
A Methodology for

Improving gXR5 Speed

and Accuracy
Karan Pathak

A Methodology for
Improving gXR5 Speed

and Accuracy

Master Thesis

by

Karan Pathak

to obtain the degree of Master of Science

(MSc) in Embedded Systems (ES)

at Delft University of Technology, The Netherlands

ii

Thesis committee:

Chair: Prof. Said Hamdioui, TU Delft

Supervisors: Prof. Georgi Gaydadjiev, TU Delft

Prof. Marina Zapater, HEIG-VD, HES-SO

Dr. Giovanni Ansaloni, EPFL

Prof. David Atienza, EPFL

Prof. Said Hamdioui, TU Delft

External examiner: Prof. Koen Langendoen

Place: Computer Engineering, Faculty of EEMCS, TU Delft.

Project Duration: November, 2022 - August, 2023

Student number: 5479614

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Electrical Engineering, Mathematics and Computer Science Engineering

Delft University of Technology, The Netherlands

http://repository.tudelft.nl/

iii

Dedicated to my parents,

Mukesh and Bharti

Copyright © Karan Pathak, 2023

All rights reserved.

Preface

Computer Architects often walk the tightrope between performance, power and area while

designing modern day processors. This daunting task is made even more challenging

by short Time-to-Market requirements set by the clients. In light of these challenges,

architectural simulators provide a much needed tool for the architects to gauge the

impact of their innovations rather quickly. Arguably, use of such simulators is essential in

avoiding a product recall due to the processor failing to deliver on performance/power

requirements for the intended application. The thesis is in-line with the objective of

identifying and addressing the bottlenecks in the RISC-V simulation ecosystem and

contribute in the development of RISC-V infrastructure.

The intended objective of an architectural simulator is to capture the trend of the

real hardware (i.e., performance improvement due to micro-architectural changes in

real hardware should be eloquently captured by the simulator). A good simulator shall

have high throughput (less simulation time) and should be easily re-configurable. The

re-configurability of the simulator can be as fine as micro-architectural changes or as

large as a new ISA being simulated. These attributes of speed and re-configurability

come at the cost of accuracy. A high error in performance statistics of the simulator fails

to engender confidence among the prospective users. Hence, validating performance of

simulators against hardware is essential.

The thesis introduces the need for a full system architectural simulator for RISC-V

processors followed by a brief, yet crisp review of the past attempts at making such

simulators. The review is from the perspective of existing methodologies for performance

validation of the simulators. The work also proposes a new methodology for validating

system simulators. Although, the proposed methodology is generic and can be extended

to other ISAs (such as ARM, x86, etc.), the target hardware chosen are RISC-V ISA based

systems that span both commercially, IP protected processor as well as open-source

processors widely adopted by the RISC-V community.

The work concludes by illustrating the future challenges to be addressed to make

RISC-V simulation ecosystem vibrant.

ii

Acknowledgements

“Vasudhaiva Kutumbakam”(The World is one family)

-Maha Upanishad

It’s the journey that is worth cherishing and not the end. The experience of carrying out

research at a university surrounded by the nature’s calmness, the bright sun shining on

the lake with blue sky, was surreal. This one-year long journey had ups and downs. The

start was not the best, but the end seems to be connecting a lot many dots. The journey

was full of excitement, sleep-less nights and happiness (of doing something ‘significant’).

Looking back, I feel satisfied and proud of what has been achieved.

The work could never have been carried out without the utmost support of my parents,

their unconditional love and unfathomable belief in me (more of pride). I would like to

thank my supervisors Prof.Georgi Gaydadjiev and Prof.Marina Zapater for showing

me the right path. I consider myself lucky that I find the right people at the right moments

in life. That also includes Dr.Giovanni Ansaloni for offering advises, providing me an

enabling (and positive) environment and always being more than willing to help me. A

big thanks to Joshua Klein for getting me started with the project and all off-the record

conversations. You have made an impact in my journey for sure!

I would like to offer my sincere thanks to my supervisors Prof.David Atienza and

Prof.Said Hamdioui for givingme the opportunity to work with them. My gratitude towards

Dr.Arjan van Genderen, for helping me in navigating the treacherous bureaucratic

procedures to have this (Inter-University) master thesis. A big thanks to my teacher for

Embedded System courses Prof.Koen Langendoen and all my teachers who have

made an impact in my life. I would also like to thank my cousin Abhimanyu Kaushal and

his better half Vaishally Bhardwaj, for their kind support and bearing with my sense of

humor. At last, my friend Berkin for all the good moments we had together and the late

night “walk the talk” that helped me relieve the stress. My thanks to TU Delft and EPFL

for sponsoring my research through JvE Research Grant and SEMP scholarship.

iii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Context . 1

1.2 Motivation. 3

1.3 Contributions. 4

1.4 Thesis Organisation . 5

2 Literature Review 7

2.1 Architectural Simulators. 7

2.1.1 Target metric/Figure of Merit . 8

2.1.2 Scope of target . 9

2.1.3 Input to Simulators . 9

2.1.4 Driving agent of Simulation. 10

2.2 Simulation Errors . 10

2.3 Validation Methodologies. 11

3 Preliminary Work 15

3.1 gem5 Extensions for RISC-V: gXR5. 15

3.2 gXR5 Models . 17

3.2.1 CPU Model . 17

3.2.1.1 Stage-I: Fetch1 . 17

3.2.1.2 Stage-II:Fetch2 . 18

3.2.1.3 Stage-III: Decode . 18

3.2.1.4 Stage-IV: Execute . 19

3.2.1.5 Pipeline . 19

3.2.2 gxR5 - Memory system . 19

3.2.2.1 Classical Caches . 20

3.2.2.2 DRAM models . 22

3.2.3 gXR5-Branch Predictor Models . 23

3.2.3.1 Local Branch Predictor 23

iv

Contents v

3.2.3.2 Tournament Branch Predictor 24

3.2.3.3 Bi-Mode Branch Predictor 24

3.2.3.4 TAGE Branch Predictor 24

3.2.3.5 Multi-perspective Perceptron Branch Predictor 24

3.2.3.6 TAGE-Statistical Correlator and Loop Predictor Branch

Predictor . 25

3.3 Target Hardware . 25

3.3.1 Sifive Highfive Unleashed . 26

3.3.1.1 Micro-architecture . 26

3.3.2 Rocket Chip . 28

3.3.2.1 Hardware set-up . 29

3.3.2.2 Micro-architecture . 31

4 Methodology 37

4.1 Benchmarks: stress-ng . 37

4.1.1 Profiling stress-ng Benchmarks . 38

4.1.2 Classification of Benchmarks . 40

4.2 Validating against Sifive Unleashed . 42

4.2.1 MinorCPU. 42

4.2.1.1 Calibrating Arithmetic Functional Units 44

4.2.1.2 Calibrating Memory Execution Units 45

4.2.1.3 Calibrating the Branch Execution Unit 46

4.2.1.4 Design Space Exploration of Branch Predictors 49

4.2.2 Caches . 50

4.3 Validating against Rocket System . 51

4.3.1 MinorCPU:Functional Units Latency . 52

4.3.1.1 Estimating Latency of SPFMA unit 54

4.3.1.2 Estimating Latency of DPFMA unit 55

4.3.1.3 Estimating Latency of FP Division unit 57

4.3.2 MinorCPU: Branch Predictor . 59

4.4 Concluding remarks . 60

5 Results and Discussion 65

5.1 Profiling SPEC2017 benchmarks. 66

5.2 Validated Simulator . 67

5.2.1 Target: Sifive Unleashed . 67

5.2.1.1 Stress-ng . 67

5.2.1.2 SPEC suite . 69

Contents vi

5.2.2 Target: Rocket System . 70

5.2.2.1 Stress-ng . 70

5.2.2.2 SPEC suite . 71

6 Conclusion 75

6.1 Refining the proposed methodology . 75

6.2 Reflecting on the Results . 76

References 84

A Publications 85

B RISC-V ISA selected Instructions 95

C C Code 96

C.1 ILP Modeling: Parsing and Generating constraint equations 96

C.2 GShare Brach Predictor model in gem5 .101

D Stress-ng Benchmark suite 104

E SPEC2017 Benchmarks 106

F Full DPS48E1 Slice functionality 108

G ILP Modeling 109

G.1 Single Precision Fused Multiply and Accumulate109

G.2 Double Precision Fused Multiply and Accumulate110

G.3 Floating Point Division: Division by Convergence116

H gXR5 Specifications 125

Nomenclature

AMAT: Average Memory Access Time

BHT: Branch History Table

BPKI: Branch per Kilo Instructions

BRAM: Block Random Access Memory

BTB: Branch Target Buffer

CHISEL: Constructing Hardware in a Scala Embedded Language

DPFMA: Double Precision Fused Multiply Accumulate

DSP: Digital Signal Processing

FP: Floating Point

FPGA: Field Programmable Gate Array

FS: Full System

gXR5: gem5 Extensions for RISC-V

HBM: High Bandwidth Memory

HPC: Hardware Peformance Counters

ILP: Integer Linear Programming

IMLI: Inner Most Loop Iterator

IntALU: Integer Arithmetic & Logic Unit

IPC: Instruction per cycle

LPDDR: Low Power Double Data Rate

M-PATH: Modulo Path history

vii

Nomenclature viii

MAC: Multiply and Add

MAPE: Mean Absolute Percentage Error

MBKI: Misses per Kilo Instruction

MBPKI: Mispredicted Branches per Kilo Instructions

MIPS/KIPS: Million/Kilo Instructions per second

MMU: Memory Management Unit

MP-BP: Multiperspective Perceptron Branch Predictor

MSHR: Miss Status Handling Register

PC: Program Counter

PPN: Physical Page Number

RAS: Return Address Stack

RR: Random Replacement (Cache Policy)

RTL: Register-Transfer Level

SE: System Emulation

SPFMA: Single Precision Fused Multiply Accumulate

TAGE_SC_L: TAGE, Statistical Correlator and Loop Predictor

VPN: Virtual Page Number

XSDB: Xilinx System Debugger

List of Figures

1.1 gem5 Simulator Infrastructure . 2

1.2 Configuring gem5 via python scripts . 4

1.3 Comparison of RISC-V architectural simulators 5

3.1 High-level view of gXR5 running on host system 16

3.2 Simplified model of gXR5 full system simulator [11] 16

3.3 Simplified MinorCPU model in gXR5 . 18

3.4 Comparison of Open-source RISC-V hardware[58]. 26

3.5 Sifive F5400-C000 Top Level Block Diagram 27

3.6 Chisel to synthesizable verilog translation 29

3.7 Rocket system Emulated on FPGA . 30

3.8 Booting Linux on rocket system emulated on VC707 FPGA 31

3.9 Rocket core: 5 stage pipeline [67] . 32

3.10 Rocket Core: Gshare Branch Predictor 33

3.11 Rocket Core: L1-Instruction Cache . 34

3.12 Rocket Core: L1-Data Cache . 35

4.1 Methodology: Component Level Calibration 39

4.2 Profiling stress-ng benchmarks for (a) functional unit utilisation and (b)

branch incidence (using Branches Per Kilo Instruction (BPKI) as the figure

of merit). 40

4.3 Calibration strategy . 43

4.4 Comparison of Baseline simulator and hardware running stress-ng bench-

marks . 44

4.5 An example of control related stalls . 47

4.6 Sample RISC-V Assembly Code . 48

4.7 Missed-BPKI for default tournament branch predictor 48

4.8 Misprediction rate for different Branch Predictor 50

4.9 Reduction in average miss latency for L1 Instruction and Data caches . . 51

4.10 Simulator Vs. Hardware IPC at different calibration stages 52

4.11 DSP48E1 slice functionality . 53

4.12 3-stage pipeline ports A and B of DPS48E1 slice [68] 54

ix

List of Figures x

4.13 Single Precision Floating Point Format IEEE- 745 55

4.14 Sequencing graph for DPFMA Unit . 56

4.15 Double Precision Floating Point Format IEEE- 745 57

4.16 Sequencing graph for DPFMA Unit . 62

4.17 Sequencing graph for FP Division Unit . 63

4.18 Gshare Branch Predictor model high level view 64

5.1 Profiling SPEC2017 benchmarks for (a) functional unit utilisation and (b)

branch incidence. 66

5.2 Error in IPC at different stages of validation against Sifive Unleashed . . . 68

5.3 Sifive Unleashed vs. Simulator IPC for selected memory stressors 68

5.4 Sifive Unleashed vs. Simulator IPC for stress-ng benchmarks 69

5.5 Sifive Unleashed vs. Simulator IPC for selected SPEC2017 benchmarks 70

5.6 Rocket System vs. Simulator IPC for stress-ng benchmarks 71

5.7 Error in IPC at different stages of validation against Rocket system 72

5.8 Branch mis-prediction rates for Tournament and Gshare branch predictor

for stress-ng benchmarks . 73

5.9 Rocket System vs. Simulator IPC for selected SPEC2017 benchmarks . 73

5.10 Branch mis-prediction rates for Tournament and Gshare branch predictor

models for SPEC2017 applications . 74

F.1 Xilinx 7 Series DSP48E1 Slice [68] . 108

List of Tables

2.1 Past simulator validation efforts with reported errors for benchmarks. . . . 14

3.1 Technical specifications of simulated models and target hardware. 36

4.1 Instruction Operation Classification by Utilized functional unit 39

4.2 Instruction Operation Classification by Utilized Memory R/W functional units 39

4.3 Benchmarks Analysis . 41

4.4 Classification of Benchmarks . 42

4.5 Single Precision Fused Multiply and Accumulate (SPFMA) operations’

dependency . 56

4.6 Double Precision Fused Multiply and Accumulate (DPFMA) operations’

dependency . 58

4.7 Division by Convergence operations and the operation dependency . . . 59

B.1 Selected RISC-V Instructions . 95

H.1 Selected attributes of Baseline and Validated Simulator (against Sifive

Unleashed . 125

H.2 Selected attributes of Baseline and Validated Simulator (against Rocket

System) . 125

xi

1
Introduction

1.1. Context

Computer Architects rely on simulators to evaluate the design options before fabricating

the real hardware.These simulators can be classified broadly into two categories: Func-

tional and Performance Simulators. The functional simulators (also called ISA-simulators)

provide a qualitative test of the simulated hardware. Since these simulators abstract

from the micro-architectural details, they have very high simulation speed. Examples of

such simulators include Spike [1], QEMU [2], sim-safe model of SimpleScalar [3] etc. On

the other hand, the performance simulators (also called Timing-simulators) model the

micro-architecture of the hardware, thereby giving cycle-accurate statistics. Often, these

simulators are event-driven (as opposed to clock-driven) to make up for the decreased

simulation throughput. Examples of such simulators are gem5 [4], GEMS [5], PTLsim [6],

etc.

Simulators can also be categorised into Application-specific and Full-system simu-

lators. Application-specific simulators can execute synthetic micro-benchmarks. Poor

simulation throughput, usually measured in KIPS/MIPS [7], restricts the use of large

applications that require Operating System (and its libraries) to be run on these simulators.

RTL simulations fall into this category of simulators. A full system (FS) simulator executes

the user space applications atop filesystem and kernel, thereby enabling wider range

of applications that can be run on the simulated hardware. gem5 stands as one the

strongest open-source simulators that provides full-system capabilities, high reconfig-

urability as well as compatibility with other modeling tools such as Ramulator (modelling

DRAMs) and McPAT (modeling Power). gem5 is a merger of two simulator infrastructures,

namely m5[8] and GEMS[5]. It derives the memory system from GEMS and the CPU

1

1.1. Context 2

models from the m5 network simulator. It supports full system simulation and system

emulation by providing tunable system-level architectural models as well as processor

micro-architectural models. These models are made ISA-agnostic by remapping ISA

specific instructions into “op-classes”. The Figure 1.1 depicts the gem5 simulator with

gem5 decoder enabling re-use of various models for different ISAs being simulated. The

ease of reconfigurability makes gem5 one of the most versatile open source architectural

simulator. Moreover, gem5 supports system emulation (SE) mode whereby the system

calls are emulated on the host system and the results are delivered to the guest (simu-

lated) system. This guest to host translations improves the simulation throughput but

at the same time adversely affects the accuracy (i.e., it increases the disparity between

performance statistics compared to the actual hardware) of the simulator.

Figure 1.1: gem5 Simulator Infrastructure

1.2. Motivation 3

1.2. Motivation

The RISC-V ecosystem has been witnessing tremendous push by the industrial players

to accelerate adoption of RISC-V chips in IOT, mobiles, Data centres, automobiles

etc [9]. Hardware prototyping is expensive and time taking and so, many industrial

players (such as ARM) use full-system simulators to accelerate the chip development

process[10]. These simulators have to be representative of the performance of the target

hardware. A simulator validated for performance against an actual RISC-V hardware

would be a defining contribution towards accelerating RISC-V proliferation. Moreover,

the methodology for validating simulators have not been streamlined yet. The “gem5

eXtensions for RISC-V” [11], from now on gXR5, is a full-system simulator built on top

of gem5. The objective is to bridge these research/industrial gaps by validating gXR5

against commercially launched Sifive Highfive Unleashed Freedom board [12] as well

as RISC-V Rocket core [13] emulated on VC707 FPGA [14]. The Sifive Unleashed is

a first Linux capable RISC-V system that is commercially available. The soundness of

the proposed methodology to validate is illustrated by validating gXR5 against the IP

protected processor, details of whose micro-architecture is not open source. On the

other hand, rocket core is one of the most popular open source RISC-V hardware [15]. It

has been chosen as a target hardware to prove the fidelity of the proposed methodology.

gXR5 builds upon the gem5 simulator and hence, inherits the ISA-agnostic models

such as CPUs, Caches, Interconnects, DRAM Controllers etc available in gem5. These

behaviour models are written in C++ and made configurable via python bindings (Figure

1.2). Hence, simulation models can be configured via python scripts, facilitating fine

changes in micro-architecture rather easily. Moreover, the python configuration scripts

accept arguments via the command line to change the attributes of the models.

The conventional RTL test bench simulation of processors has been used in industry

given its cycle-accurate performance statistics [16]. Unfortunately, the overhead of RTL

design, development, and simulation for architectural exploration is large. In order to

see the impact of minor change in the ISA (say adding vector instruction) on user-level

benchmarks, extensive changes have to be made in RTL model of the processor core,

peripheral systems,test bench, and even the compiler (or cross-compiler). Not to forget,

RTL simulation has a very poor simulation throughput compared to This significantly

restricts the utility of such RTL simulations for rapid SoC development.

Other simulators such as QEMU [2], SystemC [16], SPIKE [1], and OVPsim [17]

have been widely used for simulating systems based on other ISAs (x86 and ARM). The

OVPsim does not provide cycle-accurate results unlike gem5. A noteworthy competitor

1.3. Contributions 4

Figure 1.2: Configuring gem5 via python scripts

of gem5 is QEMU, which supports full-system simulation of RISC-V based platforms

but only emulates system calls in the host platform, thereby losing greatly on accuracy

compared to gem5. On the other hand, SPIKE only simulates the CPU core and caches,

thereby offering far inferior functionality compared to gem5. The Figure 1.3 depicts the

trade off between accuracy and speed of various simulators. gXR5 brings the best of both

worlds, higher speed (compared to RTL Simulations) and higher accuracy (compared to

functional simulators).

1.3. Contributions

This work proposes a new methodology that is accurate, fast and generic for validating

gXR5. The accuracy is on par with existing full system simulators for x86 and ARM

architectures. It is faster in terms of the validation process as it requires far less simulation

runs to achieve similar performance accuracy compared to the existing methodologies.

Moreover, one does not need to perform extensive hardware characterisation as only

1.4. Thesis Organisation 5

Figure 1.3: Comparison of RISC-V architectural simulators

Instruction and Cycle counts are used. Lastly, the methodology is generic and can be

extended to other ISA based processors. The key contributions of the work are as follows:

1. a novel “component-level” calibration methodology for fine-tuning and validating

full system simulators and demonstrated it’s advantages using gXR5 and two real

RISC-V implementations;

2. the implementation and the validation of the first Gshare branch predictor model

compatible with current multi-threaded gem5 CPU models;

3. the performance validation of open source gXR5 using selected SPEC CPU2017

benchmarks and real HiFive Unleashed SoC and Rocket Chip emulated on FPGA.

We show our simulated results to be within 19-23% as compared to the two hardware

targets above.

4. removed the need for licensed FPGA emulation to run user’s workload on Rocket

Chip, making the Rocket Chip ecosystem completely open source.

The thesis makes the system design ecosystem truly open source. It provides validated

open source simulator targeting open source hardware based on open source ISA (RISC-

V).

1.4. Thesis Organisation

The thesis carries out a brief survey of various architectural simulators and sources

of errors in simulators in Chapter 2. It then highlights the existing methodology of

1.4. Thesis Organisation 6

micro-architectural level calibration using Hardware Performance Counters to validate

simulators. It gives an estimate of the acceptable error in simulators used in industry/a-

cademia. Chapter 3 highlights the background work, including experimental setup, and

detailed elaboration of selected gXR5 models. The micro-architecture of the open-source

hardware (Rocket chip) is discussed only from the point of view of validation (with the

focus on latency of different components). Chapter 4 is the heart of the thesis wherein the

methodology is proposed and CPU model of the simulator is calibrated against the two

target hardware. Chapter 5 discusses the performance results for selected SPEC2017

benchmark applications.

2
Literature Review

“There are three kinds of lies: lies, damned lies and statistics”

-Mark Twain/Benjamin Disraeli

Architectural simulators provide a platform for the computer architects to evaluate system

performance quickly. A good number of these simulators have been built to serve

pedagogical needs in universities such as ANT [18], CPU Sim [19], RM [20], etc. The

chapter focuses on simulators that find themselves in research and industrial applications.

It also provides a concise ‘state-of-the-art’ in performance validation of simulators. It

is expected to give the reader an idea about the standard ‘accuracy’ of the simulators

that are industrially relevant, despite having errors. The sources of errors that are

common to all the architectural simulator have also been discussed. Finally, the existing

methodologies for carrying out performance validation of simulators (especially full-system

gem5 simulations) have been summarised.

2.1. Architectural Simulators

The section restricts itself to simulators capable of simulating the entire computer system.

Multicore and multi-processor simulators such as Structural Simulator Toolkit (SST)

[21], ZSim [22], Sniper [23] have been kept out of the scope as the focus of the work

is on validation of single-core simulation. The objective of the survey is to situate the

gem5 full-system simulator among the cohort of the available simulators, highlighting its

importance for RISC-V ecosystem.

The various simulators can be classified based on the target metric, the method of

7

2.1. Architectural Simulators 8

driving the simulation and interaction between simulation models, and complexity of

simulation models. The following sections classifies the existing simulators.

2.1.1. Target metric/Figure of Merit

The architectural simulators can fall into following three broader categories depending

upon the intended use or target metric.

• Functional Simulators: The Functional Simulators are essential in testing the

models to be simulated before timing details are incorporated in the models. These

simulators abstract from micro-architectural level details thereby making them

computationally lighter. Hence, these are also called ISA-simulators. Examples of

functional simulators include SimSafe model of SimpleScalar simulator [3], ‘Atomic

CPU’ model of gem5 simulator [4], etc. Other functional simulators that support

RISC-V ISA are Spike [1] and QEMU [2] . Similar functional simulator exist for GPUs,

such as Barra [24] which is capable of running CUDA applications on modeled

GPGPU.

• Timing/Performance Simulators: The Performance or Timing Simulators model

micro-architectural details. Although, the granularity of modeling micro-architectural

details vary across these simulators (and even within a simulator, such as different

CPU models), the primary objective of these simulators is to serve as a tool to

gauge and improve the actual hardware that has been modeled. RTL simulators

(with test benches running micro-benchmarks) is one such simulator that models

even the gate (or combinational logic) delays, and thus, comes out as the most

fine-grained simulator (as far as abstraction in modeling is concerned). gem5 is one

of the most prominent performance simulators. gem5 has been the focus of this

study and has been described in detail in Section 3.2.3. DRAMSim [25] is a timing

simulator for modeline memory system. It models memory controller behaviour

for various DRAM protocols such as DDR3, DDR4, LPDDR and HBM. Another

memory system simulator, the Ramulator [26] performs similar functionality but it is

highly extensible and modular. Both DRAMSim and Ramulator are compatible with

gem5 (and can be used with the gem5 CPU models to simulate the entire system).

SiNUCA [27] is a simulator developed for modeling non-uniform memory accesses.

• Power/Energy Simulators: The power/energy simulators evaluate energy and

power (and area in some cases) of the modeled hardware. McPAT (Multi-core,

Power, Area, Timing) simulator [28] can give designers metrics such as energy-

delay-area2 product (EDA2 P) and energy-delay-area product (EDAP). Though,

current versions of McPAT has not been extended for RISC-V ISA. Hence, making

2.1. Architectural Simulators 9

McPAT compatible with gXR5 is a promising research gap to be filled. One of the

earliest Architecture-Power simulators include Wattch [29] that provides framework

to optimize micro-processors for power consumption. There are a plethora of

energy simulators. HotSpot [30] models the die and the package as circuit of

resistance/capacitance. These models can then be used at the architectural level

for power modeling of SoCs.

2.1.2. Scope of target

The simulators can be classified into Full-system or System Emulation depending upon

how the system calls are handled by the simulator.

1. Full-System Simulators: A Full-System (fs) simulator is one that is capable of

executing user space applications on top of filesystem atop kernel. The kernel

resides in the simulated hardware which runs on the host hardware. One of the

earliest and arguably most popular of its time was SimOS fs-simulator capable

of simulating MIPS CPU with memory virtualisation by MMU [31]. Sunflower [32],

PTLsim [6] and MARSS-x86 [33] , MARSS-RISCV belong to this category. However,

the PTLSim and MARSS-x86 have been designed for simulating 64-bit x86 system.

2. System Emulation Simulators: System Emulation simulators are capable of

executing applications that require OS services/libraries by bypassing the system

calls to the host system. These simulators suffer from high error when system

calls make up significant proportion of the workload. QEMU [2] and gem5 system

emulation are examples of this type of simulator.

2.1.3. Input to Simulators

The simulators can be classified into trace and executable driven based on the type of

application being run.

• Trace driven Simulators: The trace driven simulator uses a pre-compiled set of

instructions. The benchmarks are compiled on hardware and the trace of instruc-

tions recorded is then fed to the simulator. This leads to the simulator not modeling

mis-speculation-logic (eg. branch mis-predictor). Though attempt have been made

to incorporate extra logic implementing the mis-speculation path. Since the trace

is collected from executing benchmark on another system, the accuracy of the

simulator suffers. Shade is one of the earliest trace-driven ISA-simulator. Other

such simulator includes MASE [34] which is built on top of Simplescalar toolset [3]

and combines timing and performance model for a single core.

2.2. Simulation Errors 10

• Executable driven Simulators: Executable driven Simulators simulate the actual

hardware, including the mis-speculations and squashing logic to restore the state

of the system/processor. Hence, they are much more accurate but at the cost of

complex code/logic of models and decreased simulation throughput. Simplescalar

and SESC [35] fall into this category of simulators.

2.1.4. Driving agent of Simulation

Lastly, the simulators can be clock or event driven. These two types have been described

below:

• Clock driven Simulators: The clock-driven simulators evaluate the modeled

system at every rising/falling edge of the clock. RTL simulation that is highly

accurate (and computationally intensive) is an example of clock-driven simulations.

The impracticality of such simulators in executing macro benchmarks led to the

development of event driven simulators.

• Event driven Simulators: In these type of simulators, the clock runs in background

but the simulator evaluates the system only when a event takes place. Often these

simulators are modular and hence, the modules interact by way of events. There

is an event handler/scheduler that schedules/re-schedules the events sitting in

an event queue. Simulating at the events significantly increases the simulation

throughput without losing much on accuracy. SESC [35], gem5 [4], SST [21] are

examples of event-driven simulator designed for MIPS ISA. The challenge arises

in parallelizing the simulations (using OpenMP/MPI) as the events are sequential.

However, considerable parallelism can be achieved in (sequential) event-driven

simulations by using SimPoint [36] to parallelize the benchmark applications (such

as SPEC2017) based on statistical sampling.

2.2. Simulation Errors

The Error in IPC and Execution time of simulator (Vs. target hardware) remains one of

the most important metric, apart from the simulation throughput (measured in KIPS/MIPS)

[22], [37], [38]. High-level computer architects often rely on execution time of simulators

to gauge the run-time of application on real hardware. The hardware designers use IPC

to measure improvements in (modeled) hardwares. The simulation throughput reflects

the practicality of using simulators and is used to compare simulators. Attempts have

been made to streamline the methodologies to reduce this error. Before proceeding to

2.3. Validation Methodologies 11

the following section that describes these methodologies, it is important to discuss and

distinguish the source of errors across simulation platforms. The sources of errors in the

simulator can be placed into following three categories:

• Abstraction Errors: The developer makes a conscious decision of choosing the

level of abstraction while modeling the actual hardware. The higher the abstraction,

the less computationally intensive would be the simulations. Abstraction comes at

the cost of accuracy. For example, Integer Division (by convergence) Functional

unit may be modeled with a fix latency irrespective of the operands being operated

upon. The hardware unit will have different latency for division operation depending

upon how quickly the denominator converges to value of one.

• Modeling Errors: These errors are due to the designer failing to understand the

functionality of the actual hardware being modeled. For example, the data cache

access may be taking two clock cycles in the actual hardware but has been modeled

with one clock cycle latency.

• Specification Errors: The specification errors are the most challenging of all.

These represent errors due to the lack of knowledge of the architectural details

of modeled hardware . A common reason for this is the behind the veil micro-

architecture of commercial boards.

Needless to say, all the existing performance validation methodologies target the

specification errors while validating for IPC/Execution time. The modeling errrors can

be resolved by doing the functional validation. The simulators are validated against

commercial ARM, x86 ISA compliant boards/processors. The following section discusses

these methodologies.

2.3. Validation Methodologies

The earliest methodology for validating architectural simulators can be described as

“validation by inspection” [39] wherein multiple simulation runs would lead to enough

performance data that could be used to reduce error in the simulator. Gutierrez et al.

validate Out-of-order (OoO) CPU model of gem5 against ARM A15 core. They use

selected (11 out of 29 applications) SPEC2006 [40] benchmarks with train inputs set to

calibrate for gem5 for run time against the actual hardware. Since, they rely on replicating

the actual micro-architecture, they reduce the modeling errors significantly. They achieve

a mean run time error for selected SPEC applications of 13% and for selected (7 out

of 13 applications) PARSEC benchmark, an error of 11% and 12% for single and dual

cores respectively. In more recent work Qureshi et al [41] tune and validate performance

2.3. Validation Methodologies 12

of in-order and OoO cores against a real ARM JUNO platform developed by ARM (2015)

with a mean absolute error (MAE) below 4 %. The methodology can be at best described

as trial and hit method or validation by empirical inspection. Similar work has been done

by [42] wherein they modify Out-of-Order (OoO) CPU model of gem5, making the pipeline

in-order. This new CPU model is validated against a single and dual core leading to

just 8 % run time errors (for single threaded ARM Cortex-A8, single and dual threaded

ARM Cortex-A9) for selected (10 out of 13) PARSEC benchmarks [43]. Butko et al [44]

calibrated GEMS for the ARM Cortex-A9, bringing the error between 1.39 % and 17.94%

for SPLASH-2 [45], ALPBench [46] and STREAM [47] benchmark applications.

Desikan et al. [48] have extended SimpleScalar toolkit for simulating Aplha ISA. They

validate this simulator (SimAplha) against alpha 21264 processor of DS-10L Workstation.

They propose the methodology of using micro-benchmarks to calibrate individual models

of the simulator. These microbenchmarks are divided three categories - “C ”(Control),

“E” (Execute) and “M” (Memory):

1. C micro-benchmarks: These stress the front-end of the processor (Instruction

(pre)fetches, line predictors, way predictors, branch predictor, etc.) They are further

categorised into control-conditional (C-C), control-recursive(C-R), control-switch

(C-S) and complex-control (C-O).

• C-C: Implement simple if-then-else construct.

• C-R : Tests the indirect jumps by having recursive function calls.

• C-S: Implements 10-way switch case statements within a loop.

• C-O: It is a hybrid of C-C and C-S, which loops over if-then-else statements.

2. E micro-benchmarks: These test the functional units. They are categorised into :

• Execute-independent: They add the index variable to eight independent,

integers stored in registers. They do it 20 times each within a loop.

• Execute-float-independent: They have similar functionality as execute-

independent except that they operate on floating point numbers.

• Execute-dependent: They implement (register) dependent chain of operations

within a loop.

3. M micro-benchmarks: These are categorised into following subcategories:

• Memory-independent: These repeatedly execute the independent loads

thereby testing the L1 Data cache bandwidth.

• Memory-dependent: These test the L1 Data cache latency by walking a linked

list.

2.3. Validation Methodologies 13

• Memory-L2 and memory-memory micro-benchmarks are similar except that

the working set size is kept large enough to intentionally cause L1/L2 cache

misses.

The IPC error for these benchmarks are brought down from 74% to 2% for the above

benchmarks. The validated simulator has less than 20% error for macro-benchmarks

derived from SPEC2000 [49] benchmark suite.

Alves et al. [27] follow a similar approach by designing SiNUCA micro-benchmarks

[50] for validating the cycle-accurate, trace-driven SiNUCA (Simulator for Non-Uniform

Cache Accesses). These micro-benchmarks are classified into four categories, Control

benchmarks (comprising of Control Conditional, Control Switch, Control Random and

Control Complex), Execute benchmarks, Dependency benchmarks (stressing forward

dependency between instructions) and Memory benchmarks. The simulator has been

validated against Sandy bridge processor with (geometric) mean error in IPC of 6% for

the above micro-benchmarks.

Akram et al.[51] use the SiNUCA micro benchmarks to validate gem5 against Intel

(x86) i7-Core (Haswell micro-architecture). Additionally they use Hardware Performance

Counters (HPCs) to observe the micro-architectural events in the actual hardware. The

Pearson’s coefficient [52] is used to find the correlation between error and the micro-

architectural event. Pearson’s correlation coefficient can capture the strength of corre-

lation as well as the direction of error (positive correlation implies that the simulator is

overestimating the performance of micro-benchmarks). They reduce the error in the

micro-benchmarks to 6% and also implement a loop predictor in gem5. However, the

validated simulator has not been tested by running macro-benchmark suite. Similar

work (using HPCs and correlation coefficients) have been carried out for calibrating

Out-of-Order (OoO) CPU model in gem5 against ARM Cortex-R8 CPU.

Recently, an attempt has been made to streamline the design of these synthetic

benchmarks used to calibrate the simulator models. Huppert et al. [53] have designed

micro-benchmarks for calibrating memory hierarchy using simplistic technique of ‘Data-

pinning’. The working set size is made to reside at different memory levels to calibrate

access latency using HPCs. Unfortunately, the methodology can not be extended to

calibrate other models (especially as complex) as CPU.

Section 4 proposes and implements the new methodology. The methodology reduces

the specification errors in simulator by 20% just by calibrating the CPU model. The past

attempts for validating simulators have been summarised in the Table 2.1.

2.3. Validation Methodologies 14

Validated

Simulator

Target Hardware Training Set Error Test Set Error

SimAlpha DS-10L worksta-

tion (Compaq

Alpha 21264 pro-

cessor)

Synthetic mi-

crobenchmarks

IPC Error of less

than 2 %

selected mac-

robenchmarks

derived from

SPEC2000 suite

IPC Error of 18 [48]

%

SiNUCA Sandy bridge pro-

cessor

Synthetic mi-

crobenchmarks

IPC Error of 9 %

SPEC2006 suite

having an IPC Error

of 19% [27]

gem5 ARM Versatile Ex-

press TC2 develop-

ment board

SPEC and PAR-

SEC

SPEC and PAR-

SEC Run Time Er-

ror of 13 % and 11

% [39]

gem5 Cortex-A53 core

of MediaTek Helio

X20 SoC

Synthetic mi-

crobenchmarks

SPEC2006 suite

IPC Error of 20 %

[53]

gem5 Arm R8 CPU Embench workload

CPI Error of 13 %

No macro-

benchmarks

were run [54]

gem5 Intel Core-i7

(Haswell Micro-

architecture)

Synthetic micro-

benchmarks IPC

Error of 6 %

No macro-

benchmarks

were run [51]

gem5 ARM Cortex-A8

(dual core, Snow-

ball SDK), ARM

Cortex-A9 (single

core,BeagleBoard-

xM SDK)

PARSEC Selected PARSEC

benchmarks (with

simsmall input set),

Run time Error of 8

% for both [42]

GEMS ARM Cortex-A9

(Snowball SKY-

S9500-ULP-C01)

SPLASH-2, ALP-

Bench, STREAM

same as test set,

Run time Error of

1.39% to 17.94 %

[44]

Table 2.1: Past simulator validation efforts with reported errors for benchmarks.

3
Preliminary Work

This Chapter delves into the the details of gXR5 models along with the simulation set-up.

It gives an overview of the simulator, CPU models, memory system, etc. The micro-

architecture of the two target hardware, namely Sifive Highfive Freedom Unleashed

board and UC-Berkley’s Rocket core has been dealt in detail.

3.1. gem5 Extensions for RISC-V: gXR5

gXR5 is a linux capable full-system simulator for RISC-V ISA based uni-core platforms.

It is an event-driven, full-system performance simulator that builds on gem5 and so, it

inherits all the models (CPU, caches, DRAM, TLBs, etc.) of gem5. Akin to gem5, it runs

on top of the host OS and hardware (usually a different ISA). Figure 3.1 depicts the gXR5

running benchmark applications atop (guest) OS and simulated (guest) hardware, atop

(host) OS and (host) hardware.

The simulator comes with a python interpreter that helps configure and instantiate

the corresponding C++ models as discussed in Chapter 1. The simulator is run in full

system mode by configuring (and connecting) the built-in processor, caches and memory

models with the Simple Board components.The built-in UART model is used to interface

an external terminal and PCI host model is used to interface the storage to the rest of the

system via the the Platform Level Interrupt Controller (PLIC). The PLIC interfaces with

the CPU to assign the interrupts to the core whereas the Core Local Interrupt Controller

manages the software and timing interrupts of each individual core. Figure 3.2 provides

a high level view of the built gXR5-full system simulator. The CPU model used is an

in-order MinorCPU model that is interfaced with classical caches and Main memory

by buses. Since gXR5 supports SV39 virtualization, the addresses undergo virtual to

15

3.1. gem5 Extensions for RISC-V: gXR5 16

Figure 3.1: High-level view of gXR5 running on host system

physical translations via walkers or translation buffers (TLBs) before accessing the L2

cache and main memory. It is important to dive into the implementation details of these

C++ models. Hence, the following section describes the micro-architectural details of the

CPU,caches and DRAM models.

Figure 3.2: Simplified model of gXR5 full system simulator [11]

3.2. gXR5 Models 17

3.2. gXR5 Models

The basic building blocks of gXR5 are the Simobjects. A Simobject is a C++ wrapped

object that can be configured and interfaced via the python configuration scripts. Almost

all objects in gXR5 (such as CPU, caches, TLBs, branch predictor, functional units, etc)

inherit from the Simobject. The Simobjects derive from the class Eventmanager which

implements functionalities of scheduling/re-scheduling and waking up the events.

3.2.1. CPU Model

gXR5 comes with four in-built CPU models- Minor (in-order), Out-of-Order (O3), Atom-

icSimple and TimingSimple CPU models. The AtomicSimple and TimingSimple CPU

models are single cycle CPU models (without pipeline). MinorCPU models derive from

the BaseCPU model that implements the basic functionalities such as setting up a fetch

request, handling pre-execute setup, handling post-execute actions, and advancing the

PC to the next instruction. MinorCPUmodel is an in-order four stage pipelined CPUmodel

with following stages :Fetch1, Fetch2, Decode and Execute. These stages are connected

through input buffers that hold the instructions in case of a stall. The instructions traverse

through to the next stage of the CPU only when the subsequent stage’s input buffer has

space to accommodate the instruction. Figure 3.3 depicts Minor CPU model with the

four aforementioned stages.

Stage-I: Fetch1

The Fetch1 stage fetches the instruction from the L1-instruction cache and passes it

onto the Fetch2 stage. Fetch1 unit tags the cache line fetched to enable Fetch2 unit

to distinguish between sequential fetches (pc+4) and branched fetches (Target PC).

The branched fetches are indicated by ”change of stream” signal communicated by

Fetch2 (during branch predictions) and Execute stages (during branch mispredictions).

Upon receiving the ”Change of stream” signal Fetch1 unit starts fetching from the new

program counter which is fed by Fetch2 stage (or by Execute stage incase of branch

mis-prediction). In case of contention between Fetch2 and Execute stage ”change of

stream” signal, the Execute stage overrides. The Fetch1 stage comprises of two queues,

namely, the Request Queue and the Transfer Queue that keeps track of the requests

made to the caches (through the Address Translation Buffer) and responses received,

respectively. The instructions are fetched from memory only if it can reserve a space in

input buffer to Fetch2 unit, justifying the need to have Request and Transfer Queues.

3.2. gXR5 Models 18

Figure 3.3: Simplified MinorCPU model in gXR5

Stage-II:Fetch2

The Fetch2 stage comprises of a Branch Predictor Unit. There are numerous built-

in branch predictor models in gXR5 such as Tournament Bi-mode, Multiperspective

Perceptron, TAGE branch predictor, etc. The branch predictor can be chosen and

configured into the system via the python configuration script. The Branch predictor

either signals ”change of stream” (while branch is taken) or feeds the Decode stage with

a sequential instructions (while branch is not Taken). Fetch2 stage also performs a sanity

check on stream number (tags attached by Fetch1 unit) and discards the instructions

having different sequence number from that of predicted sequence number. This way

the input buffers are flushed in-case of branch prediction/mis-prediction. The instructions

are packed into vectors and sent to the next pipeline stage. The Fetch2 unit updates the

Branch Target Buffer (BTB) and Branch History Table (BHT) with the updates received

from Decode Unit.

Stage-III: Decode

The Decode stage breaks the instructions into micro-ops and packs these into vectors

before passing them to the input buffers of the Execute stage.

3.2. gXR5 Models 19

Stage-IV: Execute

The input buffer to the Execute stage stores the micro-ops. The Execute stage itself

is divided into issue, execute, and commit sub-stages. The micro-ops rest at the issue

stage if the corresponding functional unit is pre-occupied. Once the functional unit is

available, the micro-op is popped from the issue buffer and executed. The commit stage

marks the end of instruction life-cycle. The size of the output vector (number of micro-ops

packed) from Decode stage and the size of the input buffer to Execute Unit are intricately

related and hence should be tuned simultaneously, otherwise it will lead to stalls. The

data fetch requests to memory go through Request and Transfer Queues (similar to

Fetch1 Unit). A separate Store buffer ensures that the load and store operations do not

hinder each other.

Pipeline

The pipeline class has an “event” associated with it which is scheduled for every clock tick.

The event triggers the method “evaluate()” that calls evaluate method on each stage in

reverse order. The order ensures that when the next stage of the cpu stalls, the previous

stages too shall stall.

Listing 3.1: Pipeline-MinorCPU model

void

P ipe l i ne : : eva luate ()

{

cpu . t i c k () ;

execute . eva luate () ;

decode . eva luate () ;

fe tch2 . eva luate () ;

fe tch1 . eva luate () ;

}

3.2.2. gxR5 - Memory system

The memory system in gem5 comprises of memory objects (caches, DRAM, etc), ports

and packets that are transferred between memory objects. All memory objects inherit

from the MemObject class which implements basic functionality such as returning the

slave/master port based on name and index. The Memobjects are connected to each

other and the CPU via the ports. The ports come in pairs - master and slave. CPU can

have more than one master ports interfacing to main memory. Similarly, the DRAM can

3.2. gXR5 Models 20

have multiple slave ports feeding multiple memory objects (caches) and CPU. The ports

have send and receive functions that implement sending and receiving (at the peer side)

the packets.

To illustrate the flow of data from CPU to main memory, a request object is created

with following attributes :

1. Virtual address (in case of virtually addressed caches/memory) or physical address.

2. Data size.

3. Time stamp of request created.

4. Thread ID creating the request.

5. The Program Counter creating the request (say, Load/Store instruction)

The request transcends the different memory objects/ports and is broken up in packets.

A request travels from sender to the ultimate receiver and back, whereas the packets

are exchanged between two objects. The packet encapsulates the following (and not all)

important attributes:

1. The address: This is derived from the address specified in the request object.Hence,

this could be physical or virtual address. In case of a cache miss, this address will

be different from the address specified in the request object.

2. The Data size: In case of a cache miss, the entire block needs to be fetched from

the main memory to the cache. This is the only scenario when the data size of

packet would be different from the requester objects data size.

3. A pointer to the data being manipulated.

4. A flag to indicate success of data transfer and otherwise.

The memory objects and CPU can be connected and configured by python scripts. The

following sections give an overview of the built-in memory objects used in gXR5, namely,

Classical Caches and DRAM Models.

Classical Caches

The classical caches are non-blocking caches, i.e., they support hits under a miss by

hosting a Miss Status Holding Register (MSHR). The various attributes of caches such as

cache and block size, associativity, cache block replacement policy, write back/through

policy, etc. are parameterized and can be configured by the corresponding python

script for caches. The classical caches come with just MOESI coherence protocol and

support snooping for maintaining cache coherency. In gXR5, the snooping requests have

been made different from ‘normal’ memory requests. The snooping requests traverse

3.2. gXR5 Models 21

horizontally and up the cache-hierarchy whereas the memory requests go down the

cache/memory hierarchy. Similarly, the snooping responses travel horizontally and

vertically down on the same route as the snooping requests.

The caches are interfaced to the main memory via the coherent bus (cross-bar). The

cross-bar has slave ports on the CPU side and master ports on the main memory side.

The average memory access time (AMAT) for caches in gXR5 can be mathematically

represented by the following equations.

Average Memory Access T ime = (Hit T ime)L1 + (Miss rate)L1 ∗ (Miss Penalty)L1

(3.1)

where

Miss penaltyL1 = (Hit T ime)L2 + (Miss rate)L2 ∗ (Miss Penalty)L2 (3.2)

Where, in gXR5

Hit time = f(response latency, data latency, tag latency) (3.3)

Miss penalty = f(mshr queue size,Hit time of lower level memory) (3.4)

Miss rate = f(associativity, clusivity, replacement policy) (3.5)

The hit-time, miss penalty andmiss rate can be fine-tuned to bring the AMAT (of instruction

and data fetches) of simulated memory system closer to the actual memory system.

The miss penalty associated with last level cache (L2) is dependent on the DRAM

model (access latency). The precise latency for load/store instruction has been sum-

marised by Wang et al. [54] as follows:

LatL1D = OpLatMem +Max(TagLatL1D, DataLatL1D) (3.6)

The OpLatMem represent the latency of the Load/Store Unit (LSU). The tag comparison

and the data access happen in parallel and hence, a maximum latency of both is added to

the LSU latency to get the hit latency of L1 Data Cache represented as LatL1D. Similarly,

in case of L1 miss, the total latency comprises of LSU latency, tag look up latency, X-bar

latency, access latency of L2 cache and the latency encountered in the return path

(RespLatL1D).

LatL2 = OpLatMem + TagLatL1D +RespLatL1D +MemLatL2 + LatXbar (3.7)

The following section presents an overview of the DRAM controller models available in

3.2. gXR5 Models 22

gXR5/gem5.

DRAM models

gXR5 comes with in-built DDR3, DDR4, Low Power DDR (LPDDR) and High Bandwidth

Memory (HBM) models that derive from the class ‘DRAMCtrl’. The class ‘DRAMCtrl’

implements basic functionality associated with DRAMs such as ranks, banks, DRAM

packets. It also holds data structures (queues) for tracking read/write requests received

by the DRAM. Few of the DDR models available and their peak transfer rates have been

summarised below.

1. DDR3_1600_8x8 with peak transfer rate of 12.8 GBps. The DRAM operates at

1600 MhZ.

2. DDR3_2133_8x8 with a peak transfer rate of 17.0 GBps. The DRAM operates at

2133 MhZ.

3. DDR4_2400_16x4 with a peak transfer rate of 19.2 GBps. The DRAM operates at

2400 MhZ.

4. DDR4_2400_8x8 with a peak transfer rate of 19.2 GBps. The DRAM operates at

2400 MhZ. In comparison to the previous DRAM model, this has 8 banks each 8

bit wide.

5. LPDDR2_S4_1066_1x32 with a peak transfer rate of 4.3 GBps.

6. HBM_1000_4H_1x64 with a peak transfer rate of 8.0 GBps.

The default scheduling policy implemented by the DRAMCtrl is ‘frfcfs’ i.e first come

first served with row-open hit (first row) being prioritised. The default configuration also

uses single bank (group) in a rank with a single channel to the memory.

gXR5 uses the classical caches with one and two level hierarchy along with in-built

DDR3 and DDR4 DRAM models. The default configuration of these models are used to

replicate the DRAMs used in Sifive Unleashed board and Rocket system emulated on

FPGA, leaving calibration of the memory hierarchy as future work.

The focus of work is on calibrating the Minor CPU model. Branch predictors are

an indispensable part of modern processor and the biggest source of performance

discrepancy for simulators. The following section gives an introduction to the types and

micro-architecure of the in-built branch predictor models available in gXR5. The models

are desrcibed breifly as a design space exploration has to be carried out to choose a

model that is closest to the actual branch predictor used in hardware.

3.2. gXR5 Models 23

3.2.3. gXR5-Branch Predictor Models

The Base class for all branch predictors models in gXR5 is BPredUnit that inherits from

the SimObject class. Some of the basic and important public member functions of the

‘BPredUnit’ class are as follows:

1. bool lookup (ThreadID tid, Addr instPC, void *&bp_history) : The function looks up

the branch prediction decision based on PC and branch history. Since theMinorCPU

model is multithreaded, each thread (tid) has its own history, PC, prediction, etc.

(the ‘Context’). The function returns either true or false based on the prediction

‘taken’ and ‘not-taken’ respectively.

2. void update(ThreadID tid, Addr branchAddr, bool taken, void *bpHistory, bool

squashed, const StaticInstPtr & inst, Addr corrTarget): The function updates the

branch history (actual) decision. This could be local or global history depending upon

the type of branch predictor implemented. The function also handles ‘squashes’

incase of branch misprediction.

3. void btbUpdate(ThreadID tid, Addr branchAddr, void * &bpHistory): The function

updates the BTB with the target address.

4. TheISA::PCState BTBLookup (Addr instPC): The function looks for given PC in the

BTB.

5. void uncondBranch(ThreadID tid, Addr pc, void * &bpHistory): The function is called

for unconditional branches and updates the bpHistory with (always) ‘taken’.

The other member functions implement squashing, logic for valid BTB addresses in

case of BTB update, etc. The current gem5 repository (that gXR5 inherits from) has the

following MinorCPU compatible branch predictors:

1. Local Branch Predictor

2. Bi-Mode Branch Predictor

3. Tournament Branch Predictor

4. TAGE Branch Predictor (with Statistical Correlator and Loop Predictor)

5. Multi-perspective Perceptron Branch Predictor

The following section briefly describes these branch predictor models.

Local Branch Predictor

The Local branch predictor predicts the branch based on local history of each branch.

Each branch address is used to index into the local counters which hold the history of a

3.2. gXR5 Models 24

particular branch. It uses a 2-bit (default) saturating local counter. This is perhaps the

most basic branch predictor implemented in gXR5.

Tournament Branch Predictor

The branch predictor comes with a single global history register that is updated for

every take/not taken (actual) outcome of the branch. Along with the global history, the

local history is maintained for each branch address (PC) with a configurable saturating

counter. There also exists choice counters that decide between global and local history

based prediction. The choice counters are indexed by the global history (masked by

‘choicehistorymask’). The choice counter is incremented if the outcome matches the

global history based prediction and decremented otherwise. A pre-defined threshold is

set for choice counters, above which the global history predictor is chosen.

Bi-Mode Branch Predictor

The Bi-mode predictor comes with two direction predictors and a choice predictor, alike

the aforementioned Tournament Predictor. The fundamental differentiating factor being

that the direction predictors are indexed by hash of branch address (PC) and global

history register.

TAGE Branch Predictor

The TAGE branch predictor [55] implemented in gXR5/gem5 follows the TAGE branch

predictor proposed in Branch Predictor Championship. It comes in two flavors-16KB and

64KB size. The default implementation has 8-component TAGE predictor with seven

T-Tables and a basic branch predictor (tag-less, bi-mode indexed by PC). The T-Tables

are indexed by hashing the branch address (PC) and the variable (geometric progression

series) global history. The prediction by basic predictor is chosen only incase of Tag

miss in all the T-Tables. The implementation is based on the predictor proposed at the

Branch Predictor Championship.

Multi-perspective Perceptron Branch Predictor

The Multiperspective Perceptron branch predictor [56] (MP-BP from now on) adds more

‘perspectives’ beyond the conventional perspectives (discussed above such as local and

global history) to make direction predictions. These include the PATH history, Inner-Most

Loop Iterator (IMLI), Modulo-PATH history (MPATH), etc. Trained weights are attached

to all these perspectives that are used to index the table of counters.

3.3. Target Hardware 25

TAGE-Statistical Correlator and Loop Predictor Branch Predictor

The TAGE-Statistical Correlator and Loop Predictor branch perdictor (TAGE-SC-L BP

[57], from now on) comes with a TAGE branch predictor backed by statistical correlator

and loop predictor. The statistical correlator makes up for the poor performance of TAGE

predictor in case of branches that have only a small bias towards a direction, but are

not strongly correlated with the history path. The TAGE performs poorer than normal

PC indexed prediction in such cases. Hence, the statistical correlator decides whether

to invert the direction predicted by TAGE predictor or not. The loop predictor simply

identifies regular loops with a fixed number of iterations and makes predictions.

The gXR5 ISA-agnostic models discussed above can simulate a wide range of SoCs.

The models are aptly abstracted from finer details (like gate and combinational delay) and

hence, save a lot of computation power thereby increasing simulation throughput. The

functional units too follow the same principle. The functional units are modeled as black

boxes with tune-able latency such as ‘Issue Latency’, ‘Operation Latency’, etc. The micro-

architectural details such as type of adder (say ripple-carry, carry-skip, etc.), multiplier

(say higher radix, iterative, etc.) can be implemented by changing the aforementioned

latency attributes. Nevertheless, it is important to delve into the micro-architectural details

of the target hardware in order to reduce the performance disparity between simulator

and actual hardware.

3.3. Target Hardware

The following section describes the micro-architecture of the target hardware. gXR5

is being validated against two target hardware, namely, Sifive Highfive Freedom Un-

leashed[12] and Rocket Chip [13] emulated on VC707 FPGA [14]. The Sifive Unleashed

is the first Linux Capable RISC-V board that is commercially available. On the other

hand, RISC-V Rocket Chip is one of the most popular open-source processor available.

Figure 3.4 uses git activity, citations , tape outs and FPGA emulations of open source

hardware including CVA6, BOOM (out-of-order) and Shakti processor. Rocket stands

out as the most promising candidate to test the fidelity of the proposed methodolgy.

3.3. Target Hardware 26

Figure 3.4: Comparison of Open-source RISC-V hardware[58].

3.3.1. Sifive Highfive Unleashed

The Sifive Highfive Freedom Unleashed is a quin-core, Linux-capable SoC. It has four

FU540-C000 in-order CPU capable of hosting Linux. The other core, the S51, supports

Real-Time Operating Systems. The FU540-C000 (also referred to as U54) is a RV64GC

core. The figure 3.5 provides a high-level view of the Unleashed board. We base our

simulated model and validation effort on single-core workloads executing on the U54

core. The following section divulges the micro-architectural details of U45 core available

in the public domain.

Micro-architecture

The U54 core has a high performance single-issue 64-bit execution pipeline, sustaining

a peak throughput of one instruction per clock cycle. It comes with a dynamic branch

prediction scheme and IEEE-754-2008 adherent floating point units, including fused

multiply and accumulate units. The core is capable of supporting up to 512 GB of

virtual address space using SV39 virtualisation scheme. The core supports the standard

RV64GC ISA.

Core

3.3. Target Hardware 27

Figure 3.5: Sifive F5400-C000 Top Level Block Diagram

The U54 core is a single issue (scalar) 5-stage pipeline in-order core that supports

Machine, Supervisor and User privileges modes. The U54 has support for Sv39 virtual

memory support with a 39-bit virtual address space, 38-bit physical address space, and

a 32-entry Translation Buffer. The U54 cores support data forwarding to overcome data

dependencies. The pipeline comprises five stages: instruction fetch, instruction decode

and register fetch, execute, data memory access, and register writeback. It has floating

point units along with 30-entry branch target buffer (BTB) which caches the target of

taken branches, a 256-entry branch history table (BHT), which stores the direction of

conditional branches, and a 6-entry return-address stack (RAS). The latency of various

functional operations are given below (refer Appendix B for details) :

1. LW has a two-cycle result latency, assuming a cache hit.

2. LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

3. CSR reads have a three-cycle result latency.

3.3. Target Hardware 28

4. MUL, MULH, MULHU, and MULHSU have a 5-cycle result latency.

5. DIV, DIVU, REM, and REMU have between a 2-cycle and 65-cycle result latency,

depending on the operand values.

The limited micro-architectural details of the U54 core poses a challenge for validating

gXR5. The actual functional unit type and its latency, branch predictor used and its size,

etc. need to modeled or existing models in gXR5 have to be tuned so as to reduce the

disparity between simulator and actual hardware.

Memory Hierarchy

The freedom board comes with 32 KiB 8-way L1 Instruction and Data caches. The

shared L2 cache is 2 MiB 16-way associative having coherency fabric. A DDR3/4

controller is used to interface the external DDR3/4/3L DRAM. The maximum data transfer

rate from the DRAM used on board is 2400MT/s. The DDR subsystem operates on a

separate clock running at 1/4 the DDR data rate.

The IP-protected U54 core with least micro-architectural details made public, provides

a perfect avenue to test the soundness of the proposed validation methodology (Chapter

4). To prove the fidelity of the methodology, an open source hardware, namely Rocket

core has also been chosen as the target hardware for validation of gXR5. The RISC-V

based rocket system enjoys wide popularity among enthusiasts of open source hardware.

The following section introduces the rocket system and its emulation on FPGA.

3.3.2. Rocket Chip

Rocket core is a 5-stage in-order scalar processor core developed at UC Berkeley and

currently supported by SiFive. It implements the RV64G ISA and comes with Memory

Management Unit (MMU) that supports page-based virtual memory and non-blocking

data cache. Rocket also supports the RISC-V machine, supervisor, and user privilege

levels.

The rocket core [13] along with L1 Cache is called a ‘tile’. The source code of the rocket

tile is written in chisel (Constructing Hardware in a Scala Embedded Language [59]) that

can be translated into verilog. It is high level abstraction language to describe hardware

that makes configuring rocket with different components effortless. For example, the

chisel libraries come with various types of adders implemented (ripple carrry, carry skip,

etc.) that can be included in rocket core. Though this comes at the cost of less control

over micro-architecture. Rocket makes use of UC Berkeley’s Chisel implementations of

floating-point units [60].

3.3. Target Hardware 29

The performance validation is done for a single rocket core emulated on Xilinx VC707

Virtex Evaluation Kit. The software stack used is U-boot, OpenSBI and the Linux 5.7

kernel. The following sections describe the hardware set-up and the rocket core architec-

ture in detail. The optimized micro-architecture post synthesis on FPGA is discussed in

Chapter 4. The discussion in this chapter has been restricted aspects of core that do not

change with synthesis optimisation strategies.

Hardware set-up

The Chisel source code for Rocket Tile can be converted to synthesizable verilog targeting

FPGA and ASIC [13]. The repository also provides source files to build C++ emulator

and verilog files for RTL simulation. The VCS-synopsys tool [61] can be used to carry

out RTL simulations with cross-compiled micro-benchmarks (available as part of ‘tests’

in RISC-V toolchain [62]). Open source Verilator [63] (verilog to C++) can also be used

to simulate rocket core. However, the emulator provides insufficient details (such as

cycle-accurate) on latency of different functional units. The various steps in translating

chisel to synthesize-able verilog is given in Figure 3.6. The Chisel build dependencies

include SBT and Mill. The Chisel source code is compiled to give intermediary FIRRTL

files. The FIRRTL files are circuit level hardware description code that is compiled to

emit verilog files for synthesizing on FPGA.

Figure 3.6: Chisel to synthesizable verilog translation

The rocket core can be configured to use two level cache heirarchy (for multi-core

system) with coherency protocols. The emulated system uses one level cache (Instruction

and Data) as depicted in figure 3.7. The caches are interfaced to the main memory via

Tilelink. The DDR DRAM used is vivado’s IP for DDR3 DRAM model. The UART is open

source verilog [64] file used to interface with the system terminal. The rocket repository

3.3. Target Hardware 30

provides package with definitions for generating JTAG bus interfaces. The repository

also provides RTL packages using diplomacy to generate bus implementations of AMBA

protocols, including AXI4, AHB-lite, and APB.

Figure 3.7: Rocket system Emulated on FPGA

Once the system is synthesised (using Vivado HLS [65]) and bitstream (and memory

configuration file) uploaded on FPGA, a baremetal program is run on the emulated core

using Xilinx System Debugger (XSDB) [66]. The Xilinx System Debugger uses Xilinx

hw_server as the underlying debug engine. It can be used to put the cross-compiled elf

file on to the HART (Hardware Thread). It provides the functionality of suspending the

HARTs, repointing the Program Counter to the cross-compiled elf and executing the elf

file. It also provides a mechanism to observe the contents of the register (including PC,

SP, etc) change with the time. The bare metal program (.elf) helps in setting the jumpers,

switches and matching the baudrate of terminal receiving the data from UART (FGPA).

The bare metal program can be replaced by the actual bootloader, thereby confirming

that the system has been successfully emulated. Further, QEMU can be used to debug

and check the first stage bootloader by packing the firmware with next stage bootloader.

For running Linux on the emulated rocket system, the disk is created with two partitions,

one for the bootloader and the other for rootfilesystem. The figure 3.8 represents the

process of bootloading Linux. The I/O crossbar interfaces the Rocket system with

3.3. Target Hardware 31

peripherals. The Default Program Counter points to the bootloader in the non-volatile

memory (bootrom). The bootrom and the device tree are part of the bitstream uploaded

on the FPGA. The program flow jumps to the First Stage Bootloader(FSBL) that copies

the bootloader and VM Linux to the BRAM. The system then goes into User mode,

relinquishing the control of program counter to the Operating System (Linux). The UART

communicates to the host terminal and can be used to send command line instructions.

Since the emulated system runs at a frequency of 100 Mhz and has low throughput, cross-

complied benchmarks are put on the disk, instead of compiling them on the emulated

system.

Following emulation of full-system on FPGA, the verilog source files along with chisel

description of the hardware has been analysed to divulge the micro-architectural details

of the emulated system. The system emulated is the default configuration of the rocket

repository.

Figure 3.8: Booting Linux on rocket system emulated on VC707 FPGA

Micro-architecture

The rocket core comes in four flavors - ‘Big’, ‘medium’, ‘small’ and ‘tiny’. The features in

each core has been summarised below:

1. Big core:

• SV39 memory virtualisation support (Translation Buffers, Page Table Walkers

etc.)

• Floating Point Functional Units: Single precision and double precision fused

3.3. Target Hardware 32

multiply and accumulate units with 3 and 4 clock cycles latency (as specified

in chisel source code).

• Non blocking Instruction and Data caches.

2. Medium core: Identical to the Big core except for the lack of floating point units.

3. Small core: Identical to theMedium core except for the lack of memory virtualisation

support.

4. Tiny core: Identical to the Small core except for the lack of Branch Target Buffer

(BTB).

I base the validation effort against the Big core emulated on the FPGA.

Core

The Figure 3.9 shows the 5-stages of the rocket core. The first stage ‘PC Generate’

calculates the program counter for sequential fetches (pc+4) and branched fetches (BTB

or target address calculation). The second stage ‘Fetch’is associated with address

translation and accessing the the Instruction from the cache. The third stage ‘Decode’

decodes the instruction into micro-operations. The fourth stage ’Execute’ hosts the

functional units followed by the last stage ‘Memory’ wherein the memory (or D cache) is

updated . The ‘Commit’ stage can be clubbed with the ‘PC Generate’ state, making the

pipeline 5-stages deep.

Figure 3.9: Rocket core: 5 stage pipeline [67]

The default configuration of Big core uses a Gshare branch predictor. The Gshare

branch predictor is parameterizable and implements a hash of PC and global history

register bits to access the Pattern History Table having 2-bit counters (strongly/weakely

3.3. Target Hardware 33

taken/not-taken) for prediction. The equations 3.8 and 3.9 represent the hash function

implemented in the Ghsare branch predictor.

Hash_1(Global_History) = Resize(Integer(

√
3

2
∗2History_length∗Global_History)) (3.8)

Hash_2(Branch_PC) = Resize(Branch_PC >> log2(fetch bytes)) (3.9)

The resize function packs the computed output of the Hash match the length of number

of entries of Pattern History Table. A high level view of the Gshare branch predictor is

depicted in Figure 3.10. The branch predictor is complemented by 28 entry BTB table

and a 6-entry RAS. The Big core comes with standard integer functional units. These

Figure 3.10: Rocket Core: Gshare Branch Predictor

include a 32-bit ripple carry adder (with one clock cycle latency) and an iterative multiplier

that takes 8 clock cycles for 32 by 32 integer multiplication. It takes one clock cycle to

load the multiplier with the operands and another clock cycle to put the result on the

output bus. Hence, it has a total of 10 clock cycle latency. The latency of these integer

functional units has been matched with the hardware.

Memory Hierarchy

The default configuration of the rocket tile was emulated. It has a 16KB 4-way

associative L1-I and L1-D caches. The L1 Instruction cache is three stage pipeline with

data access latency of 2 clock cycles under a hit. The L1 Instruction cache has been

depicted in Figure 3.11. The virtual page number (VPN) to physical page number (PPN)

3.3. Target Hardware 34

takes place in the stage 1 followed by tag comparison to check for corresponding data is

cache. In case of a tag hit, the requested Instruction is sent to the CPU, otherwise the

request goes down the memory hierarchy necessitating a cache block replacement.

Figure 3.11: Rocket Core: L1-Instruction Cache

Similar to the instruction cache, the data cache completes the tag comparison and

serves the request of data fetch in 2 clock cycles in case of a tag hit. There is an additional

stage for hosting miss status holding register that keeps a track of hits under a miss. The

L1 caches are multiplexed and interfaced directly to the main memory via Tilelink. A single

core system emulated on FPGA does not need any cache-coherency protocol. However,

the rocket core comes with the option of having shared L2 cache with coherency fabric

supporting multi-core systems. The DDR3 RAM used is a single bank, 64 bit wide device

giving a peak transfer rate of 1.6 Giga Bytes per second.

The gXR5 simulator uses in-order Minor CPU model for modeling both the Sifive

and Rocket cores. DDR4_2400_16x4 and DDR3_2133_8x8 DRAM models are used for

modeling Sifive board and Rocket system respectively. The frequency of CPU and DRAM

models match the frequency of operation of the Sifive board. Whereas, for modeling the

Rocket system emulated on the FPGA, modeling to actual frequency ratio of 10.665 is

chosen for both CPU and DRAMs. This is due to the fact that frequency of operation of

Figure 3.12: Rocket Core: L1-Data Cache

DRAM models in gXR5 can not be changed. The simulated and the hardware technical

specifications have been summarised in the Table 3.1. The following Chapter introduces

the performance validation methodology for gXR5. The methodology can be extended for

other ISAs such as ARM, x86 etc. The chapter also gives insights into empirical analysis

of Minor CPU model.

35

3.3. Target Hardware 36

Component
HiFive Unleashed

(Hardware Vs. Simulator)

Rocket

(Hardware Vs. Simulator)

CPU Core U54 MinorCPU Big Core MinorCPU

CPU ISA Extension RV64GC RV64G RV64GC

CPU Frequency 1 GHz 0.1 GHz 1.0665 GHz

L1 Instruction &

Data Cache

32KB 8-Way 16KB 4-Way

L2 shared Cache 2 MB 16-Way None

MMU Sv39

Modes Machine, Supervisor, User

RAM DDR4 DDR4_4x16 DDR3 DDR3_8x8

RAM

Frequency
2400 MHz 200 MHz 2133 MHz

RAM

Size
8GB 4GB

System

Bus
TileLink XBar TileLink XBar

Table 3.1: Technical specifications of simulated models and target hardware.

4
Methodology

“The mere act of observing the system

changes the state of the system”

-Observer Effect

The Chapter introduces a new methodology of calibrating the MinorCPU model in gXR5.

The methodology deviates from the conventional methodology of “micro-architectural”

level calibration using Hardware Performance Counters as discussed in Chapter 2. The

proposed methodology uses component level calibration, proving to be much faster and

arguably more accurate than the existing methodology. CPU model, namely, MinorCPU

is calibrated against Sifive Highfive Unleashed Freedom U54 core as well as against ”Big-

core” of the Rocket-chip emulated on VC707 FPGA. The Chapter begins with profiling of

selected benchmark suites used for calibration and delves into the empirical analysis

of the performance statistics of the simulated hardware. This is followed by fine-tuning

of the models to reduce simulated performance discrepancy compared to the target

hardware. This chapter contains the majority of the thesis contributions.

4.1. Benchmarks: stress-ng

The stress-ng benchmarks were originally designed to perform accelerated stress-tests

of a particular component of the computing system and to cause thermal overruns. The

benchmark suite has been divided into classes of ”stressors”, with each class stressing

a particular component. For example, the memory class of stressors stress the main

37

4.1. Benchmarks: stress-ng 38

memory of the system. The stressor classes are further divided into methods. The stress-

ng benchmarks are a collection of micro-benchmarks. They are more representative of

time complexity of actual workload than micro-benchmarks and at the same time they

give enough granularity at the level of micro-architecture so as to calibrate the simulator

against the hardware. This proposed methodology of using stress-ng benchmarks is

called “component-level” calibration as against “micro-architectural-level” calibration. The

Figure 4.1 captures this idea. The stress-ng CPU class benchmarks can be further

classified into Control, Memory and Compute/Arithmetic intensive. The section 4.1.2

discusses the metrics used to classify the stressors into above mentioned categories.

The stress-ng benchmarks measure the performance of the underlying hardware

through a metric called ”bogo ops” (or rate, bogo ops/second). Bogo ops are representa-

tive of the workload and gives a rough estimate of the performance. One bogo op is one

loop iteration of stressor action. For example, ”sqrt” stressor method of class CPU finds

the square root of a random number. Finding square root of one random number amount

to one bogo op. This benchmark when run on hardware for 5 seconds reports 2388 bogo

ops. Hence, square roots of 2388 random numbers are calculated at a rate of 477.6

(bogo ops/s) per second. Another example is of the CPU class stressor with method

”prime” that finds the first 10000 prime numbers using a slightly optimised brute force

naïve trial division search. The selected benchmark suite comprises of the following ten

methods of class CPU: rand48, prime, queens, stats, trig, int64longdouble, longdouble,

intconveresion, matrixprod, and sqrt. The detail functionality of these microbenchmarks

is in the Appendix D.

Before starting to validate the simulator, it is necessary that the workload (in this case

stress-ng benchmarks) are using the simulator. This gives the much needed details for

the designer to understand the (micro)architecture of the simulated models.

4.1.1. Profiling stress-ng Benchmarks

The selected CPU class stress-ng benchmarks were profiled using gXR5 to understand

the workload characteristics. The source code of the stressors were analysed to get

insights such as working set size and control complexity (Table 4.3). As mentioned in

Chapter 1, Figure 1.1 the gem5 decoder maps the instructions to ‘op-classes’. These op-

classes are then assigned to a functional unit inside gXR5. gXR5 simulations statistics re-

port the relative number of the instructions executed belonging to each op-class/functional

unit. The intensity of use of various functional units varies for each benchmark. This has

been depicted in Figure 4.2. All the selected stressors have high Integer Functional Units

4.1. Benchmarks: stress-ng 39

Figure 4.1: Methodology: Component Level Calibration

utilisation (60 to 99%). The Integer Functional Units include IntALU, IntDiv and IntMult

functional units each having the corresponding op-class. Similarly, the Floating Point

Units have multiple functional units as depicted in the Table 4.1.

The stressor ‘stats’ has considerable floating point operations whereas the ‘queens’

and ‘rand48’ have significant Memory R/W (Load/Store) operations. The Working set

size further decides whether the Memory operations would be caches or main memory

access. Analysing the source code of the stressors, the size of the data being operated

upon can be assessed. This ‘working set size’ of the stressors is summarised in the Table

4.3. The working set along with the size, associativity and clusivity of caches decides the

exact cache/memory level being stressed by the stressor.

IntFU FloatFU

IntALU IntDiv IntMult FloatAdd FloatCMP FLoatCvt FloatMult FloatDiv FloatMisc FloatMultAcc FloatSqrt

Table 4.1: Instruction Operation Classification by Utilized functional unit

Memory Read/Write Functional Units

MemRead MemWrite FloatMemRead FloatMemWrite

Table 4.2: Instruction Operation Classification by Utilized Memory R/W functional units

4.1. Benchmarks: stress-ng 40

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0

20

40

60

80

100

In
st

ru
ct

io
ns

 (%
)

Integer Functional Units
Floating Point Functional Units

Memory R/W Functional Units

(a) Functional Unit Utilisation

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0

100

200

300

400

BP
KI

Indirect Branches Conditional Branches

(b) Conditional and Indirect Branch

Instructions

Figure 4.2: Profiling stress-ng benchmarks for (a) functional unit utilisation and (b)

branch incidence (using Branches Per Kilo Instruction (BPKI) as the figure of merit).

The benchmarks’ branch characteristics were also profiled. A higher branch incidence

in a benchmark sets it apart from others and has to be tuned separately. The Figure of

Merit chosen to profile the benchmarks was ”Branch per Kilo Instructions” (BPKI). Figure

4.2 depicts the incidence of Branches for the stressors. The control structure of stressors

has been summarised in the Table 4.3. Most of the stressors have a regular for loop. The

‘queens’ and ‘matrixprod’ have nested “for-while-if” statements and nested “for-for-for”

loops. The ‘sqrt’ stressor has “if-else” inside regular “for” loop.

Once the benchmarks were profiled on Baseline gXR5 configuration (refer Appendix

??), the classification of benchmarks was necessary to streamline the calibration effort

for reducing disparity between gXR5 and the target hardware. The classification helps in

ensuring that rest of the stressors are not ‘de-tuned’ while tuning for a particular stressor.

The following section discusses the metrics chosen to further classify the CPU class

stressors.

4.1.2. Classification of Benchmarks

The initial profiling carried out is used to classify the CPU stressors into three categories:

• Arithmetic/Compute Intensive: Having 20 % or more integer/floating point ‘op-

classes’ or functional unit utilisation.

• Memory (Load/Store Intensive): Having 20 % or more read/write memory functional

4.1. Benchmarks: stress-ng 41

Benchmarks
Working Set Size

(Bytes)
Control-Structure

Int64LongDouble 80 for

IntConversion 32 for

Queens 64 for-while-if

Stats 2096 for-if

Trig 36 for

Prime 16 for-if

Matrixprod 196,624 for-for-for

LongDouble 32 for

Rand48 20 for

Sqrt 84 for-if

Table 4.3: Benchmarks Analysis

unit utilisation.

• Control Intensive: Having at least 100 conditional BKPI incidence with nested

control statements.

This classification of benchmarks facilitates tuning for complementary and mutually

exclusive stressors. For example, stressors that are compute/arithmetic intensive can be

calibrated for just by configuring Integer/Floating Point functional units. At the same time,

tuning for control intensive stressors would not lead to de-tuning of arithmetic intensive

stressors. This leads to stressors falling into (at least) one of the three categories as

summarised in the Table 4.4. All the stressors are arithmetic intensive. Two stressors,

namely ‘Queens’ and ‘Rand48’ are memory (Load/Store intensive). The Load/store

instructions might be accessing the caches, RAM, or storage. With the exception of three

stressors, ‘Rand48’, ‘Intconversion’ and ‘stats’ all the stressors are control intensive. The

Classification of benchmarks aligns with similar work done for x86 [51] and ARM cores

[54].

4.2. Validating against Sifive Unleashed 42

Benchmarks Arithmetic Intensive Memory Intensive Control Intensive

Int64LongDouble X X

IntConversion X

Queens X X X

Stats X

Trig X X

Prime X X

Matrixprod X X

LongDouble X X

Rand48 X X

Sqrt X X

Table 4.4: Classification of Benchmarks

4.2. Validating against Sifive Unleashed

The stressors are run on Sifive board for an execution time of 5 seconds. The only

Hardware Performance Counters used were the instructions and the clock cycles. The

hardware characterisation is significantly reduced owing to the methodology of targeting

IPC of hardware and the simulator. The following section applies the proposed method-

ology to calibrate for the Sifive U54 core. The same set of stressors were executed in

simulator for 5 seconds.The U54 core supports hardware performance monitoring facility

compliant with the RISC-V Instruction Set Manual, Volume II: Privileged Architecture,

Version 1.10.

4.2.1. MinorCPU

The MinorCPU model, as discussed in Chapter 3.2 gives fine granularity in modelling

the micro-architecture of an actual CPU. Some of the important tunable attributes of the

Minor CPU model are summarised below:

• Fetch1toFetch2Delay: Delay in clock cycles from fetch1 to fetch2 stage.

• Size of input buffers to fetch2, decode and execute stages

• Number of simultaneous accesses to memory allowed.

• fetch2 to fetch1 (backward) delay in communicating the branch prediction decision.

• execute to fetch1 delay for communicating the branch execution decision.

• Size of the Load and Store queues.

• Number and Latency of the functional units.

4.2. Validating against Sifive Unleashed 43

Figure 4.3: Calibration strategy

A large number of attributes (such as listed above) helps in bringing the simulated models

close to the actual hardware and have high level of configurability (for modeling different

hardwares). However, the down side of having large number of attributes is the huge

design space that needs to be explored. Having a strategy to implement the methodology

was instrumental to reduce the design space. The baseline simulator underestimated the

performance of almost all the stressors compared to the actual hardware. The Figure

4.3 captures this strategy. The baseline simulator’s functional unit latencies in MinorCPU

model was matched with the latency of the functional units of U54 core as described in

section 3.3.1. This is called the ‘baseline’ simulator. The problem at hand becomes a

challenge of identifying bottlenecks in the simulator untill its performance is at par with

the actual hardware. The Figure 4.4 depicts the performance of the baseline simulator

compared with the hardware for the selected CPU stressors. Performance of all, except

one (‘Stats’), stressor is underestimated by the simulator. This is because the baseline

simulator has multiple floating point op-classes mapped to the same functional unit. Since

‘stats’ is the only application that has considerable floating point operations, the simulator

over-estimates the performance for ‘stats’.

4.2. Validating against Sifive Unleashed 44

in
tc

on
ve

rs
io

n
pr

im
e

sq
rt

st
at

s
tri

g
in

t6
4l

on
gd

ou
bl

e
lo

ng
do

ub
le

m
at

rix
pr

od
qu

ee
ns

ra
nd

48

0.0

0.2

0.4

0.6

0.8

1.0

IP
C

Baseline Simulator HighFive Unleashed

Figure 4.4: Comparison of Baseline simulator and hardware running stress-ng

benchmarks

Calibrating Arithmetic Functional Units

The baseline simulator has a pool of functional units instantiated. These are integer and

floating point multiply, divide, Square-root, fused multiply and accumulate and integer

functional units. Each functional unit has tunable attributes such as latency (of operation),

Source Register Relative Latency, Extra Assumed Latency, etc. The latency of operation

is the number of cycles the functional unit takes to execute the micro-operation. The

Source Register Relative Latency models the number of clock cycles the data required

by particular functional unit is available in the source registers. Expiry of the said clock

cycles leads to new data being put from memory/Cache. Increasing this value can

lead to memory read operations taking longer (i.e., stalls) because of unavailability of

register files, whereas, reducing the latency puts pressure of L1-Data cache. Extra

Assumed Latency has been introduced to give the designer another variable to fine tune

the functional unit operational latency.

A preliminary (functional unit) design space exploration is performed to identify plau-

sible sources of performance bottleneck (in CPU). The latency of the various functional

units are decreased to find the effect on the performance. The decrease in latency of

most functional units leads to increase in stall cycles thereby implying that the functional

units such as integer multiply/ALU and floating point functional units are not the bottleneck.

4.2. Validating against Sifive Unleashed 45

However, the integer division unit greatly affects the performance of the stressor ‘prime’

as it has more than 20 % of the total Instructions using division functional unit. The

latency of integer division unit is explicitly specified to be between 2 and 65 clock cycles.

The ‘prime’ stressor was used to fix the latency of the Integer division functional unit. A

latency of 19 clock cycles for the integer division unit brings the performance statistics

for the ‘prime’ stressor (having high division functional unit utilisation) closer to actual

hardware performance results. The IPC error for Prime benchmark reduces from -77%

to -2% (negative values denote that the simulator underestimates the IPC).

The integer and floating point functional units are not the bottleneck for performance.

A decrease in latency leads to the CPU idling which indicates that its functional units are

awaiting new data or instructions to be operated upon. Hence, the bottleneck is either

memory bandwidth or control hazards. Data dependency is ruled out as the MinorCPU

model supports data forwarding. The Data path to memory travels via the memory read

and write functional units. Hence, the attributes of these units were calibrated before

calibrating the L1 level caches. These Memory Read/Write functional units model the

front end of memory latency.

Calibrating Memory Execution Units

The memory read and write functional units are the next most utilised functional units.

Calibrating these functional units is expected to reduce the IPC error of the memory

intensive benchmarks. Since these affect the front end latency of the memory, reducing

the read/write functional unit latency will reduce the memory access latency related stalls

in the execute stage.

The operational latency of these units is reduced to 2 and 1 clock cycles, respec-

tively. A further decrease in latency leads to overestimation of IPC for Memory Intensive

benchmarks. Moreover, reducing the Source Register Relative Latency adversely affects

the performance as it leads to more L1 data cache accesses and thrashing. This is due

to the fact that operand in source registers is short lived and has to be fetched again

from the data cache when micro-ops sit in the issue buffer awaiting functional units to be

available. The MAPE in IPC for the selected stressors reduce from 36% to 19.9%.

The MinorCPU model exhibits ‘decoupling’ of CPU stall cycles and IPC. Conventional

wisdom suggests that an increase in CPU stalls will lead to reduction in IPC. In case

of control hazards, the CPU stalls (Fetch2 and Fetch 1 stages) but the presence of

buffers in the Decode and Execute stages ensures that the functional units are busy

executing the instructions prior to branching. For example, in a large input buffer to

Execute and Decode stages can lead to higher IPC even though there are increased

4.2. Validating against Sifive Unleashed 46

CPU stalls due to branch misprediction. A sample RISC-V assembly code is depicted

in Figure 4.6 along with the corresponding micro-operations utilizing various functional

Units. The pipeline timing diagram has been drawn (Figure 4.5) to highlight the role of

buffers between stages. The fetch width is taken as 2 instructions wide, with at-most one

instruction coming out of the pipeline every cycle (scalar).The highlighted (orange) slots

depict the status of processor with instructions sitting in issue buffer of the Execute unit.

For the sake of simplicity, buffers to other pipeline stages are kept as one instruction wide.

E1, E2 represent memory read and integer(ALU) functional units respectively. Since

there is only one functional unit of each type, there exists dependency because of the

resource availability (functional units). However, E1 and E2 can be used in the same

clock cycle by two different instructions (e.g. at clock cycle number 14, instructions i2

and i8 utilize different functional units).It is assumed that the conditional branch i5 has

been mispredicted (taken) whereas i8 has been rightly predicted (taken) by Fetch2 unit.

Branch misprediction leads to flushing of instructions i6,i7 and i8 (highlighted in red). The

instruction i9 is flushed because of branching at instruction i8. Even though the branch

misprediction causes pipeline flushing (and associated penalty), the issue buffer keeps

the functional units busy. It is only at clock cycles 9 and 11 that no instruction comes out

of the pipeline. The timing diagram is analytical and is used to provide an explanation as

to the empirical observation of stall cycles-IPC de-hyphenation. This could be confirmed

from the C-code of the pipeline (refer Section 3.2), wherein the stalls are propagated

backwards (from Execute to Fetch1 stage) as the method ‘Evaluate ()’ is applied on

Execute stage first and subsequently to previous pipeline stages. Hence, there exists a

scenario where the Execute stage does not stall (and has high functional unit utilisation)

whereas the fetch1 stage stalls.

Calibrating the functional units reduces the MAPE in IPC for selected stress-ng

benchmarks from 36% to 19.9%. Once the memory functional units are calibrated, the

focus is on mitigating the control hazards. The Fetch2 unit hosts the Branch predictor

unit and hence, the tunable attributes of the Fetch2 unit are taken up for design space

exploration and understanding their significance in reducing control related bubbles in

the pipeline.

Calibrating the Branch Execution Unit

Control hazards adversely affect the performance of an in-order single issue core. The

baseline configuration of MinorCPU model uses a Tournament Branch Predictor with a

32-entry Branch Target Buffer (BTB), 256-entry Branch History Table (BHT), and 6-entry

Return Address Stack (RAS). The size of BTB, BHT and RAS conform to the actual

hardware specifications. The specification sheet of U54 core does not unveil more about

4.2. Validating against Sifive Unleashed 47

Figure 4.5: An example of control related stalls

the type and the micro-architecture of the branch predictor used.

In order to study the effect of branches on performance for the entire set of benchmarks,

the baseline configuration is profiled with a focus on branch predictions. The profiling

is carried out for conditional branches and indirect branches. Conditional and indirect

branches make up the majority of branches across all benchmarks as depicted in Figure

4.2. The incidence of unconditional branches (function calls) are insignificant and thus

ignored. The Fetch2 to Fetch1 backward delay can reduce the penalty associated with

branch mispredictions. This is empirically verified as the delay between Fetch2 stage and

Fetch1 stage affects the IPC of almost all the benchmarks. A delay of zero clock cycles

implies that the branch prediction happens in the same clock cycle as instruction fetch.

Since the forward delay between Fetch1 and Fetch2 stages is one clock cycle, setting the

backward delay to zero ensures that a correct branch prediction has a latency of one clock

cycle. This conforms to the specification of actual hardware. Wang et al. [54] observed

a similar improvement in IPC error for control intensive benchmarks run on Out-of-order

CPU model in gem5 by calibrating the backward delay. Moreover, the attribute Branch

Execute Delay models the latency between Execute unit directing Fetch1 unit to fetch

new stream of instructions. The branch delay latency enables the branch slots to be

occupied for unconditional branches. However, it is expected to adversely affect the

performance in case of conditional and indirect branches. The baseline value of 3 clock

cycles branch delay slot minimises the error in IPC for control intensive benchmarks.

The above discussed parameters affect the efficiency of pipeline flushing in case of

branch misprediction. Since the input buffers to Decode and Execute stages keep the

4.2. Validating against Sifive Unleashed 48

Figure 4.6: Sample RISC-V Assembly Code

functional units occupied, an appropriate backward latency of Execution to Fetch1 unit

can ensure that the bubbles due to control hazards in pipeline do not have cascading

effect. At this stage, the difference in IPC of simulated and hardware performance

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g

100

101

M
iss

ed
-B

PK
I

Figure 4.7: Missed-BPKI for default tournament branch predictor

statistics can be attributed to the fact that the hardware micro-architecture of the branch

predictors deviates a lot from the gem5 model of branch predictors. Hence, a design

space exploration is performed to bridge the gap between simulated and actual branch

predictors.

4.2. Validating against Sifive Unleashed 49

Design Space Exploration of Branch Predictors

Though control hazards can be mitigated by adopting fine grained multi-threading, predi-

cated execution, multi-path execution etc, the most popular technique for mitigating the

stalls related to control hazards is by performing branch predictions. In branch prediction,

the program counter is speculatively decided to fetch new set of instructions. Hence, the

new set of instructions can be fed to the pipeline without waiting (bubbles in pipeline) for

the outcome of the previous instructions. The downside is that the branch mis-predictions

necessitate flushing of the pipeline to get rid of wrongly fetched instructions. Section

3.2 provides a brief overview of the various branch predictor models available in gXR5.

These models come with squashing logic to take care of the branch mis-predictions and

restoring the state of the processors.

The focus of study is conditional branch predictions. Figure 4.7 depicts the Mispre-

dicted Branches per Kilo Instructions (Missed-BPKI) for various benchmarks. A high

branch misprediction rate also leads to thrashing in the BTB and hence a poor BTB hit

rate for many of the benchmarks. The underestimation of IPC by the simulator can be

attributed to the poor performance of branch predictors [54].

The gXR5 has five branch predictors: Tournament, Local, BiMode, Multiperspective

and TAGE branch predictors with tun-able size of Branch Table History and Branch Target

Buffer. The misprediction rate of various Branch Predictors is shown in Figure 4.8.The

baseline tournament branch predictor has the highest variance in misprediction rates.

The Local and Bimode branch predictors perform slightly better than the Tournament

branch predictor in terms of prediction rate, yet the median misprediction rate is still

very high for most of the control intensive benchmarks. The Multiperspective Percep-

tron (MP) branch predictor [56] and TAGE branch predictor have lower median branch

prediction miss rate. The TAGE branch predictor has larger outliers that increases the

Mean Absolute Percentage Error in IPC compared to MP branch predictor. Though the

median miss prediction rate is 10% for MP branch predictor, it is still very high given the

advancements branch prediction has witnessed over the last few decades. Implementing

the Multiperspective Perceptron branch predictor along with tuning the branch execution

unit reduces the Mean Absolute Percentage Error (MAPE) in IPC from 19.9% to

11.8 % for the entire benchmark suite. The MAPE in IPC for control intensive

benchmarks reduces from 15% to 9%.

A high branch misprediction rate not only increases thrashing in the L1-Instruction

cache by fetching wrong set of instructions speculatively, it also causes high L1-D cache

miss rate by removing a relevant block of data from L1-D cache. This necessitates to

calibrate the L1 level caches at the very end of calibration effort.

4.2. Validating against Sifive Unleashed 50

Tournament BP Local BP BiMode BP MP BP TAGE_SC_L BP
0

5

10

15

20

25

Br
an

ch
 m

isp
re

di
ct

io
n

ra
te

 (%
)

Figure 4.8: Misprediction rate for different Branch Predictor

4.2.2. Caches

The baseline cache policy is exclusive implying that the data block thrown out from L1-D

cache has to be fetched from Memory (instead of L2 cache). The figure of merit chosen

to profile the simulator is the Average Memory Access Time (AMAT). The design space

for reducing the AMAT has been described in Section 3.2. The clusivity policy for L2

cache is changed to ‘mostly inclusive’ to reduce the AMAT in case of L1 cache misses.

As expected, the AMAT for stressors whose working set resides in L2 cache reduces

the most. This has been depicted in Figure 4.9. Moreover, the data access latency and

response latency of L1 cache has been reduced to further reduce AMAT for both Data

and Instructions. (refer appendix ??). The calibration effort has been restricted to L1

caches as the CPU class stressors do not stress the memory hierarchy.

The simulator models were configured to match the hardware specifications available

publicly. This baseline simulator had an error of 26 % that was brought down to 14 %

for selected stress-ng stressors. The biggest contribution in reducing the performance

disparity was the branch predictor. Just by changing the branch predictor model to

Multiperspective Perceptron (64KB) leads to 8% reduction in error. Though the focus was

on calibrating the MinorCPUmodel to reduce IPC error, L1 caches were also calibrated as

the stressors have significant L1 cache accessses (Load/Store instructions with working

set size less than L1 cache size).

The Figure 4.10 depicts the IPC of simulator at different stages of calibration. The IPC

for most of the stressors increases at every calibration stage, bringing the performance of

the simulator closer to the actual hardware. Hence, overall error in the simulator reduced

4.3. Validating against Rocket System 51

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g

0

20

40
Re

du
ct

io
n

M
iss

 L
at

en
cy

 (%
)

L1 Instruction Cache
L1 Data Cache

Figure 4.9: Reduction in average miss latency for L1 Instruction and Data caches

considerably for the stress-ng benchmarks. The stress-ng micro-benchmarks help in

calibrating the modeled simulator rather quickly. A single run of the stressor takes 3

hours in the simulator and 5 seconds in the hardware. Compared to running the macro

benchmarks (which have simulation time of 1 to 7 days), considerable simulation time

has been saved. However, the simulator needs to be tested with real-user’s workload.

Chapter 5 discusses the performance validation of simulator with SPEC2017 suite as the

‘test’ set.

The proposed methodology is now applied to an open source RISC-V system (Rocket).

The following section calibrates the MinorCPU model against the Rocket core using the

same selected stress-ng CPU class stressors. The objective is to prove the fidelity of the

proposed methodology by applying it to a different target hardware.

4.3. Validating against Rocket System

The default configuration of the rocket core comes with floating point functional units,

namely, single precision fused multiply and accumulate (SPFMA), double precision fused

multiply and accumulate (DPFMA) and division unit. The tournament branch predictor

has been used in the simulator as there exists no Gshare branch predictor model in

gXR5. The latency of integer functional units has been matched with that of the rocket

core. The L1 level cache size, associativity and data access latency has also configured

4.3. Validating against Rocket System 52

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0.0

0.2

0.4

0.6

0.8

1.0

IP
C

Baseline Simulator
Post FU Calibration
Post BP Calibration

Post Mem Calibration
Post Pipeline Calibration
HighFive Unleashed

Figure 4.10: Simulator Vs. Hardware IPC at different calibration stages

exactly as that of the rocket system. This configuration is called the ‘Baseline Simulator’

for the Rocket system being modeled in gXR5. The floating points units utilise DSP

slices, hence the latency of these functional units depend on synthesis optimisations

performed by the Vivado HLS tool. The following section validates the functional units

and the branch predictor models in gXR5.

4.3.1. MinorCPU:Functional Units Latency

The SPFMA, DPFMA and FP Division units DSP48E1 slices as depicted in Figure 4.11

(the full functionality DSP48E1 slice has been depicted in F.1).Since the synthesize-able

4.3. Validating against Rocket System 53

verilog does not have macros specifying the synthesis rules to be used, Vivado’s default

synthesis strategy deploys ‘Multiply-Add’ and ‘Multiply-Accumulate’. With these macros,

Vivado maximises the performance by utilizing as many DSP slices as available on the

board until there is no improvement in performance. The DSP48E1 slice has a single

cycle (shif-add) 25 by 18 bit (operand) multiplier. The output of the multiplier can support

a 17-bit shifted output in-order to support larger multiplications. This is followed by a

small ALU unit that can be used to carry out the addition operation in a single clock

cycle. The registers are absorbed inside the ports of the DSP slices, thereby enabling

scheduling of addition and multiply operations depending upon the resource and operand

availability as well as the critical path. In case the critical path passes through the DSP

slice, the Vivado HLS would break it by pipelining the input ports.

Figure 4.11: DSP48E1 slice functionality

The four ports A, B, C and D can hold the operands for zero to two clock cycle. The

figure depicts the ports A and B that can hold the operands in the registers and schedule

the operation accordingly. The add operation has to follow one clock cycle after the

multiplication as the output of the multiplier is stored in a register and can not be delayed

by more than one clock cycle. Similar functionality exists for port C and D.

The Integer Linear Programming Model can be used to find out the minimum possible

latency of the floating point units synthesised on the FPGA. This is used as the starting

point of the design space exploration done using the CPU class stress-ng benchmarks.

The ILP modeling is performed for all the three floating point units. The binary variableXij

represent ith operation scheduled at jth time step/frame/clock cycle.The ILP modeling

constraint equations can be broadly categorised into three [69]:

4.3. Validating against Rocket System 54

Figure 4.12: 3-stage pipeline ports A and B of DPS48E1 slice [68]

1. Each operation is unique i.e ,
n∑

i=0

Xij = 1 (4.1)

2. The operation dependent on the previous operation can be sequenced only after

completion of the previous operation

λ+1∑
l=0

l ∗Xil ≥
λ+1∑
l=0

l ∗Xjl + dj (4.2)

3. The number of operations of a kind scheduled in a particular time frame can be at

most equal to the number of available resources of that type.

l∑
m=l−di+1

Xim ≤ ak (4.3)

The use of ILPmodeling is essential to find out possible time-multiplexing of the DSP slices

in case of resources of each (or some) type being less than the number of operations of

that type. The DSP48E1 slice supports time multiplexing. Moreover, the upper bound on

Latency (λ) has been kept arbitrary large.

Estimating Latency of SPFMA unit

The SPFMA uses 2 DSP slices on VC707 FPGA. The MAC (multiply and accumulate)

operation performed inside the DSP slice is :

Result = A ∗B + C (4.4)

4.3. Validating against Rocket System 55

Figure 4.13: Single Precision Floating Point Format IEEE- 745

The operation is commonly known as SAXPY. The operations performed on single

precision floating point numbers (depicted in Figure 4.13) can be summarised as below:

• Addition of exponents of A and B (OP ID =1)

• Re-conversion of fraction to number by padding one before the decimal.

• A[23:0] * B[17:0] (multiplication) followed by shift (OP ID =2)

• A[23:0] * B[23:18] (multiplication) followed by shift (OP ID =3)

• addition of the previous two partial multiplication results (OP ID =4)

• addition of significant of C[24:0] post exponent alignment to the result of A * B. (OP

ID =5)

• restoring back to single precision FP format

These operations and their dependency has been captured in the Table 4.5. The shifts

post multiplications take place in the same clock cycle and so, the ‘multiply’ operation in

the Table 4.5 represent multiply and shift operations. Each of the operation has been

assigned an Operation (OP) ID along with the OP ID of the source operand on which the

Operation depends. The NOP or No-Operation being the ‘source Operation ID’ represent

absence of data (or source) dependency. The corresponding constraint equations have

been generated using C++ code (refer Appendix G.1) and categorised into the three

categories (according to equations 4.1, 4.2 and 4.3. The equations are solved using open

source ILP solver [70]. The resulting sequencing graph has been depicted in Figure 4.14.

The SPFMA takes a minimum latency of 3 clock cycles to compute the MAC operation.

Estimating Latency of DPFMA unit

The DPFMA utilizes 4 DSP slices on the VC707 FPGA. The DAXPY operation is per-

formed by the DSP slices on double precision number depicted in Figure 4.15.

The list of operations performed on double precision floating point numbers 4.15) can

be summarised as below:

• Addition of exponents of A and B (OP ID =1)

4.3. Validating against Rocket System 56

Operation ID Operation Type Source Operation ID

1 add NOP

2 multiply NOP

3 multiply NOP

4 add 2,3

5 add 4

6 NOP 5

Table 4.5: Single Precision Fused Multiply and Accumulate (SPFMA) operations’

dependency

Figure 4.14: Sequencing graph for DPFMA Unit

• Re-conversion of fraction to number by padding one before the decimal.

• A[24:0] * B[17:0] (multiplication) followed by shift (OP ID =2)

• A[24:0] * B[35:18] (multiplication) followed by shift (OP ID =3)

• A[24:0] * B[52:36] (multiplication) (OP ID =4)

• addition of above partial results (OP ID =11,14)

• A[51:25] * B[17:0] (multiplication) followed by shift (OP ID =5)

• A[51:25] * B[35:18] (multiplication) followed by shift (OP ID =6)

• A[51:25] * B[52:36] (multiplication) (OP ID =7)

• addition of the previous partial multiplication (OP ID =12, 15)

• A[52:51] * B[17:0] (multiplication) followed by shift (OP ID =8)

• A[52:51] * B[35:18] (multiplication) followed by shift (OP ID =9)

4.3. Validating against Rocket System 57

Figure 4.15: Double Precision Floating Point Format IEEE- 745

• A[52:51] * B[52:36] (multiplication) (OP ID =10)

• addition of the previous partial multiplication results (OP ID =13, 16)

• Addition of partial additions (OP ID = 17, 18)

• addition of significant of C[53:0] post exponent alignment to the result of A * B.

• rounding off and restoring back to single precision FP format

The corresponding sequence of operations and their (inter) dependency is summarised

in the Table 4.6. The set of operations when put in equation 4.1, 4.2 and 4.3 give the

constraint equations (G.2). Solving these set of equations gives the time-frame when

each operation is scheduled. The Figure 4.16 depicts the unique scheduling solutions

solving these equations.

Estimating Latency of FP Division unit

The FP Division takes place by means of multiplication (division by convergence). The

standard algorithm for division by convergence can be summarised by the following

equation:

Quotient(q) =
Dividend

Divisor
=

z

d
=

zx(0)x(1)...x(m−1)

dx(0)x(1)...x(m−1)
(4.5)

As d tends to 1, z tends to q. The multiplier factor x is set to a value of (2-d) for the

quadratic convergence of d to 1. For a k bit operand, 2m-1 multiplications and m 2’s

complement are required where m = dlog 2(2 ·K)e. For K=53, the number of DSP slices

required are 12. However, this is an assumption which needs to be vindicated. The

number of DSP slices used by the division unit are in actual 4.

The operations in equation 4.5 and their dependency has been captured in Table 4.7.

The corresponding ILP equations are summarised in Appendix G.3.

The solution to the ILP equations lead to the sequencing graph given in Figure 4.17.

The minimum possible latency of FP Division unit is 10 clock cycles. The estimated

latency of functional units are used as a starting point for the design space exploration.

The Table ?? summarises the final latency of various functional units.

4.3. Validating against Rocket System 58

Operation ID Operation Type Source Operation ID

1 add NOP

2 multiply NOP

3 multiply NOP

4 multiply NOP

5 multiply NOP

6 multiply NOP

7 multiply NOP

8 multiply NOP

9 multiply NOP

10 multiply NOP

11 add 2,3

12 add 5,6

13 add 8,9

14 add 4,11

15 add 7, 12

16 add 10, 13

17 add 14, 15

18 add 16 17

19 NOP 18

Table 4.6: Double Precision Fused Multiply and Accumulate (DPFMA) operations’

dependency

4.3. Validating against Rocket System 59

Operation ID Operation Type Source Operation ID

1 add NOP

2 multiply 1

3 multiply 1

4 add 3

7 multiply 2,4

8 multiply 5,6

9 add 7

10 multiply 9

11 multiply 8,9

12 add 10

13 multiply 11,12

14 add 13

15 NOP 14

Table 4.7: Division by Convergence operations and the operation dependency

4.3.2. MinorCPU: Branch Predictor

The existing branch predictor models in gem5 (as described in sections 3.2.3) do not

have any branch predictor model that can give similar predictions as that of the Gshare

branch predictor in rocket core. Hence, a Gshare branch predictor model has been

implemented in gXR5. The branch predictor model is compatible with all CPU models in

gem5. The Gshare branch predictor model’s attributes (such as ‘number of counter bits’,

‘size of global history register’ etc.) can be parameterized via the python configuration

scripts. The corresponding changes have been made in scons scripts that sources the

new branch predictor model in gXR5. A high level view of the implemented branch

predictor is given in Figure 4.18. Compared to the actual branch predictor (refer Section

4.3.2), the modeled branch predictor uses XORs as hash to index into 2-bit counters

used for way prediction. The variable gloabHistoryIdx is the index calculated based

on hash of branchAddr(the PC) and globalHostoryReg (the global history). The ‘tid’

represents the thread ID as the CPU models are mutli-threaded. The branch is predicted

(represented by Boolean final_prediction) to be taken if the counter value is greater than

the localThreshold (‘weakly not taken’ in case of a 2-bit counter). The following code

describes the core functionality of the Gshare branch predictor modeled in gXR5. The

complete branch predictor model code is given in Appendix C.2 including the updating

the BTB, global history table and squashing incase of mis-prediction.

4.4. Concluding remarks 60

Listing 4.1: Gshare Branch Predictor Model

bool

GshareBP : : lookup (ThreadID t i d , Addr branchAddr , void * &bpHis tory)

{

unsigned g l oba lH i s t o r y I d x = (((branchAddr >> i ns tSh i f tAm t)

^ g loba lH is toryReg [t i d])

& g lobalHis toryMask) ;

asser t (g l oba lH i s t o r y I d x < g loba lP red i c t o rS i ze) ;

bool f i n a l _ p r e d i c t i o n = g loba lC t r s [g l oba lH i s t o r y I d x] > loca lThresho ld ;

BPHistory * h i s t o r y = new BPHistory ;

h i s t o r y −>globa lH is toryReg = globa lH is toryReg [t i d] ;

h i s t o r y −> f i na lP red = f i n a l _ p r e d i c t i o n ;

bpHis tory = stat ic_cast <void*>(h i s t o r y) ;
updateGlobalHistReg (t i d , f i n a l _ p r e d i c t i o n) ;

return f i n a l _ p r e d i c t i o n ;

}

The mis-prediction rate for the Gshare and Tournament branch predictor models is

depicted in Figure 5.8. The mis-prediction rates are considerably higher than the baseline

tournament branch predictor. However, the MAPE in IPC for the stress-ng stressors

reduced from 30% to 18.9% by implementing the new Gshare branch predictor

model.

The MinorCPU model was calibrated using stress-ng benchmarks. The floating point

functional units synthesised on the FPGA were fine-tuned to reduce IPC error in simulator.

Yet again, implementing the new branch predictor model reduces the error in simulator

by more than 10 % for stress-ng benchmarks.

4.4. Concluding remarks

The chapter provided a detailed description of using stress-ng CPU class stressors to

calibrate the in-order MinorCPU model against the two target hardwares, the Sifive High-

five Freedom Unleashed and the Rocket system emulated on VC707 FPGA. The lack

of micro-architectural details about the former target contribute to ‘specification errors’

in the simulator. These were overcome largely by applying the proposed methodology

of “component level calibration”. In case of rocket core, the synthesis and implementa-

tion optimizations done by the HLS tool contribute to the ‘specification errors’. The ILP

4.4. Concluding remarks 61

modeling was was used to reduce the design space while calibrating the floating point

functional unit latency as these were affected by the HLS tool’s synthesis optimisations.

The proposed methodology once again proves its soundness by reducing the perfor-

mance disparity between simulator and hardware. Apart from these, the lack of Gshare

branch predictor contributed to ‘modeling errors’ which were overcome by making the

corresponding branch predictor model in gXR5.

4.4. Concluding remarks 62

Figure 4.16: Sequencing graph for DPFMA Unit

4.4. Concluding remarks 63

Figure 4.17: Sequencing graph for FP Division Unit

4.4. Concluding remarks 64

Figure 4.18: Gshare Branch Predictor model high level view

5
Results and Discussion

The intended objective of a full-system simulator is to provide a platform for architects

to run real user-space applications that helps quantify the performance gain post archi-

tectural improvements. Hence, it is necessary that the performance of the simulator is

gauged by running SPEC benchmark suite. SPEC2017 [71] int rate applications are

run on the simulator and the target hardware. The chapter begin with characterisation

of SPEC2017 applications using gXR5 and subsequently analyses the performance

validation results.

The execution time of the application gives an estimate of performance of the simulated

system. Hence, the execution time is chosen as the Figure of merit to test the validated

simulator while executing SPEC suite applications. However, this is possible only if the

simulator and hardware operate at the same frequency. Otherwise, clock cycles elapsed

while executing applications is used as an alternative figure of merit.

The software stack of gXR5 full-system simulator includes OpenSBI bootloader, Linux

kernel v5.8 and buildroot file system. The applications to be run on gXR5 are cross-

compiled (x86 to RISC-V ISA) and put on the disk image used inside gXR5. Once the

init process starts, the contents of the python/bash scripts (guest scripts) that launch

the application execution inside gXR5 are read and placed in a temporary file. The

commands in this temporary file are then given to command terminal inside gXR5. There

are python scripts (host) that launch the gXR5 simulator (in full-system mode).Since

gXR5 does not support openMP (i.e, one instance of the simulator runs on a single core),

multiple instances of the simulator are launched on each host core (manually, via multiple

python scripts) to execute multiple applications simultaneously.

65

5.1. Profiling SPEC2017 benchmarks 66

50
5.

m
cf

_r

52
0.

om
ne

tp
p_

r

52
3.

xa
la

nc
bm

k_
r

53
1.

de
ep

sje
ng

_r

54
1.

le
el

a_
r

10 1

100

101

102

In
st

ru
ct

io
ns

 (%
)

Integer Functional Units
Memory R/W Functional Units

Floating Point Functional Units

(a) Functional Unit Utilisation

50
5.

m
cf

_r

52
0.

om
ne

tp
p_

r

52
3.

xa
la

nc
bm

k_
r

53
1.

de
ep

sje
ng

_r

54
1.

le
el

a_
r0

100

200

300

400

BP
KI

(b) Conditional Branch Instructions

Figure 5.1: Profiling SPEC2017 benchmarks for (a) functional unit utilisation and (b)

branch incidence.

5.1. Profiling SPEC2017 benchmarks

The SPEC2017 suite is divided into two categories, speed and rate. The SPECspeed suite

always run one copy of each benchmark contrary to the SPECrate suite that runs multiple

concurrent copies of the benchmark, measuring throughput with OpenMP (pragmas)

disabled. For practical reasons, SPECrate suite applications (refer Appendix E) with test

input were executed to measure the run/execution time using linux time command. The

simulation time can be as large as one week for applications such as ‘531.deepsjeng_r’

and less than 3 hours for ‘523.xalancbmk_r’ with the test inputs.

The selected SPEC benchmark applications were profiled using gXR5. Figure 5.1(a)

depicts the percentage instructions using integer, floating point and memory read/write

functional units. All the applications have negligible floating point operations. However,

the load/store instructions are considerably higher (30 to 40%) compared to the selected

stress-ng CPU class stressors which had at most 30% load/store instructions (Figure

4.2). The memory models will be the biggest source of specification errors.

Furthermore, the baseline gXR5 is used to profile the applications for intensity of

branch incidence. Figure 5.1 depicts the the branch intensity. All of the SPEC suite

applications have significant conditional branch instructions with ‘505.mcf_r’ having the

most (more than 400 Branches per Kilo Instructions (BPKI)). Hence, it was fair to expect

that fine-tuning branch predictor would significantly reduce the IPC/run time errrors in

simulator.

5.2. Validated Simulator 67

5.2. Validated Simulator

The simulator with MinorCPU and L1 level caches calibrated for the target hardware using

stress-ng benchmarks is now called the validated simulator. The stress-ng benchmark

suites can be considered as the ‘Training’ suite and SPEC applications as the ‘Test’ suite.

The SPEC suite is executed in gXR5 only once, thereby saving significant simulation

time. Following sections discuss the performance validation results for the two simulator

configurations.

5.2.1. Target: Sifive Unleashed

The gXR5 was configured to match the (restricted) available hardware specifications.

The resulting configuration is called the ‘baseline’ simulator. On the other hand, post

running stress-ng benchmarks to fine tune the MinorCPU model, the simulator is called

the ‘validated simulator’.

Stress-ng

The Figure 5.4 depicts the IPC for baseline, calibrated and the hardware running the

CPU class stressors. The mean error for stress-ng benchmarks is 14.8%, with 8 out of

10 stressors having less than 10% mean error. The stress-ng benchmarks were used

as a test set to calibrate the in-order MinorCPU model. The calibration of Functional

Units reduces the error by more than 5%. Subsequently, the design space exploration

for selecting the Branch Predictor leads to reduction of in simulator error. The attributes

that affect the front end of the pipeline (and control hazards) such as Fetch2 to Fetch

1 delay were also fine-tuned. The Figure 5.2 captures the reduction in MAPE in IPC

at different stages of calibration. The ‘post-BP calibration’ includes both the change of

branch predictor model from Tournament to Multiperspective Perceptron and the above

mentioned attribute. The final stages include calibrating L1 caches and widening the

input buffers of the execute stage to reduce performance disparity between hardware

and the simulator.

To confirm that the memory indeed is the biggest source of errors, memory class

stressors were executed. The functionality of these stressors can be found in Appendix D.

While most of the memory class stressors are compatible with x86 systems, membarrier,

memcpy, memfd, mlock and mmap are the only stressors compatible with RISC-V

systems. The Figure 5.3 shows MAPE in IPC of 75% for the memory stressors. The

error is as large as 245 % for memcpy stressor. Moreover, the memory stressors are

5.2. Validated Simulator 68

Ba
se

lin
e

Po
st

 F
U

Ca
lib

ra
tio

n

Po
st

 B
P

Ca
lib

ra
tio

n
Po

st
 M

em
 C

al
ib

ra
tio

n
Po

st
 P

ip
el

in
e

Ca
lib

ra
tio

n

0
5

10
15
20
25
30
35
40

Er
ro

r i
n

IP
C

(%
)

Control Intensive
Memory Intensive

Arithmetic Intensive (overall)

Figure 5.2: Error in IPC at different stages of validation against Sifive Unleashed

membarrie
r10

memcpy10
memfd10

mlock10
mmap10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

IP
C

Simulator
HighFive Unleashed

Figure 5.3: Sifive Unleashed vs. Simulator IPC for selected memory stressors

overestimated by the simulator, thereby confirming that overestimation in case of SPEC

suite is also due to the memory hierarchy not being fine-tuned. A holistic approach needs

to be taken to calibrate the memory (including PTWs, TLBs, Interconnects, etc.). This

has been left as future work.

5.2. Validated Simulator 69

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0.0

0.2

0.4

0.6

0.8

1.0
IP

C

Baseline Simulator
Validated Simulator

HighFive Unleashed

Figure 5.4: Sifive Unleashed vs. Simulator IPC for stress-ng benchmarks

SPEC suite

The run time of the SPEC applications are compared for the baseline, validated simulator

and the hardware. Figure 5.5 depicts baseline error of 44% and the final (validated

simulator) error of 23.9%. The specification error is brought down by more than 20% just

by calibrating the Minor CPU model in gXR5.

As expected, the three application having higher load/store instructions (mcf, omnetpp

and xalancbmk) have higher run time error. For the other two applications, the run time

error is mere 3.4% and 1.7%, highlighting superior results of the proposed methodology.

The methodology leads to significant decrease in the specification errors of the

simulator, without trying to mimic the micro-architectural events (say cache misses, mis-

predictions, etc) of the actual hardware. The following section discusses the results while

extending the methodology for Rocket system emulated on VC707 FPGA.

5.2. Validated Simulator 70

Figure 5.5: Sifive Unleashed vs. Simulator IPC for selected SPEC2017 benchmarks

5.2.2. Target: Rocket System

The Rocket system emulated on VC707 FPGA runs at a frequency different than the

systemmodeled in gXR5. Table 3.1 summarises the technical specifications. The number

of clock cycles elapsed while executing SPEC suite applications is used to compare the

performance statistics of the hardware and gXR5. The run time of the SPEC applications

is extracted using time command as earlier and divided by the CPU frequency to get

the clock cycles elapsed. Moreover, the ratio of DRAM Controller frequency and CPU

operating frequency is kept at 10.665:1 for both Hardware and gXR5. The CPU frequency

of the emulated Rocket core can not be further increased (because of negligible positive

slack). The DRAM DDR3_8x8 model in gXR5 operates at a fixed frequency of 1.0665

GHz.

Stress-ng

The baseline simulator has the default tournament branch predictor with matching BTB

and BHT sizes. Moreover, the floating point functional units have not been validated

for the baseline simulator as their synthesis on the FPGA is not known. The IPC of the

stressors run on Rocket system emulated on FPGA and gXR5 is depicted in Figure 5.6.

The baseline simulator overestimates the IPC for control intensive benchmarks. The

MAPE in IPC post floating point functional unit calibration and implementation of Gshare

5.2. Validated Simulator 71

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IP
C

Baseline Simulator
Post FU Calibration
Post BP Calibration
HighFive Unleashed

Figure 5.6: Rocket System vs. Simulator IPC for stress-ng benchmarks

branch predictor model is given in Figure 5.7. Implementing Gshare branch predictor

model leads to reduction of more than 5 % error in IPC for stress-ng benchmarks. The

overestimation of IPC can be attributed to aggressive branch prediction rates of the

tournament branch predictor compared to the Gshare branch predictor (Figure 5.8).

SPEC suite

The Figure 5.10 depicts the mis-predcition rates of Tournament and Gshare branch

predictor models in gXR5 for SPEC benchmark applications. The Gshare branch predictor

leads to more than 10% reduction in error for both stress-ng and SPEC suite. The

calibrated simulator has a MAPE in IPC of 16.2% in stress-ng benchmarks. The mean

absolute error in clock cycles simulated and executed on hardware is 18.9%.

A single run of simulation for stress-ng benchmarks takes less than 180 minutes to

execute stressors for 5 seconds. No more than 15 simulation runs were required to

calibrate the Minor CPU model. Many of these simulations were run in parallel, thereby

reducing the calibration effort time significantly. The SPEC suite was run only once (after

the calibration was done). Moreover, the only HPCs used were instructions and clock

cycles (for calculating IPC), thereby significantly reducing the effort spent in characterizing

the hardware. Overall, the simulation time required from training phase till test phase of

the simulator is considerably less than the existing methodologies.

The MAPE in IPC for the test set is close to the error in execution time of training

set for both the target hardware. This is unlike the existing methodology wherein micro-

architectural calibration leads to considerably low errors in IPC for synthetic micro-

5.2. Validated Simulator 72

Base
line

Pos
t F

U Calib
rat

ion

Pos
t B

P C
alib

rat
ion

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Er
ro

r i
n

IP
C

(%
)

Control Intensive
Memory Intensive

Arithmetic Intensive (overall)

Figure 5.7: Error in IPC at different stages of validation against Rocket system

benchmarks (6%) but relatively high error for SPEC/PARSEC benchmark applications

(20 %) [48]. The superiority of the the component level calibration methodology owe

to the higher order time complexity of the training set compared to the synthetic micro-

benchmarks.

5.2. Validated Simulator 73

in
t6

4l
on

gd
ou

bl
e

in
tc

on
ve

rs
io

n
lo

ng
do

ub
le

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0

10

20

30
M

is-
pr

ed
ict

io
n

ra
te

 (%
)

Tournament Branch Predictor Gshare Branch Predictor

Figure 5.8: Branch mis-prediction rates for Tournament and Gshare branch predictor for

stress-ng benchmarks

505.mcf_r

520.omnetpp_r

523.xalancbmk_r

531.deepsjeng_r

541.leela_r

102

103

Cy
cle

s (
bn

)

-25.14

2.35

-38.44

-20.42

-8.10

54.5

18.9

Baseline Simulator Rocket-FPGA Validated Simulator
% Error Baseline Simulator % Error Validated Simulator

Figure 5.9: Rocket System vs. Simulator IPC for selected SPEC2017 benchmarks

5.2. Validated Simulator 74

50
5.

m
cf

_r

52
0.

om
ne

tp
p_

r

52
3.

xa
la

nc
bm

k_
r

53
1.

de
ep

sje
ng

_r

54
1.

le
el

a_
r0

10

20

30

40

M
is-

pr
ed

ict
io

n
ra

te
 (%

)

Tournament Branch Predictor Gshare Branch Predictor

Figure 5.10: Branch mis-prediction rates for Tournament and Gshare branch predictor

models for SPEC2017 applications

6
Conclusion

“The only way to do great work is to love what you do”

-Steve Jobs

6.1. Refining the proposed methodology

The proposed methodology of ‘component level calibration’ with stress-ng as the training

set achieves the following objectives:

• It streamlines the design of micro-benchmarks for calibration of simulator mod-

els using Hardware Performance Counters (HPCs). The only other attempt to

streamline the design of micro-benchmarks has been for memory calibration [53].

• It provides a generic methodology that can be extended for Out-of-Order (OoO)

core models in gem5 or other architectural simulators. The methodology is not

specific to RISC-V ISA and would be equally effective for other ISAs.

• The simulation time spent on validation of architectural simulators can be reduced

significantly. This is in contrast to direct ’validation by inspection’ methodology

wherein the macro benchmarks are run both as training and/or test sets.

• The need to characterize hardware is significantly reduced, thereby providing a

perfect methodology for system-level engineers/simulator designers to validate

simulators rather quickly.

However, the methodology needs to be extended for other component calibration.

A holistic approach needs to be taken for modeling and fine-tuning I/O, Memory and

75

6.2. Reflecting on the Results 76

Interconnects. A good ground to test the methodology would be to simulate multi-core

systems with shared memory. Ruby caches in gem5 provide a much detailed micro-

architecture including various cache coherency fabrics. The stress-ng stressors can be

run on multiple cores to tune the modeled memory hierarchy.

A notable drawback of the methodology can be over-fitting for stress-ng benchmarks.

Errors in simulator for stress-ng benchmarks can be reduced by fine-tuning various

(permutations of) attributes. For example, instead of fine-tuning branch predictor model,

the designer can fine-tune the input buffer size of the execute unit and allow execution

across multiple clock cycles, thereby achieving similar simulator performance. This

has the potential to reduce errors for control intensive micro-benchmarks as the control

hazards have been mitigated by achieving a high functional unit utilisation. An ideal

approach would be to fine-tune the branch predictor. However, in such a case, the errors

in macro-benchmarks are observed to be very high (even though they are <10% for

stress-ng benchmarks). Hence, brute-forcing the fine-tuning without understanding (and

to an extent reverse-engineering) micro-architecture of the hardware can lead to sub-par

performance validation results.

The benefits of the proposed methodology over weigh its drawbacks. Considerable

effort and time can be saved in validating simulators.

6.2. Reflecting on the Results

The validation results are based on 5 out 10 benchmark applications of integer rate

SPEC2017 suite. Citron [72] has carried out a survey of three high impact architectural

conferences (ISCA, HPCA and Micro). Out of 173 published papers, only 23 use the

entire SPEC suite (mostly SPEC CPU2000 [49], since the survey was carried out in

2003). In case of architectural simulators, executing the entire suite is not possible for

practical reasons. The simulator throughput is often around few hundred of KIPS (with

detailed CPU models) or few MIPS (for say, Timing CPU model in gem5).

A common practice is to have ‘reduced input set simulation’ [72] wherein test inputs can

be used or new inputs can be designed to have shorter execution times for benchmarks.

Other alternative is to have ‘truncated execution simulation’ wherein a (contiguous) part

of benchmark application is executed (say first z million instructions). However, this

technique has the disadvantage of being under or non-representative of computational

complexity of the original benchmark application. Variations of this approach have

been proposed to make truncated benchmarks more representative. Another common

practice is to sample the benchmark application. These can be ‘representative sampling

6.2. Reflecting on the Results 77

simulation’, ‘periodic or random sampling simulation’, etc., depending upon the sampling

strategy/interval.

The use of test inputs for SPEC2017 suite goes with the existing practice, especially

when validating architectural simulators. Mean Absolute Percentage Error of 22.9 %and

18.3 % in simulator against real hardware is at par with existing performance validation

results of full-system simulators.

References

[1] Spike Simulator. Accessed on 28.07.2023, [Online]. Available https://wiki.
riscv.org/display/HOME/Emulators+and+Simulators#EmulatorsandSimulators-
Spike/riscv-isa-sim.

[2] QEMU. Accessed on 28.07.2023, [Online]. Available https://www.qemu.org/.

[3] T. Austin et al. “Simplescalar: An Infrastructure for Computer System Modeling”.

In: Computer 35.2 (2002), pp. 59–67. DOI: 10.1109/2.982917.

[4] Nathan Binkert et al. “The GEM5 simulator”. In: ACM SIGARCH Computer Archi-

tecture News 39.2 (2011), pp. 1–7. DOI: 10.1145/2024716.2024718.

[5] Milo M. Martin et al. “Multifacet’s general execution-driven multiprocessor simulator

(GEMS) toolset”. In: ACM SIGARCH Computer Architecture News 33.4 (2005),

pp. 92–99. DOI: 10.1145/1105734.1105747.

[6] Matt T. Yourst. “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural

Simulator”. In: 2007 IEEE International Symposium on Performance Analysis of

Systems Software (2007), pp. 23–34. DOI: 10.1109/ISPASS.2007.363733.

[7] Jason Cong et al. “PARADE: A cycle-accurate full-system simulation Platform for

Accelerator-Rich Architectural Design and Exploration”. In: (2015), pp. 380–387.

DOI: 10.1109/ICCAD.2015.7372595.

[8] N.L. Binkert et al. “The M5 simulator: Modeling Networked Systems”. In: IEEE

Micro 26.4 (2006), pp. 52–60. DOI: 10.1109/mm.2006.82.

[9] Leading Semiconductor Industry Players Join Forces to Accelerate RISC-V. Ac-

cessed on 10.08.2023, [Online].Available https://www.qualcomm.com/news/
releases/2023/08/leading-semiconductor-industry-players-join-forces-
to-accelerate.

[10] LStreamline for gem5. Accessed on 10.08.2023, [Online].Available https : / /
developer . arm . com / tools - and - software / embedded / legacy - tools / ds - 5 -
development-studio/streamline/streamline-for-gem5.

78

 https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#EmulatorsandSimulators-Spike/riscv-isa-sim
 https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#EmulatorsandSimulators-Spike/riscv-isa-sim
 https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#EmulatorsandSimulators-Spike/riscv-isa-sim
 https://www.qemu.org/
https://doi.org/10.1109/2.982917
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1109/ISPASS.2007.363733
https://doi.org/10.1109/ICCAD.2015.7372595
https://doi.org/10.1109/mm.2006.82
 https://www.qualcomm.com/news/releases/2023/08/leading-semiconductor-industry-players-join-forces-to-accelerate
 https://www.qualcomm.com/news/releases/2023/08/leading-semiconductor-industry-players-join-forces-to-accelerate
 https://www.qualcomm.com/news/releases/2023/08/leading-semiconductor-industry-players-join-forces-to-accelerate
 https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio/streamline/streamline-for-gem5
 https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio/streamline/streamline-for-gem5
 https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio/streamline/streamline-for-gem5

References 79

[11] gXR5: A gem5-based full-system RISC-V simulator (WiPLASH). Accessed on

28.01.2023, [Online].Available https : / / www . wiplash . eu / WiPLASH _ D5 . 1 _
appendix.pdf.

[12] HiFive- Freedom Unleashed. Accessed on 28.01.2023, [Online].Available https:
//www.sifive.com/boards/hifive-unleashed.

[13] Rocket Chip. Accessed on 03.08.2023, [Online].Available https://github.com/
chipsalliance/rocket-chip.

[14] AMD Virtex 7 FPGA VC707 Evaluation Kit. Accessed on 10.08.2023, [Online].Avail-

able https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-
g.html.

[15] Alexander Dörflinger et al. “A comparative survey of open-source application-class

RISC-V processor implementations”. In: Proceedings of the 18th ACM International

Conference on Computing Frontiers (May 2021), pp. 12–20. DOI: 10.1145/3457388.
3458657.

[16] 1666-2011 - IEEE standard for standard systemc language reference. Accessed

on 28.01.2023,[Online].Available https://ieeexplore.ieee.org/document/
6134619.

[17] Ovpsim Instruction Set Simulator. Accessed on 28.01.2023, [Online]. Available

https://www.ovpworld.org/technology_ovpsim.

[18] The ant architecture–an architecture for CS1. Accessed on 10.08.2023, [On-

line].Available https://dash.harvard.edu/bitstream/handle/1/25620472/tr-
13-98.pdf.

[19] CPU Sim Home Page. Accessed on 10.08.2023, [Online].Available https://cs.
colby.edu/djskrien/CPUSim/.

[20] CLa Máquina Rudimentaria (MR) es un procesador pedagógico. Accessed on

10.08.2023, [Online].Available https://docencia.ac.upc.edu/eines/MR/.

[21] Arun Rodrigues et al. “The structural simulation toolkit”. In: ACM SIGMETRICS

Performance Evaluation Review 38.4 (Mar. 2011), pp. 37–42.

[22] Daniel Sanchez et al. “Zsim:fast and accurate microarchitectural simulation of

thousand-core systems”. In: Proceedings of the 40th Annual International Sympo-

sium on Computer Architecture (June 2013), pp. 475–486. DOI: 10.1145/2485922.
2485963.

https://www.wiplash.eu/WiPLASH_D5.1_appendix.pdf
https://www.wiplash.eu/WiPLASH_D5.1_appendix.pdf
https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive-unleashed
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
https://ieeexplore.ieee.org/document/6134619
https://ieeexplore.ieee.org/document/6134619
 https://www.ovpworld.org/technology_ovpsim
 https://dash.harvard.edu/bitstream/handle/1/25620472/tr-13-98.pdf
 https://dash.harvard.edu/bitstream/handle/1/25620472/tr-13-98.pdf
 https://cs.colby.edu/djskrien/CPUSim/
 https://cs.colby.edu/djskrien/CPUSim/
 https://docencia.ac.upc.edu/eines/MR/
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963

References 80

[23] Trevor E. Carlson et al. “Sniper: Exploring the level of abstraction for scalable

and accurate parallel multi-core simulation”. In: Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis

(Nov. 2011), pp. 1–12. DOI: 10.1145/2063384.2063454.

[24] Caroline Collange et al. “Barra: A Parallel Functional Simulator for GPGPU”. In:

2010 IEEE International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems (2010). DOI: 10.1109/mascots.2010.
43.

[25] David Wang et al. “DRAMsim: A memory system simulator”. In: ACM SIGARCH

Computer Architecture News 33.4 (2005), pp. 100–107. DOI: 10.1145/1105734.
1105748.

[26] Yoongu Kim et al. “Ramulator: A fast and extensible dram simulator”. In: IEEE

Computer Architecture Letters 15.1 (2016), pp. 45–49. DOI: 10.1109/lca.2015.
2414456.

[27] Marco Antonio Alves et al. “Sinuca: A validated Micro-Architecture Simulator”. In:

2015 IEEE 17th International Conference on High Performance Computing and

Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety

and Security, and 2015 IEEE 12th International Conference on Embedded Software

and Systems (2015). DOI: 10.1109/hpcc-css-icess.2015.166.

[28] Sheng Li et al. “McPAT: An integrated power, area, and timing modeling frame-

work for multicore and manycore architectures”. In: 2009 42nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO) (2009), pp. 469–480.

[29] D. Brooks et al. “Wattch: A framework for architectural-level power analysis and

Optimizations”. In: Proceedings of 27th International Symposium on Computer

Architecture (IEEE Cat. No.RS00201) (2000), pp. 83–94. DOI: 10.1109/isca.2000.
854380.

[30] Mircea R. Stan et al. “Hotspot: A dynamic compact thermal model at the processor-

architecture level”. In: Microelectronics Journal 34.12 (2003), pp. 1153–1165. DOI:

10.1016/s0026-2692(03)00206-4.

[31] Mendel Rosenblum et al. “Using the Simos Machine Simulator to study complex

computer systems”. In: ACM Transactions on Modeling and Computer Simulation

7.1 (1997), pp. 78–103. DOI: 10.1145/244804.244807.

https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/mascots.2010.43
https://doi.org/10.1109/mascots.2010.43
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1109/lca.2015.2414456
https://doi.org/10.1109/lca.2015.2414456
https://doi.org/10.1109/hpcc-css-icess.2015.166
https://doi.org/10.1109/isca.2000.854380
https://doi.org/10.1109/isca.2000.854380
https://doi.org/10.1016/s0026-2692(03)00206-4
https://doi.org/10.1145/244804.244807

References 81

[32] Phillip Stanley-Marbell et al. “Sunflower: Full-system, embedded microarchitecture

evaluation”. In: High Performance Embedded Architectures and Compilers (2007),

pp. 168–182. DOI: 10.1007/978-3-540-69338-3_12.

[33] Avadh Patel et al. “MARSS: A full system simulator for x86 cpus”. In: Proceedings

of the 48th Design Automation Conference (2011), pp. 29–30. DOI: 10.1145/
2024724.2024954.

[34] E. Larson et al. “Mase: A novel infrastructure for detailed microarchitectural model-

ing”. In: 2001 IEEE International Symposium on Performance Analysis of Systems

and Software. ISPASS. (Nov. 2001), pp. 1–9. DOI: 10.1109/ispass.2001.990668.

[35] Jose Renau et al. SESC simulator. http://sesc.sourceforge.net. Jan. 2005.

[36] Erez Perelman et al. “Using SimPoint for accurate and efficient simulation”. In:

Proceedings of the 2003 ACM SIGMETRICS international conference on Mea-

surement and modeling of computer systems 31.1 (June 2003), pp. 318–319. DOI:

10.1145/781027.781076.

[37] Yanqing Zhang et al. “GRANNITE: Graph Neural Network Inference for Transfer-

able Power Estimation”. In: 2020 57th ACM/IEEE Design Automation Conference

(DAC) (2020), pp. 1–6. DOI: 10.1109/DAC18072.2020.9218643.

[38] Guillem López-Paradís et al. “Fast Behavioural RTL Simulation of 10B Transis-

tor SoC Designs with Metro-Mpi”. In: 2023 Design, Automation Test in Europe

Conference Exhibition (DATE) (2023), pp. 1–6. DOI: 10.23919/DATE56975.2023.
10137080.

[39] Anthony Gutierrez et al. “Sources of error in full-system simulation”. In: 2014

IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS) (2014), pp. 13–22. DOI: 10.1109/ISPASS.2014.6844457.

[40] SPEC CPU® 2006. Accessed on 24.07.2023, [Online].Available https://www.
spec.org/cpu2006/.

[41] Yasir Mahmood Qureshi et al. “Gem5-X: A Gem5-Based System Level Simulation

Framework to Optimize Many-Core Platforms”. In: 2019 Spring Simulation Confer-

ence (SpringSim) (2019), pp. 1–12. DOI: 10.23919/SpringSim.2019.8732862.

[42] Fernando A. Endo et al. “Micro-architectural simulation of in-order and out-of-order

arm microprocessors with GEM5”. In: 2014 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV) (2014).

DOI: 10.1109/samos.2014.6893220.

https://doi.org/10.1007/978-3-540-69338-3_12
https://doi.org/10.1145/2024724.2024954
https://doi.org/10.1145/2024724.2024954
https://doi.org/10.1109/ispass.2001.990668
https://doi.org/10.1145/781027.781076
https://doi.org/10.1109/DAC18072.2020.9218643
https://doi.org/10.23919/DATE56975.2023.10137080
https://doi.org/10.23919/DATE56975.2023.10137080
https://doi.org/10.1109/ISPASS.2014.6844457
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://doi.org/10.23919/SpringSim.2019.8732862
https://doi.org/10.1109/samos.2014.6893220

References 82

[43] Christian Bienia et al. “The parsec benchmark suite”. In: Proceedings of the 17th

international conference on Parallel architectures and compilation techniques (Oct.

2008), pp. 72–81. DOI: 10.1145/1454115.1454128.

[44] Anastasiia Butko et al. “Accuracy evaluation of GEM5 simulator system”. In: 7th

International Workshop on Reconfigurable and Communication-Centric Systems-

on-Chip (ReCoSoC) (2012). DOI: 10.1109/recosoc.2012.6322869.

[45] S.C. Woo et al. “The SPLASH-2 programs: characterization and methodological

considerations”. In: (1995), pp. 24–36. DOI: 10.1109/ISCA.1995.524546.

[46] Man-Lap Li et al. “The ALPBench benchmark suite for complex multimedia appli-

cations”. In: (2005), pp. 34–45. DOI: 10.1109/IISWC.2005.1525999.

[47] STREAM benchmarks. Accessed on 25.07.2023, [Online].Available https://www.
cs.virginia.edu/stream/ref.html.

[48] R. Desikan et al. “Measuring experimental error in microprocessor simulation”.

In: Proceedings 28th Annual International Symposium on Computer Architecture

(2001), pp. 266–277. DOI: 10.1109/ISCA.2001.937455.

[49] SPEC CPU® 2000. Accessed on 24.07.2023, [Online].Available https://www.
spec.org/cpu2000/.

[50] SiNUCA benchmarks. Accessed on 24.07.2023, [Online].Available https : / /
github.com/mazalves/sinuca.

[51] Ayaz Akram et al. “Validation of the GEM5 simulator for x86 architectures”. In:

IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Perfor-

mance Computer Systems (PMBS) (2019). DOI: 10.1109/pmbs49563.2019.00012.

[52] Jacob Benesty et al. “Pearson correlation coefficient”. In: Noise Reduction in

Speech Processing (2009), pp. 1–4. DOI: 10.1007/978-3-642-00296-0_5.

[53] Quentin Huppert et al. “Memory hierarchy calibration based on real hardware

in-order cores for accurate simulation”. In: 2021 Design, Automation and Test

in Europe Conference and Exhibition(DATE) (2021). DOI: 10.23919/date51398.
2021.9474108.

[54] Irene Wang et al. “Evaluation of GEM5 for performance modeling of ARM cortex-

R based embedded socs”. In: Microprocessors and Microsystems 93 (2022),

p. 104599. DOI: 10.1016/j.micpro.2022.104599.

[55] André Seznec et al. “A case for (partially) tagged geometric history length branch

prediction”. In: The Journal of Instruction-Level Parallelism 8 (2006), p. 23.

https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/recosoc.2012.6322869
https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/IISWC.2005.1525999
https://www.cs.virginia.edu/stream/ref.html
https://www.cs.virginia.edu/stream/ref.html
https://doi.org/10.1109/ISCA.2001.937455
https://www.spec.org/cpu2000/
https://www.spec.org/cpu2000/
https://github.com/mazalves/sinuca
https://github.com/mazalves/sinuca
https://doi.org/10.1109/pmbs49563.2019.00012
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.23919/date51398.2021.9474108
https://doi.org/10.23919/date51398.2021.9474108
https://doi.org/10.1016/j.micpro.2022.104599

References 83

[56] Daniel A. Jiminez. “Multiperspective Perceptron Predictor”. In: The Journal of

Instruction-Level Parallelism (2016).

[57] André Seznec. “TAGE-SC-L Branch Predictors Again”. In: 5th JILP Workshop on

Computer Architecture Competitions (JWAC-5) : Championship Branch Prediction

(CBP-5) (2016).

[58] Alexander Dörflinger et al. “A comparative survey of open-source application-class

RISC-V processor implementations”. In: Proceedings of the 18th ACM International

Conference on Computing Frontiers (May 2021), pp. 12–20. DOI: 10.1145/3457388.
3458657.

[59] Chisel/FIRRTL Hardware Compiler Framework. Accessed on 16.08.2023, [On-

line].Available https://www.chisel-lang.org/.

[60] Krste Asanović et al. The Rocket Chip Generator. Tech. rep. UCB/EECS-2016-

17. EECS Department, University of California, Berkeley, Apr. 2016. URL: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[61] VCS Simulator. Accessed on 03.08.2023, [Online].Available https : / / www .
synopsys.com/verification/simulation/vcs.html.

[62] RISC-V GNU Compiler Toolchain. Accessed on 03.08.2023, [Online].Available

https://github.com/riscv-collab/riscv-gnu-toolchain.

[63] Verilator. Accessed on 03.08.2023, [Online].Available https://www.veripool.
org/verilator/.

[64] Vivado-RISCV. Accessed on 03.08.2023, [Online].Available https://github.com/
eugene-tarassov/vivado-risc-v.

[65] AMD High Level Design. Accessed on 03.08.2023, [Online].Available https://
www.xilinx.com/products/design-tools/vivado/high-level-design.html.

[66] Working with XSDB. Accessed on 03.08.2023, [Online].Available https://www.
xilinx . com / htmldocs / xilinx2019 _ 1 / SDK _ Doc / SDK _ concepts / concept _
Xilinxsystemdebugger.html.

[67] RISC-V, Spike, and the Rocket Core. Accessed on 06.08.2023,[Online].Available

https://inst.eecs.berkeley.edu/~cs250/fa13/handouts/lab2-riscv.pdf.

[68] 7 Series DSP48E1 Slice - User Guide. Accessed on 05.08.2023,[Online].Available

https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1.

[69] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. 1st. McGraw-

Hill Higher Education, 1994.

https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
 https://www.chisel-lang.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://github.com/riscv-collab/riscv-gnu-toolchain
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://github.com/eugene-tarassov/vivado-risc-v
https://github.com/eugene-tarassov/vivado-risc-v
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/SDK_concepts/concept_Xilinxsystemdebugger.html
https://www.xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/SDK_concepts/concept_Xilinxsystemdebugger.html
https://www.xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/SDK_concepts/concept_Xilinxsystemdebugger.html
https://inst.eecs.berkeley.edu/~cs250/fa13/handouts/lab2-riscv.pdf
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

References 84

[70] Introduction to LP solve. Accessed on 27.07.2023, [Online].Available https://
lpsolve.sourceforge.net/5.5/.

[71] SPEC CPU® 2017. Accessed on 28.01.2023, [Online].Available https://www.
spec.org/cpu2017/.

[72] D. Citron. “MisSPECulation: Partial and misleading use of spec CPU2000 in Com-

puter Architecture Conferences”. In: ACM SIGARCH Computer Architecure News

31.2 (May 2003), pp. 52–61. DOI: 10.1109/isca.2003.1206988.

https://lpsolve.sourceforge.net/5.5/
https://lpsolve.sourceforge.net/5.5/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://doi.org/10.1109/isca.2003.1206988

A
Publications

1. Karan Pathak, Joshua Klein, Giovanni Ansaloni, Marina Zapater and David Atienza,

”Validating Full-System RISC-V Simulator: A Systematic Approach”, RISC-V

Summit Europe, Barcelona, 5-9 June, 2023. (Poster Presentation)

2. Karan Pathak, Joshua Klein, Giovanni Ansaloni, Marina Zapater, Georgi Gaydad-

jiev, David Atienza, ”A Validated Linux-capable RISC-V Simulator”, (Submitted)

85

Validating Full-System RISC-V Simulator:
A Systematic Approach

Karan Pathak1,2∗, Joshua Klein1, Giovanni Ansaloni1, Marina Zapater1,3 and David Atienza1

1Embedded Systems Laboratory, École Polytechnique Fédérale de Lausanne
2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology

3REDS. School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland

Abstract
RISC-V-based Systems-on-Chip (SoCs) are witnessing a steady rise in adoption in both industry and academia.
However, the limited support for Linux-capable Full System-level simulators hampers development of the RISC-V
ecosystem. We address this by validating a full system-level simulator, gXR5 (gem5-eXtensions for RISC-V),
against the SiFive HiFive Unleashed SoC, to ensure performance statistics are representative of actual hardware.
This work also enriches existing methodologies to validate the gXR5 simulator against hardware by proposing a
systematic component-level calibration approach. The simulator error for selected SPEC CPU2017 applications
reduces from 44% to 24%, just by calibrating the CPU. We show that this systematic component-level calibration
approach is accurate, fast (in terms of simulation time), and generic enough to drive future validation efforts.

Introduction
A Linux-capable Full System-level simulator is one
that executes benchmarks (e.g. SPEC CPU2017 suite)
atop a kernel, system interface, and detailed hardware
models built-in software. To date, a full system-level
simulator for RISC-V has not been publicly validated
against fabricated hardware to target the precise mod-
eling of the execution of benchmark suites. gXR5
is a RISC-V-based Linux-capable, full system-level
simulator built into the gem5 architectural simulator
that is capable of simulating the run-time of high-level
applications [1]. Since it is built on gem5 [2], an open-
source, cycle-accurate, and event-driven architecture
simulator, it supports simulation of SoCs by providing
tunable architectural and micro-architectural models.
It can simulate multiple instruction set architectures
using ISA-agnostic CPU, bus and memory models.

Although gem5 and gXR5 are easily tunable, validat-
ing the simulator for the SPEC CPU2017 benchmark
suite is a non-trivial task. The SPEC CPU2017 suite,
when run uncalibrated (hereafter ‘baseline’) on gXR5,
has a mean absolute percentage error (simulated vs
actual hardware, hereafter, ‘error’) of 44.3% in execu-
tion time. The existing methodologies for validating
simulator models for the SPEC suites use synthetic
micro-benchmarks [3, 4, 5, 6] to reduce the error (de-
picted as "micro-architectural-level" calibration in Fig
1). These micro-benchmarks are not representative of
time complexity of actual workloads, thereby leading
to poor performance accuracy of simulators when real
user applications are run. Desikan et al. [3] achieve
18% simulator error in IPC for macro-benchmarks
derived from the SPEC CPU2000 benchmark suite.
Attempts have been made to use the correlation be-
tween micro-architectural events and error in IPC (e.g.
Pearson’s correlation) [5] and Hardware Performance
Counters (HPCs) for validating the simulator. Hup-
pert et al. [4] achieve an error of 20− 25% in IPC for
the SPEC CPU2017 benchmark suite.

∗Corresponding Author: karan.pathak@epfl.ch

Our proposed methodology introduces component-
level calibration of gem5 models targeting the Sifive
HighFive Unleashed System-on-Chip (SoC), which is
faster (in terms of simulation time), accurate, and ex-
tensible to other benchmarks. A CPU model in gXR5
is calibrated using the stress-ng benchmark suite1, re-
ducing the error in IPC from 36% to 11.8%. Once
calibrated, the execution time error reduces from 44%

to 24% while running the selected SPEC CPU2017
benchmark suite. We intend to release and open source
the validated gXR5 CPU model and supporting mate-
rials for adoption by the RISC-V community.

Methodology

Figure 1: Component-level calibration using the stress-ng
benchmark suite.

The target of this validation focuses on the CPU
model (four-stage MinorCPU pipeline), leaving the
tuning of the memory hierarchy for future work. The
proposed methodology employs component-level cali-
bration using selected "CPU class" stressors (collec-
tion of micro-benchmarks) of the stress-ng benchmark
suite to target the FU540-C000 in-order CPU design
of Linux-capable Sifive HiFive Unleashed SoC. The
FU540-C000 (also referred to as U54) is a RV64GC
core. The HiFive Unleashed SoC is a quin-core SoC,
with one small CPU that supports real-time con-
straints by hosting RTOS, while the other four U54

1 https://wiki.ubuntu.com/Kernel/Reference/stress-ng

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Figure 2: Performance of Simulator vs HighFive Un-
leashed SoC for stress-ng benchmarks.

cores are pipelined in-order processors2 typically tar-
geting workloads in user space. We base our simulated
model and validation effort on single-core core work-
loads executing on the U54 core.
stress-ng Calibration
The stress-ng suite stresses a particular component or
set of components of the system (in this case the CPU)
by using stressors. The selected CPU class stressors
were classified into three categories:

• Control Intensive: having complex control
structures (eg. nested for-if-else) with at least
100 branches per 1000 instructions.

• Memory Intensive: having 20% or higher
load/store instructions in the total op-code mix
of the program. A maximum 30% instructions
are load/store (for "queens" and "rand48").

• Arithmetic Intensive: having 20% or more
Instructions using Integer/Float functional units.

The most significant attributes of the baseline and cal-
ibrated MinorCPU models are summarised in Table 1.
Figure 2 depicts the IPC of Baseline, Calibrated simu-
lator and Hardware for stress-ng benchmarks, along
with the absolute percentage of IPC error in the Cal-
ibrated simulator. The simulator achieves a Mean
Absolute Percentage Error in IPC of 11.8%.

Table 1: Simulator Model- MinorCPU Attributes

Component Attribute Simulated Model
Baseline Calibrated

ReadMemFU OpLat (cycles) 4 2
IntDivFU OpLat (cycles) 33 19

Fetch unit
fetch1Tofetch2
BackwardDelay

1 (cycles) 0 (cycles)

Branch-
Predictor

Type Tournament
Multi per-
spective
Perceptron

Experimental Setup
The simulated CPU frequency is the same as the Hi-
Five SiFive Unleashed, running at 1GHz. Likewise,
the simulated system uses 8GB of 2400MHz DDR4
RAM. The L1 and L2 caches are implemented using
2 https://riscv.org/technical/specifications/

the classical cache models available in gXR5. They are
32KB, 8-way associative, and 2MB, 16-way associative,
respectively. The software stack of both the simulated
model and the HiFive Unleashed SoC includes the
OpenSBI bootloader, the Linux kernel v5.8, and a
24GB buildroot filesystem.

Results and Discussion
Five of the SPEC CPU2017 integer-rate benchmarks
(out of 10 total applications) were successfully run on
the validated simulator. The applications with a simi-
lar op-mix to stress-ng CPU class stressors have a mere
3.4% (500.deepsjeng_r) and 0.17% (541.leela_r) er-
ror in execution time. Figure 3 compares the execution
time of SPEC CPU2017 applications running on the
HiFive Unleashed SoC and on gXR5. A relatively
large error in execution time for other applications
is expected as they are much more memory intensive
(i.e., they have nearly 40% Load/Store instructions),
given only the MinorCPU model was calibrated. Cal-
ibration reduces the overall error in execution time
from 44.3% to 23.9%.

Figure 3: Performance of Simulator vs actual hardware
for SPEC CPU2017 suite

This work has been partially supported by the EC
H2020 WiPLASH project (GA No. 863337), the EC
H2020 FVLLMONTI project (GA No. 101016776),
and the ECO4AI project from HES-SO.

References

[1] gXR5: A gem5-based full-system RISC-V simulator. url:
https : / / www . epfl . ch / labs / esl / research / 2d - 3d -
system-on-chip/gXR5.

[2] N. Binkert et al. “The gem5 simulator”. In: ACM SIGARCH
computer architecture news 39.2 (2011), pp. 1–7.

[3] Rajagopalan Desikan et al. “Measuring experimental error
in microprocessor simulation”. In: ISCA (2001).

[4] Quentin Huppert et al. “Memory hierarchy calibration
based on real hardware in-order cores for accurate simula-
tion”. In: DATE (2021).

[5] Ayaz Akram and Lina Sawalha. “Validation of the GEM5
simulator for x86 architectures”. In: IEEE PMBS (2019).

[6] Marco A Z Alves et al. “SiNUCA: A Validated Micro-
Architecture Simulator”. In: 2015 IEEE ICHPCC, IEEE
ISCSS, and IEEE ICESS (2015), pp. 605–610.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

Validated

simulator

1. gXR5: A gem5-based full-system
RISC-V simulator. url: https : / /
www . epfl . ch / labs / esl /
research / 2d - 3d - system-on-
chip/gXR5.

2. N. Binkert et al. “The gem5
simulator”. In: ACM SIGARCH
computer architecture news 39.2
(2011), pp. 1–7.

3. Rajagopalan Desikan et al.
“Measuring experimental error in
microprocessor simulation”. In:
ISCA (2001).

4. Quentin Huppert et al. “Memory
hierarchy calibration based on real
hardware in-order cores for
accurate simulation”. In: DATE
(2021).

Validating Full-System RISC-V Simulator:
A Systematic Approach

Karan Pathak, Joshua Klein, Giovanni Ansaloni, Marina Zapater and David Atienza

Component:

Attribute

Baseline

Value

Calibrated

Value

Read Memory

Functional Unit :

Op Latency
4 2

Integer Division

Functional Unit :

Op Latency
33 19

Branch Predictor :

Type Tournament
Multiperspective

Perceptron

Fetch2-Fetch1 :

Backward Delay 1 0

Execute Unit :

Branch Delay 1 3

L1 Cache :

Associativity 2 8

L1 -Data Cache :

Clusivity
Mostly

exclusive

Mostly

inclusive

Motivation

Simulate
impact of

architectural
innovations

quickly

Execute Real
user’s

workload atop
filesystem,

kernel.

Stress-ng

 Error reduced

by > 20% with

calibrated

CPU

 3.1% exec.

time error

(at most) for

SPEC2017

applications

with similar

Instructions

Simulator vs Hardware performance for

stress-ng benchmarks

Simulator vs Hardware performance for

SPEC2017 applications

Enriches Simulator
Validation

Methodologies

Full System RISC-V
simulator validated

against actual
hardware

Open Sourcing:
gXR5

bootloader

kernel

filesystem

This work has been partially supported by
the EC H2020 WiPLASH project (GA No.
863337), the EC H2020 FVLLMONTI
project (GA No. 101016776), and the
ECO4AI project from HES-SO.

gXR5: gem5 eXtended for RISC-V

A Validated Linux-capable RISC-V Simulator
Karan Pathak†‡, Joshua Klein†, Giovanni Ansaloni†, Marina Zapater†,*,

Georgi Gaydadjiev‡ and David Atienza†

†Embedded Systems Lab (ESL), École Polytechnique Fédérale de Lausanne, Switzerland
‡ Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, The Netherlands

* REDS. School of Engineering & Management Vaud, HES-SO University of Applied Sciences & Arts Western Switzerland
Mail IDs(To be ommitted for blind review)

Abstract—The RISC-V ecosystem has been witnessing tremen-
dous push by the industrial players to accelerate adoption
of RISC-V chips in IoT, mobile, data centres, and embedded
domains. However, there has yet been a publicly released RISC-
V full-system simulator that has been validated against an actual
hardware. We bridge this gap by presenting a first Linux capable,
RISC-V full-system simulator that has been validated against an
IP-protected commercial board as well as open source RISC-V
system emulated on an FPGA. This work proposes a performance
validation methodology, namely “component-level” calibration
that is fast, accurate, and generic. The validated simulator error
is brought down from 45% and 54% to 22.9% and 18.9%
for selected SPEC2017 benchmarks applications, by calibrating
the CPU model using the aforementioned methodology. The
methodology also streamlines CPU performance validation of the
simulators.

Index Terms—Architectural simulator, performance validation,
full-system (FS) simulator, in-order CPU, FPGA emulation,
Hardware Performance Counters.

I. INTRODUCTION

Computer Architects are often tasked with balancing the
performance, power, and area requirements of the chip. The
challenge is made stringent and exasperated by Time-to-
Market constraints. Because hardware prototyping is both
expensive and time consuming, architectural simulators come
to the rescue by providing means to gauge the impact of
architectural innovations quickly. Arguably, these simulators
can avoid processor/product recall due to the systems failing to
meet performance or power requirements. A full-system (FS)
simulator expands the utility of such simulators by facilitating
user space applications (that require OS libraries and a kernel)
to be run on the simulated hardware rather quickly. Contrary to
the application specific or user-mode clock driven simulations
(e.g. RTL) that have poor simulation throughput on the order
of Kilo Instruction per Second (KIPS) [1], the event-driven
FS-simulator has higher simulation throughput (on the order
of MIPS) [2] and far greater reconfigurability. The most
important aspect of simulators is accuracy with which the
hardware is modeled. Apart from being functionally correct,
the simulators should also be representative of the performance
of the hardware. Hence, validating simulator against hardware
is essential to enhance the utility of the simulator.

This work has been partially supported by the EC H2020 WiPLASH project
(GA No. 863337), the EC H2020 FVLLMONTI project (GA No. 101016776),
and the ECO4AI project from HES-SO. The research stay was supported by
Justus and Loiuse van Effen Research Grant.

gem5 extensions for RISC-V (gXR5 from now on) is a
Linux capable fs-simulator built on top of open source gem-5
[3] architectural simulator. gem5 is an event-driven architec-
tural simulator built by the merger of m5 and GEMS sim-
ulation frameworks. It provides ISA independent and tunable
(micro) architectural models that allows simulation of a variety
of ISAs (such as ARM and x86). It is highly reconfigurable
by the inclusion of python (configuration) scripts that tune
specific hardware attributes (e.g., latencies, bus widths, buffer
sizes), while maintaining host performance through the use of
compiled C++ code for all tuned modules.

A. Contributions

Architectural simulators suffer from three types of valida-
tion errors: Abstraction, Modeling, and Specification errors
[4]. Abstraction errors are inherent to simulator and depend
upon the chosen level of abstraction. It is a designer’s choice.
Modeling errors originate from the inability of the designer to
capture the micro-architectural details of the actual hardware,
usually due to generic models designed for greater reconfig-
urability. A functional validation removes the modeling errors.
Specification errors are the most challenging to address as
they arise when the designer is not aware of the micro-
architectural details of the actual hardware, often because of
proprietary rights (e.g. because the model is a black box).
The proposed methodology of “component-level” calibration
is an attempt to overcome these specification errors. The
methodology is accurate, faster (in terms of simulation time),
systematic (unlike existing methodology) and generic (that can
be extended to other simulators to simulate various ISAs).
Rest, our contributions are as follows:

• We implement a Linux-capable full system model for the
RISC-V 64-bit general purpose architecture in gem5.

• We calibrate this model against a single core of the Linux-
capable Sifive HiFive Unleashed SoC and an uni-core
Rocket Chip emulated on VC707 Xilinx FPGA using our
aforementioned methodology.

• We implement a new Gshare branch predictor model that
is compatible with existing multi-threaded CPU models
in gem5.

• Using selected SPEC CPU2017 benchmarks, we validate
the performance statistics of our simulator to within a
small margin of error with respect to the HiFive Un-
leashed SoC and Rocket Chip emulated on FPGA. This

Fig. 1. Simulated Full System Model

removes the need for licensed FPGA emulation to run
user’s workload on Rocket Chip, making the Rocket Chip
ecosystem truly open source.

• We release and open source our simulator and all support-
ing materials, including bootloader, kernel, filesystem,
and technical manual, for quick and easy adoption by
the RISC-V community.

B. Preliminary Work

The diagram of the adopted gXR5 full system model, which
simulates execution on the uni-core HiFive Unleashed SoC
and Rocket system emulated on VC707 FPGA, can be seen
in Figure 1. The model takes advantage of the modularity of
gem5 by integrating standard, included components of gem5.
It uses the in-order MinorCPU model to simulate the in-
order uni-core of the two aforementioned hardware targets.
The core-local interruptor (CLINT) is modeled as a single
simulation object with a timer for each CPU core. The rest of
the SoC derives from the SimpleBoard [16]. The platform-
level interrupt controller (PLIC) modeled is based on the
one from FU540-C000 core, and is responsible for interrupts
from external devices. The software stack of the gXR5 full-
system simulator includes an OpenSBI bootloader, the Linux
v5.8 kernel, and a buildroot file system. Since we base our
validation efforts on a single-core system, the in-order Minor
CPU model is discussed in detail.

The Minor CPU derives from the BaseCPU model that
implements the basic functionalities such as setting up a fetch
request, handling pre-execute setup, handling post-execute
actions, advancing the Program Counter, etc. It is a four-stage
pipelined CPU model with following stages: Fetch1, Fetch2,
Decode, and Execute. These stages are connected through
input (size-tunable) buffers that hold the instructions in case of
a stall. The Fetch1 stage fetches the instructions from the L1
Instruction cache, while Fetch2 stage has a branch predictor
unit with Branch History Table (BHT) and Branch Target

TABLE I
TECHNICAL SPECIFICATIONS OF SIMULATED MODELS AND TARGET

HARDWARE.

Component HiFive Unleashed Rocket
Hardware gXR5 Hardware gXR5

CPU Core U54 MinorCPU Big Core MinorCPU
CPU RV64GC RV64G RV64GC

CPU Freq 1 0.1 GHz 1.067 GHz
L1 I & D $ 32KB 8-Way 16KB 4-Way

L2 $ 2 MB 16-Way None
MMU Sv39
Modes Machine, Supervisor, User
RAM DDR4 DDR4 4x16 DDR3 DDR3 8x8
RAM
Freq 2400 MHz 200 MHz 2133 MHz

RAM
Size 8GB 4GB

System
Bus TileLink XBar TileLink XBar

Buffer (BTB). The Decode stage converts the instruction into
micro-operations before passing them to the Execute stage.
The Execute stage hosts the arithmetic functional units and
the Load/Store unit (LSU). The functional units are modeled
as black boxes with a finite Operation (Op) Latency.

C. Target Hardware

The Sifive Unleashed was the first Linux-capable RISC-V
system that was commercially available. The soundness of the
proposed methodology to validate is illustrated by validating
gXR5 against the IP protected processor, details of whose
micro-architecture are not open source. On the other hand, the
Rocket core is one of the most popular open source RISC-V
hardware systems [5]. It has been chosen as a target hardware
to prove the fidelity of the proposed methodology. The micro-
architecture of the two target CPU cores is described below:

• U54 core is an in-order 5-stage pipelined CPU with
32KB 16-way L1 Instruction and Data caches. It has a
branch predictor unit with a 30-entry BTB that caches the
target of taken branches, a 256-entry BHT that stores the
direction of conditional branches, and a 6-entry return-
address stack (RAS). The latency of the integer multiplier
is 5 clock cycles. The integer division unit has a latency
between 2 and 65 clock cycles [?]. The details of rest
of the micro-architecture is closed-source and therefore
poses a challenge as it a source of specification errors.

• Rocket Core is a 5-stage in-order scalar processor with
L1 Instruction and Data caches. The default configuration
of the core includes floating point units (Single Precision
and Double Precision Fused Multiply Accumulate and
Division). The integer functional units include an 8-
cycle iterative integer multiplier (with one cycle each
to load the operands and place the result on the output
bus). It comes with an integer ripple carry adder and
integer division unit. It has a Gshare branch predictor
that uses hash of branch address XORed with hash of
global history to index into Pattern History Tables (PHTs)

Fig. 2. Methodology: Component Level Calibration

containing a 2-bit counter. The hash functions are as
follows:

Hash 1(gh) =

√
3

2
∗ 2History length ∗ gh (1)

Hash 2(pc) = pc >> log2(fetch bytes) (2)

The hashed values are resized before matching the pattern. The
L1 Instruction cache is three stage pipeline with data access
latency of 2 clock cycles under a hit. Similarly, the L1 Data
cache completes the tag comparison and serves the request
of data fetch in 2 clock cycles in case of a tag hit. There
exists an additional stage for hosting the Miss Status Holding
Register (MSHR) that keeps a track of hits under a miss. The
Table I summarises the simulator set-up and the corresponding
hardware specifications.

The attributes of the simulator such as latency of modeled
functional units, cache access latency, etc., are matched with
those of the hardware (subject to open-sourced technical
specifications) . We call this configuration of the simulator
as the ‘Baseline’ simulator.

II. RELATED WORKS

One of the earliest works on performance validation by De-
sikan et al. [7] achieved 18% simulator error in IPC for macro-
benchmarks derived from the SPEC CPU2000 benchmark
suite. The methodology can be best described as ‘validation by
inspection’, as multiple execution of the macro-benchmarks in
SimAlpha simulator and the hardware are required to bridge
the performance (IPC) gap. More recent attempts include
Butko et al. [8], which validated the gem5 simulator for ARM
A8 (dual core) and A9 cores executing PARSEC benchmarks
with the simsmall input set. Similar work has been carried
out by Qureshi et al. [9], which obtained a 4% simulator
error compared to the ARM JUNO platform in terms of
execution time for a real-time video transcoding app. However,
considerable time (often a few days) is required to execute a
single instance of the macro-benchmark in the simulator. In
order to expedite the validation process, an alternate approach
used synthetic micro-benchmarks (as Training set) to calibrate
the region of interest prior to executing the macro-benchmarks

TABLE II
PAST SIMULATOR VALIDATION EFFORTS WITH REPORTED ERRORS FOR

BENCHMARKS.

Validated
Simulator

Target
Hardware

Training Set Er-
ror

Test Set Error

SimAlpha DS-10L
workstation
(Compaq Alpha
21264 processor)

Synthetic mi-
crobenchmarks
IPC Error of less
than 2 %

selected mac-
robenchmarks
derived from
SPEC2000 suite
IPC Error of 18
[7] %

SiNUCA Sandy bridge
processor

Synthetic mi-
crobenchmarks
IPC Error of 9
%

SPEC2006 suite
having an IPC
Error of 19%
[12]

gem5 ARM Versatile
Express TC2
development
board

SPEC and PAR-
SEC

SPEC and PAR-
SEC Run Time
Error of 13 %
and 11 % [4]

gem5 Cortex-A53 core
of MediaTek He-
lio X20 SoC

Synthetic mi-
crobenchmarks

SPEC2006 suite
IPC Error of 20
% [11]

gem5 Arm R8 CPU Embench work-
load CPI Error of
13 %

No macro-
benchmarks
were run [13]

gem5 Intel Core-i7
(Haswell Micro-
architecture)

Synthetic micro-
benchmarks IPC
Error of 6 %

No macro-
benchmarks
were run [10]

gem5 ARM Cortex-
A8 (dual core,
Snowball SDK),
ARM Cortex-
A9 (single
core,BeagleBoard-
xM SDK)

PARSEC Selected
PARSEC
benchmarks
(with simsmall
input set), Run
time Error of 8
% for both [14]

GEMS ARM Cortex-
A9 (Snowball
SKY-S9500-
ULP-C01)

SPLASH-2,
ALPBench,
STREAM

same as test set,
Run time Error
of 1.39% to
17.94 % [8]

(as Test set) such as SPEC/PARSEC. We call this methodology
“micro-architectural level calibration”.

The Table II summarises the validation efforts and the
methodology used. Despite past efforts, the design of the
micro-benchmarks and the validation methodology has not
been streamlined. Attempts have been made to use the Pear-
son’s correlation between micro-architectural events and error
in IPC [10] to streamline the calibration methodology. How-
ever, the validated simulator has not been tested on macro-
benchmarks representative of user’s workload. Huppert et al.
[11] provide methodology for memory hierarchy calibration
achieving a mean error of 20% in IPC for the SPEC CPU2006
benchmark suite. This simplistic methodology (of ‘data pin-
ning’) can not be extended to other components such as the
CPU, Branch Predictors, TLBs, and Page Walkers.

III. METHODOLOGY

We propose a “component-level calibration” methodology
for validating simulators. Figure 2 situates the proposed
methodology among the existing ones.The proposed method-
ology uses stress-ng benchmarks [6] for fine-tuning the CPU
model in gem5.

Tournament BP Local BP BiMode BP MP BP TAGE_SC_L BP
0

5

10

15

20

25

Br
an

ch
 m

isp
re

di
ct

io
n

ra
te

 (%
)

Fig. 3. Mis-prediction rates of branch predictors executing the stress-ng
benchmark.

A. Stress-ng benchmarks
The stress-ng benchmarks were originally designed to per-

form accelerated stress-test of a particular component of the
computing system and cause thermal overruns. The benchmark
suite has been divided into classes of “stressors”, with each
class stressing a particular component and often containing
tens to over 100 stressors. The CPU class stressors number
over 100 at time of writing, and thus we choose a repre-
sentative subset of 10 stressors using Principal Component
Analysis (PCA) to ensure diversity of the type of workload.
Furthermore, we reduce the need for extensive characterisa-
tion of the hardware using Hardware Performance Counters
as only Instruction and Cycle count are being used (IPC).
Additionally, the stress-ng micro-benchmarks are much more
representative of the time-complexity of real-user’s workload
than the synthetic microbenchmarks [6]. As a result, the
validated simulators have less performance disparity when
macro-benchmarks (SPEC suites) are executed. The following
section profiles and classifies the selected CPU class stressors.
The classification is in line with existing validation efforts [7].

B. Profiling and Classification
The selected CPU class stressors were profiled using gXR5

with the baseline configuration. They are classified into three
categories:

• Control Intensive: having complex control structures
(e.g. nested for-if-else) with at least 100 branches per
1000 instructions.

• Memory Intensive: having 20% or higher load/store
instructions in the total op-code mix of the program. A
maximum 30% instructions are load/store (for stressors
“queens” and “rand48”).

• Arithmetic Intensive: having 20% or more Instructions
using Integer/Float functional units. All the stressors are
arithmetic/compute intensive.

The stress-ng benchmarks are used as a ‘test set’ to fine-
tune the attributes of gXR5 targeting Instructions per Cycle

in
t6

4l
gd

b
in

tc
on

v
lo

ng
db

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0.0

0.2

0.4

0.6

0.8

1.0

IP
C

Baseline Simulator
Post FU Cal.
Post BP Cal.

Post Mem Cal.
Post Pipe Cal.
Unleashed

Fig. 4. Performance of gXR5 and Unleashed at various stages of calibration.

(IPC) to reduce performance disparity. IPC has been chosen
as the Figure of merit since it captures minuscule changes in
performance of both simulated system and hardware. Once,
calibrated, the SPEC suite is executed on the ‘validated’
simulator.

IV. RESULTS AND DISCUSSION

A. Calibrating for the U54 Core

The Baseline simulator underestimates the performance
(IPC) compared to the actual hardware for all the stressors
(Figure 4). The bottlenecks in the simulated system were
identified and removed to improve the simulated system’s
performance. The fine-tuning led to decreasing the latency
of functional units (such as Integer Division and Add). After
Functional Unit calibration, the bottleneck in systems perfor-
mance were control hazards. Hence, a design space exploration
of the existing branch predictors was performed to reduce the
branch miss-predictions and associated CPU stalls (Figure 3).
The Multiperspective Perceptron branch predictor model gives
least Mean Absolute Percentage Error (MAPE) in IPC by im-
proving the simulated system performance. The TAGE SC L
(TAgged GEometric length with statistical correlator and loop
predictor) branch predictor model has larger outliers for some
of the stressors that gives higher MAPE in IPC. The branch
mis-predictions cause thrashing in the L1 instruction and
data caches. Hence, L1 cache and the load/store units were
tuned after switching to Multiperspective Perceptron branch
predictor (MPBP). The memory related stalls were removed
by decreasing the data access latency of L1 cache and making
L2 cache inclusive of L1 cache. This significantly improves
performance of stressor having working set size greater than
L1 cache capacity. Finally, the input buffers to execute unit
were made larger to ensure higher functional unit utilisation

in
t6

4l
gd

b
in

tc
on

v
lo

ng
db

m
at

rix
pr

od
pr

im
e

qu
ee

ns
ra

nd
48

st
at

s
sq

rt
tri

g0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IP
C

Baseline Simulator
Post FU Cal.

Post BP Cal.
Rocket

Fig. 5. Performance of gXR5 and Rocket Chip at various stages of calibration

even in case of control-related stalls. The IPC at various stages
of calibration is depicted in Figure 4.

B. Calibrating against Rocket core

The rocket system was emulated on the VC707 Xilinx
FPGA using the Vivado High-Level Synthesis (HLS) tool. The
synthesiser makes use of the DSP48E1 slices to implement the
floating point units (SPFMA, DPFMA and FPDiv) in order to
maximise the performance of the system. The DSP48E1 slice
has a single latency (25 x 18 bits) multiplier with shift logic at
the output bus to facilitate larger operand multiplications. The
output of the multiplier is fed to a single cycle adder/subtractor
via a register. The input ports have registers that can break
the critical path by absorbing operands into registers (thereby
increasing latency of operation). Hence, the latency of these
functional units were fixed using the same selected stress-ng
stressors, targeting reduction in IPC. Both single and double
precision floating point instructions are mapped to a single ‘op-
class’ inside gem5, which in-turn is mapped to FloatMultAcc
functional unit. A heuristic approach or ILP modeling can
give minimum possible latency of synthesised functional units
using DPS48E1 slice that serve as the starting point of DSE for
fixing Op Latency of the Floating Point units. The Op Latency
of FloatMultAcc and FloatDiv is fixed at 6 clock cycles and
9 clock cycles respectively, as it gives least MAPE in IPC for
stress-ng benchmarks.

Finally, a Ghsare branch predictor [15] model is imple-
mented in gXR5/gem5. This model is compatible with gem5
CPU (multi-threaded) models and can be configured via the
corresponding python scripts in gem5. The IPC of stressors
in simulated system and hardware is depicted in Figure 5.The
implementation of gshare branch predictor model reduces the

Base
line

Pos
t F

U Cal.

Pos
t B

P C
al.

Pos
t M

em
 Cal.

Pos
t P

ipe
 Cal.

0
5

10
15
20
25
30
35
40

Er
ro

r i
n

IP
C

(%
)

Control Intensive
Memory Intensive

Arithmetic Intensive (overall)

Fig. 6. MAPE in IPC for stressors run on gXR5 and Sifive Unleashed at
various calibration stages

MAPE in control intensive benchmarks from 15% to less than
8 %. The MAPE in IPC for stress-ng benchmarks has been
depicted in Figure 7.

The final configuration of the gXR5 calibrated for Sifive
Unleashed and Rocket Chip is called the ‘validated simulator’.
The stress-ng benchmarks achieve the component-level valida-
tion. But validation of the entire simulated system necessitates
executing workload representative of user-space such as SPEC
benchmark suite. SPEC2017 int rate applications (with test
inputs) are run on the simulator and the target hardware.
The execution time of the application gives an estimate of
performance of the simulated system. Hence, the execution
time is chosen as the Figure of merit to test the validated
simulator while executing SPEC suite applications. However,
this is possible only if the simulator and hardware operate
at the same frequency. Otherwise, clock cycles elapsed while
executing applications is chosen as an alternative figure of
merit.

C. Validated Simulator against Sifive Unleashed

The run time of the SPEC applications are compared for
the baseline simulator, validated simulator, and the hardware.
Figure 8 depicts baseline error of 44% and the final (validated
simulator) error of 23.9%. The specification error is brought
down by more than 20% just by calibrating the MinorCPU
model in gXR5. As expected, the three application having
higher load/store instructions (mcf, omnetpp, and xalancbmk)
have higher run time error. For the other two applications, the
run time error is mere 3.4% and 1.7%, highlighting superior
results of the proposed methodology.

D. Validated Simulator against Rocket System

The Rocket system emulated on VC707 FPGA runs at
a frequency different than the system modeled in gXR5.

Baseline Post FU Cal. Post BP Cal.0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Er
ro

r i
n

IP
C

(%
)

Control Intensive
Memory Intensive

Arithmetic Intensive (overall)

Fig. 7. MAPE in IPC for stressors run on gXR5 and Rocket Chip at various
calibration stages

Fig. 8. Performance of gXR5 Vs. Sifive Unleashed for selected SPEC2017
suite applications.

Moreover, the ratio of DRAM Controller frequency and CPU
operating frequency is kept at 10.665:1 for both Hardware and
gXR5. The number of clock cycles elapsed while executing
SPEC suite applications is used to compare the performance
statistics of the hardware and gXR5. The MAPE in execution
cycles is brought down to 18.9 % (Figure 9), showcasing
the fidelity of the proposed methodology for performance
validation.

V. CONCLUSION AND FUTURE WORK

A single run of simulation for stress-ng benchmarks takes
less than 180 minutes to execute stressors for 5 seconds.
No more than 15 simulation runs were required to calibrate
the MinorCPU model. Many of these simulations were run
in parallel, thereby reducing the validation effort time from
days to hours. Moreover, the only Hardware Performance
Counts (HPCs) used were instructions and clock cycles (for
calculating IPC), thereby significantly reducing the effort spent
in characterizing the hardware. We achieve an error of 22.9%
and 18.9 % for the two target hardware, just by fine-tuning
MinorCPU model. The methodology can be further extended

505.mcf_r

520.omnetpp_r

523.xalancbmk_r

531.deepsjeng_r

541.leela_r

102

103

Cy
cle

s (
bn

)

-25.14

2.35

-38.44

-20.42

-8.10

54.5

18.9

Baseline Simulator Rocket-FPGA Validated Simulator
% Error Baseline Simulator % Error Validated Simulator

Fig. 9. Performance of gXR5 Vs. Rocket Chip for selected SPEC2017 suite
applications.

for other component calibration, especially memory hierarchy.
Moreover, a good ground to test the methodology would be to
simulate multi-core systems with shared memory. Ruby caches
in gem5 provide a much detailed micro-architecture including
various cache coherency fabrics. The stress-ng stressors can be
run on multiple cores to tune the modeled (shared) memory,
Interconnects, etc.

REFERENCES

[1] López-Paradı́s et al., “Fast Behavioural RTL Simulation of 10B Transis-
tor SoC Designs with Metro-Mpi,” In DATE 2023, Antwerp, Belgium.

[2] N. Zurstraßen et al., ”par-gem5: Parallelizing gem5’s Atomic Mode,” In
DATE 2023, Antwerp, Belgium.

[3] N. Binkert et al.,“The GEM5 simulator,” In ACM SIGARCH Comput.
Archit. News, 2011.

[4] A. Gutierrez et al., “Sources of error in full-system simulation,” In ISCA
2014.

[5] A. Dörflinger, “A comparative survey of open-source application-class
RISC-V processor implementations,” In ACM ICCF 2021.

[6] “Stress-ng.” ubuntu-wiki. Accessed January 01,2023. [Online]. Avail-
able: https://wiki.ubuntu.com/Kernel/Reference/stress-ng

[7] R. Desikan, D. Burger and S.W. Keckler, “Measuring experimental error
in microprocessor simulation,” In ISCA 2001.

[8] A. Butko, R. Garibotti, L. Ost and G. Sassatelli, ”Accuracy evaluation
of GEM5 simulator system,” In International Workshop on ReCoSoC,
2012.

[9] Y. M. Qureshi et al., ”Gem5-X: A Gem5-Based System Level Simulation
Framework to Optimize Many-Core Platforms,” In SpringSim 2019.

[10] A. Akram and L. Sawalha, ”Validation of the gem5 Simulator for x86
Architectures,” In IEEE/ACM PMBS 2019.

[11] Q. Huppert et al., ”Memory Hierarchy Calibration Based on Real
Hardware In-order Cores for Accurate Simulation,” In DATE 2021.

[12] M. A. Z. Alves et al., ”SiNUCA: A Validated Micro-Architecture
Simulator,” In 2015 IEEE ICHPCC, IEEE ISCSS, and IEEE ICESS.

[13] I. Wang, P. Chakraborty, Zi Yu Xue, and Yen Fu Lin. 2022. Evaluation
of gem5 for performance modeling of ARM Cortex-R based embedded
SoCs. In Microprocess. Microsyst. 2022.

[14] F. A. Endo, D. Couroussé and H. -P. Charles, ”Micro-architectural
simulation of in-order and out-of-order ARM microprocessors with
gem5,” In SAMOS XIV, 2014.

[15] S. McFarling, “Combining Branch Predictors,” Technical Report TN-36,
Digital Western Research Lab., June 1993.

[16] Robert Scheffel, ”Simulation of RISC-V based Systems in gem5,”
Research Master thesis, TU Dresden, 2018.

[17] “SiFive FU540-C000 Manual v1p4.” Accessed January
01,2023. [Online]. Available:https://sifive.cdn.prismic.io/sifive/
d3ed5cd0-6e74-46b2-a12d-72b06706513e fu540-c000-manual-v1p4.
pdf

B
RISC-V ISA selected Instructions

Abbreviation Instruction (Description)

LW Load Word

LH Load Half Word

LHU Load Half Word Unsigned

LB Load Byte

LBU Load Byte Unsigned

MUL
Multiply 64-bit numbers and places the lower 64 bits in

the destination register

MULH
(signed)64-bit×(signed)64-bit multiplication and

places the upper 64-bits in the destination register

MULHU
(unsigned)64-bit×(unsigned)64-bit multiplication and

places the upper 64-bits in the destination register

DIV Division of 64-bit by 64-bit number

DIVU Division of unsigned 64-bit number by unsigned 64-bit number

LD Load DoubleWord

ANDI Logical AND with Immediate value

ADD Add the operands in the register

SRAI Shift Right Arithmetic Immediate

SLLI Shift Right Logical Immediate

BNE Branch if Not Equal

BEQ Branch if Equal

Table B.1: Selected RISC-V Instructions

95

C
C Code

C.1. ILP Modeling: Parsing and Generating constraint

equations

Listing C.1: Parsing the sequncing table

void read_header (s td : : s t r i n g const& l i ne , u i n t32_ t& m, u in t32_ t& n)

{

s td : : s t r i n g s t r ;

s td : : s t r i ngs t ream ss (l i n e) ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

m = std : : s t o i (s t r) ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

n = std : : s t o i (s t r) ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

latency_bound = std : : s t o i (s t r) ;

}

void add_NOP_type ()

{

resources [’ 0 ’] = Resource ({1 , 1}) ;

}

void add_resource_type (s td : : s t r i n g const& l i n e)

{

s td : : s t r i n g s t r ;

s td : : s t r i ngs t ream ss (l i n e) ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

96

C.1. ILP Modeling: Parsing and Generating constraint equations 97

char const name = s t r [0] ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

u i n t 32_ t const delay = std : : s t o i (s t r) ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

u i n t 32_ t const num = std : : s t o i (s t r) ;

asser t (resources . f i n d (name) == resources . end ()) ;

resources [name] = Resource ({ delay , num}) ;

}

void add_first_NOP ()

{

opera t ions . emplace_back (Operat ion ({ ’ 0 ’ , { } })) ;

}

void add_operat ion (s td : : s t r i n g const& l i n e)

{

s td : : s t r i n g s t r ;

s td : : s t r i ngs t ream ss (l i n e) ;

s td : : g e t l i n e (ss , s t r , ’� ’) ;

char const type = s t r [0] ;

asser t (resources . f i n d (type) != resources . end ()) ;

opera t ions . emplace_back (Operat ion ({ type , { } })) ;

auto& pred = opera t ions . back () . predecessors ;

while (s td : : g e t l i n e (ss , s t r , ’� ’))

{

pred . emplace_back (s td : : s t o i (s t r)) ;

}

}

Listing C.2: Generating ILP equations

void opera t ions_s ta r ts_once ()

{

for (auto i = 1u ; i <= num_operations ; ++ i)

{

Cons t ra in t c ons t r a i n t ;

c ons t r a i n t . type = EQ;

cons t r a i n t . constant = 1 ;

for (auto l = 1u ; l <= num_timeframes ; ++ l)

{

C.1. ILP Modeling: Parsing and Generating constraint equations 98

cons t r a i n t . va r i ab l es . emplace_back (Var iab le ({ i , l })) ;

c ons t r a i n t . c o e f f i c i e n t s . emplace_back (1) ;

}

c ons t r a i n t s . emplace_back (cons t r a i n t) ;

}

}

void sequenc ing_re la t ions ()

{

for (auto i = 1u ; i <= num_operations ; ++ i)

{

auto predec = prob . opera t ions . a t (i) . predecessors ;

i f (! predec . empty ()) {

for (auto p : predec) {

Cons t ra in t c ons t r a i n t ;

c ons t r a i n t . type = GE;

char resourcetype = prob . opera t ions . a t (p) . type ;

/ / p r i n t f (” resource type i s : %d ” , resourcetype) ;

cons t r a i n t . constant = prob . resources . a t (resourcetype) . delay ;

/ / p r i n t f (” delay i s : %d \ n ” , res) ;

for (auto l = 1u ; l <= num_timeframes ; ++ l) {

c ons t r a i n t . va r i ab l es . emplace_back (Var iab le ({ i , l })) ;

c ons t r a i n t . c o e f f i c i e n t s . emplace_back (l) ;

/ / p r i n t f (” var and coe f f are %d and %d \ n ” , i , l) ;

i f (p ==0) continue ;

c ons t r a i n t . va r i ab l es . emplace_back (Var iab le ({ p , l })) ;

c ons t r a i n t . c o e f f i c i e n t s . emplace_back (−signed (l)) ;

/ / p r i n t f (” predecessors o f %d i s %d \ n ” , i , p) ;

/ / p r i n t f (” coe f f i s : %d \ n ” , − l) ;

}

c ons t r a i n t s . emplace_back (cons t r a i n t) ;

}

}

else {

Cons t ra in t c ons t r a i n t ;

c ons t r a i n t . type = GE;

cons t r a i n t . constant = 0 ; / / here d j coressponding

for (auto l = 1u ; l <= num_timeframes ; ++ l) {

c ons t r a i n t . va r i ab l es . emplace_back (Var iab le ({ i , l })) ;

c ons t r a i n t . c o e f f i c i e n t s . emplace_back (l) ;

}

c ons t r a i n t s . emplace_back (cons t r a i n t) ;

}

C.1. ILP Modeling: Parsing and Generating constraint equations 99

}

}

void resource_bounds ()

{

/ / auto i t = prob . resources . begin () ;

for (auto i t = prob . resources . begin () ; i t != prob . resources . end () ; ++ i t) {

/ / p r i n t f (” resource types i s %d \ n ” , i t −> f i r s t) ;

i f (i t −> f i r s t == 48) continue ;

i n t max_resource = i t −>second .num;

i n t delay_resource = i t −>second . delay ;

for (auto l = 1u ; l <= num_timeframes ; ++ l) {

Cons t ra in t c ons t r a i n t ;

c ons t r a i n t . type = LE ;

cons t r a i n t . constant = max_resource ;

auto m = l − delay_resource + 1u ;

i f (m<1 | |m>=num_timeframes) continue ;

for (auto index = m; index < l +1u ; index ++){

for (auto i = 1u ; i <= num_operations ; ++ i) {

auto resourcetype = prob . opera t ions . a t (i) . type ;

i f (resourcetype == i t −> f i r s t) {

c ons t r a i n t . va r i ab l es . emplace_back (Var iab le ({ i , index })) ;

c ons t r a i n t . c o e f f i c i e n t s . emplace_back (1) ;

}

else

continue ;

/ / p r i n t f (”No opera t ions o f type found f o r t h i s t imeframe \ n ”) ;

}

}

/ / p r i n t f (” Equation complete ! Moving on to next equat ion \ n ”) ;

cons t r a i n t s . emplace_back (cons t r a i n t) ;

}

}

}

/* p r i n t i n g ILP and dumping to schedule . l p f i l e * /
void p r i n t _ l p (s td : : ostream& os = std : : cout) const

{

/* the ob j ec t i v e f unc t i on * /
os << ”min : ” ;

for (auto l = 1u ; l <= num_timeframes ; ++ l)

{

os << ”�+ ” << l << ”�x ” << num_operations << ” _ ” << l ;

C.1. ILP Modeling: Parsing and Generating constraint equations 100

}

os << ”�−1; ” << std : : endl ;

/* the cons t r a i n t s * /
for (auto const& con : cons t r a i n t s)

{

asser t (con . va r i ab l es . s ize () == con . c o e f f i c i e n t s . s i ze ()) ;

for (auto v = 0u ; v < con . va r i ab l es . s ize () ; ++v)

{

auto& var = con . va r i ab l es . a t (v) ;

auto& cof = con . c o e f f i c i e n t s . a t (v) ;

asser t (1 <= var . i && var . i <= num_operations) ;

asser t (1 <= var . l && var . l <= num_timeframes) ;

i f (co f == 0) { continue ; }

i f (co f > 0) { os << ”+ ” ; }

i f (co f > 1 | | co f < −1) { os << cof ; }

else i f (co f == −1) { os << ”− ” ; }

os << ”�x ” << var . i << ” _ ” << var . l << ”�” ;

}

switch (con . type)

{

case GE: { os << ”>= ” ; break ; }

case LE : { os << ”<= ” ; break ; }

case EQ: { os << ”= ” ; break ; }

defaul t : asser t (fa lse) ;

}

os << ”�” << con . constant << ” ; ” << std : : endl ;

}

/* va r i ab l e type dec l a ra t i on * /
os << ” b inary�” ;

for (auto i = 1u ; i <= num_operations ; ++ i)

{

for (auto l = 1u ; l <= num_timeframes ; ++ l)

{

os << ” x ” << i << ” _ ” << l ;

i f (i != num_operations | | l != num_timeframes)

{

os << ” ,�” ;

}

}

}

os << ” ; ” << std : : endl ;

}

C.2. GShare Brach Predictor model in gem5 101

C.2. GShare Brach Predictor model in gem5
The following code is for gem5 compatible Gshare branch predictor model used with

MinorCPU mode.

Listing C.3: Gshare Branch Predictor

#include ” cpu / pred / gshare . hh ”

#include ” base / b i t f i e l d . hh ”

#include ” base / in tmath . hh ”

GshareBP : : GshareBP (const GshareBPParams *params)
: BPredUnit (params) ,

g loba lH is toryReg (params−>numThreads , 0) ,

g l o ba lH i s t o r yB i t s (ce i lLog2 (params−>g loba lP red i c t o rS i ze)) ,

g l oba lP red i c t o rS i ze (params−>g loba lP red i c t o rS i ze) ,

g l o ba lC t rB i t s (params−>g l oba lC t rB i t s) ,

g l oba lC t r s (g loba lP red i c to rS i ze , SatCounter (g l o ba lC t rB i t s))

{

i f (! isPowerOf2 (g l oba lP red i c t o rS i ze))

f a t a l (” I n v a l i d�g loba l�h i s t o r y�p red i c t o r�s ize . \ n ”) ;

g lobalHis toryMask = g loba lP red i c t o rS i ze − 1;

/ / s t a t e counter f o r FSM

l oca lThresho ld = (unsigned) (ULL (1) << (g l oba lC t rB i t s − 1)) − 1 ;

}

/*
For Uncond i t iona l Branch , i t i s always taken * /
void

GshareBP : : uncondBranch (ThreadID t i d , Addr pc , void * &bpHis tory)

{

BPHistory * h i s t o r y = new BPHistory ;

h i s t o r y −>globa lH is toryReg = globa lH is toryReg [t i d] ;

h i s t o r y −> f i na lP red = true ;

bpHis tory = stat ic_cast <void*>(h i s t o r y) ;
updateGlobalHistReg (t i d , true) ;

}

void

GshareBP : : squash (ThreadID t i d , void *bpHis tory)
{

BPHistory * h i s t o r y = stat ic_cast <BPHistory *>(bpHis tory) ;
g loba lH is toryReg [t i d] = h i s t o r y −>g loba lH is toryReg ;

delete h i s t o r y ;

C.2. GShare Brach Predictor model in gem5 102

}

/*
* A hash of the g loba l h i s t o r y r e g i s t e r

and a branch ’ s PC i s used to index i n t o counter ,

which i s used to se l ec t the f i n a l branch p r ed i c t i o n .

* /
bool

GshareBP : : lookup (ThreadID t i d , Addr branchAddr , void * &bpHis tory)

{

unsigned g l oba lH i s t o r y I d x = (((branchAddr >> i ns tSh i f tAm t)

^ g loba lH is toryReg [t i d])

& g lobalHis toryMask) ;

asser t (g l oba lH i s t o r y I d x < g loba lP red i c t o rS i ze) ;

bool f i n a l _ p r e d i c t i o n = g loba lC t r s [g l oba lH i s t o r y I d x] > loca lThresho ld ;

BPHistory * h i s t o r y = new BPHistory ;

h i s t o r y −>globa lH is toryReg = globa lH is toryReg [t i d] ;

h i s t o r y −> f i na lP red = f i n a l _ p r e d i c t i o n ;

bpHis tory = stat ic_cast <void*>(h i s t o r y) ;
updateGlobalHistReg (t i d , f i n a l _ p r e d i c t i o n) ;

return f i n a l _ p r e d i c t i o n ;

}

void

GshareBP : : btbUpdate (ThreadID t i d , Addr branchAddr , void * &bpHis tory)

{

g loba lH is toryReg [t i d] &= (h is toryRegis terMask & ~ULL (1)) ;

}

void

GshareBP : : update (ThreadID t i d , Addr branchAddr , bool taken , void *bpHistory ,
bool squashed , const S t a t i c I n s t P t r & i ns t , Addr cor rTarge t)

{

asser t (bpHis tory) ;

BPHistory * h i s t o r y = stat ic_cast <BPHistory *>(bpHis tory) ;
/ / taken i s the ac tua l judgement . The g loba l h i s t o r y r e g i s t e r

/ / needs to be updated incase of squash and taken only

/ / acco rd ing ly

i f (squashed) {

i f (taken)

g loba lH is toryReg [t i d] = (h i s t o r y −>g loba lH is toryReg << 1) | taken ;

return ;

C.2. GShare Brach Predictor model in gem5 103

}

unsigned g l oba lH i s t o r y I d x = (((branchAddr >> i ns tSh i f tAm t)

^ h i s t o r y −>g loba lH is toryReg)

& globalHis toryMask) ;

asser t (g l oba lH i s t o r y I d x < g loba lP red i c t o rS i ze) ;

i f (taken) {

g l oba lC t r s [g l oba lH i s t o r y I d x]++ ;

} else {

g l oba lC t r s [g l oba lH i s t o r y I d x] − −;

}

delete h i s t o r y ;

}

void

GshareBP : : updateGlobalHistReg (ThreadID t i d , bool taken)

{

g loba lH is toryReg [t i d] = taken ? (g loba lH is toryReg [t i d] << 1) | 1 :

(g loba lH is toryReg [t i d] << 1) ;

g loba lH is toryReg [t i d] &= h is toryRegis terMask ;

}

GshareBP*
GshareBPParams : : c reate ()

{

return new GshareBP (th is) ;

}

D
Stress-ng Benchmark suite

The description of the selected stress-ng benchmark of ”cpu” class with methods is

given below:

1. Prime : Find the first 10000 prime numbers using a slightly optimised brute force

naïve trial division search.

2. Sqrt : Finding Square Root of Double and Long Double numbers less than 16384

3. Queens : Solving Queens Problem for sizes 1 to 12.

4. Rand48 : 16384 iterations of drand48 and lrand48 where

• The drand48 and erand48 functions return nonnegative double-precision

floating-point values uniformly distributed over the interval [0.0, 1.0).

• The lrand48 and nrand48 functions return nonnegative long integers uniformly

distributed over the interval [0, 231).

5. Matrixprod : Matrix product of two 128 × 128 matrices of double floats.

6. Longdouble : 1000 iterations of a mix of long double precision floating point

operations.

7. Stats :Calculate minimum, maximum, arithmetic mean, geometric mean, harmonic

mean and standard deviation on 250 randomly generated positive double precision

values.

8. Trig : Compute sin(θ)× cos(θ)+ sin(2θ)+ cos(3θ) for float, double and long double

sine and cosine functions where θ = 0 to 2π in 1500 steps.

9. Intconversion : Perform 65536 iterations of integer conversions between int16,

int32 and int64 variables.

10. Int64longdouble :1000 iterations of a mix of 64 bit integer and long double precision

floating point operations.

104

105

The description of the selected stress-ng benchmark of ”memory” class with methods

is given below:

1. memcpy N: Start N workers that copy 2MB of data from a shared region to a buffer

using memcpy(3) and then move the data in the buffer with memmove(3) with 3

different alignments. This will exercise processor cache and system memory.

2. membarrier N: Start N workers that exercise the membarrier system call (Linux

only).

3. memfd N: Start N workers that create 256 allocations of 1024 pages using

memfd_create(2) and ftruncate(2) for allocation and mmap(2) to map the allocation

into the process address space. (Linux only).

4. mlock N: Start N workers that lock and unlock memory mapped pages using

mlock(2), munlock(2), mlockall(2) and munlockall(2). This is achieved by the

mapping of three contiguous pages and then locking the second page, hence

ensuring non-contiguous pages are locked . This is then repeated until themaximum

allowed mlocks or a maximum of 262144 mappings are made. Next, all future

mappings are mlocked and the worker attempts to map 262144 pages, then all

pages are munlocked and the pages are unmapped.

5. mmap N: Start N workers continuously calling mmap(2)/munmap(2). The initial

mapping is a large chunk (size specified by –mmap-bytes) followed by pseudo-

random 4K unmappings, then pseudo-random 4K mappings, and then linear 4K

unmappings. Note that this can cause systems to trip the kernel OOM killer on

Linux systems if not enough physical memory and swap is not available. The

MAP_POPULATE option is used to populate pages into memory on systems that

support this. By default, anonymous mappings are used, however, the –mmap-file

and –mmap-async options allow one to perform file based mappings if desired.

E
SPEC2017 Benchmarks

The functionality implemented by the selected SPEC integer rate benchmark suite appli-

cations has been desrcibed below:

1. 502.gcc_r : It is based on GCC Version 4.5.0. It generates code for an IA32

processor. The benchmark runs as a compiler with many of its optimization flags

enabled.

2. 505.mcf_r : It is a benchmark which is derived from MCF, a program used for

single-depot vehicle scheduling in public mass transportation. The program is

written in C. The benchmark version uses almost exclusively integer arithmetic.

3. 520.omnetpp_r : The benchmark performs discrete event simulation of a large 10

gigabit Ethernet network. The simulation is based on the OMNeT++ discrete event

simulation system, a generic and open simulation framework. OMNeT++’s primary

application area is the simulation of communication networks, but its generic and

flexible architecture allows for its use in other areas such as the simulation of IT

systems, queueing networks, hardware architectures or business processes as

well.

4. 541.leela_r : It is a Go playing engine featuring Monte Carlo based position es-

timation, selective tree search based on Upper Confidence Bounds, and move

valuation based on Elo ratings.

5. 523.xalancbmk_r : XSLT processor for transforming XML documents into HTML,

text, or other XML document types

6. 531.deepsjeng_r : It is based on Deep Sjeng WC2008, the 2008 World Computer

Speed-Chess Champion. Deep Sjeng is a rewrite of the older Sjeng-Free program,

focused on obtaining the highest possible playing strength. It attempts to find the

best move via a combination of alpha-beta tree searching, advanced move ordering,

positional evaluation and heuristic forward pruning.

106

107

7. 557.xz_r : Data compression. it incorporates pxz ; performs no file I/O other than

reading the input; does all compression and decompression entirely in memory;

and prefers generic portable routines rather than platform-specific routines. As

usual for SPEC CPU®, the intent is to measure the compute-intensive portion of a

real application, while minimizing IO; thereby focusing on the performance of the

CPU, memory, and compiler.

F
Full DPS48E1 Slice functionality

Figure F.1: Xilinx 7 Series DSP48E1 Slice [68]

108

G
ILP Modeling

The following sections elaborate on the ILP equations generated for estimating latency of

SPFMA, DPFMA and FP Divsion units. The equations are categorized in three categories,

namely,

• ‘Equal to’ : generated by putting in the type of operations in equation 4.1.

• ’Greater than’ : generated by plugging in the time dependency between operations

in equation 4.2.

• ‘Less than’ : generated by plugging in the the total number of availbale resources

of each type in equation 4.3.

The first line represents the objective function to be minimized. At last, the variables to

be solved for are listed. In all the three cases (SPFAM, DPFMA, FP DIV) these are

binary variables.

G.1. Single Precision Fused Multiply and Accumulate
min : +1 x5_1 +2 x5_2 +3 x5_3 +4 x5_4 +5 x5_5 −1; / / Ob jec t i ve Funct ion i . e

minimize the la tency

/ / Category 1 Equations i . e ‘ Equal to ’ a . k . a unique opera t ion

+ x1_1 + x1_2 + x1_3 + x1_4 + x1_5 = 1;

+ x2_1 + x2_2 + x2_3 + x2_4 + x2_5 = 1;

+ x3_1 + x3_2 + x3_3 + x3_4 + x3_5 = 1;

+ x4_1 + x4_2 + x4_3 + x4_4 + x4_5 = 1;

+ x5_1 + x5_2 + x5_3 + x5_4 + x5_5 = 1;

/ / Category 2 Equations i . e ’ Greater than a . k . a t ime dependency

+ x1_1 +2 x1_2 +3 x1_3 +4 x1_4 +5 x1_5 >= 1;

+ x2_1 +2 x2_2 +3 x2_3 +4 x2_4 +5 x2_5 >= 1;

+ x3_1 +2 x3_2 +3 x3_3 +4 x3_4 +5 x3_5 >= 1;

+ x4_1 − x1_1 +2 x4_2 −2 x1_2 +3 x4_3 −3 x1_3

109

G.2. Double Precision Fused Multiply and Accumulate 110

+4 x4_4 −4 x1_4 +5 x4_5 −5 x1_5 >= 1;

+ x4_1 − x2_1 +2 x4_2 −2 x2_2 +3 x4_3

−3 x2_3 +4 x4_4 −4 x2_4 +5 x4_5 −5 x2_5 >= 1;

+ x4_1 − x3_1 +2 x4_2 −2 x3_2 +3 x4_3 −3 x3_3

+4 x4_4 −4 x3_4 +5 x4_5 −5 x3_5 >= 1;

+ x5_1 − x4_1 +2 x5_2 −2 x4_2 +3 x5_3 −3 x4_3

+4 x5_4 −4 x4_4 +5 x5_5 −5 x4_5 >= 1;

/ / Category 2 Equations i . e ’ l ess than a . k . a resource cons t r a i n t s

+ x2_1 + x3_1 <= 2;

+ x2_2 + x3_2 <= 2;

+ x2_3 + x3_3 <= 2;

+ x2_4 + x3_4 <= 2;

+ x1_1 + x4_1 + x5_1 <= 2;

+ x1_2 + x4_2 + x5_2 <= 2;

+ x1_3 + x4_3 + x5_3 <= 2;

+ x1_4 + x4_4 + x5_4 <= 2;

/ / Def ine the va r i ab l es to be solved : b inary

b inary x1_1 , x1_2 , x1_3 , x1_4 , x1_5 , x2_1 ,

x2_2 , x2_3 , x2_4 , x2_5 , x3_1 , x3_2 , x3_3 ,

x3_4 , x3_5 , x4_1 , x4_2 , x4_3 , x4_4 , x4_5 ,

x5_1 , x5_2 , x5_3 , x5_4 , x5_5 ;

G.2. Double Precision Fused Multiply and Accumulate
min : +1 x17_1 +2 x17_2 +3 x17_3 +4 x17_4 +5 x17_5 +6 x17_6 +7 x17_7

+8 x17_8 +9 x17_9 +10 x17_10 +11 x17_11 +12 x17_12 +13 x17_13

+14 x17_14 +15 x17_15 +16 x17_16 +17 x17_17 +18 x17_18

+19 x17_19 +20 x17_20 +21 x17_21 −1;

+ x1_1 + x1_2 + x1_3 + x1_4 + x1_5 + x1_6 + x1_7 + x1_8

+ x1_9 + x1_10 + x1_11 + x1_12 + x1_13 + x1_14 + x1_15

+ x1_16 + x1_17 + x1_18 + x1_19 + x1_20 + x1_21 = 1;

+ x2_1 + x2_2 + x2_3 + x2_4 + x2_5 + x2_6 + x2_7 + x2_8

+ x2_9 + x2_10 + x2_11 + x2_12 + x2_13 + x2_14 + x2_15

+ x2_16 + x2_17 + x2_18 + x2_19 + x2_20 + x2_21 = 1;

+ x3_1 + x3_2 + x3_3 + x3_4 + x3_5 + x3_6 + x3_7 + x3_8

+ x3_9 + x3_10 + x3_11 + x3_12 + x3_13 + x3_14 + x3_15

+ x3_16 + x3_17 + x3_18 + x3_19 + x3_20 + x3_21 = 1;

+ x4_1 + x4_2 + x4_3 + x4_4 + x4_5 + x4_6 + x4_7 + x4_8

+ x4_9 + x4_10 + x4_11 + x4_12 + x4_13 + x4_14 + x4_15

+ x4_16 + x4_17 + x4_18 + x4_19 + x4_20 + x4_21 = 1;

+ x5_1 + x5_2 + x5_3 + x5_4 + x5_5 + x5_6 + x5_7 + x5_8

+ x5_9 + x5_10 + x5_11 + x5_12 + x5_13 + x5_14 + x5_15

+ x5_16 + x5_17 + x5_18 + x5_19 + x5_20 + x5_21 = 1;

+ x6_1 + x6_2 + x6_3 + x6_4 + x6_5 + x6_6 + x6_7 + x6_8

G.2. Double Precision Fused Multiply and Accumulate 111

+ x6_9 + x6_10 + x6_11 + x6_12 + x6_13 + x6_14 + x6_15

+ x6_16 + x6_17 + x6_18 + x6_19 + x6_20 + x6_21 = 1;

+ x7_1 + x7_2 + x7_3 + x7_4 + x7_5 + x7_6 + x7_7 + x7_8

+ x7_9 + x7_10 + x7_11 + x7_12 + x7_13 + x7_14 + x7_15

+ x7_16 + x7_17 + x7_18 + x7_19 + x7_20 + x7_21 = 1;

+ x8_1 + x8_2 + x8_3 + x8_4 + x8_5 + x8_6 + x8_7 + x8_8

+ x8_9 + x8_10 + x8_11 + x8_12 + x8_13 + x8_14 + x8_15

+ x8_16 + x8_17 + x8_18 + x8_19 + x8_20 + x8_21 = 1;

+ x9_1 + x9_2 + x9_3 + x9_4 + x9_5 + x9_6 + x9_7 + x9_8

+ x9_9 + x9_10 + x9_11 + x9_12 + x9_13 + x9_14 + x9_15

+ x9_16 + x9_17 + x9_18 + x9_19 + x9_20 + x9_21 = 1;

+ x10_1 + x10_2 + x10_3 + x10_4 + x10_5 + x10_6 + x10_7

+ x10_8 + x10_9 + x10_10 + x10_11 + x10_12 + x10_13

+ x10_14 + x10_15 + x10_16 + x10_17 + x10_18 + x10_19

+ x10_20 + x10_21 = 1;

+ x11_1 + x11_2 + x11_3 + x11_4 + x11_5 + x11_6 + x11_7

+ x11_8 + x11_9 + x11_10 + x11_11 + x11_12 + x11_13 + x11_14

+ x11_15 + x11_16 + x11_17 + x11_18 + x11_19 + x11_20 + x11_21 = 1;

+ x12_1 + x12_2 + x12_3 + x12_4 + x12_5 + x12_6 + x12_7

+ x12_8 + x12_9 + x12_10 + x12_11 + x12_12 + x12_13 + x12_14

+ x12_15 + x12_16 + x12_17 + x12_18 + x12_19 + x12_20 + x12_21 = 1;

+ x13_1 + x13_2 + x13_3 + x13_4 + x13_5 + x13_6 + x13_7 + x13_8

+ x13_9 + x13_10 + x13_11 + x13_12 + x13_13 + x13_14 + x13_15

+ x13_16 + x13_17 + x13_18 + x13_19 + x13_20 + x13_21 = 1;

+ x14_1 + x14_2 + x14_3 + x14_4 + x14_5 + x14_6 + x14_7 + x14_8

+ x14_9 + x14_10 + x14_11 + x14_12 + x14_13 + x14_14 + x14_15

+ x14_16 + x14_17 + x14_18 + x14_19 + x14_20 + x14_21 = 1;

+ x15_1 + x15_2 + x15_3 + x15_4 + x15_5 + x15_6 + x15_7 + x15_8

+ x15_9 + x15_10 + x15_11 + x15_12 + x15_13 + x15_14 + x15_15

+ x15_16 + x15_17 + x15_18 + x15_19 + x15_20 + x15_21 = 1;

+ x16_1 + x16_2 + x16_3 + x16_4 + x16_5 + x16_6 + x16_7 + x16_8

+ x16_9 + x16_10 + x16_11 + x16_12 + x16_13 + x16_14 + x16_15

+ x16_16 + x16_17 + x16_18 + x16_19 + x16_20 + x16_21 = 1;

+ x17_1 + x17_2 + x17_3 + x17_4 + x17_5 + x17_6 + x17_7 + x17_8

+ x17_9 + x17_10 + x17_11 + x17_12 + x17_13 + x17_14 + x17_15

+ x17_16 + x17_17 + x17_18 + x17_19 + x17_20 + x17_21 = 1;

+ x1_1 +2 x1_2 +3 x1_3 +4 x1_4 +5 x1_5 +6 x1_6 +7 x1_7 +8 x1_8

+9 x1_9 +10 x1_10 +11 x1_11 +12 x1_12 +13 x1_13 +14 x1_14 +15 x1_15

+16 x1_16 +17 x1_17 +18 x1_18 +19 x1_19 +20 x1_20 +21 x1_21 >= 1;

+ x2_1 +2 x2_2 +3 x2_3 +4 x2_4 +5 x2_5 +6 x2_6 +7 x2_7 +8 x2_8

+9 x2_9 +10 x2_10 +11 x2_11 +12 x2_12 +13 x2_13 +14 x2_14

+15 x2_15 +16 x2_16 +17 x2_17 +18 x2_18 +19 x2_19 +20 x2_20

+21 x2_21 >= 1;

+ x3_1 +2 x3_2 +3 x3_3 +4 x3_4 +5 x3_5 +6 x3_6 +7 x3_7 +8 x3_8

+9 x3_9 +10 x3_10 +11 x3_11 +12 x3_12 +13 x3_13 +14 x3_14

G.2. Double Precision Fused Multiply and Accumulate 112

+15 x3_15 +16 x3_16 +17 x3_17 +18 x3_18 +19 x3_19 +20 x3_20 +21 x3_21 >= 1;

+ x4_1 +2 x4_2 +3 x4_3 +4 x4_4 +5 x4_5 +6 x4_6 +7 x4_7 +8 x4_8

+9 x4_9 +10 x4_10 +11 x4_11 +12 x4_12 +13 x4_13 +14 x4_14 +15 x4_15

+16 x4_16 +17 x4_17 +18 x4_18 +19 x4_19 +20 x4_20 +21 x4_21 >= 1;

+ x5_1 +2 x5_2 +3 x5_3 +4 x5_4 +5 x5_5 +6 x5_6 +7 x5_7 +8 x5_8

+9 x5_9 +10 x5_10 +11 x5_11 +12 x5_12 +13 x5_13 +14 x5_14

+15 x5_15 +16 x5_16 +17 x5_17 +18 x5_18 +19 x5_19 +20 x5_20

+21 x5_21 >= 1;

+ x6_1 +2 x6_2 +3 x6_3 +4 x6_4 +5 x6_5 +6 x6_6 +7 x6_7 +8 x6_8

+9 x6_9 +10 x6_10 +11 x6_11 +12 x6_12 +13 x6_13 +14 x6_14 +15 x6_15

+16 x6_16 +17 x6_17 +18 x6_18 +19 x6_19 +20 x6_20 +21 x6_21 >= 1;

+ x7_1 +2 x7_2 +3 x7_3 +4 x7_4 +5 x7_5 +6 x7_6 +7 x7_7 +8 x7_8

+9 x7_9 +10 x7_10 +11 x7_11 +12 x7_12 +13 x7_13 +14 x7_14 +15 x7_15

+16 x7_16 +17 x7_17 +18 x7_18 +19 x7_19 +20 x7_20 +21 x7_21 >= 1;

+ x8_1 +2 x8_2 +3 x8_3 +4 x8_4 +5 x8_5 +6 x8_6 +7 x8_7 +8 x8_8 +9 x8_9

+10 x8_10 +11 x8_11 +12 x8_12 +13 x8_13 +14 x8_14 +15 x8_15 +16 x8_16

+17 x8_17 +18 x8_18 +19 x8_19 +20 x8_20 +21 x8_21 >= 1;

+ x9_1 +2 x9_2 +3 x9_3 +4 x9_4 +5 x9_5 +6 x9_6 +7 x9_7 +8 x9_8

+9 x9_9 +10 x9_10 +11 x9_11 +12 x9_12 +13 x9_13 +14 x9_14 +15 x9_15

+16 x9_16 +17 x9_17 +18 x9_18 +19 x9_19 +20 x9_20 +21 x9_21 >= 1;

+ x10_1 +2 x10_2 +3 x10_3 +4 x10_4 +5 x10_5 +6 x10_6 +7 x10_7 +8 x10_8

+9 x10_9 +10 x10_10 +11 x10_11 +12 x10_12 +13 x10_13 +14 x10_14

+15 x10_15 +16 x10_16 +17 x10_17 +18 x10_18 +19 x10_19

+20 x10_20 +21 x10_21 >= 1;

+ x11_1 − x1_1 +2 x11_2 −2 x1_2 +3 x11_3 −3 x1_3 +4 x11_4 −4 x1_4 +5 x11_5

−5 x1_5 +6 x11_6 −6 x1_6 +7 x11_7 −7 x1_7 +8 x11_8 −8 x1_8 +9 x11_9 −9 x1_9

+10 x11_10 −10 x1_10 +11 x11_11 −11 x1_11 +12 x11_12 −12 x1_12 +13 x11_13

−13 x1_13 +14 x11_14 −14 x1_14 +15 x11_15 −15 x1_15 +16 x11_16 −16 x1_16

+17 x11_17 −17 x1_17 +18 x11_18 −18 x1_18 +19 x11_19 −19 x1_19 +20 x11_20

−20 x1_20 +21 x11_21 −21 x1_21 >= 1;

+ x11_1 − x2_1 +2 x11_2 −2 x2_2 +3 x11_3 −3 x2_3 +4 x11_4 −4 x2_4 +5 x11_5

−5 x2_5 +6 x11_6 −6 x2_6 +7 x11_7 −7 x2_7 +8 x11_8 −8 x2_8 +9 x11_9 −9 x2_9

+10 x11_10 −10 x2_10 +11 x11_11 −11 x2_11 +12 x11_12 −12 x2_12 +13 x11_13

−13 x2_13 +14 x11_14 −14 x2_14 +15 x11_15 −15 x2_15 +16 x11_16 −16 x2_16

+17 x11_17 −17 x2_17 +18 x11_18 −18 x2_18 +19 x11_19 −19 x2_19 +20 x11_20

−20 x2_20 +21 x11_21 −21 x2_21 >= 1;

+ x11_1 − x3_1 +2 x11_2 −2 x3_2 +3 x11_3 −3 x3_3 +4 x11_4 −4 x3_4 +5 x11_5

−5 x3_5 +6 x11_6 −6 x3_6 +7 x11_7 −7 x3_7 +8 x11_8 −8 x3_8 +9 x11_9 −9 x3_9

+10 x11_10 −10 x3_10 +11 x11_11 −11 x3_11 +12 x11_12 −12 x3_12 +13 x11_13

−13 x3_13 +14 x11_14 −14 x3_14 +15 x11_15 −15 x3_15 +16 x11_16 −16 x3_16

+17 x11_17 −17 x3_17 +18 x11_18 −18 x3_18 +19 x11_19 −19 x3_19 +20 x11_20

−20 x3_20 +21 x11_21 −21 x3_21 >= 1;

+ x12_1 − x4_1 +2 x12_2 −2 x4_2 +3 x12_3 −3 x4_3 +4 x12_4 −4 x4_4 +5 x12_5

−5 x4_5 +6 x12_6 −6 x4_6 +7 x12_7 −7 x4_7 +8 x12_8 −8 x4_8 +9 x12_9 −9 x4_9

+10 x12_10 −10 x4_10 +11 x12_11 −11 x4_11 +12 x12_12 −12 x4_12 +13 x12_13

G.2. Double Precision Fused Multiply and Accumulate 113

−13 x4_13 +14 x12_14 −14 x4_14 +15 x12_15 −15 x4_15 +16 x12_16 −16 x4_16

+17 x12_17 −17 x4_17 +18 x12_18 −18 x4_18 +19 x12_19 −19 x4_19 +20 x12_20

−20 x4_20 +21 x12_21 −21 x4_21 >= 1;

+ x12_1 − x5_1 +2 x12_2 −2 x5_2 +3 x12_3 −3 x5_3 +4 x12_4 −4 x5_4 +5 x12_5

−5 x5_5 +6 x12_6 −6 x5_6 +7 x12_7 −7 x5_7 +8 x12_8 −8 x5_8 +9 x12_9 −9 x5_9

+10 x12_10 −10 x5_10 +11 x12_11 −11 x5_11 +12 x12_12 −12 x5_12 +13 x12_13

−13 x5_13 +14 x12_14 −14 x5_14 +15 x12_15 −15 x5_15 +16 x12_16 −16 x5_16

+17 x12_17 −17 x5_17 +18 x12_18 −18 x5_18 +19 x12_19 −19 x5_19 +20 x12_20

−20 x5_20 +21 x12_21 −21 x5_21 >= 1;

+ x12_1 − x6_1 +2 x12_2 −2 x6_2 +3 x12_3 −3 x6_3 +4 x12_4 −4 x6_4 +5 x12_5

−5 x6_5 +6 x12_6 −6 x6_6 +7 x12_7 −7 x6_7 +8 x12_8 −8 x6_8 +9 x12_9 −9 x6_9

+10 x12_10 −10 x6_10 +11 x12_11 −11 x6_11 +12 x12_12 −12 x6_12 +13 x12_13

−13 x6_13 +14 x12_14 −14 x6_14 +15 x12_15 −15 x6_15 +16 x12_16 −16 x6_16

+17 x12_17 −17 x6_17 +18 x12_18 −18 x6_18 +19 x12_19 −19 x6_19 +20 x12_20

−20 x6_20 +21 x12_21 −21 x6_21 >= 1;

+ x13_1 − x7_1 +2 x13_2 −2 x7_2 +3 x13_3 −3 x7_3 +4 x13_4 −4 x7_4 +5 x13_5

−5 x7_5 +6 x13_6 −6 x7_6 +7 x13_7 −7 x7_7 +8 x13_8 −8 x7_8 +9 x13_9 −9 x7_9

+10 x13_10 −10 x7_10 +11 x13_11 −11 x7_11 +12 x13_12 −12 x7_12 +13 x13_13

−13 x7_13 +14 x13_14 −14 x7_14 +15 x13_15 −15 x7_15 +16 x13_16 −16 x7_16

+17 x13_17 −17 x7_17 +18 x13_18 −18 x7_18 +19 x13_19 −19 x7_19 +20 x13_20

−20 x7_20 +21 x13_21 −21 x7_21 >= 1;

+ x13_1 − x8_1 +2 x13_2 −2 x8_2 +3 x13_3 −3 x8_3 +4 x13_4 −4 x8_4 +5 x13_5

−5 x8_5 +6 x13_6 −6 x8_6 +7 x13_7 −7 x8_7 +8 x13_8 −8 x8_8 +9 x13_9 −9 x8_9

+10 x13_10 −10 x8_10 +11 x13_11 −11 x8_11 +12 x13_12 −12 x8_12 +13 x13_13

−13 x8_13 +14 x13_14 −14 x8_14 +15 x13_15 −15 x8_15 +16 x13_16 −16 x8_16

+17 x13_17 −17 x8_17 +18 x13_18 −18 x8_18 +19 x13_19 −19 x8_19 +20 x13_20

−20 x8_20 +21 x13_21 −21 x8_21 >= 1;

+ x13_1 − x9_1 +2 x13_2 −2 x9_2 +3 x13_3 −3 x9_3 +4 x13_4 −4 x9_4 +5 x13_5

−5 x9_5 +6 x13_6 −6 x9_6 +7 x13_7 −7 x9_7 +8 x13_8 −8 x9_8 +9 x13_9 −9 x9_9

+10 x13_10 −10 x9_10 +11 x13_11 −11 x9_11 +12 x13_12 −12 x9_12 +13 x13_13

−13 x9_13 +14 x13_14 −14 x9_14 +15 x13_15 −15 x9_15 +16 x13_16 −16 x9_16

+17 x13_17 −17 x9_17 +18 x13_18 −18 x9_18 +19 x13_19 −19 x9_19 +20 x13_20

−20 x9_20 +21 x13_21 −21 x9_21 >= 1;

+ x14_1 − x10_1 +2 x14_2 −2 x10_2 +3 x14_3 −3 x10_3 +4 x14_4 −4 x10_4

+5 x14_5 −5 x10_5 +6 x14_6 −6 x10_6 +7 x14_7 −7 x10_7 +8 x14_8 −8 x10_8

+9 x14_9 −9 x10_9 +10 x14_10 −10 x10_10 +11 x14_11 −11 x10_11 +12 x14_12

−12 x10_12 +13 x14_13 −13 x10_13 +14 x14_14 −14 x10_14 +15 x14_15 −15 x10_15

+16 x14_16 −16 x10_16 +17 x14_17 −17 x10_17 +18 x14_18 −18 x10_18 +19 x14_19

−19 x10_19 +20 x14_20 −20 x10_20 +21 x14_21 −21 x10_21 >= 1;

+ x14_1 − x11_1 +2 x14_2 −2 x11_2 +3 x14_3 −3 x11_3 +4 x14_4 −4 x11_4

+5 x14_5 −5 x11_5 +6 x14_6 −6 x11_6 +7 x14_7 −7 x11_7 +8 x14_8 −8 x11_8

+9 x14_9 −9 x11_9 +10 x14_10 −10 x11_10 +11 x14_11 −11 x11_11 +12 x14_12

−12 x11_12 +13 x14_13 −13 x11_13 +14 x14_14 −14 x11_14 +15 x14_15

−15 x11_15 +16 x14_16 −16 x11_16 +17 x14_17 −17 x11_17 +18 x14_18

−18 x11_18 +19 x14_19 −19 x11_19 +20 x14_20

G.2. Double Precision Fused Multiply and Accumulate 114

−20 x11_20 +21 x14_21 −21 x11_21 >= 1;

+ x14_1 − x12_1 +2 x14_2 −2 x12_2 +3 x14_3 −3 x12_3 +4 x14_4 −4 x12_4

+5 x14_5 −5 x12_5 +6 x14_6 −6 x12_6 +7 x14_7 −7 x12_7 +8 x14_8 −8 x12_8

+9 x14_9 −9 x12_9 +10 x14_10 −10 x12_10 +11 x14_11 −11 x12_11 +12 x14_12

−12 x12_12 +13 x14_13−13 x12_13 +14 x14_14 −14 x12_14 +15 x14_15 −15 x12_15

+16 x14_16 −16 x12_16 +17 x14_17 −17 x12_17 +18 x14_18 −18 x12_18 +19 x14_19

−19 x12_19 +20 x14_20 −20 x12_20 +21 x14_21 −21 x12_21 >= 1;

+ x15_1 − x13_1 +2 x15_2 −2 x13_2 +3 x15_3 −3 x13_3 +4 x15_4 −4 x13_4

+5 x15_5 −5 x13_5 +6 x15_6 −6 x13_6 +7 x15_7 −7 x13_7 +8 x15_8 −8 x13_8

+9 x15_9 −9 x13_9 +10 x15_10 −10 x13_10 +11 x15_11 −11 x13_11

+12 x15_12 −12 x13_12 +13 x15_13 −13 x13_13 +14 x15_14 −14 x13_14

+15 x15_15 −15 x13_15 +16 x15_16 −16 x13_16

+17 x15_17 −17 x13_17 +18 x15_18 −18 x13_18 +19 x15_19 −19 x13_19 +20 x15_20

−20 x13_20 +21 x15_21 −21 x13_21 >= 1;

+ x16_1 − x14_1 +2 x16_2 −2 x14_2 +3 x16_3 −3 x14_3 +4 x16_4 −4 x14_4

+5 x16_5 −5 x14_5 +6 x16_6 −6 x14_6 +7 x16_7 −7 x14_7 +8 x16_8 −8 x14_8

+9 x16_9 −9 x14_9 +10 x16_10 −10 x14_10 +11 x16_11 −11 x14_11 +12 x16_12

−12 x14_12 +13 x16_13 −13 x14_13 +14 x16_14 −14 x14_14 +15 x16_15 −15 x14_15

+16 x16_16 −16 x14_16 +17 x16_17 −17 x14_17 +18 x16_18 −18 x14_18 +19 x16_19

−19 x14_19 +20 x16_20 −20 x14_20 +21 x16_21 −21 x14_21 >= 1;

+ x17_1 − x15_1 +2 x17_2 −2 x15_2 +3 x17_3 −3 x15_3 +4 x17_4 −4 x15_4

+5 x17_5 −5 x15_5 +6 x17_6 −6 x15_6 +7 x17_7 −7 x15_7 +8 x17_8 −8 x15_8

+9 x17_9 −9 x15_9 +10 x17_10 −10 x15_10 +11 x17_11 −11 x15_11 +12 x17_12

−12 x15_12 +13 x17_13 −13 x15_13 +14 x17_14 −14 x15_14 +15 x17_15 −15 x15_15

+16 x17_16 −16 x15_16 +17 x17_17 −17 x15_17 +18 x17_18 −18 x15_18 +19 x17_19

−19 x15_19 +20 x17_20 −20 x15_20 +21 x17_21 −21 x15_21 >= 1;

+ x2_1 + x3_1 + x4_1 + x5_1 + x6_1 + x7_1 + x8_1 + x9_1 + x10_1 <= 9;

+ x2_2 + x3_2 + x4_2 + x5_2 + x6_2 + x7_2 + x8_2 + x9_2 + x10_2 <= 9;

+ x2_3 + x3_3 + x4_3 + x5_3 + x6_3 + x7_3 + x8_3 + x9_3 + x10_3 <= 9;

+ x2_4 + x3_4 + x4_4 + x5_4 + x6_4 + x7_4 + x8_4 + x9_4 + x10_4 <= 9;

+ x2_5 + x3_5 + x4_5 + x5_5 + x6_5 + x7_5 + x8_5 + x9_5 + x10_5 <= 9;

+ x2_6 + x3_6 + x4_6 + x5_6 + x6_6 + x7_6 + x8_6 + x9_6 + x10_6 <= 9;

+ x2_7 + x3_7 + x4_7 + x5_7 + x6_7 + x7_7 + x8_7 + x9_7 + x10_7 <= 9;

+ x2_8 + x3_8 + x4_8 + x5_8 + x6_8 + x7_8 + x8_8 + x9_8 + x10_8 <= 9;

+ x2_9 + x3_9 + x4_9 + x5_9 + x6_9 + x7_9 + x8_9 + x9_9 + x10_9 <= 9;

+ x2_10 + x3_10 + x4_10 + x5_10 + x6_10 + x7_10 + x8_10 + x9_10

+ x10_10 <= 9;

+ x2_11 + x3_11 + x4_11 + x5_11 + x6_11 + x7_11 + x8_11 + x9_11

+ x10_11 <= 9;

+ x2_12 + x3_12 + x4_12 + x5_12 + x6_12 + x7_12 + x8_12 + x9_12

+ x10_12 <= 9;

+ x2_13 + x3_13 + x4_13 + x5_13 + x6_13 + x7_13 + x8_13 + x9_13

+ x10_13 <= 9;

+ x2_14 + x3_14 + x4_14 + x5_14 + x6_14 + x7_14 + x8_14 + x9_14

+ x10_14 <= 9;

G.2. Double Precision Fused Multiply and Accumulate 115

+ x2_15 + x3_15 + x4_15 + x5_15 + x6_15 + x7_15 + x8_15 + x9_15

+ x10_15 <= 9;

+ x2_16 + x3_16 + x4_16 + x5_16 + x6_16 + x7_16 + x8_16 + x9_16

+ x10_16 <= 9;

+ x2_17 + x3_17 + x4_17 + x5_17 + x6_17 + x7_17 + x8_17 + x9_17

+ x10_17 <= 9;

+ x2_18 + x3_18 + x4_18 + x5_18 + x6_18 + x7_18 + x8_18 + x9_18

+ x10_18 <= 9;

+ x2_19 + x3_19 + x4_19 + x5_19 + x6_19 + x7_19 + x8_19 + x9_19

+ x10_19 <= 9;

+ x2_20 + x3_20 + x4_20 + x5_20 + x6_20 + x7_20 + x8_20 + x9_20

+ x10_20 <= 9;

+ x1_1 + x11_1 + x12_1 + x13_1 + x14_1 + x15_1 + x16_1 + x17_1 <= 9;

+ x1_2 + x11_2 + x12_2 + x13_2 + x14_2 + x15_2 + x16_2 + x17_2 <= 9;

+ x1_3 + x11_3 + x12_3 + x13_3 + x14_3 + x15_3 + x16_3 + x17_3 <= 9;

+ x1_4 + x11_4 + x12_4 + x13_4 + x14_4 + x15_4 + x16_4 + x17_4 <= 9;

+ x1_5 + x11_5 + x12_5 + x13_5 + x14_5 + x15_5 + x16_5 + x17_5 <= 9;

+ x1_6 + x11_6 + x12_6 + x13_6 + x14_6 + x15_6 + x16_6 + x17_6 <= 9;

+ x1_7 + x11_7 + x12_7 + x13_7 + x14_7 + x15_7 + x16_7 + x17_7 <= 9;

+ x1_8 + x11_8 + x12_8 + x13_8 + x14_8 + x15_8 + x16_8 + x17_8 <= 9;

+ x1_9 + x11_9 + x12_9 + x13_9 + x14_9 + x15_9 + x16_9 + x17_9 <= 9;

+ x1_10 + x11_10 + x12_10 + x13_10 + x14_10 + x15_10 + x16_10 + x17_10 <= 9;

+ x1_11 + x11_11 + x12_11 + x13_11 + x14_11 + x15_11 + x16_11 + x17_11 <= 9;

+ x1_12 + x11_12 + x12_12 + x13_12 + x14_12 + x15_12 + x16_12 + x17_12 <= 9;

+ x1_13 + x11_13 + x12_13 + x13_13 + x14_13 + x15_13 + x16_13 + x17_13 <= 9;

+ x1_14 + x11_14 + x12_14 + x13_14 + x14_14 + x15_14 + x16_14 + x17_14 <= 9;

+ x1_15 + x11_15 + x12_15 + x13_15 + x14_15 + x15_15 + x16_15 + x17_15 <= 9;

+ x1_16 + x11_16 + x12_16 + x13_16 + x14_16 + x15_16 + x16_16 + x17_16 <= 9;

+ x1_17 + x11_17 + x12_17 + x13_17 + x14_17 + x15_17 + x16_17 + x17_17 <= 9;

+ x1_18 + x11_18 + x12_18 + x13_18 + x14_18 + x15_18 + x16_18 + x17_18 <= 9;

+ x1_19 + x11_19 + x12_19 + x13_19 + x14_19 + x15_19 + x16_19 + x17_19 <= 9;

+ x1_20 + x11_20 + x12_20 + x13_20 + x14_20 + x15_20 + x16_20 + x17_20 <= 9;

b inary x1_1 , x1_2 , x1_3 , x1_4 , x1_5 , x1_6 , x1_7 , x1_8 , x1_9 , x1_10 ,

x1_11 , x1_12 , x1_13 , x1_14 , x1_15 , x1_16 , x1_17 , x1_18 , x1_19 , x1_20 ,

x1_21 , x2_1 , x2_2 , x2_3 , x2_4 , x2_5 , x2_6 , x2_7 , x2_8 , x2_9 , x2_10 ,

x2_11 , x2_12 , x2_13 , x2_14 , x2_15 , x2_16 , x2_17 , x2_18 , x2_19 , x2_20 ,

x2_21 , x3_1 , x3_2 , x3_3 , x3_4 , x3_5 , x3_6 , x3_7 , x3_8 , x3_9 ,

x3_10 , x3_11 , x3_12 , x3_13 , x3_14 , x3_15 , x3_16 , x3_17 , x3_18 , x3_19 ,

x3_20 , x3_21 , x4_1 , x4_2 , x4_3 , x4_4 , x4_5 , x4_6 , x4_7 , x4_8 , x4_9 , x4_10 ,

x4_11 , x4_12 , x4_13 , x4_14 , x4_15 , x4_16 , x4_17 , x4_18 , x4_19 , x4_20 , x4_21 ,

x5_1 , x5_2 , x5_3 , x5_4 , x5_5 , x5_6 , x5_7 , x5_8 , x5_9 , x5_10 , x5_11 , x5_12 ,

x5_13 , x5_14 , x5_15 , x5_16 , x5_17 , x5_18 , x5_19 , x5_20 , x5_21 , x6_1 , x6_2 ,

x6_3 , x6_4 , x6_5 , x6_6 , x6_7 , x6_8 , x6_9 , x6_10 , x6_11 , x6_12 , x6_13 , x6_14 ,

x6_15 , x6_16 , x6_17 , x6_18 , x6_19 , x6_20 , x6_21 , x7_1 , x7_2 , x7_3 , x7_4 ,

x7_5 , x7_6 , x7_7 , x7_8 , x7_9 , x7_10 , x7_11 , x7_12 , x7_13 , x7_14 , x7_15 ,

G.3. Floating Point Division: Division by Convergence 116

x7_16 , x7_17 , x7_18 , x7_19 , x7_20 , x7_21 , x8_1 , x8_2 , x8_3 , x8_4 , x8_5 ,

x8_6 , x8_7 , x8_8 , x8_9 , x8_10 , x8_11 , x8_12 , x8_13 , x8_14 , x8_15 , x8_16 ,

x8_17 , x8_18 , x8_19 , x8_20 , x8_21 , x9_1 , x9_2 , x9_3 , x9_4 , x9_5 , x9_6 ,

x9_7 , x9_8 , x9_9 , x9_10 , x9_11 , x9_12 , x9_13 , x9_14 , x9_15 , x9_16 , x9_17 ,

x9_18 , x9_19 , x9_20 , x9_21 , x10_1 , x10_2 , x10_3 , x10_4 , x10_5 , x10_6 ,

x10_7 , x10_8 , x10_9 , x10_10 , x10_11 , x10_12 , x10_13 , x10_14 , x10_15 ,

x10_16 , x10_17 , x10_18 , x10_19 , x10_20 , x10_21 , x11_1 , x11_2 , x11_3 ,

x11_4 , x11_5 , x11_6 , x11_7 , x11_8 , x11_9 , x11_10 , x11_11 , x11_12 ,

x11_13 , x11_14 , x11_15 , x11_16 , x11_17 , x11_18 , x11_19 , x11_20 ,

x11_21 , x12_1 , x12_2 , x12_3 , x12_4 , x12_5 , x12_6 , x12_7 , x12_8 , x12_9 ,

x12_10 , x12_11 , x12_12 , x12_13 , x12_14 , x12_15 , x12_16 , x12_17 ,

x12_18 , x12_19 , x12_20 , x12_21 , x13_1 , x13_2 , x13_3 , x13_4 , x13_5 ,

x13_6 , x13_7 , x13_8 , x13_9 , x13_10 , x13_11 , x13_12 , x13_13 , x13_14 ,

x13_15 , x13_16 , x13_17 , x13_18 , x13_19 , x13_20 , x13_21 , x14_1 , x14_2 ,

x14_3 , x14_4 , x14_5 , x14_6 , x14_7 , x14_8 , x14_9 , x14_10 , x14_11 ,

x14_12 , x14_13 , x14_14 , x14_15 , x14_16 , x14_17 , x14_18 , x14_19 ,

x14_20 , x14_21 , x15_1 , x15_2 , x15_3 , x15_4 , x15_5 , x15_6 , x15_7 ,

x15_8 , x15_9 , x15_10 , x15_11 , x15_12 , x15_13 , x15_14 , x15_15 , x15_16 ,

x15_17 , x15_18 , x15_19 , x15_20 , x15_21 , x16_1 , x16_2 , x16_3 , x16_4 ,

x16_5 , x16_6 , x16_7 , x16_8 , x16_9 , x16_10 , x16_11 , x16_12 , x16_13 ,

x16_14 , x16_15 , x16_16 , x16_17 , x16_18 , x16_19 , x16_20 , x16_21 , x17_1 ,

x17_2 , x17_3 , x17_4 , x17_5 , x17_6 , x17_7 , x17_8 , x17_9 , x17_10 , x17_11 ,

x17_12 , x17_13 , x17_14 , x17_15 , x17_16 , x17_17 , x17_18 , x17_19 , x17_20 ,

x17_21 ;

G.3. Floating Point Division: Division by Convergence
min : +1 x14_1 +2 x14_2 +3 x14_3 +4 x14_4 +5 x14_5 +6 x14_6 +7 x14_7

+8 x14_8 +9 x14_9 +10 x14_10 +11 x14_11 +12 x14_12 +13 x14_13

+14 x14_14 +15 x14_15 +16 x14_16 +17 x14_17 +18 x14_18 +19 x14_19

+20 x14_20 +21 x14_21 +22 x14_22 +23 x14_23 +24 x14_24 +25 x14_25

+26 x14_26 +27 x14_27 +28 x14_28 +29 x14_29 +30 x14_30 +31 x14_31 −1;

+ x1_1 + x1_2 + x1_3 + x1_4 + x1_5 + x1_6 + x1_7 + x1_8 + x1_9 + x1_10

+ x1_11 + x1_12 + x1_13 + x1_14 + x1_15 + x1_16 + x1_17 + x1_18 + x1_19

+ x1_20 + x1_21 + x1_22 + x1_23 + x1_24 + x1_25 + x1_26 + x1_27 + x1_28

+ x1_29 + x1_30 + x1_31 = 1;

+ x2_1 + x2_2 + x2_3 + x2_4 + x2_5 + x2_6 + x2_7 + x2_8 + x2_9 + x2_10

+ x2_11 + x2_12 + x2_13 + x2_14 + x2_15 + x2_16 + x2_17 + x2_18 + x2_19

+ x2_20 + x2_21 + x2_22 + x2_23 + x2_24 + x2_25 + x2_26 + x2_27 + x2_28

+ x2_29 + x2_30 + x2_31 = 1;

+ x3_1 + x3_2 + x3_3 + x3_4 + x3_5 + x3_6 + x3_7 + x3_8 + x3_9 + x3_10

+ x3_11 + x3_12 + x3_13 + x3_14 + x3_15 + x3_16 + x3_17 + x3_18 + x3_19

+ x3_20 + x3_21 + x3_22 + x3_23 + x3_24 + x3_25 + x3_26 + x3_27 + x3_28

+ x3_29 + x3_30 + x3_31 = 1;

G.3. Floating Point Division: Division by Convergence 117

+ x4_1 + x4_2 + x4_3 + x4_4 + x4_5 + x4_6 + x4_7 + x4_8 + x4_9 + x4_10

+ x4_11 + x4_12 + x4_13 + x4_14 + x4_15 + x4_16 + x4_17 + x4_18 + x4_19

+ x4_20 + x4_21 + x4_22 + x4_23 + x4_24 + x4_25 + x4_26 + x4_27 + x4_28

+ x4_29 + x4_30 + x4_31 = 1;

+ x5_1 + x5_2 + x5_3 + x5_4 + x5_5 + x5_6 + x5_7 + x5_8 + x5_9 + x5_10

+ x5_11 + x5_12 + x5_13 + x5_14 + x5_15 + x5_16 + x5_17 + x5_18 + x5_19

+ x5_20 + x5_21 + x5_22 + x5_23 + x5_24 + x5_25 + x5_26 + x5_27 + x5_28

+ x5_29 + x5_30 + x5_31 = 1;

+ x6_1 + x6_2 + x6_3 + x6_4 + x6_5 + x6_6 + x6_7 + x6_8 + x6_9 + x6_10

+ x6_11 + x6_12 + x6_13 + x6_14 + x6_15 + x6_16 + x6_17 + x6_18 + x6_19

+ x6_20 + x6_21 + x6_22 + x6_23 + x6_24 + x6_25 + x6_26 + x6_27 + x6_28

+ x6_29 + x6_30 + x6_31 = 1;

+ x7_1 + x7_2 + x7_3 + x7_4 + x7_5 + x7_6 + x7_7 + x7_8 + x7_9 + x7_10

+ x7_11 + x7_12 + x7_13 + x7_14 + x7_15 + x7_16 + x7_17 + x7_18 + x7_19

+ x7_20 + x7_21 + x7_22 + x7_23 + x7_24 + x7_25 + x7_26 + x7_27 + x7_28

+ x7_29 + x7_30 + x7_31 = 1;

+ x8_1 + x8_2 + x8_3 + x8_4 + x8_5 + x8_6 + x8_7 + x8_8 + x8_9 + x8_10

+ x8_11 + x8_12 + x8_13 + x8_14 + x8_15 + x8_16 + x8_17 + x8_18 + x8_19

+ x8_20 + x8_21 + x8_22 + x8_23 + x8_24 + x8_25 + x8_26 + x8_27 + x8_28

+ x8_29 + x8_30 + x8_31 = 1;

+ x9_1 + x9_2 + x9_3 + x9_4 + x9_5 + x9_6 + x9_7 + x9_8 + x9_9 + x9_10

+ x9_11 + x9_12 + x9_13 + x9_14 + x9_15 + x9_16 + x9_17 + x9_18 + x9_19

+ x9_20 + x9_21 + x9_22 + x9_23 + x9_24 + x9_25 + x9_26 + x9_27 + x9_28

+ x9_29 + x9_30 + x9_31 = 1;

+ x10_1 + x10_2 + x10_3 + x10_4 + x10_5 + x10_6 + x10_7 + x10_8 + x10_9

+ x10_10 + x10_11 + x10_12 + x10_13 + x10_14 + x10_15 + x10_16 + x10_17

+ x10_18 + x10_19 + x10_20 + x10_21 + x10_22 + x10_23 + x10_24 + x10_25

\+ x10_26 + x10_27 + x10_28 + x10_29 + x10_30 + x10_31 = 1;

+ x11_1 + x11_2 + x11_3 + x11_4 + x11_5 + x11_6 + x11_7 + x11_8 + x11_9

+ x11_10 + x11_11 + x11_12 + x11_13 + x11_14 + x11_15 + x11_16 + x11_17

+ x11_18 + x11_19 + x11_20 + x11_21 + x11_22 + x11_23 + x11_24 + x11_25

+ x11_26 + x11_27 + x11_28 + x11_29 + x11_30 + x11_31 = 1;

+ x12_1 + x12_2 + x12_3 + x12_4 + x12_5 + x12_6 + x12_7 + x12_8 + x12_9

+ x12_10 + x12_11 + x12_12 + x12_13 + x12_14 + x12_15 + x12_16 + x12_17

+ x12_18 + x12_19 + x12_20 + x12_21 + x12_22 + x12_23 + x12_24 + x12_25

+ x12_26 + x12_27 + x12_28 + x12_29 + x12_30 + x12_31 = 1;

+ x13_1 + x13_2 + x13_3 + x13_4 + x13_5 + x13_6 + x13_7 + x13_8 + x13_9

+ x13_10 + x13_11 + x13_12 + x13_13 + x13_14 + x13_15 + x13_16 + x13_17

+ x13_18 + x13_19 + x13_20 + x13_21 + x13_22 + x13_23 + x13_24 + x13_25

+ x13_26 + x13_27 + x13_28 + x13_29 + x13_30 + x13_31 = 1;

+ x14_1 + x14_2 + x14_3 + x14_4 + x14_5 + x14_6 + x14_7 + x14_8 + x14_9

+ x14_10 + x14_11 + x14_12 + x14_13 + x14_14 + x14_15 + x14_16 + x14_17

+ x14_18 + x14_19 + x14_20 + x14_21 + x14_22 + x14_23 + x14_24 + x14_25

+ x14_26 + x14_27 + x14_28 + x14_29 + x14_30 + x14_31 = 1;

+ x1_1 +2 x1_2 +3 x1_3 +4 x1_4 +5 x1_5 +6 x1_6 +7 x1_7 +8 x1_8 +9 x1_9

G.3. Floating Point Division: Division by Convergence 118

+10 x1_10 +11 x1_11 +12 x1_12 +13 x1_13 +14 x1_14 +15 x1_15 +16 x1_16

+17 x1_17 +18 x1_18 +19 x1_19 +20 x1_20 +21 x1_21 +22 x1_22 +23 x1_23

+24 x1_24 +25 x1_25 +26 x1_26 +27 x1_27 +28 x1_28 +29 x1_29 +30 x1_30

+31 x1_31 >= 1;

+ x2_1 +2 x2_2 +3 x2_3 +4 x2_4 +5 x2_5 +6 x2_6 +7 x2_7 +8 x2_8 +9 x2_9

+10 x2_10 +11 x2_11 +12 x2_12 +13 x2_13 +14 x2_14 +15 x2_15 +16 x2_16

+17 x2_17 +18 x2_18 +19 x2_19 +20 x2_20 +21 x2_21 +22 x2_22 +23 x2_23

+24 x2_24 +25 x2_25 +26 x2_26 +27 x2_27 +28 x2_28 +29 x2_29 +30 x2_30

+31 x2_31 >= 1;

+ x3_1 − x1_1 +2 x3_2 −2 x1_2 +3 x3_3 −3 x1_3 +4 x3_4 −4 x1_4 +5 x3_5

−5 x1_5 +6 x3_6 −6 x1_6 +7 x3_7 −7 x1_7 +8 x3_8 −8 x1_8 +9 x3_9 −9 x1_9

+10 x3_10 −10 x1_10 +11 x3_11 −11 x1_11 +12 x3_12 −12 x1_12 +13 x3_13

−13 x1_13 +14 x3_14 −14 x1_14 +15 x3_15 −15 x1_15 +16 x3_16 −16 x1_16

+17 x3_17 −17 x1_17 +18 x3_18 −18 x1_18 +19 x3_19 −19 x1_19 +20 x3_20

−20 x1_20 +21 x3_21 −21 x1_21 +22 x3_22 −22 x1_22 +23 x3_23 −23 x1_23

+24 x3_24 −24 x1_24 +25 x3_25 −25 x1_25 +26 x3_26 −26 x1_26 +27 x3_27

−27 x1_27 +28 x3_28 −28 x1_28 +29 x3_29 −29 x1_29 +30 x3_30 −30 x1_30

+31 x3_31 −31 x1_31 >= 1;

+ x4_1 − x3_1 +2 x4_2 −2 x3_2 +3 x4_3 −3 x3_3 +4 x4_4 −4 x3_4 +5 x4_5

−5 x3_5 +6 x4_6 −6 x3_6 +7 x4_7 −7 x3_7 +8 x4_8 −8 x3_8 +9 x4_9 −9 x3_9

+10 x4_10 −10 x3_10 +11 x4_11 −11 x3_11 +12 x4_12 −12 x3_12 +13 x4_13

−13 x3_13 +14 x4_14 −14 x3_14 +15 x4_15 −15 x3_15 +16 x4_16 −16 x3_16

+17 x4_17 −17 x3_17 +18 x4_18 −18 x3_18 +19 x4_19 −19 x3_19 +20 x4_20

−20 x3_20 +21 x4_21 −21 x3_21 +22 x4_22 −22 x3_22 +23 x4_23 −23 x3_23

+24 x4_24 −24 x3_24 +25 x4_25 −25 x3_25 +26 x4_26 −26 x3_26 +27 x4_27

−27 x3_27 +28 x4_28 −28 x3_28 +29 x4_29 −29 x3_29 +30 x4_30 −30 x3_30

+31 x4_31 −31 x3_31 >= 1;

+ x5_1 − x2_1 +2 x5_2 −2 x2_2 +3 x5_3 −3 x2_3 +4 x5_4 −4 x2_4 +5 x5_5

−5 x2_5 +6 x5_6 −6 x2_6 +7 x5_7 −7 x2_7 +8 x5_8 −8 x2_8 +9 x5_9 −9 x2_9

+10 x5_10 −10 x2_10 +11 x5_11 −11 x2_11 +12 x5_12 −12 x2_12 +13 x5_13

−13 x2_13 +14 x5_14 −14 x2_14 +15 x5_15 −15 x2_15 +16 x5_16 −16 x2_16

+17 x5_17 −17 x2_17 +18 x5_18 −18 x2_18 +19 x5_19 −19 x2_19 +20 x5_20

−20 x2_20 +21 x5_21 −21 x2_21 +22 x5_22 −22 x2_22 +23 x5_23 −23 x2_23

+24 x5_24 −24 x2_24 +25 x5_25 −25 x2_25 +26 x5_26 −26 x2_26 +27 x5_27

−27 x2_27 +28 x5_28 −28 x2_28 +29 x5_29 −29 x2_29 +30 x5_30 −30 x2_30

+31 x5_31 −31 x2_31 >= 1;

+ x5_1 − x3_1 +2 x5_2 −2 x3_2 +3 x5_3 −3 x3_3 +4 x5_4 −4 x3_4 +5 x5_5

−5 x3_5 +6 x5_6 −6 x3_6 +7 x5_7 −7 x3_7 +8 x5_8 −8 x3_8 +9 x5_9 −9 x3_9

+10 x5_10 −10 x3_10 +11 x5_11 −11 x3_11 +12 x5_12 −12 x3_12 +13 x5_13

−13 x3_13 +14 x5_14 −14 x3_14 +15 x5_15 −15 x3_15 +16 x5_16 −16 x3_16

+17 x5_17 −17 x3_17 +18 x5_18 −18 x3_18 +19 x5_19 −19 x3_19 +20 x5_20

−20 x3_20 +21 x5_21 −21 x3_21 +22 x5_22 −22 x3_22 +23 x5_23 −23 x3_23

+24 x5_24 −24 x3_24 +25 x5_25 −25 x3_25 +26 x5_26 −26 x3_26 +27 x5_27

−27 x3_27 +28 x5_28 −28 x3_28 +29 x5_29 −29 x3_29 +30 x5_30 −30 x3_30

+31 x5_31 −31 x3_31 >= 1;

G.3. Floating Point Division: Division by Convergence 119

+ x6_1 − x4_1 +2 x6_2 −2 x4_2 +3 x6_3 −3 x4_3 +4 x6_4 −4 x4_4 +5 x6_5

−5 x4_5 +6 x6_6 −6 x4_6 +7 x6_7 −7 x4_7 +8 x6_8 −8 x4_8 +9 x6_9 −9 x4_9

+10 x6_10 −10 x4_10 +11 x6_11 −11 x4_11 +12 x6_12 −12 x4_12 +13 x6_13

−13 x4_13 +14 x6_14 −14 x4_14 +15 x6_15 −15 x4_15 +16 x6_16 −16 x4_16

+17 x6_17 −17 x4_17 +18 x6_18 −18 x4_18 +19 x6_19 −19 x4_19 +20 x6_20

−20 x4_20 +21 x6_21 −21 x4_21 +22 x6_22 −22 x4_22 +23 x6_23 −23 x4_23

+24 x6_24 −24 x4_24 +25 x6_25 −25 x4_25 +26 x6_26 −26 x4_26 +27 x6_27

−27 x4_27 +28 x6_28 −28 x4_28 +29 x6_29 −29 x4_29 +30 x6_30 −30 x4_30

+31 x6_31 −31 x4_31 >= 1;

+ x7_1 − x6_1 +2 x7_2 −2 x6_2 +3 x7_3 −3 x6_3 +4 x7_4 −4 x6_4 +5 x7_5

−5 x6_5 +6 x7_6 −6 x6_6 +7 x7_7 −7 x6_7 +8 x7_8 −8 x6_8 +9 x7_9 −9 x6_9

+10 x7_10 −10 x6_10 +11 x7_11 −11 x6_11 +12 x7_12 −12 x6_12 +13 x7_13

−13 x6_13 +14 x7_14 −14 x6_14 +15 x7_15 −15 x6_15 +16 x7_16 −16 x6_16

+17 x7_17 −17 x6_17 +18 x7_18 −18 x6_18 +19 x7_19 −19 x6_19 +20 x7_20

−20 x6_20 +21 x7_21 −21 x6_21 +22 x7_22 −22 x6_22 +23 x7_23 −23 x6_23

+24 x7_24 −24 x6_24 +25 x7_25 −25 x6_25 +26 x7_26 −26 x6_26 +27 x7_27

−27 x6_27 +28 x7_28 −28 x6_28 +29 x7_29 −29 x6_29 +30 x7_30 −30 x6_30

+31 x7_31 −31 x6_31 >= 1;

+ x8_1 − x5_1 +2 x8_2 −2 x5_2 +3 x8_3 −3 x5_3 +4 x8_4 −4 x5_4 +5 x8_5

−5 x5_5 +6 x8_6 −6 x5_6 +7 x8_7 −7 x5_7 +8 x8_8 −8 x5_8 +9 x8_9 −9 x5_9

+10 x8_10 −10 x5_10 +11 x8_11 −11 x5_11 +12 x8_12 −12 x5_12 +13 x8_13

−13 x5_13 +14 x8_14 −14 x5_14 +15 x8_15 −15 x5_15 +16 x8_16 −16 x5_16

+17 x8_17 −17 x5_17 +18 x8_18 −18 x5_18 +19 x8_19 −19 x5_19 +20 x8_20

−20 x5_20 +21 x8_21 −21 x5_21 +22 x8_22 −22 x5_22 +23 x8_23 −23 x5_23

+24 x8_24 −24 x5_24 +25 x8_25 −25 x5_25 +26 x8_26 −26 x5_26 +27 x8_27

−27 x5_27 +28 x8_28 −28 x5_28 +29 x8_29 −29 x5_29 +30 x8_30 −30 x5_30

+31 x8_31 −31 x5_31 >= 1;

+ x8_1 − x6_1 +2 x8_2 −2 x6_2 +3 x8_3 −3 x6_3 +4 x8_4 −4 x6_4 +5 x8_5

−5 x6_5 +6 x8_6 −6 x6_6 +7 x8_7 −7 x6_7 +8 x8_8 −8 x6_8 +9 x8_9 −9 x6_9

+10 x8_10 −10 x6_10 +11 x8_11 −11 x6_11 +12 x8_12 −12 x6_12 +13 x8_13

−13 x6_13 +14 x8_14 −14 x6_14 +15 x8_15 −15 x6_15 +16 x8_16 −16 x6_16

+17 x8_17 −17 x6_17 +18 x8_18 −18 x6_18 +19 x8_19 −19 x6_19 +20 x8_20

−20 x6_20 +21 x8_21 −21 x6_21 +22 x8_22 −22 x6_22 +23 x8_23 −23 x6_23

+24 x8_24 −24 x6_24 +25 x8_25 −25 x6_25 +26 x8_26 −26 x6_26 +27 x8_27

−27 x6_27 +28 x8_28 −28 x6_28 +29 x8_29 −29 x6_29 +30 x8_30 −30 x6_30

+31 x8_31 −31 x6_31 >= 1;

+ x9_1 − x7_1 +2 x9_2 −2 x7_2 +3 x9_3 −3 x7_3 +4 x9_4 −4 x7_4 +5 x9_5

−5 x7_5 +6 x9_6 −6 x7_6 +7 x9_7 −7 x7_7 +8 x9_8 −8 x7_8 +9 x9_9 −9 x7_9

+10 x9_10 −10 x7_10 +11 x9_11 −11 x7_11 +12 x9_12 −12 x7_12 +13 x9_13

−13 x7_13 +14 x9_14 −14 x7_14 +15 x9_15 −15 x7_15 +16 x9_16 −16 x7_16

+17 x9_17 −17 x7_17 +18 x9_18 −18 x7_18 +19 x9_19 −19 x7_19 +20 x9_20

−20 x7_20 +21 x9_21 −21 x7_21 +22 x9_22 −22 x7_22 +23 x9_23 −23 x7_23

+24 x9_24 −24 x7_24 +25 x9_25 −25 x7_25 +26 x9_26 −26 x7_26 +27 x9_27

−27 x7_27 +28 x9_28 −28 x7_28 +29 x9_29 −29 x7_29 +30 x9_30 −30 x7_30

+31 x9_31 −31 x7_31 >= 1;

G.3. Floating Point Division: Division by Convergence 120

+ x10_1 − x9_1 +2 x10_2 −2 x9_2 +3 x10_3 −3 x9_3 +4 x10_4 −4 x9_4

+5 x10_5 −5 x9_5 +6 x10_6 −6 x9_6 +7 x10_7 −7 x9_7 +8 x10_8 −8 x9_8

+9 x10_9 −9 x9_9 +10 x10_10 −10 x9_10 +11 x10_11 −11 x9_11 +12 x10_12

−12 x9_12 +13 x10_13 −13 x9_13 +14 x10_14 −14 x9_14 +15 x10_15 −15 x9_15

+16 x10_16 −16 x9_16 +17 x10_17 −17 x9_17 +18 x10_18 −18 x9_18 +19 x10_19

−19 x9_19 +20 x10_20 −20 x9_20 +21 x10_21 −21 x9_21 +22 x10_22 −22 x9_22

+23 x10_23 −23 x9_23 +24 x10_24 −24 x9_24 +25 x10_25 −25 x9_25 +26 x10_26

−26 x9_26 +27 x10_27 −27 x9_27 +28 x10_28 −28 x9_28 +29 x10_29 −29 x9_29

+30 x10_30 −30 x9_30 +31 x10_31 −31 x9_31 >= 1;

+ x11_1 − x8_1 +2 x11_2 −2 x8_2 +3 x11_3 −3 x8_3 +4 x11_4 −4 x8_4

+5 x11_5 −5 x8_5 +6 x11_6 −6 x8_6 +7 x11_7 −7 x8_7 +8 x11_8 −8 x8_8

+9 x11_9 −9 x8_9 +10 x11_10 −10 x8_10 +11 x11_11 −11 x8_11 +12 x11_12

−12 x8_12 +13 x11_13 −13 x8_13 +14 x11_14 −14 x8_14 +15 x11_15 −15 x8_15

+16 x11_16 −16 x8_16 +17 x11_17 −17 x8_17 +18 x11_18 −18 x8_18 +19 x11_19

−19 x8_19 +20 x11_20 −20 x8_20 +21 x11_21 −21 x8_21 +22 x11_22 −22 x8_22

+23 x11_23 −23 x8_23 +24 x11_24 −24 x8_24 +25 x11_25 −25 x8_25 +26 x11_26

−26 x8_26 +27 x11_27 −27 x8_27 +28 x11_28 −28 x8_28 +29 x11_29 −29 x8_29

+30 x11_30 −30 x8_30 +31 x11_31 −31 x8_31 >= 1;

+ x11_1 − x9_1 +2 x11_2 −2 x9_2 +3 x11_3 −3 x9_3 +4 x11_4 −4 x9_4 +5 x11_5

−5 x9_5 +6 x11_6 −6 x9_6 +7 x11_7 −7 x9_7 +8 x11_8 −8 x9_8 +9 x11_9 −9 x9_9

+10 x11_10 −10 x9_10 +11 x11_11 −11 x9_11 +12 x11_12 −12 x9_12 +13 x11_13

−13 x9_13 +14 x11_14 −14 x9_14 +15 x11_15 −15 x9_15 +16 x11_16 −16 x9_16

+17 x11_17 −17 x9_17 +18 x11_18 −18 x9_18 +19 x11_19 −19 x9_19 +20 x11_20

−20 x9_20 +21 x11_21 −21 x9_21 +22 x11_22 −22 x9_22 +23 x11_23 −23 x9_23

+24 x11_24 −24 x9_24 +25 x11_25 −25 x9_25 +26 x11_26 −26 x9_26 +27 x11_27

−27 x9_27 +28 x11_28 −28 x9_28 +29 x11_29 −29 x9_29 +30 x11_30 −30 x9_30

+31 x11_31 −31 x9_31 >= 1;

+ x12_1 − x10_1 +2 x12_2 −2 x10_2 +3 x12_3 −3 x10_3 +4 x12_4 −4 x10_4

+5 x12_5 −5 x10_5 +6 x12_6 −6 x10_6 +7 x12_7 −7 x10_7 +8 x12_8 −8 x10_8

+9 x12_9 −9 x10_9 +10 x12_10 −10 x10_10 +11 x12_11 −11 x10_11 +12 x12_12

−12 x10_12 +13 x12_13 −13 x10_13 +14 x12_14 −14 x10_14 +15 x12_15 −15 x10_15

+16 x12_16 −16 x10_16 +17 x12_17 −17 x10_17 +18 x12_18 −18 x10_18 +19 x12_19

−19 x10_19 +20 x12_20 −20 x10_20 +21 x12_21 −21 x10_21 +22 x12_22 −22 x10_22

+23 x12_23 −23 x10_23 +24 x12_24 −24 x10_24 +25 x12_25 −25 x10_25 +26 x12_26

−26 x10_26 +27 x12_27 −27 x10_27 +28 x12_28 −28 x10_28 +29 x12_29 −29 x10_29

+30 x12_30 −30 x10_30 +31 x12_31 −31 x10_31 >= 1;

+ x13_1 − x11_1 +2 x13_2 −2 x11_2 +3 x13_3 −3 x11_3 +4 x13_4 −4 x11_4

+5 x13_5 −5 x11_5 +6 x13_6 −6 x11_6 +7 x13_7 −7 x11_7 +8 x13_8 −8 x11_8

+9 x13_9 −9 x11_9 +10 x13_10 −10 x11_10 +11 x13_11 −11 x11_11 +12 x13_12

−12 x11_12 +13 x13_13 −13 x11_13 +14 x13_14 −14 x11_14 +15 x13_15

−15 x11_15 +16 x13_16 −16 x11_16 +17 x13_17 −17 x11_17 +18 x13_18

−18 x11_18 +19 x13_19 −19 x11_19 +20 x13_20 −20 x11_20 +21 x13_21

−21 x11_21 +22 x13_22 −22 x11_22 +23 x13_23 −23 x11_23 +24 x13_24

−24 x11_24 +25 x13_25 −25 x11_25 +26 x13_26 −26 x11_26 +27 x13_27

−27 x11_27 +28 x13_28 −28 x11_28 +29 x13_29 −29 x11_29 +30 x13_30

G.3. Floating Point Division: Division by Convergence 121

−30 x11_30 +31 x13_31 −31 x11_31 >= 1;

+ x13_1 − x12_1 +2 x13_2 −2 x12_2 +3 x13_3 −3 x12_3 +4 x13_4 −4 x12_4

+5 x13_5 −5 x12_5 +6 x13_6 −6 x12_6 +7 x13_7 −7 x12_7 +8 x13_8 −8 x12_8

+9 x13_9 −9 x12_9 +10 x13_10 −10 x12_10 +11 x13_11 −11 x12_11 +12 x13_12

−12 x12_12 +13 x13_13 −13 x12_13 +14 x13_14 −14 x12_14 +15 x13_15

−15 x12_15 +16 x13_16 −16 x12_16 +17 x13_17 −17 x12_17 +18 x13_18

−18 x12_18 +19 x13_19 −19 x12_19 +20 x13_20 −20 x12_20 +21 x13_21

−21 x12_21 +22 x13_22 −22 x12_22 +23 x13_23 −23 x12_23 +24 x13_24

−24 x12_24 +25 x13_25 −25 x12_25 +26 x13_26 −26 x12_26 +27 x13_27

−27 x12_27 +28 x13_28 −28 x12_28 +29 x13_29 −29 x12_29 +30 x13_30

−30 x12_30 +31 x13_31 −31 x12_31 >= 1;

+ x14_1 − x13_1 +2 x14_2 −2 x13_2 +3 x14_3 −3 x13_3 +4 x14_4

−4 x13_4 +5 x14_5 −5 x13_5 +6 x14_6 −6 x13_6 +7 x14_7 −7 x13_7

+8 x14_8 −8 x13_8 +9 x14_9 −9 x13_9 +10 x14_10 −10 x13_10 +11 x14_11

−11 x13_11 +12 x14_12 −12 x13_12 +13 x14_13 −13 x13_13 +14 x14_14

−14 x13_14 +15 x14_15 −15 x13_15 +16 x14_16 −16 x13_16 +17 x14_17

−17 x13_17 +18 x14_18 −18 x13_18 +19 x14_19 −19 x13_19 +20 x14_20

−20 x13_20 +21 x14_21 −21 x13_21 +22 x14_22 −22 x13_22 +23 x14_23

−23 x13_23 +24 x14_24 −24 x13_24 +25 x14_25 −25 x13_25 +26 x14_26

−26 x13_26 +27 x14_27 −27 x13_27 +28 x14_28 −28 x13_28 +29 x14_29

−29 x13_29 +30 x14_30 −30 x13_30 +31 x14_31 −31 x13_31 >= 1;

+ x1_1 + x2_1 + x4_1 + x5_1 + x7_1 + x8_1 + x10_1 + x11_1 + x13_1 <= 4;

+ x1_2 + x2_2 + x4_2 + x5_2 + x7_2 + x8_2 + x10_2 + x11_2 + x13_2 <= 4;

+ x1_3 + x2_3 + x4_3 + x5_3 + x7_3 + x8_3 + x10_3 + x11_3 + x13_3 <= 4;

+ x1_4 + x2_4 + x4_4 + x5_4 + x7_4 + x8_4 + x10_4 + x11_4 + x13_4 <= 4;

+ x1_5 + x2_5 + x4_5 + x5_5 + x7_5 + x8_5 + x10_5 + x11_5 + x13_5 <= 4;

+ x1_6 + x2_6 + x4_6 + x5_6 + x7_6 + x8_6 + x10_6 + x11_6 + x13_6 <= 4;

+ x1_7 + x2_7 + x4_7 + x5_7 + x7_7 + x8_7 + x10_7 + x11_7 + x13_7 <= 4;

+ x1_8 + x2_8 + x4_8 + x5_8 + x7_8 + x8_8 + x10_8 + x11_8 + x13_8 <= 4;

+ x1_9 + x2_9 + x4_9 + x5_9 + x7_9 + x8_9 + x10_9 + x11_9 + x13_9 <= 4;

+ x1_10 + x2_10 + x4_10 + x5_10 + x7_10 + x8_10 + x10_10 + x11_10

+ x13_10 <= 4;

+ x1_11 + x2_11 + x4_11 + x5_11 + x7_11 + x8_11 + x10_11 + x11_11

+ x13_11 <= 4;

+ x1_12 + x2_12 + x4_12 + x5_12 + x7_12 + x8_12 + x10_12 + x11_12

+ x13_12 <= 4;

+ x1_13 + x2_13 + x4_13 + x5_13 + x7_13 + x8_13 + x10_13 + x11_13

+ x13_13 <= 4;

+ x1_14 + x2_14 + x4_14 + x5_14 + x7_14 + x8_14 + x10_14 + x11_14

+ x13_14 <= 4;

+ x1_15 + x2_15 + x4_15 + x5_15 + x7_15 + x8_15 + x10_15 + x11_15

+ x13_15 <= 4;

+ x1_16 + x2_16 + x4_16 + x5_16 + x7_16 + x8_16 + x10_16 + x11_16

+ x13_16 <= 4;

+ x1_17 + x2_17 + x4_17 + x5_17 + x7_17 + x8_17 + x10_17 + x11_17

G.3. Floating Point Division: Division by Convergence 122

+ x13_17 <= 4;

+ x1_18 + x2_18 + x4_18 + x5_18 + x7_18 + x8_18 + x10_18 + x11_18

+ x13_18 <= 4;

+ x1_19 + x2_19 + x4_19 + x5_19 + x7_19 + x8_19 + x10_19 + x11_19

+ x13_19 <= 4;

+ x1_20 + x2_20 + x4_20 + x5_20 + x7_20 + x8_20 + x10_20 + x11_20

+ x13_20 <= 4;

+ x1_21 + x2_21 + x4_21 + x5_21 + x7_21 + x8_21 + x10_21 + x11_21

+ x13_21 <= 4;

+ x1_22 + x2_22 + x4_22 + x5_22 + x7_22 + x8_22 + x10_22 + x11_22

+ x13_22 <= 4;

+ x1_23 + x2_23 + x4_23 + x5_23 + x7_23 + x8_23 + x10_23 + x11_23

+ x13_23 <= 4;

+ x1_24 + x2_24 + x4_24 + x5_24 + x7_24 + x8_24 + x10_24 + x11_24

+ x13_24 <= 4;

+ x1_25 + x2_25 + x4_25 + x5_25 + x7_25 + x8_25 + x10_25 + x11_25

+ x13_25 <= 4;

+ x1_26 + x2_26 + x4_26 + x5_26 + x7_26 + x8_26 + x10_26 + x11_26

+ x13_26 <= 4;

+ x1_27 + x2_27 + x4_27 + x5_27 + x7_27 + x8_27 + x10_27 + x11_27

+ x13_27 <= 4;

+ x1_28 + x2_28 + x4_28 + x5_28 + x7_28 + x8_28 + x10_28 + x11_28

+ x13_28 <= 4;

+ x1_29 + x2_29 + x4_29 + x5_29 + x7_29 + x8_29 + x10_29 + x11_29

+ x13_29 <= 4;

+ x1_30 + x2_30 + x4_30 + x5_30 + x7_30 + x8_30 + x10_30 + x11_30

+ x13_30 <= 4;

+ x3_1 + x6_1 + x9_1 + x12_1 + x14_1 <= 4;

+ x3_2 + x6_2 + x9_2 + x12_2 + x14_2 <= 4;

+ x3_3 + x6_3 + x9_3 + x12_3 + x14_3 <= 4;

+ x3_4 + x6_4 + x9_4 + x12_4 + x14_4 <= 4;

+ x3_5 + x6_5 + x9_5 + x12_5 + x14_5 <= 4;

+ x3_6 + x6_6 + x9_6 + x12_6 + x14_6 <= 4;

+ x3_7 + x6_7 + x9_7 + x12_7 + x14_7 <= 4;

+ x3_8 + x6_8 + x9_8 + x12_8 + x14_8 <= 4;

+ x3_9 + x6_9 + x9_9 + x12_9 + x14_9 <= 4;

+ x3_10 + x6_10 + x9_10 + x12_10 + x14_10 <= 4;

+ x3_11 + x6_11 + x9_11 + x12_11 + x14_11 <= 4;

+ x3_12 + x6_12 + x9_12 + x12_12 + x14_12 <= 4;

+ x3_13 + x6_13 + x9_13 + x12_13 + x14_13 <= 4;

+ x3_14 + x6_14 + x9_14 + x12_14 + x14_14 <= 4;

+ x3_15 + x6_15 + x9_15 + x12_15 + x14_15 <= 4;

+ x3_16 + x6_16 + x9_16 + x12_16 + x14_16 <= 4;

+ x3_17 + x6_17 + x9_17 + x12_17 + x14_17 <= 4;

+ x3_18 + x6_18 + x9_18 + x12_18 + x14_18 <= 4;

G.3. Floating Point Division: Division by Convergence 123

+ x3_19 + x6_19 + x9_19 + x12_19 + x14_19 <= 4;

+ x3_20 + x6_20 + x9_20 + x12_20 + x14_20 <= 4;

+ x3_21 + x6_21 + x9_21 + x12_21 + x14_21 <= 4;

+ x3_22 + x6_22 + x9_22 + x12_22 + x14_22 <= 4;

+ x3_23 + x6_23 + x9_23 + x12_23 + x14_23 <= 4;

+ x3_24 + x6_24 + x9_24 + x12_24 + x14_24 <= 4;

+ x3_25 + x6_25 + x9_25 + x12_25 + x14_25 <= 4;

+ x3_26 + x6_26 + x9_26 + x12_26 + x14_26 <= 4;

+ x3_27 + x6_27 + x9_27 + x12_27 + x14_27 <= 4;

+ x3_28 + x6_28 + x9_28 + x12_28 + x14_28 <= 4;

+ x3_29 + x6_29 + x9_29 + x12_29 + x14_29 <= 4;

+ x3_30 + x6_30 + x9_30 + x12_30 + x14_30 <= 4;

b inary x1_1 , x1_2 , x1_3 , x1_4 , x1_5 , x1_6 , x1_7 , x1_8 , x1_9 ,

x1_10 , x1_11 , x1_12 , x1_13 , x1_14 , x1_15 , x1_16 , x1_17 , x1_18 ,

x1_19 , x1_20 , x1_21 , x1_22 , x1_23 , x1_24 , x1_25 , x1_26 , x1_27 ,

x1_28 , x1_29 , x1_30 , x1_31 , x2_1 , x2_2 , x2_3 , x2_4 , x2_5 , x2_6 ,

x2_7 , x2_8 , x2_9 , x2_10 , x2_11 , x2_12 , x2_13 , x2_14 , x2_15 ,

x2_16 , x2_17 , x2_18 , x2_19 , x2_20 , x2_21 , x2_22 , x2_23 , x2_24 ,

x2_25 , x2_26 , x2_27 , x2_28 , x2_29 , x2_30 , x2_31 , x3_1 , x3_2 ,

x3_3 , x3_4 , x3_5 , x3_6 , x3_7 , x3_8 , x3_9 , x3_10 , x3_11 , x3_12 ,

x3_13 , x3_14 , x3_15 , x3_16 , x3_17 , x3_18 , x3_19 , x3_20 , x3_21 ,

x3_22 , x3_23 , x3_24 , x3_25 , x3_26 , x3_27 , x3_28 , x3_29 , x3_30 ,

x3_31 , x4_1 , x4_2 , x4_3 , x4_4 , x4_5 , x4_6 , x4_7 , x4_8 , x4_9 ,

x4_10 , x4_11 , x4_12 , x4_13 , x4_14 , x4_15 , x4_16 , x4_17 , x4_18 ,

x4_19 , x4_20 , x4_21 , x4_22 , x4_23 , x4_24 , x4_25 , x4_26 , x4_27 ,

x4_28 , x4_29 , x4_30 , x4_31 , x5_1 , x5_2 , x5_3 , x5_4 , x5_5 , x5_6 ,

x5_7 , x5_8 , x5_9 , x5_10 , x5_11 , x5_12 , x5_13 , x5_14 , x5_15 , x5_16 ,

x5_17 , x5_18 , x5_19 , x5_20 , x5_21 , x5_22 , x5_23 , x5_24 , x5_25 ,

x5_26 , x5_27 , x5_28 , x5_29 , x5_30 , x5_31 , x6_1 , x6_2 , x6_3 , x6_4 ,

x6_5 , x6_6 , x6_7 , x6_8 , x6_9 , x6_10 , x6_11 , x6_12 , x6_13 , x6_14 ,

x6_15 , x6_16 , x6_17 , x6_18 , x6_19 , x6_20 , x6_21 , x6_22 , x6_23 ,

x6_24 , x6_25 , x6_26 , x6_27 , x6_28 , x6_29 , x6_30 , x6_31 , x7_1 ,

x7_2 , x7_3 , x7_4 , x7_5 , x7_6 , x7_7 , x7_8 , x7_9 , x7_10 , x7_11 ,

x7_12 , x7_13 , x7_14 , x7_15 , x7_16 , x7_17 , x7_18 , x7_19 , x7_20 ,

x7_21 , x7_22 , x7_23 , x7_24 , x7_25 , x7_26 , x7_27 , x7_28 , x7_29 ,

x7_30 , x7_31 , x8_1 , x8_2 , x8_3 , x8_4 , x8_5 , x8_6 , x8_7 , x8_8 ,

x8_9 , x8_10 , x8_11 , x8_12 , x8_13 , x8_14 , x8_15 , x8_16 , x8_17 ,

x8_18 , x8_19 , x8_20 , x8_21 , x8_22 , x8_23 , x8_24 , x8_25 , x8_26 ,

x8_27 , x8_28 , x8_29 , x8_30 , x8_31 , x9_1 , x9_2 , x9_3 , x9_4 , x9_5 ,

x9_6 , x9_7 , x9_8 , x9_9 , x9_10 , x9_11 , x9_12 , x9_13 , x9_14 , x9_15 ,

x9_16 , x9_17 , x9_18 , x9_19 , x9_20 , x9_21 , x9_22 , x9_23 , x9_24 ,

x9_25 , x9_26 , x9_27 , x9_28 , x9_29 , x9_30 , x9_31 , x10_1 , x10_2 ,

x10_3 , x10_4 , x10_5 , x10_6 , x10_7 , x10_8 , x10_9 , x10_10 , x10_11 ,

x10_12 , x10_13 , x10_14 , x10_15 , x10_16 , x10_17 , x10_18 , x10_19 ,

x10_20 , x10_21 , x10_22 , x10_23 , x10_24 , x10_25 , x10_26 , x10_27 ,

G.3. Floating Point Division: Division by Convergence 124

x10_28 , x10_29 , x10_30 , x10_31 , x11_1 , x11_2 , x11_3 , x11_4 , x11_5 ,

x11_6 , x11_7 , x11_8 , x11_9 , x11_10 , x11_11 , x11_12 , x11_13 , x11_14 ,

x11_15 , x11_16 , x11_17 , x11_18 , x11_19 , x11_20 , x11_21 , x11_22 ,

x11_23 , x11_24 , x11_25 , x11_26 , x11_27 , x11_28 , x11_29 , x11_30 ,

x11_31 , x12_1 , x12_2 , x12_3 , x12_4 , x12_5 , x12_6 , x12_7 , x12_8 ,

x12_9 , x12_10 , x12_11 , x12_12 , x12_13 , x12_14 , x12_15 , x12_16 ,

x12_17 , x12_18 , x12_19 , x12_20 , x12_21 , x12_22 , x12_23 , x12_24 ,

x12_25 , x12_26 , x12_27 , x12_28 , x12_29 , x12_30 , x12_31 , x13_1 ,

x13_2 , x13_3 , x13_4 , x13_5 , x13_6 , x13_7 , x13_8 , x13_9 , x13_10 ,

x13_11 , x13_12 , x13_13 , x13_14 , x13_15 , x13_16 , x13_17 , x13_18 ,

x13_19 , x13_20 , x13_21 , x13_22 , x13_23 , x13_24 , x13_25 , x13_26 ,

x13_27 , x13_28 , x13_29 , x13_30 , x13_31 , x14_1 , x14_2 , x14_3 ,

x14_4 , x14_5 , x14_6 , x14_7 , x14_8 , x14_9 , x14_10 , x14_11 , x14_12 ,

x14_13 , x14_14 , x14_15 , x14_16 , x14_17 , x14_18 , x14_19 , x14_20 ,

x14_21 , x14_22 , x14_23 , x14_24 , x14_25 , x14_26 , x14_27 , x14_28 ,

x14_29 , x14_30 , x14_31 ;

H
gXR5 Specifications

Component Attribute Baseline Simulator Validated Simulator

MinorCPU model

IntALU Operation Latency (Cycles) 3 2

IntDiv Operation Latency(Cycles) 33 19

ReadMem FU Operation Latency 4 3

WriteMem FU Operation Latency(Cycles) 2 1

Decode Unit Input Width, Buffer Size 1 4

Fetch2 Unit Input Buffer Size 2 4

Execute Unit Input Width 1 4

Branch Predictor Type Tournament Multiperspective Perceptron

Caches

L1 Data Data Latency 4 1

L1 Data Response Latency 2 2

L1 Data Clusivity Mostly Exclusive Mostly Inclusive

L1 Instruction Clusivity Mostly Exclusive Mostly Inclusive

Table H.1: Selected attributes of Baseline and Validated Simulator (against Sifive

Unleashed

Component Attribute Baseline Simulator Validated Simulator

MinorCPU model

IntDiv Operation Latency 33 16

FloatMultAcc Operation Latency 3 5

FloatDiv Operation Latency 5 9

Branch Predictor Type Tournament Gshare

Table H.2: Selected attributes of Baseline and Validated Simulator (against Rocket

System)

125

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Contributions
	Thesis Organisation

	Literature Review
	Architectural Simulators
	Target metric/Figure of Merit
	Scope of target
	Input to Simulators
	Driving agent of Simulation

	Simulation Errors
	Validation Methodologies

	Preliminary Work
	gem5 Extensions for RISC-V: gXR5
	gXR5 Models
	CPU Model
	Stage-I: Fetch1
	Stage-II:Fetch2
	Stage-III: Decode
	Stage-IV: Execute
	Pipeline

	gxR5 - Memory system
	Classical Caches
	DRAM models

	gXR5-Branch Predictor Models
	Local Branch Predictor
	Tournament Branch Predictor
	Bi-Mode Branch Predictor
	TAGE Branch Predictor
	Multi-perspective Perceptron Branch Predictor
	TAGE-Statistical Correlator and Loop Predictor Branch Predictor

	Target Hardware
	Sifive Highfive Unleashed
	Micro-architecture

	Rocket Chip
	Hardware set-up
	Micro-architecture

	Methodology
	Benchmarks: stress-ng
	Profiling stress-ng Benchmarks
	Classification of Benchmarks

	Validating against Sifive Unleashed
	MinorCPU
	Calibrating Arithmetic Functional Units
	Calibrating Memory Execution Units
	Calibrating the Branch Execution Unit
	Design Space Exploration of Branch Predictors

	Caches

	Validating against Rocket System
	MinorCPU:Functional Units Latency
	Estimating Latency of SPFMA unit
	Estimating Latency of DPFMA unit
	Estimating Latency of FP Division unit

	MinorCPU: Branch Predictor

	Concluding remarks

	Results and Discussion
	Profiling SPEC2017 benchmarks
	Validated Simulator
	Target: Sifive Unleashed
	Stress-ng
	SPEC suite

	Target: Rocket System
	Stress-ng
	SPEC suite

	Conclusion
	Refining the proposed methodology
	Reflecting on the Results

	References
	Publications
	RISC-V ISA selected Instructions
	C Code
	ILP Modeling: Parsing and Generating constraint equations
	GShare Brach Predictor model in gem5

	Stress-ng Benchmark suite
	SPEC2017 Benchmarks
	Full DPS48E1 Slice functionality
	ILP Modeling
	Single Precision Fused Multiply and Accumulate
	Double Precision Fused Multiply and Accumulate
	Floating Point Division: Division by Convergence

	gXR5 Specifications

