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ABSTRACT
Bores propagating in shallow water transform into undular

bores and, finally, into trains of solitons. The observed num-
ber and height of these undulations, and later discrete solitons, is
strongly dependent on the propagation length of the bore. Em-
pirical results show that the final height of the leading soliton in
the far-field is twice the initial mean bore height. The complete
disintegration of the initial bore into a train of solitons requires
very long propagation lengths, but unfortunately these required
distances are usually not available in experimental tests or na-
ture. Therefore, the analysis of the bore decomposition for ex-
perimental data into solitons is difficult and requires further ap-
proaches. Previous studies have shown that by application of
the nonlinear Fourier transform based on the Korteweg–de Vries
equation (KdV-NFT) to bores and long-period waves propaga-
ting in constant depth, the number and height of all solitons can
be reliably predicted already based on the initial bore-shaped free
surface.

Against this background, this study presents the systematic
analysis of the leading-soliton amplitudes for non-breaking and
breaking bores with different strengths in different water depths
in order to validate the KdV-NFT results for non-breaking bores,
and to show the limitations of wave breaking on the spectral re-
sults. The analytical results are compared with data from expe-
rimental tests, numerical simulations and other approaches from
literature.

∗Address all correspondence to this author.

INTRODUCTION
In coastal, shallow regions, tsunamis or other long-period

waves often propagate as bore-shaped waves that will first evolve
into undular bores and later, in case of sufficient long propagation
length, into trains of solitons. In both cases, the first undulation
or the leading solitons will show significant amplification com-
pared to the initial bore height. Knowledge about these processes
will help to understand the underlying processes and to predict
the bore evolution from near- to far-field.

Experimental tests and numerical simulations confirm that,
in case of sufficient propagation length, significant transforma-
tions within undular bores lead to discrete solitons emerging out
the bore front. For bores propagating on a horizontal bed, the
far-field leading-soliton amplitudes A1 reach up to twice the ini-
tial bore height ηb [1, 2, 3]. Furthermore, as function of the bore
length a number of rank-ordered solitons can arise from the bore.
Thus, the processes of undular bore generation and amplification
of the maximum crest elevation as the solitons emerge out of the
bore front provide a significant thread to downwave locations.

With the nonlinear Fourier transform based on the
Korteweg–de Vries equation (KdV-NFT), a powerful analysis
technique is available that uses nonlinear cnoidal waves as the
spectral basis for the decomposition of the original data. [4,5,6,7]
The application of this method to experimental and numerical
bore data allows to identify the underlying solitons that are al-
ready present in the initial bore shape, although they cannot be
seen directly due to the superposition with their strong nonlinear
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wave-wave interactions. [8] Within the nonlinear decomposition
in KdV-NFT, the spectral so-called cnoidal basic components
(solitons and oscillatory waves) are identified and separated from
their nonlinear interactions. Finally, the spectral results are pre-
sented in the so-called nonlinear spectrum in a similar way to the
conventional linear Fourier spectrum. [4]

By comparison of nonlinear spectra obtained from expe-
rimental gauge data at different positions along the bore pro-
pagation and numerical simulations of the tempo-spatial evolu-
tion of these bores, it has been shown that the nonlinear spec-
tra for a propagating undular, non-breaking bore is nearly con-
stant [8]. This result is remarkable because although the free sur-
face changes significantly from a trapezoidal-shaped initial bore
into an undulating bore and, finally, into a train of discrete soli-
tons, the underlying nonlinear spectral components are the same
for all timesteps and positions. Thus, the variation of the free sur-
face is solely caused by the strength and shape of the nonlinear
wave-wave interactions between these invariant spectral compo-
nents. Finally, this implies that for non-breaking bores in con-
stant depth the KdV-NFT analysis of the initial bore will provide
all required information for the understanding and prediction of
the downwave bore propagation, including the number and peaks
of the undulations within the bore as well as the number and am-
plitudes of the far-field solitons.

In this paper, leading-soliton amplitudes for non-breaking
and breaking bores with different strengths in different water
depths are analysed systematically in order to validate the KdV-
NFT results for non-breaking bores, and to show the limitations
of wave breaking on the spectral results. The analytical results
are compared with data from experimental tests, numerical simu-
lations and other approaches from literature.

THEORETICAL BACKGROUND
Properties of paddle-generated bores in the wave
flume

The properties of non-breaking undular bores can be derived
from the mass and momentum conservation equations that pro-
vide the nonlinear shallow water equation. This approach pre-
sumes the horizontal flow velocities u(x,y, t) to be unitary over
depth h so that ∂u/∂y = uy = 0 and thus u = u(x, t), the pressure
distribution over depth p(h) to be hydrostatic, and the liquid to
be inviscid. Then, the mass conservation relation derived in [9]
defines the relation between bore height, celerity and depth as

hb (Ub−ub) = h0 (Ub−u0) , (1)

with depth under the bore hb from Eq. (2) and fluid velocity be-
hind the bore ub, that propagate with bore celerity Ub into water
with initial depth h0 and initial fluid velocity u0, with ub > u0 ≥ 0
as defined in Fig. 1a,b.

The relation between the bore height hb over the bottom and

FIGURE 1: DEFINITION OF KEY PARAMETERS FOR a)
A BORE PROPAGATING DOWNSTREAM THE FLUME, b)
A HYDRAULIC JUMP UPSTREAM THE FLUME, c) BORE
ACCUMULATION DURING CONSTANT VELOCITY OF
THE PADDLE, AND d) THE PROPAGATION OF THE BORE
AFTER THE PADDLE HAS STOPPED (AFTER [9]).

the bore height ηb over the still water level (SWL) is

hb = (ηb +h0). (2)

Within this study, the propagation of the free surface is cha-
racterized by the strength of the bore in terms of the dimension-
less bore Froude number [10, 11]

Frb =
Ub−u0√

gh0
, (3)

with g the acceleration due to gravity, Ub the bore-front celerity,
and u0 the initial fluid velocity at initial depth h0.

Consideration of the relations between water depth h0 and
bore celerity Ub in both directions of the bore provides the func-
tion for the strength of the bore [12]

hb

h0
=

(
cb

c0

)2

=
1
2

(√
1+8Fr2

b−1
)
, (4)

where c0 =
√

gh0 and cb =
√

ghb are the wave celerities in the
initial depth h0 in front of and in depth hb behind the bore front.
Further details on the bore properties and the relation between
paddle motion and bore height can be found in [8].

Based on the bore Froude number Frb, bores show diffe-
rent characteristics of wave propagation. According to literature,
three different types of bore waves in function of their strength
can be defined: i) Undulating bores show values Frb ≤ 1.25
[13]. ii) Fully developed bores are described by [10] for va-
lues Frb ≥ 1.55. iii) Breaking bores are obtained when bores
with Frb > 1.25 start to break. However, other values can also
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be found in the literature. Therefore, the limit between breaking
and non-breaking undular bores is located in the range between
1.2≤ Frb ≤ 1.53 and for breaking and fully developed bores bet-
ween 1.42≤ Frb ≤ 1.8 [10, 11, 14, 15, 16]. The focuses of recent
analytical and numerical studies show that clear definitions of
limits for the bore regimes and the evolution of undular bores
require further research [17].

Within this study, experimental data from non-breaking and
breaking undular bores are analysed in order to validate the abi-
lity of the KdV-NFT to determine the far-field solitons from near-
field data. As can be seen in Tab. 1, the nominal bore Froude
numbers for these tests are in the range of 1.10 ≤ Frb ≤ 1.50
which is in accordance with the values obtained from literature
for non-breaking bores.

Solitons and their connection to undular bores
A soliton (or solitary wave) is a translatory wave of perma-

nent shape with only one crest and no troughs. In constant depth,
solitons can propagate over long distances without changes in
shape. Furthermore, when interacting with other solitons or non-
linear waves they preserve their shape and re-appear from the
interaction process with identical shape and celerity, but a shift
in phase. The analytical form of the soliton for the lowest-order
KdV equation for a single positive wave pulse and its amplitude-
dependent phase speed are given as [18]:

η(x, t) = η0 sech2

(√
3
4

η0

h3
0
(x− ct−ϕ0)

)
, (5)

c = c0

(
1+

η0

2h0

)
, (6)

where η(x, t) is the free-surface displacement, η0 the soliton am-
plitude (note that for solitary waves that have no wave trough
the wave amplitude η0 is identical with the wave height H, thus
η0 = H), x and t the variables for position and time, ϕ0 the initial
position of the soliton crest at t = 0, h0 the initial water depth in
which the soliton is propagating , c the nonlinear phase speed of
the soliton, and c0 =

√
gh0 the wave celerity in shallow water.

As can be seen in Eq. (6), the nonlinear phase speed or
celerity c of the soliton is a function of the wave height η0. Thus,
the larger the soliton the faster it propagates, up to the point of
wave breaking according to the breaking criterion1 [20]. At this
maximum height Amax, the mathematical formulation in Eq. (5)
starts to be become unphysical:

Amax

h0
= 0.83. (7)

The mathematical representation of the soliton in Eq. (5)
is an exact solution of the nonlinear Korteweg–de Vries (KdV)

1The analysis of landslide-induced waves in [19] show that the breaking cri-
terion of η0 = 0.83h0 by Lenau [20] fits better with the KdV-NFT results than
the older, but more common criterion of η0 = 0.78h0 by McCowan [21].

equation in Eqs. (14) and (17), that describes the propagation
of long-period waves in shallow water. For solitons, the non-
linear and the dispersive terms in the KdV equation are exactly
counterbalanced. Therefore, the wave does neither break or dis-
perse but preserves its shape over long propagation distances
while propagating in constant depth. Furthermore, even after in-
teraction processes such as overtaking of solitons or other non-
linear wave-wave interactions they regain their old shapes once
the interactions have ceased. Thus, if an initial bore-shaped free-
surface near field signal consists of (hidden) solitons, then in the
far-field and after a particular time and distance, these solitons
emerge from of the undulating non-breaking bore and form trains
of solitons with different amplitudes in the far field. Due to the
amplitude dispersion of the solitons, their celerity is increasing
with their height, and the larger solitons propagate faster within
the bore. With increasing distance between the soliton positions,
the nonlinear interactions suppressing the real solitons shape de-
crease. Finally, the larger solitons leave the bore behind earlier
than the lower ones and become visible as discrete rank-ordered
solitons without significant interactions. [8]

If the initial bore height ηb is known, e.g. as the mean bore
plateau height ηb before the undulations start (as used within this
study), then the final soliton amplitude A1 of the leading, largest
soliton can be expected to be [1, 2, 3]

A1 = 2ηb = 2(hb−h0), (8)

where A1 is the amplitude of the first, leading soliton in the far-
field, ηb = ηb the (mean) height of the bore above SWL, hb from
Eq. (2) the depth behind the bore front, and h0 the depth in front
of the bore (see Fig. 1).

Theoretical bore parameters
Based on the equations given above, for given Froude num-

bers Frb some parameters of the propagating bores can be calcu-
lated such as the expected bore height ηb, the expected height A1
of the leading soliton, the relative bore height (hb/h0)b,br and the
bore Froude number Frb,br for the breaking limit. These parame-
ters will be used later for the validation of the experimental data
and the results obtained from KdV-NFT.

Application of the breaking criterion in Eq. (7) provides
the maximum relative soliton amplitude Amax before breaking.
Combination with Eq. (8) gives

Amax = 0.83h0 = 2ηb,br, (9)

ηb,br = 0.415h0, (10)

with ηb,br the maximum bore height for non-breaking solitons.
For the relative bore height hb/h0 in the breaking limit applies

(hb/h0)b,br = 1.415. (11)

The calculated amplitude of the leading solitons can be obtained
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from Eqs. (2), (8) and (11):

A1(hb/h0) = 2
[(

hb

h0

)
h0−h0

]
. (12)

Resolving Eq. (4) for Frb and consideration of Eq. (2) yields
the bore Froude number Frb,br for the maximum non-breaking
soliton amplitude:

Frb,br =

√√√√( 2hb
h0

+1
)2
−1

8
=

√√√√( 2.83h0
h0

+1
)2
−1

8
= 1.307.

(13)

Nonlinear Fourier transform based on the Korteweg–
de Vries equation

The KdV equation was proposed by Korteweg and de Vries
[22] to describe the evolution of the free surface η(x, t) of long,
unidirectional surface waves in shallow-water (h/L < 0.22) in
space and time (with h the depth and L the wavelength). For the
analysis of space series η(x,0) (initial value problem), the space-
like KdV (sKdV) equation is applied. The dimensional form of
the sKdV is given as [7, 23, 24]:

ηt + cηx +αηηx +βηxxx = 0, 0≤ x≤ Lw, (14)

with η(x, t) the free surface elevation as a function of space x
and time t, the subscripts related to the partial derivatives of
η(x, t) with respect to x and t, ηt = ∂η/∂ t the vertical velo-
city of η(x, t), ηx = ∂η/∂x the partial derivative in wave direc-
tion x, ηxxx the third-order partial derivative in space x, αηηx the
nonlinear convective term, βηxxx the dispersive term, and Lw the
length of the analysis window in space domain. The wave cele-
rity or linear phase speed in shallow-water c, the coefficients α

for nonlinearity, β for dispersion and the relation λ between non-
linearity and dispersion strongly depend on the particular phy-
sical application and the boundary conditions, especially on wa-
ter depth h. For progressive surface waves in space domain ap-
plies [7]

c =
√

gh, α =
3c
2h

, β =
ch2

6
, λ =

α

6β
=

3
2h3 , (15)

where g is the acceleration due to gravity. Eq. (14) has the linear
dispersion relation

ω = ck−βk3, (16)

where k and ω are the wave number k = 2π/L and the angular
frequency ω = 2π/T , with L the wave length and T the wave
period.

For the analysis of time series and the boundary value prob-
lem η(0, t) the time-like KdV equation (tKdV) is applied, which
is derived from the sKdV equation by changing the space and
time variables: x→ t and t→ x, k→ ω and ω → k [25]:

ηx + c′ηt +α
′
ηηx +β

′
ηxxx = 0, 0≤ x≤ Tw, (17)

with the modified time-domain coefficients from Eq. (15)

c′ =
1
c
=

1√
gh

, α
′ =− α

c2 , β
′ =− β

c4 , λ
′ =

α ′

6β ′
=

3c2

2h3 ,

(18)
and Tw the length of the analysis window in time domain. Since
the experimental gauge data are available as time series, the
tKdV is applied for the further analyses within this study.

Solitary-wave solutions as discussed in [26, 27] provide
translatory solitons as solutions for the KdV equation. By ap-
plication of a mathematical procedure called inverse scattering
transform (IST) [28], the KdV equation can be solved also for pe-
riodic travelling-wave boundary conditions in terms of so-called
cnoidal waves [22]. Due to the analogy of this method compared
to the application of conventional fast Fourier transform (FFT),
the solution of the KdV equation by application of the IST is
called KdV-based nonlinear Fourier transform (KdV-NFT), even
if this approach is much more complex than the FFT. In engi-
neering terminology the IST of the KdV equation might be con-
sidered as an extension or – even better – as a substitute of the
conventional linear FT by a generalized NFT for shallow-water
waves. Nevertheless, for initial conditions that evolve strictly
linearly, the NFT provides the same results as conventional FFT.

The main feature of periodic NFT is that the initial signal
is decomposed into nonlinear cnoidal waves that are physical
representations of nonlinear shallow-water waves instead of li-
near sinusoidal spectral basic components as in FFT. Therefore,
this method is perfect for the spectral decomposition of coastal
wave data into realistic shallow-water waves (the cnoidal waves)
and their nonlinear interactions. Since the KdV-NFT is based on
the KdV equation, it is strictly valid only for kh ≤ 1.0, which
describes the range of validity of the KdV equation. With re-
gard to the nonlinear interactions, for practical applications this
value can be extended to kh < 1.36 (h/L < 0.22) [7]. For values
kh ≥ 1.36, the nonlinear wave-wave interactions are governed
by the nonlinear Schroedinger equation and no longer by KdV
equation [7].

The most important and fascinating feature of the KdV-
NFT approach is its ability to decompose given experimental
or numerical shallow-water surface-wave data in time domain,
η(x0, t), or space domain, η(x, t0), explicitly into N constitutive
nonlinear cnoidal-wave time-domain components ηcn,i and the
sum of their nonlinear wave-wave interaction terms ∑ j ηint, j [29].
For the analysis of time-domain data applies:

η(x0, t)︸ ︷︷ ︸
given data

=
N

∑
i

ηcn,i(x0, t)︸ ︷︷ ︸
sum of cnoidal waves

+ ∑
j

ηint, j(x0, t).︸ ︷︷ ︸
nonlinear interactions

(19)

The decomposition of the initial data into cnoidal waves
and interactions is called the direct KdV-NFT (dKdV-NFT). The
nonlinear superposition of these cnoidal waves in the inverse
nonlinear Fourier Transform (iKdV-NFT), including the calcu-
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lation and summation of the nonlinear interactions according to
Eq. (19), returns the given data η(x0, t). The interaction terms
ηint, j(x0, t) in Eq. (19) are not provided by the dKdV-NFT, but
are calculated within the iKdV-NFT (see [30]).

Due to the nonlinear interactions, the underlying spectral
structure of this set of cnoidal-wave basic components cannot be
obtained directly from the free surface elevation η(x0, t) (except
for N = 1). The KdV-NFT is realized by solving a Schroedinger
eigenvalue problem. Therefore, the so-called Floquet discri-
minant ∆(E) of the original data is obtained as the trace of the
so-called monodromy matrix. For details see [7, 4]. The spectral
results are strongly depend on the characteristics of the analysed
data η(x0, t) and especially the water depth (see [5]). For an un-
dular bore, the nonlinear spectra obtained from KdV-NFT remain
constant as the bore propagates in constant depth and changes its
shape from trapezoidal shape over undular bores up to a trains of
solitons. [8]. On the other hand, if the same input data are ana-
lysed for different water depths then the nonlinear spectra change
in function of depth [31].

From the Floquet discriminant ∆(E) the number N of the
determined cnoidal waves, their moduli mi, amplitudes ai, wave
numbers ki or frequencies ωi or fi, and phases ϕi are determined.
Based on the determined values of mi, the cnoidal waves can be
classified as oscillatory waves (for mi ≤ 0.99 ) with the param-
eters ai, ki, ωi or fi and ϕi, or solitons (for mi > 0.99) with A j,
K j, Ωi or Fj and Φ j. In order to better distinguish between oscil-
latory waves and solitary waves (solitons), the parameters of the
solitary waves are denoted by capital letters.

For the illustration of the nonlinear spectrum obtained from
KdV-NFT, Fig. 2 shows the spectral results for the undular bore
from numerical simulation as given in the upper-right corner of
the figure. The representation is very similar to the conventional
FFT spectrum. The nonlinear spectrum consists of the radiation
spectrum (right part) with the spectral parameters of the oscilla-
tory (’radiation’) waves (amplitudes a as blue line), and the soli-
ton spectrum (left part) with the soliton amplitudes A (red bars).
The so-called ’reference level’ separates both parts of the spec-
trum. Furthermore, for each component the modulus m is given
(dashed line). In order to clearly distinguish between oscillatory
and solitary waves in the spectrum, the latter are plotted with fre-
quencies smaller than those of the oscillatory waves, including
negative frequencies F or wave numbers K. Within the analy-
sis, wave numbers and frequencies for solitons are determined as
complex numbers. The values for F and K as given in the plot
are the absolute values of the imaginary part with reverse signs.
Naturally, F = 1 and K = 1 applies for all solitons in the spec-
trum, but they values used here sort the amplitudes within the
spectrum according to their height and avoids the overlay of all
solitons at one position on the right axis or the introduction of the
complex plane. The degree of nonlinearity of each cnoidal basic
component ηcn,i(x, t) is defined by its modulus mi. For a given
water depth the nonlinearity, and thus the modulus mi, generally

FIGURE 2: KdV-NFT SPECTRUM OF THE TIME SERIES
OBTAINED AT GAUGE CG2’.

decreases with increasing ki or fi for each oscillatory component
i, because the latter implies that the relative water depth h/Li in-
creases. Further details on the mathematical and numerical back-
ground of the methods are given in [7, 5, 4].

EXPERIMENTAL SET-UP, TEST PROGRAMME, AND
NUMERICAL SIMULATIONS

Experimental set-up
Experimental tests with bores with different strengths and

different water depths were conducted in the wave flume in the
Hydraulic Engineering Laboratory at National University of Sin-
gapore (NUS) (see Fig. 3). The wave flume has a length of 36 m,
and both width and height are 0.9 m. The flume is equipped with
a novel piston-type wave maker with a stroke smax = 5m, velo-
city vmax = 2m/s, and acceleration amax = 3.5m/s2 that allows
the generation of long-period waves and bores.

The bores are generated by accelerating the piston-type pad-
dle from the initial position xi and velocity wi = 0 with constant
acceleration a = const. to the desired paddle velocity w, then
moving the paddle with this constant velocity w, and finally de-
celerating the paddle with deceleration d = −a (unless another
value for d is selected) back to the final paddle velocity w f = 0.
Thus, a trapezoidal shape of the initial free surface is obtained.
The generated surface displacement of the propagating bore is
measured with four capacity gauges CG1 to CG4 at positions
x =5.193 m, 9.887 m, 14.882 m, and 18.869 m (see Fig. 3), with
CG1 being located 0.193 m behind the maximum-stroke position
of the wave paddle. The positions of the wave gauges were se-
lected in combination with the test programme so that at all four
gauges the complete bore is captured, including ramping-up at
the bore front and ramping-down at the bore back.

Test programme
For the bore tests considered within this study, different

nominal values for water depth h0, paddle stroke s, and paddle
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h0

Wavemaker Capacitance gauges

CG1 CG2 CG3 CG4

5m 23.7m 6m

s=1/10

FIGURE 3: EXPERIMENTAL SET-UP IN THE WAVE FLUME
AT NUS.

TABLE 1: LIST OF NOMINAL VALUES FOR BORE
FROUDE NUMBER Frb,nom, DEPTH h0, PADDLE STROKE,
ACCELERATION, DECELERATION AND VELOCITY, s, a,
d, AND v.

parameter nominal values

Frb,nom [−]
1.10, 1.15, 1.20, 1.25, 1.275,

1.30, 1.35, 1.40, 1.45, 1.50

h0 [m] 0.10, 0.20

s [m] 2.00, 2.50, 3.00, 4.00, 4.50, 5.00

a [m/s2] 0.100

d [m/s2] -0.100, -3.500

vnom [m/s]

0.127, 0.181, 0.188, 0.249, 0.268, 0.308,

0.338, 0.354, 0.367, 0.425, 0.439, 0.481,

0.488, 0.545, 0.602

velocity vnom have been set as input parameters for the wave ge-
neration. The total variation of the selected input values is listed
in Tab. 1. The values have been obtained based on the nominal
bore Froude numbers Frb,nom as given in the table. For the analy-
ses and Fig. 7, the values for Frb as obtained from the experimen-
tal test data are used. The paddle acceleration and deceleration
were set to a = 0.100m/s and d = −0.100m/s (except one test
with d =−3.500m/s).

Numerical simulations
The results of the experimental tests show that the available

flume length allows the formation of undular bores, but the com-
plete disintegration of the initial bore into solitons cannot be ob-
served. Therefore, we conducted numerical simulations with the
model COULWAVE [32] in order to obtain the far-field soliton
trains. The data measured in the experimental tests at gauge CG1
(x = 5.193m) are used as input for the simulations. The results at
numerical gauges at x= 0.01 m and at numerical positions CG2’,
CG3’ and CG4’ (x′ = 4.694m, 9.689m and 13.676m) according

0 20 40 60 80 100

0

0.02

0.04

0.06

0.08

FIGURE 4: EXAMPLE FOR EXPERIMENTAL BORE DATA,
MEASURED AT GAUGES CG1 TO CG4. ONLY THE INCI-
DENT BORES ARE CONSIDERED FOR FURTHER ANALY-
SIS.

to the experimental gauges are used to compare the near-field
data and to verify the quality of the numerical results. The exam-
ple in Fig. 5 shows the numerical simulation with the initial
trapezoidal-shaped bore at CG1 (blue line in Fig. 4) as input
signal. The trough behind the initial bore and the reflections are
neglected and replaced by zeros in the simulation input data. The
plots in Fig. 5 compare the experimental data at gauges CG2 to
CG4 (blue lines) with the numerical results at numerical gauges
CG2’ to CG4’ at the according positions x′ (red lines). The re-
sults show good agreements between the experimental and the
numerical results for the propagating bore. Therefore, COUL-
WAVE is regarded to correctly simulate the bore propagation,
and the far-field simulation data are assumed to be reliable.

The far-field data at positions x′ = 100m, 200m and 230m
(Fig. 6) show that the bore transformation that started with the
initial trapezoidal-shaped bore at CG1 and developped over un-
dular bores at CG2 to CG4 finally has provided trains of rank-
ordered solitons. In this example, the plots show a total number
of 16 solitons that are not completely separated yet in Fig. 6a at
x = 100m. Due to the different celerities of the solitons, they are
nearly separated in Fig. 6c at x = 230m with the leading soliton
being the largest and fastest. The simulated far-field data within
this study provide the numerical amplitudes A1,num of the leading
solitons for further analyses.

TIME-DOMAIN ANALYSIS OF BORE DATA MEASURE-
MENTS

The time-domain analysis of the incident bores (e.g. as
shown in Fig. 4 after zero-correction of the measured data) pro-
vides the initial bore height ηb. Due to variations and undulations
within the initial bore plateaus over bore lengths in the measured
data, the value for the bore height is determined within this study
as the mean bore height ηb over the first 1/4 of the bore plateau.
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FIGURE 5: COMPARISON OF NEAR-FIELD DATA FOR
TEST NO. 20 OBTAINED AT GAUGES CG2 TO CG4 (BLUE
LINES) AND NUMERICAL SIMULATION DATA AT AC-
CORDING GAUGES CG2’ TO CG4’ (RED LINES).

FIGURE 6: NUMERICAL FAR-FIELD SIMULATION DATA
FOR TEST NO. 20 AT POSITIONS x′ = 100m, 200m AND
230m.

The bore height can be given as ηb with respect to SWL or as
total bore height hb with respect to the the flume bottom (see
Eq. (2)). The results for both expressions are presented in Fig.
7 as relative values with respect to the water depth, hb/h0 and
ηb/h0, as function of the bore Froude number, Frb, as calculated
from the experimental data. The circles show the experimental
values obtained from the time series measured in water depth
h = 0.1m (blue data), and the triangles the data for h = 0.2m

FIGURE 7: RELATIVE BORE HEIGHTS hb/h0 AND ηb/h0
CALCULATED FROM EQ. (4) AND OBTAINED FROM
MEASURED TIME SERIES.

(black data). The lines present the values for hb/h0 (blue dashed
line) and ηb/h0 (black dot-dashed line) as function of the bore
Froude number Frb in Eq. 4.

KdV-NFT ON EXPERIMENTAL TEST DATA
Application of KdV-NFT to all tests provides nonlinear

spectra analogous to the example in Fig. 2: All spectra are do-
minated by solitons, the radiation amplitudes are very small. Re-
member that in Fig. 2 the radiation amplitudes are superelevated
by factor 100 in order to visualize them compared to the large
soliton amplitudes. Thus, the radiation components are negli-
gible for the bore propagation processes and, therefore, are not
considered in the following analyses.

The soliton spectra (without the radiation components) for
the first gauge CG1 of all analysed tests are presented in Fig.
8. The squares give the dimensional amplitudes for each soli-
ton in the respective spectrum. Therefore, the amplitude of the
largest and fastest soliton in each test is given by the leftmost
square within one curve, the amplitude of the lowest and slowest
soliton by the rightmost square. With reference to Eq. (8), Fig.
9 presents the soliton amplitudes as relative values with respect
to the mean bore height ηb obtained from time-domain analysis.
The expected relative value for the leading soliton according to
Eq. (8), A1/ηb = 2, is given as dash-dotted line.

The results show that, independent of the actual dimensional
amplitude, the relative amplitudes of all leading solitons are ob-
tained as approximately twice the initial mean bore height, exact-
ly as expected from Eq. (8). The reasons for the remaining devi-
ations will be analysed in detail in future studies. Most probably,
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FIGURE 8: DIMENSIONAL SOLITON AMPLITUDES Ai AS
OBTAINED FROM APPLICATION OF KdV-NFT ON EXPE-
RIMENTAL TIME SERIES FROM GAUGE CG1.

FIGURE 9: RELATIVE SOLITON AMPLITUDES Ai/ηb AS
OBTAINED FROM APPLICATION OF KdV-NFT ON EXPER-
IMENTAL TIME SERIES FROM GAUGE CG1.

more sophisticated approaches of how to correctly determine the
initial bore height from non-constant bore plateaus will improve
the results.

ANALYSIS OF SOLITON PREDICTION FROM KdV-NFT
Figure 10 presents the comparison of the dimensional values

of theoretical, experimental and numerical soliton amplitudes.
The function for the calculated amplitude A1(hb/h0) according to

FIGURE 10: LEADING SOLITON AMPLITUDES FROM AN-
ALYTICAL APPROACH, EMPIRICAL FORMULA, NUME-
RICAL SIMULATION AND SPECTRAL ANALYSIS USING
KdV-NFT

Eq. (12) is given as dashed lines for both water depths, h = 0.1m
(black dashed line) and h = 0.2m (blue dash-dotted line). The
breaking limit of (hb/h0)b,br = 1.415 according to Lenau is plot-
ted as grey-dashed line. The leading-soliton amplitudes A1,num
from the numerical simulations are given as black (h = 0.1m)
and blue (h = 0.2m) crosses. The largest amplitudes as obtained
from the nonlinear KdV-NFT spectra of the initial bore data from
CG1 are plotted as black and blue squares for depths h = 0.1m
and h = 0.2m, respectively. The empirical values based on
Eq. (8) are given as triangles for depths h = 0.1m (black) and
h = 0.2m (blue). The comparison of the leading-soliton ampli-
tudes based on analytical approach, empirical formula, nume-
rical simulation and nonlinear KdV-NFT spectra clearly shows,
that the different methods provide the same results.

Finally, Fig. 11 shows the analysis results for both water-
depths in non-dimensional representation. The black data show
the relative amplitudes of the leading solitons A1/h0 with respect
to the water depth, the blue data the amplitudes A1/ηb over the
mean bore height. The grey-dashed line divides the plot into non-
breaking domain (with hb/h0 ≤ 1.415) and the breaking domain
(hb/h0 > 1.415). The black-dashed lines presents the calculated
values A1(hb/h0)/h0 from Eq. (12). The results from KdV-NFT
are plotted as squares in black for the non-breaking and in red
for the breaking domain. The expected relative breaking height
of the solitons based on the approach by Lenau [20] is given as
black dot-dashed line at Hb/h0 = 0.83. The results of the nu-
merical simulations, A1,num/h0, are plotted as black crosses. The
relative values with respect to the mean bore height, A1/ηb, are
plotted as blue and red triangles and blue crosses, respectively.
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FIGURE 11: RELATIVE LEADING SOLITON AMPLITUDES
A1/h0 AND A1/ηb.

The empirical value of A1/ηb = 2 is given as black-dashed line.
The grey-dashed line gives the relative bore height for the

breaking limit, (hb/h0)b,br = 1.415. To the left of this value, the
solitons are within the non-breaking domain. For the results ob-
tained within this domain, the leading amplitudes from nonlinear
spectral KdV-NFT analysis and numerical simulation agree very
well and meet the expected values from analytical and empirical
approaches.

To the right of the breaking limit, the obtained soliton am-
plitudes from analytical calculation and KdV-NFT are larger than
the maximum amplitudes due to the breaking criterion. Unfortu-
nately, wave breaking is neither included in the analytical equa-
tion nor in the KdV equation. Therefore, the breaking limit of
the solitons is not considered within these approaches. Empiri-
cal observations show that, starting at a certain Froude number
and depending on the actual height of the soliton, the solitons
that evolve out of the bore front start to break. Therefore, soliton
amplitudes derived from the nonlinear KdV-NFT spectra that are
larger than the breaking criterion, i.e. from bores with initial val-
ues hb/h0 > 1.415, are plotted in red. The numerical results for
relative bore heights above the breaking limit clearly show that
the amplitudes of the leading solitons are significantly affected
by the wave breaking process. The observed data as plotted
around A1 ≈ 0.025m give the amplitude of the discrete solitons
in the far-field that emerged from the breaking bore. Neverthe-
less, the data clearly show that the analytical, the empirical, and
the spectral approach do not consider the effects of wave break-
ing. Thus, these data need further research in order to research
the amplitude behaviour here and to combine the KdV-NFT ana-
lysis results with the physical limitations due to wave breaking.

SUMMARY AND OUTLOOK
Within this study, the KdV-based nonlinear Fourier trans-

form was applied to experimental test data with non-breaking
and breaking undular bore propagation in constant depth. The
experimental results were furthermore verified using numerical
simulations for the far-field propagation of the bores in COUL-
WAVE. For comparison, the expected values for bore height and
amplitude of the leading solitons have been calculated based on
water depth, mean bore height, and relative bore height. The pre-
dicted soliton amplitudes obtained from the KdV-NFT analysis
of the initial bore bore meet the results from analytical calcula-
tion, empirical formula and numerical simulations as long as the
bores stay below the breaking limit, hb/h0 ≤ 1.415.

These results confirm that the application of KdV-NFT on
the initial trapezoidal-shaped near-field data measured at the first
gauge already characterises the far-field behaviour of the bore
completely. While propagating in constant depth and without
wave breaking, the initial nonlinear amplitude spectrum as con-
sidered in this paper is invariant while the so-called phase spec-
trum is changing. Therefore, all spectral information for the bore
propagation and the far-field train of solitons is already com-
pletely known from this near-field gauge position. Thus, the re-
sults clearly show that the near-field KdV-NFT spectrum allows
the reliable prediction of the far field data, including the ampli-
tude of the leading soliton.

We point out that even if the leading-soliton amplitude can
be simply determined by the analytical or empirical approach,
the application of KdV-NFT has a huge advantage over the con-
ventional methods: The KdV-NFT spectrum provides all solitons
within the data with correct amplitudes, not just the leading one.
Without KdV-NFT, extensive numerical simulations are required
to simulate the complete disintegration of the initial bore in or-
der to obtain the same results. For the bore analysed within this
study, relative simulation lengths of more than 1500 times the ini-
tial depth have been necessary to get all solitons separated from
each other. Therefore, application of KdV-NFT provides these
results much faster.

Future analyses will provide a more detailed analysis of the
number and amplitudes of all solitons determined within the ini-
tial bore. Knowledge on the spectral basic components will help
to obtain further insight into the nonlinear processes governing
the propagation of bores and tsunamis. Furthermore, the effect
of wave breaking on the analysis results will be investigated in
order to avoid false results from the spectral analysis.
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