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Abstract 

Currently, in the conceptual envelope design of sports facilities, multiple engineering performance 

feedbacks (e.g. daylight, energy and structural performance) are expected to assist architectural design 

decision-making. In general, it is known as Building Performance Optimization in the conceptual 

architectural design phase. Essentially, it tends to be a Multi-objective and Multidisciplinary Design 

Optimization problem. Although the potential of Multi-objective Optimization and Multidisciplinary 

Design Optimization in handling this problem has been demonstrated in different industrial fields, 

there are still some significant gaps in their current application to the field of building design. 

The ultimate goal of our research is to find out an effective and efficient Computational Design 

Optimization approach, for architects, which is suitable for the conceptual design of sports building 

envelopes. As parts of the final goal, this paper aims to: (1) set up a meaningful benchmark case and 

method for the comparison of different Multidisciplinary Design Optimization approaches in future 

research; (2) propose an integrated Computational Design Optimization process to deal with the 

benchmark case using the benchmark method; and (3) test the overall process through a hypothetical 

and simplified case study (i.e. a sports hall with a spherical roof). Important aspects of each objective 

above are highlighted respectively, and thereby bridging the current gaps. Finally, discussion and 

future research are given. 

 

Keywords: computational design optimization, multi-objective optimization, multidisciplinary design 

optimization, sports building envelopes, building performance optimization, conceptual architectural 

design, daylight performance, energy performance, structural performance. 
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1. Introduction 

Computational Design Optimization (CDO) is not a new term for structural engineers. It was first 

introduced to structural optimization domain in 1990s to encompass all the numerical methods used 

for the optimum design of engineering systems (Arora [3]). Compared to manual, trial-and-error 

optimization, the biggest advantage of CDO is that it can be used to explore a larger number of design 

alternatives and optimize over a larger number of design variables than would otherwise be feasible. 

In current context, it is also known as Computational Optimization (Koziel and Yang [17]), which 

consists of three major components: mathematical model, simulator and optimizer, based upon the 

idea of exploiting the power of numerical simulations and optimizations. 

Single-objective Optimization (SOO) is the most basic technique in CDO field. However, to deal with 

multiple objectives from different disciplines with SOO, a sequential design optimization process is 

required, within which each objective of a specific discipline is optimized in isolation in a 

predetermined order, assuming that other designs remain fixed (Figure 1, left). This can cause at least 

two significant limitations: (1) long design cycle time due to impossibility of concurrent design 

optimization; and (2) sub-optimal results due to low degree of design freedom in late design phases.  

To overcome these limitations, Multi-objective Optimization (MOO) has been paid increasing 

attention and applied to the building design domain in recent years (Evins [8]). MOO is based on a 

concurrent design optimization process (Figure 1, left), which allows designers to incorporate multiple 

conflicting objectives and to specify the trade-offs between them. Instead of obtaining one single 

optimal solution (by using SOO), a set of non-dominated solutions (Pareto frontier) can be derived by 

using MOO. However, as a result of increasing complexity of systems, MOO problems may involve 

different disciplines simultaneously, instead of being constrained in one specific discipline. This may 

lead to (1) the rapid increase of problem scale and time consumed for solving these problems; and (2) 

inconsistency between the highly centralized design optimization process and the organizational 

structure of an interdisciplinary design team. 

Whereas, Multidisciplinary Design Optimization (MDO) has been demonstrated as a powerful tool to 

tackle the above potential challenges, and well documented in many engineering industries, especially 

in the aerospace industry. MDO has raised a broad attention since the publication of the white papers 

provided in 1991 and 1998 by the AIAA MDO Technical Committee [2] and Giesing and Barthelemy 

[16]. It is now widely used in automobile, shipbuilding, mechanical industries etc. Recently, it has 

broken into the field of building design in the Architecture, Engineering and Construction (AEC) 

industry. Typical research are found in Flager et al. [9, 11], Flager and Haymaker [10], Geyer [13], 

Geyer and Beucke [14], Geyer and Rueckert [15], Gerber et al. [12], Lin and Gerber [18], Yang and 

Bouchlaghem [20] etc.  

By using MDO, the potential challenges caused by the increase of interacting disciplines can be 

solved. The biggest advantage of MDO lies in its abilities of "decomposition" and "coordination", 

Figure 1: Sequential and Concurrent design optimization process (left),  

Relationship between SOO, MOO, MDO and M-MDO (right) 
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which supports Disciplinary Autonomy based on a Concurrent Design Optimization Process. MDO 

approaches are grouped into two categories, i.e. single-level and bi-level frameworks. In general, 

single-level MDO is usually applied to only small, conceptual level problems, while bi-level MDO is 

more suitable for the large, complex systems (Brown and Olds [6]). MDO allows designers to 

"decompose" a complex system into a set of smaller and less complex subsystems, then distribute 

analysis (analysis autonomy of single-level MDO) and possibly optimization (decision autonomy of 

multi-level MDO) to subsystems instead of centralizing them, and finally "coordinate" couplings or 

interactions among subsystems to reach a global optimum. The main challenges lie in how to 

distribute analysis and/or optimization, and coordinate couplings or interactions among subsystems.  

1.1. Current problems in Multi-objective and Multidisciplinary Design Optimization (M-MDO) 

for the conceptual design of sports building envelopes 

Currently, in the conceptual design of sports building envelopes, multiple engineering performance 

feedbacks (e.g. daylight, energy and structural performance) are expected to assist architectural design 

decision-making. In general, it is known as Building Performance Optimization in the conceptual 

architectural design phase. Essentially, it involves multiple objectives from different disciplines, and 

each discipline may have its own objective to optimize. Thus, it tends to be a Multi-objective and 

Multidisciplinary Design Optimization (M-MDO) problem, as shown in Figure 1 (right). To tackle M-

MDO problems, combining the complementary advantages of MOO and MDO is important, which is 

also the basic idea of our previous research (Yang et al. [19]). Although the potential of MOO and 

MDO has been demonstrated in the field of building design, there are still some observed and 

significant gaps in the current research, thereby most of current design practice is still based on the 

sequential design optimization process using SOO. These gaps are summarized as follows:  

 Complexity of the dependency relationship between disciplines - coupled or uncoupled  

In aerospace industry, complex systems are governed by multiple coupled disciplines or made up of 

coupled components. They usually have very strong and complex dependency between various 

disciplines. In this case, the advantage of MDO is commonly appreciated in designing an aircraft. 

However, in AEC industry, multidisciplinary coupled systems are not paid enough attention. The most 

frequently selected cases have no dependency relationship between disciplines, which are independent 

or uncoupled. Thus, sufficient case studies are lacking which demonstrate how to deal with the 

couplings between disciplines to take advantage of MDO. 

 Flexibility of proposed tools and procedure, and their practicability from architects' point of view 

The tools and procedure of M-MDO in AEC industry should be flexible enough to explore complex 

geometry and designated for architects (not for internal developers or researchers only), so that they 

can be readily used by design professionals in practice. However, most proposed tools and procedure 

in current research are based on some techniques and platforms unfamiliar to architects, and/or have 

relatively weak ability to deal with complex parametric geometry. 

 Post-processing and interpretation of optimization results 

Extracting relevant information from optimization results and obtaining sufficient insight into the 

system of interest are important for reducing the complexity of optimization problems and providing 

better designs. However, many current research tends to pay less attention on the post-processing and 

interpretation of optimization results. They usually stop after obtaining the Pareto front. 
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As a whole, the ultimate goal of our research is to find out an effective and efficient CDO approach, 

for architects, which is suitable for the conceptual design of sports building envelopes. As parts of the 

final goal, this paper presents: 

 a benchmark case and method for the future comparison of different MDO approaches. The 

benchmark case contains couplings between disciplines; and the most basic MDO approach - 

Multidisciplinary Feasible (MDF) - is adopted as the benchmark method (Section 2);  

 an integrated CDO process based on Rhino (Mc Neel) and its plug-in Grasshopper and 

modeFRONTIER (ESTECO) to deal with the benchmark case using the benchmark method. 

Within the process, MOO is applied to the formerly described MDO approach (Section 3); 

 a test on the overall process through a hypothetical and simplified case study - a sports hall with 

a spherical roof. Post-processing and interpretation of optimization results are highlighted in the 

case study (Section 4). 

Finally, discussion and future research are given in the last section. 

2. Benchmark case and method 

In order to identify a CDO approach suitable for the conceptual design of sports building envelopes, 

different MDO approaches can be considered. Therefore, setting up a benchmark method for a 

specific case is helpful for comparison in future research. Before moving to that, it is worth knowing 

typical cases in aerospace and AEC industries, respectively. 

2.1. Typical cases in aerospace and AEC industries 

2.1.1. Notations 

z: design variables, including zsh, z1, z2, z3. The subscript sh represents the design variables which are 

shared between the different subsystems (global design variables); and the subscripts 1,2,3 denote the 

design variables which are specific to one subsystem (local design variables). 

y: coupling variables, including y21, y31, y12, y32, y13, y23. These variables are used to link the different 

subsystems. The double indexation y21 denotes that this coupling variable is transmitted from the 2st 

subsystem to the 1st subsystem, and so on. 

x: state (or disciplinary) variables, including x1, x2, x3. These variables can vary during the disciplinary 

analysis in order to find an equilibrium in the state (or disciplinary) equations. They can be defined by 

either explicit functions (which is the rare case in engineering applications) or implicit functions. The 

subscripts 1,2,3 denote the state variables that are specific to one subsystem. 

f and f1, f2, f3: objective functions. f represents the objective function usually used in aerospace 

industry, such as a cost criterion or a mass (e.g. gross lift-off weight or payload mass). f1, f2, f3 

represent the objective functions chosen from daylight, energy and structure disciplines in the AEC 

industry (e.g. Spatial Daylight Autonomy, Energy Use Intensity, Total Mass of a Structure). 

g: design inequality constraints. The subscripts 1,2,3 denote the constraints that are specific to one 

subsystem. 

Moreover, in Figure 2 (left) and Figure 3, couplings above the diagonal cells represent feed forward 

couplings (blue lines), while the ones below represent feed backward couplings (green lines). 
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2.1.2. MDO problems in aerospace industry 

In aerospace industry, different disciplines (e.g. Aerodynamics, Structure and Trajectory) are usually 

strongly coupled with each other in nature. This means that both feed forward and feed backward 

couplings commonly exist between disciplines (Figure 2, left), as the example in Adami et al. [1]. 

Among all MDO approaches, focus is given here to MDF (Balling and Sobieszczanski-Sobieski [5]), 

which is the most basic single-level MDO approach. In this approach, for given design variables (i.e. 

zsh, z1, z2, z3), multidisciplinary analysis executes in iterations to obtain outputs (i.e. x1, x2, x3, y21, y31, 

y12, y32, y13, y23), which are used to evaluate the single objective function (i.e. f) and constraints (i.e. g1, 

g2, g3). In this method, "Multidisciplinary Feasibility" of the solution in each design iteration 

(optimization cycle) is guaranteed, because a fully multidisciplinary analysis is enforced. It should be 

noted that, in this case, the term "feasibility" does not imply the satisfaction of design constraints but 

that of individual disciplinary equations and coupling equations.  

The main advantage of MDF lies in its simplicity. Unlike other MDO approaches, MDF determines 

the values of the coupling variables by multidisciplinary analysis, instead of the optimizer which 

requires disconnection of the couplings, and all governing equations are solved in analysis iterations 

until the coupling variables converge. Thus, system decomposition is not required in MDF and its 

implementation is relatively easy. However, the modularity of MDF is poor, each discipline has to 

wait the previous one to perform its task. Thus, it brings obstacles to parallel computation, and is less 

compatible with the organizational structure of an interdisciplinary design team. In general, MDF is 

applicable to the optimization problems in which the different subsystems can be quickly evaluated 

during multidisciplinary analysis (Balesdent et al. [4]). In fact, considering the time-consuming 

multidisciplinary analysis in aerospace industry and other disadvantages of MDF, it is not an idea 

approach. Nevertheless, it is still a good basis or benchmark for developing more advanced MDO 

approaches to take advantage of system decomposition (which is not the focus of this paper). 

2.1.3. MDO problems in AEC industry 

Differently than in aerospace, the frameworks commonly used in AEC industry do not usually contain 

couplings between disciplines. Normally, different disciplines (e.g. Daylight, Energy and Structure) 

Figure 2: MDO problems in aerospace industry (left), MDO problems in AEC industry (right) 
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are entirely uncoupled in many current case studies, which means parallel computation for these 

independent, single-discipline analysis can be easily implemented (Figure 2, right).  

When disciplines are uncoupled, both global and local design variables (i.e. zsh, z1, z2, z3) are given 

respectively to each corresponding discipline, then each discipline can execute their own analysis 

codes and return the outputs (i.e. x1, x2, x3) to evaluated multiple objective functions (i.e. f1, f2, f3) and 

constraints (i.e. g1, g2, g3). "Multidisciplinary feasibility" is also guaranteed in this method. Essentially, 

the framework without interdisciplinary couplings can be considered as the most simplified version of 

MDF approach. Its complexity level is much lower than that implemented in the aerospace industry, 

and this level of complexity is enough for some but not all cases in building design. 

For an entirely uncoupled MDO framework, advantages in terms of Disciplinary Autonomy are 

obvious (e.g. allowing parallel computation and being compatible with the organizational structure of 

an interdisciplinary design team). However, potential couplings between different disciplines (e.g. 

daylight and energy) are sometimes important for specific cases. Neglecting them may lead to the 

oversimplification and underestimation of the complexity of AEC problems. This motivates us to 

rethink about the potential couplings that may exist between AEC disciplines, thereby form a more 

meaningful and complex benchmark case and benchmark method. 

2.2. Benchmark case and method 

As an example of cases in which disciplines are coupled, a dependency relationship consisting in 

between daylight and energy analyzers is explained here following and illustrated in Figure 3. The 

dependency relationship is represented by the coupling variable y12, which is an output generated by 

the daylight analyzer and used as an input for the energy analyzer. The value of this coupling variable 

indicates a quantification of time in which electrical lighting is needed (when daylight is not 

sufficient). It is required by the energy analyzer to calculate the energy use for electrical lighting.  

Therefore, in the analysis module of this benchmark case, only one feed forward coupling (i.e. y12) 

consists in between daylight and energy analyzers, forming a sequential analysis without iterations 

(marked in red in Figure 3), and the structure analyzer is independent from others. In the optimization 

module, MOO will be conducted. Thus, the overall framework illuminates the benchmark method.  

Figure 3: Benchmark case and method 
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3. Proposed process and platforms 

3.1. Overall process 

In this section, a CDO process that integrates parametric modeling, performance assessment and 

computational optimization modules is proposed, based on the previous benchmark case and method. 

The overall process is illustrated by using the Design Structure Matrix (DSM) in Figure 4. DSM is a 

simple and compact tool to manage complex systems. In this diagram, computational optimization, 

parametric modeling and performance assessment modules are presented in turn in the diagonal from 

top-left to bottom-right. Horizontal lines from a cell represent outputs produced by that cell, and 

vertical lines to a cell represent inputs required by that cell.  

 Computational optimization module:  

Outputs from this module are values of design variables. In Figure 4, they are differentiated by colors 

according to the number of disciplines by which they are shared. Inputs to this module are simulation 

results of each discipline. They are fed to the optimizer to evaluated objective functions and 

constraints of the optimization problem.  

 Parametric modeling module:  

The (geometric) parametric modeling is handled by architects. In the optimization process, this 

module receives values of global/shared design variables given by the optimizer, and generates 

geometry required by different analyses of engineering disciplines, automatically. 

 Performance assessment modules (marked in grey):  

A feed forward coupling, marked in blue dash lines, occurs between daylight and energy analyzers, 

while the structure analyzer is independent from others, according to the benchmark case. Moreover, 

before running simulations of each discipline, additional processing on geometry is usually required to 

construct an eligible discipline-specific "Analysis Model". For instance, in daylight and energy 

simulations, NURBS surfaces are not accepted. Thus, NURBS surfaces should be converted to mesh 

surfaces in a way that the original geometry can be properly approximated. And, the original geometry 

is also used as a reference to generate the structural analysis model as well. 

Figure 4: Design Structure Matrix (DSM) of the benchmark method for the benchmark case 
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3.2. Platforms 

In the overall process, Rhino/Grasshopper and modeFRONTIER platforms are integrated (Figure 5). 

Grasshopper is a visual programming language tightly integrated with Rhino 3D modeling tools. It is 

famous for its ability of handling complex geometries but requires no knowledge of programming or 

scripting. Thus, it is popular within architects. While, modeFRONTIER is an integration platform for 

M-MDO used in many engineering industries. It links with third party engineering tools, enables the 

automation of the design simulation process, and facilitates analytic decision making. 

They are integrated through the use of an "Interface", which is a customized Grasshopper plug-in that 

enables them to communicate with each other and run automatically. In the process, all the 

simulations are based on the Grasshopper platform by using its plug-ins. For example, "Ladybug and 

Honeybee" are for the daylight and energy simulations, and "Karamba" is for the structural analysis. It 

is worth noting that the actual simulation engines for daylight and energy are Daysim and EnergyPlus 

respectively. Moreover, the modeFRONTIER platform carries out the optimization iteratively by 

analyzing the simulation outputs and adjusting the values assigned to the input variables. The output 

variables are used to define objectives and/or constraints of a design problem, and Design of 

experiments (DOE) assigns initial values to the input variables to start. Within the optimization 

iterations, smart algorithms (e.g. NSGA-II) play a key role in evaluating improvements of each 

solution to obtain the "fitness", based on which new values are suggested to the input variables. 

4. Case study and results 

4.1. Description of the case 

To test the proposed overall process and platforms, a hypothetical and simplified case study was 

conducted. This case is assumed to be an one-story sports hall with a rectangular plan and a spherical 

roof (Figure 6), located in Guangzhou, in south China. And the windows are constrained to be 

allocated on the north-facing wall. The reasons for developing such a case lie in: (1) the large volume 

and span are similar to a typical indoor sports hall (e.g. 40m*70m*25m, without grandstand); and (2) 

this case raises a challenge of handling non-planar surfaces, as mentioned in Section 3. 

Figure 5: The integration of Rhino/Grasshopper and modeFRONTIER platforms 
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4.2. Design variables 

Design variables and ranges of the case are listed in Figure 7 (left). All of them are differentiated by 

the colors, as mentioned in Section 3, according to the number of disciplines by which they are shared. 

The total floor area of the hall is constant (2800 m
2
), while the aspect ratio of the plan is changeable 

with the change of its dimensions in the X axis. The term "Roof_height" refers to the vertical height 

difference between the lowest point of the spherical roof to its highest point, which actually represents 

the convexity of the roof. The roof will maintain a spherical shape while the plan and convexity 

change. Additionally, the connectivity (i.e. topology) of the spatial structure in this case is varied with 

the change of the plan automatically, and the maximum grid size is 3 meters.  

4.3. Objectives and constraints 

Daylight, energy and structure performance should be assessed against their important criteria (Figure 

7 right and Figure 8). And these performance criteria from different disciplines are naturally used to 

construct objectives and constraints of the optimization problem. 

To take full advantage of daylight, Spatial Daylight Autonomy (sDA) was chosen to form an objective 

(i.e. maximizing sDA). It is a metric that describes how much of a space receives sufficient daylight in 

one year. In LEED v4 specifically, sDA is defined as the percentage of floor area that receives at least 

300 lux for at least 50% of the annual operating hours.  

Energy Use Intensity (EUI), is one of the most basic way to benchmark a building’s energy efficiency 

or performance. It is defined as the energy consumption per unit of floor area (kWh/m
2
) of a building 

measured over one year, which facilitates direct comparison with other buildings, giving us a general 

idea of how energy efficient the building is. The objective is to minimize EUI. Moreover, in this case, 

 

Figure 6: Original geometric model (left), daylight and energy analysis model (middle), 

structural analysis model (right) 

Disciplines 
Variable 

Names 
Unit 

Lower 

Bound 

Upper 

Bound 
Step 

Variable 

Type 

Daylight 

Energy 

Structure 

Plan dimension 
in the X axis 

m 40 70 - cont. 

Roof_height m 1 9 - cont. 

Daylight 

Energy 
Glazing_ratio - 0.1 0.9 - cont. 

Structure 

Truss_depth m 2 5 - cont. 

Chord_diameter mm 250 400 50 discrete 

Chord_thickness mm 8 16 4 discrete 

Web_diameter mm 150 300 50 discrete 

Web_thickness mm 4 12 4 discrete 

Figure 7: Design variables and ranges of the case (left), sensitivity analysis (right) 

 

Factor 
sDA

[%] 

EUI

[%] 

Mass

[%] 

Plan dimension 

in the X axis 
23.0 23.5 9.0 

Roof_height 28.3 33.7 9.5 

Glazing_ratio 30.3 22.2 6.9 

Truss_depth 2.5 7.2 1.0 

Chord_diameter 5.1 4.6 18.1 

Chord_thickness 3.5 2.1 24.6 

Web_diameter 0.4 3.5 14.9 

Web_thickness 6.8 3.2 15.9 
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the "site EUI" metric was used, which refers to the total on-site energy use only (without accounting 

for the environmental impacts of energy sources); and the Coefficient of Performance (CoP) of heat 

pumps was set to 3, assuming that only electricity was used as a secondary energy source. 

Minimizing the Total Mass (TM) of a large-span roof structure is frequently selected as an objective 

of structural performance. In this case, the four corners of the spatial structure worked as supporters, 3 

kN/m
2
 dead load and 1.5 kN/m

2
 wind load were applied on the roof. Besides the total mass, a stiffness 

criterion - Service Limit State (SLS) - was included to form a structural design constraint. It was 

checked against maximum displacement of the roof to decide feasible solutions. 

4.4. Optimization execution and post-processing of results 

Before formally running the optimization, a proper optimization algorithm and its settings should be 

selected, as well as an initial start population. Thus, the original Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) developed by Deb et al. [7] was selected. The number of generations used 

was 50, and 10 designs were created by DOE using Latin Hypercube samplings as the initial 

generation. At this point, the optimization was ready to be run (Figure 9). 

Figure 8: Visualization of daylight/structural performance (left), and energy performance (right)  

Figure 9: Formally run the optimization in Rhino/Grasshopper and modeFRONTIER platforms 
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After 12.5 hours running on a laptop (Processor: Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz; 

RAM: 16GB), we stopped the process deliberately, considering that the temporary goal of this case is 

just testing the process, and that a full running (i.e. 500 solutions) may require more than 24 hours. 

Nevertheless, 245 solutions were obtained at the time we stopped it (each solution took 3 minutes on 

average), and 81 of them are unfeasible solutions that dissatisfy the design constraint.  

Having the data from the run, post-processing and interpretation of the results were highlighted in this 

case study. One appealing feature of modeFRONTIER consists in its comprehensive data analysis 

environment, which allows us to do statistical assessment of complex data sets in an effective way and 

visualize post-processing results in a meaningful manner. 

For an M-MDO problem, the most usual outcomes derived from the above data are a scatter 3D chart 

(Figure 10, left) and a parallel coordinate chart (Figure 11). The scatter 3D chart allows simultaneous 

visualization of 3 objective values of each solution, by plotting them in a 3D space. The plotted points 

are differentiated by colors, the black dots represent feasible solutions while the orange ones represent 

unfeasible solutions, and the Pareto optimal solutions are marked in green, which was gradually 

approaching to the red corner during the optimization process. The parallel coordinate chart shows the 

distribution of values of design variables and objectives, and each solution is presented by a polyline. 

By manipulating the ranges of design variables and objectives in this chart, it allows us to filter out the 

interesting solutions. 

 
Figure 11: Parallel coordinate chart 

   

Figure 10: Scatter 3D chart (left), scatter 2D chart between sDA and EUI (right) 



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2015, Amsterdam 

Future Visions 

 

Moreover, sensitivity analysis can help to identify the most important design variables in respect of 

objective functions, and thus screen out unimportant ones. In this case, the importance of each design 

variable was quantified as shown in Figure 7 (right). Specifically, the Plan dimension, Roof_height 

and Glazing_ratio have dominant effects on sDA and EUI as expected; while the diameter and 

thickness of the chords and webs have greater influence on the Total Mass of the roof structure than 

the Plan dimension and Roof_height; the Truss_depth has very low effects on all the three objectives.  

In addition, correlation analysis by using a scatter matrix chart (Figure 12) quantifies the linear 

correlation between design variables, objectives and constraints, which is helpful for us to understand 

their relationships. It also provides us opportunities to reduce the number of objectives if there is a 

very strong correlation between them, so as to reduce the dimension of the objective space. In the 

scatter matrix chart, numbers below the top-left to bottom-right diagonal show the Pearson cross-

correlation coefficients, while the corresponding scatter plots are showed above the diagonal. In this 

case, the correlation coefficient between sDA and EUI is -0.674 (marked in dark blue), which means 

they have a moderate negative correlation. Although the correlation coefficient is not strong enough to 

support removing one of the objectives, it is still worth knowing about the conflicting nature between 

sDA and EUI. By checking the corresponding scatter 2D chart (Figure 10, right), it is confirmed that 

sDA becomes better while EUI becomes worse, and sub-optimal solutions in terms of sDA and EUI 

can be Pareto optimal solutions in terms of all three objectives. What is more, the Total Mass is 

weakly correlated with sDA and EUI, the correlation coefficients are 0.237 and -0.100, respectively. 

4. Discussion and future research 

In general, to bridge the current gaps in the application of M-MDO to the field of building design, the 

following aspects are worth more attention: 

 Comparison of different MDO approaches applied to the multidisciplinary coupled systems in 

the conceptual architectural design; 

 Flexibility of proposed tools and procedure, and practicability from architects' point of view; 

 Post-processing and interpretation of optimization results. 

Figure 12: Scatter matrix chart 
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As parts of the final goal (i.e. finding out an effective and efficient CDO approach, for architects, 

which is suitable for the conceptual design of sports building envelopes), this paper has 

 Set up a benchmark case and method for the future comparison of different MDO approaches; 

 Proposed an integrated CDO process based on Rhino/Grasshopper and modeFRONTIER; 

 Tested the whole process by a hypothetical case study, and conducted some useful data analyses. 

Nevertheless, there are still some key techniques to be implemented and tested in future research. For 

instance, Response Surface Modeling (RSM) and Parallel Computing, which are both valid strategies 

to tackle heavy simulation processes. 
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