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A B S T R A C T

A dataset of sub-daily C-band data, acquired with a ground-based synthetic aperture radar, has been used
to study soil and vegetation dynamics during a complete growing season in a controlled agricultural test
site. The data have been exploited to analyse the rate and sources of decorrelation in the scene, as well as the
consequences of the observation conditions of a sub-daily satellite (with either low, medium or geosynchronous
orbit): short revisit times, availability of multiple acquisitions during a single day, and shallow observations
at some incidence angles. Repeat-pass coherence is found to be less affected by temporal decorrelation when
the primary image is acquired during nighttime or the last hours predawn. Regarding the incidence angle,
VV has increased sensitivity to certain phenological stages as the incidence angle increases. Additionally,
a periodic oscillation on a sub-daily scale is observed when creating coherence time series with increasing
temporal baseline. Factors which strongly contribute to these oscillations are the daily cycles of temperature,
soil moisture and vegetation water dynamics.
1. Introduction

The use of Synthetic Aperture Radar (SAR) data is becoming more
widespread in the field of agriculture, due to its improved spatial reso-
lution over wide areas compared to passive microwave remote sensing
and its generally better temporal coverage than optical imagery, on
account of not being affected by the presence of clouds (Steele-Dunne
et al., 2017). SAR data have been used in multiple crop monitoring ap-
plications, from crop type classification to estimation of biophysical pa-
rameters and crop yield, through the use of backscattering coefficients,
polarimetry or interferometry (Lopez-Sanchez and Ballester-Berman,
2009; Liu et al., 2019; Mandal et al., 2021).

SAR interferometry (InSAR) provides coherence and phase mea-
surements related to the scene’s geometry and dielectric properties
and their stability (Bamler and Hartl, 1998). Different factors, related
to the scene, sensor characteristics, and processing, influence the in-
terferometric coherence (Zebker and Villasenor, 1992; Touzi et al.,
1999).

Repeat-pass SAR interferometry involves combining pairs of images
acquired at different times and is typically employed with images
from the same satellite gathered in different passes. In the context
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of agriculture, repeat-pass InSAR coherence has been successfully ex-
ploited for different purposes. Bare soil keeps high coherence unless
the moisture content changes, whereas vegetated areas suffer from
temporal decorrelation, which is also dependent on the characteristics
and growth periods of the specific crop. For this reason, time series of
interferometric coherence have been a useful tool for crop-type clas-
sification (Busquier et al., 2020; Mestre-Quereda et al., 2020; Nikaein
et al., 2021). Series of coherence constructed from ERS data were also
used for retrieval of biophysical variables, such as crop height and
canopy cover (Wegmuller and Werner, 1997; Engdahl et al., 2001; Blaes
and Defourny, 2003), at a time when the lack of SAR images with short
revisit times was a limiting factor.

The launch of the Sentinel-1 constellation has enabled the system-
atic use of repeat-pass interferometry for crop monitoring. Ouaadi et al.
(2020b) explored the use of Sentinel-1 backscatter and interferometric
coherence for monitoring wheat, with an emphasis on the sensitivity of
SAR data to vegetation water content and soil moisture (SM). In (Khab-
bazan et al., 2019; Nasirzadehdizaji et al., 2021; Pandit et al., 2022),
time series of backscattering and coherence amplitude were used for
crop monitoring and identification of the main phenological stages of
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various crops. In addition, Villarroya-Carpio et al. (2022) found good
correlations between coherence time series and NDVI for a wide variety
of crops. These observations were later confirmed over several growing
seasons (Villarroya-Carpio and Lopez-Sanchez, 2023).

Besides the dependence of repeat-pass InSAR coherence on the
crop calendar and vegetation properties, interferometric data are also
sensitive to SM. SM is a key variable in hydrology, meteorology, and
climatology applications, but it is also relevant in agriculture (Senevi-
ratne et al., 2010), since it influences crop management and irrigation
planning. Given the difficulty of measuring SM on a large scale and
routinely, there has been a wide interest in the use of remote sensing
techniques for SM retrieval. Thermal infrared and passive microwave
imagery have been used for this purpose but their suitability in agricul-
ture applications is limited by their coarse spatial resolution. SAR data
offer an important improvement in this issue, while still facing chal-
lenges related to sparse temporal sampling, the impact of the incidence
angle of the observation, sensitivity only to the first centimetres of soil
(i.e. no direct information about SM at the root zone) (Mohanty et al.,
2017), and the superimposed contributions of vegetation and surface
scattering (Wagner et al., 1999a).

There have been multiple studies utilising SAR for SM retrieval
through the use of different bands (Shi et al., 1997; Le Hegarat-Mascle
et al., 2002) and techniques (Kornelsen and Coulibaly, 2013). More
recently, the use Sentinel-1 has been evaluated (Bauer-Marschallinger
et al., 2019; Balenzano et al., 2021; Palmisano et al., 2021). SAR in-
terferometry in particular also carries information about SM (Morrison
et al., 2011; De Zan et al., 2014). Particularly, the inversion of SM from
SAR phase closure has been explored recently (De Zan et al., 2015; De
Zan and Gomba, 2018; Michaelides and Zebker, 2020; Palmisano et al.,
2022).

Regarding the water content of plants, detection of water stress
in vegetation is another crucial point of interest in the context of
crop monitoring, and it is directly linked to SM dynamics. Various
techniques have been utilised to track water stress in crops, including
the use of SM sensors or optical imagery (Ihuoma and Madramootoo,
2017), but also using radar data, exploiting both backscatter and
coherence (van Emmerik et al., 2015; Ouaadi et al., 2020a).

In recent years there has been a growing interest in the necessity of
acquiring SAR imagery at increased temporal resolution, particularly at
sub-daily scales. In this line, different mission proposals have developed
plans for systems providing sub-daily SAR observations. Hydroterra
was a mission concept for a geosynchronous SAR satellite, proposed
as a candidate for ESA’s 10th Earth Explorer (ESA, 2020). The main
focus of the mission was to observe and understand the details of the
daily water cycle over land, with potential applications on hydrology,
water management, climate research, etc. More recently, the Sub-daily
Land Atmosphere INTEractions (SLAINTE) mission idea, submitted in
response to the 12th call for ESA Earth Explorers, aimed to bridge the
observation gap at sub-daily scales (Steele-Dunne et al., 2024). How-
ever, very few studies have examined the sensitivity of radar data to
changes in the scene for these short revisit times. The ESA-funded Bore-
alScat campaign (Monteith and Ulander, 2022) conducted a 5-year-long
experiment focused on monitoring a forested area with sub-hourly C, L
and P-band radar observations. This long time series allowed to identify
both daily and seasonal changes in the radar response, attributed to
wind-induced movement in the scatterers, evapotranspiration (ET),
changes in SM, water content in the canopy, etc. A previous similar
work (Hamadi et al., 2014), also part of the preliminary research in
preparation for ESA’s BIOMASS mission, analysed 5 months of ground-
based P-band data over a tropical forest. They observed a diurnal
cycle in repeat-pass coherence, and its disturbances caused by rainfall.
Some studies have focused on sub-daily variations in radar backscatter
over agricultural scenes (e.g. van Emmerik et al. (2015), Khabbazan
et al. (2022)). In a more recent study, Ouaadi et al. (2024) carried out
a ground-based experiment in order to investigate this diurnal cycle
2

of the interferometric coherence over wheat croplands in a semi-arid
region. That paper described the observed influence of irrigation, wind,
SM and vegetation water content on C-band coherence time series,
highlighting the potential of using this type of data for crop water status
monitoring.

The present study is focused on exploiting data from the HydroSoil
campaign (Aguasca et al., 2020; Mas et al., 2024), which emulated
the observation conditions (shallow incidence angles, sub-daily ac-
quisitions, etc.) of the Hydroterra mission over an agricultural area.
One of the goals of the campaign was to study the dynamics of SAR
interferometry at sub-daily timescales. A key point of interest is to eval-
uate the impact of large incidence angles (conventional SAR satellites
rarely operate for angles larger than 45–50◦). Only recently there has
been research carried out about these observation conditions (Ouaadi
et al., 2024), which could have an impact on the performance of a
geosynchronous SAR.

Given the availability of multiple temporal baselines, a first ob-
jective of this research is to study the rate of decorrelation of an
agricultural area at different moments during the season, as well as the
effect of the incidence angle and the choice of time of acquisition during
the day. Emphasis is placed on the mathematical modelling of the
coherence for increasing temporal baselines in both short and long-term
scenarios. Secondly, the evolution of the interferometric coherence
within a day is studied, particularly its sensitivity to SM and daily
dynamics of the vegetation and its water content.

2. Materials and methods

2.1. Dataset

The HydroSoil campaign (Aguasca et al., 2020; Mas et al., 2024),
led by the CommSensLab Department, from the Universitat Politècnica
de Catalunya, was carried out in a test site near the Barcelona School of
Agri-Food and Biosystems Engineering (Fig. 1a). It provided continuous
ground-based SAR monitoring of a controlled agricultural field (Fig. 1b,
left) during nine months in 2020, from March through November.
The radar instrument acquired single-look complex (SLC) C-band fully-
polarimetric imagery with a revisit time of 10 min and notably shallow
incidence angles (defining incidence angle as the angle between the
radar beam direction and a line normal to the surface), varying between
55◦and 70◦ (Fig. 1b, right).

The ground-based SAR system employed the polarimetric-
radiometric calibration algorithm proposed by Sarabandi et al. (1990).
This method requires high isolation between antenna ports, with a
cross-polarisation isolation better than 25 dB, a condition met by the
radar system. It is particularly effective for field calibration, needing
only two calibrators: a perfectly co-polar target (e.g., a trihedral) with
a well-known radar cross section, and a target exhibiting significant
cross-polar response (e.g., a 45◦ rotated dihedral).

The radar system had a good inherent stability in time, which was
obtained with thermal control of the circuitry. An in-depth analysis of
the system’s stability during the measurement campaign and the impact
of clutter on the backscattering measurements was performed to ensure
the effectiveness of the calibration process (Mas et al., 2024).

The series of radar acquisitions were complemented by ancillary
data, including:

• Meteorological variables, recorded every 30 min for the first two
months of the campaign and every 10 min from the beginning
of May. These include air humidity, precipitation, air tempera-
ture, barometric pressure, solar irradiation, and wind speed and
direction.

• Soil roughness. It was characterised only once at the beginning of
the growing season. It must be clarified that once plants grow the
effect of soil roughness on the total radar response is expected to

be much smaller than the vegetation backscatter.
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Fig. 1. (a) Test site location for the HydroSoil 2020 campaign, and placement of the field. (b) Photographs and diagram of the experimental setup. The location of the radar
system on top of the building is shown on the top left. The bottom left shows the field from the perspective of the instrument. The diagram on the right shows the geometry of
the experiment and the range of incidence angles. The three highlighted zones correspond to near-range, medium-range and far-range, respectively.
Source: Photographs extracted from Aguasca et al. (2020).
• Soil moisture data, acquired by various types of electronic probes.
During the barley campaign, a pair of ECH2O EC-5 sensors at
a depth of 15 cm were used. In the case of corn, two types of
probes were used: one at a depth of 10–15 cm (HydraProbe®)
and a profile probe (GroPoint®) with 3 segments measuring at
different depths. Additionally, gravimetric measurements were
performed every week from the beginning of May until the end
of the campaign.

• Vegetation variables: plant density, planting row direction,
biomass, crop phenology, leaf area index (LAI), plant height, and
vegetation water content.

The campaign spanned the complete growing cycles of two different
crops: barley and corn. The scope of the analysis shown in this work
is limited to the first season, corresponding to barley, i.e. from mid-
March until early-June. By focusing only on the barley growing season
the aim was facilitating the development of a suitable methodology
for the analysis of the data and to present results under the conditions
of such a part of the campaign. Given the complexity and size of the
dataset, this decision enabled to go in depth in multiple aspects, instead
of replicating the methodology on a second crop which also presents
additional features to be taken into account (e.g. irrigation, different
crop type, etc.). In addition, a single manuscript including both seasons
would be excessively long.

For illustration purposes, Fig. 2 shows the time series of backscat-
tering coefficient, wind speed, SM, precipitation, plant height, and LAI
3

for the whole barley campaign. There were 350 mm of accumulated
rainfall during this period, with temperatures ranging from 3–21 ◦C in
March, to 13–25 ◦C in June. The field was not irrigated during this
period.

SAR data were acquired continuously from right after sowing
(March 4th) until one week before harvest (June 12th), except for
two non-programmed halts in April 1st and 29th. On March 14th,
the COVID-19 State of Alarm was declared in Spain, entailing strict
mobility restrictions that were eased starting from May 5th. As a result,
field measurements started on May 7th. In May 13th it was observed
that the crop was infected by Puccinia hordei. It is also worth noting that
the maximum measured plant height at the time of grain development
was approximately 40 cm, which is below the average height typically
observed for spring barley. Likewise, LAI values are much lower than
what would be expected for a mature barley field. Several factors
contribute to this: low sowing density (Fig. 3), low plant height, the
effect of waterlogging (discussed later) and the mentioned appearance
of Puccinia hordei

2.2. Methodology

The analysis of the radar data used is specifically focused on the
repeat-pass interferometric coherence. SLC images were focused fol-
lowing the procedure described in (Aguasca et al., 2020). Due to the
viewing geometry, three different areas (near-range, medium-range,
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Fig. 2. From top to bottom: Backscattering time series during the barley campaign, wind speed time series, the evolution of other meteorological and ancillary parameters during
this period, and an approximate calendar of the growth stages (Zadoks scale) based on in situ acquired photographs. The discontinuities in the backscatter curves correspond to
halts in the acquisitions.
and far-range), as illustrated in Fig. 1b, were defined to analyse the
influence of the incidence angle.

From the set of focused SLC images, multiple time series of repeat-
pass coherence were constructed, differing in the way the interfero-
grams were computed (Fig. 4):

1. Long-term (seasonal) series (e.g., Figs. 4 and 6):

• They span the entire season, with an interferogram every
10 min.

• Primary image changes for every interferogram.
• A specific temporal baseline is used for each of the series

built in this way: 10 and 30 min, 1, 3, 6, 12 and 18 h, and
1, 3, 6, and 12 days.

2. Short-term series (e.g., Figs. 4 and 9):

• Four different time series for each date of the season.
• Primary image fixed at 0:00, 6:00, 12:00 or 18:00 of the

specific date.
• The temporal baseline increases from 10 min to 12 days in

10-min steps.

3. Daily-reset series (e.g., Figs. 4 and 11):

• Four series covering the entire season, with an interfero-
gram every 10 min.

• For each of the series the primary image resets daily at a
specific time: 0:00, 6:00, 12:00, and 18:00.
4

• The temporal baseline increases in 10-min steps from the
starting time until the primary image changes again.

In summary, for the first set of series the interferograms are created
with a ‘‘moving window’’ with a fixed width (temporal baseline) in each
case. In the second set, the window moved once a day with the width
progressively increasing. In the final case, the start of the window was
fixed in time while the width gradually increased.

The construction of these different time series aims to highlight the
sources of both short and long-term temporal decorrelation. Changes in
soil properties (SM and permittivity), wind, temperature, and vegeta-
tion water content dynamics have been considered as the main sources
of the short-term decorrelation. Additional decorrelation sources may
explain the long term evolution of coherence, which can be classified
in three groups: (1) progressive changes in vegetation, such as the
evolution of its phenological stage, plant density, or biomass; (2)
changes experienced by the crop that are unrelated to its growth
(e.g., waterlogging, wind-induced breaking of stems or leaves, lodging,
and pest infestations like Puccinia hordei); and (3) man-made changes
in the scene caused by tasks related to field management and data
acquisition.

The first point of interest has been to study the rate of decorrelation
during different stages of the campaign and for different ranges of
temporal baselines. Two simple functions (Morishita and Hanssen,
2015) have initially been used to describe the temporal decorrelation:

𝛾(𝑡) = 𝛾 𝑒−𝑡∕𝜏 (1)
0
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Fig. 3. Photographs showing the row orientation and the density of the crop at
different stages. From top to bottom: sowing of the field on March 4th, early stage
of growth (March 20th) and advanced growth stage (May 28th).
Source: Photographs extracted from Aguasca et al. (2020).

Fig. 4. From top to bottom: (1) long-term series, (2) short-term series, and (3) daily-
reset series. 𝑃𝑖 represent different primary images, while 𝑆𝑖 denote different secondary
images.

𝛾(𝑡) = (𝛾0 − 𝛾∞)𝑒−𝑡∕𝜏 + 𝛾∞ (2)

where 𝛾0 is the initial coherence amplitude, which should be close
to 1; 𝛾∞ is the long-term coherence, corresponding to the minimum
attainable value that the observed coherence will converge to over
time; and 𝜏 represents the decorrelation rate, which is the time for the
coherence to drop to 1∕𝑒 of its initial value.
5

Subsequently, a new periodic term was added to Eq. (2) in order to
take into account the oscillations observed in the coherence time series
for sub-daily temporal baselines:

𝛾(𝑡) = (𝛾0 − 𝛾∞)𝑒−𝑡∕𝜏 + 𝐴 cos
( 2𝜋
𝑇

𝑡 + 𝜙0

)

+ 𝛾∞ (3)

where 𝜙0 represents the initial phase of this oscillation; 𝑇 denotes the
period, associated with the daily cycles originating these fluctuations,
and thus set to 1 day; and 𝐴 represents the amplitude of the oscillation.
This amplitude is assumed to be constant in the short term or to be
attenuated over time by another decaying exponential with a new
parameter 𝜏2: 𝐴 = 𝐴0𝑒−𝑡∕𝜏2 . It is important to note that Eq. (3) is
defined in such a way that 𝛾(𝑡) is not necessarily bound to the interval
[0,1]. This is a conscious decision to avoid mixing the amplitudes of
the two main terms (exponential decay and oscillating), as it enables
a direct physical interpretation of the coherence as a combination of
terms. In practice, as the data are never over 1, fitting the model as
defined in Eq. (3) rarely produces values above 1. Consequently, despite
not being mathematically bounded, such an expression is practical for
interpretation and advantageous for numerical fitting. Hereafter, these
three models will be referred to as ‘‘EXP’’ (exponential, Eq. (1)), ‘‘EXP-
LONG’’ (exponential with a long-term coherence term, Eq. (2)), and
‘‘EXP-OSC’’ (the combination of an exponential decrease with a periodic
oscillation, Eq. (3)), respectively.

In an effort to assess the effect of SM in the coherence time series,
the in-situ SM data have been used to compute values of simulated
coherence. The model proposed by Hallikainen et al. (1985) to esti-
mate the dielectric constant of the soil surface based on SM data was
employed. Then, the model described by De Zan et al. (2014) was used
to derive the complex interferometric coherence from changes in the
dielectric constant. The coherence magnitude obtained through this
method has been compared to the coherence time series resulting from
the measured data. Recall that the SM values acquired by the probes
were measured for a segment between 10 and 15 cm deep. Therefore,
they do not accurately reflect the SM values at the first few centimetres
of soil that the microwave signal can penetrate. The estimation of
surface soil moisture (SSM) from root zone data (and vice versa, which
would normally be the case for the purpose of crop monitoring) is a
challenging problem still under research (Wagner et al., 1999b; Cho
et al., 2015; Koyama et al., 2017; Carranza et al., 2021). The impact
upon the simulated coherences of the discrepancy between the depth
of the SM probes and the surface SM values is discussed in Section 3.3.

While (root zone) soil moisture provides an indication of moisture
availability, the vapour pressure deficit (VPD) has been used to provide
an indication of atmospheric demand and potential stress. VPD drives
the flow of moisture in the soil–plant–atmosphere continuum, and its
daily cycle provides an indication of the timing of water flow. VPD is
the difference between the amount of moisture actually present in the
air and the moisture that the air, at that particular temperature, could
hold at saturation. It is calculated as follows:

𝑉 𝑃𝐷 = 𝑒𝑠 ⋅
(

𝑅ℎ
100

)

= 6.112 exp
( 17.67𝑇
𝑇 + 243.5

)

⋅
(

𝑅ℎ
100

)

(4)

where 𝑅ℎ is the relative humidity, and 𝑒𝑠 is the saturation vapour
pressure at the evaporating surface, which can be expressed as a
function of the temperature 𝑇 (◦C).

Higher values indicate faster water loss from plants due to the
greater difference in water vapour pressure between the leaf and the
surrounding air. In these circumstances, plants can respond by closing
the stomata in the leaves to reduce ET, although this response can be
influenced by climate, plant species and photosynthesis strategy (Mass-
mann et al., 2019). Prolonged periods of high VPD values can be a sign
of water stress in vegetation. Conversely, when VPD is very low, the
air approaches saturation, which may result in condensation in form
of dew on the plant surface. The daily cycle of VPD is included here
to indicate the period during which water is being transported to the
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atmosphere, and during which changes may be occurring in the amount
and distribution of water within the vegetation.

As for vegetation water content (VWC), sub-daily VWC measure-
ments are logistically challenging, labour-intensive, and time-
consuming to collect using destructive sampling, especially at sub-
daily scales. Sub-daily VWC could be estimated from continuous sap
flow observations and estimated transpiration (Vermunt et al., 2022)).
However, the required data were not collected as part of the HydroSoil
campaign. Likewise, ET values could not be directly calculated. Given
these limitations, and the fact that the VPD is related to the rate
of ET (Rogers and Yau, 1989; Penman, 1948), VPD was used as an
indicator of the sub-daily dynamics of vegetation.

3. Results

3.1. Time series of coherence amplitude with multi-day temporal baselines

The construction of time series of coherence amplitude using multi-
ples of a day as temporal baselines allows for an analysis of the data on
temporal scales comparable to SAR satellite revisit times. Fig. 5 shows
multiple time series spanning the whole season corresponding to the
coherence at the HH channel, obtained by setting the temporal baseline
to 1, 6, and 12 days. In this case, the coherence values are estimated
by averaging all the pixels within the near-range area (i.e. considering
incidence angles under 59◦, as shown in Fig. 1b). The time shift
etween the different curves is caused by the fact that the date chosen
o represent each point corresponds to the date of acquisition of the
econdary image. The interruption in all curves during April 29th
orresponds to one of the non-programmed radar halts (Fig. 2), and
t reappears 1, 6 or 12 days forward into the time series, when those
cquisitions are used as primary images in the interferogram.

The 6 and 12-day baselines have been chosen to resemble the tem-
oral baselines provided by Sentinel-1. Overall, as expected, the longer
he temporal baseline, the lower the coherence. The 1-day coherence
s always greater than the other two.

It is important to note that a time series of 6-day coherence of
entinel-1 over the same site would have provided only about 14 values
long the same time span (see asterisk symbols in the bottom of Fig. 5),
nd all of them acquired at the same time during the day. Therefore,
ll the fine details present in the time series shown in Fig. 5 cannot
e captured by current satellite systems. In particular, with Sentinel-1,
r with any conventional Low Earth Orbit satellite, one cannot sense
he daily cycle of hydrometeorological variables, or the daily water
ycle (how or when water goes up from soil to plants and then down
o soil again), or the water stress suffered by the plants due to high
emperatures during the day, etc. This motivates the proposal of new
ensors with shorter (i.e., sub-daily) revisit times.

In all three curves there is an overall downwards trend as the
eason advances, since the increasing presence of vegetation becomes
he main source of temporal decorrelation in the scene. Before April
9th, coherence is rather stable for all temporal baselines, only affected
y the rain events. With 1-day baseline the values are above 0.9,
hereas with 6- and 12-day baselines coherence values are around
.8. However, later in the season the 1-day coherence progressively
ecays down to 0.6 at the end of the season, and the 6- and 12-day
oherences are more severely affected by the presence of vegetation and
each values around 0.3 at the end of the season. Along all the season,
he sudden drops in coherence correspond to rain events. The clearest
xample is the sharp decrease during the second half of April, caused
y an intense rain period (190 mm of cumulated rainfall) from the
9th to the 22nd of April. Using different temporal baselines in remote
ensing serves to focus the sensitivity of the system on specific aspects
hich depend on the temporal scale of their variation. For instance,

he effect of rain is avoided earlier using shorter baselines, whereas the
resence of vegetation growth can be monitored with longer baselines.
6

oreover, barley is known to be more susceptible to waterlogging
(visually observed in the field on April 19th) than other crops (Setter
and Waters, 2003; Xu et al., 2022). An increase in the temporal baseline
in this case means that the effect of these events is registered by more
interferograms (around the April 25–28th for the 6-day baseline and
during the first days of May for the 12-day one). Finally, a daily ripple is
observed, as the coherence is highest when the primary and secondary
acquisitions are both made at night time. This will be further discussed
later.

The overall evolution in the time series is observed in all the
polarimetric channels. Fig. 6 again shows HH for a 1-day temporal
baseline, along with HV and VV. All channels exhibit a decrease in
coherence as the season advances, and they are sensitive to the rain
events in March 16th and 23rd, and April 1st, 13th, 19th and 21st.
Initially the cross-polar channel shows the lowest coherence values,
whereas VV is the least decorrelated. However, this changes after mid
May just prior to the harvest date. As seen in the backscatter curves
shown in Fig. 2, for the first two months there is a stronger signal
return for VV than for HH. Starting from late April, this difference
shrinks, and even reverses during the second half of May. This may
be due to a two-fold effect of the vertical plant stems in the field: the
vertical polarisation is strongly attenuated by the vertical stems when
the waves go through the vegetation volume and, simultaneously, the
double bounce mechanism is more present as the crop matures, for
which a double Brewster angle effect (at the stems and at the ground)
results in lower response in VV (Lopez-Sanchez et al., 1999; Thirion-
Lefevre and Guinvarc’h, 2018). It must be clarified that in erectophile
cereals (like wheat, barley, oat, etc.), with a clearly marked vertical
structure, it has been found (for instance with Sentinel-1 data) that
the backscatter response at the VV channel shows a decrease when
plants grow. For instance, in (Palmisano et al., 2021) we see how the
VH/VV backscatter ratio increases for wheat and barley with vegetation
growth despite the backscatter at VH channel is rather constant, i.e. it
is due to an increased attenuation (and reduced backscatter) at the VV
channel. This attenuation is also studied in a dedicated in-depth work
by Arias et al. (2022). Consequently, this feature of the VV channel as
a function of plant growth does not necessarily entail an increase in
volume scattering (with an associated increase temporal decorrelation
at the VH channel). In this case (Fig. 6), a marked decrease in 𝛾𝑉 𝑉
s observed coinciding with the period where the backscatter at HH
hannel (𝜎0𝐻𝐻 ) is higher than at the VV channel (𝜎0𝑉 𝑉 ) (Fig. 2).

Fig. 7 shows once again the coherence time series obtained with a
1-day temporal baseline and a moving primary image, but this time
for near, medium and far-range at each channel. The main trend,
commonly observed across all channels, is a decrease in coherence
as the incidence angle increases, with VV showing the highest cor-
relations in the early months of the season, and HV the lowest. VV
experiences comparably higher loss of correlation later in the season,
as was previously seen in Fig. 6, as well as a bigger spread in coherence
values depending on the incidence angle during the second half of
May. This influence of the incidence angle over the VV coherence,
with less coherence in the far range, suggests that the previously
mentioned influence of attenuation and double bounce mechanism
is confirmed, since shallower angles entail an increased path length
within the vegetation volume and more dominance of the volume and
double bounce terms compared to the surface scattering component.
The volume playing an important role in the drop in coherence in VV
is also consistent with Fig. 7, where the drop in coherence is largest in
the far range, where one would expect limited sensitivity to the surface
term.

The rain events in April 19th and 21th cause a reversal in the
previously mentioned ordering, with higher coherences for the smaller
(i.e. steeper) incidence angles for some days. During these days the field
is waterlogged, and most of the radar signal is specularly reflected off
the water surface. As a result, the backscattered intensity during these
days is much lower (Fig. 2), especially for steeper incidence angles.

In these conditions, SNR takes lower values for steeper angles, and its



Remote Sensing of Environment 313 (2024) 114358A. Villarroya-Carpio et al.
Fig. 5. Coherence time series (HH channel) for the barley season obtained with different temporal baselines: 1 day, 6 days, and 12 days. The morning acquisition times for the
Sentinel-1 images covering the campaign’s time frame are also shown. The x-axis corresponds to the date of the secondary image.
Fig. 6. Coherence time series (1-day temporal baseline) for the whole barley season at the three polarimetric channels. The x-axis corresponds to the date of the secondary image
and displays the growth stage calendar.
Fig. 7. Coherence time series (1-day temporal baseline) for the three channels. The different curves display the coherences estimated for different incidence angles (i.e. over the
three differentiated regions shown in Fig. 1b).
contribution in the drop in coherence becomes noticeable (Zebker and
Villasenor, 1992).

The effect of increasing the temporal baseline on the decorrela-
tion rate has been studied quantitatively. Fig. 8 shows the average
coherence values resulting from keeping the same primary image and
increasing the temporal baseline from 1 to 12 days, setting the primary
in two specific dates (April 3rd and May 19th) in the early and late
stages of the campaign, respectively. In this case, the coherence is
7

estimated by averaging all the pixels within the whole field (i.e. the
combination of the three areas shown in Fig. 1b). The decrease in the
coherence amplitude can be described, as expected, by Eqs. (1) and
(2). Clearly, the plots obtained at the early season (top row) show a
slower decorrelation than at the late season (bottom row). For the EXP
model, this translates into greater 𝜏 values at the early season than at
the late season, being the VV case the most extreme example. It is also
observed how, irrespective of the moment of the season, the long term
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Fig. 8. Example of the decorrelation curves for the different polarimetric channels in 2 different dates: early season (top row, April 3rd) and late season (bottom row, May 19th).
The primary image is set, while the temporal baseline (in days) is increased. The fitted decorrelation time (𝜏) and the RMSE for the fit obtained using the different models are
shown.
coherence remains over 0 after 12 days. While in the early stages both
co-polar channels experience a similar decline as the baseline increases,
VV decorrelates similarly to HV as the season advances. These changes
between early and late seasons are also observed in the values of 𝜏
obtained with the EXP-LONG model, but the differences are not as
noticeable as with the EXP model.

3.2. Time series of coherence amplitude with fractional-day temporal base-
lines

The extension of this analysis to temporal baselines shorter than
one day yields new patterns, as represented in Figs. 9 and 10. On
top of the already observed progressive decay of the coherence, there
is an oscillation with a period of approximately one day. This type
of daily cycle, with a recovery of the coherence, has been previously
observed (Monteith and Ulander, 2022; Ouaadi et al., 2024). In our
case, it can be seen how this daily cycle remains recognisable for several
days as the baseline keeps increasing, despite the progressive effect of
the temporal decorrelation studied in the previous section.

The periodical oscillation appears well defined in the early season
(Fig. 9) when the chosen primary image is acquired at nighttime
or early morning. In these cases, a plateau is observed around the
1-day temporal baseline, during which the coherence remains high
and approximately constant. This behaviour is not so clearly observed
when the primary image is selected during daytime, especially in the
evening (18:00), since the vegetation and the atmospheric conditions
experiment faster changes. When this experiment is repeated later in
the season (see Fig. 10), the oscillation cannot be clearly observed due
to the growth of the crop.

If the long-term temporal decorrelation effects are avoided in the
time series by performing a daily reset of the primary image, the
resulting series of coherence are driven only by short-term changes
in the scene, as illustrated by Fig. 11. The curves show the coher-
ence amplitude from interferograms computed every 10 min with an
everyday-fixed primary image (acquired at 0:00, 6:00, 12:00, or 18:00)
and increasing the temporal baseline up to 1 day. In all cases the time
8

period covered is the same. Depending on the chosen hour for the
primary image, the features of the time series appear displaced along
the time axis.

Typically, coherence decreases during the first part of each cycle,
and it partially recovers before the reset of the primary image. It is
worth highlighting how there is already some loss in coherence after
the first 10 min (i.e., the first point of each time series and after the
resets), most noticeably in the case of the cross-polar channel, and when
the scene is less stable during the acquisition of the primary image
(i.e. during the afternoon and evening). This is mainly observed at the
beginning of the campaign because the backscatter from the scene is
very low and, therefore, there is some decorrelation due to SNR.

The complex behaviour of the curves can be interpreted as the
combination of multiple contributions:

• Coherence tends to recover after 24 h, when the observation and
scene conditions at the time of acquisition of the primary and
secondary images are the most similar.

• The curves show less noise and a more defined behaviour when
the primary image is acquired at nighttime or early morning.
Likewise, coherence can plateau or even increase at night, when
the secondary image is acquired under more stable conditions
(less wind, more stable temperature and SM, etc.). Fig. 12 shows
this mentioned plateau during the first hours of the night, when
the scene is stable. The plants absorb water until dawn, when
rapid changes in water content both in soil and vegetation drive
a decrease in coherence. The minimum values in these coherence
oscillations appear in the middle of the day, shortly after the VPD
reaches its maximum.

• An apparent recovery in the coherence is observed around 10:00–
11:00 when the primary is set at 12:00 or 18:00, as seen in
Figs. 9 and 11. This sort of peak in the coherence with respect
to previous values is probably misleading, and actually due to
the lower coherence measured before it. The scene experiences
notable changes in the previous hours, which are sources of
temporal decorrelation. During the first hours after sunrise there
is a increase in air temperature, as well as a decrease in air
humidity and SM. This phenomenon is barely noticeable for the
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Fig. 9. Examples of the evolution of the coherence amplitude for increasing temporal baselines, from 10 min to 6 days, along with the curves obtained from the fitting parameters
f the EXP-OSC model. The difference between the subplots is the acquisition time of the primary image (0:00, 6:00, 12:00 or 18:00), on April 4th.
Fig. 10. Examples of the evolution of the coherence amplitude for increasing temporal baselines, from 10 min to 6 days, along with the curves obtained from the fitting parameters
of the EXP-OSC model. The difference between the subplots is the acquisition time of the primary image (0:00, 6:00, 12:00 or 18:00) on May 18th.
reset at 0:00, and it cannot be seen at 6:00, but becomes more
visible as the season progresses (Figs. 13–15).

• The influence of wind is variable and increases as the vegetation
grows. Maximum speeds are usually recorded in the late morning
or early afternoon, and while they are not reflected in these
previously described coherence changes in March, they can be the
main source of decorrelation later in the season. Some examples
can be seen in May 10th and May 11th (Fig. 15), where some of
the highest wind speeds of the campaign were recorded, around
16:00–17:00 and 9:00–10:00 respectively.

• As previously seen, VV initially experiences less temporal decor-
relation than HH, but this behaviour changes by the beginning of
May (Fig. 15). By that date, the presence of vegetation contributes
to obscure the periodic behaviours in the curves.
9

3.3. Coherence time series simulated from soil moisture

The series of in situ SM data have been used to simulate the
measured coherence amplitude. Fig. 16 shows the coherence time series
for all polarimetric channels and for the complete growing cycle of
barley, using the reset of the primary image at midnight. Given that the
field did not receive irrigation during these months, and was otherwise
undisturbed, the more pronounced drops in the coherence correspond
to rainfall events. The dynamic range of the coherence amplitude
during the day increases later in the time series, showing the increasing
effect of the dynamics of the vegetation in the short-term temporal
decorrelation as the plants grow.

The second and third plots in Fig. 16 display the modelled coherence
and the SM data used to simulate it, respectively. The sudden increases

in the SM reflect the rain events. The SM curve shows daily oscillations
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Fig. 11. Coherence time series with daily-resetting primary image. Each plot shows the result of resetting the primary image at a different moment during the day. The x-axis
corresponds to the date of the secondary image.
Fig. 12. Coherence time series (primary image reset at midnight) along with the time series of air humidity, temperature, VPD and wind speed over the same time period. The
rey bars highlight the morning period.
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nd a rapid drydown after each period of rainfall. The simulated
oherence captures these oscillations and shows sharp drops matching
he increase, and later decrease, of SM associated with rain events.

Although the measured and the simulated coherence share the
iming of the pronounced peaks, the dynamic range of the daily os-
illations is considerably smaller in the simulated coherence than in
he measured one. In principle, this means that the daily fluctuation
n coherence cannot be solely attributed to the decorrelation caused
y changes in SM. This is especially clear in the last month of the
eason, where the amplitude of the oscillations evidences the influence
f the vegetation. However, it is also important to note that the SM
ata were acquired at a depth of 15 cm, while the radar is sensitive to
M in the first few centimetres of the ground. SM near the surface is
ighly affected by weather conditions (and irrigation if it were present).
owever, the dynamic range in SM values is attenuated as the depth

ncreases (Khabbazan et al., 2022), and the influence of changes in air
10

S

temperature, wind and air humidity on bare soil evaporation decreases
with depth. In addition, the changes of SM at the depth of the probes
(within the root zone of barley, which can reach root depths of more
than 1 m, Allan et al. (1998)) are strongly influenced by the water cycle
and vegetation water stress as the season progresses. In this case, the
heterogeneity of the soil composition across the field could also impact
how well the probes provide a representative measure of SM across the
field.

According to the model (De Zan et al., 2014), a change from 0.19
to 0.18 m3∕m3 in SM, similar to the changes found in the measured
M during one day, results in a coherence of 0.99 (Fig. 17). In order
o reach the values measured (coherence around 0.95) the SM should
ecrease from 0.19 to 0.17, which is not what is observed in the probe
easurements during the same day. This difference between modelled

nd observed coherence may partly be due to the difference between
SM, sensed by the C-band radar system, and the deeper SM measured
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Fig. 13. Coherence time series with daily-resetting primary image for the period between April 3rd and April 7th. Each subplot shows the result of resetting the primary image
at a different moment during the day. The x-axis displays the date of the secondary image.
Fig. 14. Coherence time series with daily-resetting primary image for the period between April 8th and April 12th. Each subplot shows the result of resetting the primary image
t a different moment during the day. The x-axis displays the date of the secondary image.
y the probe. Some initial tests were carried out in order to get a
asic estimation procedure of the SSM. The assumptions were that SM
hanges at a certain depth would be damped compared to the surface,
s seen in (Khabbazan et al., 2022), and that the dynamics of these
hanges would not change drastically in the first 15 cm. Based on
hese, linear and exponential relations between SM at the different
epths were used, in order to produce new simulations of the coherence
mplitude. However, they did not offer any improvement.

.4. Daily cycle and vegetation water content

As aforementioned, to compare coherence to vegetation water dy-
amics, VPD time series have been calculated from temperature and
elative humidity data. Fig. 18 shows again how the oscillations of
11
VPD, air temperature and coherence are aligned along of the time
series. An increase in temperature as the sun rises drives a increase in
ET/water stress in the crop, and, at the same time, leads to a series
of rapid changes that produce a decline in the coherence, as seen
in Section 3.2. Just based on this, it is difficult to discern whether
coherence is sensitive to these changes in particular. Rather, it is safe
to assume that these coherence oscillations are due to a combination
of the daily variations of all these hydrological and meteorological
changes.

It is important to note that the oscillations in the VPD during
the initial part of the season (Fig. 18, first selected period) affect a
crop in its initial growth stages, while the crop’s contribution to the
backscattered signal is still small. Therefore, the variations in coherence
must be mainly due to changes in SSM. On the other hand, the changes
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Fig. 15. Coherence time series with daily-resetting primary image for the period between May 8th and May 12th. Each subplot shows the result of resetting the primary image
at a different moment during the day. The x-axis displays the date of the secondary image.
Fig. 16. Time series of coherence (daily-reset series), simulated (modelled) coherence, and soil moisture for the barley season.
n the later weeks, on top of being more pronounced, are when the
rop is more mature. The increased amplitude in the oscillations of the
oherence, which as seen earlier cannot be explained by SM changes, is
riven by the influence of vegetation. The more irregular behaviour of
he coherence series during the evening matches what had previously
een observed for the evolution of the interferometric phase over
ropical forests (De Zan et al., 2015), which was attributed to vegetation
ater dynamics. However, given that vegetation growth, vegetation
ovement due to wind, and changes in vegetation water content, all
ave an impact on the coherence, it would be difficult to directly and
uantitatively relate VPD and coherence amplitude.

. Discussion

This study constitutes an extension on previous studies that have
iven insights on the sub-daily dynamics of repeat-pass coherence over
12
vegetated areas (Hamadi et al., 2014; Monteith and Ulander, 2022;
Ouaadi et al., 2024).

In this work, fully-polarimetric imagery with a 10-min temporal
resolution was acquired over a barley field with a ground-based C-band
SAR system. This configuration allowed to have access to time series
of C-band repeat-pass coherence for different polarimetric channels
with a reduced temporal baseline and shallow incidence angles. A first
exploratory survey was focused on studying the effect of increasing
the temporal baseline, both at sub-daily and multi-day scales. As ex-
pected, shorter temporal baselines result in less temporal decorrelation,
maintaining higher coherence. They also highlight the sensitivity to
rain events. As in previous studies (Hamadi et al., 2014; Ouaadi et al.,
2024), it has been shown how precipitation greatly affects repeat-pass
coherence, and a reduced temporal baseline minimises the amount of
data in the coherence time series affected by a rain event (April 20th to



Remote Sensing of Environment 313 (2024) 114358A. Villarroya-Carpio et al.
Fig. 17. Coherence for different combinations of SM values in the primary and secondary images, simulated using the models of Hallikainen et al. (1985) and De Zan et al. (2014).
May 5th, Fig. 5). This could prove valuable for sub-daily resolutions, as
rain causes a decrease in sensitivity to relative changes in SM (Fig. 16)
and vegetation water stress (Fig. 18).

Repeat-pass coherence already experiences a decrease for a 10-
min temporal baseline, which is barely noticeable early in the season
(around 0.01 for the co-polar channels and 0.03 for HV) but grows
when the vegetation matures (0.03 for HH and VV, 0.09-0.1 for HV).
This phenomenon has been observed for barley, which is not as dense as
other crops, such as rice or wheat, due to a more open canopy structure
and less foliage density (Fig. 3). Therefore, a decrease in coherence for
the cross-polar channel when working with sub-daily data is expected
(even for really short temporal baselines) over most crops.

The rate at which we have observed this decrease (i.e. the decor-
relation rate) depends on the time of acquisition of the primary image
in the interferogram, being the nighttime hours the most stable and
suitable to produce a higher coherence, particularly the last few hours
before dawn. Moreover, the effect of changes in the temporal baseline
on the decorrelation rate has been studied quantitatively. In the case
of multi-day baselines, the results are in agreement with previous
observations (Ouaadi et al., 2024), where the decorrelation increases
as the crop develops. In this particular case, the evolution of the
coherence as the baseline increases has been modelled as a decaying
exponential (Eq. (2), Fig. 8) that resembles a straight line for HH and
VV when the scene is dominated by bare soil or sparse vegetation,
and progressively deepens as the plants grow. The long-term coherence
remains moderately high at the beginning of the season, often above
0.5 for the co-polar channels or around 0.4 for HV, and although it
decreases progressively, it never reaches zero, due to the systematic
bias in the coherence estimation (Touzi et al., 1999). The differences
in the temporal evolution of coherence at VV in comparison to HH
are worth highlighting. Both channels behave very similarly during the
initial development stage of the plants, but by the end of the tillering
stage VV shows increased sensitivity to the vegetation, up to the point
13
where its decorrelation rate matches that of VH by the end of the
season.

Regarding the evolution with short temporal baselines, sub-daily
repeat-pass coherence (with the primary image set at midnight and
baselines ranging from 15 min to one day) has previously been ob-
served to recover by nighttime (Ouaadi et al., 2024), after decreasing
during the morning and reaching its minimum relative point in the
afternoon. This trend was observed throughout the season, with ex-
ception of the stage of maturity, before plant senescence. In our case,
the range of temporal baselines has been increased to several days
in 10 min increments, and multiple primary images were selected for
different times across the day. The resulting series (Figs. 9 and 10) show
this reported recovery of coherence at nighttime, but also reveal the
periodicity of this pattern over multiple days, as well as some other
features.

The results show how the evolution of the coherence as the baseline
is increased can be modelled as the combination of an exponential
decrease, that modulates the overall trend of the curve, and a daily
oscillation. Therefore, the coherence amplitude tends to exhibit a par-
tial recovery every day. In ideal conditions (a primary image acquired
in a stable moment of the day and in the absence of strong sources
of temporal decorrelation), one could extract the contribution of the
first term of the model and be left with the periodic variations in the
coherence, which resemble the daily cycle of the hydrometeorological
data. The periodic oscillations are lost as the baseline keeps increasing,
and they also approach noise level later in the season when the wind
and vegetation changes play a larger role as sources of decorrelation. In
addition, there are other characteristics of the curves that contribute to
obscure this periodic pattern, as detailed in Section 3.2. In these time
series (Figs. 9, 10, 11 and 13), it is again possible to see the switch
in behaviour exhibited by VV (from being the least decorrelated at the
beginning of the campaign to dropping to the level of HV or sometimes
even lower).
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Fig. 18. Time series of coherence (daily-reset series) along with the VPD and accumulated precipitation for the barley season, as well as for two periods with little to no rain
events. It should be noted that the frequency of meteorological data acquisition varied for different moments of the campaign: every 30 min in the first case, and every 10 min
in the second.
The descriptive value of this model is limited, as it does not account
for sudden, transient events, like precipitation, waterlogging, wind
changes or other non-periodic changes in the scene. Its main value is
in accounting for the periodic component that modulates coherence in
this scenario (sub-daily SAR acquisitions) which is clearly correlated
with the temporal pattern (sub-daily cycle) of all hydro-meteorological
variables with available measures, i.e., air temperature, relative humid-
ity, wind speed, and soil moisture. Unfortunately, all these variables
are also physically coupled and intrinsically correlated in time and,
consequently, we have not found a distinct link to any of them treated
separately. Therefore, a proposal of a retrieval method for any of these
variables based on the sole use of coherence is not possible at the
moment.

Although the quantitative retrieval of hydro-meteorological vari-
ables has not been achieved, we must emphasise the potential con-
tributions of sub-daily SAR observations to the daily water cycle.
14
First, sub-daily SAR data are sensitive to the daily cycle of hydro-
meteorological variables, despite not being able yet to decouple or
retrieve them. Most importantly, there is room to further improve-
ments by exploiting the whole observation space (not only coherence,
i.e. including backscatter and polarimetry) which could be jointly used
to tackle the separation of the various processes and the retrieval of
biophysical variables.

Regarding the selection of the time of acquisition of the primary
image for the interferograms, the results show how selecting a moment
during the night or early morning results in higher coherences and a
clearer daily pattern. Alternatively, a primary image acquired after the
sunrise is very sensitive to the rapid changes that happen during the
early morning (Figs. 11 and 12), resulting in a steep drop in coherence
that lasts approximately until noon.

A quantitative retrieval of scene variables was not attempted in
this work, but some considerations can be drawn about the optimal
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measurement configurations to enhance the sensitivity to specific bio-
physical variables. For instance, in order to measure the progressive
growth of vegetation along the cultivation cycle, it is convenient to
exploit coherence measured using images acquired at night and with
baselines of several days. If the focus is on the sub-daily evolution
of variables, like soil moisture and vegetation water stress, then a set
of measures during the day is required. From the spectrum of values
found in this study, at least one measure in the night, one in the
early morning, and one at noon would be required. This information,
although preliminary, will be helpful in the design of the operation of
future satellite missions like Hydroterra and SLAINTE.

Another objective of this work was to evaluate the impact of work-
ing with shallow incidence angles, in observation conditions compara-
ble to those a geosynchronous SAR like Hydroterra would have over
northern Europe. For these angles it was expected to see a greater
influence of the vegetation. Fig. 7 shows how the greatest sensitivity to
incidence angle changes is observed in VV, especially during the stages
of booting and heading. The differences between channels and this
increased sensitivity to particular crop stages could potentially prove
useful for different applications, such as crop type mapping or crop
monitoring and identification of crop phenology.

With respect to the relationship between coherence and SM, what
the radar is sensitive to is the dielectric constant of the observed sur-
face. As the dielectric constant in water changes with the temperature,
this can lead to wrong assessments about SM. Due to this problem,
some recent research studies opt to talk about soil permittivity (and not
SM) estimation (Bhogapurapu et al., 2022; Dey et al., 2024). This same
problem is seen with electronic probes, where the link between temper-
ature and SM creates an uncertainty in the measured data. On top of
this, getting accurate measurements of SSM (which C-band is sensitive
to) is complicated. SM probes need to be buried at a certain depth in
order to offer better results, while gravimetric measurements require
samples of soil that are big enough, often requiring the extraction of
soil from more than the first few centimetres. This study has not tried
to find a definitive answer to the problem of linking SM at the surface
and the root zone, unlike other works have (Koyama et al., 2017). SM
at a depth of 15 cm was used to make a simulation of the coherence
amplitude, which was found to share general trends and periodicity
with the measured coherence. However, this simulated coherence could
not replicate the amplitude of the daily oscillations in the coherence. In
addition, this work had the chance to observe SM dynamics as regulated
solely by rainfall, without scheduled irrigation, unlike the previous
experience with sub-daily SAR over croplands (Ouaadi et al., 2024).

Coherence is also affected by wind, especially later in the season.
However, unlike in (Ouaadi et al., 2024), a direct relationship between
the minimum daily values of coherence and maximum wind speeds was
not observed in all cases. Similarly, establishing a quantitative relation
between VPD and coherence would be challenging due to the overlap of
various sources of decorrelation. However, the timing of the VPD cycle
explains the cadence of the coherence variations throughout the day,
with a loss in the morning, caused by changes in SM and vegetation
water content, and a re-gain during the night. This phenomenon has not
been discussed much, if at all, in the literature, particularly in relation
to crops.

This study opens many opportunities for future research lines. Ad-
ditional analysis is recommended in order to successfully exploit co-
herence as a source of information about water dynamics in the scene,
particularly about changes in SM and vegetation water stress. Likewise,
the very frequent acquisition rate, which guarantees a high repeat-
pass coherence, could allow for the use of SAR phase closure for SM
retrieval. The second half of the HydroSoil campaign, during which
corn was cultivated, presents different challenges and opportunities:
the study of a taller and denser crop, source of a stronger tempo-
ral decorrelation late in the season; the presence of irrigation; the
acquisition of rain interception data; and the possibility to explore
15

the combination of the SM acquisitions performed through different
probing methods in order to estimate of SSM. Finally, the HydroSoil
facility has been recently upgraded with the capability to measure
complementary parameters, such as leaf wetness and real-time wind,
and to operate in dual C and X bands for evaluating the combination
of multiple frequencies.

5. Conclusions

Access to sub-daily radar acquisitions has proved valuable for ob-
serving the sensitivity of SAR repeat-pass interferometry to short-term
changes in soil moisture, temperature, wind or features related to daily
cycles in the vegetation, which could be relevant in various scientific
fields, such as hydrology and agriculture. The rate of decorrelation has
been studied at different stages of the growing season of a crop, as
well as the daily oscillations of the coherence for sub-daily temporal
baselines, which had not been observed before. The contribution of the
daily cycles of soil moisture and vegetation water dynamics in these
periodic oscillations has been studied.

Additionally, the impact of changes in incidence angle and acqui-
sition time for the primary images on the coherence time series has
been assessed. The ideal time of acquisition in order to preserve a high
coherence and have a clear view of the daily cycle would be nighttime
and early morning, although acquisitions in the evening could benefit
of the partial recovery observed at night. As for the incidence angle,
it has been observed that VV is particularly sensitive to changes in
phenology as the incidence angle becomes shallower. The importance
of these observation conditions is relevant for the development of a
geosynchronous SAR mission.

Further research should be conducted to improve the understanding
of how coherence could be exploited for crop monitoring, assessment
of water stress in vegetation, or for soil moisture estimation. Advances
could be made in how to relate surface soil moisture (which SAR is
sensitive to) to soil moisture in the root zone, where it interacts with
the crop. Finally, the combination of C and X-band should be explored,
as well as additional experiments to investigate coherence dynamics
in other crop types. In the meantime, Hydroterra+, the successor of
Hydroterra, has recently been selected as one of the four candidates
to go forward with the assessment study phase for the 12th ESA’s
Earth Explorer mission (ESA, 2024). This underscores the urgent need
to improve our understanding of coherence at sub-daily scales and
develop the tools needed to exploit it for monitoring soil moisture and
vegetation dynamics.
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