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A detailed analysis of the dynamic properties of liquid lithium at three distinct thermodynamic points
has been performed by computer simulation. The reliability of the adopted potential model is supported
by a comparison with neutron- and x-ray scattering data. Several dynamical properties (both single-
particle and collective) are subsequently investigated, and their evolution with temperature compared
with the one reported in recent experiments. On the theoretical side, it is particularly interesting to
focus on single-particle features. We show that most of them (including ordinary and space-dependent
diffusion) can satisfactorily be interpreted by a simplified mode-coupling approach.

PACS number(s): 61.20.Ja, 61.25.Mv

I. INTRODUCTION

Together with rare-gas fluids, molten alkali metals
have always been considered as paradigms of the
behavior shown by the so-called “simple liquids” [1]. In
the last few years, the appearance of new accurate data
for the time-dependent properties of these systems has led
to a renewed interest and to the possibility of more
stringent tests for our understanding of the dynamics of
the liquid state. On the experimental side, neutron-
scattering experiments have, in fact, been performed in
liquid caesium [2], liquid sodium [3,4], and liquid lithium
[5,6]. As far as liquid lithium is concerned, a recent in-
vestigation by inelastic x-ray scattering is also available
[7]. A natural consequence of all this activity has been
the appearance of several simulation [8—-10] and theoreti-
cal [11-17] studies, mostly devoted to temperatures T
near the melting point T,,.

In this work, we investigate the dynamical features of
liquid lithium at three different thermodynamic points,
which correspond to those explored in the neutron-
scattering experiments quoted in [5]. As we shall see
later on (see also Refs. [5] and [18]), for liquid lithium the
extraction of the relevant pieces of information from the
experimental data is not straightforward. Consequently,
for this element both simulation and theoretical investi-
gations are expected to be extremely useful. Up to now,
only a limited number of simulation studies concerning
the dynamic properties have been published [10,15].

A preliminary examination of this liquid reveals that
above T,, =453 K, lithium can be considered as an essen-
tially classical system. On the structural point of view,
the thermal wavelength A=(2w#?/mkyT)'/? (m being
the atomic mass) turns, in fact, to be considerably less
than the average interatomic distance @ =(1/n)!/3, where
n is the number density. In particular, at T=T,,, one
finds that A/a=0.11. As far as dynamics is concerned,
the frequency range for which the liquid can be regarded
as classical can be estimated by demanding that the de-
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tailed balance factor exp(—#iw/2kpT) is ~1. At the
melting point, this criterion turns out to be satisfied up to
w=120 ps~!; the frequencies considered in the present
investigation are always considerably smaller than this
upper limit. These circumstances make the study of
liquid lithium feasible by classical computer simulation
experiments.

From a purely theoretical point of view, one can take
advantage of the progress achieved in the 1980s in the de-
velopment of nonphenomenological approaches for
liquid-state dynamics [19]. An important result in this
respect has been the recognition [20,21] of two different
kinds of processes ruling the decay of the relevant time
correlations, namely a fast decay channel determined by
“binary” collisional events, and an additional long-lasting
mechanism, associated with correlated collisions and due
to the couplings of the dynamical variable of interest with
the slow “modes” present in the fluid (the so-called
mode-coupling decay channels). A simplified version of
these theories has recently been developed, with quite sa-
tisfactory results for the leading transport properties
(diffusion and shear viscosity coefficients) as well as for
several aspects of the single-particle dynamics near the
melting point [11-14].

The paper is organized as follows. The next two sec-
tions concern a short technical review of the neutron-
scattering experiments reported in detail in Ref. [5] (Sec.
I1), as well as a discussion of the corresponding computer
simulations as implemented in the present work (Sec. III).
In addition, in Sec. III we shall compare the results ob-
tained by various techniques for the structural properties
of liquid lithium at several temperatures. Section IV is
devoted to the collective dynamics of the system, and to a
comparison between the neutron-scattering data and our
simulation findings. Single-particle dynamical properties
(in particular, the velocity autocorrelation function and
the self-intermediate scattering function) are discussed in
Sec. V in terms of a memory function framework. Final-
ly, Sec. VI summarizes the main results of the work,
along with a few concluding remarks.
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II. NEUTRON-SCATTERING MEASUREMENTS

Microscopic dynamic processes (ranging, e.g., from
mass diffusion to short-wavelength sound propagation)
occur in liquid lithium over rather different time scales.
In a study of these features by neutron-scattering experi-
ments, it is necessary to vary considerably the incident
neutron energy in view of the limited relative resolution
in energy. The experimental data discussed in this paper
were consequently obtained by two distinct sets of experi-
ments with different energy resolutions. Specifically, two
time-of-flight spectrometers have been used: RKS at the
2 MW reactor in Delft, and MARI at the neutron spalla-
tion source ISIS in England. The incident neutron wave-
length in the RKS experiment was 2.00 A (corresponding
to an energy of 20.5 meV), with an energy resolution of
1.4-1.6 meV (or 2.0-2.4 ps ! in terms of frequency). On
MARI, we used 0.39-A neutrons (incident energy 525
meV), with a resolution of 15 meV (23 ps™ b,

Since natural lithium contains ®Li, which is a strong
neutron absorber, in both experiments the samples con-
sisted of highly enriched Li. Neutron scattering from
this isotope may be coherent as well as incoherent, with a
nearly equal probability (see Sec. IV). As a result, the
measured time-of-flight spectra are proportional to a
weighted sum of the dynamic structure factor S(k,w)
and of its self-part S;(k,w).

For values of the wave vector k smaller than the posi-
tion k, of the main peak of the static structure factor
S (k), the shapes of the two dynamic structure factors as
a function of w (and, in particular, the spectral widths)
differ considerably. In this k region, the RKS data with
20.5-meV neutrons mainly provides information on the
relatively narrow self-spectrum S;(k,w). On the other
hand, due to the high sound velocity in liquid lithium
(=~4500 m/s near T, ), information on collective phe-
nomena can only be provided by the MARI experiment,
which uses incident neutrons of relatively high energy
(525 meV). The separation of the two contributions is
made easier by the large qualitative differences between
S(k,w) and S;(k,») [5].

TABLE 1. The states of liquid lithium investigated in our
simulations (the number densities n and the temperatures T are
the same as those of the neutron-scattering experiments of Ref.
[5]). The corresponding parameters € and o of the PST effective
potential v (r) [21] are also reported [e is the depth of the main
potential well and o the position of the first zero of v (r)]. The
quantity 7,=(mo?/g)!’/? establishes a basic time unit for the dy-
namics.

T (K) 470 526 574
Parameter
n (A9 0.0445 0.0441 0.0438
o (A) 2.6839 2.6837 2.6835
e (K) 581.63 584.54 586.76
7 (ps) 0.3215 0.3225 0.3218
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The situation changes as the wave vector k approaches
k,,. Here the presence of “de Gennes narrowing” [22]
makes the width of S(k,») comparable with the one of
S,(k,»); as a consequence, the resolution of the MARI
experiment becomes insufficient, and the relevant infor-
mation can only be provided by the RKS data.

Whereas the RKS experiment was performed at the
three thermodynamic states reported in Table I, the
MARI data concern only the state at T=470 K (namely,
the one closest to the melting point). We refer the reader
to [5] for a full detail of the two experiments.

III. MOLECULAR DYNAMICS SIMULATIONS
AND THE STRUCTURAL PROPERTIES

The molecular dynamics (MD) simulations have been
performed within the usual microcanonical ensemble, at
three state points which closely correspond to those of
the neutron experiments (see Table I). More specifically,
after an equilibration time of 80—-100 ps the equations of
motion of N =250 “lithium” particles, enclosed in a cu-
bic box with periodic boundary conditions, have been in-
tegrated up to 240 ps by a Verlet algorithm with a time
step 8¢ =2 fs. To make a closer contact with the experi-
ment, we have considered particles of mass
m=11.65X10"2* g, corresponding to that of the isotope

v7Li. A rough measure of the overall accuracy of the in-

tegration is provided by the variations of the total energy,
which are of the order of 45 parts in 10*.

The adopted interionic potential v (7) is the well known
effective potential implemented by Price, Singwi, and
Tosi (PST) [23] to reproduce at an atomic level the main
features of alkali metals in the solid phase. The PST po-
tential has successfully been used to account for the basic
structural and dynamical properties of liquid Na, K, Rb,
and Cs [14,17,24,25]. In particular, Balucani, Torcini,
and Vallauri [14] have shown that the PST potentials for
Na, K, Rb, and Cs at their respective melting points
nearly coincide when plotted in terms of the length o [the
position of the first zero of v ()] and of the energy € [the
value of the main minimum of v (r)]. In this case, the re-
duced density n* =no3 is about the same for all these al-
kalis (n*=0.895), and their reduced temperatures
T*=kyT /¢ lie in the interval 0.78-0.84. As a result, a
common behavior is expected (and indeed observed [14])
even for the static and dynamic correlation functions.
Liquid lithium at 7=470 K (in proximity of its melting
point) has also a T*=0.80 in the above range; however,
its reduced density n*=0.860 differs by 4% from those
of the other alkalis. Although the reduced PST potential
v(r)/e still nearly coincides with those pertinent to the
other alkalis (see Fig. 1), the small difference in the re-
duced density has the effect of leading to a worse scaling
behavior of the measured static and dynamical properties
when compared with the other elements. This reflects
the fact that for a simple liquid near the melting point,
the role of density is more important than that of temper-
ature. Figure 1 illustrates the PST potential for Li at 470
K; the reduced potentials at the other two state points of
interest do not differ appreciably from the one reported in
this figure.



3128

1.0

—1.0 A

-1.5

T T

0 1 2 3 4

\ r/o
FIG. 1. The PST potential for liquid lithium at T=470 K
and n=0.0445 A 3 (full line). R, denotes the cutoff radius
adopted in our simulations. For the sake of comparison, the
PST potential appropriate to liquid caesium at 380 K is also re-
ported (dashed line).

The static structure factors S (k) as deduced from neu-
tron and x-ray diffraction at the three considered temper-
atures are compared in Fig. 2 with those obtained in our
simulations. Despite a good overall agreement among
these data, some discrepancies are apparent. These are
partly due to the fact that in lithium both the neutron
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TABLE II. The small wave vector limit of the static struc-
ture factor S(k), as obtained from our MD data and from the
compressibility data of Ref. [26].

T (K) 470 526 574
Static
structure factor
Swmp(0) 0.029 0.035 0.039
Sexpr(0) 0.027 0.033 0.037

and x-ray data are affected by uncertainties larger than
those in the other alkali metals [18]. Also, it is well
known that the two experimental techniques may give
slightly different results, particularly at small k. A closer
look at these differences reveals the situation illustrated
in Fig. 3, which refers to T=470 K and k <1.6 A "L, It
is apparent that while the simulation results compare
rather well with the x-ray data reported in Ref. [18], the
comparison with the neutron results is less favorable.
Note that the MD results of S (k) as k —0 have been ob-
tained by extrapolating the values of S (k) at finite wave
vectors in terms of a quadratic law. The values of S(0)
deduced in this way are found to be in good agreement
with those calculated from the isothermal compressibility
data reported in [26]: in particular, they reproduce the
increase of S(0) observed at the higher temperatures (see
Table II).

3
S(k) T = 470 K T = 526 K
34 : S(k)
2
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N
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FIG. 2. Static structure factors for liquid Li at the three state points reported in Table I. The solid line refers to our molecular dy-
namics (MD) results, while the asterisks and the lozenges denote the diffraction data obtained by neutrons and by x rays, respectively

(both taken from Ref. [19]).
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FIG. 3. Small k behavior of S(k), as obtained by our MD
data (circles), by neutron diffraction (asterisks), and by x-ray
diffraction (lozenges).

IV. COLLECTIVE DYNAMICS

As already mentioned, the dynamical properties of
liquid lithium have recently been investigated by inelastic
neutron scattering (INS) at the three temperatures
T =470, 526, and 574 K [5] and by inelastic x-ray scatter-
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ing (IXS) at T=533 K [7]. Since IXS is purely coherent,
the x-ray data probe only properties associated with the
collective dynamics of the system, namely those described
by the dynamic structure factor S (k,w). In contrast, by
INS one is able (at least in principle) to obtain informa-
tion on both the self and the collective motions of the
particles. However, in the specific case of interest the
mixed-scatterer nature of lithium poses difficult problems
for the extraction of the self and the collective contribu-
tions to the total dynamic structure factor
1

———[0,S,(k,0)+ 0, S(k,w)] (1)

Swlko)=—

as obtained from the experiment. In Eq. (1) o, and o,
denote, respectively, the incoherent and coherent scatter-
ing cross sections, which turn out to be remarkably simi-
lar in 'Li (0;=0.68 and 0,=0.62 b). Hence, if from
S.ot(k,w) one wishes to deduce separate data for S;(k,w)
and S(k,®) it is, in general, necessary to resort to some
phenomenological model, suitably adapted in such a way
to fit the experimental data [5]. In this situation, proper-
ly designed MD simulations are extremely useful because
they allow a direct insight into quantities not easily ac-
cessible by experiment.

From the above, it is clear that a direct comparison of
the MD results with INS data can be made only at the
level of S, (k,®). Such a comparison at selected wave
vectors is reported in Figs. 4 and 5 for the three con-
sidered temperatures. The overall agreement is seen to be

0.10
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0.05 - k = 1.8 87!
000 5 N
w (ps™)
0.15
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FIG. 4. Temperature dependence of the total dynamic structure factor of liquid Li at several wave vectors. Full line, our MD

findings: circles, neutron-scattering results [2].
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FIG. 5. As in the previous figure.

quite satisfactory, except for the amplitudes of the quasi-
elastic peak at w=0. These discrepancies are not con-
nected to the choice of the PST potential: Similar MD
results for lithium at 470 K have recently been obtained
by adopting a different v (#) [10]. Even so, the possibility
of some inadequacy of the potentials proposed up to now
to simulate liquid lithium [15,23] cannot be ruled out a
priori. A detailed analysis [15] of several pseudopoten-
tials (both local and nonlocal) introduced to account for
the interaction among the ions shows that the “empty-
core” model [27] is the one which, despite its simplicity,
better reproduces the thermodynamic and structural
properties of liquid lithium in a wide range of tempera-
tures. The empty-core model is explicitly adopted in the
implementation of the PST potential; the only other mod-
el “competitive” with the empty-core one turns out to be
the potential adopted in Refs. [10,15]. In any case, it
must be reminded that an accurate determination of the
spectral features near w =0 either by INS or by MD tech-
niques is not a trivial task; thus, the actual importance of
the discrepancies should not be overvalued.

As is well known, the relevant information over the
collective dynamics of density fluctuations over different
length scales is provided by the intermediate scattering
function F(k,t) evaluated at different wave vectors. At
all the three temperatures of interest, the quantity F(k,t)
as obtained in our simulations is found to exhibit an oscil-
latory behavior, which persists for all wave vectors
k<ky~1.8 A ~!. These oscillations give rise to a well
defined inelastic peak in S(k,w) up to ky=0.75 k,,,
where k,, denotes the position of the main peak of S (k).

This feature appears to be common to all the alkali met-
als in proximity of their respective melting points [14].

The MD results for the peak frequency w,,,.(k) are re-
ported in Fig. 6, which refers to two different tempera-
tures. Specifically, in Fig. 6(a) the simulation findings at
470 K are compared with the corresponding INS data,
while in Fig. 6(b) the MD results at 526 K are compared
with the IXS data by Burkel [7] at T=533 K. Consider-
ing the difficulty to extract the relevant information from
the INS experiment, and the still moderate accuracy of
the IXS techniques, the overall agreement can be con-
sidered as satisfactory. In particular, the INS data re-
ported in Fig. 6(a) have been deduced from the high-
energy, low-resolution MARI experiment, assuming that
Siot(k,®) can be written as a sum of three Lorentzians
[representing the inelastic and quasielastic collective
features embodied in S (k,®)], plus a Gaussian [which ac-
counts for the resolution-broadened peak of the self-
contribution S;(k,w)].

A common feature in the dispersion relation of all
liquid alkali metals at small wave vectors is the observa-
tion of an increase of the slope of (k) with respect to
the one implied by the hydrodynamic sound velocity
[2,9,14,24]. In our MD data, this “positive dispersion”
has been detected at all the three state points investigat-
ed, which a maximum increase of the effective sound ve-
locity @peak(k)/k with respect to the hydrodynamic
value, which ranges from 20 to 22%, depending on the
considered temperature. The effect (known to be due to
“shear relaxation” processes [28]) can be quantitatively
accounted for by a viscoelastic theory [29], as verified in
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the other molten alkali metals [9,15,30], in dense
Lennard-Jones fluids [28] and in liquid water [30]. In the
alkali metals, the same viscoelastic model is also found to
account for the main features of the entire dispersion re-
lation [30].

V. SINGLE-PARTICLE DYNAMICS

The above-mentioned success of a simple viscoelastic
approach in reproducing the spectral features of S (k,w)
reflects the strong influence of structural effects on collec-
tive dynamics. In fact, the basic structural information is
embodied in the second and fourth frequency moments,
and these two quantities are correctly incorporated into
the theoretical framework. Moreover, a typical assump-
tion of all viscoelastic models is the characterization of
the relaxation processes by a single microscopic decay

80
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FIG. 6. Dispersion relation of the peak frequencies of S (k,w)
of liquid Li at the temperatures T=470 K (a) and T=526 K (b).
Circles, our MD results: asterisks, neutron data at 470 K [5]:
lozenges, IXS data at T=533 K [7].
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time, which usually turns out to be very short [29,30]. As
a consequence, even if long-lasting phenomena of the
form discussed later on in this section may have some
relevance on the low-frequency portion of S(k,w), in
practice the main features of the spectra (such as the po-
sition of the inelastic peaks, the occurrence of de Gennes
narrowing, etc.) are in fact ruled by the leading structural
(or mean-field) effects.

In contrast, the relevance of slowly decaying relaxation
channels appears to be much more marked in other cases
where structural effects have an indirect (or negligible)
weight. The Green-Kubo integrands for the transport
coefficients, and the single-particle time correlation func-
tions are typical examples of these quantities. To cope
with such a situation, a theory more refined than one
based on a single relaxation-time assumption is clearly
needed.

In this work we shall limit our analysis of these more
complicated cases to the normalized velocity autocorrela-
tion function (VACF) ¥(z) and to the self-intermediate
scattering function F (k,t), along with the corresponding
frequency spectrum S (k,w). In particular, we shall
focus our attention on two quantities.

(i) The VACF memory function K(?), defined through
the equation

V(2)=[z+K((=)]7!, )

where ¥(z) and K(z) are the Laplace transforms of the
corresponding time correlations, and z=iw+0" is a
complex variable.

(ii) The second-order memory function M (k,t) of
F,(k,t), which satisfies the equation

(kT /m)k? |~

F(k,z)= —
s(kz) 2+ M, (k,2)

z+ (3)

As is well known, in the hydrodynamic limit k£ —0 the
memory function M,(k,t) coincides with K (¢). Another
important relation connects K (z) with the diffusion
coefficient

D=t T/m) [ [Zatk )] @

In dense fluids, the importance of dealing with memory
functions is nowadays connected with the development in
the last decade of several nonphenomenological ap-
proaches, which are explicitly phrased in terms of these
dynamical quantities [19-21]. The basic result of these
theories is that a general memory function M(¢) can be
split into two contributions having a different physical
origin

Mt)=MP(t)+ MR z) . 5

Here the first term (which is the dominant one at short
times) stems from “binary collisions.” In view of the fast
character of these events, M ‘®(t) decays rapidly to zero,
and beyond a certain time the full memory function is en-
tirely determined by the other contribution M ‘®)(z).
Broadly speaking, the origin of this second term is due to
long-lasting correlation effects among the collisions.
Since these “recollision” effects require a finite time to
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develop, initially M‘®)(¢) is almost negligible. However,
at intermediate and long times the slowly decaying char-
acter of this term takes over, and gives rise to a “tail” of
M (t). The specific form of these slow contributions de-
pends on the particular problem under consideration, but
in principle can be determined by relatively simple
“mode-coupling” concepts [20,31]. Even so, the practical
use of this formalism is far from being straightforward;
for instance, a rigorous application of the theoretical
framework of Refs. [20,21] requires the self-consistent
determination of several time correlation functions in an
extended range of wave vectors, followed by rather heavy
numerical calculations. In many cases of physical in-
terest, it is fortunately possible to make a number of ap-
proximations which, besides simplifying considerably the
problem, permit a better appreciation of the fundamental
processes underlying the phenomenon [11-14]. The MD
data provide an important benchmark for the validity of
the overall approach, particularly in those cases (such as
the VACF) where the relevant information is not easily
provided by real experiments.

A. The velocity autocorrelation function

Let us firstly consider the VACF memory function
K (t). As shown in [11], a reasonable approximation for
the binary term K ‘() can be obtained by noticing that
its decay is fast enough to be characterized by a single
time constant 7, =[2K (0)/|K(0)|1'/%. (Here the dots in-
dicate time derivatives.) Near the melting point, a suit-
able functional form for this decay turns out to be [11]

K®(t)=Q3sech(t /15) , (6

where €, is the so-called Einstein frequency, and the
quantity K‘®(0)=0Q3 coincides with the initial value
K (0) of the full memory function. As shown in [11],
both Q2 and 75 can be expressed in terms of integrals in-
volving the pair potential v (#) and the pair distribution
function g (r) [or the static structure factor S (k)].

The simple approximation K (¢)~K ‘®(z) is found to be
too naive to account for the overall time dependence of
the full memory function. In fact, in addition to a fast in-
itial decay, K (t) exhibits a long-lasting tail, which cannot
be reproduced by Eq. (6). According to the theory, the
tail should stem from a nonlinear coupling of the velocity
of the particle with the slow dynamical variables of the
fluid. In the case of a liquid near the melting point, the
density is high enough that the relevant slow dynamical
events at intermediate and long times are those associated
with the sluggishness of the structural relaxation process-
es. As a consequence, the most important decay channels
involve the density fluctuations (both collective and single
particle). The contribution of these “density modes” to
the recollision term can be written as [20]

kpT (o S(g)—1]
K(R) t)= B d 4[ q
) 6m*nm fO A S(q)
_ F(q,t)
X[Fs(Q?t) FO(q’t)] S(q) ’ (7)

where F,(q,t)=exp[ —(kzT/2m)k%t?] is the free-
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particle limit of the intermediate scattering functions F
and F,. Because K ‘®(¢) should account for the long-
lasting tail of the memory function, an important contri-
bution to the integral (7) comes from the density fluctua-
tions with g =k,,, which are characterized by a marked
de Gennes slowing down. Pursuing this argument, one
arrives at the following simplified expression [11]:

F(k,,,t)
S(k,,) ’

(®)

where A4 is a purely structural quantity given by the area
under the main peak of [S(q)—1]. In practice, to evalu-
ate K ‘®(¢) we need suitable approximations for the quan-
tities F;, and F. For this purpose, the self-intermediate
scattering function can be expressed by the so-called
“Gaussian approximation” [28]

KR~ AKLF,(kyy,t)— Folkyp,t)]

77'2nm

F,(k,t)~exp[ —(1/6)k8r¥1)], 9)

where 8r%(t) is the mean square displacement of a parti-
cle in the liquid. Equation (9) is exact both for small and
large wave vectors, and is found to work rather well even
for k =k, [17]. As far as F is concerned, we may adopt a
simplified viscoelastic model [11-14]. This approxima-
tion has the merit that all the involved parameters can be
evaluated in terms of structural quantities, and turns out
to give good results for wave vectors k =~k,, [30].

Summing up, from Egs. (6) and (8) we may evaluate the
full memory function K (£)=K®(z)+K®(s), with
structural quantities and the mean square displacement
8r(t) as the only input information. The situation is
even better for the diffusion coefficient D, which can be
calculated from Eq. (4) by means of a self-consistent ap-
proach [11], which does not require the detailed
knowledge of 87%(¢). The results obtained in such a way
for D are remarkably good for many typical simple
liquids. More recently, Gonzalez et al. [15] have im-
proved this self-consistent scheme, with the final result of
obtaining at the same time K (), ¥(¢), and 6r%(¢) (and
obviously D). A common feature of these approaches is
the assumption that the leading decay channels for the
tail of K (¢) are those involving the de Gennes density
modes with wave vectors =k,,. This simplification leads
to results that improve considerably those of a purely
binary theory with K (¢)=K ‘®(t); in particular, the de-
cay rate of the long-lasting tail is now correctly repro-
duced.

A more stringent test, however, shows that the previ-
ous representation is much too simplified to account for
all the details of the time dependence of the tail of K (¢).
This is particularly true at intermediate times, where the
actual memory function shows bumps and wiggles, which
are not reproduced by the simple approximation (8) (cf.,
Fig. 8 in the following). To ascertain which wave vectors
are really relevant in the integral in Eq. (7), we analyze
the “vertex” W(q)=q*[S(q)—1]*>/S(q). As is apparent
from Fig. 7, W(q) exhibits several peaks, with zeros at
the points where S (g)=1. Since for increasing wave vec-
tors F,—F,, the dominant contribution to K ‘®)(¢) comes
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FIG. 7. The vertex W (q) as evaluated in liquid lithium at 470
K.

in practice only from the first two peaks, located at
k,~1.60 A ! and at k,~k,,. Hence, for an accurate
evaluation of K ‘®(¢) in addition to the de Gennes modes
we need to include a second density mode with g =k ;. In
this wave-vector range the intermediate scattering func-
tion F(gq,t) still exhibits an oscillatory behavior (cf., Sec.
1V), which eventually gives rise to a “modulation effect”
in the tail of K (#).

Including the density modes at the wave vectors k, k,
as the only relevant decay channels, the expression of
K ‘®)(¢) can be written as

TABLE III. Comparison among the results obtained for the
diffusion coefficient (in units 107> cm?/s) in liquid Li at the
three state points considered in the present investigation. The
theoretical values D have been deduced by integrating the
memory function (4) within the approximations (8) and (10) for
K®(¢) (the results are denoted by 1 ch and 2 ch, respectively).
The entries Dy are the values found in our simulations. The
experimental data D.,, refer either to direct measurements with
a tracer technique® or to k—0 extrapolations of the neutron
data obtained by two different INS experiments.™®

T (K) 470 526 574
Diffusion
coefficient
D (1 ch) 6.82 8.34 9.66
D (2 ch) 7.21 8.99 10.52
Dyp 7.3+0.1 9.8+0.1 12.34+0.1
Dy 6.7+0.6* 9.3+0.7% 11.6+0.9*
6.4+0.4° 9.0+0.6° 10.8+0.3°
6.910.9°¢ 9.5+1.2¢ 11.9+1.4°

2See Ref. [33].
*See Ref. [5].
°See Ref. [6].
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kpyT 2 F(k;,t)
KR ()= —2— S W,[F,(k;,t)—Fy(k;,t)]—2—
617'2nm i§1 1[ s i 0( i )] S(k,) ’
(10)

where W, denotes the area under the ith peak of W(q).
This second approximation scheme improves the agree-
ment with the MD data of K (¢) at intermediate times
(Fig. 8); in particular, at T=470 K the theoretical
memory function is found to nearly coincide at all times
with the simulation results. The quality of the agreement
instead is not so excellent at T =574 K, where in the time
interval between 0.06 and 0.10 ps the theoretical results
slightly overestimate the MD data. However, even in
this case the wiggles and the tail of the memory function
are well reproduced, indicating that the ‘“mode-coupling”
portion of K (¢) is indeed ruled by the density modes with
wave vectors k; and k,. As a consequence, the residual
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FIG. 8. The VACF memory function K () at T =470 K (a)
and 574 (b). The circles denote the simulation findings. The
theoretical results obtained by taking for the recollision term
the form (8) (dashed line) or (10) (full line) are also reported.
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discrepancies at 574 K are likely to be due to our limited
knowledge of the collisional part K ‘®(z); in other words,
although acceptable near the melting point, the ansatz (6)
is likely to be oversimplified at increasing temperatures.

The diffusion coefficients predicted by the different ap-
proaches are compared in Table III with the actual
values of D at the three different state points.
Specifically, the MD values of D have been deduced from
the slope of 8r%(t), while the theoretical predictions fol-
low from Eq. (4) by inserting for K ‘®(¢) either one of the
approximations (8) and (10). It appears from Table III
that the results of the improved scheme (10) compare
rather well with the experimental and the MD values of
D at the three temperatures. As it might be expected, the
agreement is particularly good at 470 K; the larger
discrepancies at 526 and 574 K are a clear consequence of
the above-mentioned defects of the ‘“binary” memory
functions.

B. The self-spectrum at finite wave vectors

Let us finally consider the self-intermediate scattering
function F,(k,t). At all wave vectors, the corresponding
spectrum S, (k,w) is characterized by a monotonic decay
from a peak value at w=0. Hence the k-dependent
features of S;(k,w) can conveniently be summarized by
considering the peak value S;(k,»=0) and the half-width
at half maximum o, (k). It is customary to refer these
quantities to the ones predicted by a diffusive model
[namely (mDk?)”! and Dk?, respectively] by introducing
the dimensionless quantities X(k)=wDk?S,(k,0) and
A(k)=w, ,(k)/Dk®. An alternative description makes
use of the quantity ; ,(k)/k?, which can be interpreted
as an effective k-dependent diffusion coefficient D (k).
Starting from the situation at k=0, where the diffusive
model is exact and =(0)=A(0)=1, we wish to investigate
the wave-vector evolution of these quantities at the three
temperatures of interest. In this paper, we shall limit our
analysis to a limited range of ‘“small” wave vectors
(0<k <3.0 A™Y), which is particularly interesting from
the theoretical point of view. A more extended descrip-
tion (which includes the k interval where one probes the
details of collision processes) can be found in Ref. [32].

Our MD data for the quantity D (k)=A(k)D at the
three state points are reported in Fig. 9(a). It appears
that in all cases the diffusive limit is approached from
below; moreover, D (k) is found to exhibit a minimum at
k=k,. Since the size of the nearest neighbor shell is
=~(2w/k,, ), the presence of the minimum can be traced
back to structural features (and, in particular, to the so-
called ‘“cage effect,” which hinders somewhat the
diffusive motion of the tagged particle). A similar trend
is observed even in the simulation data at the high tem-
peratures, and confirmed by the neutron findings of Ref.
[5] [see Fig. 9(b) for the normalized half-width A(k)].
These results in liquid lithium are fully consistent with
the experimental data reported for another alkali metal,
namely liquid sodium, in an extended range of tempera-
tures [3,4].

In contrast, the MD data for 2(k) turn out to be more
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sensitive to changes in temperature. As illustrated in Fig.
10, the data show in fact a sort of “transition” in the tem-
perature range from 526 to 574 K: while at 470 and 526
K =(k) is a decreasing function of k, at 574 K this quan-
tity is seen to increase with respect to its limiting value
3(0)=1. Although this different behavior was not ob-
served in the first measurements [3] in liquid Na [the re-
sults showed always an increasing =(k), even near T,,],
new more accurate data in the same liquid have detected
a crossover analogous to the one in liquid Li [4]. By it-
self, the increase of (k) at the higher temperature may
be attributed to a more pronounced relevance of the
kinetic degrees of freedom (a free-particle model would
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FIG. 9. (a) Wave-vector dependence of the MD data for the
generalized diffusion coefficient D (k). The data refer to T=470
(circles), 526 (lozenges), and 574 K (asterisks). (b) Comparison
of the normalized half-widths A(k) at T=470, 526, and 574 K
as found in the simulations (black squares) with those measured
in the neutron experiments of Ref. [5] (open triangles).
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FIG. 10. Wave-vector dependence of the MD data for the
normalized peak value =(k).

indeed predict that =(k) < k). As the other alkali metals,
lithium has a liquid phase that spans a rather wide tem-
perature interval, ranging from a melting point at 453 K
to a boiling point at 1620 K. Our MD data in liquid lithi-
um seem to indicate that a rather modest temperature in-
crease is sufficient to trigger the different behavior of
3(k). Even if this circumstance is probably true even in

1.0

Ss(k,) (ps)
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the other alkalis, a direct experimental evidence is still
lacking. (The recent neutron measurements in liquid Na
mentioned above [4] are limited to two state points,
which are widely separated in temperature, T=380 K
~1.02 T,, and T=900 K.)

It is interesting to see whether all these pieces of “ex-
perimental” information can be interpreted in terms of a
memory function framework analogous to the one dis-
cussed in the previous section for the VACF. For this
purpose, the appropriate theoretical quantity is the
second-order memory function M, (k,t) introduced in Eq.
(3). Since M (k —0,t)— K (t), the approach is equivalent
to a generalization of the previous framework at finite
wave vectors. Even in the present case, the memory
function can be split into a sum of “binary” and “recol-
lision” terms namely, M,(k,t)=MB(k,t) +MR(k,¢).
Following Eq. (6), the binary contribution can be written
as [14]

MS(B)(k,t):[z(kBT/m )k2+Q%]SCCh2[t/TB(k)] ) (11)

where we have tentatively adopted the same sech®x shape
function used in the VACF case. In Eq. (11), the time
7g(k) follows from [14]

S S
[75(K)]?
202/7%+3(kg T /m)k?*[2(ky T /m)k*+303]
4k T/m)k*+207 ’
(12)
0.2 1 SS(k’C‘)) (pS)

0.04 1

0.02 A

0.00 5 0

30

_,20
© (ps™)

FIG. 11. The self-spectra S;(k,®) in liquid Li at 470 K. The circles denote our MD findings, the solid lines the corresponding
theoretical predictions [obtained from Eq. (3) by adopting the approximation (14) for the memory function].
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FIG. 12. As in the previous figure, but at a temperature 7=

Clearly, 75(k—0)=75. Equations (11) and (12) have the
merit of describing at any k the correct decay of M (k,¢)
at sufficiently short times. However, the MD data ob-
‘tained in the other alkali metals [14,18,32] indicate that
for k <2k, the full memory function exhibits a tail,
which cannot be accounted for only by M, S(B (k,t). Conse-
quently, even in this case we need to include a recollision
term M®)(k,t); considering as before only the contribu-
tion of density modes, this additional contribution can be
written as [21]

2
M® (k)= 2[S(q)_1]
(k,t)= f q(g, )
X[F,(lk—ql,1)
_ _ F(g,t)
Fo(lk—ql,1)] S0 (13)

where the external wave vector k has been chosen along
the z axis. Since the vertex appearing in (13) is similar to
the one in Eq. (7), we may proceed to an approximate
evaluation of M{®)(k,t) pursuing the same arguments
adopted in the case of the VACF memory function.
Specifically, in Eq. (13) we neglect all the density modes
except those corresponding to g=k,; and qg~=k,. Per-
forming the angular integrations, the simplified expres-
sion of the recollision term turns out to be

20
w (ps™)

10
574 K.
MPB(k,t)~ kel o W,[B(k;,t)—By(k; t)]F(k”t)
s > ~ 2 ,-21 i i 0\ Vi S(k )
(14)
Here
Blk,t)=exp[ —L(k*+k2)8r%(1)]
1 2 .
+
ek T oD sinh[e (k,1)]
_ coshz[e(k,t)]l (15)
e’(k,t)
with
e(k,t)=§-kk,~8r2(t) . (16)

In Eq. (14), the quantity By(k,t) is defined by expressions
similar to Egs. (15) and (16), in which 872(¢) has been re-
placed by its free-particle counterpart
8r3(t)=3(kz T /m)t?. The details of the approximation
(14) and the comparison with a single decay channel
scheme are reported elsewhere [17,32].

Starting from the memory function M,(k,t)
=MPB(k,t)+M®P(k,t), it is now possible to exploit Eq.
(3) and evaluate the self-spectrum S;(k,0)=(1/7)

1/5 (k,z=iw+0%). Figures 11 and 12 report at two
temperatures the comparison of these theoretical results
with the MD spectra. While the agreement is seen to be



quite good at 470 K, some deviations are apparent at 574
K in the low-frequency region. A consequence of these
discrepancies is that in its present formulation the theory
cannot account for the aforementioned increase of 2(k)
with the wave vector as observed in the small k region at
574 K. The agreement is instead much better near the
melting point, as illustrated by Fig. 13, which reports the
theoretical predictions for 2(k) and A(k) at 470 K along
with our MD data and the available neutron-scattering
results [5].

The discrepancies apparent at 574 K parallel the ones
noted previously at the same temperature for the VACF
memory function. As in that case, they are likely to be
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FIG. 13. The quantities A(k) and =(k) in liquid Li at 470 K.
The circles are our MD findings. The full lines denote the
theoretical results [with the recollision term obtained by Eq.
(14)]. The asterisks are the neutron-scattering results [5].
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due to the oversimplified form assumed for the binary
contribution M!B(k,t). Although Eq. (11) gives quite
reasonable results near the melting point, its simple form
appears to be inadequate at increasing temperatures. In
principle, another possible source of discrepancy could be
the onset of additional decay channels, different from
those associated with the density modes. For instance,
transverse current modes (the ones responsible for the
formation of local vortex patterns) are certainly expected
to become more important at increasing temperatures.
The results obtained in the VACF case seem, however, to
indicate that at the relatively low temperature of 574 K
the relevance of these current modes is still rather small.

VI. CONCLUDING REMARKS

In the present paper we have investigated by computer
simulation several structural and dynamical properties of
liquid lithium at three different temperatures. The results
have been compared with the data recently obtained by
inelastic scattering of neutrons (and even of x-rays as far
as collective motions are concerned). The overall quality
of the agreement is good, supporting the idea that even in
lithium we may adopt the same type of effective potential
successfully tested in the heavier alkali metals. On the
theoretical side, we have shown that a simplified mode-
coupling approach is able to reproduce rather well
several features of single-particle motion, including both
the ordinary and the k-dependent diffusion coefficient.
The agreement between the theoretical predictions and
the data is particularly striking near the melting point,
where the framework accounts for all the detailed
features of the relevant memory functions. Some devia-
tions become instead apparent at the highest temperature
investigated. We are inclined to believe that the main
source of these discrepancies lies in the simple form as-
sumed for the binary memory function, which undoubt-
edly exhibits some flaws at increasing temperatures. Al-
ternative, or additional, explanations (such as an in-
creased role of the decay channels associated with the
currents) are more unlikely, even if in principle they can-
not be excluded. Work is in progress to fully clarify this
point.
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