

 

 

 

 

 

 

 

 

https://github.com/asow22/simple_model
https://surfdrive.surf.nl/files/index.php/s/GOophfS1FWu9dtr
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Appendix C – Building the 2020 North Sea Calliope model 

 

 

import create_input 

import run 

import calliope 

import pandas as pd 

from create_override import cap_results_to_override 

from utils import process_system_balance_duals 

 

#%%  

# CREATING MODEL INPUTS 

### 

 

# Select optimisation horizon: 2020, 2030 or 2050 

opt_horizon = 2020 

path_to_model_yaml = '/home/asow/2022-05_20_lite_north-

sea/{}/model/national/model-2015.yaml'.format(opt_horizon) 

 

# Define override scenarios 

scenario_string = {} 

 

scenario_string['2020-1h'] = 

"industry_fuel,transport,heat,config_overrides,gas_storage,link_cap_1x,"\ 

                        "freeze-hydro-

capacities,heat_techs_2020,renewable_techs_2020,"\ 

                        "transformation_techs_2020,fossil-fuel-

supply,res_1h,"\ 

                        "add-biofuel,coal_supply,north_sea,"\ 

                        "kill-fancy-techs,fix-generation-

capacities,demand_share_fuel_current_min" 

                         

selected_scenario = '2020-1h' 

 

# Generate and save model inputs 

path_to_netcdf_of_model_inputs = '/home/asow/2022-05_20_lite_north-

sea/{}/national/inputs.nc'.format(opt_horizon) 

model_input = create_input.build_model(path_to_model_yaml, 

scenario_string[selected_scenario], path_to_netcdf_of_model_inputs)     

#%% 

# RUNNING THE MODEL & saving results (including duals) 

### 

 

path_to_netcdf_of_results = '/home/asow/2022-05_20_lite_north-

sea/results/north-sea_{}.nc'.format(selected_scenario) 

model_run, duals = run.run_model(path_to_netcdf_of_model_inputs, 

path_to_netcdf_of_results) 

system_balance_duals = duals['system_balance_constraint Constraint'] 

balance_duals = process_system_balance_duals(system_balance_duals) 

balance_duals.set_index('timestep',inplace=True) 

balance_duals.to_csv('/home/asow/2022-05_20_lite_north-

sea/results/north_sea_balance_duals_{}.csv'.format(selected_scenario))  



 

80 
 

Appendix D – Description of North Sea Calliope 2020 override files 
 

YAML file Description 

Countries 

locations Defining country coordinates and available technologies 

per location 

north_sea_overrides Removing all non-North Sea countries from the model 

Technologies (location dependent) 

biofuel-supply-2015 Defining biofuel supply 

coal_supply Defining coal supply 

directional-rooftop Defining roof mounted PV supply 

fossil-fuel-supply Defining fossil fuel supply 

fuel-distribution Defining synthetic fuel transmission between countries 

fuel-group_constraints_2015 Defining annual fuel demand and industry techs  

gas_storage Defining underground methane storage 

heat_group_constraints_2015 Defining maximum heat storage, annual waste supply 

and grouping of heat technologies 

links Defining the transmission links between countries 

vehicle_group_constraints_2015 Defining annual transport distance and transport 

demand 

Technologies 

brown-field-capacities Allowing technologies to increase in energy capacity 

config_overrides Removing some of the technologies 

demand_share Defining minimum fuel share within the system 

demand-techs Defining demand technologies 

heat-techs Defining heat technologies 

legacy-techs Defining legacy technologies 

link-techs Defining transmission technologies 

renewable-techs Defining renewable technologies 

storage-techs Defining storage technologies 

transformation-techs Defining conversion technologies 

transport-techs Defining transport technologies 

2020 overrides 

fix-current-national-capacities  Setting energy capacity technology data to year 2020 

fix-demand-share_min Setting demand share of technologies to 2020 values 

heat-techs Setting heat technology data to year 2020 

kill-fancy-techs Removing technologies that are not widely adopted in 

2020 

renewable-techs Setting renewable technology data to year 2020 

storage-techs Setting storage technology data to year 2020 

transformation-techs Setting conversion technology data to year 2020 

The number behind the YAML files indicate the weather year for which the technology data is 

taken. 



 

81 
 

Appendix E – Job script 2020 model 1h resolution 
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Appendix F – Override files for setting the hydrogen shares for the 

production of synthetic fuel  
 

 

Appendix G – Override files for increasing the fuel demand  

G.1 Setting fuel demand increase to 30% 

 

 

overrides: 

    hydrogen_share_80: 

        group_constraints: 

            hydrogen_share_diesel: 

                techs: [hydrogen_to_liquids] 

                carrier_prod_share_min.syn_diesel: 0.8 

            hydrogen_share_kerosene: 

                techs: [hydrogen_to_liquids] 

                carrier_prod_share_min.syn_kerosene: 0.8 

                 

            hydrogen_share_methanol: 

                techs: [hydrogen_to_methanol] 

                carrier_prod_share_min.syn_methanol: 0.8 

                 

            hydrogen_share_methane: 

                techs: [hydrogen_to_methane] 

                carrier_prod_share_min.syn_methane: 0.8  

overrides:     

demand_share_fuel_30: 

        group_constraints: 

            demand_share_fuel_cooking: 

                techs: [gas_hob] 

                demand_share_equals.cooking: 0.3 

            demand_share_fuel_heat: 

                techs: [methane_tech_heat_to_demand, 

chp_methane_extraction_tech_heat_to_demand, 

chp_methane_back_pressure_simple_tech_heat_to_demand, 

chp_methane_back_pressure_combined_tech_heat_to_demand] 

                demand_share_equals.heat: 0.3 

            demand_share_fuel_transport_light: 

                techs: [light_transport_ice] 

                demand_share_equals.light_transport: 0.3 

            demand_share_fuel_transport_heavy: 

                techs: [heavy_transport_ice] 

                demand_share_equals.heavy_transport: 0.3 

            demand_share_fuel_electricity: 

                techs: [ccgt] 

                carrier_prod_share_max.electricity: 0.3  
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G.2 Setting fuel demand increase to 50% 
 

 

Appendix H – Average capacity factors wind offshore and onshore 
 

Country Onshore Offshore 

Belgium 0.314 0.445 

Germany 0.257 0.499 

Denmark 0.442 0.500 

France 0.281 0.450 

Great Britain 0.437 0.569 

Ireland 0.451 0.602 

Luxembourg 0.308 0 

The Netherlands 0.363 0.528 

Norway 0.299 0.512 

Sweden 0.302 0.417 

   

Average 0.345 0.452 
 

 

 

 

overrides:     

    demand_share_fuel_50: 

        group_constraints: 

            demand_share_fuel_cooking: 

                techs: [gas_hob] 

                demand_share_equals.cooking: 0.5 

            demand_share_fuel_heat: 

                techs: [methane_tech_heat_to_demand, 

chp_methane_extraction_tech_heat_to_demand, 

chp_methane_back_pressure_simple_tech_heat_to_demand, 

chp_methane_back_pressure_combined_tech_heat_to_demand] 

                demand_share_equals.heat: 0.5 

            demand_share_fuel_transport_light: 

                techs: [light_transport_ice] 

                demand_share_equals.light_transport: 0.5 

            demand_share_fuel_transport_heavy: 

                techs: [heavy_transport_ice] 

                demand_share_equals.heavy_transport: 0.5 

            demand_share_fuel_electricity: 

                techs: [ccgt] 

                carrier_prod_share_max.electricity: 0.5 
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Appendix I – Electricity production vs electricity shadow price 
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Appendix S1 – Python scripts for the analysis of the North Sea Calliope 

2020 model 
 

Loading results from the supercluster 

 

Analysing TES for the Netherlands 

 

 

opt_horizon = 2020 

selected_scenario = '2020-1h'               

path_to_netcdf_of_results = 'results/supercluster/north-

sea_{}.nc'.format(selected_scenario) 

# path_to_duals = 'results\Supercluster archive 27 jun/north-

sea_duals_{}.pickle'.format(selected_scenario) 

model = calliope.read_netcdf('results/supercluster/north-

sea_{}.nc'.format(selected_scenario)) 

# duals = load_duals(path_to_duals) 

balance_duals=pd.read_csv('results//supercluster/north_sea_balance_duals_{}

.csv'.format(selected_scenario)) 

#%%Production supply in the Netherlands 

supply_techs = list(model_2020-

1h._model_data.techs_supply.to_pandas().index) + list(model_2020-

1h._model_data.techs_supply_plus.to_pandas().index) 

NLD_carrier_prod_supply_only = model_2020-

1h.get_formatted_array('carrier_prod').loc[{'techs':supply_techs}].sum(['te

chs','timesteps']).loc[{'locs':'NLD'}].to_pandas() 

NLD_carrier_prod_supply_only 

=NLD_carrier_prod_supply_only.loc[(NLD_carrier_prod_supply_only != 0)] 

#remove rows that contain only 0 values 

NLD_carrier_prod_supply_only=(1/10)*NLD_carrier_prod_supply_only #to 

convert 100.000MW to TWh, multiply by 0.1 

 

source = ["Coal","Natural gas","Electricity","Biofuels and waste","Oil"] 

# total_energy_supply = [172876,1316248,44589,167,93186,210646,1068129] #In 

TJ 

total_energy_supply = [172876,1316248,137942,210646,1068129] #In TJ 

total_energy_supply = np.multiply(total_energy_supply,1/3600) #Convert TJ 

to TWh 

model_total_energy_supply = [87.84,228.26,35.3076,1.69,309.46] 

w=0.4 

bar1 = np.arange(len(source)) 

bar2 = [i+w for i in bar1] 

 

plt.bar(bar1,total_energy_supply,w,label="IEA data") 

plt.bar(bar2,model_total_energy_supply,w,label="Model data") 

plt.ylabel("Energy supply in TWh") 

plt.xlabel("source") 

plt.title("TES by source in the Netherlands 2020") 

plt.xticks(bar1+w/2,source,rotation=90) 

plt.legend() 
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Analyzing electricity duals 

 

 

 

 

 

 

shadowprice_elec_nld_2020_1h = 

balance_duals_2020_1h[(balance_duals_2020_1h.region == 'NLD') & 

(balance_duals_2020_1h.carrier == 'electricity')] 

shadowprice_elec_nld_2020_1h['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2020_1h['timestep']) 

 

shadowprice_elec_nld_2020_op = 

balance_duals_2020_op[(balance_duals_2020_op.region == 'NLD') & 

(balance_duals_2020_op.carrier == 'electricity')] 

shadowprice_elec_nld_2020_op['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2020_op['timestep']) 

 

plt.figure(figsize=(10,5)) 

plt.plot(shadowprice_elec_nld_2020_1h['timestep'], 

10000*shadowprice_elec_nld_2020_1h['dual-value'], label=('NLD electricity 

duals 2020 model')) 

plt.plot(shadowprice_elec_nld_2020_1h['timestep'],day_ahead_price_2015['Day

-ahead Price [EUR/MWh]'],label=('NLD ENTSO-E day ahead price 2015')) 

plt.xlim(shadowprice_elec_nld_2020_1h['timestep'].iloc[1416],shadowprice_el

ec_nld_2020_1h['timestep'].iloc[2159] ) #filter for the March 

plt.title('Electricity duals 2020 North Sea Calliope model') 

plt.ylabel('Electricity price in EUR/MWh') 

plt.legend() 

plt.ylim(ymin=0,ymax=100) 

 

 

plt.figure(figsize=(10,5)) 

plt.plot(shadowprice_elec_nld_2020_op['timestep'], 

10000*shadowprice_elec_nld_2020_op['dual-value'], label=('NLD electricity 

duals 2020 model')) 

plt.plot(shadowprice_elec_nld_2020_op['timestep'],day_ahead_price_2015['Day

-ahead Price [EUR/MWh]'],label=('NLD ENTSO-E day ahead price 2015')) 

plt.xlim(shadowprice_elec_nld_2020_op['timestep'].iloc[1416],shadowprice_el

ec_nld_2020_op['timestep'].iloc[2159] ) #filter for the March 

plt.title('Electricity duals 2020 North Sea Calliope power sector only 

model') 

plt.ylabel('Electricity price in EUR/MWh') 

plt.legend() 

plt.ylim(ymin=0,ymax=100) 
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Appendix S2 – Python scripts for the analysis of the North Sea Calliope 

2050 model  

Loading 2050 models 

 

#%% Loading 2050 models 

opt_horizon = 2050 

selected_scenario = list([2050,'2050-80hydrogen-30fuel','2050-100hydrogen-

30fuel','2050-80hydrogen-50fuel']) 

weather_yr = [2010,2011,2012,2013,2014,2015,2016,2017,2018] 

#optimal scenario 

path_to_netcdf_of_results_2010 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[0],weather_yr[0]) 

model_2050_2010 = calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[0],weather_yr[0])) 

balance_duals_2050_2010=pd.read_csv('results//supercluster/2050/north_sea_b

alance_duals_{}_{}.csv'.format(selected_scenario[0],weather_yr[0])) 

 

path_to_netcdf_of_results_2015 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[0],weather_yr[5]) 

model_2050_2015 = calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[0],weather_yr[5])) 

balance_duals_2050_2015=pd.read_csv('results//supercluster/2050/north_sea_b

alance_duals_{}_{}.csv'.format(selected_scenario[0],weather_yr[5])) 

 

path_to_netcdf_of_results_2016 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[0],weather_yr[6]) 

model_2050_2016 = calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[0],weather_yr[6])) 

balance_duals_2050_2016=pd.read_csv('results//supercluster/2050/north_sea_b

alance_duals_{}_{}.csv'.format(selected_scenario[0],weather_yr[6])) 

 

#80% hydrogen share and 30% fuel increase 

path_to_netcdf_of_results_2010_8030 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[1],weather_yr[0]) 

model_2050_2010_8030 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[1],weather_yr[0])) 

balance_duals_2050_2010_8030=pd.read_csv('results//supercluster/2050/north_

sea_balance_duals_{}_{}.csv'.format(selected_scenario[1],weather_yr[0])) 

 

path_to_netcdf_of_results_2015_8030 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[1],weather_yr[5]) 

model_2050_2015_8030 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[1],weather_yr[5])) 

balance_duals_2050_2015_8030=pd.read_csv('results//supercluster/2050/north_

sea_balance_duals_{}_{}.csv'.format(selected_scenario[1],weather_yr[5])) 

 

path_to_netcdf_of_results_2016_8030 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[1],weather_yr[6]) 

model_2050_2016_8030 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[1],weather_yr[6])) 

balance_duals_2050_2016_8030=pd.read_csv('results//supercluster/2050/north_

sea_balance_duals_{}_{}.csv'.format(selected_scenario[1],weather_yr[6])) 
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#100% hydrogen share and 30% fuel increase 

path_to_netcdf_of_results_2010_10030 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[2],weather_yr[0]) 

model_2050_2010_10030 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[2],weather_yr[0])) 

balance_duals_2050_2010_10030=pd.read_csv('results//supercluster/2050/north

_sea_balance_duals_{}_{}.csv'.format(selected_scenario[2],weather_yr[0])) 

 

path_to_netcdf_of_results_2015_10030 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[2],weather_yr[5]) 

model_2050_2015_10030 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[2],weather_yr[5])) 

balance_duals_2050_2015_10030=pd.read_csv('results//supercluster/2050/north

_sea_balance_duals_{}_{}.csv'.format(selected_scenario[2],weather_yr[5])) 

 

path_to_netcdf_of_results_2016_10030 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[2],weather_yr[6]) 

model_2050_2016_10030 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[2],weather_yr[6])) 

balance_duals_2050_2016_10030=pd.read_csv('results//supercluster/2050/north

_sea_balance_duals_{}_{}.csv'.format(selected_scenario[2],weather_yr[6])) 

 

#80% hydrogen share and 50% fuel increase 

path_to_netcdf_of_results_2010_8050 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[3],weather_yr[0]) 

model_2050_2010_8050 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[3],weather_yr[0])) 

balance_duals_2050_2010_8050=pd.read_csv('results//supercluster/2050/north_

sea_balance_duals_{}_{}.csv'.format(selected_scenario[3],weather_yr[0])) 

 

path_to_netcdf_of_results_2015_8050 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[3],weather_yr[5]) 

model_2050_2015_8050 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[3],weather_yr[5])) 

balance_duals_2050_2015_8050=pd.read_csv('results//supercluster/2050/north_

sea_balance_duals_{}_{}.csv'.format(selected_scenario[3],weather_yr[5])) 

 

path_to_netcdf_of_results_2016_8050 = 'results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[3],weather_yr[6]) 

model_2050_2016_8050 = 

calliope.read_netcdf('results/supercluster/2050/north-

sea_{}_{}.nc'.format(selected_scenario[3],weather_yr[6])) 

balance_duals_2050_2016_8050=pd.read_csv('results//supercluster/2050/north_

sea_balance_duals_{}_{}.csv'.format(selected_scenario[3],weather_yr[6]))  
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Setting up electricity duals data 

 

 

 

#optimal scenario 

shadowprice_elec_nld_2010 = 

balance_duals_2050_2010[(balance_duals_2050_2010.region == 'NLD') & 

(balance_duals_2050_2010.carrier == 'electricity')] 

shadowprice_elec_nld_2015 = 

balance_duals_2050_2015[(balance_duals_2050_2015.region == 'NLD') & 

(balance_duals_2050_2015.carrier == 'electricity')] 

shadowprice_elec_nld_2016 = 

balance_duals_2050_2016[(balance_duals_2050_2016.region == 'NLD') & 

(balance_duals_2050_2016.carrier == 'electricity')] 

 

shadowprice_elec_nld_2010['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2010['timestep']) 

shadowprice_elec_nld_2015['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2015['timestep']) 

shadowprice_elec_nld_2016['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2016['timestep']) 

shadowprice_elec_nld_2016.drop(shadowprice_elec_nld_2016.index[1416:1440], 

inplace=True) 

 

#80% hydrogen share and 30% fuel increase 

shadowprice_elec_nld_2010_8030 = 

balance_duals_2050_2010_8030[(balance_duals_2050_2010_8030.region == 'NLD') 

& (balance_duals_2050_2010_8030.carrier == 'electricity')] 

shadowprice_elec_nld_2015_8030 = 

balance_duals_2050_2015_8030[(balance_duals_2050_2015_8030.region == 'NLD') 

& (balance_duals_2050_2015_8030.carrier == 'electricity')] 

shadowprice_elec_nld_2016_8030 = 

balance_duals_2050_2016_8030[(balance_duals_2050_2016_8030.region == 'NLD') 

& (balance_duals_2050_2016_8030.carrier == 'electricity')] 

 

shadowprice_elec_nld_2010_8030['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2010_8030['timestep']) 

shadowprice_elec_nld_2015_8030['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2015_8030['timestep']) 

shadowprice_elec_nld_2016_8030['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2016_8030['timestep']) 

shadowprice_elec_nld_2016_8030.drop(shadowprice_elec_nld_2016_8030.index[14

16:1440], inplace=True) 

 

#100% hydrogen share and 30% fuel increase 

shadowprice_elec_nld_2010_10030 = 

balance_duals_2050_2010_10030[(balance_duals_2050_2010_10030.region == 

'NLD') & (balance_duals_2050_2010_10030.carrier == 'electricity')] 

shadowprice_elec_nld_2015_10030 = 

balance_duals_2050_2015_10030[(balance_duals_2050_2015_10030.region == 

'NLD') & (balance_duals_2050_2015_10030.carrier == 'electricity')] 

shadowprice_elec_nld_2016_10030 = 

balance_duals_2050_2016_10030[(balance_duals_2050_2016_10030.region == 

'NLD') & (balance_duals_2050_2016_10030.carrier == 'electricity')] 



 

91 
 

 

shadowprice_elec_nld_2010_10030['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2010_10030['timestep']) 

shadowprice_elec_nld_2015_10030['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2010_10030['timestep']) 

shadowprice_elec_nld_2016_10030['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2010_10030['timestep']) 

shadowprice_elec_nld_2016_10030.drop(shadowprice_elec_nld_2016_10030.index[

1416:1440], inplace=True) 

 

#80% hydrogen share and 50% fuel increase 

shadowprice_elec_nld_2010_8050 = 

balance_duals_2050_2010_8050[(balance_duals_2050_2010_8050.region == 'NLD') 

& (balance_duals_2050_2010_8050.carrier == 'electricity')] 

shadowprice_elec_nld_2015_8050 = 

balance_duals_2050_2015_8050[(balance_duals_2050_2015_8050.region == 'NLD') 

& (balance_duals_2050_2015_8050.carrier == 'electricity')] 

shadowprice_elec_nld_2016_8050 = 

balance_duals_2050_2016_8050[(balance_duals_2050_2016_8050.region == 'NLD') 

& (balance_duals_2050_2016_8050.carrier == 'electricity')] 

 

shadowprice_elec_nld_2010_8050['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2010_8050['timestep']) 

shadowprice_elec_nld_2015_8050['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2015_8050['timestep']) 

shadowprice_elec_nld_2016_8050['timestep'] = 

pd.to_datetime(shadowprice_elec_nld_2016_8050['timestep']) 

shadowprice_elec_nld_2016_8050.drop(shadowprice_elec_nld_2016_8050.index[14

16:1440], inplace=True) 
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TES by source in the Netherlands 2050 

 

source = ["Biofuel","Electricity","Synthetic diesel","Synthetic 

kerosene","Synthetic methane","Synthetic_methanol","Waste"] 

TES_2010 = 

[NL_supply_tech_2010['biofuel'],NL_supply_tech_2010['electricity'],NL_suppl

y_tech_2010['syn_diesel'],NL_supply_tech_2010['syn_kerosene'],NL_supply_tec

h_2010['syn_methane'],NL_supply_tech_2010['syn_methanol'],NL_supply_tech_20

10['waste']] 

TES_2015 = 

[NL_supply_tech_2015['biofuel'],NL_supply_tech_2015['electricity'],NL_suppl

y_tech_2015['syn_diesel'],NL_supply_tech_2015['syn_kerosene'],NL_supply_tec

h_2015['syn_methane'],NL_supply_tech_2015['syn_methanol'],NL_supply_tech_20

15['waste']] 

TES_2016 = 

[NL_supply_tech_2016['biofuel'],NL_supply_tech_2016['electricity'],NL_suppl

y_tech_2016['syn_diesel'],NL_supply_tech_2016['syn_kerosene'],NL_supply_tec

h_2016['syn_methane'],NL_supply_tech_2016['syn_methanol'],NL_supply_tech_20

16['waste']] 

w=0.25 

bar1 = np.arange(len(source)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,TES_2010,w,label="TES in bad weather",color='salmon') 

plt.bar(bar2,TES_2016,w,label="TES in normal weather",color='bisque') 

plt.bar(bar3,TES_2015,w,label="TES in good weather",color='lightgreen') 

 

plt.ylabel("Energy supply in TWh") 

plt.xlabel("source") 

plt.title("TES by source in the Netherlands 2050 (optimal hydrogen share)") 

plt.xticks(bar1+w,source,rotation=315) 

plt.legend(loc='upper center') 

# plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 

 

#%% comparing model results with infrastructure outlook 2050, tennet 

source = ["Electricity","Methane","Hydrogen","Others","Liquid fuels"] 

total_energy_supply_2010 = 

[NL_supply_tech_2010['electricity']/sum(TES_2010),NL_supply_tech_2010['syn_

methane']/sum(TES_2010),NL_supply_tech_2010['syn_methanol']/sum(TES_2010),(

NL_supply_tech_2010['waste']+NL_supply_tech_2010['biofuel'])/sum(TES_2010),

(NL_supply_tech_2010['syn_diesel']+NL_supply_tech_2010['syn_kerosene'])/sum

(TES_2010)] #In TJ 

total_energy_supply_2010 = [x*100 for x in total_energy_supply_2010] 

IO_2050_data = [26,23,24,15,12] 

w=0.4 

bar1 = np.arange(len(source)) 

bar2 = [i+w for i in bar1] 

 

plt.bar(bar1,IO_2050_data,w,label="Infrastructure Outlook 2050 data") 

plt.bar(bar2,total_energy_supply_2010,w,label="Model data") 

plt.ylabel("Energy supply in percentage") 

plt.xlabel("source") 

plt.title("TES by source in the Netherlands 2050 (optimal hydrogen share)") 

plt.xticks(bar1+w/2,source,rotation=90) 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 
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TES_2010_8030 = 

[NL_supply_tech_2010_8030['biofuel'],NL_supply_tech_2010_8030['electricity'

],NL_supply_tech_2010_8030['syn_diesel'],NL_supply_tech_2010_8030['syn_kero

sene'],NL_supply_tech_2010_8030['syn_methane'],NL_supply_tech_2010_8030['sy

n_methanol'],NL_supply_tech_2010_8030['waste']] 

TES_2015_8030 = 

[NL_supply_tech_2015_8030['biofuel'],NL_supply_tech_2015_8030['electricity'

],NL_supply_tech_2015_8030['syn_diesel'],NL_supply_tech_2015_8030['syn_kero

sene'],NL_supply_tech_2015_8030['syn_methane'],NL_supply_tech_2015_8030['sy

n_methanol'],NL_supply_tech_2015_8030['waste']] 

TES_2016_8030 = 

[NL_supply_tech_2016_8030['biofuel'],NL_supply_tech_2016_8030['electricity'

],NL_supply_tech_2016_8030['syn_diesel'],NL_supply_tech_2016_8030['syn_kero

sene'],NL_supply_tech_2016_8030['syn_methane'],NL_supply_tech_2016_8030['sy

n_methanol'],NL_supply_tech_2016_8030['waste']] 

w=0.25 

bar1 = np.arange(len(source)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

plt.bar(bar1,TES_2010_8030,w,label="TES in bad weather",color='salmon') 

plt.bar(bar2,TES_2016_8030,w,label="TES in normal weather",color='bisque') 

plt.bar(bar3,TES_2015_8030,w,label="TES in good 

weather",color='lightgreen') 

plt.ylabel("Energy supply in TWh") 

plt.xlabel("source") 

plt.title("TES by source in the Netherlands 2050 (+30% fuel demand)") 

plt.xticks(bar1+w,source,rotation=315) 

# plt.legend() 

 

TES_2010_8050 = 

[NL_supply_tech_2010_8050['biofuel'],NL_supply_tech_2010_8050['electricity'

],NL_supply_tech_2010_8050['syn_diesel'],NL_supply_tech_2010_8050['syn_kero

sene'],NL_supply_tech_2010_8050['syn_methane'],NL_supply_tech_2010_8050['sy

n_methanol'],NL_supply_tech_2010_8050['waste']] 

TES_2015_8050 = 

[NL_supply_tech_2015_8050['biofuel'],NL_supply_tech_2015_8050['electricity'

],NL_supply_tech_2015_8050['syn_diesel'],NL_supply_tech_2015_8050['syn_kero

sene'],NL_supply_tech_2015_8050['syn_methane'],NL_supply_tech_2015_8050['sy

n_methanol'],NL_supply_tech_2015_8050['waste']] 

TES_2016_8050 = 

[NL_supply_tech_2016_8050['biofuel'],NL_supply_tech_2016_8050['electricity'

],NL_supply_tech_2016_8050['syn_diesel'],NL_supply_tech_2016_8050['syn_kero

sene'],NL_supply_tech_2016_8050['syn_methane'],NL_supply_tech_2016_8050['sy

n_methanol'],NL_supply_tech_2016_8050['waste']] 

w=0.25 

bar1 = np.arange(len(source)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,TES_2010_8050,w,label="TES in bad weather",color='salmon') 

plt.bar(bar2,TES_2016_8050,w,label="TES in normal weather",color='bisque') 

plt.bar(bar3,TES_2015_8050,w,label="TES in good 

weather",color='lightgreen') 

 

plt.ylabel("Energy supply in TWh") 

plt.xlabel("source") 

plt.title("TES by source in the Netherlands 2050 (+50% fuel demand)") 

plt.xticks(bar1+w,source,rotation=315) 

plt.legend() 
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Electricity demand 

 

 

 

 

 

 

 

 

#%% electricity consumption comparison 

elec_demand_2016 = 

model_2050_2016.get_formatted_array('carrier_con').loc['electricity'].loc['

NLD'].loc[{'techs':demand_techs}].sum(['timesteps']).to_pandas() 

elec_demand_2016_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['timesteps']).to_pandas() 

elec_demand_2016 = elec_demand_2016*-0.1 

elec_demand_2016_8050 = elec_demand_2016_8050*-0.1 

 

demand_techs = 

['battery','demand_elec','electric_heater','electric_hob','electrolysis','h

eavy_transport_ev','hp','hydrogen_to_liquids','light_transport_ev'] 

data_opt = 

[elec_demand_2016[0],elec_demand_2016[1],elec_demand_2016[2],elec_demand_20

16[3],elec_demand_2016[4],elec_demand_2016[5],elec_demand_2016[6],elec_dema

nd_2016[7],elec_demand_2016[8]] 

data_8050 = 

[elec_demand_2016_8050[0],elec_demand_2016_8050[1],elec_demand_2016_8050[2]

,elec_demand_2016_8050[3],elec_demand_2016_8050[4],elec_demand_2016_8050[5]

,elec_demand_2016_8050[6],elec_demand_2016_8050[7],elec_demand_2016_8050[8]

] 

w=0.25 

bar1 = np.arange(len(demand_techs)) 

bar2 = [i+w for i in bar1] 

 

plt.bar(bar1,data_opt,w,label="electricity demand optimal hydrogen 

share",color='lightgray') 

plt.bar(bar2,data_8050,w,label="electricity demand +50% fuel 

demand",color='blue') 

 

plt.ylabel("Electricity demand in TWh") 

plt.xlabel("source") 

plt.title("Electricity demand by source in the Netherlands (normal 

weather)") 

plt.xticks(bar1+w,demand_techs,rotation=90) 

plt.yscale("symlog") 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 
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Total electricity production by source 

 

 

 

 

 

 

electricity_techs = 

['wind_offshore','wind_onshore_monopoly','wind_onshore_competing','hydro_ru

n_of_river','hydro_reservoir','open_field_pv','roof_mounted_pv','nuclear','

battery','pumped_hydro','chp_biofuel_extraction','chp_wte_back_pressure'] 

 

 

elec_production_source_2010 = 

model_2050_2010.get_formatted_array('carrier_prod').loc[{'techs':electricit

y_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to_pand

as() 

elec_production_source_2015 = 

model_2050_2015.get_formatted_array('carrier_prod').loc[{'techs':electricit

y_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to_pand

as() 

elec_production_source_2016 = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':electricit

y_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to_pand

as() 

 

elec_production_source_2010 = elec_production_source_2010*0.1 

elec_production_source_2015 = elec_production_source_2015*0.1 

elec_production_source_2016 = elec_production_source_2016*0.1 

 

sources = elec_production_source_2010.index 

w=0.25 

bar1 = np.arange(len(sources)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

 

plt.bar(bar1,elec_production_source_2010,w,label="bad 

weather",color='salmon') 

plt.bar(bar2,elec_production_source_2016,w,label="normal 

weather",color='bisque') 

plt.bar(bar3,elec_production_source_2015,w,label="good 

weather",color='lightgreen') 

plt.legend() 

 

plt.xticks(bar1+w,sources,rotation=90) 

plt.title("Total electricity production by source North Sea region") 

plt.ylabel('Electricity production in TWh') 

plt.xlabel('source') 
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#%% electricity production by source for different hydrogen configurations 

elec_production_source_2010_8030 = 

model_2050_2010_8030.get_formatted_array('carrier_prod').loc[{'techs':elect

ricity_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to

_pandas() 

elec_production_source_2015_8030 = 

model_2050_2015_8030.get_formatted_array('carrier_prod').loc[{'techs':elect

ricity_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to

_pandas() 

elec_production_source_2016_8030 = 

model_2050_2016_8030.get_formatted_array('carrier_prod').loc[{'techs':elect

ricity_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to

_pandas() 

 

elec_production_source_2010_8030 = elec_production_source_2010_8030*0.1 

elec_production_source_2015_8030 = elec_production_source_2015_8030*0.1 

elec_production_source_2016_8030 = elec_production_source_2016_8030*0.1 

 

elec_production_source_2010_8050 = 

model_2050_2010_8050.get_formatted_array('carrier_prod').loc[{'techs':elect

ricity_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to

_pandas() 

elec_production_source_2015_8050 = 

model_2050_2015_8050.get_formatted_array('carrier_prod').loc[{'techs':elect

ricity_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to

_pandas() 

elec_production_source_2016_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':elect

ricity_techs}].loc[{'carriers':'electricity'}].sum(['timesteps','locs']).to

_pandas() 

 

elec_production_source_2010_8050 = elec_production_source_2010_8050*0.1 

elec_production_source_2015_8050 = elec_production_source_2015_8050*0.1 

elec_production_source_2016_8050 = elec_production_source_2016_8050*0.1 

 

sources = elec_production_source_2010.index 

w=0.25 

bar1 = np.arange(len(sources)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

 

plt.bar(bar1,elec_production_source_2010_8030,w,label="bad 

weather",color='salmon') 

plt.bar(bar2,elec_production_source_2016_8030,w,label="normal 

weather",color='bisque') 

plt.bar(bar3,elec_production_source_2015_8030,w,label="good 

weather",color='lightgreen') 

plt.legend() 

 

plt.xticks(bar1+w,sources,rotation=90) 

plt.title("Total electricity production by source North Sea region (+30% 

fuel demand)") 

plt.ylabel('Electricity production in TWh') 

plt.xlabel('source') 
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#%% electricity production by source NLD 

elec_production_source_2010_NLD = 

model_2050_2010.get_formatted_array('carrier_prod').loc[{'techs':electricit

y_techs}].loc[{'carriers':'electricity'}].loc[{'locs':'NLD'}].sum(['timeste

ps']).to_pandas() 

elec_production_source_2015_NLD = 

model_2050_2015.get_formatted_array('carrier_prod').loc[{'techs':electricit

y_techs}].loc[{'carriers':'electricity'}].loc[{'locs':'NLD'}].sum(['timeste

ps']).to_pandas() 

elec_production_source_2016_NLD = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':electricit

y_techs}].loc[{'carriers':'electricity'}].loc[{'locs':'NLD'}].sum(['timeste

ps']).to_pandas() 

 

elec_production_source_2010_NLD = elec_production_source_2010*0.1 

elec_production_source_2015_NLD = elec_production_source_2015*0.1 

elec_production_source_2016_NLD = elec_production_source_2016*0.1 

 

sources = elec_production_source_2010.index 

w=0.25 

bar1 = np.arange(len(sources)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

 

plt.bar(bar1,elec_production_source_2010_NLD,w,label="bad 

weather",color='salmon') 

plt.bar(bar2,elec_production_source_2016_NLD,w,label="normal 

weather",color='bisque') 

plt.bar(bar3,elec_production_source_2015_NLD,w,label="good 

weather",color='lightgreen') 

plt.legend() 

 

plt.xticks(bar1+w,sources,rotation=90) 

plt.title("Total electricity production by source in the Netherlands") 

plt.ylabel('Electricity production) 

plt.xlabel('source') 
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Total energy system cost 

 

Levelized cost of energy 

 

weather_type = ["Bad weather","Normal weather","Good weather"] 

obj_opt = [4.79675751e+02,4.35732732e+02,4.18938085e+02] 

obj_8030 = [6.42844135e+02,5.88498512e+02,5.54155026e+02] 

obj_8050 = [7.41755933e+02,6.94771637e+02,6.49037273e+02] 

w=0.25 

bar1 = np.arange(len(weather_type)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,obj_opt,w,label="Optimal hydrogen scenario",color='palegreen') 

plt.bar(bar2,obj_8030,w,label="+30% fuel demand",color='lightgreen') 

plt.bar(bar3,obj_8050,w,label="+50% fuel demand",color='limegreen') 

 

plt.ylabel("x billion euros") 

plt.xlabel("Weather type") 

plt.title("Total energy system cost for different hydrogen configurations") 

plt.xticks(bar1+w,weather_type) 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 

lcoe_2010 = 

1e4*model_2050_2010.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary'}].to_pandas() 

lcoe_2015 = 

1e4*model_2050_2015.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary'}].to_pandas() 

lcoe_2016 = 

1e4*model_2050_2016.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary'}].to_pandas() 

 

lcoe_2010.replace(np.inf, np.nan, inplace=True) 

lcoe_2015.replace(np.inf, np.nan, inplace=True) 

lcoe_2016.replace(np.inf, np.nan, inplace=True) 

lcoe_2010 = lcoe_2010.dropna() 

lcoe_2015 = lcoe_2015.dropna() 

lcoe_2016 = lcoe_2016.dropna() 

 

techs = lcoe_2010.index 

w=0.25 

bar1 = np.arange(len(techs)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

 

plt.bar(bar1,lcoe_2010,w,label="bad weather",color='salmon') 

plt.bar(bar2,lcoe_2015,w,label="normal weather",color='bisque') 

plt.bar(bar3,lcoe_2016,w,label="good weather",color='lightgreen') 

plt.legend() 

 

plt.xticks(bar1+w,techs,rotation=90) 

plt.title("Systemwide LCOE of technologies") 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 
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#%%ANALYZING LEVELIZED COST FOR DIFFERENT HYDROGEN SHARES 

electricity_techs = 

['wind_offshore','wind_onshore_monopoly','wind_onshore_competing','hydro_ru

n_of_river','hydro_reservoir','open_field_pv','roof_mounted_pv','nuclear','

battery','pumped_hydro','chp_biofuel_extraction','chp_wte_back_pressure'] 

 

lcoe_2016 = 

1e4*model_2050_2016.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary','techs':electricity_techs}].to_pandas() 

lcoe_2016_8030 = 

1e4*model_2050_2016_8030.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary','techs':electricity_techs}].to_pandas() 

lcoe_2016_8050 = 

1e4*model_2050_2016_8050.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary','techs':electricity_techs}].to_pandas() 

 

lcoe_2016.replace(np.inf, np.nan, inplace=True) 

lcoe_2016_8030.replace(np.inf, np.nan, inplace=True) 

lcoe_2016_8050.replace(np.inf, np.nan, inplace=True) 

lcoe_2016 = lcoe_2016.dropna() 

lcoe_2016_8030 = lcoe_2016_8030.dropna() 

lcoe_2016_8050 = lcoe_2016_8050.dropna() 

 

techs = lcoe_2016.index 

 

w=0.25 

bar1 = np.arange(len(techs)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,lcoe_2016,w,label="Optimal scenario",color='palegreen') 

plt.bar(bar2,lcoe_2016_8030,w,label="+30% fuel demand",color='lightgreen') 

plt.bar(bar3,lcoe_2016_8050,w,label="+50% fuel demand",color='limegreen') 

 

plt.ylabel("LCOE in €/MWh") 

plt.xlabel("Technology") 

plt.title("Systemwide LCOE of technologies for different hydrogen shares 

(normal weather)") 

plt.xticks(bar1+w,techs,rotation=90) 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 

plt.yscale("log") 



 

100 
 

 

 

 

 

 

 

 

 

 

 

lcoe_2010 = 

1e4*model_2050_2010.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary'}].to_pandas() 

lcoe_2010_8030 = 

1e4*model_2050_2010_8030.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary'}].to_pandas() 

lcoe_2010_8050 = 

1e4*model_2050_2010_8050.results.systemwide_levelised_cost.loc[{'carriers': 

'electricity', 'costs':'monetary'}].to_pandas() 

 

lcoe_2010.replace(np.inf, np.nan, inplace=True) 

lcoe_2010_8030.replace(np.inf, np.nan, inplace=True) 

lcoe_2010_8050.replace(np.inf, np.nan, inplace=True) 

lcoe_2010 = lcoe_2010.dropna() 

lcoe_2010_8030 = lcoe_2010_8030.dropna() 

lcoe_2010_8050 = lcoe_2010_8050.dropna() 

 

techs = lcoe_2010.index 

 

w=0.25 

bar1 = np.arange(len(techs)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,lcoe_2010,w,label="Cost-optimal scenario",color='palegreen') 

plt.bar(bar2,lcoe_2010_8030,w,label="+30% fuel demand",color='lightgreen') 

plt.bar(bar3,lcoe_2010_8050,w,label="+50% fuel demand",color='limegreen') 

 

 

plt.ylabel("LCOE in €/MWh") 

plt.xlabel("Weather type") 

plt.title("Systemwide LCOE of technologies for different hydrogen shares 

(bad weather)") 

plt.xticks(bar1+w,techs,rotation=90) 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 
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lcoe_2015.replace(np.inf, np.nan, inplace=True) 

lcoe_2015_8030.replace(np.inf, np.nan, inplace=True) 

lcoe_2015_8050.replace(np.inf, np.nan, inplace=True) 

lcoe_2015 = lcoe_2015.dropna() 

lcoe_2015_8030 = lcoe_2015_8030.dropna() 

lcoe_2015_8050 = lcoe_2015_8050.dropna() 

 

techs = lcoe_2015.index 

 

w=0.25 

bar1 = np.arange(len(techs)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,lcoe_2015,w,label="Cost-optimal scenario",color='palegreen') 

plt.bar(bar2,lcoe_2015_8030,w,label="+30% fuel demand",color='lightgreen') 

plt.bar(bar3,lcoe_2015_8050,w,label="+50% fuel demand",color='limegreen') 

 

 

plt.ylabel("LCOE in €/MWh") 

plt.xlabel("Weather type") 

plt.title("Systemwide LCOE of technologies for different hydrogen shares 

(good weather)") 

plt.xticks(bar1+w,techs,rotation=90) 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 
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#%% lcoe electrolysers 

lcoe_electrolyser_2010 = 

1e4*model_2050_2010.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

lcoe_electrolyser_2010_8030 = 

1e4*model_2050_2010_8030.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

lcoe_electrolyser_2010_8050 = 

1e4*model_2050_2010_8050.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

 

lcoe_electrolyser_2016 = 

1e4*model_2050_2016.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

lcoe_electrolyser_2016_8030 = 

1e4*model_2050_2016_8030.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

lcoe_electrolyser_2016_8050 = 

1e4*model_2050_2016_8050.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

 

lcoe_electrolyser_2015 = 

1e4*model_2050_2015.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

lcoe_electrolyser_2015_8030 = 

1e4*model_2050_2015_8030.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

lcoe_electrolyser_2015_8050 = 

1e4*model_2050_2015_8050.results.systemwide_levelised_cost.loc[{'carriers': 

'hydrogen','techs':'electrolysis','costs':'monetary'}].to_pandas() 

 

weather_type = ["Bad weather","Normal weather","Good weather"] 

lcoe_opt = 

[lcoe_electrolyser_2010,lcoe_electrolyser_2016,lcoe_electrolyser_2015] 

lcoe_8030 = 

[lcoe_electrolyser_2010_8030,lcoe_electrolyser_2016_8030,lcoe_electrolyser_

2015_8030] 

lcoe_8050 = 

[lcoe_electrolyser_2010_8050,lcoe_electrolyser_2016_8050,lcoe_electrolyser_

2015_8050] 

w=0.25 

bar1 = np.arange(len(weather_type)) 

bar2 = [i+w for i in bar1] 

bar3 = [i+w for i in bar2] 

 

plt.bar(bar1,lcoe_opt,w,label="Optimal hydrogen 

scenario",color='palegreen') 

plt.bar(bar2,lcoe_8030,w,label="+30% fuel demand",color='lightgreen') 

plt.bar(bar3,lcoe_8050,w,label="+50% fuel demand",color='limegreen') 

 

plt.ylabel("LCOE in EUR/MWh") 

plt.xlabel("Weather type") 

plt.title("LCOE for electrolysis for different hydrogen configurations") 

plt.xticks(bar1+w,weather_type) 

plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') 
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Price stability boxplots 

 

 

 

 

 

 

bad_weather_data = pd.DataFrame({"Optimal scenario": 

10000*shadowprice_elec_nld_2010['dual-value'], 

                             "+30% fuel": 

10000*shadowprice_elec_nld_2010_8030['dual-value'], 

                             "+50% fuel": 

10000*shadowprice_elec_nld_2010_8050['dual-value'] 

                             }) 

 

 

good_weather_data = pd.DataFrame({"Optimal scenario": 

10000*shadowprice_elec_nld_2015['dual-value'], 

                             "+30% fuel": 

10000*shadowprice_elec_nld_2015_8030['dual-value'], 

                             "+50% fuel": 

10000*shadowprice_elec_nld_2015_8050['dual-value'] 

                             }) 

 

 

normal_weather_data = pd.DataFrame({"Optimal scenario": 

10000*shadowprice_elec_nld_2016['dual-value'], 

                             "+30% fuel": 

10000*shadowprice_elec_nld_2016_8030['dual-value'], 

                             "+50% fuel": 

10000*shadowprice_elec_nld_2016_8050['dual-value'],     

                             }) 

 

ax1 = bad_weather_data[['Optimal scenario','+30% fuel','+50% 

fuel']].plot(kind='box', ylabel='Shadow price in 

EUR/MWh',title='Electricity duals NLD bad weather ',showfliers=False, 

showmeans=True, figsize=(3,6),widths=0.5) 

plt.ylim(ymin=0,ymax=120) 

plt.xticks(rotation=330) 

ax2 = good_weather_data[['Optimal scenario','+30% fuel','+50% 

fuel']].plot(kind='box', title='Electricity duals NLD good weather 

',showfliers=False, showmeans=True, figsize=(3,6),widths=0.5) 

plt.ylim(ymin=0,ymax=120) 

plt.xticks(rotation=315) 

ax3 = normal_weather_data[['Optimal scenario','+30% fuel','+50% 

fuel']].plot(kind='box', title='Electricity duals NLD normal weather 

',showfliers=False, showmeans=True, figsize=(3,6),widths=0.5) 

plt.ylim(ymin=0,ymax=120) 

plt.xticks(rotation=315) 
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Time series electricity duals vs shadow price 

 

#Normal weather optimal 

wind = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'wind_offs

hore'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'wind_onsh

ore_monopoly'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'wind_onsh

ore_competing'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

hydro = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'hydro_run

_of_river'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'hydro_res

ervoir'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

pv = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'open_fiel

d_pv'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'roof_moun

ted_pv'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

nuclear = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'nuclear'}

].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

# biofuel = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'biofuel_s

upply'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

# waste = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'waste_sup

ply'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

storage = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'battery'}

].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'pumped_hy

dro'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

chp = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'chp_biofu

el_extraction'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

+ 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':'chp_wte_b

ack_pressure'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

 

tot_elec_production = wind+hydro+pv+nuclear+storage+chp 
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pal = ["skyblue", "blue", "gold", "grey","limegreen","firebrick"] 

fig,ax = plt.subplots() 

plt.title('Electricity production vs Electricity shadow prices (optimal 

hydrogen share)') 

data2 = plt.stackplot(tot_elec_production.index, 

wind,hydro,pv,nuclear,storage,chp, 

labels=['Wind','Hydro','PV','Nuclear','Storage','CHP'],colors=pal) 

ax.set_xlabel("Timestep") 

ax.set_ylabel("Electricity Production in TWh") 

 

ax2=ax.twinx() 

data3 = 

plt.plot(shadowprice_elec_nld_2016['timestep'],10000*shadowprice_elec_nld_2

016['dual-value'],label=('Shadow price'),color='black',linewidth='0.8') 

ax2.set_ylabel("Shadow price in EUR/MWh") 

ax2.set_ylim(ymin=0,ymax=100) 

 

data = data2+data3 

labs = [l.get_label() for l in data] 

ax.legend(data, labs, bbox_to_anchor=(1.12, 1.0), loc='upper left') 

ax.tick_params(axis='x', rotation=330) 

plt.show() 
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#%%Normal weather +50% fuel demand 

wind_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'wind

_offshore'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'wind

_onshore_monopoly'}].sum(['locs']).loc[{'carriers':'electricity'}].to_panda

s() + 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'wind

_onshore_competing'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pand

as() 

hydro_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'hydr

o_run_of_river'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

+ 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'hydr

o_reservoir'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

pv_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'open

_field_pv'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'roof

_mounted_pv'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

nuclear_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'nucl

ear'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

# biofuel = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'biof

uel_supply'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

# waste = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'wast

e_supply'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

storage_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'batt

ery'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() + 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'pump

ed_hydro'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pandas() 

chp_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'chp_

biofuel_extraction'}].sum(['locs']).loc[{'carriers':'electricity'}].to_pand

as() + 

model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':'chp_

wte_back_pressure'}].sum(['locs']).loc[{'carriers':'electricity'}].to_panda

s() 

 

tot_elec_production_8050 = 

wind_8050+hydro_8050+pv_8050+nuclear_8050+storage_8050+chp_8050 
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Duration curves 

 

 

 

 

pal = ["skyblue", "blue", "gold", "grey","limegreen","firebrick"] 

fig,ax = plt.subplots() 

plt.title('Electricity production vs Electricity shadow prices (+50% fuel 

demand)') 

# data1 = plt.plot(tot_elec_production.index, -

1*0.1*tot_elec_production,label='Electricity production',linestyle='--') 

data2 = 

plt.stackplot(tot_elec_production_8050.index,wind_8050,hydro_8050,pv_8050,n

uclear_8050,storage_8050,chp_8050, 

labels=['Wind','Hydro','PV','Nuclear','Storage','CHP'],colors=pal) 

ax.set_xlabel("Timestep") 

ax.set_ylabel("Electricity Production in TWh") 

# line = plt.axhline(y=5, color='red',linewidth=0.5) 

# ax.set_ylim(ymin=-1.6,ymax=-0.3) 

 

ax2=ax.twinx() 

data3 = 

plt.plot(shadowprice_elec_nld_2016_8050['timestep'],10000*shadowprice_elec_

nld_2016_8050['dual-value'],label=('Shadow 

price'),color='black',linewidth='0.8') 

ax2.set_ylabel("Shadow price in EUR/MWh") 

ax2.set_ylim(ymin=0,ymax=100) 

 

data = data2+data3 

labs = [l.get_label() for l in data] 

ax.legend(data, labs, bbox_to_anchor=(1.12, 1.0), loc='upper left') 

ax.tick_params(axis='x', rotation=330) 

# plt.legend() 

plt.show() 

#%%DURATION CURVE FUNCTION 

def deriveDurationVals(vals, valBinResol): 

    samplVals = [] 

    percExceeded = [] 

    vals = pd.Series(vals) 

    numVals = len(vals) 

    min_value = vals.min() 

    max_value = vals.max() 

 

    for val in np.arange(min_value, max_value, valBinResol): 

        samplVals.append(val) 

        binExceededPerc = len(vals[vals > val])*100/numVals 

        percExceeded.append(binExceededPerc) 

 

    return {'sampl_vals': samplVals, 'perc_exceeded': percExceeded} 
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#%% PRICE DURATION DATA 

# data samples bad weather 

optimal_scenario_2010 = 10000*shadowprice_elec_nld_2010['dual-value'] 

fuel_demand_30_2010 = 10000*shadowprice_elec_nld_2010_8030['dual-value'] 

fuel_demand_50_2010 = 10000*shadowprice_elec_nld_2010_8050['dual-value'] 

 

# data samples all weather optimal scenario 

optimal_scenario_2010 = 10000*shadowprice_elec_nld_2010['dual-value'] 

optimal_scenario_2016 = 10000*shadowprice_elec_nld_2016['dual-value'] 

optimal_scenario_2015 = 10000*shadowprice_elec_nld_2015['dual-value'] 

 

# data samples all +30% fuel demand scenarios 

fuel_demand_2010_30 = 10000*shadowprice_elec_nld_2010_8030['dual-value'] 

fuel_demand_2016_30 = 10000*shadowprice_elec_nld_2016_8030['dual-value'] 

fuel_demand_2015_30 = 10000*shadowprice_elec_nld_2015_8030['dual-value'] 

 

# data samples all +50% fuel demand scenarios 

fuel_demand_2010_50 = 10000*shadowprice_elec_nld_2010_8050['dual-value'] 

fuel_demand_2016_50 = 10000*shadowprice_elec_nld_2016_8050['dual-value'] 

fuel_demand_2015_50 = 10000*shadowprice_elec_nld_2015_8050['dual-value'] 

 

# derive duration plot values using the function  

pc_opt_scenario_2010_opt = deriveDurationVals(optimal_scenario_2010, 0.01) 

pc_opt_scenario_2010_8030 = deriveDurationVals(fuel_demand_30_2010, 0.01) 

pc_opt_scenario_2010_8050 = deriveDurationVals(fuel_demand_50_2010, 0.01) 

 

# derive duration plot values using the function +50% fuel demand 

pc_scenario_2010_8030 = deriveDurationVals(fuel_demand_2010_30, 0.01) 

pc_scenario_2016_8030 = deriveDurationVals(fuel_demand_2016_30, 0.01) 

pc_scenario_2015_8030 = deriveDurationVals(fuel_demand_2015_30, 0.01) 

 

# derive duration plot values using the function +50% fuel demand 

pc_scenario_2010_8050 = deriveDurationVals(fuel_demand_2010_50, 0.01) 

pc_scenario_2016_8050 = deriveDurationVals(fuel_demand_2016_50, 0.01) 

pc_scenario_2015_8050 = deriveDurationVals(fuel_demand_2015_50, 0.01) 

 

# derive duration plot values using the function all weather optimal 

scenario 

pc_opt_scenario_2010 = deriveDurationVals(optimal_scenario_2010, 0.01) 

pc_opt_scenario_2015 = deriveDurationVals(optimal_scenario_2016, 0.01) 

pc_opt_scenario_2016 = deriveDurationVals(optimal_scenario_2015, 0.01) 
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#%% plot the duration curve all weather 

fig, ax = plt.subplots() 

ax.plot(pc_opt_scenario_2010["perc_exceeded"], 

pc_opt_scenario_2010["sampl_vals"],label='Bad weather',color='red') 

ax.plot(pc_opt_scenario_2016["perc_exceeded"], 

pc_opt_scenario_2016["sampl_vals"],label='Normal weather',color='orange') 

ax.plot(pc_opt_scenario_2015["perc_exceeded"], 

pc_opt_scenario_2015["sampl_vals"],label='Good weather',color='limegreen') 

plt.ylim(ymin=0,ymax=120) 

plt.title("Price duration curve for different weather scenarios") 

plt.ylabel("Hourly price in EUR/MWh") 

plt.xlabel("Duration in % of time") 

plt.legend() 

plt.show() 

 

#%% plot the duration curve for 30% fuel demand 

fig, ax = plt.subplots() 

ax.plot(pc_scenario_2010_8030["perc_exceeded"], 

pc_scenario_2010_8030["sampl_vals"],label='Bad weather +30% fuel 

demand',color='red') 

ax.plot(pc_scenario_2016_8030["perc_exceeded"], 

pc_scenario_2016_8030["sampl_vals"],label='Normal weather +30% fuel 

demand',color='orange') 

ax.plot(pc_scenario_2015_8030["perc_exceeded"], 

pc_scenario_2015_8030["sampl_vals"],label='Good weather +30% fuel 

demand',color='limegreen') 

plt.ylim(ymin=0,ymax=120) 

plt.title("Price duration curve +30% fuel demand") 

plt.ylabel("Hourly price in EUR/MWh") 

plt.xlabel("Duration in % of time") 

plt.legend() 

plt.show() 

 

#%% plot the duration curve for 50% fuel demand 

fig, ax = plt.subplots() 

ax.plot(pc_scenario_2010_8050["perc_exceeded"], 

pc_scenario_2010_8050["sampl_vals"],label='Bad weather +50% fuel 

demand',color='red') 

ax.plot(pc_scenario_2016_8050["perc_exceeded"], 

pc_scenario_2016_8050["sampl_vals"],label='Normal weather +50% fuel 

demand',color='orange') 

ax.plot(pc_scenario_2015_8050["perc_exceeded"], 

pc_scenario_2015_8050["sampl_vals"],label='Good weather +50% fuel 

demand',color='limegreen') 

plt.ylim(ymin=0,ymax=120) 

plt.title("Price duration curve +50% fuel demand") 

plt.ylabel("Hourly price in EUR/MWh") 

plt.xlabel("Duration in % of time") 

plt.legend() 

plt.show() 
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#%% LOAD DURATION CURVE DATA 

demand_techs = 

['battery','demand_elec','electric_heater','electric_hob','electrolysis','h

eavy_transport_ev','hp','hydrogen_to_liquids','light_transport_ev'] 

load_duration_2010 = 

model_2050_2010.get_formatted_array('carrier_con').loc['electricity'].loc['

NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

load_duration_2015 = 

model_2050_2015.get_formatted_array('carrier_con').loc['electricity'].loc['

NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

load_duration_2016 = 

model_2050_2016.get_formatted_array('carrier_con').loc['electricity'].loc['

NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

#load duration curve data +30% fuel demand 

load_duration_2010_8030 = 

model_2050_2010_8030.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

load_duration_2015_8030 = 

model_2050_2015_8030.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

load_duration_2016_8030 = 

model_2050_2016_8030.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

#load duration curve data +50% fuel demand 

load_duration_2010_8050 = 

model_2050_2010_8050.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

load_duration_2015_8050 = 

model_2050_2015_8050.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

load_duration_2016_8050 = 

model_2050_2016_8050.get_formatted_array('carrier_con').loc['electricity'].

loc['NLD'].loc[{'techs':demand_techs}].sum(['techs']).to_pandas() 

#convert units to MW 

load_duration_2010 = load_duration_2010*-100 

load_duration_2015 = load_duration_2015*-100 

load_duration_2016 = load_duration_2016*-100 

load_duration_2010_8030 = load_duration_2010_8030*-100 

load_duration_2015_8030 = load_duration_2015_8030*-100 

load_duration_2016_8030 = load_duration_2016_8030*-100 

load_duration_2010_8050 = load_duration_2010_8050*-100 

load_duration_2015_8050 = load_duration_2015_8050*-100 

load_duration_2016_8050 = load_duration_2016_8050*-100 

# derive duration plot values using the function all weather optimal 

scenario 

pc_ld_2010 = deriveDurationVals(load_duration_2010, 0.01) 

pc_ld_2016 = deriveDurationVals(load_duration_2016, 0.01) 

pc_ld_2015 = deriveDurationVals(load_duration_2015, 0.01) 

# derive duration plot values using the function +30% fuel demand 

pc_ld_2010_8030 = deriveDurationVals(load_duration_2010_8030, 0.01) 

pc_ld_2016_8030 = deriveDurationVals(load_duration_2016_8030, 0.01) 

pc_ld_2015_8030 = deriveDurationVals(load_duration_2015_8030, 0.01) 

# derive duration plot values using the function +50% fuel demand 

pc_ld_2010_8050 = deriveDurationVals(load_duration_2010_8050, 0.01) 

pc_ld_2016_8050 = deriveDurationVals(load_duration_2015_8050, 0.01) 

pc_ld_2015_8050 = deriveDurationVals(load_duration_2015_8050, 0.01) 
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#%% plot load duration curves optimal scenario 

fig, ax = plt.subplots() 

ax.plot(pc_ld_2010["perc_exceeded"], pc_ld_2010["sampl_vals"],label='Bad 

weather',color='red') 

ax.plot(pc_ld_2016["perc_exceeded"], pc_ld_2016["sampl_vals"],label='Normal 

weather',color='orange') 

ax.plot(pc_ld_2015["perc_exceeded"], pc_ld_2015["sampl_vals"],label='Good 

weather',color='limegreen') 

plt.ylim(ymin=0,ymax=120) 

plt.title("Load duration curve for different weather scenarios") 

plt.ylabel("Demand in MW") 

plt.xlabel("Duration in % of time") 

plt.legend() 

plt.show() 

 

#%% plot load duration curves +30% fuel demand 

fig, ax = plt.subplots() 

ax.plot(pc_ld_2010_8030["perc_exceeded"], 

pc_ld_2010_8030["sampl_vals"],label='Bad weather',color='red') 

ax.plot(pc_ld_2016_8030["perc_exceeded"], 

pc_ld_2016_8030["sampl_vals"],label='Normal weather',color='orange') 

ax.plot(pc_ld_2015_8030["perc_exceeded"], 

pc_ld_2015_8030["sampl_vals"],label='Good weather',color='limegreen') 

# plt.ylim(ymin=0,ymax=120) 

plt.title("Load duration curve for (+30% fuel demand)") 

plt.ylabel("Demand in MW") 

plt.xlabel("Duration in % of time") 

plt.legend() 

plt.show() 

 

#%% plot load duration curves +50% fuel demand 

fig, ax = plt.subplots() 

ax.plot(pc_ld_2010_8050["perc_exceeded"], 

pc_ld_2010_8050["sampl_vals"],label='Bad weather',color='red') 

ax.plot(pc_ld_2016_8050["perc_exceeded"], 

pc_ld_2016_8050["sampl_vals"],label='Normal weather',color='orange') 

ax.plot(pc_ld_2015_8050["perc_exceeded"], 

pc_ld_2015_8050["sampl_vals"],label='Good weather',color='limegreen') 

# plt.ylim(ymin=0,ymax=120) 

plt.title("Load duration curve for (+50% fuel demand)") 

plt.ylabel("Demand in MW") 

plt.xlabel("Duration in % of time") 

plt.legend() 

plt.show() 
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Payback time 

 

 

 

 

 

 

 

 

 

 

 

#TOTAL ELECTRICITY SYSTEM COST IN BILLION € 

cost_2010 = 

model_2050_2010.get_formatted_array('cost_investment').loc['monetary'].loc[

{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

cost_2010_8030 = 

model_2050_2010_8030.get_formatted_array('cost_investment').loc['monetary']

.loc[{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

cost_2010_8050 = 

model_2050_2010_8050.get_formatted_array('cost_investment').loc['monetary']

.loc[{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

 

cost_2015 = 

model_2050_2015.get_formatted_array('cost_investment').loc['monetary'].loc[

{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

cost_2015_8030 = 

model_2050_2015_8030.get_formatted_array('cost_investment').loc['monetary']

.loc[{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

cost_2015_8050 = 

model_2050_2015_8050.get_formatted_array('cost_investment').loc['monetary']

.loc[{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

 

cost_2016 = 

model_2050_2016.get_formatted_array('cost_investment').loc['monetary'].loc[

{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

cost_2016_8030 = 

model_2050_2016_8030.get_formatted_array('cost_investment').loc['monetary']

.loc[{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 

cost_2016_8050 = 

model_2050_2016_8050.get_formatted_array('cost_investment').loc['monetary']

.loc[{'techs':electricity_techs}].sum(['locs']).to_pandas().sum() 
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#VARIABLE COST OF SYSTEM 

var_cost_2010 = 

model_2050_2010.get_formatted_array('cost_var').loc['monetary'].loc[{'techs

':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_2010_8030 = 

model_2050_2010_8030.get_formatted_array('cost_var').loc['monetary'].loc[{'

techs':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_2010_8050 = 

model_2050_2010_8050.get_formatted_array('cost_var').loc['monetary'].loc[{'

techs':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

 

var_cost_2015 = 

model_2050_2015.get_formatted_array('cost_var').loc['monetary'].loc[{'techs

':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_2015_8030 = 

model_2050_2015_8030.get_formatted_array('cost_var').loc['monetary'].loc[{'

techs':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_2015_8050 = 

model_2050_2015_8050.get_formatted_array('cost_var').loc['monetary'].loc[{'

techs':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

 

var_cost_2016 = 

model_2050_2016.get_formatted_array('cost_var').loc['monetary'].loc[{'techs

':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_2016_8030 = 

model_2050_2016_8030.get_formatted_array('cost_var').loc['monetary'].loc[{'

techs':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_2016_8050 = 

model_2050_2016_8050.get_formatted_array('cost_var').loc['monetary'].loc[{'

techs':electricity_techs}].sum(['locs','timesteps']).to_pandas().sum() 

 

#CONVERT BILLION EUROS TO EUROS 

cost_2010 = cost_2010*1e9 

cost_2010_8030 = cost_2010_8030*1e9 

cost_2010_8050 = cost_2010_8050*1e9 

cost_2015 = cost_2015*1e9 

cost_2015_8030 = cost_2015_8030*1e9 

cost_2015_8050 = cost_2015_8050*1e9 

cost_2016 = cost_2016*1e9 

cost_2016_8030 = cost_2016_8030*1e9 

cost_2016_8050 = cost_2016_8050*1e9 

 

var_cost_2010 = var_cost_2010*1e9 

var_cost_2010_8030 = var_cost_2010_8030*1e9 

var_cost_2010_8050 = var_cost_2010_8050*1e9 

var_cost_2015 = var_cost_2015*1e9 

var_cost_2015_8030 = var_cost_2015_8030*1e9 

var_cost_2015_8050 = var_cost_2015_8050*1e9 

var_cost_2016 = var_cost_2016*1e9 

var_cost_2016_8030 = var_cost_2016_8030*1e9 

var_cost_2016_8050 = var_cost_2016_8050*1e9 
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#REVENUE FROM ELECTRICITY 

#total electricity production in MWh 

total_elec_production_2010 = 

1e5*model_2050_2010.get_formatted_array('carrier_prod').loc[{'techs':electr

icity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps','loc

s']).to_pandas() 

total_elec_production_2010_8030 = 

1e5*model_2050_2010_8030.get_formatted_array('carrier_prod').loc[{'techs':e

lectricity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps'

,'locs']).to_pandas() 

total_elec_production_2010_8050 = 

1e5*model_2050_2010_8050.get_formatted_array('carrier_prod').loc[{'techs':e

lectricity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps'

,'locs']).to_pandas() 

 

total_elec_production_2015 = 

1e5*model_2050_2015.get_formatted_array('carrier_prod').loc[{'techs':electr

icity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps','loc

s']).to_pandas() 

total_elec_production_2015_8030 = 

1e5*model_2050_2015_8030.get_formatted_array('carrier_prod').loc[{'techs':e

lectricity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps'

,'locs']).to_pandas() 

total_elec_production_2015_8050 = 

1e5*model_2050_2015_8050.get_formatted_array('carrier_prod').loc[{'techs':e

lectricity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps'

,'locs']).to_pandas() 

 

total_elec_production_2016 = 

1e5*model_2050_2016.get_formatted_array('carrier_prod').loc[{'techs':electr

icity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps','loc

s']).to_pandas() 

total_elec_production_2016_8030 = 

1e5*model_2050_2016_8030.get_formatted_array('carrier_prod').loc[{'techs':e

lectricity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps'

,'locs']).to_pandas() 

total_elec_production_2016_8050 = 

1e5*model_2050_2016_8050.get_formatted_array('carrier_prod').loc[{'techs':e

lectricity_techs}].loc[{'carriers':'electricity'}].sum(['techs','timesteps'

,'locs']).to_pandas() 
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#average electricity prices in €/MWh 

avg_shadow_price_2010 = statistics.mean(shadowprice_elec_nld_2010['dual-

value'])*10000 

avg_shadow_price_2010_8030 = 

statistics.mean(shadowprice_elec_nld_2010_8030['dual-value'])*10000 

avg_shadow_price_2010_8050 = 

statistics.mean(shadowprice_elec_nld_2010_8050['dual-value'])*10000 

 

avg_shadow_price_2015 = statistics.mean(shadowprice_elec_nld_2015['dual-

value'])*10000 

avg_shadow_price_2015_8030 = 

statistics.mean(shadowprice_elec_nld_2015_8030['dual-value'])*10000 

avg_shadow_price_2015_8050 = 

statistics.mean(shadowprice_elec_nld_2015_8050['dual-value'])*10000 

 

avg_shadow_price_2016 = statistics.mean(shadowprice_elec_nld_2016['dual-

value'])*10000 

avg_shadow_price_2016_8030 = 

statistics.mean(shadowprice_elec_nld_2016_8030['dual-value'])*10000 

avg_shadow_price_2016_8050 = 

statistics.mean(shadowprice_elec_nld_2016_8050['dual-value'])*10000 

#revenue € 

revenue_2010 = total_elec_production_2010*avg_shadow_price_2010 

revenue_2010_8030 = 

total_elec_production_2010_8030*avg_shadow_price_2010_8030 

revenue_2010_8050 = 

total_elec_production_2010_8050*avg_shadow_price_2010_8050 

 

revenue_2015 = total_elec_production_2015*avg_shadow_price_2015 

revenue_2015_8030 = 

total_elec_production_2015_8030*avg_shadow_price_2015_8030 

revenue_2015_8050 = 

total_elec_production_2015_8050*avg_shadow_price_2015_8050 

 

revenue_2016 = total_elec_production_2016*avg_shadow_price_2016 

revenue_2016_8030 = 

total_elec_production_2016_8030*avg_shadow_price_2016_8030 

revenue_2016_8050 = 

total_elec_production_2016_8050*avg_shadow_price_2016_8050 
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#net profit in € 

net_profit_2010 = revenue_2010 - var_cost_2010 

net_profit_2010_8030 = revenue_2010_8030 - var_cost_2010_8030 

net_profit_2010_8050 = revenue_2010_8050 - var_cost_2010_8050 

 

net_profit_2015 = revenue_2015 - var_cost_2015 

net_profit_2015_8030 = revenue_2015_8030 - var_cost_2015_8030 

net_profit_2015_8050 = revenue_2015_8050 - var_cost_2015_8050 

 

net_profit_2016 = revenue_2016 - var_cost_2016 

net_profit_2016_8030 = revenue_2016_8030 - var_cost_2016_8030 

net_profit_2016_8050 = revenue_2016_8050 - var_cost_2016_8050 

 

#payback time in years 

payback_time_2010 = cost_2010/net_profit_2010 

payback_time_2010_8030 = cost_2010_8030/net_profit_2010_8030 

payback_time_2010_8050 = cost_2010_8050/net_profit_2010_8050 

 

payback_time_2015 = cost_2015/net_profit_2015 

payback_time_2015_8030 = cost_2015_8030/net_profit_2015_8030 

payback_time_2015_8050 = cost_2015_8050/net_profit_2015_8050 

 

payback_time_2016 = cost_2016/net_profit_2016 

payback_time_2016_8030 = cost_2016_8030/net_profit_2016_8030 

payback_time_2016_8050 = cost_2016_8050/net_profit_2016_8050 

 

#%% COST RECOVERY ANALYSIS ONSHORE WIND 

onshore_wind = ['wind_onshore_monopoly','wind_onshore_competing'] 

 

cost_onshore_wind_2016 = 

model_2050_2016.get_formatted_array('cost_investment').loc['monetary'].loc[

{'techs':onshore_wind}].sum(['locs']).to_pandas().sum() 

cost_onshore_wind_2016 = 1e9*cost_onshore_wind_2016 #convert billion euros 

to euros 

 

var_cost_onshore_wind_2016 = 

model_2050_2016.get_formatted_array('cost_var').loc['monetary'].loc[{'techs

':onshore_wind}].sum(['locs','timesteps']).to_pandas().sum() 

var_cost_onshore_wind_2016 = 1e9*var_cost_onshore_wind_2016 

 

elec_supplied = 

model_2050_2016.get_formatted_array('carrier_prod').loc[{'carriers':'electr

icity'}].loc[{'techs':onshore_wind}].sum(['techs','timesteps','locs']).to_p

andas() 

elec_supplied = 1e5*elec_supplied #convert to MWh 

 

avg_shadow_price_2016 = statistics.mean(shadowprice_elec_nld_2016['dual-

value'])*10000 

 

revenue = avg_shadow_price_2016*elec_supplied 

net_profit = revenue - var_cost_onshore_wind_2016 

 

payback_time = 

(cost_onshore_wind_2016+var_cost_onshore_wind_2016)/net_profit 


