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Summary

The rootzone storage capacity (Sr ) is a crucial part of the hydrological cycle. This storage provides water
access for vegetation, in order to meet the atmospheric water demand through transpiration. The spatio-
temporal variability of Sr is not well represented in current hydrological and climate models. The root zone
storage capacity receives rapidly increasing interest from scientists. Recent studies developed a climate-
based method to determine Sr . This method is based on the insight that ecosystems efficiently adapt their
rootzone storage capacity to survive a drought with a certain return period. However, this method requires a
vast amount of data. Long hydrological time-series with a rather fine temporal resolution are required. These
time-series are not always available for many poorly gauged catchments. Therefore, it is important to explore
what is exactly controlling this Sr , and if we can eventually predict it.

This study aims to describe the spatial and temporal variability of Sr with a combination of climate and land
cover variables in Austria for the study period 1982 - 2008. To anticipate on expected snowfall, a snowfall
module is included and calibrated with the use of a MODIS satellite snow cover product. The most important
climate and land cover variables are identified, using multiple linear regression analysis. The best perform-
ing regression models are selected with a diverse combination of variables. This is done by comparing 21
catchments across the central and eastern part of Austria. Additionally, a stationary time-series split method
is used to explore how Sr is changing in time. Subsequently, another multiple linear regression analysis is
performed to explore the controls of the dynamics of Sr for these catchments.

According to this study, the Run-off coefficient describes Sr best in all studied regression models. A multiple
linear regression model compiled out of the Run-off coefficient and the seasonality index performed best
with an R2

ad j of 0.8. The seasonality index seems to be specific for this study since the highest fraction of

precipitation and evaporation coincides in summer.

Land cover seems of less importance for the estimation of Sr . However, no conclusion could be drawn for the
importance of land cover types in the regression analysis considering the disputable applicability of the land
cover data. Furthermore, the relations of fractional cropland cover and fractional forest cover with Sr are in
contradiction with current literature.

Apart from the spatial relationships, it is discovered that on average Sr increased from the year 1992 onwards.
However, no indisputable explanation is encountered (R2

ad j 0.55 ). The decreasing Run-off coefficient ex-

plains most of the increase in Sr . No conclusions could be drawn on the influence of land cover change on
Sr , caused by a irregular land cover time-series.

Since the catchments in this study are rather humid and have similar seasonal patterns, it would be interest-
ing to investigate if the discovered relationships are also valid for more arid and seasonal varying catchments.
Also, it would be useful to investigate the unexpected relationship between land cover and Sr further.
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1
Introduction

The rootzone storage (Sr ) is an essential part of the hydrological cycle. It full-fills the water needs of vege-
tation. Via this vegetation, an extensive amount of water is stored in the unsaturated zone is available for
evaporation. Periods of drought can be survived with water stored in this volume. Moreover, Sr is an impor-
tant parameter in hydrological models and in climate models (Dirmeyer et al., 2006). Therefore, a globally
distributed Sr could enhance these models. Sr could not be observed directly. Consequently, an estimation
of this volume needs to be made. Unfortunately, the prediction of Sr is not sufficient for these applications
yet.

The most common method to estimate the volume of Sr is to investigate soil and vegetation properties, like
root length and root density, collected via fieldwork. This fieldwork is labour intensive and measurements are
point specific and therefore, lacking spatial coverage. With fieldwork comes inaccuracy, and uncertainties are
easily introduced. Also, in difficult accessible terrain, usually data is scarce due to practicalities. With these
deficiencies in mind, a new method is proposed.

Considering this, a method of determining the storage volume of the rootzone based on climate data could
enhance hydrological and climate models significantly (Gao et al., 2014). With this new approach more data is
available and hence models could be provided with more distributed data. The rootzone storage is equivalent
to water storage vegetation needs, to overcome a certain period of drought. The period of drought that vege-
tation is able to survive is a good indicator to estimate the water storage volume necessary. Considering that
plants survived droughts and therefore exist at a certain location, the vegetation created the most favourable
environment (de Boer-Euser et al., 2016). Also, vegetation will invest as much carbon in their rooting system
as strictly necessary, because they compete for other resources e.g. light.

The idea that ecosystems can adapt their root system to climatic conditions is more accepted nowadays. This
dynamical behaviour is observed by Nijzink et al. (2016b), his work compared the rootzone storage before
logging, during recovery and after regrowth of the vegetation. Since evolution resulted in vegetation that is
capable of adapting their rootzone to find an optimum between water accessibility and carbon investment
in their roots, vegetation will not create redundant rootzone storage (Kleidon, 2004).

Considering that there are still an enormous amount of poorly gauged basins across the world, an alternative
method could contribute significantly to research in these areas (Sivapalan et al., 2003). With an increas-
ing amount of available remote sensing products, the possibilities to predict behaviour in these ungauged
basins are increasing. Furthermore, the length of the available time-series is increasing, which creates new
possibilities.

1



2 1. Introduction

1.1. Background

Current development in estimating Sr established on a water balance is built upon the method of Gao et al.
(2014). His method is using the mass curving technique, treating Sr as a reservoir and estimating its volume
depending on water outflow, water input and dry period length. The climate-based method was verified by
de Boer-Euser et al. (2016), where this research is comparing the estimated volumes of Sr based on climate
data and Sr based on soil samples. The climate-based method outperformed the soil sample-based method,
especially in the wetter climates. The climate-based method is built on the assumption that vegetation is
adapting its rootzone storage in such a way it can overcome a certain drought. The plausibility of this as-
sumption was again confirmed by the research of Nijzink et al. (2016b). This research showed similar results
for the climate-based method and the values resulting from calibrated hydrological models. The research
further showed that the rootzone storage capacity decreased significantly after a recovery period from defor-
estation. This observation makes the hypothesis Milly and Dunne (1994), that ecosystems can adapt their
rootzone to their water demands plausible.

According to Wang-Erlandsson et al. (2016), simulations for estimating Sr perform better when Sr is calcu-
lated with diverse drought return periods for different types of vegetation. This can be an indication that
disparate survival strategies are used by various vegetation. Primarily forest ecosystems can survive longer
periods of drought than areas containing a majority of grass and bushes (Brunner et al., 2015). This disparate
survival strategy results in varying rootzone storage capacities (Kolb et al., 1990).

It is shown feasible that the rootzone storage is dynamically adapting to climatic factors (Nijzink et al., 2016b).
Since climate and vegetation are related (Schenk and Jackson, 2002), De Boer-Euser et al. (2019) investigated
the relationship between variability of Sr and climatic or vegetational variables and showed that there is
a strong relation between Sr and climate. This research concluded that vegetation characteristics can be
linked directly to Sr . However, a less strong relationship between Sr and land cover type was found. The
weaker relationship could be introduced by the selection of the return period. Also, soil properties could be
of indirect influence because it is influencing which vegetation could grow. Additionally, the heterogeneity of
vegetation could have influenced the results.

The study of De Boer-Euser et al. (2019) is merely conducted for boreal regions. Therefore, the impact of cli-
matic factors in general on Sr is difficult to determine since a smaller range of these variables is present in
these regions. The abundance of a broad range of vegetation leaves also room for further research. More-
over, this study showed that there is no strong correlation between land cover type and Sr . This is slightly in
contrast to the theory that vegetation is adapting its rooting system following from different survival strate-
gies. The fact that climate parameters are correlating with Sr could strongly depend on the chosen climate
parameter. Another interesting finding is that it seems that the timing of snowmelt is an import control of the
rootzone storage.

1.2. Research Scope

The main problem in current research is that there is no clear and complete view on the effect of differ-
ent land cover types on the rootzone storage. An assessment of the effect of climate variables, vegetation
variables and vegetation on the rootzone storage capacity has been made in literature (De Boer-Euser et al.,
2019). Nevertheless, the research was conducted for a specific (boreal) region. Since it is important to have a
representative view on the rootzone storage, more different regions across the world have to be considered.

Furthermore, the effect of (changing) climate on Sr is not fully understood yet. De Boer-Euser et al. (2019)
looked at the different climatic and vegetational variables to identify if it is describing the magnitude of Sr .
However, it is important to see if these findings can be reproduced in a different region. Nijzink et al. (2016b)
already showed that deforestation has considerable influence on Sr , but it did not show the effect of land
cover change on a larger scale and did not include a snowfall component in his research.

Most previous studies investigated a simple single relationship between the climate and land cover variables
and Sr . However, in these complex ecosystems, it is not likely that Sr depends on a single variable only, a
combined effect should represent a more complete view. Therefore, this thesis aims to explore the combined
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effect of land cover types and climatic variability on the rootzone storage. The goal is to find a relationship
between respectively land cover, climate and Sr . In order to describe the Spatio-temporal variability of Sr .
This will be achieved by answering the following questions:

• What are the spatial differences in root-accessible water volumes across different Austrian catchments?

• Are there differences in the temporal evolution of the root-accessible water volumes?

• Which vegetational and hydro-climatic parameters influence the spatial and temporal differences?

It is suspected that the relationship between vegetation type and rootzone storage should be significant since
different vegetation types could have different survival strategies. Since literature showed the dynamic char-
acter of the rootzone storage, it is expected to see a variation across different (hydrological) environments.
Since different studies have shown a dynamically adapting rootzone storage in case of human-induced large-
scale land cover change, it could be expected that for smaller changes a trend in Sr will be visible.

1.3. Study area

This study is focussing on catchments inside the borders of Austria. During wintertime, snowfall and snow
cover is present in Austria. Therefore, it is required to include a snow storage component in the hydrological
model. Further, Sr is not investigated in this region and data was easily accessible. The hydrological data
for this research is retrieved from Gaál et al. (2012) that is based upon the work of Merz et al. (2006). In the
dataset are included catchments from different (hydrological) regions in Austria, at various elevation levels.
The catchments mean elevations differ from below 200 meter up to mean elevations of 2500 meter. The to-
pography of the country results in diverse amounts of precipitation. In the western alpine region, an amount
of 2500 mm/year, containing a significant fraction of snowfall. In the more arid eastern lowlands, the mean
annual precipitation is 400 mm year (Merz and Blöschl, 2009). The initial dataset is containing: temperature,
potential evaporation, precipitation and discharge for 69 catchments. The time-series are mostly continuous
and do not have longer periods of missing data inside the time-series.
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Methodology

This chapter elaborates the process of method selection. The flowchart visualized in Figure 2.1 describes the
workflow of this study as further explained in this chapter. The hydrological data, digital elevation model and
land cover data will be used to delineate the catchment and to determine its characteristics. The rootzone
derivation model and the calibration of its snow module will be described. Lastly, the different predictor
variables will be described and the regression model method used for analysing the predictor variables’ rela-
tionship with Sr .

In this research, the Budyko curve is used for multiple purposes since it is an insightful and simple framework
in hydrology. The Budyko curve is an empirical relationship between potential evaporation, actual evapora-
tion and precipitation (Budyko et al., 1974). The ratio between the long-term averages of the actual evapora-
tion Ea and the precipitation P is defined as the Aridity Index, see eq. 2.1. The ratio between the long-term
averages of the potential evaporation Ep and the precipitation P is defined as the Evaporative Index, see eq.
2.2. In Figure 2.2 catchments are represented as points in the Budyko framework. Following the theory, all
catchments should be located approximately along the Budyko curve (Budyko et al., 1974). A catchments’
evaporation is limited by the energy limit in case that there is not enough energy to evaporate all available
precipitation. The Aridity Index will be smaller than 1 in this case. An Aridity Index greater than 1 indicates
the water-limited regime. In case of insufficient water supply for the evaporation demand, catchments are
limited by the water limit.

AI = Ep

P
(2.1)

E I = Ea

P
(2.2)

A catchment should reach a steady-state is the fundamental assumption for the Budyko curve. This assump-
tion is valid for long-term water balances since the incoming and outgoing fluxes cancel out while ecosystems
strive to a state of equilibrium. Movement in Budyko space involves physical changes in the corresponding
catchment. A vertical shift in Budyko space could indicate that the precipitation partitioning in run-off and
evaporation is altered. This shift in the evaporative index can be created by changing forest biomass (Dono-
hue et al., 2007, Velde et al., 2014). Because increasing biomass results in increasing transpiration. On the
other hand, a horizontal shift in Budyko space indicates an altering Aridity Index. The Aridity Index is a prod-
uct a catchment’s climate, therefore a horizontal shift could argue a change in the climate. Hence, the Budyko
framework could not only be used as an assessment tool of catchment characteristics, it is also suitable for
the analysis of the alternation of these characteristics.

5
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Figure 2.1: Flowchart presenting the action plan of this study.
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Figure 2.2: The Budyko-curve (Budyko et al., 1974) plotted on the Evaporative Index and Aridity Index. The Budyko space is constrained
by the energy limit (AI < 1) and water limit (AI > 1).

2.1. Catchment selection

To ensure the quality and suitability of the data concerning this research, a screening was performed. The
dataset is retrieved from Gaál et al. (2012), Merz et al. (2006) and precipitation and discharge are previously
corrected by the authors. Precipitation is corrected because rain gauges are mainly located in the valleys.
Moreover, the precipitation data is corrected because under-catch of snowfall occurs on higher elevations.
Discharge data were screened and outliers were removed. Discharge stations with significant anthropogenic
influence were excluded from the dataset. The climate graphs of the catchments are presented in Appendix
B.

It is assumed that the potential evaporation from the dataset is based on temperature only. To verify this
assumption, the temperature is calculated for the different elevation zones based on a temperature elevation
relationship, see Section 2.3. With the use of the Thornthwaite equation and the relative size of the elevation
zones, the catchments daily potential evaporation was calculated (Pereira and Pruitt, 2004). The result was
corresponding with the dataset.

To check the integrity of the data, one could look at the outcome of a long-term water balance. The water
balance showed in Equation 2.3, should theoretically close for longer periods. The storage change is assumed
to be negligible over time compared to the other terms and therefore assumed to be zero. Accordingly pre-
cipitation P , should equal the sum of total evaporation E and discharge Q.

0 = dS

d t
= P −E −Q (2.3)

The evaporation data used in this study is the potential evaporation. Therefore, it is presumable that the water
balance will not entirely add up to zero. Because the actual evaporation is mostly limited by water availability
and will be therefore smaller than the measured potential evaporation. A positive water balance is assumed
to result from defective data. A positive water balance might be valid, if the catchment delineation and the
groundwater system are not overlapping (Bouaziz et al., 2018). Moreover, the existence of a glacier inside the
catchment boundaries could cause a positive water balance due to glacier melt, especially in the west (Gaál
et al., 2012). Since there is no data available for the groundwater flux and glacier melt, the positively balanced
catchments are not included in this research.
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Data of the different catchments are plotted in Budyko space, see Figure 2.5. From this figure one could ob-
serve outliers remotely located from the Budyko-curve. Also data points are visible above the energy limit. It
is not physically possible to evaporate more water than possible with the energy available. The corresponding
catchments are excluded from this research. A spatially overview of the selected catchments is displayed on
the map of Figure 2.3. (European Union, Copernicus Land Monitoring Service 2020, 2020).

Figure 2.3: Overview of catchments selected for the analysis, the green-marked catchments are included in this study. The red-marked
catchments are excluded due to ineligible data.

2.2. Watershed delineation

From the location of the discharge measurement stations, the corresponding catchment area and its bound-
aries are delineated. The catchments are delineated based on a digital elevation model. The delineation is
conducted with the use of GRASS7, a tool for analysing geospatial data. The process will be shortly described
and is schematized in Figure 2.4 for clarity. First, a flow direction model is created from the digital elevation
map. Second, a flow accumulation model is created. After this the pour points are selected, those are the loca-
tions where discharge is measured. Therefore, the pour points are intersecting the locations of the discharge
measuring stations. From these pour points the upstream catchment is determined. The digital elevation
model used "EU-DEM v1.0", is a product of combined ASTER and SRTM data. The spatial resolution of the
model is 25 meter.

Figure 2.4: Flowchart presenting the catchment delineation process. The catchment is solely delineated based on a Digital Elevation
Model and the location of the discharge gauging station.
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Figure 2.5: The Budyko framework is used to make a first selection which catchments are suitable for this research. The red catchments
are excluded and the blue catchments are included. Part of the red catchment fall outside of the feasible spectrum due energy constraints.
Other catchments are excluded while the water balance is not closing. The Evaporative and Aridity Index are based on long-term water
balances.

2.3. Derivation of Sr

In this study, a simple bucket model is used to describe the fluxes and storages of the rootzone storage, snow
storage and interception storage, the model structure is visualised in Figure 2.6. The bucket model is based
on the models from Gao et al. (2014) and De Boer-Euser et al. (2019).

The model comprises an interception reservoir, snow reservoir and a rootzone reservoir. The interception
reservoir has liquid precipitation as input, the outgoing fluxes of the reservoir are: interception evaporation
Ei and effective precipitation Pe , these fluxes are described in eqs. (2.4) and (2.5). Effective precipitation is
present given that the storage threshold (Imax ) of the interception reservoir is reached. Imax represents the
maximum amount of precipitation which can be stored at the canopy. For this study, a maximum interception
storage threshold of 1.5 mm is assumed. A sensitivity analysis is performed to test the effect of different
interception storage thresholds on Sr . And showed the low influence of Imax on the calculated Sr .
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Figure 2.6: Schematisation of the bucket model used to calculate Sr . The incoming water flux is divided in precipitation and snowfall
based on a threshold temperature. The model comprises an interception reservoir (Si ) with outflow effective precipitation. Snowfall is
stored in a snow reservoir (Ss ) until the melt threshold temperature is exceeded. The balance between effective precipitation, snowmelt
and transpiration are resulting in a storage deficit in the rootzone reservoir (Sr z ) which is used for the calculation of the rootzone storage
capacity.

Ei =
{

Ep , if Ep d t < Si
Si
d t , if Ep d t ≥ Si

(2.4)

Pe =
{

0, if Si ≤ Imax
Si−Imax

d t , if Si > Imax
(2.5)

The snow reservoir has one input, snowfall. The total precipitation is divided into snowfall or liquid precipita-
tion according to an atmospheric threshold temperature(TTr ). This TTr is following from the calibration and
validation process described in 2.4. The output of the snow reservoir is the snowmelt (M), which is depending
on this same threshold temperature.

Lastly, the rootzone reservoir is modelled as an infinite reservoir. This theoretical infinite reservoir can con-
tain an infinite amount of water. Effective precipitation and snowmelt are the incoming fluxes of the rootzone
reservoir. The outgoing flux of the rootzone reservoir is the transpiration of vegetation. Since transpiration is
not a measured quantity, it is estimated based on closing the long-term water balance. Equation 2.6 shows
how the long-term average transpiration is calculated. Which can be applied since it is assumed that the
transpiration is the only form of evaporation in the rootzone reservoir.

ET = Pe +M −Q (2.6)

Since we need daily transpiration, the total transpiration is divided over time proportional to the magnitude of
the potential evaporation. Hence, the daily transpiration cannot exceed the potential evaporation. Equation
2.7 shows the daily transpiration ET,d as a result of scaling with the daily potential evaporation Ep,d and the

fraction of the long-term averages of the transpiration ET and the potential evaporation Ep .

ET,d = Ep,d × ET

Ep
(2.7)

To determine the volume of the rootzone storage, it is required to calculate the storage deficit. The storage
deficit increases when the transpiration demand is bigger than the liquid water supply. The cumulative stor-
age deficit is estimated over time and is described in Equation 2.8. The maximal cumulative storage deficit is
calculated for every hydrological year.
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The start of the hydrological year is defined as the month after the wettest month of the year. Usually, the
storage deficit is returned to zero at the wettest period at the start of the hydrological year or at least every
3 hydrological years. However, in some cases, a severe period of drought results in the fact that the storage
deficit is not returned to zero after 3 years. In these cases, an iterative approach from van Oorschot (2020) is
used to correct for this long-term deficit for this specific catchments. This approach is based on a non-closing
yearly water balance. The method assumes that in case of overlong droughts, transpiration is overestimated
since water availability limits this. The difference in storage deficit at the end of the year is used to calculate
the transpiration which is necessary to return to a storage deficit of zero, see Equations: 2.10, 2.11 and 2.12.
Where the a denotes yearly totals. This process is repeated until a converging result.

SD =
∫ t1

t0

(Pe −ET )d t (2.8)

Where t0 and t1 are the start time and end time of the time-series. Using Equation 2.8 the yearly storage
deficits are calculated. This yearly storage deficit is visualized in Figure 2.7. The occurrence of these extreme
droughts is used for estimating Sr .

To compare droughts with varying magnitudes across different catchments, a definition of its extremity is
necessary. A proven tool for comparison of extreme droughts is to examine the return period of a drought.
The return period is specified as the period in which an event is likely to occur. The return period can be
determined by using an extreme value distribution. According to Gao et al. (2014) and Wang-Erlandsson
et al. (2016), the storage deficit with a return period of 20 years is most suitable as an averaged catchment
representative. However, the optimal catchment representative return period differs per catchment.

During this study, the 20-year return period is used for analysis, hence the catchment storage deficits are
compared for the same return period. For the temporal analysis, a different return period is used, as discussed
in 2.7. The most common extreme value distribution families are Gumbel, Fréchet and Weibull combined in
the Generalized Extreme Value distribution (GEV). In this research, the Gumbel extreme value distribution
type 1 is used (Gumbel, 1941).

The yearly storage deficits are fit to this distribution by adjusting its location and scale parameter. Based on
this distribution, the storage deficit can be calculated associated with a 20-year return period. The reduced
variate (y) is used to link the return period to the yearly maximum storage deficit. This maximum deficit is
defined as the difference between the maximum and minimum storage deficit in a year.

y =− ln

(
− ln

(
1− 1

T

))
(2.9)

Where: T is the return period of yearly maximum storage deficit.

The Gumbel type 1 used in earlier studies, these studies showed that the rootzone storage capacity is per-
forming better than other methods for the determination of Sr (de Boer-Euser et al., 2016, De Boer-Euser
et al., 2019, Gao et al., 2014). To reduce differences in errors between this study and the current literature, the
Gumbel type 1 distribution is used in this study. However, other extreme value distributions could describe
the distribution of storage deficits better.

dSa

d t
= SD (t0)−SD (t1)

t0 − t1
(2.10)

ET,a = Pe,a +Ma −Qa − dSa

d t
(2.11)

ET,d = Ep,d × ET,a

Ep,a
(2.12)
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Figure 2.7: The cumulative storage deficit in millimetre from 1990-1992 in catchment 204859. The cumulative storage deficit is calculated
with a daily resolution. The red arrows indicate the maximum storage deficit for each specific year. Those yearly maxima are used to
determine Sr

Considering the significant elevation differences within a single catchment, a distinction between elevation
levels is needed because the temperature at these different elevations forces diverse processes. While tem-
perature is decreasing with increasing elevation, assumed was a decrease of 0.6 °C/100m, which is compa-
rable with findings of Kirchner et al. (2013). For example, the temperature is the main driver of the mod-
elled snowmelt and snowfall. Resulting in that different elevation zones will experience diverse amounts of
snowmelt and snow cover. From this follows a different timing of meltwater available to vegetation. This
timing could be important for the storage deficit estimations when this moment coincides with the onset
of evaporation. Each elevation zone has a different surface area, therefore the contribution of the elevation
to the water balance of the catchment is alternating. For every catchment, the snowmelt from the elevation
zones is weighted with the zones corresponding surface area.

The fluxes and storages are numerically modelled in Python 3.6. Python is a high-level programming lan-
guage with many developed open-source modules available. The code corresponding to the hydrological
model is provided in Appendix A.

2.4. Snow cover calibration

Significant amounts of snow are expected to fall during the winter months. However, no snowfall data is
included in the dataset used for this study. Therefore, another method to retrieve and subsequently model
snowfall and melt is necessary. A temperature index method is used to model the amount of snowfall and
melt. If snow is present in the snow reservoir, the snow melt (M) is modelled according to Equation 2.13
(Hock, 2003).

M =
{

M =CM × (Ta −Tt ) if Ta > Tt

0, if Ta < Tt
(2.13)

Where CM denotes a constant for the amount of melt in millimetre per degree Celsius. Ta denotes the air
temperature and Tt a threshold temperature from which the snow melts.

To deduce the snowfall from the total precipitation, Tt is used as for the snowmelt. This collective threshold
temperature is used for sake of simplicity during the calibration process and minimizing computational de-
mand. In reality, the threshold temperature will differ in the processes of snow accumulation and ablation.
However, the temperatures will be close. The Tt and CM are determined for every catchment via a calibration
and validation process. The MODIS Terra(MOD10A1) daily snow cover product is used (Hall and Riggs, 2016)
to observe snow cover. Daily snow cover is obtained from satellite imagery as a value for the Normalized
Difference Snow Index (NDSI). This index is the relative magnitude of the reflectance difference among the
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visible and short-wave infrared spectrum. It is assumed that for NDSI > 0.4 the corresponding pixel is covered
with snow (Klein et al., 1998). Per elevation zone is estimated if the majority of this zone has snow cover. For
every elevation zone, this results in a discrete time-series which represents snow cover at a given time.

The following step is to compare the MODIS time-series to the modelled snow cover. To achieve this, the snow
dynamics were modelled for a set of combinations of CM and Tt , the snowfall and snowmelt were calculated
for each combination. This modelled snow cover is compared with the MODIS snow cover. For multiple com-
binations of CM and Tt . For each day the difference between modelled snow cover days and snow cover days
resulting from the MODIS product was calculated. Since a discrete approach is used, 1 for snow cover and 0
for no cover, the result for every time-series are summed and thereafter minimized using the combinations of
CM and Tt . The calibration period lasted from summer 2001 to summer 2006. During this period the MODIS
data was mostly complete. Nevertheless, due to the obstruction of clouds, a significant amount of days were
not included in the calibration. Starting the calibration in summer is necessary since the non-eternal snow
should be melted. In Figure 2.8 an example catchment is displayed. Here one could see the different elevation
zones and the snow cover classification for a random single day.

After the calibration is performed the 10 best-performing calibrations were validated on the period lasting
from summer 2006 to summer 2008. From this validation, the combinations of CM and Tt , resulting in the
lowest non-matching days between the modelled and observed snow cover were selected for each catchment.

Figure 2.8: Graphical overview of Catchment 211680 (Not part of this study). (a) Illustrates the different elevation zones. (b) The snow
cover classification for a random single day. Where for each elevation zone the majority of a classification is selected for the calibration.

2.5. Regression analysis

2.5.1. Regression method

A statistical analysis has to be performed to discover a relationship between the different catchment char-
acteristics and the calculated rootzone storage. Since the amount of catchment considered in this study is
rather small, the statistical methods applicable are reduced. Firstly, simple linear regression can be used to
describe the relationship between each variable and Sr individually (De Boer-Euser et al., 2019). However,
the correlations between different predictor variables and Sr can be ambiguous, since multiple variables in-
fluence Sr at the same time. Therefore, one could use multiple linear regression to find the combined effect
of the different variables on Sr . Furthermore, regularization methods like, Lasso and Ridge regression are
usable to detect relationships. However, those methods are less intuitive as multiple linear regression. More-
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over, it seems that these regularization methods are less suitable for small datasets. Therefore, a multiple
linear regression is applied.

To apply multiple linear regression one should take into account the following conditions:

• Relationship should be approximately linear

• Constant error variance

• Independent errors terms

• Normal errors

• No multi-collinearity

• Exogeneity

The relationships are most likely not strictly linear. Yet, for the sake of model simplicity, it is assumed that
Sr can described as a linear combination of the variables, see equations, 2.14 and 2.15. It is strived to reduce
collinearity, using data selection methods, see e.g. 2.5.2. After analysis, the behaviour of the error terms is
evaluated.

Ŷ = β̂0 + β̂1X1 +·· ·+ β̂p Xp (2.14)

Y = Ŷ +ε (2.15)

Where Ŷ denotes the predicted value. X1, · · · , Xp are the predictor variables and β̂0, · · · β̂p , the coefficient
estimators. Y Denotes the actual value of Sr which is the predicted value together with an error term ε. The
predictor variables are estimated by minimizing the residual sum of squares (RSS) which is representative for
the error term. In Figure 2.9 a 2-variable representation of the minimization of RSS is illustrated. The plane is
positioned in such a way that the sum of the errors (black lines) is minimized.

Figure 2.9: Visualisation of a plane describing the least-square fit to a dataset. Where the distance between the data points is minimized
for a N-dimensional plane. Note reprinted from: (Gareth James, Daniela Witten, Trevor Hastie, 2013, pp. 73)
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The selection of the predictor variables for the regression model is commonly achieved via the following
methods: stepwise forward selection, stepwise backward selection and a best-subset selection. Forward se-
lection starts with a null mode, merely containing an interception constant. Next, the variable resulting in
the lowest RSS is added to the model. This process continues until all variables are added or another stop
condition is met. Backwards regression starts with all variables and removes the least significant variable.
Best-subset regression assesses each possible combination, 2p combinations, which is computational de-
manding. However, in applying the best-subset method the order of the different predictor variables is not
relevant. Therefore, no combination of variables is missed. Despite the computational constraints, the best-
subset approach is applied in this research. A selection with the help of a PCA is not only reducing the risk on
multi-collinearity, it also reduces the demand of computational time.

2.5.2. Variable selection

A Principal Component Analysis (PCA) will be performed to get more insight into the different predictor vari-
ables and their relationships. Moreover, the PCA could be used to reduce the dimension of a datasets feature
space. This prevents any collinearity and obviate over-fitting in regression analysis. This feature reduction will
be performed by plotting the loadings of the different compared predictor variables on the first two principal
axes, one could graphically grasp the correlations between the different predictor variables. The direction of
the loadings will indicate the relationship between the predictor variables. Based on the results of the PCA, a
selection is made to perform the regression analysis.

The best-subset method is comparing models containing various amounts of predictor variables. There-
fore, it is necessary to find the optimal amount of variables for the regression model. To achieve this, the
performance of models containing different amount of variables are compared to ensure no over-fitting is
occurring. The models are assessed using R2 and R2

ad j and leave-one-out cross-validation (LOOCV). Appli-
cation of a LOOCV is common when lacking sufficient data to split the dataset between a test and training set.
With LOOCV, one data point is used to validate the training set of all the remaining data points. The process
is repeated until every data point is used for validation (Gareth James, Daniela Witten, Trevor Hastie, 2013).
In practice, different definitions of R2 and R2

ad j are used, these metrics are defined in this study in 2.17 and
2.16.

An Exhaustive feature selection algorithm is used to evaluate the subset of features (Raschka, 2018). The best
5 models are selected for each number of variables in a subset. The selection is based on the LOOCV score to
find the optimal amount of variables used to examine the model variables. If abundant variables are added to
the model, the LOOCV will decrease and over-fitting is occurring. After the model selection, the coefficients
of these best performing models are investigated.

R2 = 1− SSR

SST
(2.16)

R2
ad j = 1− (

1−R2)[ n −1

n − (k +1)

]
(2.17)

Where SSR is defined as the sum of squares of the residuals and SST as the total sum of squares. Where n is
the sample size and k is the number of independent variables in the regression equation.

2.6. Regression variables

The multiple linear regression is performed using land cover and climate variables. In this section, these 2
groups, expected to influence Sr are discussed. The variables are explained and their use for this study is
substantiated.

2.6.1. Land cover classification

To observe the effect of vegetation on Sr , a land cover classification is required. The classification is based
upon the land cover dataset of the climate change initiative (CCI) (European Space Agency and Climate
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Change initiative, 2014). This dataset has global coverage for the period 1992-2015 with a 300 meter spa-
tial resolution and a yearly temporal resolution. The CCI dataset results from a machine-learning algorithm,
compiling from different satellite data products. The vegetation type is the predominant factor in the land
cover classification dataset and therefore assumed to be a good indicator to find a relationship between veg-
etation and the rootzone storage volume. For every catchment, the coverage percentages of the land cover
types are calculated with a zonal statistics tool. Resulting in a time-series of land cover fractions for the period
1992-2015. To reduce the number of land cover variables, 3 different categories were compiled according to
the IPCC classification in the supporting documents (UCL-Geomatics 2017, 2017). The three categories are
forest, grass and cropland. Each category is expected to represent a different size of Sr corresponding to the
key survival strategy of the ecosystem.

2.6.2. Climate variables

To observe the effect of long-term climate effect on Sr , climate indicators are determined. In this section, the
indicators for which we expect to influence the rootzone storage capacity are discussed. First general climate
indicators are discussed, afterwards the snow dynamics indicators are described.

Run-off coefficient

The study of Gao et al. (2014) showed a noteworthy negative relationship between the run-off coefficient (RC)
and Sr . RC is defined as the long-term fraction of precipitation resulting in run-off, see Equation 2.18. Ac-
cording to the author of the article, this relationship could indicate that an increasing RC, the water available
for actual evaporation is decreasing. This means that less transpiration will occur, and this could lower the
storage needs of the vegetation. RC represents the geographic properties along with the vegetational proper-
ties of the catchments.

RC = Q

P
(2.18)

Seasonality index

Seasonality of precipitation seems an important driver in the development of the rootzone storage. Since the
seasonality describes how the precipitation input is distributed over a year. If there is low seasonality, there
is a higher chance that there will shorter periods of droughts and therefore more likely to have lower storage
deficits. Walsh and Lawler (1981) introduced a metric to quantify the seasonality of rainfall, the seasonality
index, see Equation 2.19. For this research, rainfall is not the only inflow of liquid water into the rootzone
storage. Snowmelt is another crucial source of liquid water. Therefore, in the original equation, precipitation
is substituted with the sum of snowmelt and rainfall as defined in 2.20.

SI = 1

P l i q

n=12∑
n=1

∣∣∣∣∣xn − P l i q

12

∣∣∣∣∣ (2.19)

Where SI is the seasonality index, P l i q the mean annual liquid water input and xn the mean rainfall of
monthn.

Pl i q = Pe +M (2.20)

Aridity index

The aridity index as defined in Equation 2.1, is used to assess the aridity of the catchment and indicates if
the evaporation in a catchment is limited by water shortage or limited by the energy input. The aridity index
could also indicate the risk on a long period of drought which could influence the rootzone storage capacity.
Therefore, the Aridity Index is included as a possible exploratory variable.

Phase lag
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As described by De Boer-Euser et al. (2019), the difference between the timing of liquid water supply and
demand of vegetation via transpiration is assumed to be the most important influencer for Sr . If the timing of
liquid water input and transpiration are out of phase, the storage deficit could grow over time and that means
that more storage capacity is necessary. Therefore, this phase lag might be an interesting variable to include
in this study. The phase lag (φ) is calculated by identifying for each year the maximum rolling average of 10
days for liquid water input and potential evaporation. Liquid water input is calculated as the sum of effective
precipitation and snowmelt. Afterwards, for every year, the "day of the year" of the maxima is determined.
Lastly, the day corresponding to the potential evaporation is subtracted with the day of liquid water input,
the results for each year are averaged per catchment. A positive φ will thus argue that the precipitation peak
occurs before the evaporation peak, and vice versa.

Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a valuable indicator for the period of transpiration
because it used to estimate plant productivity and for this productivity, transpiration is required. NDVI is
detecting the absorption of radiation by plants performing photosynthesis. The ratio between visible red
(Red) and the near infrared radiation (NIR) defines the NDVI, as described in Equation 2.21. Snow cover is
influencing the absorption by blocking the radiation. If snow cover is occurring, NDVI as an indicator of
transpiration is less reliable, therefore not the start of the NDVI increase was chosen but the amount of days
per year above a certain threshold, in this case, is chosen for a threshold of NDVI = 0.5, in that way it is ensured
that snowmelt is of no influence and the found signals are related to the greening of the understory and the
unfolding of the canopy (overstorey). Daily NDVI NOAA/AVHRR data was retrieved and a daily catchment
average was calculated. Whereafter for each year, the number of days above this threshold were calculated. A
visual representation of this approach can be seen in Figure 2.10.

N DV I = N I R −Red

N I R +Red
(2.21)

Figure 2.10: The NDVI from 1990-1992 in catchment 204859. The red dashed line indicated the threshold of NDVI = 0.5. The period
above this line is measured as indication of the length of the transpiration season.

Slope

Since the growth of roots might be bounded by its physical environment, a representative variable should be
included in this study. On steep slopes, it often occurs that only a shallow soil layer is present. In the case,
trees manage to grow on these steep slopes, the shallow soil will limit their rooting system. This could signif-
icantly influence the maximal rootzone storage capacity created by these trees. Therefore, it is convenient to
include the slope as an indicator for root growth limitation. The slope in the catchment was obtained from a
raster file with a spatial resolution of 25 meter (European Union, Copernicus Land Monitoring Service 2020,
2020). To obtain the slope in degrees, a conversion was necessary. For every catchment the average slope was
calculated with the help of zonal statistics, averaging the pixels values within the catchment.

Snow



18 2. Methodology

Snow is an import precipitation element in Austria. Moreover, snow cover is creating a time-lag in the water
input available for transpiration. De Boer-Euser et al. (2019) found that this time-lag could have an influence
on Sr . Therefore, multiple predictor variables related to snow and its timing are included. Firstly, the snow-
off day is calculated. This is done by finding for every year the highest snow peak in the first half of the year.
The first day of a period of 7 days without snow after this peak is defined as the snow-off day of that year. A
similar method is applied for the snow-on day, the first day of a period of 7 days having snow cover, in the
second half of the year.

Another promising predictor variable is the (non-)coincidence of the snow-off and onset of potential evapora-
tion. As discussed this (non-)coincidence has shown to have a large effect on the rootzone storage. This could
make sense since early snowmelt increases the time-lag with the onset of transpiration and could increase a
storage deficit. Since the potential evaporation data was sporadic greater than zero during the beginning of
the year, a threshold was assumed to be the onset of the potential evaporation. This means, it is assumed
that if the potential evaporation reaches a 10% of its maximal value, that corresponding day is defined as the
onset day of potential evaporation.

2.7. Temporal analysis

Vegetation can dynamical adapt its rooting systems and therefore its rootzone storage (Gentine et al., 2012).
Therefore, vegetation can react to developments within its ecosystem. These changes are perchance more
abrupt human-induced land cover change e.g. forest clear-cutting or a more gradual natural development of
the ecosystem. This gradual change can be indirectly anthropogenic induced as well through climate change.
Using a temporal analysis it is attempted to identify if the rootzone storage is varying. The cause of this
change can be explored accordingly. The CCI land cover dataset has an overlapping period of 17 years with
the hydrological dataset. Therefore, the dynamic behaviour could only be studied in this time-frame.

2.7.1. Moving window

Sr and most climate variables could only be reliably estimated for longer time-series. Therefore, a 10-year
moving window method is applied. The period of 10 years is long enough to smooth out extreme years and
short enough to observe a trend. However, the moving windows are not suitable in the multiple linear regres-
sion analysis since a strong correlation between the consecutive windows is expected. Therefore, a stationary
window is used for the temporal regression analysis.

2.7.2. Stationary window

Although Sr could be estimated based on the year before the land cover change. Nijzink et al. (2016a) used
a window of 2 years for calculating Sr 1 to study the change of rootzone capacity. In the described study,
the system changed drastically because of deforestation, resulting in a more dynamical adaptation of the
rootzone. On the contrary, it is expected that in this study, catchments will not experience major changes in
land cover. The rootzone is expected to be less dynamically adapting to the land cover change. Therefore, a
longer window of 5 years is used.

This 5-year window is however not of sufficient length to reliably estimate Sr 20. Hence, Sr 10 is used in this
case. 4 windows of 5 years are created for the land cover, the window starts in 1987 and the corresponding
land cover values are chosen based on the end of the window. Accordingly, one could observe if the change
in Sr 10 is visible in the land cover fractions as well. The 4 windows will be used in multiple linear regression.
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Results

In this chapter, the results will be reported and discussed. In Section 3.1, the calibration results will be pre-
sented. Section 3.2 will discuss the estimated predictor variables. The results of the data selection and the
consecutive regression analysis will be discussed in Section 3.3. The results of the temporal regression analy-
sis will be on elaborated in Section 3.4.

3.1. Calibration result

A calibration was performed on a period from summer 2001 until the summer of 2006. The validation is
performed for the period of summer 2006 until summer 2008. From the calibration, the 10 best performing
combinations of Cm and Ttr were selected and used in the validation process. The combination performing
best for the combined calibration and validation was selected for each catchment.

The calibration was performed for various amounts of accepted cloud cover for the detection of snow cover,
as discussed in Section 2.4. The compared maximal accepted cloud cover percentages were: 50, 60, and
70 percent. The fraction of days, for which the snow cover does not correspond with the calibration and
validation, is determined for each elevation. As one can observe in Figure 3.1, the 50% allowed cloud cover is
performing best, considering the amount of non-matching days. However, the difference with 60% allowed
cloud cover is minimal. The performance is described as the amount of non-matching days divided by the
total days without cloud cover. A mean percentage of 4% for the 50% case, is an acceptable performance. One
should take into account that this percentage is influenced by the fact that all days of the year are included in
the calibration. This means that the relevant performance is slightly worse than the displayed results. With
the selected values for Cm and Ttr , the snow-dynamics in the model can be estimated.
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Figure 3.1: The result of the combined calibration and validation process for all catchments. The performance is described as the amount
of non-matching day (nnon ) divided by the total cloud free days (ncloud f r ee ). (nnon ) is defined as the amount of non-matching days
between the modelled snow cover based on a combination of threshold temperature and melt factor, with the observed snow cover.
(ncloud f r ee ) is defined as the total observed days without cloud free days. The result of the best performing combinations of Cm and
Ttr is presented for every catchment.

3.2. Derivation of variables

To perform regression analysis, the variables are derived based on different datasets. First, the results of the
derivation of Sr will be presented, and the result for Sr of the iterated catchments will be evaluated. The
resulting land cover and climatic variables will be presented.

3.2.1. Derivation of Sr values

Following from the Sr calculations for all catchments is a diverse range Sr values. The rootzone storage ca-
pacity lies between 87—275 mm. On the map of 3.2, one could see the distribution of Sr over the different
catchment in Austria. The higher values are located in the (north) east of Austria. The lower values are situ-
ated more central North, but here is more variation in the values of Sr . So, there is some clustering visible,
however not enough to observe a clear pattern is in the spatial distribution of Sr . In Appendix C.1, a table
with the different return periods is provided.

3.2.2. Iterative correction

The processing of data is a substantial part of this research. During the processing, insights were created and
decisions were made. As discussed in 2.1, the initial dataset of 69 catchment was reduced to 27 catchment,
due to limitation of the data quality, times-series length and suitability for the research. 6 Catchments were
corrected using an iterative approach. However, those 6 catchments resulted in untrustworthy coefficients
from the multiple linear regression for the temporal case. Likely a result of the fact that the iterative correction
method lowers the transpiration in years there is not enough water to full-fill the transpiration needs of the
vegetation. This surplus of transpiration is therefore distributed over the other days of the year to full-fill the
closure of the water balance. Which leads to a shift in storage deficit. Subsequently, it could happen that via
the static window procedure, Sr is calculated inaccurately for these smaller windows. Resulting in mistaken
coefficients in the regression analysis of Section 3.4.

Performing the regression analysis showed a negative coefficient for the Aridity Index. This seems not plau-
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Figure 3.2: Sr for 27 catchments across Austria. The red outline indicates the corrected catchments, excluded from the regression analy-
sis. If a more blue indicates a lower storage deficit. The highest storage deficits are situated in the eastern part of Austria.

sible in reality since a higher Aridity Index is initiated when there is less precipitation input. While Ep is more
constrained by the energy input which is related to its geographical location and is normally a more con-
stant factor than precipitation. Thus, it seems not plausible that an increasing Aridity Index is resulting in
decreasing rootzone storage.

Exploring the possible cause of this unlikely relationship, it was observed that leaving out the iterative cor-
rected catchments resulted in a non-negative coefficient for the Aridity Index. Such a relationship is plausible.
The catchments used for the regression analysis are therefore reduced to 21 catchments.

The applied iteration method is suitable for the correction of the transpiration when the results are analysed
afterwards for a full time-series. However, when one is examining parts of the time-series, the reallocation of
transpiration is influencing the results on a smaller time-scale. This means that when the full time-series is
split into different windows, this can cause a non-reliable estimation of Sr in the different windows.

3.2.3. Climate variables

The climate variables are initially calculated over the full time-series of the data, the selected variables are
displayed in Figure 3.3. Interesting to see in Figure 3.3a is that the spread of the Run-off coefficient and
Aridity Index is substantial. All catchments are energy limited based on the Aridity Index. In Figure 3.3b it is
important to notice that values of the phase-lag (φ) between the precipitation peak and evaporation peak are
close to zero. This means that the timing of the water supply coincides with the atmospheric demand. An
overview of the calculated variables can be found in Appendix D.
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Figure 3.3: Overview of the climate variables. (a): The variables: SIl i q , AI , RC , note that the variables not have the same quantity
however all are unit-less. (b): φ’, ’τsnow ’,’snow −on’, note that in this sub-figure the quantity for φ and snow-on is: ’day of the year’ and
for τsnow : a period of days

3.2.4. Land cover variables

In Figure 3.4, land cover seems rather clustered across Austria, with regions of high cropland cover are espe-
cially present in the north-east and north-west. No catchments have a majority of forest land cover. Catch-
ment having a majority of cropland cover, do not have substantial forest land cover. The agricultural areas
seem to be logically situated on the lower elevated regions.

Figure 3.4: The different land cover fraction per catchment, showing a variety in catchment compositions, agricultural catchments are
noticeably clustered.
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3.3. Spatial analysis

Before the regression analysis can be performed a selection of the variables from Section 3.2.2 has to be made,
to prevent from the occurrence of multicollinearity and to lower the computational burden of the best-subset
method. A PCA is used to select these predictor variables variables.

3.3.1. PCA

A first step into the variable selection was made with the help of a principal component analysis (PCA). The
PCA shows a correlation between different predictor variables. To prevent strong collinearity in the multi-
variate regression model, a first variable selection is made. This is achieved by selecting a single variable,
given that correlated variables describing similar catchment characteristics or processes are present. For ex-
ample selecting (τsnow for representing the different snow variables). The principal component analysis was
performed including the calculated climate variables and the relevant land cover types. The result of this
variable reduction is displayed in Figure 3.5. The Figure shows the loadings and directions of the predictor
variables in the frame of the two first principal components. Figure 3.5a Shows multiple strong correlations
between variables describing the same process. For example, the snow-related variables are all similarly re-
lated to Sr .

The total explained variance of PC1 en PC2 in Figure 3.5a is 63%, for the PCA in Figure 3.5b the explained
variance is 73%. This means that for both figures not all variance is described by the PCA, however, a sub-
stantial part is described and therefore suitable to form a selection for the regression analysis. Interesting to
see, is the fact that forest and cropland are orthogonally placed in respect to Sr . This indicates that no strong
relationship is expected in the regression analysis.

Correlation of loadings was not the only selection criterium. Some variables are directly describing Sr or
seem to explain not as much variance e.g. ( τN DV I and the NDVI onset (the day of the year passing NDVI =
0.5). Moreover, a combination of variables is included and can represent the combination of both variables.
A selection of 9 variables is the result of the reduction performed with the interpretation of the PCA. This
selection is rather small since in this way the occurrence of multicollinearity is prevented. An overview of the
studied variables can be found in Appendix E.

(a) (b)

Figure 3.5: Principal Component Analysis including catchment characteristics and Sr . (a) Loadings of all catchment characteristics
studied on PC1 and PC2. (b) Selection of loadings based on (a), similar characteristics with similar relationships. The variables used in
this figure are defined in appendix D
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3.3.2. Regression

The multiple linear regression is performed with the 9 variables resulting from selection via the PCA. The
results of the predictor variable selection with the exhaustive search method are summarised in Figure 3.6.
Here one can observe the leave-one-out-cross-validation (LOOCV) score, R² and R2

Ad j . For each subset, con-

taining a different number of predictor variables. The average LOOCV score of the 5 best models is displayed
in the graph. Looking at a larger amount of best models is resulting in including models performing consid-
erably worse than the displayed average performance. This would give a distorted view. An overview of the
different model metrics for the subsets is shown in Appendix F.

The 3-variable regression models have the highest LOOCV score, of respectively 0.73 and a R2
Ad j of 0.80. These

values indicate a reasonable explanatory and predictive power. Increasing the number of variables above
3, results in over-fitting because the LOOCV score is decreasing and therefore its predictive power (Gareth
James, Daniela Witten, Trevor Hastie, 2013). Over-fitting is quickly occurring given the small dataset. The
2-variable models are on average performing less than the 3-variable models, with a maximal LOOCV score
of 0.58 and an R2

Ad j of 0.68, however, these models are still performing reasonably.
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Figure 3.6: Leave-one-out-cross-validation score, R2 and adjusted R2 resulting from the multiple regression of the spatial analysis. Based
on the LOOCV score, three variables is the optimal model size before over-fitting is appearing. The definition of R2 and adjusted R2 is
given in Section 2.5.2

Looking at p-values of the different variables in the tables of ??, it emerges that the there is no combination of
a 3-variable model where each p-value is below 0.15 and the Variance Inflation Factor (VIF) is below 5. Above
this often use threshold for the VIF it is expected that multicollinearity is occurring (Sheather, 2009). It is hard
to declare a cut-off significance level in exploratory research since a too high value could give an inaccurate
result and a too low value could dismiss crucial insights.

Following from the selection criteria, a 2-variable model including cropland is therefore excluded. Having
a closer look at the remaining 4 best performing 2-variable models, one could observe that the Run-off Co-
efficient (RC ) is present in all 4 models. Furthermore, the variables: SIl i q ,τsnow , %forest and snow-on are
present as well, as is shown in Figure 3.7.

The regression coefficient is negative for RC in all models, and the magnitude of these coefficients are the
highest. The coefficient of RC is found negative since a high RC indicates a high discharge and by making use
of a water balance (eq. 2.6), this high discharge is resulting in low transpiration. The amount of transpiration
is critical for the storage deficit and this relates to a high Sr (Gao, Hrachowitz, Schymanski, Fenicia, Sriwongsi-
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Figure 3.7: The magnitude of the different variables and its occurrences present in the best 4 models resulting from the spatial regression.
The colour is showing the number of occurrences of the variable. The y-axis shows the average magnitude of this variable.

tanon, and Savenije, 2014). The magnitude of the coefficient explains its importance since the input data is
standardised and likewise the coefficients can be compared.

In addition to the coefficients of RC , the coefficients of the other climate variables are explainable. As dis-
cussed in 3.11, φ is varying around zero for the studied catchments. A negative coefficient for the seasonality
index is in this particular study plausible, since the peak of the precipitation falls during the peak of potential
evaporation and thus likely the peak of transpiration. Therefore, a higher seasonality index results in more
precipitation during the transpiration peak and therefore less storage deficit is accumulating.

The negative coefficient for the τsnow could be explained as a manner of quantity or as a manner of timing.
During the period of snowfall, a higher quantity of snow could be accumulated and therefore more water
is supplied at the start of the transpiration season. A longer period of snow cover might therefore lead to
lower storage deficits. During periods of snow cover, the amount of transpiration will be minimal. Another
explanation could be that a longer snow period indicates that the snow period is ending later in the year. The
peak of melt water is consequently more coinciding with the period of higher evaporation.

The positive coefficient for the snow-on day of the year is plausible as well. Since transpiration in this study
is scaled with the potential evaporation, which is forced by temperature. The start of the first snow cover of
the year is related to temperature. This possibly higher temperature could thus result in a longer period of
transpiration and is therefore a opportunity for a higher storage deficit. This temperature dependence seems
in agreement with the energy-constrained, relative humid catchments in this study.

In contrast to the climate variables, the observed coefficients of the land cover variables, fractional forest and
cropland cover are more difficult to explain based on the literature. A negative coefficient for fractional forest
cover is observed. However, considering forests likely have a higher rootzone storage capacity, a positive co-
efficient is expected (Zhang et al., 2001). Interesting is the fact that in the PCA of Figure 3.5b it is indicated that
there is no correlation between these land cover types and Sr . However, the studied combined effect with the
Run-off coefficient creates a relationship with Sr . Though, the coefficients for the land cover variables have a
lower magnitude than the climate variables and are therefore of less importance in each model. Moreover, the
p-values for land cover variables are higher than for the climate variables. Similarly, the positive coefficient
for cropland is not expected according to the literature. As for forest cover, the magnitude of the coefficient is
lower than the other variables. The last land cover variable not included in the 5 best models is grassland, it
is interesting to see that this land cover type seems the least important of the three categories given the fact
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Figure 3.8: A scatter plot showing the Run-off coefficient versus the seasonality index and its corresponding rootzone storage capacity.
Visible relationships are in agreement with the sign of the coefficients from the regression analysis.

that its the only fractional land cover variable that showed a correlation with Sr in the PCA.

The regression model of RC , SIl i q results in the highest R2
Ad j In Figure 3.8 a clear relationship between RC ,

SIl i q and Sr is visible. Where Sr decreases with an increasing RC , together with a decreasing Sr for an in-
creasing SIl i q . This observed relationship is similar to earlier described relationships between Sr , RC and
SIl i q .
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Table 3.1: Results of linear regression for the spatial case. The tables show the regression coefficients for the 4 selected models. The VIF
and p-value stay below the thresholds set.

(a) R2
Ad j : 0.8, LOOCV score: 0.76, F-test :41 , p-value: 1.90e-07. This table contains the best performing 2-variable regression model.

Variable Coefficient Standard Error t-value p-value VIF

constant 156.52 4.26 36.72 0.0 -
SIl i q -20.99 4.84 -4.34 0.0 1.29
RC -43.94 4.84 -9.08 0.0 1.29

(b) R2
Ad j : 0.68, LOOCV score: 0.58, F-test :21.83 , p-value: 1.54e-05

Variable Coefficient Standard Error t-value p-value VIF

constant 156.52 5.44 28.76 0.00 -
snow-on 12.00 5.60 2.14 0.04 1.06
RC -31.17 5.60 -5.56 0.00 1.06

(c) R2
Ad j : 0.67, LOOCV score: 0.56, F-test :21.35 , p-value: 1.77e-05

Variable Coefficient Standard Error t-value p-value VIF

constant 156.52 5.48 28.54 0.00 -
τsnow -11.34 5.50 -2.06 0.05 1.01
RC -33.02 5.50 -6.00 0.00 1.01

(d) R2
Ad j : 0.64, LOOCV score: 0.51, F-test :19.27 , p-value: 3.35e-05

Variable Coefficient Standard Error t-value p-value VIF

constant 156.52 5.68 27.54 0.00 -
RC -35.58 5.76 -6.18 0.00 1.03
forest -9.50 5.76 -1.65 0.12 1.03
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3.4. Temporal analysis

The box-plots from Figure 3.9 show us the relative change of Sr for all catchment for a period of 26 years (1982-
2008). One could observe that the 10-year moving-window method results in an increase of Sr compared
with the moving average of the 10 years before 1992. The 10-year moving window results in more smooth
behaviour and is intended for the indication of trends only.
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Figure 3.9: Sr change resulting from a 10-year moving-window for the years 1992-2008 compared to the year 1992. An increase in Sr
compared to the year 1992 is visible.

The regression analysis from Section 3.3 is performed again, for the same dataset, divided in four 5-year sta-
tionary windows for each catchment. The predictor variables are recalculated for each window and displayed
in Appendix D.2. A total of 84 data points are acquired in this way. As one could conduct from Figure 3.10
the 4-variable models have the highest LOOCV score before over-fitting occurs. Nevertheless, the perfor-
mance for all three scores is lower than the result of the spatial case. Resulting in a maximal LOOCV score
of 0.52 and R2

Ad j of 0.55. In the figure, the LOOCV score is not rapid, but slowly decreasing after it reached

its maximum. This slow decrease could result from the occurrence of autocorrelation between the stationary
windows. From the 4 and more variable models, the VIF increases above the threshold of 5. The analysis of
the coefficients is therefore performed on the 2 and 3-variable models only. The model-selection conditions
of 3.3 were applied resulting in 9 models which are analysed further.
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Figure 3.10: Leave-one-out-cross-validation score, R2 and adjusted R2 resulting from the multiple linear regression of the temporal
analysis. Based on the LOOCV score, 4 variables is the optimal model size however less pronounced as in the spatial case. The definition
of R2 and adjusted R2 is given in Section 2.5.2

Having a closer look at these 9 models, one could observe that conform the spatial case, the Run-off Coeffi-
cient(RC) is represented most. Also, the variables snow-on, % forest, % cropland, and τsnow occurring at least
twice. The signs of all variables are consistent and identical to the signs of the spatial regression. This means
that the variables are behaving consistently in all models. Figure 3.11 summarises the coefficients resulting
from the regression. The corresponding table could be found in Appendix F.2.

Figure 3.11: Occurrences of variables and its coefficient sign for the best 9 models resulting from the temporal regression. The colour is
indicating the times a variable is present in the regression models. The displayed magnitudes shows the average coefficient size when
the variable is present.
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The importance of RC in the regression models is also visible in Figure 3.12 where an average decreasing trend
of RC compared to the year 1992 is observable. This decreasing could be induced by the observed increase of
evaporation across Austria, which is related to the increase of global radiation and temperature (Duethmann
and Blöschl, 2018).

Figure 3.12: Relative change of RC resulting from a 10-year moving-average prior to the years 1992-2008 compared to the year 1992. A
decreasing trend of RC is visible.

The effect of the observed coefficients of the land cover is visible in 3.13. The average total deforestation
increased over time however at a low pace. Forest is on average replaced by more grassland than by cropland.
However, the differences are small. The observed overall land cover changes are small. A sudden increase of
land cover change is visible in the graph from the year 1999. This will be discussed in 4.5.
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Figure 3.13: land cover change for each year in all studied catchment compared to the year 1992 for forest, grass and cropland as a
fraction of the total catchment area. A discontinuity in landcover change is visible.

Introducing the cutting window method does not introduce a clear difference in how different variables de-
scribe and predict the change of Sr . However SIl i q , is not present in the models and AI and φ are new com-
pared to spatial regression. Both are not included in the models often.

Performing the Durbin-Watson test showed the presence of autocorrelation in a major part of the models in
this section (Durbin, 1970, Farebrother, 1980). The autocorrelation is introduced using the cutting window
method. Since climate and land cover variables changed smoothly, the four windows are correlated to the
next window for each catchment.
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Discussion

In this chapter, the methodology and the reliability of this research are discussed. In Section 4.1 the general
limitations of the study and the uncertainties of the datasets are discussed. In Section 4.2 the limitations of
the snow cover calibration are discussed. Followed by the model limitations for the determination of Sr in
Section 4.3. Section 4.4 discusses the limitations of the regression analysis. Finally, the findings and methods
related to the land cover are discussed.

4.1. General limitations

4.1.1. Data

Data quality and quantity are the determining factors for this exploratory research. The potential evapora-
tion, used for the Sr calculations is based on temperature only. This estimation could be enhanced by taking
into account other variables. Variables of importance are e.g. wind-speed, air-pressure and solar radiation
these can be used with implementing the Penman equation (Penman, 1948). The storage deficit is calculated
using transpiration as a ratio of potential evaporation. This simplification could lead to inaccuracy, especially
on a small temporal scale as the other described variables can vary significantly. To obtain optimal results for
the regression analysis, a substantial amount of data is preferable. However, in this study, a lean amount of
catchments is used. Resulting in a higher sensitivity of the results for the characteristics of a single catchment.

Not only the demand side of the water balance suffers from inaccuracies. On the supply-side, precipitation is
a common point at issue. The natural high spatial variability of precipitation is a possible cause for inaccuracy
in the estimation of storage deficit and therefore Sr .

4.1.2. General

A general point of discussion for this research is the fact that one is comparing Sr with the variables which
are both based on the same dataset. This means that there is always some relationship apparent between Sr

and the variables present. However, an important difference between the variables and Sr is the fact that Sr

is determined from a daily dataset. On the contrary, most variables in this study are long-term statistics and
do not always require a daily time-series to be estimated.

In addition to the explored variables, more factors are affecting Sr , omitted variables are inevitable. Plant spe-
cific properties are not taken into account, some vegetation have survival strategies which could temporarily
minimize the water use of the plant (e.g. grass can get in a state of dormancy). On the supply-side the re-
sults could be influenced by high water tables or wetlands, although the fraction of wetlands in this study is
negligible.
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There is a possibility that the restrictions on catchments based on the assumptions from 2.1 for the climate
method, influenced the results. Because catchments supplied by glacier melt were not taken into consid-
eration, these relative humid catchments were not included. Furthermore, the more arid catchments were
excluded from the regression analysis since they were more prone to excessive evaporation and multi-year
droughts. It follows that the catchment used for analysis were more moderate. This could reduce the repre-
sentativeness of this study.

4.2. Calibration result

The snow cover is calibrated in such a way that the threshold temperature for ablation and accumulation
are the same. In this model, there is no simultaneous occurrence of snowmelt and snow accumulation in an
elevation zone. However, both process may occur simultaneously in different elevation zones. In reality, both
processes are triggered on different temperatures and simultaneous occurrence of both processes can occur
(He et al., 2014).

Since cloud cover is decreasing the reliability of the calibration, a reduction of cloud cover in the data could
be attempted. To bring down the number of cloudy days, the MODIS Aqua(MYD10A1) product could be
combined with the in this study used MODIS Terra(MOD10A1) (Parajka et al., 2012). Further one could use
multi-day snow cover products to reduce the cloud cover.

During the data selection process, most snow-rich catchments were found not to be suitable for this research.
Therefore, the snow calibration process did have less impact on the results. Furthermore, due to the lack of
these snow-rich catchments, no complete view is given on the performance of the calibration. In this study, it
was not possible to study the effect of snow cover extensively. This will have a significant impact on the found
relationships.

4.3. Determination Sr

The "infinite reservoir" used in the climate-based model assumes indirectly that roots of the vegetation can
grow infinitely. However, the root growth in length and density is likely constrained by different soil types or
depth until the bedrock. This limitation could result in a smaller Sr in reality for certain areas . Furthermore,
the availability of nutrients could influence the development of rootzone storage.

An important assumption of the climate method is that vegetation exists and given this fact, it is adapted to
the climatic conditions. This assumption only holds when there is no influence of anthropogenic activity. In
this study, some catchments contained vast amounts of cropland. Cropland is per definition used by human
and therefore disturbed. According to the description of the land cover product, the cropland is not irrigated
and should have less impact on Sr . Nonetheless, deficit irrigation could be applied during longer periods
of drought (Fereres and Soriano, 2007). deficit irrigation could have a major influence on the real rootzone
storage deficit. Another point of discussion is that the seasonal collection of crops will prevent vegetation
from developing an optimal rootzone.

For this study a homogeneous maximum canopy storage of 1.5 mm was assumed. This assumption of ho-
mogeneity is not an adequate representation of reality. Since diverse vegetation have varying capacities for
storing water on the canopy. To evaluate the effect and validity of this assumed constant, a sensitivity analysis
is performed. In 4.1 the homogeneous base case of 1.5 mm is compared to heterogeneous cases with high
Imax and Low Imax . In both cases the size of Imax is different per land cover type and is based upon the land
cover in the catchment. For both cases no strong deviation from the base line is visible. Therefore the choice
of Imax shall not have a big impact on the results.
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Figure 4.1: Sensitivity analysis for comparing the homogenous Imax base case with landcover depending Imax for a high and low Imax
combination. The base case uses a homogenous Imax of 1.5 mm. The low case uses 1, 1 and 2 mm for grassland, cropland and forest
cover. The high cases uses a combination 1,2 and 4 mm. The choice of Imax shows no strong effect on result for Sr .

4.4. Regression analysis

For the regression analysis, the data is standardized to satisfy the assumption for multiple linear regression
that the variables are normally distributed. Assumed is, that the relationships between the different variables
and Sr are approximately linear. Undoubtedly it is not likely that those relationships are always strictly linear.
However, since regression models were able to describe Sr using these linear relationships it is an acceptable
assumption to make.

In the field of Earth sciences, all different processes are interconnected. Between hydrology, biology to mor-
phology interconnections arise. This interconnection results in a correlation between the different processes.
Multiple linear regression assumes independent predictor variables. Since most processes are at least slightly
correlated, this assumption is not strictly met and could influence the results.

Since the amount of 21 studied catchments is rather small, it is not possible to create a separate testing and
training subset. Furthermore, the number of training data-points should be ideally larger. In this way, the
training and likely the testing score could be more accurate and reliable. Besides, it could create the possibility
to predict Sr for the testing dataset.

4.5. Land cover

Chapter 3 showed us that no strong relation was found between land cover and Sr . This could be an artefact
of the categorization of the different land cover types in forest, cropland and grassland. The categorization
was chosen following the IPCC land categories (UCL-Geomatics 2017, 2017). However, the categorization
could have been adjusted to a classification based on a more hydrological perspective.

From the temporal analysis, no influence of importance of the land cover-change on the change of Sr was
found. The lack of relationship between the land cover categories is in agreement with the results from the
spatial analysis. However, the lack of a relationship could be established by a poor land cover-time-series. In
Figure 3.13 is the land cover change in comparison with the year 1992 displayed. The land cover seems to be
almost constant until 1999. In the year 1999, there is a sudden increase of land cover change. This sudden
increase is likely induced by a change of satellite product were the land cover classification is based upon. In
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1999 the AVHHR replaced by the SPOT-VGT product having among other things a finer resolution, 300 meter
instead of 1000 meter. Therefore it is likely that minor land cover changes were not observed before.

An observation of landcover change should be first visible at a spatial resolution of 1 km, for the CCI land
cover product. Only then the machine learning algorithm of the used land cover product is categorizing at
a finer resolution of 300m. Each change has to be present for 2 years in a row to be processed. Therefore a
slow degradation or recovery of forest land cover is difficult to observe (UCL-Geomatics 2017, 2017). Further-
more, the accuracy of land cover classified as a mosaic of combined cropland and forest cover has the lowest
accuracy. That makes a gradual transition between both types hard to observe.

Comparable to the findings of Bouaziz et al. (2020), the agricultural areas in this study having rather low Run-
off Coefficients and a positive relationship with Sr . The relative high silt concentrations at these areas were
designated as a possible cause of this positive relationship of cropland with Sr . High concentrations of silt
result in a good water-holding capacity of the soil. This high water holding-capacity could result in the fact
that it seems cropland grows a relatively large root zone storage capacity. In this study, the regions containing
the highest amount of silt in Austria are situated inside the catchments having the higher Sr values as one can
observe in Figure 4.2.

Figure 4.2: The catchments in blue and the data points representing Sr plotted on a map showing the silt fraction as percentage in
the topsoil across Austria. The higher Sr values are clearly present at areas containing higher silt fractions. Data is retrieved from the
Harmonized World Soil Database (Nachtergaele et al., 2009)



5
Conclusion and Recommendations

The aim of this research was to find a relationship between climatic and vegetational controls, and the root-
zone storage capacity in Austria. This study explores spatial and temporal relationships. A MODIS calibrated
snow module was added to the conventional model to account for snowfall in Austria. A multiple linear re-
gression analysis was performed to study the different relationships with Sr .

The climate-derived Sr did not show a very strong spatial pattern. However, the highest Sr could be found
in the eastern part of Austria. The Northern part had a lower but more varying Sr . In the multiple linear
regression the climate variables were most important, especially the Run-off coefficient. The best 5 models
were able to describe the behaviour of Sr with an average adjusted R² of 0.68. The model which contains
the Run-off coefficient and the Seasonality Index performed notably good, with an adjusted R² of 0.8. No
conclusion could be drawn for the importance of land cover types in the regression analysis, considering the
disputable applicability of the land cover data. Furthermore, the coefficients of land cover variables describe
behaviour conflicting with the current literature. Though, the found relationships for the land cover variables
are weak compared to the climate variables. This weak relationship of land cover with Sr is corresponding
with the literature.

This research shows that the rootzone storage capacity changed in the period from 1992 to 2008. On average
an increasing Sr was observed for the catchments. However, no strong relationship appeared describing this
increase. The regression analysis, both spatial and temporal show the strongest relationship existing between
climatic variables and Sr . The Run-off coefficient was the most important variable. Land cover variables were
more influential variables in these models as compared to the spatial regression. However due to the sudden
shift in land cover in the year 1999, this result is less reliable.

This study shows that it is possible to describe and predict the spatial variability of Sr with long term climate
statistics. This study does not claim that this is possible for every type of catchment. Nevertheless, the re-
sults could benefit to the prediction of Sr in hydrological similar poorly gauged regions when only long-term
climate statistics are available.

Snow dynamics were expected to be of importance during this analysis. Due to the unsuitability of the snow-
rich catchments for further analysis the snow dynamics could not be studied extensively. To perceive a rel-
evant view of the variability Sr , these catchments have to be studied as well. The rather small amount of
catchment studied in this research resulted in fewer possibilities and higher uncertainty. Therefore, it is rec-
ommended for future work to investigate a significantly larger dataset. Since the catchments in this study are
rather humid, it would be interesting to investigate in further studies if the found relationships are valid for
arid catchments as well. Additionally it would be useful to investigate the unexpected relationship between
land cover and Sr further.
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A
Python Code: hydrological model

In this appendix a link to a Github repository will be made available. The Github repository will contain
the most important Python code for this thesis. The code can be found at: https://github.com/bartbv/
master-thesis
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Climate graphs

39



40 B. Climate graphs

Figure B.1: Climate graphs catchments. Monthly average total precipitation and evaporation, as retrieved from (Gaál et al., 2012)
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Figure B.2: Climate graphs catchments. Monthly average total precipitation and evaporation, as retrieved from (Gaál et al., 2012)
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Figure B.3: Climate graphs catchments. Monthly average total precipitation and evaporation, as retrieved from (Gaál et al., 2012)
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Figure B.4: Climate graphs catchments. Monthly average total precipitation and evaporation, as retrieved from (Gaál et al., 2012)





C
Sr values

Table C.1: Estimated rootzone storage capacities for the return periods of 2,5,10 and 20 years for the different catchments

catchment Sr,2y Sr,5y Sr,10y Sr,20y

204768 90 127 151 175
204784 83 116 139 160
204834 72 100 119 137
204891 48 65 76 87
204917 84 121 146 169
204925 57 77 90 103
204958 70 95 112 128
205047 72 101 120 139
206326 98 140 167 193
206573 102 135 157 178
206581 84 116 138 158
207696 117 158 186 212
207944 103 138 162 184
207951 56 75 88 100
209197 82 112 132 151
209403 59 81 95 109
209460 160 210 243 275
209486 109 152 180 207
209494 72 103 123 143
210955 75 99 115 130
211599 85 113 131 149

Table C.2: Estimated rootzone storage capacities for the return periods of 2,5,10 and 20 years for the different catchments

catchment Sr,2y Sr,5y Sr,10y Sr,20y

208041 120 160 187 213
208058 133 178 208 236
208637 116 154 180 204
209452 141 195 230 264
210245 122 182 222 261
210302 129 181 216 249
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D
Overview calculated climate and land cover

variables

D.1. Spatial case

station snow-on SIl i q AI φ τsnow RC forest grass cropland Sr

day of year - - days days - % % % mm

204768 335 0.40 0.69 -14 83 0.39 2.47 4.47 92.78 175
204784 339 0.40 0.69 -12 78 0.42 10.95 7.10 82.63 160
204834 334 0.41 0.66 -12 91 0.47 33.70 15.76 50.01 137
204891 327 0.41 0.55 -11 116 0.58 54.34 40.46 4.94 87
204917 320 0.41 0.57 -10 128 0.46 57.16 37.16 5.17 169
204925 329 0.42 0.66 -5 108 0.48 65.79 31.12 2.96 103
204958 342 0.39 0.73 9 78 0.42 7.53 0.68 91.75 128
205047 340 0.41 0.72 5 71 0.44 0.57 2.13 93.46 139
206326 336 0.40 0.70 -24 83 0.38 8.04 5.38 85.37 193
206573 334 0.42 0.72 -13 95 0.34 37.95 21.80 38.10 178
206581 332 0.44 0.79 -14 103 0.32 43.83 26.48 27.90 158
207696 336 0.38 0.67 10 91 0.34 21.74 27.92 49.32 212
207944 323 0.44 0.80 0 118 0.26 62.17 1.98 35.26 184
207951 322 0.44 0.68 -33 122 0.45 81.48 5.59 12.85 100
209197 333 0.41 0.77 1 90 0.40 30.92 29.71 38.85 151
209403 332 0.38 0.55 -13 88 0.55 64.75 35.25 0.00 109
209460 346 0.45 0.97 -9 86 0.18 87.33 1.16 7.45 275
209486 335 0.46 0.89 18 80 0.29 45.80 6.27 46.94 207
209494 320 0.44 0.70 -19 123 0.39 93.33 1.13 5.42 143
210955 327 0.52 0.70 15 117 0.34 70.71 27.77 1.35 130
211599 327 0.54 0.72 11 109 0.29 72.33 21.54 5.87 149

Table D.1: Selected variables for regression analysis for each catchment

D.2. Temporal case
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48 D. Overview calculated climate and land cover variables

SIl i q AI φ RC grass forest cropland τsnow snow-on Sr
station window

- - days - % % % days day of year mm

204768 0 0.40 0.71 80.4 0.39 4.47 2.23 93.20 53.33 333.0 139.65
1 0.46 0.66 -12.2 0.42 4.47 2.23 93.20 74.67 325.0 220.11
2 0.41 0.64 -0.4 0.36 4.47 2.35 92.87 59.33 339.0 161.44
3 0.43 0.74 -14.4 0.37 4.47 2.79 92.27 106.33 335.0 207.43

204784 0 0.41 0.71 82.8 0.44 7.03 14.38 77.96 54.00 334.0 159.79
1 0.47 0.65 3.6 0.43 7.03 9.91 82.41 71.67 339.0 193.42
2 0.41 0.63 12.4 0.38 7.18 7.74 83.65 74.50 334.0 138.80
3 0.42 0.73 -15.2 0.39 7.14 6.51 84.58 85.00 336.0 181.99

204834 0 0.40 0.70 65.4 0.46 15.76 33.74 50.34 56.67 333.0 158.21
1 0.46 0.65 -4.6 0.47 15.76 33.74 50.27 77.33 329.0 144.23
2 0.45 0.61 -20.8 0.46 15.76 33.70 49.89 76.00 333.0 105.24
3 0.48 0.69 -39.4 0.44 15.76 33.66 49.78 121.67 316.0 139.54

204891 0 0.45 0.57 121.4 0.55 40.21 54.81 4.87 109.33 307.0 82.96
1 0.45 0.55 7.0 0.58 40.31 54.60 4.93 139.67 305.0 83.21
2 0.52 0.51 3.4 0.55 40.43 54.30 5.08 112.00 318.0 59.31
3 0.49 0.56 -40.6 0.52 40.52 54.15 4.92 140.33 313.0 86.22

204917 0 0.46 0.61 70.0 0.47 34.71 60.28 4.80 114.00 305.0 153.39
1 0.43 0.57 -36.6 0.45 36.70 57.78 5.29 140.00 305.0 162.96
2 0.54 0.53 -1.6 0.41 38.12 56.05 5.30 116.00 315.0 160.72
3 0.48 0.58 -36.4 0.43 38.16 55.80 5.14 139.00 312.0 214.91

204925 0 0.49 0.69 43.4 0.43 26.65 71.05 2.31 80.33 322.0 101.90
1 0.40 0.65 27.0 0.50 29.67 67.63 2.68 97.67 328.0 97.98
2 0.54 0.62 -3.8 0.47 32.84 63.76 3.27 95.67 329.0 65.26
3 0.48 0.66 -7.0 0.43 33.24 63.25 3.26 141.33 314.0 76.71

204958 0 0.44 0.77 91.4 0.39 0.68 6.93 92.45 52.33 335.0 142.13
1 0.46 0.70 -3.4 0.41 0.68 7.86 90.73 75.00 339.0 155.73
2 0.42 0.67 74.6 0.40 0.68 7.63 89.88 46.67 342.0 109.24
3 0.40 0.75 -3.2 0.41 0.68 7.63 89.50 85.67 345.0 118.91

205047 0 0.41 0.76 12.2 0.42 2.13 0.47 95.27 52.67 334.0 164.91
1 0.48 0.68 3.4 0.46 2.13 0.47 94.89 71.67 330.0 160.92
2 0.42 0.65 46.4 0.44 2.13 0.52 92.91 72.50 334.0 123.05
3 0.42 0.78 -29.2 0.44 2.13 0.71 91.96 80.00 338.0 155.11

206326 0 0.40 0.73 22.2 0.41 5.34 10.79 82.53 54.33 333.0 202.07
1 0.46 0.67 4.0 0.37 5.34 6.90 86.31 82.33 329.0 212.30
2 0.42 0.65 5.2 0.35 5.41 5.91 85.89 65.33 339.0 169.94
3 0.43 0.75 -40.4 0.33 5.39 5.44 85.90 106.67 335.0 230.76

206573 0 0.50 0.76 37.8 0.33 21.00 38.03 40.43 72.33 330.0 203.43
1 0.43 0.71 -1.6 0.34 21.72 38.54 38.71 93.67 329.0 156.78
2 0.51 0.66 25.2 0.35 21.94 38.07 37.14 79.00 335.0 134.95
3 0.45 0.73 3.0 0.31 22.08 37.66 36.99 137.33 316.0 187.03

206581 0 0.51 0.82 -14.6 0.29 26.10 44.50 28.80 103.67 307.0 149.22
1 0.45 0.74 1.6 0.33 26.29 44.22 28.62 132.00 305.0 118.70
2 0.48 0.72 29.2 0.32 26.40 43.87 27.46 78.33 328.0 137.62
3 0.51 0.81 -28.6 0.30 26.75 43.35 27.23 134.00 314.0 190.89

207696 0 0.44 0.68 57.4 0.34 24.89 27.81 46.88 50.33 338.0 197.59
1 0.42 0.67 -5.4 0.38 25.93 24.52 49.09 82.67 339.0 229.93
2 0.43 0.66 -30.2 0.33 28.93 19.33 50.48 71.00 338.0 236.76
3 0.41 0.68 -24.0 0.34 29.69 18.61 50.16 111.67 339.0 187.20

207944 0 0.51 0.84 -11.4 0.26 1.80 64.09 33.83 89.67 307.0 169.99
1 0.47 0.77 -21.6 0.28 1.84 63.16 34.61 136.00 305.0 205.55

Continued on next page
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SIl i q AI φ RC grass forest cropland τsnow snow-on Sr
station window

- - days - % % % days day of year mm

2 0.49 0.77 -0.4 0.25 2.09 61.37 35.84 102.67 319.0 162.26
3 0.53 0.76 24.2 0.24 2.09 61.12 36.01 139.67 312.0 200.97

207951 0 0.50 0.71 -2.8 0.44 4.80 83.97 11.15 93.33 305.0 109.65
1 0.46 0.65 -28.4 0.47 4.96 83.27 11.68 136.00 304.0 66.23
2 0.50 0.65 -19.0 0.41 6.10 80.18 13.64 113.00 306.0 80.79
3 0.56 0.66 -48.4 0.46 6.10 79.82 14.00 138.67 312.0 70.42

209197 0 0.49 0.80 -10.0 0.40 24.93 42.53 32.19 71.00 329.0 160.87
1 0.45 0.76 -16.4 0.42 28.00 34.01 37.64 76.00 325.0 187.05
2 0.42 0.72 46.8 0.40 30.77 27.19 41.44 85.00 330.0 144.57
3 0.50 0.73 -22.2 0.40 30.95 27.00 41.37 133.67 314.0 113.82

209403 0 0.47 0.58 9.8 0.59 32.32 67.68 0.00 67.00 333.0 132.05
1 0.43 0.53 -4.6 0.57 33.60 66.40 0.00 87.67 324.0 119.44
2 0.41 0.55 -9.6 0.56 35.67 64.33 0.00 73.33 329.0 64.49
3 0.44 0.51 -29.0 0.49 35.67 64.33 0.00 127.00 314.0 80.41

209460 0 0.60 1.03 -81.8 0.16 1.16 85.23 11.43 36.67 341.0 262.27
1 0.54 0.90 -16.4 0.25 1.16 88.76 7.36 59.00 342.0 226.18
2 0.53 0.98 15.6 0.13 1.16 88.33 6.12 49.67 343.0 278.69
3 0.66 0.95 -4.6 0.16 1.16 87.25 6.01 48.00 339.0 284.78

209486 0 0.57 0.91 -29.0 0.26 6.25 48.36 45.14 52.00 333.0 173.41
1 0.57 0.87 -7.4 0.29 6.25 46.16 47.01 88.00 325.0 224.40
2 0.47 0.89 36.6 0.27 6.25 44.79 47.64 53.00 340.0 198.51
3 0.58 0.84 -42.8 0.30 6.25 44.79 47.45 108.67 320.0 216.98

209494 0 0.47 0.76 -67.6 0.35 1.02 93.90 5.09 108.33 305.0 158.66
1 0.46 0.63 4.4 0.39 1.11 93.52 5.37 137.33 304.0 106.65
2 0.50 0.68 -8.6 0.39 1.17 93.08 5.56 100.67 308.0 146.00
3 0.53 0.68 -10.2 0.44 1.17 93.04 5.56 137.67 312.0 146.85

210955 0 0.55 0.67 -10.0 0.33 24.54 74.23 1.15 92.00 324.0 136.38
1 0.52 0.69 21.0 0.32 26.65 72.05 1.18 128.67 305.0 103.60
2 0.55 0.77 11.6 0.31 29.25 69.25 1.22 107.67 326.0 138.11
3 0.51 0.70 18.8 0.32 29.26 69.00 1.38 148.00 313.0 133.78

211599 0 0.56 0.69 -15.0 0.30 18.16 77.59 4.19 79.67 324.0 159.29
1 0.53 0.71 45.4 0.29 20.14 74.74 5.00 123.33 305.0 127.54
2 0.56 0.79 23.0 0.28 23.08 69.86 6.72 87.33 328.0 144.77
3 0.52 0.72 36.6 0.26 23.20 69.63 6.78 140.00 313.0 182.81

Table D.2: Selected variables for regression analysis based on the windowed dataset for each catchment
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Table E.1: Overview of the studied variables in this study. All variables are yearly averages over the entire time-series and catchment
averaged. Unless stated otherwise.

Symbol Explanation
AI Aridity Index
tpeak,l i q Day of the year highest liquid water input
tpeak,E Day of the year highest evaporation
PSummer Precipitation in summer
SIl i q Seasonality index of liquid water input
SI Seasonality index of precipitation
slope Slope
τsnow Snow period between snow-on and snow-off
τN DV I Period of NDVI above threshold
NDVI onset Day of the year NDVI above threshold
elevation Elevation
SSW E Amount of water equivalent snow cover
SSW E ,max Maximum amount of water equivalent snow cover over time-series
E_on_10p Day of the year that 10% of maximal evaporation is reached
RC Run-off Coefficient
absφ Absolute phase lag between tpeak,l i q and tpeak,E in days
φ Phase lag between tpeak,l i q and tpeak,E in days
P Total Precipitation
Pl i q Total liquid water input
T Temperature
φsnow Phase lag between E_on_10p and snow-on in days
snow-on Day of the year that snow is present for the first time
snow-off Day of the year snow is not for more than 7 days
% forest Percentage of forest
% cropland Percentage of cropland
% grass Percentage of grassland



F
Overview results regression analysis

F.1. Spatial case

F.1.1. Accepted models

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 4.26 36.72 0.0 - 41.25 0.0 0.8 0.76
SIl i q -20.99 4.84 -4.34 0.0 1.29 41.25 0.0 0.8 0.76
RC -43.94 4.84 -9.08 0.0 1.29 41.25 0.0 0.8 0.76

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 5.44 28.76 0.00 - 21.83 0.0 0.68 0.58
snow-on 12.00 5.60 2.14 0.04 1.06 21.83 0.0 0.68 0.58
RC -31.17 5.60 -5.56 0.00 1.06 21.83 0.0 0.68 0.58

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 5.48 28.54 0.00 - 21.36 0.0 0.67 0.57
τsnow -11.34 5.50 -2.06 0.05 1.01 21.36 0.0 0.67 0.57
RC -33.02 5.50 -6.00 0.00 1.01 21.36 0.0 0.67 0.57

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 5.68 27.54 0.00 - 19.27 0.0 0.65 0.51
RC -35.58 5.76 -6.18 0.00 1.03 19.27 0.0 0.65 0.51
forest -9.50 5.76 -1.65 0.12 1.03 19.27 0.0 0.65 0.51
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F.1.2. Rejected models

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 5.82 26.92 0.0 - 18.0 0.0 0.63 0.5
RC -33.78 5.82 -5.81 0.0 1.0 18.0 0.0 0.63 0.5
cropland 7.78 5.82 1.34 0.2 1.0 18.0 0.0 0.63 0.5

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 4.23 37.02 0.00 - 28.39 0.0 0.8 0.75
SIl i q -22.62 5.01 -4.52 0.00 1.40 28.39 0.0 0.8 0.75
RC -47.28 5.62 -8.41 0.00 1.77 28.39 0.0 0.8 0.75
grass 5.64 4.95 1.14 0.27 1.37 28.39 0.0 0.8 0.75

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 4.30 36.37 0.00 - 27.19 0.0 0.8 0.74
SIl i q -23.75 5.97 -3.98 0.00 1.92 27.19 0.0 0.8 0.74
RC -45.38 5.20 -8.73 0.00 1.46 27.19 0.0 0.8 0.74
cropland -4.24 5.26 -0.81 0.43 1.49 27.19 0.0 0.8 0.74

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 4.39 35.69 0.00 - 25.98 0.0 0.79 0.72
SIl i q -21.03 5.12 -4.10 0.00 1.37 25.98 0.0 0.79 0.72
φ 0.15 4.78 0.03 0.98 1.19 25.98 0.0 0.79 0.72
RC -43.91 5.08 -8.65 0.00 1.34 25.98 0.0 0.79 0.72

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 4.37 35.82 0.00 - 26.21 0.0 0.79 0.72
SIl i q -22.23 6.06 -3.67 0.00 1.93 26.21 0.0 0.79 0.72
RC -44.21 5.02 -8.81 0.00 1.32 26.21 0.0 0.79 0.72
forest 1.92 5.42 0.36 0.73 1.54 26.21 0.0 0.79 0.72

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 156.52 4.31 36.30 0.00 - 27.08 0.0 0.8 0.71
SIl i q -21.89 5.03 -4.35 0.00 1.36 27.08 0.0 0.8 0.71
AI -6.84 8.88 -0.77 0.45 4.25 27.08 0.0 0.8 0.71
RC -50.30 9.59 -5.24 0.00 4.95 27.08 0.0 0.8 0.71
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F.2. Temporal case

F.2.1. Accepted models

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.78 40.96 0.0 - 48.15 0.0 0.53 0.51
RC -30.98 3.82 -8.10 0.0 1.03 48.15 0.0 0.53 0.51
snow-on 15.96 3.82 4.17 0.0 1.03 48.15 0.0 0.53 0.51

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.83 40.40 0.0 - 45.75 0.0 0.52 0.49
RC -35.79 3.87 -9.24 0.0 1.02 45.75 0.0 0.52 0.49
forest -14.87 3.87 -3.84 0.0 1.02 45.75 0.0 0.52 0.49

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.85 40.14 0.0 - 44.63 0.0 0.51 0.48
RC -33.25 3.85 -8.63 0.0 1.0 44.63 0.0 0.51 0.48
cropland 14.16 3.85 3.68 0.0 1.0 44.63 0.0 0.51 0.48

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.90 39.66 0.0 - 42.61 0.0 0.5 0.48
RC -31.46 3.95 -7.97 0.0 1.03 42.61 0.0 0.5 0.48
τsnow -13.25 3.95 -3.36 0.0 1.03 42.61 0.0 0.5 0.48

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 4.07 38.00 0.00 - 35.81 0.0 0.46 0.44
AI 13.49 7.00 1.93 0.06 2.96 35.81 0.0 0.46 0.44
RC -22.55 7.00 -3.22 0.00 2.96 35.81 0.0 0.46 0.44

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.72 41.57 0.00 - 34.2 0.0 0.55 0.52
φ -7.00 3.79 -1.85 0.07 1.04 34.2 0.0 0.55 0.52
RC -30.01 3.80 -7.89 0.00 1.05 34.2 0.0 0.55 0.52
snow-on 17.02 3.81 4.47 0.00 1.05 34.2 0.0 0.55 0.52

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.73 41.49 0.00 - 33.95 0.0 0.54 0.51
RC -33.03 3.95 -8.36 0.00 1.12 33.95 0.0 0.54 0.51
forest -8.28 4.72 -1.76 0.08 1.60 33.95 0.0 0.54 0.51
snow-on 10.97 4.72 2.32 0.02 1.61 33.95 0.0 0.54 0.51
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Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.74 41.36 0.00 - 33.59 0.0 0.54 0.51
RC -31.54 3.80 -8.29 0.00 1.03 33.59 0.0 0.54 0.51
cropland 7.46 4.63 1.61 0.11 1.54 33.59 0.0 0.54 0.51
snow-on 11.50 4.69 2.45 0.02 1.58 33.59 0.0 0.54 0.51

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.76 41.15 0.00 - 32.98 0.0 0.54 0.5
RC -33.92 3.91 -8.67 0.00 1.08 32.98 0.0 0.54 0.5
forest -11.27 4.20 -2.68 0.01 1.25 32.98 0.0 0.54 0.5
τsnow -8.43 4.21 -2.00 0.05 1.25 32.98 0.0 0.54 0.5

F.2.2. Rejected models

Variable Coefficient Standard Error t-value p-value VIF F-test model-p-value R2
ad j loocv

Const 154.63 3.78 40.95 0.00 - 32.39 0.0 0.53 0.51
AI 6.55 6.75 0.97 0.34 3.20 32.39 0.0 0.53 0.51
RC -25.82 6.55 -3.94 0.00 3.01 32.39 0.0 0.53 0.51
snow-on 14.90 3.98 3.74 0.00 1.11 32.39 0.0 0.53 0.51
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