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Abstract

Biochemical reactions play a crucial role and tell us many about the behaviour of the biological
regulation processes . A lot of similar biochemical processes are discussed in several resources,
but the methods and approaches that have been used mostly differ. To make a nice overview
of the found methods we discuss the most important ones here. Besides we will apply several
methods of order reduction to describe the overall dynamics in a more compact way.

For modelling a set of biochemical reactions is rewritten as first order differential equations.
This set of first order differential equations defines the state space model and makes us able to
analyse the overall system where the corresponding biochemical reactions are involved. This
rewriting is based on mass-action kinetics and Michaelis-Menten (MM) theory. By looking at
the left and right nullspaces of the so called Stoichiometry matrix the conservation laws and
flux distribution in steady state can respectively be deduced. The systems we are looking at
can be distinguished in many different biochemical regulatory networks .

Examples of these networks can be found in gene expression, protein production and/or
hormone production. The system that includes all given biochemical reactions of the network
can be seen as a Coherent Feedforward Loop or CFFL. In synthetic biology these CFFLs
are studied to gain insight into the desired production/expression: think about medicine
production, agriculture and manufacturing. In biochemistry mostly a set of biochemical
reactions can be given as a family or combination of CFFLs. To realise this a so called
AND-gate or toehold switch is used.

Most of the sets of biochemical reactions can be reduced in order since a few of these reactions
are less relevant for the overall process or since the conservation laws define a plane within
the higher dimensional space in which the solutions lie. Mostly the conservation laws can
already be explained biologically with the given feedback mechanisms and cycles. Several
conservation laws can be found with mathematical concepts of e.g. Ordinary Differential
Equations and indeed these laws will imply the real biological conservation laws. There are
several ways to reduce the order of the system or to reduce the number of reactions involved
in the overall process. This depends on the structure of the biochemical regulatory network.

First it is shown that a system has conservation laws if the left null space of the Stoichiometry
matrix is not empty. If it is non-empty these laws can thus be used to reduce the system in
order equal to the dimension of this left nullspace.

Afterwards we have the option to reduce the system even more by applying the Quasi Steady
State Approach in a given network like the CFFL. This method suggests that some species
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ii Abstract

concentrations will reach its steady states much sooner than other species concentrations (if
we look at slow timescale). Therefore it is assumed that some species already have their
steady state at the beginning of the experiment. This is the so called classical QSSA.

Another way to reduce the system order is by applying the Kron reduction order method.
This method assumes a complexes network that reduces the complexes (rather seen as internal
nodes) and thus the number of reactions for the given system. By rewriting the update
equations or set of ordinary differential equations we have the option to reduce the internal
dynamics in terms of complexes. The external dynamics will somewhat be influenced by
doing this and we can compare the two models. Here the concept of complex balancedness
will determine whether the steady states for both models will be the same.

Eventually another interesting aspect will be to have a look at the kinetics of the overall
system. One can see this as an alternative or extra application for the Quasi Steady State
Approach and here the cycles and feedback mechanisms will be replaced by more simple ones.
Then afterwards mass-action kinetics along with classical QSSA can be applied. To get an
optimal reduction order model the way in which parameters within the model are estimated
can be discussed by optimization techniques. It is important to keep in mind that other
kinetics like Michaelis Menten for the subsystems will work better as Alternative network.

Furthermore we will see how the system can be transformed if we also have to do with in-
and outflows. It actually means that we will need to add an extra term . There are two ways
to do this even though they will have a different interpretation. One will be in matrix-vector
form while the other method merely uses vector-scalar notation. We will also look at the
relation between these two forms.

Since the structures of the global biochemical regulatory network is rather complex it was
advised to deal with the order reduction of the system first and to focus less on the control of
these systems. In general, the biochemical regulatory system will find a steady state behaviour
over time.

By comparing measured data with data from the simulation of the model we can get an
idea of the reliability. The models itself can provide valuable information about the precise
functioning of biological cells and system. Here we can consider modular biochemical circuits
for creation of sensors and actuators. A future challenge would be to make an auto based
system that directly converts the given system into its reduced order form. Here the best
reduction order model will be selected automatically and applied in the best determined
sequence.
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Chapter 1

Introduction

1-1 General Intro

In biology one deals with several issues involving e.g. the surplus/shortage of species in
several complexes during reactions, hormone regulation and the principle of gene expression
[1], [2]. Here many phenomena deal with combinations of multiple paths that need to be
followed in order to produce an output protein, to turn on genes or to produce the corre-
sponding hormones [3]. Therefore this is why this biological or biochemical process is called
a combinatorial problem. To find solutions for this involved in biochemistry sometimes one
wants to regulate or analyze the combinatorial and coherent process by adding the so called
(DNA) triggers properly to activate the actual production/formation process as desired [3].
Synthetic biology is the field in which these phenomena and biochemical changes can solve
these problems that have e.g. in turn to do with designing a medicine, manufacturing and
agriculture [11].

1-2 System description

In this MSc Thesis we are particularly interested in the production of output proteins and how
an indirect and direct path interact with each other for the so called Coherent Feedforward
Loop (CFFL). Besides we will be interested in the model order reduction of the given system
or CFFL network.

1-2-1  The Coherent Feedforward Loop (CFFL)

The CFFL within biochemical reaction networks/circuits describes how a sign-sensitive delay
element (or noise-filtering element) functions during regulation of an output protein (e.g.
Green Fluorescent Protein (eGFP)) [3]. It is defined to be a network motif as its appearance
number is higher in the transcription networks of bacteria Escherichia Coli (E. Coli) and
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2 Introduction

Saccharomyces cerevisiae than in randomised networks. Even though there are more types
of Coherent Feedforward Loops with component-wise differences a more common structural
CFFL is used as found in [3]. In general one can make a distinction between a direct and
indirect path from a so called sigma-factor that initiates DNA transcription to make a copy
of the DNA strand into mRNA. The direct path consists of a DNA trigger that activates
a toehold switch on one side. The indirect path consists of another sigma-factor which will
either be necessary to activate the switch. If both the sigma-factor and DNA trigger activate
the AND gate of the toehold switch the output protein eGFP will be formed. This is an
RNA-based AND gate that requires the binding of the different RNA elements in order to
start translation. The question that arises is how the AND gate needs to be activated in
order to regulate the output protein concentration. Or more specifically written, one wants
to know how much and in what time the species X should be added in order to form the
desired amount of species Z (with indirect path that includes species Y). To illustrate this,
we will give an example.

Let X describe the sigma-factor for the input. Let Y describe the other sigma-factor of the
indirect path and let Z describe the formed output protein, then the direct and indirect path
or system can schematically be depicted as in figure (1-1).

~_ —

Figure 1-1: Schematic overview of the production of an output protein with the given sigma-
factors

In fact, the three nodes X,Y and Z in figure (1-1) represent respectively o-factor 70 (S70),
o-factor 28 (S28) and the eGFP as developed at Eindhoven University of Technology. These
elements have been depicted in more detail in figures (1-2a) and (1-2b):

Note that the differences between the various CFFLs can mainly be found in the number of
nodes and the composition of the CFFL itself. [3]

1-2-2  Family of CFFL’s

In [3] several opportunities are presented in order to extend and improve the modelling and
analysis framework.

A complete modelling and analysis framework was developed and can be applied on more
complex networks. There are twelve unique combined feedforward loops that are the centre
of one of the research directions at Institute of Complex Molecular Systems (ICMS) from
Eindhoven University of Technology:

Some of these clustering types (see figure (1-3) ) for two feedforward loops haven’t been
considered in much detail yet. Therefore it could be useful for future work and similar
methods can be applied at the corresponding specific CFFL.
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Figure 1-3: The 12 unique motif clustering types for two feedforward loops [3]

Besides, Other types of feedforward loops have paths that are not activating but inhibiting,
for example type 1 incoherent feedforward loop. In addition, these network motifs are also
present in the composition of the combined feedforward loops. Therefore, the modelling tools
have to be extended to include kinetics that represent inhibition [3].

1-2-3 Batch (autonomous) and flow (non-autonomous) experiments

In order to get the necessary data for our Ordinary Differential Equation (ODE) models
certain batch and flow experiments will be or have been made. The usage of data from these
experiments will result in the desired models that fit these data. Afterwards simulations can
be made with these models. By doing new batch and flow experiments and use of structural
analysis tools the given model can eventually be verified and/or validated [3], [11].

Something we need to keep in mind is that adding species to a mixture will be a fast process
and therefore inputs will rather be modelled as the setpoints of an initial state. For flow
experiments on the other hand this adding process changes over time dependent on the flow
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4 Introduction

rate of the adding species. In this case we can describe the overall system as a state-space
model in such a way that controllers/observers can be realized. How to adapt the flow rate
in order to maintain a certain concentration or how to adapt this in order to find the desired
concentration of the output protein over time will be of our interest.

1-3 Problem statement

Once we have set up the ODE or state-space model, we are able to apply model order re-
duction methods [4]. The purpose of the MSc Thesis is to apply several of these methods, to
analyse what kind of differences occur between the original and reduced order model and to
verify /validate the given methods for various biochemical circuits and networks. The main
purpose of model order reduction is to simplify the overall model and to facilitate the over-
all analysis of our CFFL. Certainly in case of flow experiments model order reduction will
improve the accuracy of the analysis and/or control approaches. The model order reduction
method produces a less complex model where irrelevant parameters and equations have been
dropped out of the system.

1-3-1 Research question / Objective

In the MSc Thesis we will be challenged to answer the following questions based on the above
mentions respectively:

o How to derive the corresponding state-space models for various
CFFLs and when to apply which order reduction method to gain an
optimal analysis, observer (or possibly controller) for the given CFFL
in case of a batch and flow experiment ?

1-3-2 Subquestions / Subobjectives

To answer the above research question, we will have to find the answers to the following
subquestions for every included topic:

Defined model of Ordinary Differential Equations for our network of CFFLs

To get more insight in the dynamics that play a role in biochemical reactions, we first start by
having a look at how the system is modelled and how the biochemical reactions are analysed.
Then we will also discuss the modelling strategies. Mostly we will use mass-action kinetics
that will describe the relation between the concentration of a substrate S and formation of
product P (reaction rate). This gives rise to the following subquestion:

o How to apply the mass action kinetics in a larger system and network of CFFLs?

o In what kind of situation/experiment or network of biochemical reactions are we allowed
to use the mass action kinetics?
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1-3 Problem statement 5

A set of biochemical reactions can be rewritten in ODE models. The rewriting into a math-
ematical model is done for a couple of biological processes in which the law of mass action
have been applied. This gives rise to the following subquestion:

o How do we model our biochemical system with Ordinary Differential Equations?

Modelling biochemical reaction networks and conservation laws

The conservation laws can be found for a system of biochemical equations. This can especially
be deduced mathematically and gives rise to the following subquestions:

o How to find the number of conservation laws?

o What are the conservation laws within the system?

Once we have found the conservation laws, we are particularly interested in ways to reduce
the number of Ordinary Differential Equations. This gives rise to the following subquestion:

o How to use the conservation laws as a way to reduce the number of Ordinary Differential
Equations?

Quasi Steady State Approach
The Quasi-steady state approach (QSSA) is based on the assumption that the steady state of
the species that evolve on the fast timescale will be settled quickly as soon as the experiment

starts. Then the other species will evolve on the slow timescale. This gives rise to the following
subquestion:

o How to apply the Quasi Steady State Approach?

The Quasi Steady State Approach is applied by neglecting the fast reactions over the slow
reactions for the slow timescale. Therefore this gives rise to the following subquestion:

o How to make a distinction between slow and fast time scales?

Alternative modelling
For the network of CFFLs we can replace certain cycles and feedbackmechanisms by more

simple structures. This will be called alternative modelling. Therefore this gives rise to the
following subquestions:

o What are possible alternatives for the given system of reactions or the CFFLs?

o How does the new defined system and non-reduced system relate?
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6 Introduction

For the case where Michaelis-Menten kinetics have been used, we need to take renewed rate
constants into account such that the reduced and non-reduced case will only have small
deviations. Therefore this gives rise to the following subquestions:

o What kind of rate constants define the system at its best?

o How to find the optimal rate constants in the new defined system?

The kinetics will mostly be based on mass-action but if we can make more assumptions we
are also allowed to use different kinetics like Michaelis-Menten. Therefore we will get the
following subquestion:

o What kind of kinetics do we need in the new defined system?

Kron reduction order method

The Kron reduction order method is based on the reduction of the number of complexes and
is used by rewriting the original form of the given system. Therefore this gives rise to the
following subquestions:

o What are the alternatives to rewrite the system of equations?

o How to apply the Kron reduction order method?

According to literature there are theories that decide when the original system and reduced
order system will have the same steady states. Therefore this gives rise to the following
subquestions:

o When do species have the same concentrations in steady state?

o What are the differences and/or similarities between the steady states in the non-
reduced model and the steady states in the reduced order system?

Flow experiments

For now we have just dealt with batch experiments, but one will also be able to transform this
into a flow experiment. Besides one will also be able to apply the previous defined methods
for this flow experiment. Therefore we will get the following subquestions:

o How to transform the system from a batch to a flow experiment?

o How to apply the earlier defined reduction order methods in case of a flow experiment?
Once we have to do with flow experiments we will also see some interesting aspects in the
steady states even though this is influenced by defined inflow. Therefore this gives rise to the

following subquestion:

o Why do/don’t we see the same relation between the steady-states (non-reduced vs
reduced system) as in the batch experiments?
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1-4 Organisation report

Note we have already been started by explaining the system and problem. The content of
this MSc Thesis is given with the following discussed chapters and sections:

In chapter 2 we will mainly explain the way in which we set up our model. Besides it will
introduce the concept of conservation laws. Conservation laws can be seen as a way to
eliminate the number of ODEs, but later on we will see that this is mainly be used to analyse
what kind of kinetics we will have to use. In chapter 3 we will discuss the Quasi Steady
State Approach. Even though there is one best approach, here we can make a distinction
between 3 approaches. The first approach is based on relatively low rate constants to set
certain & to zero, the second approach is based on an average of the various & to set these
Z to zero. Mainly we will use the third approach that initializes a different state which is a
bit closer to the final steady state. In chapter 4 we will look at alternative ways of modelling
our biochemical reaction network. For this we can replace certain feedback mechanisms and
cycles by simpler structures. The part that has been replaced will get the optimized kinetics.
In chapter 5 we will introduce the Kron reduction order method. This method reduces the
number of complexes and therefore reduces the number of reactions indirectly. In chapter 6 we
will discuss the flow experiments. This is mainly an extended model of the given biochemical
reactions and batch experiment. Eventually we will draw conclusions and write down the
future challenges in chapter 7. Futhermore the defined matrices and tabulars can be found
in the Appendix.
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Chapter 2

Modelling biochemical reaction
networks and conservation laws

2-1 Modelling biochemical reaction networks (simple case)

2-1-1 Law of mass action

The rate at which chemicals, whether large macromolecules or simple ions, collide and interact
from different chemical combinations can be described by the law of mass action. The number
of collisions per unit time is taken to be proportional to the product of the concentrations.
Here the factor of proportionality depends on the geometrical shapes and sizes of the reactant
molecules and on the temperature of the substance of species. [2]

2-1-2 Modelling and conservation laws

To illustrate the principle of model order reduction we start with a simple case of a reversible
reaction where three species are involved. For this consider the following chemical equation
in (2-1):

A+BL (2-1)

k_1

Denote the concentrations of species A, B and C' by respectively a,b and ¢. Then according
to the law of mass action we get the following Ordinary Differential Equation (ODE) model:

a=+k_1c—kiab

¢ Lol k_ic
b= 4k c—kaby = |b|=[1 -1 (k—l ) (2-2)
. 1ab
¢ = —k_1c+ kiab é -1 1
X v(z)
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10 Modelling biochemical reaction networks and conservation laws

By inspection, we directly see that the conservation laws read as:

a+é¢=0=a+c=¢ R (2-3)
b+é=0=b+c=ec €R (2-4)
Because of the conservation laws (2-3), (2-4) and since b = —¢ = @ we are able to express the

concentration of A and B in terms of those of C. And therefore only ¢ will be needed if we
want to know the full kinetics of the system. Now we can actually describe the full kinetics
of this system by:

6= — (k_1 — (eg + el))c + k1 + krege (2-5)

Note here = = (a b C)T. Then Nyeg, Vred(Treq) and z,eq are the matrix or vectorform
of respectively N,v(z) and z in case that the original model has been transformed into its
reduced order form. Note that x contains species A, B and C whereas x,.4 only contains
species A and C.

To verify if the conservation laws won’t change the original kinetics, we implement this part
in Matlab first. Here we choose the flux rates in such a way that an equilibrium will settle
over time. Eventually in equilibrium all species concentrations are constant. For this simple
case it means that we need to define fluxrate k; different from k_;. Since this is a rather
simple set of ODEs, the differential equations are solved by using the Euler Forward numerical
method. This means, since we have the equation & = Nv(x) we get an iterative recursion:
Zp+1 = Nv(zg) - dt + xp where dt is the chosen timestep.

Then we choose the initial state for both the original and reduced order model as follows:
T
n=(111) .

J. Guldenaar (4274741) Master of Science Thesis



2-2 Biochemical reaction network at ICMS 11

Now, figure (2-1) depicts the kinetics of both models:

—[A]: Original model —
© [A]: Reduced order model
[C] Original model
O [C]: Reduced order model |
(%]
2
5]
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Figure 2-1: Concentrations of species A and C for the original model of reaction (2-1) and its

reduced order form with used flux rates: k1 = %0 and k_; = %, initial species concentrations of

1 and dt = 1. Note that the concentration of B will be the same as the concentration of A since
the initial conditions and ODEs for these states are the same.

Clearly, the kinetics for these models are identical for the computed timesteps. As expected,
dependent on the timestep, an equilibrium will settle over time .

2-2 Biochemical reaction network at ICMS

A first model is based on a predefined model as given in [3] from Institute of Complex
Molecular Systems (ICMS) . For simplification lets define the concentrations of the following
species to be:

z1 = [RNAP], r13 = [RNAccrp]

x2 = [S7o], x13 = [Ribo]

x3 = [DN Ay, x14 = [RN Ay : RN Agog]

x4 = [DN Ag,,], x15 = [RN Ay : RN Agos : Ribo]

x5 = [DNAcippls x16 = [S28]

x6 = [RNAP : S70], x17 = [RN Ay : RN Acrp)

x7 = [RNAP : S70: DN Ay, x18 = [RN Ay : RNA.grp : Ribo]

xg = [RN Ay, T19 = [€GFPyu)

xg = [RNAP : S70: DN Agag], x990 = [eGF P]

x10 = [RN Agas], x91 = [RNAP : S28 : DN Accrp|
[
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12 Modelling biochemical reaction networks and conservation laws

A network of biochemical reactions and CFFLs used in ICMS can schematically be drawn as
in figure (2-2):

0
A
RIG g
®
R RS
RNAP:S:;DNAsze  —@—» RNAss
0
RI1T g
4
RNAP
R1 R2 R3 —@RO
RNAP:Sq RNAP:S:DNA, @ | RNa
870
DNA, 0
4
R18 g
®
R6 R7 R8
& RNAP:S3 RNAP:S2:DNA.crr ——@—> ENAwrp ® R12
DNA..crp 6]
R1D
!
528 RNA;:RNAgss:Rib RNA;:RNAgzs e
R11 R10
Rib o
'y
R20 of
b
R15 R14 R13 .
eOFP | eGFPy <—@—  RNAZRNA.gpp:Rib RNA RNA.cpp

Figure 2-2: Schematic overview of biochemical reaction-network and CFFLs in ICMS
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2-2 Biochemical reaction network at ICMS 13

The flowscheme as given in figure (2-2) can be redrawn as depicted in figure (2-3):

—(R20—— ()

4’R54’X9 R6 XlO

R12
T I
X, —J X3
M ~—Xu—R9 —Xyn R10 ——1 X9 iy
| | .
R P
X1 R14 X5 R13 X4
X3 o
R4 0
Xgo-leg%Xlg-fRIS X18 R17 X17

| |

Figure 2-3: Schematic overview of biochemical reaction-network and CFFLs in ICMS: Red nodes
indicate reactions of merely consumed species, green nodes indicate reversible reactions
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Modelling biochemical reaction networks and conservation laws

According to this flowscheme we will get the following set of reactions R1 till R24 given by &
based on the consumed/produced species:

RI&R2: Xi + Xo == Xq R14 X5 224 Xi6 + X3
—2
R3: Xs + X3 XX, R15 & R16: X + Xio % X7
—16
R4 - X7 k—4> Xg + X3 + Xg R17: Xi7 + X3 % X18
R5:  Xg + X4 24X, R18: Xis 2255 X5 + X9 + Xp7
R6 : X9 k—6> X0 + Xy + Xg R19 : X19 k% X0
R7 & R8: X1 + X6 5:7 X1 R20 : Xi0 Kaes,
-8
kde
R9: Xy + Xs 20, Xy, R21 : Xg —2, ()
R10 - Xo1 K19 Xo 4 Xy R22 - Xy 2002,
R11 & R12: Xjp + Xg % X4 R23: X4 Kaeg, 0
—12
kde
R13: Xy + X3 <884 X5 R24 - Xp7 205, )

Then from (2-3) the

J. Guldenaar (4274741)

full kinetics will be given by:

k_oxe — k_gr1 — kiw129 + k7211716

k_oxe — kiwywo
kax7 — k3x3we
kerg — ksrawe

k1021 — k95711

k4$7 + kG.Ig — ]ﬁ_gxﬁ + k1x1$2 — k3$3x6 — k5IL’4CEG
ksxsre — kywr
kaz7 + k12714 + k16717 — Kgeg®s — k1128710 — k1478712
ksxqwe — kewo
kerg + k_12714 — Kgegr10 — k1178710
k_sx1 — kowsw11 — k711716
k1021 + k_16717 — KgegT12 — k1578712
k1aw1s + k1sT18 — k13713714 — k17713717
k1128710 — kdegT14 — k—12714 — k13713714
k1313714 — k14715
k1415 + k_gr1 — krr11716
k1818 — k—16717 — kdegT17 + k1578712 — k17013717
ki7r13217 — k1sw1s
k1sr1s — k19719
k1919
koxsx11 — k1021
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2-3 High level model 15

2-3 High level model

For analysis purposes one can also have a look at the high level model of the given CFFL
network. The high level model of the CFFL network is given by the equivalent schematic
framework in figure 2-4 and 1-2b :

TX

X; —> _
Reaction 1,2

TX

Reaction 3

Xis Xao X2 X3 X0

TL -— |

Reaction 1,2

TL

A A

Reaction 3

Figure 2-4: High level model of translation and transcription biochemical processes

This high level model has similar features like the one in the low level model or CFFL network.
Here also egpp will be the output protein. First X3 will be consumed which results in the
production of X192, Xg and Xj9. Then, as an internal node, X1 will be produced/consumed.
Eventually X1 and Xg are used for the production of egrp.

2-4  Characteristics for Steady State and Conservation laws

In general, the Stoichiometry matrix N is defined by a m X r matrix since the number of
rows is equal to the number of species m and the number of columns is equal to the number
of reactions r. Here an element N(i,j) can be indicated by the species z; and reaction R;.
More specifically,

+40;5, if species x; is produced in reaction R;

N(i,j) = { (2-7)

—0;5, if species x; is consumed in reaction R;

Master of Science Thesis J. Guldenaar (4274741)



16 Modelling biochemical reaction networks and conservation laws

Note that, since all species in the reactions won’t be consumed or produced more than
once,here we have d;; = 1. Thus here ¢;; denotes the number of produced or consumed
species.

2-4-1 Fluxratios in steady-state
Another interesting aspect is the ratio of fluxes in case of the steady-state scenario. This will

be found by looking at the right nullspace of the given matrix N. It can simply be proven as
follows:

= Nv(zr) =0 <= v(x) € ker(N) (2-8)

2-4-2 Conservation laws

Conservation laws can be deduced by an equation of the form a121 + ... + apZ, = 0 and we

.
are interested in finding a vector a = (al, el an) such that:

a'i=a' Nv(z)=0 < (2-9)

a'N=0 < (2-10)

N'a=0. (2-11)

2-5 Using the Stoichiometry characteristics for elimination of equa-
tions

Thus by looking at the left nullspace of the Stoichiometry matrix N we can establish the
conservation laws with which we have the option to reduce the number of equations used
in the ODE model. Here the nullspace is spanned by 5 linearly independent vectors. If
we arrange the entries within these vectors by a;1,...,a;21 where i € {1,...,5}. Then the
conservation laws can be deduced as follows:

a1+ ...+ a;21821 =0 = (2-12)
;11 + ...+ a; 21021 = ¢ € R, where 7 € {1, ce 5} (2—13)

J. Guldenaar (4274741) Master of Science Thesis



2-5 Using the Stoichiometry characteristics for elimination of equations 17

Since these equations are linearly independent, we can choose five equations for the derivation
of the conservation laws. For now we choose the (e.g.) first five states that will be eliminated
or substituted. These can be expressed in terms of the other states and we can write:

21
C; — _ i QA T
"L‘Z — (2 Zk—l,k;él l,k k (2_14)

Qg

Then these 5 equations define a plane in the higher dimensional space in R?' and reduces the
space to a dimension of R'. In other words, if we have a total of m ODEs and it will be
reduced to n < m ODEs, we will have a total of n — m algebraic equations that make this
happen. Eventually the reduced order model will look like:

kreduced: NV(Xreduced) (2'15)
Xreduced € RIG’

16x24
Ne R™°**%,

V(xreduced) € R24

Note that v(z) can be replaced by v(Zrequceq) if the expressions for states xp till x5 are
substituted within the expressions for the original states of v(x).

Eventually a plot of the numerical approach to determine the reduced order model along with
the original model will give us figure (2-5)

Plot of reduced order model compared with original model for arbitrarily chosen states

x14 original
O x14 reduced order system

x8 original
x8 reduced order system

x10 original
O x10 reduced order system

o

[RNAgagl - (x49)
[RNARNAG, ] (x,,)

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Timestep Timestep Timestep

T
x12 original (] x17 original
O x12reduced order system i 35 ©  x17 reduced order system

w

|
[RNA - RNA g epl (x17)
~
&

P

o
o
2

Timestep

Figure 2-5: Comparison of a reduced order model for a set of biochemical reactions

Note that the reduced order model diverges (at the latter timesteps) from the original model

since the values for the various states show more extreme values per timestep ( a;; ~ 0).
Nevertheless one expects that both models should be identical since this is what conservation
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18 Modelling biochemical reaction networks and conservation laws

laws define. Luckily there are two better ways to get a model that simplifies the substitution
equations for the reduced order method .

If we transform the first model of ODEs into # = Nv(z) we get:

ki1 k13w1413
k276 k1aw15
kzxse k1518712
kawz k_16717
ksa6a k17r17713
v(r) = v () in which vi(z) = ke and v(z) = k1718
va(2) krz1116 kr91g
k—sw1 kgeg10
kow1125 Kdegs
k1021 eg12
kiiziows KdegT14
k12714 Kdeg17

Note that the positive kinetics are given by the right-directional chemical reaction. Now the
Stoichiometry matrix is defined by a 21 x 24 matrix since the number of rows is equal to
the number of species and the number of columns is equal to the number of reactions. Once
more, here an element N (7, j) can be indicated by the species x; and reaction R;. Eventually
in this way we are able to construct the matrix as can be found in the Appendix (A-3).

The first alternative is to use the equation (2-14) again, but here we avoid the lower values of
a;; by selecting the proper equations for #;. This means we use the suitable equation (with
reasonable values) where we are allowed to make the substitution (2-14). Now we will solve
the system of ODEs in Matlab. By doing so we end up in figure (2-6) where several states of
the original model in comparison with the reduced order model have been depicted.

Plot of reduced order model compared with original model (Matlab ODE solver)

RNA,T (x;)
[RNARNAG, ] (x,5)

[ 50 100 150 0 50 100 150 0 50 100 150
Timestep Timestep Timestep

o 50 100 150 0 50 100 150
Timestep Timestep

Figure 2-6: ICMS model compared with its reduced order model for several states with reactions
rates set to 1—10 and initial conditions set to 1.
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2-6 Conclusions conservation laws and reduction order method 19

Indeed, now both models are the same for the plotted states (and thus it is quite reasonable to
conclude that this holds for the full system). So this method even visualizes the exact values
of the original model. The numerical values can be considered to be realistic since they stay
positive regardless of the number of timesteps taken and/or the different initial conditions or
reaction rates. This also shows that the method fails as soon as the original system has to do
with extreme numerical values for the given concentrations.

The second alternative would be based on inspection of the summation of the rows of the
Stoichiometry matrix N. To get an idea of the explicit conservation laws we can use inspection
to see which rows in N add to zero. Since the dimension of this nullspace is five, we need to
look for five different additions that give zero row-vectors. In this way we are able to rewrite
the conservation laws in (2-4) with constants ¢}, ...,c} € R:

| = [DNA)] + [RNAP : S70 : DN A;] (2-16)
b =[S70] + [RNAP : S70] + [RNAP : S70: DN Ay + [RNAP : S70: DN Ages]  (2-17)
¢y = [DNAe,p] + [RNAP : S28 : DNA, ., (2-18)
| = [DN Agss] + [RNAP : 570 : DN Agas] (2-19)
L earp © R1bO| (2-20)
If we are interested in the enumeration of species, the above conservation laws

will be identical to the following:

¢y = w3+ a7 (2-21)
ch = my + x6 + T7 + T9 (2-22)
3 = x5 + 21 (2-23)
¢y = T4 + Tg (2-24)
6/5 =213 + 15 + 18 (2-25)

Indeed these equations could have been used to reduce the order of the system easier, but it
ignores the generality of the method as can be used for more examples. Note that for most of
the conservation laws the result follows from (multiple) feedback loops or biochemical circuits
within the full system. Via these feedback loops the species will be produced or consumed
either way and reformed somewhere regardless of the rate constants or the number of reactions
it will take until the species have been (re)formed (in)directly. So it is a helpful way to see
which rows add to zero in N directly, but unfortunately in general the helpful method cannot
be used and determining vectors in ker(N ) will be hard to find in case of inspection.

2-6 Conclusions conservation laws and reduction order method

To get more insight in the dynamics that play a role in biochemical reactions, we first start by
having a look at how the system is modelled and how the biochemical reactions are analyzed.
Then we will also discuss the modelling strategies. To analyze, a set of biochemical reactions
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20 Modelling biochemical reaction networks and conservation laws

can be rewritten in ODE models. The rewriting into a mathematical model is done for
a couple of biological processes in which the law of mass action have been applied. Even
though more kinetics are possible ( e.g. Hill or Michaelis-Menten (MM)), mostly we will use
mass-action kinetics that will describe the relation between the concentration of a substrate
S and formation of product P (reaction rate). Since we know the properties in case of low-
dimensional models, we can determine the stability regions relatively easy.

The number of conservation laws can be deduced by looking at the dimension of the left
nullspace of the Stoichiometry matrix. Besides we can write the exact conservation laws with
this left nullspace. This can be done in different ways, but all approaches lead to the same
result. However, one approach might be more sensible to numberical errors than the other.
By using the appropriate substitutions we can eliminate certain species updates .
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Chapter 3

Quasi Steady State Approach

The Quasi-steady state approach (QSSA) is based on the assumption that the steady state of
the species that evolve on the fast timescale will be settled quickly as soon as the experiment
starts [18], [19], [20], [21] . Then the other species will evolve on the slow timescale. In steady
state we have & = Nv(z) = 0. This means that v(z) is identical to one of the vectors that
is included in the span of the kernel of N.By doing this the flux distribution in steady state
between every element in v(z) can be determined for the full experiment. In quasi steady
state we will take the fastest reactions in steady state into account. This can be determined
in multiple ways. Firstly, we will mainly be interested in the reactions with the relative high
reaction rates with respect to the other rate constants. For simplicity, one can e.g. assume
that the lowest rate constants can actually be set to zero. Furthermore this can also be
determined by using the averaged . Though, in this chapter we will mainly focus on the rate
at which a steady state will be settled per species. Then this species can be initialized as its
steady state directly. This can be denoted as the quasi steady state.
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22 Quasi Steady State Approach

3-1 Choosing some initial states closer to their steady states

For choosing some initial states (identical to the final steady states) we need to take the
eventual steady states into account and initialize the fastest settled steady states from the
beginning. Here we take the final steady states as the last data points of the state (for a large
number of timesteps). For this we need to know the steady states that will have the fastest
settling times with respect to the other species. We can determine these species graphically
as is depicted in figure (3-1):
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1
OSM
0 200 400 600 800 1000 400 600 800 1000 400 600 800
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Figure 3-1: Species concentrations over time for this network of CFFLs

From this figure it will be a bit tough to read the species with the fastest settling times even
though we will have an indication graphically. To determine the number of timesteps needed
until the curve has reached its steady states we have two options. The first option is to look at
the number of timesteps it takes until the curve for the differential state is close to zero (with
a tolerance interval). The implicit relation between the fast and slow species will identify the
slow manifold. The relation for the steady state z* is given by:

Nv(z*) =1" =0 < v(z") € ker (N) (3-1)

The other option will be a direct approach where we will have a look at the number of timesteps
needed until the curve has reached the steady state within a 10% tolerance interval. Here we
choose the latter option where we need to keep in mind that we will have to do with a total
of 1000 timesteps.
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3-1 Choosing some initial states closer to their steady states 23

Then we get table (3-1) from which we read the species to be initialised in that order from
top to bottom (see Appendix for full table):

Species to be initialised | Timestep at which the steady

states are reached within a
10% tolerance interval

X5 51.37

X3 100.81

Xo0 182.79

X3 468.35

Xy 468.35

Xi9 948.76

Table 3-1: Species to be initialised along with the timesteps at which the steady states are
reached within a 10% tolerance interval

Now, based on this settling, we can initialize the mentioned species. Then figure (3-2) shows
the settling of the species xg, x10, T14, 20 and x17 for the non-reduced and reduced case.
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Figure 3-2: Settling of the species g, 19, T14, T29 and x17 for the non-reduced and reduced
case

As can be concluded from figure (3-2) the settling time reduces if a higher reduction order
method is used. This is logically since we start with a close to steady state scenario. The
steady states of the reduced and non-reduced case are almost the same with the exception
for the output protein egrp.
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24 Quasi Steady State Approach

For a full Quasi Steady State Approach one actually wants to initialize species as constants
(the eventual steady-states) over time. Then we can finally say that the differential equations
for these fast species are neglected and thus that the species are removed as the reduction
order method suggests. In general, we have the following:

Let x be the fast evolving species, let y be the slow evolving species. Then assume we have
& = f(z,y) and y = g(z,y). Then the dynamics for the slow timescale read as:

0= f(z,y) =z =hy) = 9= g(h(y),y)

In this model, we will have to do with the following equations for functions f(z,y) and h(y):

k
5 =10 = T3 = 0 T21 (3-2)
9711
) k1415 + ki1
t13 =0 = T13 = 3-3
1 B ks + kiraag (3-3)
Tog =0 = 119=0 (3'4)
) kayx7
— 0 = — 3—5
is = 3= (3-5)
) kexg
=0 — = — 3-6
iy = (3-6)

Now, if we both use the initialisation of the species and # = 0 for these species (i.e. the
steady-states are constant over time from the beginning of the experiment), we will get the
classical Quasi Steady State Approach. Here the first order reduction method means that the
first species(X5) is removed from the system and the steady-state of this species is initialized
from the beginning of the experiment. Then the second order method means that the first
two species(X5 and X13) are removed from the system and both X5 and X;3 have a constant
steady-state from the beginning. In general we will have a total of n removed species for the
nth order reduction method. For the sequence in which the species will be removed we refer
to table (3-1).
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3-2 Conclusions Quasi Steady State Approach 25

By applying the classical Quasi Steady State Approach we get the following results as given
in figure (3-3):

1 State 8 1 State 10 1 State 14
Non-reduced system Non-reduced system Non-reduced system
4t order red. model st order red. model 1storder red. model
08 2nd order red. model 08 2nd order red. model ~ 08} 2nd order red. model
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- 4th order red. model 2 4th order red. model = 4th order red. model
X086 5th order red. model = 06 5th order red. model —~ 06 5th order red. model
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Figure 3-3: Applied Quasi Steady State Approach with reduction order 1 until 5 where initial-
isation of (constant) steady-states from the beginning of the experiment have been taken into
account.

Based on these results, we see that applying the Quasi Steady State Approach results in a
model with the same steady-states (as the original model). Though this will be different for
the output protein egpp. Furthermore some models overlap somehow. For state 14 and 17
the reduction order models coincide for the largest part of their trajectories. For state 20 the
blue light line also represents the third and fourth reduction order.

3-2 Conclusions Quasi Steady State Approach

The Quasi Steady State Approach is applied by neglecting the fast reactions over the slow
reactions for the slow timescale. Then the differential equations for the fast reactions can be
set to zero and we will, similar to the method of using conservationlaws, get substitutions or
eliminations accordingly. Another useful aspect is the initialisation of the steady states where
the fastest settled species are taken into account first. This is also known as the identification
of the slow manifold. For this method a higher reduction order implies faster settling times
since the number of initialized species (identical to the final steady states) is higher. The
steady states between non-reduced and reduced case are (approximately) the same except for
the output proteins.
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26 Quasi Steady State Approach

3-3 Discussion Quasi Steady State Approach

3-3-1 Advantages Quasi Steady State Approach

The Quasi Steady State Approach will have the following advantages:

o The steady states in the reduced order system will almost be identical to the steady
states in the non-reduced system.

o For smaller reduction order models there will be a small deviation between the reduced
and non-reduced system.

o A combined method of slow manifold identification can show a best way to initialize
the defined species concentrations

3-3-2 Disadvantages Quasi Steady State Approach

The Quasi Steady State Approach will have the following disadvantages:

o A higher order reduction model is needed before the reduced order model or non-reduced
model have the same steady states.

o The initialisation of species concentrations (or the removal of certain species) makes the
model completely different at the beginning of the experiment.

3-3-3 Challenges of the Quasi Steady State Approach

The identification of the slow manifold can be done in multiple ways. Basically here one wants
to find the sequence of the species concentrations that need to be initialised and thus actually
the species that will need to be eliminated. Here one can base this on the time it takes till
it reaches its steady state or (equivalently) one can base this on the time it takes until the
derivative state reaches zero. Furthermore a higher order reduction model is needed before
the reduced order model or non-reduced model have the same steady states. Though a lower
order reduction model will result in smaller deviations between the reduced and non-reduced
system.
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Chapter 4

Alternative modelling

If we look at the overall system we can remove certain structures like cycles and feedback-
mechanisms and replace them by more simple reactions. By doing this the kinetics at some
points will be changed. For example we can rewrite our CFFL network in smaller ones where
we denote these certain subsystems. Since we did most of the kinetics with mass-action we
want to keep this within the new modelling framework in the first place. Here we simply
follow the reactionscheme in such a way that the schematic overview of the reduced order
system is in line with the original flowscheme.
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Alternative modelling

If we do this, we’ll define the composed system with respect to the non-reduced system as
given in figure (4-1):

Feedback mechanisms
Non-reduced system

Reactions within
composed system

—— R5—1 X R6 ——X19| | Xg L0 X190
L,
¢
X
X R3 — X, R4 X3 X 771,20 Xsg
L ix
X11— R9—Xy RI0—— Xy | Xyy— B3 X12
x|
X3 X16 ‘ Xi4
R4
X9+ R18 Xis R17 X17 X197 new — X7

Figure 4-1: Composed subsystems with respect to original flowscheme structures
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Actually, as seen here, we will remove the following species from the system of equations:

Xg RNAP : 570 : DNASQS X3 DNAt

X4 DNAsgg X15 RNAt : RNAsgg : Ribo
X21 | RNAP : 528 : DNA.grp | X5 DN Ac.crp

X13 Ribo X18 RNAt : RNAeGFp : Ribo
X7 RNAP : 570 : DN A

Table 4-1: Removed species in the given subsystems

Then the equivalent flowscheme can now be depicted as in figure (4-2):
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x

[R20— 0

R11

R24

|

T Xt
R21—>Q)
o X
H R22——0)
s .X1 F/Ri23 — 0

X7

Figure 4-2: Equivalent flowscheme with the given reactions and species
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Thus this in turn, will give us the following new set of reactions:

Rl: X; + Xo =% Xq R18: X19 ~155 Xy

R2: X5 25X, + Xy R11:Xs + X190 2% Xy,
Rl,new: Xg 22 X R19 : Xy 22,
R2, new : X6k2’ﬂ>Xg R20 : Xg Kaes,

RT: Xu + X5 XX, R21: Xpp 5, )

R8: X1 X4 Xy + Xue R22: Xy, S5 )
R3.new: Xy m X9 R23 : X7 kdﬁ> ]
Rd,new: Xip —2" X0 + Xy R24: Xp4 2 X + Xy

This new defined network can now be given according to the defined mass action kinetics
within this network. Here we get:

ry X2 T T10 Tg L1 T11 T12 Li14 L6 T19 T20

RI[-1 -1 1 0 0 0 0 0 0 0 0 0]
R2 1 1 -1 0 0 0 0 0 0 0 0 0
Rlnew| 0 0 -1 1 0 0 0 0 0 0 0 0
Rnew| 0 0 -1 0 1 0 0 0 0 0 0 0
RT| -1 0 0 0 0 -1 1 0 0 0 0 0
RE|'1 0 0 0 0 1 -1 0 0 0 0 0
R3new| 0 0 0 0 0 O -1 1 0 0 0 0
NT= Rinew| 0 0 0O 0 0 1 0 0 -1 0 1 0 (&1)
RIS 0 0 0 0 0 0 0 0O 0 0 —11
RIL| 0 0 0 -1 -1 0 0 0 1 0 0 0
RI9| 0 0 0 -1 0 0 0 0 0 0 0 0
R0| 0 0 0 0 -1 0 0 0 0 0 0 0
R2L| 0 0 0 0 0 0 0 -1 0 0 0 0
R2| 0 0 0 0 0 0 0 0 -1 0 0 0
R2| 0 0 0 0 0 0 0 0 0 -1 0 0
R4[ 0 0 0 1 0 0 0 0 -1 0 0 0]
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1
)
k12122 k1s®19 Te
kaoZe k1128210 Z10
k1 newde k19210 23
Then & = N <1A}1> where 01 = kz’?e"i% to = kZOfCB o (4-2)
Do k721216 k21212 T
ksZ11 k22Z14 T12
k3 new®11 ka3Z17 T14
k4 new®14 k24Z14 Z17
T19
T20

4-1 Changed reactions

If we remove the first subsystem reactions R5 and R6 will be removed and a new reaction
will replace these two:

kl,new

X6 —_— X10 (4—3)

If we remove the second subsystem reactions R3 and R4 will be removed and a new reaction
will replace these two:

ko ,new

X@ e Xg (4—4)

If we remove the third subsystem reactions R9 and R10 will be removed and a new reaction
will replace these two:

kS,new

Xll e X12 (4—5)

If we remove the fourth subsystem reactions R13, R14, R17 and R18 will be removed and a
new reaction will replace these four:

k4, new

X4 + X7 —— Xy + Xyg (4-6)

4-2 Kinetics for the new flux term

4-2-1 Mass-action kinetics with optimal rate constants

A first choice would be to assume that all new reactions will happen according to mass-action
kinetics. This sounds to be a fair choice since the original flow scheme of reactions also has
to do with mass-action kinetics. Later on we will see that better kinetics can be used.
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If we assume mass action kinetics for now, we can replace the reactions as discussed in section
‘changed reactions’ For all systems, where subsystems have been replaced, a lot of species
will have similar curves and tend to go to zero. Though we know that the conservation laws
will make sure that some species must be present. Nevertheless most species will (indirectly)
be used for the production of eGFP. To see this we made a plot of [RNAP] and [eGrp,dark)
as given in figure (4-3). Here ‘one new subsystem’ means that we change the first subsystem
by its alternative form, ‘two new subsystems’ means that we change the first and second
subsystem by its alternative forms, and so on.

[RNAP]
€GFP, dark:I

. .
0 50 100 150 200 250 300 100 150 200 250 300
Timestep Timestep

Figure 4-3: RN AP and egFp,dark cOncentrations for a change in up to four changed subsystems

Most curves follow similar trajectories like state 19 (eqrp.dark) and end in a zero concentration
somewhere. A higher number of removed subsystems will result in larger deviations from the
non-reduced case. This holds both for the steady state as well as the trajectory towards this
equilibrium. Though we can change this a bit by choosing the appropriate rate constants. If
one wants the curves for the species concentrations more close to the non-reduced case, the
following minimization problem will need to be solved:

minimize <:c —Z,x— x> (4-7)

kl,new 7k2,new akS,new 7k4,new

Here = [ Nv(z)dt and & = [ No(#)dt will have to be compared in order to have an optimal
reduction order model. This means we minimize the following term:

( / No(z)dt — / No(#)dt, / No(z)dt / No(#)dr ) (4-8)
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By using the fmincon function in Matlab we can determine the optimal case with the smallest
deviation from the non-reduced case. Here we’ll find the rate constants to be:

k1 new = 0.0667 (4-9
ko new = 0.0333 (4-10
k3 mew = 0.05 (4-11
kanew = 0.075 (4-12

Then if we make a plot of both systems, i.e. the reduced and the non-reduced case, we directly
see more overlap in the graphs for the species concentrations over time. Once again, here ‘n
new subsystem(s)’ means that we change the first n subsystem(s) by its alternative forms.
The smaller difference between the alternative model and non-reduced case can schematically
be depicted in figure 4-4

legep]
[eGFF,dark:|

0 50 100 150 200 250 300 150 200 250 300
Timestep Timestep

Figure 4-4: eqrp and egrp,dqri cONcentrations for a change in up to four changed subsystems
with optimal rate constants k1 pew, k2 new; K3,new and k4 pew

Indeed, by changing one subsystem the systems are almost similar. The same holds for the
system where 2 and 3 subsystems have been replaced. If there are four new subsystems it
already begins to deviate a lot and the kinetics are more different. Though we see that a
zero species concentration will be reached sooner if there are more changed subsystems. Since
egrp is an output protein this doesn’t hold for this species.
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4-2-2 Introduction of M

ichaelis-Menten kinetics

To see if we can use Michaelis-Menten kinetics, we first want to see what kind of assumptions
we need. Thereafter we will look at similar structures in our network of CFFLs. Michaelis-
Menten kinetics are actually based on one particular set of reactions with product P, substrate

S and enzyme E [22]:

S

+ E<2SESE + P 17

-2

This can schematically be depicted as in figure (4-5):

S

R1

A2 SE

— R3

Figure 4-5: Michaelis-Menten kinetics

(4-13)

Then with the mass action kinetics, the conservation law and the assumption of instantaneous

SE, we get:
[S] = —ka[S][E] + k_2[SE]
[E]:—%qﬁMEy+k_ﬂSE]+kﬂSE] ‘ Vi8] bt
[SE] = k1[S][E] — k_3[SE] — k3[SE] ~ 0 p = [P] = K;+ ) Vith Kt = == Vs = Ko
[P] = k3[SE)
[SE] +[E] = ep € R
(4-14)

Though the Michaelis-Menten structure of the given set of reactions isn’t there in the first

place [17].

Competitive Michaelis-Menten in [4] introduces a defect reaction for the enzyme E given by:

J. Guldenaar (4274741)

D+ E ;fiés DE

—4

(4-15)
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Therefore we will get figure (4-6) with the corresponding flowdiagram:
S
R1
e SE — R3 T P
E
R4
Figure 4-6: Michaelis-Menten kinetics with defectspecies D
This results in the following set of reactions and assumptions:
[S] = —k1[S][E] + k-2[SE]
[E] = ~k[SI[E] + k—[SE] + k3[SE] + k5[ DE]
[SE] = ky[S][E] — k_[SE] — ks[SE] =~ 0 D)
. €1 — .
= Pl=K th Ky =
[P = ks[SE] — [P = KulS)( D ) with K
[D] = —k4[D][E] + k_5[DE]
[DE] = ka|D][E] — k5| DE]
[D] 4+ [DE] =0 = [D] + [DE] =1 € R
(4-16)
4-2-3 More possible new fluxterms
For now consider the following example:
Xy + Xog— X3 + Xy [4] (4-17)
Fori=1....,4 let &; denote the concentration of the species X; and define = := [x1x2$3x4]T.

Here, the substrate complex S is X7 + X2 and the product complex is X3 + X4. Then we

have:

Master of Science Thesis

SO = =

=0 O

SO = =

(4-18)
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Let K1, K5, K3 and K4 denote the 'Michaelis’ constants of the species X1, X5, X3 and X4
respectively. Let V; denote the maximum rate of reaction (4-17). Then the type and mech-
anism of the reaction can be included by its corresponding choice of v(z). [4] For inhibition
we can choose the following flux:

v(x) = (4-19)

For now consider the following reaction:

X1 — X2 (4—20)

Once more, denote the ‘Michaelis’ constant by K; and the maximum rate of reaction (4-20)
by Vii1. Let z. and @, denote the concentrations of the competitive and non-competitive
modifier. Let K,,. and K. be the '"Michaelis’ constants for the non-competitive and competitive
modifier respectively. [4] Then in case of competitive and non-competitive reactions we can
choose the following fluxes resp:

Via
K
Upe(x) = (4-21)
(1 &) (1 )
Via
K
K

4-2-4 Analysis of kinetics for new fluxterms

Now, we can check the subsystems accordingly and try to find an update-equation for the
output species that relates to the so called Michaelis-Menten kinetics as discussed in the
sections before. In subsystems 1 & 2 we get the following set of reactions:

X3 + Xg k—3>X7 k—4>X3 + X¢ + Xg (4—23)
X4 + Xg k—5>X9 k—6>X4 + X + Xio (4—24)

Then the kinetics of this subnetwork will read as follows (with the found conservation laws):
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T3 = —ksxaze + kaxr (4-25)
Ta = —kszaxe + kgTg (4-26)
T6 = —ksxsxg — ksraze + kaxr + kexo (4-27)
T7 = ksxsxg — ka7 (4-28)
is = kazr (4-29)
o = ksxaxe — keTg (4-30)
d10 = ke (4-31)
Conservation laws: (4-32)
x3+ax7r=c1 €R (4-33)
T4 +x9 =02 €R (4-34)
6 +r7+1T9=0c3 €ER (4-35)

To show that the kinetics are Michaelis Menten for subsystems 1 & 2 we assume i3 = 0 and
24 = 0 respectively. Then we get:

T3 =0= k?ga?gxﬁ = k4(E7 - kg(cl — x7)a:6 = k4x7} kgclxﬁ B k502$6

T =——— X9=-—"
T4 = 0= ksxgxg = kgr9g = k5(02 — xg)l'ﬁ = kgxg T k4 + k3xg 9 ke + ksxg

Then this in turn will give us two Michaelis Menten kinetic terms:

) kqkscixe
=k = — 4-36
8 4T k4 + kszg ( )
) kekscaxe
=k = — 4-37
t10 = koro = =5 (4-37)

So we can conclude that subsystem 1 & 2 can actually be seen as one substem from zg to x1g
and xg.

For subsystem 3 we can apply a similar trick to show that we have to do with Michaelis-Menten
kinetics. For this we have the following reactions within our subsystem:

X11 + X5 k—9> X921 k;o> X5 + X12 (4—38)

Then we get the following first ODEs and derivations:

5 = —kowsx11 + k10721
I = —korsT11 QSS Approach/ instantaneous equilibrium
12 = k10721 —kgzs11 + k10721 = 0 <=
To1 = koxsT11 — Kk10%21 = —ko(c1 — xo1)x11 + k10221 = 0 <~
Conservation laws: kociz1y = klOfCZlk"‘ koro1111 =

To1 = 7 gclkflfu
T5+x21 =c1 € R 10+koT11

11 + 212+ 221 =c2 € R
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. kociz
Thus T12 = kloikmg—&jkgyn

reaction R3 pew-

which shows that we have to do with Michaelis Menten kinetics for

For subsystem 4 we can apply a similar trick to show that we have to do with Michaelis-Menten
kinetics. For this we have the following reactions in our subsystem:

X3 + X &Xm &XIG + Xi3 (4-39)
X7 + Xi3 1(;7>X18 &Xm + X9 + Xiy7 (4-40)

Then the mass-action kinetics read as:

%13 = k14715 — k13713714 + K1sw1s — kirxi7ras

%15 = —k14715 + k13713714

T16 = k14715

QSS Approach/ instantaneous equilibrium
ki1sr18 = kirr177013 =

kigzig = ki7(ca — z18)x13 =

T19 = k18718 — _kizcomag
L8 kig+ki7x13

17 = k1gx18 — k17213217
18 = —k1gx1s + k1rx17213

Conservation laws:

13+ 215 +ris=c1 € R

Ti7+x18 =2 € R

Then this in turn will give us the Michaelis-Menten kinetic term for the reaction where species
213 will be consumed and x19 will be produced:

. ki7comwy3
T19 = k1gT18 = lem (4-41)
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To verify that the system indeed has to do with Michaelis Menten kinetics we made a plot
of &g vs xg, Z10 VS T, T12 VS 11 and T19 vs x13 respectively. To show a saturation for the
curves representing the MM-kinetics we will have to change our model a bit. Assume that
ks = kg = ks = kg = kg = kig = k17 = kig = TIOO For now we make a projection
where we match the corresponding timesteps with the concentrations of the desired species.
If we have a look at the concentrations of the found species at the same timesteps for the
corresponding & we can plot the trajectories corresponding to the Michaelis-Menten kinetics.
The Michaelis-Menten relations for the subsystems have been depicted in figure (4-7).

0 0
002 o 002
vy £
004 5 -0.04
< &
z, <
K 006 Z, -006
o =5
£
008 =I% 008
-04 0.1
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
[RNAP: S70] 5 [RNAP: ST0] 5
0 0
2 002 2 002
2 2
"B 004 g -004r
7] g
T 'U
< o
-0.06 & -0.06
Z I
o 9
<[£-008 =€ o08
04 0.1
0 005 01 015 02 025 03 0 02 04 06 08 1 12
[RNAP : 528] a1 [Ribo] 13

Figure 4-7: Shown Michaelis Menten kinetics for the predescribed subsystems

Here we see that the plot of #12 against x1; shows a different behavior. This is mainly due to
the fact that we have to keep in mind that the full model can change the way in which the
subsystems react with one another.

4-2-5 Determine V,,,, for Michaelis Menten kinetics

Summarized we have the following defined laws:

. kgcl:rﬁ 2.2;‘6
L _ 4-42

o hawe 1000 + 1000z (4-42)
. ]{7562336 21‘6

—k _ 4-43
0 = 6 hers 1000 + 1000z (4-43)
. kgci1x11 2x11

— _ 4-44
2 0 ko 1000 + 100021 (4-44)

k 2

10 = kig 17C2T13 T13 (4-45)

ks + kizxis 1000 4+ 1000213

Then for all these subsystems we will have a steady state V4. = ﬁ ~ 0. This is equal to
the following limits:
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2
m i’lg = . (4—46)

V. = lim #g= lim #19= lim #12= 1
max 8 T6—00 10 T11—00 12 T13—00 1000

Tre—r00

4-2-6 Use of Michaelis-Menten kinetics for changed subsystems

With the analysis we did, we know that the changed subsystems within our network of CFFLs
fit best with Michaelis-Menten kinetics. Therefore we extend our N matrix and add the
appropriate new flux term with MM-kinetics. For now, we denote ‘1 changed subsystem’ as
the system where the first subsystem has been replaced by its alternative model, we denote ‘2
changed subsystems’ as the system where the first and second subsystem have been replaced
by its alternative models. This will be similar for ‘3 changed subsystems’ and ‘4 changed
subsystems’. By doing this, we will get the following results as given in figure (4-8):

N
o
2
P
o
[RNA:RNA G, ]
°
S

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Timestep Timestep Timestep

Figure 4-8: Model of CFFLs based on three types of changed subsystems with Michaelis-Menten
kinetics

Indeed, now the systems will be much more similar with respect to the original case and
it can be concluded that using MM-kinetics is a better way to find a fitting model for our
CFFL network. Note that one wants to compare figures (4-8) with figures (4-4) and (4-3).
Here it is remarkable that the alternative model, where (optimized) mass-action kinetics have
been used, shows a better result for ‘one changed subsystem’ compared to the case where
Michaelis-Menten kinetics have been used. Though if one changes more subsystems within
the network, Michaelis-Menten kinetics will be a much more favourable alternative modelling
strategy than (optimized) mass-action kinetics.
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4-3 Conclusions of Alternative Modelling

For the network of CFFLs we can replace certain cycles and feedbackmechanisms or pathways
by more simple structures. Here we need to take renewed rate constants into account such
that the reduced and non-reduced case will only have small deviations. Besides one can show
that certain replaced feedback mechanisms are of the Michaelis Menten form.

As written before, the kinetics will mostly be based on mass-action but if we can make more
assumptions we are also allowed to use different kinetics like Michaelis-Menten. Here we will
get different flux terms for the entries of the vector vpe,(x). It was shown that Michaelis-
Menten kinetics fit best for the given (replaced) system of reactions since the ODEs for the
output concentrations show saturations.

4-4 Discussion of Alternative Modelling

4-4-1 Advantages of Alternative Modelling

Alternative modelling will have the following advantages:

o With Alternative Modelling one can simplify the system or network of CFFLs without
changing the original kinetics too much. This is realised by the comparison of the
non-reduced system of CFFLs with the Alternative Model.

o One will get more insight into the most important species/nodes/complexes involved
within the system of CFFLs

4-4-2 Challenges of Alternative Modelling

The challenge of Alternative Modelling will be to reduce the system in order without losing
too much information of the original CFFL network. Then one could argue whether it is still
realistic if more and more subsystems will be removed from the full system of CFFLs. On the
other hand it will gain us more information of the importance of a species or complex within
our network of CFFLs.
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Chapter 5

Kron reduction order method

The Kron reduction order method will introduce a new way to reduce the system in order.
This will be based on removing complexes in the first place where it will influence the internal
and eventually the external kinetics. To understand this way of model order reduction we
will first start with an illustration of the simple case.

5-1 Simple case of Kron reduction order methods

Consider the following reactions:

A+ B =Ctha (5-1)

—1

Here define the constants as: k1 = %, k1= %, ko = %.

5-1-1 Model 1: Original law of mass action

According to the law of mass action we get the following kinetics for the concentrations of
A, B and C (denoted by their non-capital letters) :

a = —k:lab + k_lc + kQC
i) = —kijab+ k_q1c (5—2)
¢ = +kiab — koc — k_qc
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5-1-2 Model 2: Kron method

For this method define the complexes as: C1 = A+ B,(Cy = A,(C3 = C . Suppose we have to

<
do with biochemical reaction (5-1). Define the speciesvector by: = = (a b c) . Then the
kinetics are given by the vector

i&=—ZLExp (Z' Logz)  [4] (5-3)
110 ki 0 0 0 0 kg

with: Z=|1 0 0|, L=D—-A,=]0 0 0 —[0 0 ko (5-4)
00 1 0 0 ky+k_q k0 0

Here Z is the m X ¢ matrix that links the species with the complexes, the degree matrix D is
the ¢ x ¢ matrix that contains the outer degrees for every complex (as node) on its diagonal
and the adjacency matrix A,g; is the ¢ X ¢ matrix that contains the degrees from complex
to complex (columns read as 'from complex’ and rows read as 'to complex’). Note that the
degree matrix has diagonal entries equal to the sum of the adjacency entries per column [4]

Now equations (5-2) and (5-3) are fully identical and it can be depicted as:

Model 1: Original law of mass action, Model 2: Kron Method
T T T T T

—concentration of A
o C ion of A (Kron hod)
——concentration of B
o C ion of B (Kron
4 concentration of C N
°ocC ion of C (Kron hod)

Speciesconcentration
o

0 5 10 15 20 25 30 35 40 45 50

Figure 5-1: Identical model 1 & 2 with resp. the original law of mass action and the applied
method of Kron

As expected the concentration of A increases and simultaneously the concentrations for B
and C reduces to 0 where the steady state is reached.
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5-1-3 Model 3: Kron reduction order method

Define the reduced order system by:

i = —Znewl BExp (Z., Log (z)) (5-5)
with
1 1
Znew =11 0] and (5-6)
0 0
ki O —k_1
I l 211 212 1 =1 0 0| —ky (5-7)
A —k1 0| ky+k_y
L =1Ly — L12L2_21L21 (Schur Complement) (5-8)

Actually here we removed complex (5 as an internal node from the network. So actually we
remove complexes and redefine the weight of the edges by L. [4] As a check, the rows in the
Laplacian matrix add to zero. Now the concentrations of A, B and C can be depicted as in
figure (5-2):

Model 3: Application of Kron Reduction Order Method
T T T T T T

35

© concentration of A
——concentration of B
concentration of C

Speciesconcentration

15 20 25 30 35 40 45 50
Time

Figure 5-2: Model 3 with applied Kron reduction order method
Note: The reduced order system already deviates quite a lot from the non-reduced order

system. Besides since the system is not complex-balanced, from [15] it follows that the steady
states of the reduced and non-reduced systems can only be identical for some subsystems.
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5-2 Complex balanced set of biochemical reactions

A set of biochemical reactions is detailed balanced if and only if the reactions within the
CFFL network are reversible with positive rate constants. This is the stronger definition
with respect to the so called complex balancedness systems. For complex balancedness we
will need that the flux rates or rate constants counteracts each other within the system of
reactions [15].

So we say shortly that complex balancedness mainly boils down to the fact that the sum of
reaction rates involved in reactions producing the complex are equal to the sum of reaction
rates involved in reactions where the complex will be consumed.

If we look at the previous example one can e.g. replace the latter single rightdirectional arrow
by a bidirectional reaction to realise the detailed balanced reaction. This means we get the
following set of biochemical reactions:

A+ B T‘L C =2 A (5-9)

—1 -2

Now the mass-action kinetics are:

a= —klab + k_lc + kQC — k_ga
b= —kiab+k_;c (5-10)
¢ = +kiab — koc — k_1c+ k_sa

Since we have a detailed balanced system we also know that the system is complex balanced.

[15] For example here we choose k_g = 15.

Z will be the same since the definitions of the complexes hasn’t been changed. D and A are
defined as:

k1 0 0 0 0 k_q
D=0 k_o 0 ,A=10 0 ko (5—11)
0 0 ko +k_q ki k_o 0
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Figure (5-3) depicts the model in which the the law of mass action has been applied and figure
(5-4) depicts the states in the reduced order system (where complex Cy has been removed): :

Model 1: Original law of mass action, Model 2: Kron Method

4.5 T T T T T T T
concentration of A
©  Concentration of A (Kron method)
concentration of B H
©  Concentration of B (Kron method)
concentration of C
) ion of C (Kron method)
35 d
c
8
®
=
£ 2. -
3
8
e
o
3
@ B
2
S
]
Q.
7]
1.
05 -
°—o0-0-o 0 00 000 000 0 0000 0 000 0 0 00
0 1 1 1 1 1 | 1 | 1
0 5 10 15 20 25 30 35 40 45 50

Figure 5-3: Kron method along with the original law of mass action models

.5 Model 3: ication of Kron Reduction Order Method
T T T T T
— = “steady state concentration of A and C red. order model
~ = steady state concentration of B red. order model
concentration of A
concentration of B
ofC

Speciesconcentration

0 5 10 15 20 2 30 35 40 45 50

Figure 5-4: Applied Kron reduction order method with the steady-states of the reduced order
system

Now if the Kron reduction order method has been applied on this set of biochemical equations,
the steady-states of the non-reduced and reduced order system are exactly the same. It can be
proven that these two systems are always the same in case of complex balanced biochemical
reactions. [15] Figure (5-4) indeed illustrates this phenomenon.
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5-3 Kron reduction order method applied in a set of chemical re-
actions

To apply the Kron reduction order method we start by transforming the set of reactions
into the corresponding set of complexes since this method is based on reducing the num-
ber of complexes.[15] By doing so we will have the following distinct complexes within our

biochemical network:

Cq
Cy
Cs
Cy
Cs
Ce
Cr
Cs
Cy

X1+ Xo

X6

X6 + X3

Xi13 + X17 + X9
Xg+ X3+ Xg
Xe + X4

X19

X0 + X4+ Xe
X111+ X6

C1o
C11
C12
C13
Cua
C1s
C16
Ci7
C1s

X1
X1+ X5
Xoo
X5 + X9
X7+ X3
X10
X1+ X3
Xs
Xi16 + X3

C19
Cao
Co1
Ca2
Cas
Oy
Cas
Ca
Cor
Cas

The set of biochemical reactions as before can now be written in terms of complexes as:

Table 5-1: Complexes within the biochemical circuit with species X1, ...

RI| O 5 Cy | RO | Cip =25 Cos | RIT | Cra 27 Coy
R2 | Cp 2C, | RI0| Coy M9 ¢y | RIS | Cop 25
R3 | C3 25 Coy | RIL| Coi =5 Cog | R19 | Cr 22 Oy,
R4 | oy 45 Cs | RI2 | Cog 5225 Coy | R20 | g 2%,
R5 | Cs 4 Coy | R13 | Cig 25 Cyr | R21 | Cip 2
R6 | Cos 5 Cg | R14 | Cor 5145 Cig | R22 | Cog 9%,
R7 | Gy 75 Cio | RIS | Cop X% Cog | R23 | Ciy 9%,
RS | Cip =% Co | R16 | Cog “='% Cog | R24 | Cig 9%, g

J. Guldenaar (4274741)

Table 5-2: Biochemical reactions in terms of complexes C1, ...

,Cas
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5-4 Link between complexes- and species network 49

Within this biochemical network of complexes we have to do with the set of coherent complex
loops. If we consider the rate constants to be similar, we can reduce this network of complexes
directly as given in table (5-3) below:

Network of complexes Network in reduced order form

k1
Cis= 0
-2

k k
Cg —3> 023 —4> C5

ks k
C6 — 024 —6> Cg
k7
Co = Cio
-8

ki1

Ci == (G
k_1
kn,l

Cg — C5
kn,Q

CG — Cg
k7

Cy = Cio
—8

ko k1o kn,3
Ci11 — Co5 — Cy3 Ci1 — Cu3
ki1 kdeg Kdeg, 1
021 ﬁT C26 — @ C21 / C26 ? @
—12
kn,4

kis kiq
Cig — Co7 — Cy3

kis kdeg
Coo T; Cog =50
—16

Ci6 — Cis
Cao [ Cog 052, ¢

k k kn,s
C14 i> CQQ i) C4 014 L> C4
k k
Cr =% Cpa Cr =% Cpa

kdcg kdcg,3
Ci5, Ci7, Cig — 0 Ci5 , Ci7, Cig —= 10

Table 5-3: Network of complexes with the corresponding network according to linkage classes

Note: Here Cyy (or Cag) degrades with flux rate kgeq 2 since it is assumed that reactions R14
and R15 are balanced (thus k14 = k_15 ). Besides C; (or Cy) degrades with flux rate kgeg1
since it is assumed that reactions R11 and R12 are balanced (thus k17 = k_12). Now we can
transform the model of complexes into the model of species concentrations and vice versa by
using the given relation between them. To make the appropriate decisions for removing the
given complexes or to determine the correct (new defined) rate constants more analysis will
be needed in general.

5-4 Link between complexes- and species network

To find the relation between the complexes- and species network we will define some new
constants. Here the number of species m, the number of complexes ¢ and the number of
reactions r are now respectively equal to 22, 28 and 24. By linking the reactions with the
complexes we get the complex Stoichiometry matrix Z € R™*¢ and by linking the complexes
with the species we get the incidence matrix B € R“*" (see Appendix). According to literature
it holds that the Stoichiometry matrix N = ZB. [16] Now we are particular interested in
the substrate complexes: i.e. the complexes in front of every reaction. [4] The substrate
complexes are thus given by complexes C1, Cs, Ca3,Cs, . . ., Cap as in table (5-2).

Then we are allowed to partition Zg as
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Zs=|Zs, - Zs, (5-12)
The corresponding flux rate vector v(x) reads as:
zZ zZ
k1$1 Si1 :L_msc,l
v(z) = : [4] (5-13)
zZ
kc$1 Sl,r . xisc,m
Zs14 ZSe 1
Note: zy " ---axm © = Exp (Zs,, Ln(z1)) - Exp (Zs,, Ln(zm))
= Exp (Z ngLn(a?k))
k=1
= Exp (Zgan(x)) (5-14)
Since equation (5-14) holds, it follows that (5-13) is equivalent to:
k1 Exp (Zs,Ln(x))
v(x) = : (5-15)
ke Exp (Zs,Ln(z))
= K Exp (Z] Ln(z))  [4] (5-16)
Then we get:
v(z) = K Exp (Z{ Ln(z)) 5-17)
— &= —ZL(z) Exp (Z Ln(z))  [4] 5-18)
where the matrix K has been defined as:
ki O 0
0 ke
K = : (5-19)
ke—1 O
0 0 ke

J. Guldenaar (4274741)
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5-4 Link between complexes- and species network 51

Here the matrices will have the following dimensions:

Zs:rxm K:cxc Z:rxc
r:mx1 L=—-DK:cxc D:cxc

It was chosen to compute the given Laplacian with an analogous method. Therefore we can
define the Laplacian matrix L = D — A where D the degree matrix and A the adjacency
matrix given by respectively :

ki
A(i,7) := Defined rate constant k;; for reaction : C; — C;.

0, if complex C; won’t be formed with other complexes and i = j
D(i,j) =40, if i # j
> ki, if complex C; has an outer degree given by flux rate/rates k;

Note that D actually is a ¢ x ¢ diagonal matrix where the corresponding entry is the sum of
the corresponding column elements of A.

( For the full matrices L and B see appendiz (A-4) and (A-1) )

Note that the dimensions for x won’t change and the m species still remain if the number
of complexes ¢ will be reduced. Most of all it is important to keep in mind that certain
complexes are linked to each other since some complexes are additions of more species even
though this is invisible within the network of complexes.
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5-5 Removing complexes according to linkage classes

Since we have already arranged the complexes in such a way that the removable com-
plexes are ordered from Csy to Cag, we can remove the following complexes respectively:
Css,Co7,...,Cy. This meets the chosen method of the Kron reduction to select the appro-
priate submatrix Li;. For this , note that the matrix L is partitioned as:

Ly L
L ( L L;) n (5-20)
L € R(%_C) X R(28_C) Lo € R® x R(28_C) (5—21)
L1y € R4 x R° Ly € R° x R® (5-22)

Here the number of removed complexes can be varied from ¢ = 0 till ¢ = 9 and is contained
in L12, L21 and L22.

Just like the simple case, the Kron method and the model of law of mass action are fully
identical. The reduction order method is based on (5-5) again. In figure 5-5 the reduction
order models are given with the species concentration of the original model:

Plot of reduced order model compared with original model (Matlab ODE solver)
12 T T v v 1.2 1

X, original model x14 original madel

RNA ] (x)

o 200 400 600 800 1000 0 200 400 600 800 1000 o 200 400 600 800 1000
Timestep Timestep Timestep

eriginal model .,

o original model ——Removed complex: czs' X"

——Extra removed complex: C

120

100 27' X15
06 i Extra removed complex: czs' X1 4

ol | |—Extraremoved complex: C,, X,,

] ——Extra removed complex: C24, )(9

Extra removed complex: czs’ )(7

[RNA - RNA_ ] (x,)

- - . : 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Timestep Timestep

Figure 5-5: Original model compared with corresponding reduction order models that exclude
the networkcomplexes according to the linkage of networkclasses

As can be concluded from figure (5-5) a higher order reduction method doesn’t have to imply
a worse reduction order model w.r.t. the lower order reduction models since the complexes
are interconnected somehow. Note that some trajectories will overlap somehow, but we can
better visualise this in the graph of RMS errors since two overlapping trajectories will give
the same error. One can figure out that the following holds (where 7 is the reduction order):
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o For state xyp the blue line is the plot for ¢ = 1. The blue line (light) is the plot for
1=2,...,6.

o For state 17 the blue line (light) is the plot for ¢ = 1. The blue line is the plot for
i=2...6.

o For state x14 the blue line is the plot for ¢ = 1. The orange line is the plot for i = 2.
The blue line (light) will be the plot for i = 3,...,6.

Furthermore note that the optimal case of order reduction will show more trajectories close
to the non-reduced case as we will see later on.

In fact, here the following states for this non-optimal case will have the same steady-states:
X1, Xg, Xg, X10, X11, X12, X14. So if we define the subsystem as these states, it is a matter
of time until it reaches the same species concentration. If we look at the flowscheme mainly
the species with the given complexes that haven’t been removed and aren’t contained within
a feedback loop will be part of this subsystem. This can also be seen in table (B-3). Here the
absolute errors between the steady states in the reduced order model have been compared
with the steady states in the non-reduced order model. .45, is the steady state of the ith
reduction order model. If this is zero for all ¢ it can be concluded that the steady states are
the same (at least) until applying the sixth order method of Kron.

As can be verified, figure (5-6a) and (5-6b) show similar results. Here the number of removed
complexes is independent of the relative RMS error for states xg, 19, €14, T20 and x17.

W

(a) Relative RMS errors for states X20, X17 (b) Relative RMS errors for states Xs, X10, X14

BT ] T

Figure 5-6: Relative RMS errors (within an interval of 10° timesteps) for the given states for
models that have been reduced in order by : =1,...,6

Mostly if the incoherent complexes will be removed it counteracts the first removal effect
and lowers the error between the reduced and non-reduced model. The error seems to be
much higher if one will look at the output species like eGFP. Moreover for some smaller order
models the models coincide.
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5-6 Sequence of complex removals

The full system (in terms of complexes) can thus be divided in two parts. One part will
contain the reactions where we won’t remove the complex whereas the other part will consist
of the other reactions. The reactions without removable and removable complexes will read
as follows:

Reactions without removable complexes Reactions with removable complexes
k1 k k
Cy = Cy Ciy =5 Cip — Cy
-2
k7 k k
Cg e ClO Cg —3) Ci72 —4> C5
—8
C kig ks ke
7 — Cqa Cg — Ci73 — Cg
Kdeg ko k1o
Ci5, Ci7, Crg — 0 Ci1 — Cjy — Cy3
ki kde
Cig == Cj5 —>10
k12
kis kiq
Cig — Cijp — Cig
kis kde
Cigs = Ciz —=10
k_16
Table 5-4: Reactions without and with removable complexes C; 1,...,Cj 9

5-6-1 Rearrangement of complexes

For now, let ¢ be the vector complexes and let ¢’ be the relabeled vector complexes. Then there
exists a permutation matrix 7 such that ¢’ = 7Z. This means that v = Zc = Z(n' ) = Z'c.
For this matrix it holds that 77 = 7!, One can also use this permutation matrix to find the
degree matrix D, adjacency matrix A and complex Stoichiometry matrix Z in case of this
coordinatetransformation.This change in matrices Z, D and A will then be identical to the
following permutations:

e The complex Stoichiometry matrix Z will interchange the corresponding columns.

e The degree matrix D will interchange the corresponding elements on the diagonal of its
matrix.

e The adjacency matrix A will interchange both the corresponding columns as well as the
corresponding rows.

Now the sequence in which we will remove the complexes (for the reactions with changeable
complexes) can be rearranged in such a way that we have an optimal removal. In other words
we will need to find the complexes Cj 1, ..., C;9. Here we use the initial combination given
in table (5-3).
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As discussed, for the rearrangement of complexes we will use the second method. In this case
there will be a total of 9! = 362,880 possibilities for rearranging the complexes. Nevertheless,
to select a bit faster we will apply this method step by step. This means we will first assume
that we have to do with the reactions and complexes as given in table (5-2). Then we will
swap the complex Csg with complexes Co7 till Coy and look at the complex that will result
in the lowest error. By doing this the number of possibilities will decrease to a total of 9 + 8
+ ...+ 2 = 44. Here the error F, based on the L; norm, has been defined by:

n

n
Ey = (Z |10 — T1redt| - Z |Tm,e — xm,red,to (5-23)
t=0 =0
1 m
F = E Z El,i (5_24)

s
Il
—

Note that the sequence of removals will be changed, but the number of removed complexes
will always be 9 per step in the optimization process. For the error we will both take the mean
of the states as well as the mean over all timesteps. For computing the errors £ we will have
to take the number of time steps and simulation time into account since this will influence
the error a lot. Therefore it is better to have a lower number of time steps since otherwise we
have states that will get a mean close to the steady-state value. Here we will take n = 1000.
In this way we rearrange the complexes and find the complex rearrangement that gives the
lowest error. Once, we have found the lowest error for a certain complex, we will fix that
complex in the complexes network and continue this procedure. This will continue until we
have found all complexes C; 1,...,C;g.

So after all, we actually relabel the complexes in such a way that we will remove the complexes
in a different order. Now we are looking for the best way to remove these complexes. Then
the first nine options will get the following errors as given in table (5-5):

Rearrange the following complexes Errors F
Without rearrangements (C; 7 = Cag) 7.2
Co7 with Cag ( i = 027) 0.3754
026 with 028 ( 0,7 = 026) 0.4390
Coys with Cag ( 5) 0.4469
024 with 028 ( i,7 = 024) 0.4334
Co3 with Cag ( 07 = CQ3> 0.4328
Coy with Cag ( 07 = Ca2) 0.6399
(91 with Cag ( i, = 021) 0.5215
Cyo with Cag ( 020) 1.1209

Table 5-5: Rearrangement of complexes along with the errors (mean of the difference between
states over all timesteps)

This actually states that the best option for C;7 is Cy7. Thus now we fix C;7 = Ca7 in the

complexes network and go on by finding the other complexes where we have a maximum of
8 options.
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So we can continue this procedure and finally get the best removal of complexes as given in

table (5-6):

Reactions without removable complexes

Reactions with optimized removable complexes

ki

Ci == (s
k_o
k7

Cy T Cio
_8

k
Cr =% Cio

kdeg
Cis, Ci7, Cig — 0

k k

014 i> CQO i) C4
k k

Cg —3> C24 —4> C5

k k
Cﬁ —5> CQG —6> Cg

kg k1o
Ciyp — Co1 — Cy3

ki1 ka
Coo k# Cos =0
—12

kis kia
Ci6 — Ca3 — C13

kis kq
Cog T; Cor =0
—16

Table 5-6: Reactions with optimized removable complexes Cyy, .. .

) C(28

5-7 Removing complexes according to optimized linkage classes

Now, if one looks at the optimal case where the order of removing complexes is optimized, the
error function will show us some really interesting results. For the optimal case the reduction
order models are given in figure (5-7) with the species concentration of the original model:

Plot of reduced order model compared with original model (Matlab ODE solver)
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Figure 5-7: Original model compared with corresponding reduction order models that exclude
the networkcomplexes according to the linkage of networkclasses in optimal case

As can be verified, figure (5-8a) and (5-8b) show the results. Mostly, a higher number of
removed complexes results in a higher RMS error for states xg, x19, 14, T20 and z17.
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(a) Relative RMS errors for states Xo0, X17 (b) Relative RMS errors for states Xg, X10, X14

Figure 5-8: Relative RMS errors (within an interval of 10° timesteps) for the given states for
models that have been reduced in order by i =1,...,6

For some reason the error signals between the optimized and non-optimized case won’t differ
that much or are even higher, but in general we can say that the RMS error will obviously
be lower in the optimized case.

5-8 Conclusions Kron reduction order method

In fact, if we continue reasoning, complexes influence other complexes and these complexes
contain different species involved in different species reactions. Therefore we actually end up
in biochemical reactions as in the original flowscheme and we conclude that some information
will be ignored if we look at the complexes separately. Data is lost since some species are
contained in more complexes and this is not visible if one looks at the complexesnetwork only.
Nevertheless for larger structures it is expected to give good results and it is more valid if we
want to reduce the order of the system rapidly. Then considerably a more accurate reduction
order model can be applied afterwards. It mostly depends on the species concentration we
are looking at with respect to the complexes that have been removed so far. If we remove the
complex that contained the species we are looking at, the corresponding species concentration
will show some fully divergent characteristics wrt to the non-reduced system (see e.g. species
concentration x17 ).

The Kron reduction order method is based on the reduction of the number of complexes. By
rewriting the update equations or set of ordinary differential equations we have the option to
reduce the internal dynamics in terms of complexes. The external dynamics will somewhat
be influenced by doing this and we can compare the two models. Here the concept of complex
balancedness will guarantee whether the steady states for both models will be the same. [15]

The order at which we will remove the complexes is important. This is because of the fact that
the deviation between the reduced order model and the non-reduced case becomes smaller in
case of optimal removal.
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5-9 Discussion Kron reduction order method

5-9-1 Advantages of the Kron reduction order method

The Kron reduction order method will have the following advantages:

o The procedure is easily applied and can be automated, e.g. error driven (in an iterative
scheme)

o The method guarantees that the steady states of the reduced system are equal to the
steady states of the non-reduced system if the system is complex balanced.

5-9-2 Challenges of the Kron reduction order method

The challenge for the model of CFFLs is that we want to work with a complex balanced
system even though the full system isn’t complex balanced. Therefore we will have to select
certain complexes (subsystems) in order to have the complex balancedness property. Then
the selection of complexes to be removed is done in such a way that the steady states will not
be destroyed. A better application of the Kron reduction order method still has to be worked
out. Since there are a lot of reduction order schemes for the Kron reduction order method we
were mainly able to find a more optimal case, but the best optimized case can still be worked
out.

J. Guldenaar (4274741) Master of Science Thesis



Chapter 6

Flow experiments

6-1 Degradation reactions

In a flowexperiment every species will be subject to flow. Furthermore there are species
that have, in addition, natural degradation, which in this case effectively changes the kinetic
rate constants. Assume that we have to do with a species X4, that experiences natural
degradation. Then the degradation (which is similar to the reactions in the batch experiment)
will be of the following form:

k eg,i
Rdeg : Xdeg d—>g 0 (6—1)

6-2 From batch to flow experiment

Let N be the Stoichiometry matrix that contains reactions of the internal system as defined
in chapter 2. For the inflow we will define a flowrate v related to an inflowvector x;, that
contains the concentrations of all added species. Then the model in flow experiment reads as

& = Nv(z) + y(xin — x), with 7 : the flow rate of the system (6-2)

This model of equations is equivalent with:

&= Npvs(z,zin) (6-3)

Ni=[Nnew Now Nigl=[N -1 1] (6-4)
T

V(T Tin) = (v(x) yx ’ya:m> (6-5)
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Since N; is of full rank the left nullspace is empty and the method of conservationlaws won’t
help to reduce the order of the system. Besides according to physics it is logically because
every species concentration now depends on its changing inflow/outflow. Therefore we will
need to use different methods if we would like to do so.

6-3 Proper choice of inflow z;,

Assume we will have to do with the same type of flow experiment. Then the flow experiment,
where one preferably wants to assume that Z is invertible, is given by the extended model
that reads as:

i =—ZL Exp (Z" Log z) + y(xin — ) (6-6)

In contrast to what has been done in the QSSA approach we will now choose a better inflow
Zin. For constant inflows x;, the goal is to reach the steady state sooner than in the batch
experiment. To do this we first start by having a look at the current steady state x* for which
holds:

i=—ZLExp (Z" Log z*) = 0. (6-7)

Therefore, since the internal kinetics are such that the same steady state z* will be reached,
the following must hold for the flow experiment:

V(@in — 2*) = 0 = 24, = 77, (6-8)

In other words, until the equilibrium is settled we want to add a species concentration equal
to the current concentration such that every species concentration stays constant from that
timestep. Here we will only take the real inflows as positive (i.e. no interconnected species
and output species). Theoretically an outflow is given if the species concenrtation z;, < x
and v > 0, but this won’t be visible since the initial condition is below this value in steady
state.

Then the non-zero species concentrations of x;, are given by:

Toim = x5 = [STO]", rgin = Ty = [RN A" (6-9)
x3,in = x5 = [DN A", Z10,in = 19 = [RN Agas]” (6-10)
Ty,in = ) = [DN Agog|” T13in = T3 = [Ribol" (6-11)
T5in = 5 = [DNAegrp)” T16,im = T1g = [928]" (6-12)

In particular it contains the species involved in the conservation laws as defined in (2-16) till
(2-21) (i.e. the species that need to be present in order to reach a certain steady state).
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Note that a higher flowrate v will result in a faster settling time as can be seen in figure (6-1).

Changed settling times for different flowrates

[RNARNAG,1 (x,6)

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Timestep Timestep Timestep

legpl  (x)

. L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100
Timestep Timestep

Figure 6-1: Flowexperiment for flowrates v = 55,7 = 155,7 = 105 and @in = *

Indeed, figure (6-1) shows a faster settling time for respectively v = ﬁ, v = 13—0 and v = %.

6-4 QSSA method for inflowexperiments

For the QSSA method for flowexperiments we will also deal with the following form of the
system: & = Nov(z) + y(zy — ). Now one wants to initialize the system by looking at
the steady states (which is z;,). Here we will use the similar initialisation as in the batch
experiment since the time it takes to reach the steady state will be scaled somehow and the
flowterms will have less influence on this (based on a relative low flowrate ). Here ‘first order
reduction method’ means that we have removed or initialised one species concentration that
reaches its steady state at its fastest. In general we get: A nth order reduction method means
that we have removed or initialised n species concentration(s) that reaches its steady state at
its fastest with respect to the other species concentrations.
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If we do this flowexperiment we get the following results as given in figure (6-2):
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Figure 6-2: Applied QSSA method for flow experiments, note that we haven't applied the
full /classical Quasi Steady State Approach for the flow experiment yet.

It becomes clear that the settling times are much more close to each other with respect to the
normal experiment. Mostly the trajectory of the reduction order model will follow the same
curve as the non-reduced system after a few timesteps. Though if we increase the number of
initialized states we will see that the settling times become faster anyway.

6-5 Kron reduction order method for flowexperiments

To apply the Kron reduction order method for flowexperiments we first need to rewrite our
CFFL model in a special form. For this rewriting we need to make sure that Z is invertable
since this will give a unique vector v, as we will see later on. Actually we want to rewrite
(6-6) in the following form:

i=—ZL Exp (Z" Log ) + Zvy = Zvp = Y(xin — ) => vp = Z y(xip —x).  (6-13)

If we assume the more simplistic reaction as before:

A+ Be=Cs=A (6-14)

-1 -2

Then by interchanging complex C and complex Co, we get the invertible matrix Z given by:

where C; := A, Cy:=A+ B, (C3:=C (6-15)

N

Il
S O =
O =
= o O
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Then vector v, and matrices D, A are now given by:

(ain —a) — (bin —b)

vy = Z Iy (xm —x) = bin — b (6-16)
Cin — C
ko 0O 0 0 0 ke
D=0 k 0 A= 0 0 kg (6-17)
0 0 k_1+ko k_o k1 0

Now we actually have two models of the following forms:
i =—ZLExp (Z" Log x) + Zu, (6-18)
& = Nv(z) + y(xip — ) (6-19)
To see that these two are fully identical with the given terms we make a plot as in figure (6-3)

s Model 1: Original law of mass action, Model 2: Kron Method
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Figure 6-3: Speciesconcentrations of Kron method along with the speciesconcentrations of the
model where the law of mass action has been applied

The difference between the inflowmodel and the model without inflows is directly visible by

noticing the different reached concentrations of species A and C. If there is some inflow the
steady states for concentration A and C' differ in contrast to the case without inflows.
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The inflowmodels can now be given according to equation (6-16). In this case we will end up
in figure (6-4), which displays the concentrations of the species along with the speciesconcen-
trations as given in the reduction order models.

4 T

T T T
Concentration of A Concentration of B
C tion of A ion order method) —&— Ci tion of B ion order method)

T T T
~— Concentration of C
C ion of C ion order method)

-~

35

~
2
I

Concentration of species
o o
T T
I 1

Timestep

Figure 6-4: Speciesconcentrations of Kron reduction order model and non-reduced model with
3

flowrate v = 1%
Even though we have to do with a complex balanced system the inflows cause the reduction
order models to have different steady states. Therefore the complex balancedness condition
alone is not enough to conclude that we have to do with equal steady states for these kind of
systems. [15]

If we look at the plots in which we use v = %, v = % and v = %, then we get figure (6-5):

, Goncentration of A with mass-action kinetics , Concentration of B with mass-action kinetics 4 Goncentration of C with mass-action kinstics
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Figure 6-5: Speciesconcentration of A, B and C withy=,y=2 and y = 2

As can be seen in figure (6-5) a higher 7 results in a faster settling time and a certain change
in the steady states. Though the reduction order models seem to get more constant species
concentrations and a change of v hardly influences the curves for the species concentrations.
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6-6 Conclusions Flow Experiments

Here we will see how to transform the system if we also have to do with in- and outflows.
It actually means that we will need to add an extra term . There are two ways to do this
even though they will have a different interpretation. One will be in matrix-vector form
while the other method merely uses vector-scalar notation. The relation between these two
is: Zvy, = y(xin — x) where we want to find v, and a (pseudo-)inverse of Z. For small systems
with flow we were able to analyse the reduction order models. For QSSA it gave similar
results as the batch experiment. For the Kron reduction order model the order doesn’t seem
to have that much effect. A higher flowrate + resulted in faster settling times for both the
non-reduced and the reduced case.
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Chapter 7

Conclusions and future challenges

7-1 Conclusions

To get more insight in the dynamics that play a role in biochemical reactions, we first start by
having a look at how the system is modelled and how the biochemical reactions are analyzed.
Thereafter we have also discussed the modelling strategies. To analyze, a set of biochemical
reactions can be rewritten in ODE models. The rewriting into a mathematical model was
done for a couple of biological processes in which the law of mass action has been applied.
Even though more kinetics are possible ( e.g. Hill or Michaelis-Menten (MM)), mostly we
will use mass-action kinetics that will describe the relation between the concentration of a
substrate S and formation of product P (reaction rate) [1], [2], [17].

The number of conservation laws can be deduced by looking at the dimension of the left
nullspace of the Stoichiometry matrix. Besides we can write the exact conservation laws with
this left nullspace [5] . By using the appropriate substitutions we can eliminate certain species
updates .

The Quasi Steady State Approach is applied by neglecting the fast reactions over the slow
reactions for the slow timescale [6], [15]. Then the differential equations for the fast reactions
can be set to zero and we will, similar to the method of using conservationlaws, get substi-
tutions or eliminations accordingly. Another useful aspect is the initialisation of the steady
states where the fastest settled species are taken into account first. This is also known as the
identification of the slow manifold. For this method a higher reduction order implies faster
settling times since the number of initialized species (identical to the final steady states) is
higher. The steady states between non-reduced and reduced case are (approximately) the
same except for the output proteins.

For the network of CFFLs we can replace certain pathways in the chemical reaction network
by more simple structures. Here we need to take renewed rate constants into account such
that the reduced and non-reduced case will only have small deviations. As written before,
the kinetics will mostly be based on mass-action. Though depending on the values of the rate
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constants one can also reduce a chain of reactions to a single reaction of Michaelis-Menten
type.

The Kron reduction order method is based on the reduction of the number of complexes
instead of the number of reactions. By rewriting the update equations or set of ordinary dif-
ferential equations we have the option to reduce the internal dynamics in terms of complexes.
The external dynamics will somewhat be influenced by doing this and we can compare the
two models. Mostly the concept of complex balancedness will determine whether the steady
states for both models will be the same [15].

One can always apply the elimination of equations by using conservation laws if the left
nullspace of the Stoichiometry matrix is non-empty. In this case the results will be exactly
the same after applying the elimination. Therefore we shouldn’t really say that this is part of
a reduction order model. If we compare QSSA and the Kron reduction order method, then we
would choose the Kron reduction order method if the system is complex balanced according
to literature [15]. Though here, based on the results, it would be a better choice to go for
QSSA. Especially for states x17 and x99 the (RMS-)errors will be quite high in case of the Kron
reduction order model. First of all this is because of the fact that the network of CFFLs is not
complex balanced. Secondly this is probably due to the fact that we haven’t really optimized
the Kron reduction order method at its best since we simply used a step by step procedure and
this could be improved somehow. After all, for QSSA the steady states in the reduced order
system will almost be identical to the steady states in the non-reduced system, but the Kron
reduction order method guarantees that the steady states of the reduced system are equal to
the steady states of the non-reduced system if the system is complex balanced. For QSSA for
small reduction order models there will be a small deviation between the reduced and non-
reduced system and a combined method of slow manifold identification can show a best way
to initialise the defined species concentrations. Though for QSSA a higher reduction model
is needed before the reduced order model or non-reduced model have the same steady states.
Besides the initialisation of species concentrations (or the removal of certain species) makes
the model completely different at the beginning of the experiment. Besides the procedure of
the Kron reduction order method is easily applied and can be automated, e.g. error-driven
(in an iterative scheme).

Once we’ve been discussing several reduction order methods, we are able to take further steps.
Another interesting feature was the transformation of the system if we also have to do with
in- and outflows. It actually means that we will need to add an extra term . There are
two ways to do this even though they will have a different interpretation. One will be in
matrix-vector form while the other method merely uses vector-scalar notation. The relation
between these two is: Zv, = (24, —x) where we want to find v, and a (pseudo-)inverse of Z.
For small systems with flow we were able to analyse the reduction order models. For QSSA it
gave similar results as the batch experiment. For the Kron reduction order model the order
doesn’t seem to have that much effect. A higher flowrate v resulted in faster settling times
for both the non-reduced and the reduced case.
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7-2 Future challenges

During this graduation project we have seen two ways to reduce our system in order. The first
one was the Quasi Steady State Approach. There we demonstrated how the identification
of the slow manifold could be done in multiple ways. Basically there one wants to find the
sequence of the species concentrations that need to be initialised and thus actually the species
that will need to be eliminated. This can be based on the time it takes till it reaches its steady
state or (equivalently) this can be based on the time it takes until the derivative state reaches
zero. Furthermore a higher order reduction model is needed before the reduced order model
or non-reduced model have the same steady states. Though a lower order reduction model
will result in smaller deviations between the reduced and non-reduced system.

The second way to reduce our system in order was the Kron reduction order method. The
challenge for the model of CFFLs is that we want to work with a complex balanced system
even though the full system isn’t complex balanced. Therefore we will have to select certain
complexes (subsystems) in order to have the complex balancedness property. Then the se-
lection of complexes to be removed is done in such a way that the steady states will not be
destroyed. A better application of the Kron reduction order method still has to be worked
out. Since there are a lot of reduction order schemes for the Kron reduction order method we
were mainly able to find a more optimal case, but the best optimized case can still be worked
out.

The challenge of Alternative Modelling will be to reduce the system in order without losing
too much information of the original CFFL network. Then one could argue whether it is still
realistic if more and more subsystems will be removed from the full system of CFFLs. On the
other hand it will gain us more information of the importance of a species or complex within
our network of CFFLs.

In general, the challenge we would focus on is to have an automated procedure that directly
transforms the biochemical system equations into its reduced order form. With computed
errorfunctions the best method (or combination of methods) could be selected first automat-
ically. Besides with experiments one could make a match of the model and see what kind of
kinetics match best for the given situation/experiment.
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(A-2)
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Appendix B

Tabulars

Number of removed states 1 2 3 4 5
RMS error with xg 0.27 1 0.39 | 0.89 | 1.29 | 3.46
RMS error with x19 0.05 ] 0.29 | 0.38 | 1.02 | 3.85
RMS error with x74 0.05 | 0.03 | 0.12 | 0.11 | 0.33
RMS error with x59 0.36 | 0.57 | 1.06 | 1.50 | 4.20
RMS error with xq7 0.05 | 0.07 | 0.14 | 0.20 | 0.58

Table B-1: RMS errors between original model z; and reduced order model z,¢q; where 4
equals the number of the removed states from the non-reduced model for the Quasi-steady state

approach (QSSA)
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Tabulars

Initialised species | Timestep at which the
steady state is reached
within a 10 % tolerance in-
terval

X5 51.37
X3 100.81
Xo 182.79
X3 468.35
Xy 468.35
Xo 589.32
X6 725.85
X3 845.04
X0 846.01
X7 867.63
Xy 867.63
Xg 887.58
X3 906.38
X5 920.91
X4 921.77
X0 923.61
Xo1 926.55
X11 926.89
Xis 948.36
X7 948.45
X9 948.76

Table B-2: Initialised species along with the timestep at which the steady state is reached within

a 10 % tolerance interval
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Appendix C

C-1 Conservation Laws

C-1-1 Simple model

%% Clean up
cle; clear all; close all;

%% Initialisation of
n = 50;
Kl = 1/10; k 1 = 3/10;
dt = 1/10;

% Orignal model

x1 = [1; 1; 1];
x = x1;
xplot = ones(length(x), n);

N=1[1 —-1; 1 -1 ; =1 1];
e0d = x(1) + x(3);
el = x(2) + x(3);

% Reduced order model

xlred = [1; 1];

xred = xlred;

xredplot =

Nred = [1 -1 -1 ; =1 1 1];
model

for t = 1:n

% Orignal model
xplot (:,t) = x;
vV =

Master of Science Thesis

constants ,

Matlab code

vectors , matrices

% Nubmer of timesteps

% Flux
% Timestep per iteration

rates

% Initial vector x: [a b ¢]’
% Add plotvectors

% Stochiometry matrix original model

% First conservation law: a + ¢ = constant
% Second conservation law: b + ¢ = constant
% Initial vector x: [a c¢]’

ones (length (xred), n); % Add plotvectors

% Stochiometry matrix reduced order

[k_1xx(3); k1 #x(1)*x(2)]; % Flux rates
xnew = Nxvxdt + x; % Euler Forward based

iteration

J. Guldenaar (4274741)
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82 Matlab code

X = Xnew;
% Reduced order model

xredplot (:,t) = xred;

vred = [(k_1 + klx(e0 + el))xxred(2); klxxred(2)"2; klxeOxel]; % Flux

rates
xnewred = Nredsvred*dt + xred; % Euler Forward based iteration
xred = xnewred;

end
9% Comparison of reduced order model with original model

figure (1) ;

plot (0:n—1,xplot(1,: ), ’linewidth’, 2 ) % Plot of concentration of A
for original model

hold on

plot (0:n—1,xredplot (1,: ), o', ’linewidth’, 2 ) % Plot of concentration
of A for red. order model

plot (0:n—1,xplot (3,: ), ’linewidth’, 2 ) % Plot of concentration of C
for original model

plot (0:n—1,xredplot (2,: ), o', ’linewidth’, 2 ) % Plot of concentration
of C for red. order model

hold off

xlabel (" Timestep ) ;

ylabel (’concentration of species’);

legend (’[A]: Original model’, ’[A]: Reduced order model’, ’"[C] Original
model’, ’[C]: Reduced order model’ );

C-1-2 CFFL network

%% Clean up

clear all; close all; clc;

%% 0Ode23 solver based solution of xdot = Nvx

n = 100; % number of timesteps

tspan = [0 n—1];

x0 = ones(22,1);

[t_ode,x_ode] = ode23(Qodefun, tspan, x0);

[t_red_ode, x_red_ode] = ode23(@Qodefun_red, tspan, x0);

%% Plotting (for matlab ODE solvers)
figure (2);

subplot (2,3,1);

plot (t_ode,x_ode(:,8), ’linewidth’, 2 ) % Plot of state x8 for n
timesteps

hold on

plot (t_red ode, x_red ode(:,8),’0’, ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA ¢ ] (x_8)7);

legend ( 'x8 original’, ’x8 reduced order system’);

J. Guldenaar (4274741) Master of Science Thesis
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subplot (2,3,2);

plot (t_ode,x_ode(:,10), ’linewidth’, 2 ) % Plot of state x10 for n
timesteps

hold on

plot (t_red_ode, x_red_ode(:,10), o’ , ’linewidth’, 2 ) % Plot of state
x10 for n timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA {S28}] (x_{10})7);

legend ( 'x10 original’, ’'x10 reduced order system’);

subplot (2,3,3);

plot (t_ode,x ode(:,15), ’linewidth’, 2 ) % Plot of state x15 for n
timesteps

hold on

plot (t_red ode, x_red ode(:,15),’0", ’'linewidth’, 2 ) % Plot of state
x15 for n timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA_t:RNA {S28}] (x_{14})7);

legend (’x14 original’, ’'x14 reduced order system’);

subplot (2,3 ,4:5) ;

plot (t_ode,x_ode(:,21), ’linewidth’, 2 ) % Plot of state x21 for n
timesteps

hold on

plot (t_red_ode, x_red_ode(:,21), "o’ , ’linewidth’, 2 ) % Plot of state
x21 for n timesteps (red. order model)

hold off

xlabel (" Timestep ') ;

ylabel (*[e {GFP}]" (x {20})");

legend ( 'x20 original’, ’'x20 reduced order system’);

subplot (2,3,6);

plot (t_ode,x_ode(:,18), ’linewidth’, 2 ) % Plot of state x18 for n
timesteps

hold on

plot (t_red_ode, x_red_ode(:,18), ’o’, linewidth’, 2 ) % Plot of state
x18 for n timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA t : RNA {eGFP}] (x {17})7);

legend ('x17 original’, ’'x17 reduced order system’);

sgtitle (’Plot of reduced order model compared with original model (Matlab
ODE solver)’);

%% N matrix

N = zeros(22,23);

N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;

N(1,2) = 1; N(2,2) = 1;N(6,2) = —1;

N(6,3) = —1; N(3,3) = —1;N(7,3) = 1;

N(7,4) = —1;N(8,4) = 1;N(3,4) = 1;N(6,4) = 1;

Master of Science Thesis J. Guldenaar (4274741)
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o7 N(6,5) = —I;N(4,5) = —I;N(9,5) = 1;

s N(9,6) = —1;N(10,6) = 1;N(4,6) = 1;

60 N(6,6) = 1;

7o N(11,7) = —L;N(17,7) = —1;N(1,7) = 1;

n N(11,8) = 1;N(17,8) = 1;N(1,8) = —1;

22 N(11,9) = —1:N(5,9) = —1:N(22,9) = 1;

73 N(22,10) = —1;N(5,10) = 1;N(13,10) = 1;
72 N(10,11) = —1;N(8,11) = —1;N(15,11) = 1;
75 N(15,12) = —1;N(14,12) = —1;N(16,12) = 1;
76 N(16,13) = —1;N(17,13) = 1;N(14,13) = 1;
77 N(8,14) = —1;N(13,14) = —1;N(18,14) = 1;
7s N(18,15) = —1;N(8,15) = 1;N(13,15) = 1;
79 N(18,16) = —1;N(14,16) = —1;N(19,16) = 1;
so N(19,17) = —1;N(14,17) = 1;N(20,17) = 1;N(18,17) = 1;
st N(20,18) = —1;N(21,18) = 1;

s2 N(10,19) = —1;

s3 N(8,20) = —1;

sa N(13,21) = —1;

s N(15,22) = —1;

s6 N(18,23) = —1;

1 function dxdt = odefun(t, x)

2 k1l = 1/10;

3 k 2=1/10;

4 k3 = 1/10;

s ki = 1/10;

6 k5 = 1/10;

7 k6 = 1/10;

s k7 = 1/10;

9 k 8 =1/10;

10 k9 = 1/10;

u k10 = 1/10;

12 k11 = 1/10;

13 k 12 = 1/10;

14 k13 = 1/10;

15 k14 = 1/10;

16 k15 = 1/10;

1w k 16 = 1/10;

15 k17 = 1/10;

19 k18 = 1/10;

20 k19 = 1/10;

21 kdeg = 1/10;

22 gamma = 1/100;

23

24 % Flux rates ( [3] )

25

26 % k1 = 249.995;
27 % k 1 = 1.88;
28 % k2 = 51.264;
20 % k3 = 3.1441;
30 % k4 = 1/10;

31 % kb = 3.4445;
32 % k6 = 0.0390;
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% k_6

= 28.837;

% k7 = 1/10;
% k8 = 3.499;
% k9 = 72.3162;

% k10
% k11
% k12

% k12 =

% k13
% k14
% k15
% kdeg

Zzzzzzzzzz2z2z2

2222222222222

= 0.361;
49.944;
= 99.951;
25.414;
3.4906;
= 494.256;
= 0.999;

= 0.997;

s(22,24) ;

= —1; N(2,1) = —1; N(6,1) = 1;

= 1; N(272) = 1’N(672) =
= —1;N(8,4) = 1;N(3,4) =
—1;N(9,5) =
= —1;N(10,6) = 1;N(4,6)

= —1; N(3,3) =

= —1N(4,5) =

= —1;N(17,7) =

)
) = 1;N(17,8) =
) = —LiN(5.,9) =
0) = —1;N(5,10) =
1) = —1:N(8,11) =

) = 1; N(10,12)

) = 1; N(13,16)

zeros (24,1);
= klxx(1)xx(2);
=k 2xx(6);
= k3xx(6)*x(3);

Master of Science Thesis

—1;N(1, 7T
1;N(1,8) =
~1;N(22,9)

1

_17
= 1;
:N(13,10) = 1;

= —1:N(15,11) = 1;

3) = —1; N(14,13)
—1; N(17,14)
8,15) = —1; N(13,15)

N(14, 17?
N(14,18)
N(21,19)

1;

[l =

—1; N(16,13) =
1; N(14,14) =
~1; N(18,15) =

. N(18,16) = —1;

—1; N(19,17)=
1; N(20,18) =
1;

N(15,12) = —1;

)
1;
;

1;
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86 Matlab code
vx(13) = k13xx(15)xx(14);
vx(14) = kl4xx(16);
vx(15) = k15xx(8)xx(13);
vx(16) = k 16*x(18);
vx(17) = k17*x(18)*x(14);
vx(18) = k18xx(19);
vx(19) = k19xx(20);
vx(20) = kdegxx(10);
vx(21) = kdegx*x(8);
vx(22) = kdegxx(13);
vx(23) = kdegxx(15);
vx(24) = kdegxx(18);

dxdt = Nxvx;

function dxdt = odefun_red(t, xred)

k1 = 1/10;
k 2 = 1/10;
k3 = 1/10;
ki = 1/10;
k5 = 1/10;
k6 = 1/10;
k7 = 1/10;
k 8 = 1/10;
k9 = 1/10;
k10 = 1/10;
k1l = 1/10;
k 12 = 1/10;
k13 = 1/10;
k14 = 1/10;
k15 = 1/10;
k 16 = 1/10;
k17 = 1/10;
k18 = 1/10;
k19 = 1/10;
kdeg = 1/10;

gamma = 1/100;
% Flux rates ( [3] )

% k1 = 249.995;
% k 1 = 1.88;

% k2 = 51.264;
% k3 = 3.1441;
% k4 = 1/10;

% k5 = 3.4445;
% k6 = 0.0390;
% k 6 = 28.837;
% k7 = 1/10;

% k8 = 3.499;
% k9 = 72.3162;
% k10 = 0.361;

J. Guldenaar (4274741)
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% k11 = 49.944;

% k12 = 99.951;

% k_12 = 25.414;

% k13 = 3.4906;

% k14 = 494.25 G

% k15 = 0.999;

% kdeg = 0.997;

N = zeros(22,24);

N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;
N(1,2) = 1; N(2,2) = 1;N(6,2) = —1;
N(6,3) = —1; N(3,3) = —1;N(7,3) = 1;
N(7,4) = —1;N(8,4) = 1;N(3,4) = 1;N(6,4) =
N(6,5) = —1;N(4,5) = —1;N(9,5) = 1;
N(9,6) = —1;N(10,6) = 1;N(4,6) = 1; N(6,6)
N(11,7) = —LN(17,7) = —1;N(1,7) =
N(11,8) = 1;N(17,8) = 1;N(1,8) = —1,
N(11,9) = —1;N(5,9) = —1;N(22,9) = 1;
N(22,10) = —1;N(5,10) = 1;N(13,10) = 1;
N(10,11) = —1;N(8,11) = —1;N(15,11) = 1;
N(8,12) = 1; N(10,12) = 1; N(15,12) = —1;
N(15,13) = —1; N(14,13) = —1; N(16,13) = 1;
N(16,14) = —1; N(17,14) = 1; N(14,14) = 1;
N(8,15) = —1; N(13,15) = —1; N(18,15) = 1;
N(8,16) = 1; N(13,16) = 1; N(18,16) = —1;
N(18,17) = —1; N(14,17) = —1; N(19,17)= 1;
N(19,18) = —1; N(14.18) = 1; N(20,18) = 1:
N(20,19) = —1; N(21,19) = 1;

N(10,20) = —1;

N(8,21) = —1;

N(13,22) = —1;

N(15,23) = —1;

N(18,24) = —1;

a_left = null (N7);

% Determine constants red.

cl = 0;

for k =
cl =
c2 =
c3 =
cd =
ch =
cb =

end

Templ =

Master of S

order model

1 :22

cl + a_left(k,1)*xred(k);

c2 + a_left(k,2)*xred(k);

c3 + a_left(k,3)*xred(k);

cd + a_left(k,4)*xred(k);

c5 + a_left (k,5)*xred(k);

c6 + a_left(k,6)s*xred(k);

0; Temp2 = 0; Temp3 = 0; Tempd =

cience Thesis

1;

N(18,18)=

0; Tempd =

0; Tempb = 0;

J. Guldenaar (4274741)
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Matlab code

1) xxred (k) ;

for k = 1:22
if k ~=7
Templ = Templ + a_ left (k
end
if k~=
Temp2 = Temp2 + a_ left (k
end
if k~=
Temp3d = Temp3 + a__
end
if k~=4
Temp4d = Tempd + a__
end
if k~=
Tempd = Tempd + a__
end
if k~=6
Temp6 = Tempb + a_ left (k
end
end
% xred (1) = (¢l — Templ ) / a_lef
xred (2) = (¢2 — Temp2 ) / a_left(
xred (3) = (¢3 — Temp3 ) / a_left(
xred (4) = (c4d — Tempd ) / a_left(
xred (5) = (¢ — Tempb ) / a_left(
xred (6) = (¢6 — Tempb ) / a_left(
xred (7) = (¢l — Templ) / a_left (7
vxred = zeros (24,1);
vxred (1) = klsxred(1)*xred(2);
vxred (2) = k_2xxred (6);
vxred (3) = k3xxred (6)x*xred(3);
vxred (4) = kdxxred (7);
vxred (5) = kbxxred (6)*xred(4);
vxred (6) = k6xxred (9);
vxred (7) = k7xxred (11)*xred(17);
vxred (8) = k_8xxred(1);
vxred (9) = k9xxred (11)*xred(5);
vxred (10) = k10xxred(22);
vxred (11) = kllxxred (10)s*xred (8);
vxred (12) = k_12 % xred(15);
vxred (13) = k13*xred (15)*xred (14);
vxred (14) = kl4xxred (16);
vxred (15) = klb*xred (8)*xred (13);
vxred (16) = k_16xxred (18);
vxred (17) = kl7+xred (18)xxred (14);
vxred (18) = k18xxred(19);
vxred (19) = k19xxred (20);
vxred (20) = kdeg*xred(10);
vxred (21) = kdegxxred(8);
vxred (22) = kdegxxred(13);

J. Guldenaar (4274741)

2)xxred (k) ;

left (k,3)*xred (k) ;

left (k,4) «xxred (k) ;

left (k,5)xxred (k) ;

6)*xxred (k) ;
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vxred (23) = kdeg*xred (15);
vxred (24) = kdegxxred (18);

dxdt = Nxvxred;
C-2 QSSA

%% Clean up

clear all; close all; clc;

%% Bar Graph for computed RMS values
RMS = load (’'RMS values2.mat’)

b

RMS = cell2mat (struct2cell (RMS));

RMS = RMS(:, 1:5) ;

x_bar = categorical( { "1 — x {8, red.,i }/x 8 [RNA ft]
[RNA {S281}]
[RNA_t :
[e_{GFP}]

"1 — x {10, red,i}/x {10}
"1 — x {15, red, i}/x {15}
"1 — x {21, red, i}/x {21}
"1 — x {18, red, i}/x {18}
x_bar = reordercats (x_bar,{
"1 — x {10, red,i}/x {10}

1 —x {15, red, i}/x {15}
"1 — x {21, red, i}/x {21}
"1 — x {18, red, i}/x {18}

[RNA t: RNA {cGFP}]

RNA {S28}]

[RNA_{S281}]
[RNA_t :
[e {GFP}]

[RNA t: RNA { (:GFP H

% set (x_bar,’ TickLabellnterpreter ’,

figure (2);
b = bar(x_bar, RMS) ;

RNA {S28}]

)

)

?

)

)

)

)

latex 7) ;

)

)

)

)

i

)

)

IO

"1 — x {8, red,i }/x 8 [RNA_t] 7,

1)

ylabel (’Relative errors for system order reduction by removing i states’)

; %, ’Interpreter ’,’ latex’
set(b(1,1), ’facecolor’, [0.71 0.87
set (b(1,2), ’'facecolor’, [0.84 0.85
set (b(1,3), ’'facecolor’, [0.93 0.69
set (b(1,4), ’'facecolor’, [0.87 0.56
set (b(1,5), ’'facecolor’, [0.84 0.36

set (b, {’DisplayName’} ,...

i=1",

=20, ...

=30, ...

=40,

SRR Y
legend ()

%% Unused

Master of Science Thesis
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Matlab code

% set(b(7:11), ’facecolor’, ’
%

% b.FaceColor = ’flat ’;

% b.CData(2,:) = [.5 0 .5];

% RMS = [ RMS ;
% RMS_ vector = RMS(:) ;

y');

zeros (1,5) J;

% x_bar = categorical ({'x {8,1}’, 'x {8,2}’, 'x {8,3}’, 'x {8,4}’, ’'x_
{8,565}, "1’ ...

% x {10,1}7, 'x {10,2}’, ’x {10,3}", 'x {10,4}", 'x {10,5}", '2°7,

% 'x {15,1}7, 'x {15,2}", 'x {15,3}", 'x {15,4}", 'x {15,5}", '3°, ...

% 'x {21,1}7, 'x_{21,2}", 'x {21,3}", 'x _{21.,4}", 'x _{21,5}", '4°,

% 'x {18,1}’, 'x _{18,2}’, 'x {18,3}", 'x {18,4}", 'x {18,5}", '5’

%t );

% x_bar = reordercats (x_bar,{’x {8,1}’, ’x {8,2}", 'x_{8,3}7, 'x_{8,4}",
'x {8,5}, 17 ...

% 'x_{10,1}7, 'x_{10,2}", ’'x {10,3}", 'x {10,4}", 'x {10,5}", '27,

% 'x {15,1}’, ’'x {15,2}’, ’'x {15,3}’, 'x {15,4}’, ’x {15,565}, 37, ...

% x {21,1}7, 'x_{21,2}7, 'x {21,3}’, 'x {21.,4}’, 'x {21,5}", 4,

% 'x {18,1}7, 'x {18,2}", 'x {18,3}", 'x {18,4}’, 'x {18,5}’, ’5’

%0});

%

%

% % will produce a different color for each bar. If you want to set your

own colors then simply do:
%

function dxdt = odefun2(t, x)

k1l = 1/10;
k 2 = 1/10;
k3 = 1/10;
ki = 1/10;
ks = 1/10;
k6 = 1/10;
k7 = 1/10;
k 8 = 1/10;
k9 = 1/10;
k10 = 1/10;
k11l = 1/10;
k 12 = 1/10;
k13 = 1/10;
k14 = 1/10;
k15 = 1/10;
k 16 = 1/10;
k17 = 1/10;
k18 = 1/10;

J. Guldenaar (4274741)
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k19 = 1/10;
kdeg = 1/10;
gamma = 0;
xin =

[0.000559909681997316;3.98855518598468;1.99542030372759;1.99542030372759;1.99994815
e—05;1;5.20169112799691e—05;2.99998690320702;4.20699689366722¢
—06;1.27298311366668e —05;19.6987451094137;1.21270192347726¢

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

—07;3.66961843422663e¢—07;3.70139734764438e¢
—07;8.38789844363369;5.18481459814413e—05];

N = zeros(22,24)

N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;
N(1,2) = 1; N(2,2) = 1;N(6,2) = —1;
N(6,3) = —1; N(3,3) = —1:N(7,3) = 1;
N(7,4) = —1;)N(8,4) = 1;N(3,4) = 1;N(6,4) = 1;
N(6,5) = —1;N(4,5) = —1;N(9,5) = 1;
N(9,6) = —1;N(10,6) = 1;N(4,6) = 1; N(6,6) = 1;
N(11,7) = —LN(17,7) = —LN(1,7) =
N(11,8) = 1:N(17,8) = 1;N(1,8) = —1;
N(11,9) = —1:N(5,9) = —1:N(22,9) = 3
N(22,10) = —1:N(5,10) = 1;N(13,10) = 1;
N(10,11) = —1;N(8,11) = —1:N(15,11) = 1;
N(8,12) = 1; N(10,12) = 1; N(15,12) = —1;
N(15,13) = —1; N(14,13) = —1; N(16,13) = 1;
N(16,14) = —1; N(17,14) = 1; N(14,14) = 1;
N(8,15) = —1; N(13,15) = —1; N(18,15) = 1;
N(8,16) = 15 N(13 16) = 1; N(18,16) = —1;
N(18,17) = N(14,17) = —1; N(19,17)= 1;
N(19,18) = —1; N(14,18) = 1; N(20,18) = 1; N(18,18)
N(20,19) = —1; N(21,19) = 1;

N(10,20) = —1;

N(8,21) = —1;

N(13,22) = —1;

N(15,23) = —1;

N(18,24) = —1;

vx = zeros (24,1);

vx (1) = kl*x(1)x*x(2);

vx(2) = k_ 2xx(6);

vx(3) = k3xx(6)xx(3);

vx(4) = kdxx(7);

vx(5) = kbxx(6)xx(4);

vx(6) = k6xx(9);

vx(T) = KTax(11)#x(17)

vx(8) = k 8ax(1):

vx(9) = k9xx(11)xx(5);

vx(10) = k10xx(22);

vx(11) = kllxx(10)*x(8);

vx(12) = k_12 % x(15);

vx(13) = k13xx(15)xx(14);

vx(14) = kl4xx(16);

vx(15) = k15xx(8)xx(13);
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vx(16) = k_16*x(18);
vx(17) = k17xx(18)xx(14);
vx(18) = k18x%x(19);
vx(19) = k19*x(20);
vx(20) = kdegxx(10);
vx(21) = kdeg*x(8);
vx(22) = kdegxx(13);
vx(23) = kdegx*x(15);
vx(24) = kdegxx(18);

xin = ones(22,1);

dxdt = Nxvx 4+ gammax(xin — x) ;

9% Clean up
clear all; close all; clc;
%% 0Ode23 solver based solution of xdot = Nvx

p = 10; % p—percent confidence interval

n = 500; % number of timesteps

tspan = [0 n—1];

x0 = lxones(22,1);

[t_ode,x_ode] = ode23(@odefun2, tspan, x0);
[t_red_odel, x_red_odel] = ode23(QQSSA_funl, tspan, x0
[t_red_ode2, x_red_ode2] = ode23(QQSSA_fun2, tspan, x0
[t_red_ode3, x_red_ode3] = ode23(QQSSA_fun3, tspan, x0
[ ]

t_red_ oded4, x_ red_ ode4 ode23 (QQSSA_fund, tspan, x0

Mo — —

% [t_red_odeb, x_red_odeb] = o0de23(QQSSA_fun5, tspan, x0);
% [t_red_ode6, x_red_ode6] = ode23(QQSSA_fun6, tspan, x0);
% [t_red_ode7, x_red_ode7] = o0de23(QQSSA_fun7, tspan, x0);
% [t_red_ode8, x_red_ode8] = o0de23(QQSSA_fun8, tspan, x0);

%% Plotting (for matlab ODE solvers)
figure (1) ;
subplot (2,3,1);

vll = (1-p/100)*x_ode(:,8) ;

v12= (14p/100)*x_ode(:,8) ;

xCoords = [t_ode’ (fliplr(t_ode’)) |;

yCoords = [v11’ fliplr(v1i2’) |;

% hPatch = fill (xCoords,yCoords , [1, 1, 0.51], EdgeColor’,’y’);

hold on

pl = plot(t_ode,x_ode(:,8), ’linewidth’, 2 ); % Plot of state x8 for n
timesteps

plot (t_red_odel, x_red_odel (:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

plot (t_red_ode2, x_ red ode2(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)
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plot (t_red_ode4, x_red_oded (:,8), ’linewidth’, 2 ) % Plot of state x8 for
n timesteps (red. order model)

% plot (t_red_ode5, x_red_ode5(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

% plot (t_red_ode6, x_red_ode6(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

% plot (t_red ode7, x_red ode7(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

% plot (t_red ode8, x_ red ode8(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

hold off

xlabel (" Timestep ') ;

ylabel (7 [RNA t ] (x_8)7);

legend ( 'Non—reduced system: $x 8%’, ’'1 removed state’, ’'2 removed states’
, '3 removed states’, '4 removed states’, ’'interpreter’, ’latex’); %,
’2 removed states’, '3 removed states’, 4 removed states’, ’'5 removed
states ’, ’interpreter ', ’latex ’);

subplot (2,3,2);

v101 = (1—p/100)*x_ode(:,10) ;

v102= (14+p/100)*x_ode(:,10) ;

xCoords = [t_ode’ (fliplr(t_ode’)) ];

yCoords = [v101’ fliplr(v102’) ];

% hPatch = fill (xCoords,yCoords , [1, 1, 0.51], EdgeColor’,’y’);

hold on

p2 = plot (t_ode,x_ode(:,10), ’linewidth’, 2 ); % Plot of state x10 for n
timesteps

plot (t_red_odel, x_red_odel(:,10), ’linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

plot (t_red_ode2, x_red_ode2(:,10), ’linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

plot (t_red ode3, x_ red ode3(:,10), ’'linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

plot (t_red oded, x red oded(:,10), ’'linewidth’, 2 ) % Plot of state xI10
for n timesteps (red. order model)

% plot (t_red_odeb, x_red_ode5(:,10), ’linewidth’, 2 ) % Plot of state
x10 for n timesteps (red. order model)

% plot (t_red_ode6, x_red_ode6(:,10), ’linewidth’, 2 ) % Plot of state
x10 for n timesteps (red. order model)

% plot (t_red_ode7, x_red_ode7(:,10), ’linewidth’, 2 ) % Plot of state
x10 for n timesteps (red. order model)

% plot (t_red ode8, x_red ode8(:,10), ’linewidth’, 2 ) % Plot of state
x10 for n timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA {S28}] (x_ {10})7);

legend ( 'Non—reduced system: $x_{10}$’, ’1 removed state’, ’2 removed
states’, '3 removed states’, ’'4 removed states’, ’interpreter’, ’latex
")y %, ’2 removed states’', ’3 removed states’, ’4 removed states’, ’5
removed states’, ’interpreter’, ’latex’);

subplot (2,3,3);
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v151 = (1-p/100)*x_ode(:,15) ;

v152= (14p/100)*x_ode(:,15) ;

xCoords = [t_ode’ (fliplr(t_ode’)) |;

yCoords = [v151° fliplr(v152’) ];

% hPatch = fill (xCoords,yCoords ,

hold on

p5 = plot(t_ode,x_ode(:,15), ’linewidth’, 2 ); % Plot of state x15 for n
timesteps

plot (t_red_odel, x_red_odel(:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

plot (t_red_ode2, x_red_ode2(:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

plot (t_red ode3, x_red ode3(:,15), ’'linewidth’, 2 ) % Plot of state xI5
for n timesteps (red. order model)

plot (t_red_ode4, x_red_ode4 (:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

% plot (t_red_ode5, x_red_ode5(:,15), ’linewidth’, 2 ) % Plot of state
x15 for n timesteps (red. order model)

% plot (t_red ode6, x_red ode6(:,15), ’linewidth’, 2 ) % Plot of state
x15 for n timesteps (red. order model)

% plot (t_red ode7, x_red ode7(:,15), ’linewidth’, 2 ) % Plot of state
x15 for n timesteps (red. order model)

% plot (t_red_ode8, x_red_ode8(:,15), ’linewidth’, 2 ) % Plot of state
x15 for n timesteps (red. order model)

[1, 1, 0.51], EdgeColor’,’y’);

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA t:RNA {528 }] (x_{14})7);

legend ( 'Non—reduced system: $x_{14}$’, ’1 removed state’, ’2 removed
states’, ’3 removed states’, '4 removed states’, ’'interpreter’, ’latex
Y5 %, ’2 removed states’, ’3 removed states’, ’'4 removed states’, ’5
removed states’, ’interpreter’, ’latex’);

subplot (2,3 ,4:5) ;

v201 = (1—-p/100)*x_ode(:,20) ;

v202= (14+p/100)*x_ode(:,20) ;

xCoords = [t_ode’ (fliplr(t_ode’)) ];

yCoords = [v201’ fliplr(v2027) |;

% hPatch = fill (xCoords,yCoords , [1, 1, 0.51] ,’EdgeColor’,’y’);

hold on

p3 = plot(t_ode,x_ode(:,21), ’linewidth’ ), 2 ); % Plot of state x15 for n
timesteps

plot (t_red_odel, x_red_odel(:,21), ’linewidth’, 2 ) % Plot of state x20
for n timesteps (red. order model)

plot (t_red_ode2, x_red_ode2(:,21), ’linewidth’, 2 ) % Plot of state x20
for n timesteps (red. order model)

plot (t_red ode3, x red ode3(:,21), ’linewidth’, 2 ) % Plot of state x20
for n timesteps (red. order model)

plot (t_red_ode4, x_red_oded (:,21), ’linewidth’, 2 ) % Plot of state x20
for n timesteps (red. order model)

% plot (t_red ode5, x_red odeb(:,21), ’linewidth’, 2 ) % Plot of state
x20 for n timesteps (red. order model)
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% plot (t_red_ode6, x_red_ode6(:,21), ’linewidth’, 2 ) % Plot of state
x20 for n timesteps (red. order model)

% plot (t_red_ode7, x_red_ode7(:,21), ’linewidth’, 2 ) % Plot of state
x20 for n timesteps (red. order model)

% plot (t_red_ode8, x_red_ode8(:,21), ’linewidth’, 2 ) % Plot of state
x20 for n timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (‘e {GFP}]  (x_{20})°);

legend ('Non—reduced system: $x_{20}$’, ’1 removed state’, ’2 removed
states’, '3 removed states’, ’'4 removed states’, ’interpreter’, ’latex
"Y; %, ’2 removed states’, ’3 removed states’, ’4 removed states’, ’5
removed states’, ’interpreter’, ’latex’);

subplot (2,3,6) ;

v181 = (1—-p/100)*x_ode(:,18) ;
v182= (14p/100)*x_ode(:,18) ;
xCoords = [t_ode’ (fliplr (t_ode’
yCoords = [v181’ fliplr(v182’) |
% hPatch = fill (xCoords,yCoords ,

?) I;

[1, 1, 0.51], EdgeColor’,’y’);

hold on

p4 = plot(t_ode,x_ode(:,18), ’linewidth’, 2 ); % Plot of state x18 for n
timesteps

plot (t_red_odel, x_red_odel(:,18), ’linewidth’, 2 ) % Plot of state xI18

for n timesteps (red. order model)

plot (t_red_ode2, x_red_ode2(:,18), ’linewidth’, 2 ) % Plot of state xI18
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,18), ’linewidth’, 2 ) % Plot of state x18
for n timesteps (red. order model)

plot (t_red_ oded, x_ red oded(:,18), ’'linewidth’, 2 ) % Plot of state xI8
for n timesteps (red. order model)

% plot (t_red odeb, x_ red ode5(:,18), ’linewidth’, 2 ) % Plot of state
x18 for n timesteps (red. order model)

% plot (t_red ode6, x_ red ode6(:,18), ’linewidth’, 2 ) % Plot of state
x18 for n timesteps (red. order model)

% plot (t_red_ode7, x_red_ode7(:,18), ’linewidth’, 2 ) % Plot of state
x18 for n timesteps (red. order model)

% plot (t_red_ode8, x_red_ode8(:,18), ’linewidth’, 2 ) % Plot of state
x18 for n timesteps (red. order model)

hold off

xlabel (" Timestep ') ;

ylabel (7 [RNA_t : RNA {eGFP}] (x_{17}));

legend ('Non—reduced system: $x_{17}$’, ’1 removed state’, ’2 removed
states’, '3 removed states’, ’'4 removed states’, ’interpreter’,
latex’); %, ’2 removed states’, ’3 removed states’, ’4 removed states
", ’5 removed states’, ’interpreter ’, ’latex’);

sgtitle (’Plot of reduction order model compared with non—reduced system’,
“interpreter ', ’latex’);

%% Reduction order method QSSA

xdot = []; %zeros( length(x_ode), 22)
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Matlab code

for k =1:length (x_ode)

xdot
end

xdot__mean

[

[ xdot QSSA_fun(0, x_ ode(k,:) )

I;

for k = 1:22

xdot_mean = | xdot_mean ; mean( xdot(k,:) ) ] ;

end

[min, pos] = min( abs( xdot_mean) );

[B, I] = sort( abs( xdot_mean) );

X = [’Order reduction by resp. removing the following states from the
system of equations.’];

Y = string (I);

disp (X)

disp (Y)

%% Define interpolations for all modelled x
xq = 1:n ; % x coords interpolated system

x =t _ode; % x coords

original system

x1 = t_red_odel;

x2 = t_red_ode2;

x3 = t_red_ode3;

x4 = t_red_ode4;

% x5 = t_red odeb;

% x6 = t_red ode6;

% x7 = t_red_ode7;

% x8 = t_red_ode8;

% state 8

y08 = x_ode(:,8) ; % y Coords original system
y18 = x_red odel(:,8);

y28 = x_red_ode2(:,8);

y38 = x_red_ode3 (:,8);

y48 = x_red_oded (:,8);

% y58 = x_red_ ode5(:,8);

% y68 = x_red_ode6(:,8);

% y78 = x_red_ ode7(:,8);

% y88 = x_red_ode8(:,8);

yq08 = interpl(x,y08,xq); % y Coords interpolated system
yql8 = interpl(x1,y18,xq) ;
yq28 = interpl (x2, y28, xq);
yq38 = interpl(x3, y38, xq);
yq48 = interpl (x4, y48, xq);

% yqb8 = interpl (x5, y58, xq);
% yq68 = interpl (x6, y68, xq);
% yq78 = interpl (x7, y78, xq);
% yq88 = interpl (x8, y88, xq);
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% state 10
y010 = x_ode(:,10) ; % y Coords original system
y110 = x_red odel( ,10);
y210 = x_red_ode2(:,10);
y310 = x_red_ode3 (:,10);
y410 = x_red_oded (:,10);
% y510 = x_red_odeb(:,10);
% y610 = x_red_ode6 (: 10) :
% y710 = x_red_ode7(:,10) ;
% y810 = x_red_ode8(:,10);
yq010 = interpl(x,y010,xq); % y Coords interpolated system
yqll0 = interpl(xl,yllO xq) ;
yq210 = interpl(x2, y210, xq);
yq310 = interpl(x3, y310, xq);
vq410 = interpl (x4, y410, xq);
% yqb510 = intelpl(x57 yH10, xq);
% yq610 = interpl (x6, y610, xq);
% yq710 = interpl (x7, y710, )
% yq810 = interpl (x8, y810, )
% state 15
y015 = x_ode(:,15) ; % y Coords original system
y115 = x_red odel( ,15);
y215 = x_red_ode2(:,15);
y315 = x_red_ode3(:,15);
y415 = x_red_oded (:,15);
% y515 = xirediodeo( ,15)
% V615 = x_red_ode6(:,15);
% y715 = x_red_ode7(:,15);
% y815 = x_red ode8(:,15);
yq015 = interpl(x,y015,xq); % y Coords interpolated system
yqlls = interpl(x1,y115,xq) ;
vq215 = interpl(x2, y215, xq);
vq315 = interpl(x3, y315, xq);
yq4l5 = interpl (x4, y4l5, xq);
% yqbl5 = interpl (x5, yb15, xq);
% yq615 = interpl (x6, y615, xq);
% yq715 = interpl (x7, y715, )
% yq815 = interpl (x8, y815, )
% state 21
y021 = x_ode(:,21) ; % y Coords original system
y121 = x_red odel( ,21),
y221 = x_red_ode2(:,21);
y321 = x_red_ode3(:,21);
y421 = x_red_ode4 (: 21);
% y521 = x_red ode5( 21) ;
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% y621 = x_red_ode6 (:,21);
% y721 = x_red_odeT (:,21);
% y821 = x_red_ode8(:,21);

vq021 = interpl(x,y021,xq); % y Coords interpolated system
yql21 interpl(xl,ylZl xq)
vq221 = interpl(x2, y221, xq
vq321 = interpl(x3, y321, xq
yq421 = interpl (x4, y421, xq
% yqgb21 = int(lpl( x5, yb2l, xq);
% yq621 = interpl (x6, y621, xq);
)
)

)i
)
)

)

% yq721 = interpl (x7, y721,
% yq821 = interpl (x8, y821,

% state 18

y018 = x_ode(:,18) ; % y Coords original system
y118 = x_red odel( )

y218 = x_ red ode2(:,18);
y318 = x_red_ode3 (: )
y418 = x_red_oded (:,18);
% yb18 = x_red_ode5(:,18
% y618 = x_red_ ode6 (: 18) :
% y718 = x_red_ode7(:,18);
% y818 = x_red_ ode8(:,18);

yq018 = interpl(x,y018,xq); % y Coords interpolated system
yqll8 = interpl(xl,y118 xq)
yq218 = interpl(x2, y218, xq
yq318 = interpl(x3, y318, xq
yq4l8 = interpl (x4, y418, xq
% yqb518 = intelpl(x5, y518, xq);
% yq618 = interpl (x6, y618, xq);
)i
)i

)
)3
)

% yq718 = interpl (x7, y718, xq
% yq818 = interpl (x8, y818, xq

%% Define errors wrt number of removed states

yq08 = yq08 (1:end—1) ; % y Coords interpolated system
yql8 = yql8(1l:end—1) ;
yq28 = yq28(1l:end—1);
vq38 = yq38(l:end—1);

yq48 = yq48(l:end—1);

% yqb8 = yqb8(l:end—1);
% yq68 = yq68(1l:end—1);
% yq78 = yq78(1l:end—1);
% yq88 = yq88(1l:end—1);

yq010 = yq010(1:end—1) ; % y Coords interpolated system
yqll0 = yqll0(1l:end—1) ;
yq210 = yq210(1l:end—1);
vq310 = yq310(1:end—1);
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yq410 = yq410(1l:end—1);

% yqbl0 = yqb10(1l:end—1);
% yq610 = yq610(1:end—1);
% yq710 = yq710(1:end—1);
% yq810 = yq810(1l:end—1);

yq015 = (l:end—1) ;
yqlls = yqll5(1:end—1) ;
yq215 = (l:end—1);
ya315 = yq315(1l:end—1);

yadls = (1:end—1);

% yqhls = yqgbl5(1l:end—1);
% yq615 = yq615(1l:end—1);
% yq715 = yq715(1:end—1);
% yq815 = yq815(1l:end—1);

)

¥q021 = (
yql21 yql21(
vq221 yq221 (
vq321 = yq321(1:
vq421 = yqd421 (1:end—1);

% yaqb21l = yqb21(l:end—1);
% yq621 = yq621(1l:end—1);
% yq721 = yq721(1l:end—1);
% yq821 = yq821(1l:end—1);

yq021

1:
l:end—1
1:

l:end—1
l:end—1
1:

yq018 = )
)
end—1);
)i

yqll8 =
yq218 =
yq318 = yq318(1l:end—1);

vq418 = yqd418(1:end—1);

% yqbl8 = yqbl8(1l:end—1);
% yq618 = yq618 (1l:end—1);
% yq718 = yq718 (1l:end—1);
% yq818 = yq818(1l:end—1);

yq018 (
yql18(
yq218 (

(1

abs( ( (yq08 — yql8) ./ yq08)x*( (yq08 —

sqrt ( ( yq08 — yql8)x*(yq08—yql8)’ )/yq08

rms_28 = abs( ( (yq08 — yq28) ./ yq08)x( (yq08

sqrt ( ( yq08 — yq28)*(yq08—yq28) " )/yq08

rms_38 = abs( ( (yq08 — yq38) ./ yq08)x( (yq08
% sqrt( ( yq08 — yq38)x(yq08—yq38)’ )/yq08

rms_48 = abs( ( (yq08 — yq48) ./ yq08)x*( (yq08

% sqrt ( ( yq08 — yq48)#(yq08—yq48)’ )/yq08 ;

% rms_58 = abs( ( (yq08 — yg58) ./ yq08)x*( (yq08
; % sqrt( ( yq08 — yq68)(yq08—yq68)’ )/yq08

% rms_68 = abs( ( (yq08 — yq68) ./ yq08)x( (yq08
; % sart (- ( yq08 — yq68)*(yq08—yq68)’ )/yq08

% rms_78 = abs ( ( (yq08 — yq78) ./ yq08-)*( (yq08
; % sart (- ( yq08 — yq68)x(yq08—yq68) " )/yq08

rms_18 =

Master of Science Thesis

— ya58)
— yq68)

— yq78)

% y Coords interpolated system

i % y Coords interpolated system

; % y Coords interpolated system

yql8) ./ yq08)’ )/n; %
) /s %
)/n
)/n
)/n
)/n

)/n

yq28) ./ yq08)’

ya38) ./ yq08)’
ya48) ./ yq08)’
./ ya08)”’
./ yq08)’

./ yq08)’

J. Guldenaar (4274741)



341

342

343

344

345

346

347

348

349

350

351

352
353

354

355

356

357

358
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366
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100

Matlab code

% rms_88 = abs( (

i % sqrt(
rms_110 = abs( (
)/n o % sqrt(
rms_210 = abs( (
)/n 3 % sqrt(
rms 310 = abs( (
Y/n 5 % sqrt(
rms_410 = abs( (
Y/n 5 % sqrt(

% rms_ 510

= abs( (

)7 ) /ns % sart(

% rms_610

= abs( (

)7 ) /n; % sqrt(

% rms_ 710

= abs( (

) ) /n; % sqrt(

% rms_ 810

= abs( (

)7 ) /ms % sqrt(

rms_115 =
)/n
rms_ 215 =
)/n
rms_ 315 =
)/n
rms_415 =
)/n
% rms 515

abs ( (
% sqrt(
abs( (
% sqrt (
abs( (
% sqrt (
abs( (
% sqrt(
= abs( (

)7 ) /o % sart (

% rms_ 615

= abs( (

)7 ) /n; % sqrt(

% rms 715

= abs( (

)’ ) /n; % sqrt(

% rms_ 815

= abs( (

) ) /n; % sqrt(

rms_ 121 =
)/n
rms_ 221 =
)/n
rms_ 321 =
)/n
rms_ 421 =
)/n

% rms_ 521

abs( (
% sqrt (
abs( (
% sqrt(
abs ( (
% sqrt(
abs( (
% sqrt (
= abs( (

)7 ) /ms % sqrt(

% rms 621

= abs( (

)’ ) /n; % sqrt(

% rms_ 721

= abs( (

)7 ) /n; % sqrt(

J. Guldenaar (4274741)

(yq08 — yq88) ./ yq08)*( (yq08 — yq88) ./ yq08)’ )/n

( yq08 — yq68)*(yq08—yq68)’ )/yq08

(yq010 — yql10) ./ yq010)*( (yq010 — yql10)
( yq010 — yql10)*(yq010—yql10)’ )/yq010 ;
(yq010 — yq210) ./ yq010)=( (yq010 — yq210)
( vq010 — yq200)*(yq010—yq200) " )/yq010 ;
(yq010 — yq310) ./ yq010)*( (yq010 — yq310)
( yq010 — yq310)*(yq010—yq310)’ )/yq010
(yq010 — yq410) ./ yq010)*( (yq010 — yq410)
( yq010 — yq410)*(yq010—yq410)’ )/yq010 ;
(yq010 — yq510) ./ yq010)*( (yq010 — yq510)
( yq010 — yq610)*(yq010—yq610) " )/yq010
(yq010 — yq610) ./ yq010)*( (yq010 — yq610)
( yq010 — yq610)*(yq010—yq610) " )/yq010 ;
(yq010 — yq710) ./ yq010)( (yq010 — yq710)
( yq010 — yq610)*(yq010—yq610)” )/yq010
(yq010 — yq810) ./ yq010)*( (yq010 — yq810)
( yq010 — yq610)*(yq010—yq610) " )/yq010

~ T~ T~

(yq015 — yql15) ./ yq015)*( (yq015 — yqll5)
( vq015 — yqll5)*(yq0l5—yqll5) " )/yq015 ;
(yq015 — yq215) ./ yq015)*( (yq015 — yq215)
( yq015 — yq200)*(yq015—yq200) " )/yq015
(yq015 — yq315) ./ yq015)=( (yq015 — yq315)
( yq015 — yq315)*(yq015—yq315)’ )/yq015 ;
(yq015 — yq415) ./ yq015)x( (yq01l5 — yq4l5)
( yq015 — yq415)*(yq015—yq4l5)’ )/yq015 ;
(yq015 — yqg515) ./ yq015)«( (yq0l5 — yqg515)
( ya015 — yq615)*(yq015—yq615)" )/yq015 ;
(yq015 — yq615) ./ yq015)=( (yq01l5 — yq615)
( yq015 — yq615)*(yq015—yq615) " )/yq015
(yq015 — yq715) ./ yq015)*( (yq015 — yq715)
( yq015 — yq615)*(yq015—yq615) " )/yq015
(yq015 — yq815) ./ yq015)*( (yq015 — yq815)
( yq015 — yq615)x(yq015—-yq615) " )/yq015 ;

~ T~ T~

(yq021 — yql21) ./ yq021)*( (yq021 — yql21)
( ya021 — yql21)x(yq021—yql21)’ )/yq021
(yq021 — yq221) ./ yq021)*( (yq021 — yq221)
( vq021 — yq200)*(yq021—yq200) " )/yq021 ;
(yq021 — yq321) ./ yq021)x( (yq021 — yq321)
( ¥yq021 — yq321)*(yq021—yq321)’ )/yq021 ;
(yq021 — yq421) ./ yq021)*( (yq021 — yqd21)
( yq021 — yq421)*(yq021—yq421)’ )/yq021
(yq021 — yg521) ./ yq021)x( (yq021 — yqb521)
( yq021 — yq621)x(yq021—yq621)’ )/yq021
(yq021 — yq621) ./ yq021)x( (yq021 — yq621)
( yq021 — yq621)x(yq021—yq621)’ )/yq021
(yq021 — yq721) ./ yq021)%( (yq021 — yq721)
( yq021 — yq621)#(yq021—yq621)°’ )/yq021 ;

~ T~ T~

yq010) "’
yq010) "’
yq010) "’
yq010)’
./ yqO010
./ yq010
./ yq010

./ yqO010

yq015)
yq015)’
yq015)”’
yq015)
./ yqo015
./ yqo015
./ yqO015

./ yqO0l15

yq021)”’
yq021)’
yq021)’
yq021)”
./ yq021
./ yq021

./ vq021
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374

375

376

377

378

379

380

381

382

383

384

385

386

387
388
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% rms_ 821

= abs( (

)7 ) /s % sart (

rms_ 118 =
)/n
rms_ 218 =
)/n
rms_ 318 =
)/n
rms_418 =
)/n

abs( (
% sqrt (
abs( (
% sqrt (
abs ( (
% sqrt (
abs ( (
% sqrt (

%

%

RMS = [ rms__

rms_ 518
)" ) /n;
rms_ 618 =
)" ) /n;
rms_ 718 =
)" ) /n;
rms_ 818 =
) ) /n;

= abs( (

0,

b sqrt(
abs( (
% sqrt (
abs ( (
% sqrt (
abs ( (
% sqrt(

18 rms__

(yq021 — yq821)

(yq018 — yql18)
(yq018 — yq218)
(yq018 — yq318)

(yq018 — yq418)

(yq018 — yqg518)

./ yq021)x( (yq021 — yq821)
( yq021 — yq621)#*(yq021—yq621)’ )/yq021

./ vyq018)*( (yq018 — yql18)
( yq018 — yqll8)x(yq018—yqll8)’ )/yq018

./ yq018)x( (yq018 — yq218)
( yq018 — yq200)x(yq018—yq200)’ )/yq018
./ yq018)x( (yq018 — yq318)
( yq018 — yq318) x(yq018—yq318) " )/yq018
./ yq018)x( (yq018 — yq418)
( yq018 — yq418)x(yq018—yq418)’ )/yq018

)

)

~ T~ T~ ~

./ yq021

yq018)’
yq018)
yq018)

yq018)

./ yq018)x( (yq018 — yg518)

./ yqo018

( yq018 — yq618)*(yq018—yq618)° )/yq018

(yq018 — yq618)

./ yq018)«( (yq018 — yq618)

./ yqO18

( yq018 — yq618)*(yq018—yq618)’ )/yq018

(yq018 — yq718)

./ yq018)x( (yq018 — yq718)

./ yqO018

( yq018 — yq618)*(yq018—yq618)’ )/yq018

(yq018 — yq818)

./ yq018)x( (yq018 — yq818)

./ yqO018

( yq018 — yq618)x(yq018—yq618)’ )/yq018

28 rms_38 rms_48; %

rms_ 110 rms_210 rms_310 rms_410; %

rms_ 810;

rms_115 rms_ 215 rms_ 315 rms_ 415; %

rms_ 815;

rms_ 121 rms_ 221 rms_ 321 rms_421; %

rms_ 821 ;

rms_118 rms 218 rms 318 rms_ 418; %

rms_ 818

15

figure (2);
bar (RMS) ;

function dxdt = odefun2(t, x)

k1 = 1/10;
k 2 =1/10;
k3 = 1/10;
k4 = 1/10;
k5 = 1/10;
k6 = 1/10;
k7 = 1/10;
k 8 = 1/10;
k9 = 1/10;
k10 = 1/10;
k1l = 1/10;

k 12 = 1/10;

k13 =
k14 =
k15 =

1/10;
1/10;
1/10;

k 16 = 1/10;

k17 = 1/10;

Master of Science Thesis

rms_ 58;
rms_510;

%
%

rms_68 rms_ 78 rms_ 88;
rms_ 610 rms 710

rms_515; %
rms_521; %

rms_ 518; %

rms_615
rms_ 621

rms_ 618

rms_ 715
rms_ 721

rms_ 718
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23
24

102 Matlab code
k18 = 1/10;

k19 = 1/10;

kdeg = 1/10;

gamma = 0;

xin =

[0.000559909681997316;3.98855518598468;1.99542030372759;1.99542030372759;1.99994815
e—05;1;5.20169112799691e—05;2.99998690320702;4.20699689366722¢
—06;1.27298311366668e¢—05;19.6987451094137;1.21270192347726¢

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66

—07;3.66961843422663e¢—07;3.70139734764438¢
—07;8.38789844363369;5.18481459814413e—05];

N = zeros(22,24)

N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;

N(1,2) = 1; N(2,2) = 1;N(6,2) = —1;

N(6,3) = —1; N(3,3) = —1:N(7,3) = 1;

N(7.,4) = —1:N(8,4) = 1:N(3,4) = 1:N(6,4) = 1;

N(6,5) = —1;N(4,5) = —1;N(9,5) = 1;

N(9,6) = —1:N(10,6) = 1;N(4,6) = 1; N(6,6) -1,

N(11,7) = —LN(17,7) = —LN(1,7) =

N(11,8) = 1:N(17,8) = 1;N(1,8) = —1,

N(11,9) = —L:N(5,9) = —1:N(22,9) = 1;

N(22,10) = —1:N(5,10) = 1;N(13,10) = 1;

N(10,11) = —1;N(8,11) = —1:N(15,11) = 1;

N(8,12) = 1; N(10,12) = 1; N(15,12) = —1;

N(15,13) = —1; N(14,13) = —1; N(16,13) = 1;

N(16,14) = —1; N(17,14) = 1; N(14,14) = 1;

N(8,15) = —1; N(13,15) = —1; N(18,15) = 1;

N(8,16) = 1; N(13,16) = 1; N(18,16) = —1;

N(18,17) = —1; N(14,17) = —1; N(19,17)= 1;

N(19.18) = —1: N(14,18) = 1; N(20,18) = 1: N(18,18)=1;

N(20,19) = —1; N(21,19) = 1;

N(10,20) = —1;

N(8,21) = —1;

N(13,22) = —1;

N(15,23) = —1;

N(18,24) = —1;

vx = zeros (24,1);

% x(3) = (kdxx(7) + gammaxxin (3))/(gamma + k3xx(6));

% x(4) = (gammaxxin (4) + k6xx(9))/(gamma + k5%x(9));

% x(7) = (k3%x(3)*x(6) + gammaxxin (7)) /(k4 + gamma) ;

% x(9) = (kbxx(4)*x(6) + gammaxxin (9)) /(gamma + k5x*xx(6));

% x(6) = (kdx(7) + k6xx(9) + klxx(1)*x(2) + gammaxxin (6))/(gamma + k_ 2 +
k3xx(3) + kbxx(4));

vx (1) = klxx(1)xx(2);

vx(2) = k_2xx(6);

vx(3) = k3xx(6)xx(3);

vx (4) = kdxx(7);

J. Guldenaar (4274741)
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vx(5) = kb*xx(6)xx(4);

vx(6) = k6xx(9);

vx(7) = k7xx(11)xx(17);

vx(8) =k 8xx(1);

vx(9) = k9xx(11)xx(5);

vx(10) = k10xx(22);

vx(11) = k11*x(10)*x(8);

vx(12) = k_12 % x(15);

vx(13) = k13*x(15)*x(14);

vx(14) = kl14*x(16);

vx(15) = k15*x(8)xx(13);

vx(16) = k_16%x(18);

vx(17) = k17xx(18)xx(14);

vx(18) = k18xx(19);

vx(19) = k19xx(20);

vx(20) = kdegxx(10);

vx(21) = kdegx*x(8);

vx(22) = kdegxx(13);

vx(23) = kdegxx(15);

vx(24) = kdegxx(18);

xin = omnes(22,1);

dxdt = Nxvx 4 gammax(xin — x) ;

%% Clean up

clear all; close all; clc;

9%

x0 = ones(22,1);

n = 1000;

tspan *[O n—1J;

[t_ode,x_ode] = ode23(Qodefun2, tspan, x0);

steady_ states = x ode(end,:) T

x1 = ones(22,1); x1(5) = steady_states(5);

x2 = ones(22,1); x2(5) = steady_states(5); x2(11) = steady_states(11);

x3 = ones(22,1); x3(5) = steady_states(5); x3(11) = steady_states(11); x3
(13) = steady_states(13);

x4 = ones(22,1); x4(5) = steady_states(5); x4(11) = steady_states(11); x4
(13) = steady_states(13); x4(15) = steady_states(15);

x5 = ones(22,1); x5(5) = steady_states(5); x5(11) = steady_states(11); x5
(13) = steady_states(13); x5(15) = steady_states(15); x5(18) =
steady__states (18);

x6 = ones(22,1); x6(5) = steady_states(5); x6(11) = steady_states(11); x6
(13) = steady_states(13); x6(15) = steady_ states(15); x6(18) =
steady_states(18); x6(19) = steady_states(19);

X7 = ones(22,1); x7(5) = steady_states(5); x7(11) = steady_states(11); x7
(13) = steady_states(13); x7(15) = steady_states(15); x7(18) =
steady_states(18); x7(19) = steady_states(19); x7(22) = steady__states
(22);

[t_odel,x_odel] = ode23(Qodefun2, tspan, x1);

[t_ode2,x ode2] = ode23(Qodefun2, tspan, x2);

[t_ode3,x_ode3] = ode23(Qodefun2, tspan, x3);

[t_oded ,x oded] = ode23(Qodefun2, tspan, x4);

[t_odeb,x_odeb] = ode23(Q@Qodefun2, tspan, x5);

Master of Science Thesis
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104 Matlab code

[t_ode6,x_ode6] = ode23(Q@Qodefun2, tspan, x6);

[t_ode7,x_ode7] = ode23(Q@Qodefun2, tspan, x7);

%lowerbound = 0.9xabs(steady__states);

Y%upperbound = 1.1xabs(steady_states);

% sequence of removals: 5,11,12,14,17,18,21

%

figure (2);

subplot (2,3,1);

plot (t_ode, x_ode(:,8), ’'linewidth’', 2);

hold on

plot (t_odel, x_odel(:,8), ’'linewidth ', 2);

plot (t_ode2, x_ode2(:,8), ’'linewidth ', 2);

plot (t_ode3, x_ode3(:,8), ’'linewidth ', 2);

% plot (t_oded, x_ oded(:,8), ’linewidth’, 2);

% plot (t_odeb, x_ode5(:,8), ’linewidth’, 2);

% plot (t_ode6, x ode6(:,8), ’linewidth’, 2);

% plot (t_ode7, x_ ode7(:,8), ’linewidth’, 2);

hold off

%legend ('x_8 original >, ’'1 removed state’, ’'2 rem. states’, ’3 rem.
states ’, ’4 rem. states’, ’'5 rem. states’, '6 rem. states’, 7 rem.
states ) ;

xlabel (" Timestep ) ;

ylabel (7 [RNA_t] );

subplot (2,3,2);

plot (t_ode, x_ode(:,10), ’linewidth’, 2);

hold on

plot (t_odel, x_odel(:,10), ’'linewidth ', 2);

plot (t_ode2, x_ode2(:,10), ’'linewidth ', 2);

plot (t_ode3, x_ode3(:,10), ’'linewidth ', 2);

plot (t_oded, x_oded(:,10), ’'linewidth ', 2);

plot (t_ode5, x_ode5(:,10), ’'linewidth ', 2);

plot (t_ode6, x_ode6(:,10), ’'linewidth ', 2);

plot (t_ode7, x_ode7(:,10), ’linewidth’, 2);

hold off

%legend ('x_{10} original >, ’1 removed state’, ’'2 rem. states’, '3 rem.
states ’, ’4 rem. states’, ’'5 rem. states’, '6 rem. states’, 7 rem.

states 7) ;
xlabel (" Timestep ) ;
ylabel (7 [RNA {S28}]7);

subplot (2,3,3);
plot (t_ode, x ode(:,15),
hold on
plot (t_odel, x_odel(: )
plot (t_ode2, x__ (: ), ’linewidth’,
plot (t_ode3, x_ode3(: ), ’'linewidth’,
plot (t_ode4, x_oded(:,15), ’'linewidth’,
( (:15)
( (:,15)
( (:,15)

"linewidth 7,

, 'linewidth

plot (t_odeb, x_odeb , linewidth
plot (t_ode6, x_odeb6 , 'linewidth
plot (t_ode7, x_ode7 , 'linewidth

NN DNDNDNDN
— — —
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hold off

%legend ('x_ {15} original ’, ’'1 removed state’, ’2 rem. states’, '3 rem.
states ’, ’4 rem. states’, ’'5 rem. states’, ’6 rem. states’, 7 rem.
states 7) ;

xlabel (" Timestep ) ;

ylabel (7 [RNA_{t }:RNA {S28}]7);

subplot (2,3 ,4:5);

plot (t_ode, x_ode(:,21), ’linewidth’, 2);

hold on

plot (t_odel, x_odel(:,21), ’'linewidth ', 2);

plot (t_ode2, x_ode2(:,21), ’'linewidth ', 2);

plot (t_ode3, x_ode3(:,21), ’'linewidth’, 2);

plot (t_oded, x_oded(:,21), ’'linewidth ', 2);

plot (t_ode5, x_ode5(:,21), ’'linewidth ', 2);

plot (t_ode6, x_ode6(:,21), ’'linewidth’, 2);

plot (t_ode7, x_ode7(:,21), ’linewidth’, 2);

hold off

legend (’x_{20} original’, ’1 removed state’, ’2 rem. states’, ’3 rem.
states’, ’4 rem. states’, '5b rem. states’, '6 rem. states’, 7 rem.
states’);

xlabel (" Timestep ) ;

ylabel (" [e {GFP}]");

subplot (2,3,6);

plot (t_ode, x_ode(:,18), ’'linewidth’, 2);

hold on

plot (t_odel, x_odel(:,18), ’'linewidth ', 2);

plot (t_ode2, x_ode2(:,18), ’'linewidth ', 2);

plot (t_ode3, x_ode3(:,18), ’'linewidth ', 2);

plot (t_oded, x_oded(:,18), ’'linewidth ', 2);

plot (t_ode5, x_ode5(:,18), ’'linewidth ', 2);

plot (t_ode6, x_ode6(:,18), ’'linewidth ', 2);

plot (t_ode7, x_ode7(:,18), ’linewidth’, 2);

hold off

% legend ('x {21} original’, 'l removed state’, ’2 rem. states’, '3 rem.
states ’, ’4 rem. states’, ’'5 rem. states’, '6 rem. states’, 7 rem.
states 7) ;

xlabel (" Timestep ) ;

ylabel (7 [RNA_t: RNA {eGFP}]");

9% Find the fast reached steady states

figure (1) ;

subplot (7,3,1);

plot (t_ode, x ode(:,1), ’linewidth’, 2)

subplot (7,3,2);

plot (t_ode, x_ode(:,2), ’linewidth’, 2)

subplot (7,3,3);

plot (t_ode, x_ode(:,3), ’linewidth’, 2)

subplot (7,3 ,4) ;

plot (t_ode, x_ode(:,4), ’linewidth’, 2)
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Matlab code

subplot (7,3,5);
plot (t_ode, x_ode(:
subplot (7,3,6);
plot (t_ode, x_ ode(:
subplot (7,3,7);
plot (t_ode, x_ode(:
subplot (7,3,8);
plot (t_ode, x_ode(:
subplot (7,3,9);
plot (t_ode, x_ ode(:
subplot (7,3,10);
plot (t_ode, x_ode(:
subplot (7,3,11);
plot (t_ode, x_ode(:
subplot (7,3,12);
plot (t_ode, x_ ode(:
subplot (7,3,13);
plot (t_ode, x_ode(:
subplot (7,3,14);
plot (t_ode, x_ode(:
subplot (7,3,15);
plot (t_ode, x_ ode(:
subplot (7,3,16) ;
plot (t_ode, x_ode(:
subplot (7,3,17);
plot (t_ode, x_ode(:
subplot (7,3,18);
plot (t_ode, x_ ode(:
subplot (7,3,19);
plot (t_ode, x_ode(:
subplot (7,3,20) ;
plot (t_ode, x_ode(:
subplot (7,3,21);
plot (t_ode, x_ode(:

,10),
1),
13),
14),
15),
16)
A7)
18),
19),
,20),
21),

,22)

"linewidth’

"linewidth’

"linewidth’

"linewidth’

"linewidth’

)

"linewidth’

"linewidth’

"linewidth’

"linewidth’

"linewidth’

"linewidth”’

"linewidth”’

"linewidth’

"linewidth”’

"linewidth’

"linewidth’

"linewidth’

C-3 Alternative Modelling

function dxdt = ode_fun2(t, x)

k1l = 1/10;
k 2 =1/10;
k3 = 1/10;
k4 = 1/10;
k5 = 0;

k6 = 0;

k7 = 1/10;
k 8 = 1/10;
k9 = 1/10;
k10 = 1/10;
k1l = 1/10;
k_12 = 1/10;
k13 = 1/10;

J. Guldenaar (4274741)
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C-3 Alternative Modelling

k14 = 1/10;
k15 = 1/10;
k_16 = 1/10;
k17 = 1/10;
k18 = 1/10;
k19 = 1/10;
kdeg = 1/10;

gamma = 1/100;

N = zeros(22,24);

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

)

19,18) = —1; N(14,18
) = —1; N(21.19
)

N(1,1) = —1; N(2,1) = —1; N(6,1) :

N( = 1; N(2,2) = 1;N(6,2) = —1;

N( = —1; N(3,3) = —I)N(7,3) = 1;

N( = —1;N(8,4) = 1;N(3,4) = 1;N(6,4) =
N( = —1;N(4,5) = —I;N(9,5) = 1;

N( = —I;N(10,6) = 1;N(4,6) = 1; N(6,6)
N(11,7) = —~LiN(17,7) = —LiN(1,7) =
N(11.8) = 1:N(17,8) = 1;N(1,8) = —1,
N(11,9) = —1;:N(5,9) = —1;N(22,9) = 1;
N(22,10) = —1;N(5,10) = 1;N(13,10) = 1;
N(10,11) = —1;N(8,11) = —I;N(15,11) = 1;
N(8,12) = 1; N(10,12) = 1; N(15,12) = —1;
N(15,13) = —1; N(14,13) = —1; N(16,13) = 1;
N(16,14) = —1; N(17,14) = 1; N(14,14) = 1;
N(8,15) = —1; N(13,15) = —1; N(18,15) = 1;
N(8,16) = 1; N(13,16) = 1; N(18,16) = —1;
N(18,17) = —1; N(14,17) = —1; N(19,17)= 1;
N( = 1; N(20,18) = 1; N(18,18)=
N( :

N(

N(

N(

N(

N(

N(

6,25) = —1; N(10,25)

vx = zeros (24,1);

vx (1) = klxx(1)xx(2);
vx(2) = k_2xx(6);

vx(3) = k3*x(6)*x(3);
vx (4) = kdxx(7);

vx(5) = kbxx(6)xx(4);
vx(6) = k6*x(9);

vx(7) = k7xx(11)xx(17);
vx(8) = k 8ax(1):

vx(9) = k9xx(11)xx(5);
vx(10) = k10xx(22);
vx(11) = kl1l1xx(10)=*x
vx(12) = k_12 % x(15);
vx(13) = k13xx(15)xx
vx(14) = kl4xx(16);
vx(15) = kl1bxx(8)xx(13);
vx(16) = k_16xx(18);
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60 vx(17) = k17*x(18)xx(14);

70 vx(18) = k18x%x(19);

1 vx(19) = k19%x(20);

72 vx(20) = kdegx*x(10);

73 vx(21) = kdegx*x(8);

74 vx(22) = kdegx*x(13);

75 vx(23) = kdeg*x(15);

76 vx(24) = kdeg*x(18);

77 vx(25) = 2xx(6)/(10+10xx(6) ) ;
78 dxdt = Nxvx;

1 function dxdt = ode_fun2(t, x)

2

5 k1l = 1/10;

. k2= 1/10;

5 k3 = 0;

6 k4 = 0;

7 kb = 0;

s k6 = 0;

o k7 = 1/10;

0o k 8 =1/10;

1 k9 = 1/10;

12 k10 = 1/10;

13 k11 = 1/10;

u k_12 = 1/10;

15 k13 = 1/10;

16 k14 = 1/10;

k15 = 1/10;

18 k 16 = 1/10;

v k17 = 1/10;

20 k18 = 1/10;

21 k19 = 1/10;

22 kdeg = 1/10;

23 gamma = 1/100;

24

25 N = zeros(22,24);

26 N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;

or N(1,2) = 1; N(2,2) = 1;N(6,2) = —1;

2s N(6,3) = —1; N(3,3) = —1,N(7,3) = 1;

20 N(7,4) = —1;N(8,4) = 1;N(3,4) = 1;N(6,4) = 1;
30 N(6,5) = —1;N(4,5) = —1;N(9,5) = 1;

s N(9,6) = —1;N(10,6) = 1;N(4,6) = 1; N(6,6) = 1;
32 N(11,7) = —1;)N(17,7) = —=LI;N(1,7) = 1;

5 N(11,8) = 1;N(17,8) = 1;N(1,8) = —1;

s N(11,9) = —1;N(5,9) = —1;N(22,9) = 1;

55 N(22,10) = —1;N(5,10) = 1;N(13,10) = 1;

s N(10,11) = —1;N(8,11) = —1;N(15,11) = 1;
s N(8,12) = 1; N(10,12) = 1; N(15,12) = —1;
s N(15,13) = —1; N(14,13) = —1; N(16,13) = 1;
s N(16,14) = —1; N(17,14) = 1; N(14,14) = 1;
w0 N(8,15) = —1; N(13,15) = —1; N(18,15) = 1;
o N(8,16) = 1; N(13,16) = 1; N(18,16) = —1;
2 N(18,17) = —1; N(14,17) = —1; N(19,17)= 1;
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N(19,18) = —1; N(14,18) =
N(20,19) = —1; N(21,19)
N(10,20) = —1;

N(8,21) = —1;

N(13,22) = —1;

N(15,23) = —1;

N(18,24) = —1;

N(6,25) = —1; N(10,25)
N(6,26) = —1; N(8,26) =
vx = zeros (24,1);

vx (1) = klxx(1)xx(2);
vx(2) = k_2xx(6);

vx(3) = k3xx(6)*x(3);
vx(4) = kdxx(7);

vx(5) = kbxx(6)xx(4);
vx(6) = k6xx(9);

vx(7) = k7xx(11)xx(17);
vx(8) = k_8xx(1);

vx(9) = k9xx(11)xx(5);
vx(10) = k10xx(22);
vx(11) = kl11*x(10)*x(8);
vx(12) = k_12 % x(15);
vx(13) = k13xx(15)*x(14);
vx(14) = kldxx(16);
vx(15) = kl1b5xx(8)xx(13);
vx(16) = k_16xx(18);
vx(17) = k17*xx(18)xx(14);
vx(18) = k18x%x(19);
vx(19) = k19%x(20);
vx(20) = kdegx*x(10);
vx(21) = kdeg*x(8);
vx(22) = kdegxx(13);
vx(23) = kdegxx(15);
vx(24) = kdegxx(18);
vx(25) = 2xx(6) /(

vx(26) = 2xx(6) /(

dxdt = Nxvx;

function dxdt = ode fun2(t, x)

kl = 1/10;
k 2 =1/10;
k3 = 0;

kd = 0;

k5 = 0;

k6 = 0;

k7 = 1/10;
k 8 =1/10;
k9 = 0;

k10 = 0;
k1l = 1/10;
k 12 = 1/10;

Master of Science Thesis
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k13 = 1/10;

k14 = 1/10;

k15 = 1/10;

k 16 = 1/10;

k17 = 1/10;

k18 = 1/10;

k19 = 1/10;

kdeg = 1/10;

gamma = 1/100;

N = zeros(22,24);

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
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zeros (24,1);
= klxx(1)xx(2);
k 2%x(6);
= k3x*x(6)xx

= kdx*x(
= kbxx(
= k6xx (

(

N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;
N(1,2) = 1; N(2,2) = 1:N(6,2) = —1;

N(6,3) = —1; N(3,3) = —1;N(7,3) = 1;
N(7,4) = —1:N(8,4) = 1;N(3,4) = 1;N(6,4) = 1;
N(6,5) = —1:N(4,5) = —1:N(9,5) = 1;

N(9,6) = —1:N(10,6) = 1:N(4,6) = 1; N(6,6) = 1;
N(11,7) = —1;N(17,7) = —I;N(1,7) =

N(11,8) = 1;N(17,8) = 1;N(1,8) = —1,
N(11,9) = —1;N(5,9) = —1;N(22,9) = 1;
N(22,10) = —1;N(5,10) = 1;N(13,10) = 1;
N(10,11) = —1;N(8,11) = —I;N(15,11) = 1;
N(8,12) = 1; N(10,12) = 1; N(15,12) = —1;
N(15,13) = —1; N(14,13) = —1; N(16,13) = 1;
N(16,14) = —1; N(17,14) = 1; N(14,14) = 1;
N(8,15) = —1; N(13,15) = —1; N(18,15) = 1;
N(8.16) = 1; N(13,16) = 1; N(18,16) = —I;
N(18,17) = —1; N(14 17) = —1; N(19,17)=
N(19,18) = —1; N = =
N(20,19) = —1; N =

N(10,20) = —1;

N(8,21) = —1;

N(13,22) = —1;

N(15,23) = —1;

N(18,24) = —1;

N(6,25) = —1; N(10,25) =

N(6,26) = —1; N(8,26) = 1;

N(11,27) = —1; N(12,27) =
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C-4 Kron reduction order method 111

vx(14) = kldxx(16);

vx(15) = kl1bxx(8)xx(13);

vx(16) = k_16%x(18);

vx(17) = k17*xx(18)xx(14);

vx(18) = k18xx(19);

vx(19) = k19xx(20);

vx(20) = kdegxx(10);

vx(21) = kdegx*x(8);

vx(22) = kdegxx(13);

vx(23) = kdegxx(15);

vx(24) = kdegxx(18);

vx(25) = 2%x(6)/(104+10*x(6) ) ;

vx(26) = 2xx(6)/(104+10*xx(6));

vx (27) = 2*X( 1)/(10410%x(11));

dxdt = Nxv

C-4 Kron reduction order method

%% Clean up

clear all; close all; clc;

9% 0Ode23 solver based solution of xdot = Nvx

p = 10; % p—percent confidence interval

n = 60; % number of timesteps

tspan = [0 n—1];

x0 = ones(22,1);

[t_odel, x_odel] = ode23(Qodefun2, tspan, x0) ;

[t_ode,x_ode] = ode23(Q@QKron_fun, tspan, x0);

% [t_red ode, x red ode] = ode23(@odefun2, tspan, x0);

[t_red_odel, Xirediodel] = ode23 (@Kron_red_ funl, tspan, x0);

[t_red_ode2, x_red_ode2] = ode23(@Kron_red_fun2, tspan, x0);

[t_red_ode3, x_red_ode3] = ode23(@Kron_red_fun3, tspan, x0);

[t_red_oded, x_red_oded] = ode23(@Kron_red_fun4, tspan, x0);

[t_red_ode5, x_red_odeb] = ode23(@Kron_red_funb, tspan, x0);

[t_red_ode6, x_red_ode6] = ode23(@Kron_red_fun6, tspan, x0);

Alinearization = cell2mat (struct2cell (load(’Alinearization.mat’)));

[t_linearization , x_linearization] = ode23(@Linearization_func, tspan, x0
)

ss_original = round (x_ode(end, 1:22), 2)’; % Compute steady — state

ss_lcomplex = round(x_red odel(end, 1:22),2)7;

ss_ 2complex = round(x_red ode2(end, 1:22),2)’

ss_3complex = round(x_red_ode3(end, 1: 2),2)”

ss_4complex = round(x_red_oded (end, 1:22),2)’

ss_bcomplex = round(x_red_ode5(end, 1:22),2)’

ss_6complex = round(x_red_ode6(end, 1:22),2)’

Errors = zeros(22,6);
Errors(1:22, 1) = abs(ss_lcomplex — ss_original);
Errors(1:22, 2) = abs(ss_2complex — ss_original);
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Matlab code

Errors(1:22, 3) = abs(ss_3complex — ss_original);
Errors(1:22, 4) = abs(ss_4complex — ss_original);
Errors(1:22, 5) = abs(ss_bcomplex — ss_original);
Errors(1:22, 6) = abs(ss_6complex — ss_original);
Errors = round(Errors, 2);

%% Plotting (for matlab ODE solvers)
figure (1) ;

subplot (2,3,1);

plot (t_odel, x_odel(:,8), ’'linewidth’, 2 ) % Plot of state x8 for n

timesteps

hold on

plot (t_ode,x ode(:,8),’0’, ’'linewidth’, 2 ) % Plot of state x8 for n

timesteps (red. order model)

hold off
xlabel (" Timestep ) ;
ylabel (" [RNA t | (x_8)7);

legend (’x8 original’, 'x8 reduced order system’);

subplot (2,3,2);

plot (t_odel ,x_odel(:,10), ’linewidth’, 2 ) % Plot of state x10 for n

timesteps

hold on

plot (t_ode, x_ode(:,10), "o’ , ’linewidth’, 2 ) % Plot of state x10 for

n timesteps (red. order model)
hold off
xlabel (" Timestep ') ;
ylabel (7 [RNA {S28}] (x_{10})7);
legend ('x10 original’, ’'x10 reduced order system’);

subplot (2,3,3);

plot (t_odel ,x_odel(:,15), ’linewidth’, 2 ) % Plot of state x15
timesteps

hold on

plot (t_ode, x_ode(:,15) ,’0’, ’linewidth’, 2 ) % Plot of state
timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA_t:RNA {S28}] (x {14})7);

legend (’x14 original’, ’'x14 reduced order system’);

subplot (2,3,4:5);

plot (t_odel ,x_odel(:,21), ’linewidth’, 2 ) % Plot of state x21
timesteps

hold on

plot (t_ode, x_ode(:,21), ’o’, ’linewidth’, 2 ) % Plot of state
timesteps (red. order model)

hold off

J. Guldenaar (4274741)
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C-4 Kron reduction order method 113

xlabel (" Timestep ) ;
ylabel (*[e {GFP}]  (x {20})°);
legend (’x20 original’, ’'x20 reduced order system’);

subplot (2,3,6) ;

plot (t_odel ,x_odel(:,18), ’linewidth’, 2 ) % Plot of state x18 for n
timesteps

hold on

plot (t_ode, x_ode(:,18), o', linewidth’, 2 ) % Plot of state x18 for n
timesteps (red. order model)

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA t : RNA {eGFP}] (x {17})7);

legend (’x17 original’, ’'x17 reduced order system’);

sgtitle (’Comparison between original law of mass action and linearization

);

9%
close all;
figure (2);

subplot (2,3,1);

plot (t_red_odel, x_red_odel (:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

hold on

% plot (t_red_ode, x red ode(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

plot (t_red ode2, x red ode2(:,8), ’linewidth’, 3 ) % Plot of state x8
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,8), ’linewidth’, 2) % Plot of state x8 for
n timesteps (red. order model)

plot (t_red_ode4, x_red_ode4 (:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

plot (t_red_ode5, x_red_ode5(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

plot (t_red_ ode6, x_ red ode6(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

% plot (t_red_ode7, x_red_ode7(:,8), ’linewidth’, 2 ) % Plot of state x8
for n timesteps (red. order model)

pl = plot (t_odel ,x_odel (:,8), ’linewidth’, 2 ) % Plot of state x8 for n

timesteps

hold off

xlabel (" Timestep ') ;

ylabel (7 [RNA_t ] (x_8)7);

% legend (  ’'Removed complex: C {28}, X {18}’, ’Extra removed complex: C_
{27}, X_ {16} ’, ’Extra removed complex: C_{26}, X {15}’ , ’Extra
removed complex: C_{25}, X {22}’ , ’Extra removed complex: C_ {24}, X

{9}, ’Extra removed complex: C {23}, X {7}, ’x8 original ’);
legend (pl, ’'x 8 original model”) ;
ylim ([0 1.2]);
subplot (2,3,2);
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plot (t_red odel, x_red odel(:,10), ’linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

hold on

plot (t_red_ode2, x_red_ode2(:,10), ’linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,10), ’linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

plot (t_red_ode4, x_red_ode4 (:,10), ’linewidth’, 2 ) % Plot of state x10
for n timesteps (red. order model)

plot (t_red ode5, x_red ode5(:,10), ’'linewidth’, 2 ) % Plot of state xI10
for n timesteps (red. order model)

plot (t_red ode6, x_ red ode6(:,10), ’'linewidth’, 2 ) % Plot of state xI10
for n timesteps (red. order model)

% plot (t_red ode7, x_red ode7(:,10), ’linewidth’, 2 ) % Plot of state
x10 for n timesteps (red. order model)

p2 = plot(t_ode,x_ode(:,10), ’linewidth’, 2 ) % Plot of state x10 for n
timesteps

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA {S28}] (x_{10})7);

ylim ([0 1.2]);

% legend( 1 removed complex’, ’2 removed complexes’, ’3 removed
complexes’ , ’4 removed complexes’ , ’5 removed complexes’, ’6 removed
complexes’, 'x10 original ’);

% legend (p2, ’x_{10} original model’ );

legend (  'Removed complex: C_{28}, X {17}, ’Extra removed complex: C_
{27}, X {15} ’, ’"Extra removed complex: C {26}, X {14}’ , ’'Extra
removed complex: C {25}, X {21}’ , ’Extra removed complex: C {24} 6 X
{9}, ’"Extra removed complex: C {23}, X {7}’, 'x10 original’);

subplot (2,3,3);

plot (t_red_odel, x_red_odel(:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

hold on

plot (t_red_ode2, x_red_ode2(:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

plot (t_red_ode4, x_red_oded (:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

plot (t_red_ode5, x_red_ode5(:,15), ’linewidth’, 2 ) % Plot of state x15
for n timesteps (red. order model)

plot (t_red ode6, x_ red ode6(:,15), ’'linewidth’, 2 ) % Plot of state xI5
for n timesteps (red. order model)

% plot (t_red ode7, x_red ode7(:,15), ’linewidth’, 2 ) % Plot of state
x15 for n timesteps (red. order model)

p3 = plot (t_ode,x_ode(:,15), ’linewidth’, 2 ) % Plot of state x15 for n
timesteps

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA_t:RNA {S28}] (x_{14})7);

legend ( p3, ’'x14 original model”);
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C-4 Kron reduction order method 115

subplot (2,3, 4);

plot (t_red_odel, x_red_odel(:,21), ’linewidth’, 2 ) % Plot of state x21
for n timesteps (red. order model)

hold on

plot (t_red_ode2, x_red_ode2(:,21), ’linewidth’, 2 ) % Plot of state x21
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,21), ’linewidth’, 2 ) % Plot of state x21
for n timesteps (red. order model)

plot (t_red_ode4, x_red_ode4 (:,21), ’linewidth’, 2 ) % Plot of state x21
for n timesteps (red. order model)

plot (t_red ode5, x red ode5(:,21), ’'linewidth’, 2 ) % Plot of state x21
for n timesteps (red. order model)

plot (t_red ode6, x_red ode6(:,21), ’'linewidth’, 2 ) % Plot of state x21
for n timesteps (red. order model)

% plot (t_red ode7, x_red ode7(:,21), ’linewidth’, 2 ) % Plot of state
x21 for n timesteps (red. order model)

p6 = plot (t_ode,x_ode(:,21), ’linewidth’, 2 ) % Plot of state x21 for n

timesteps

hold off

xlabel (" Timestep ) ;

ylabel ("[e {GFP}] (x_{20})7);

% legend( 1 removed complex’, ’2 removed complexes’, ’3 removed
complexes’ , ’4 removed complexes’ , ’'5 removed complexes’, ’6 removed
complexes’, 'x21 original ’);

legend (  'Removed complex: C_{28}, X {17}, ’Extra removed complex: C_
{27}, X {15} ’, ’Extra removed complex: C {26}, X {14}’ , ’'Extra
removed complex: C {25}, X {21}’ , ’Extra removed complex: C {24} 6 X

{9}, ’Extra removed complex: C_ {23}, X {7}7);
a=axes( position’,get(gca, position’), visible’ | off’);
legend (a,[ p6 ], original model x {21}7);

subplot (2,3,5);

plot (t_red odel, x_ red odel(:,18), ’linewidth’, 2 ) % Plot of state xI8
for n timesteps (red. order model)

hold on

plot (t_red ode2, x_ red ode2(:,18), ’linewidth’, 2 ) % Plot of state x18
for n timesteps (red. order model)

plot (t_red_ode3, x_red_ode3(:,18), ’linewidth’, 2 ) % Plot of state xI18
for n timesteps (red. order model)

plot (t_red_ode4, x_red_oded (:,18), ’linewidth’, 2 ) % Plot of state x18
for n timesteps (red. order model)

plot (t_red_ode5, x_red_ode5(:,18), ’linewidth’, 2 ) % Plot of state x18
for n timesteps (red. order model)

plot (t_red ode6, x_ red ode6(:,18), ’'linewidth’, 2 ) % Plot of state xI8
for n timesteps (red. order model)

% plot (t_red ode7, x red ode7(:,18), ’linewidth’, 2 ) % Plot of state
x18 for n timesteps (red. order model)

p5 = plot (t_ode,x_ode(:,18), ’linewidth’, 2 ) % Plot of state x18 for n
timesteps

hold off

xlabel (" Timestep ) ;

ylabel (7 [RNA t : RNA {eGFP}] (x {17})7);
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complexes’
legend (p5,

legend (1
complexes”’

removed complex’

original 7) ;

"4 removed complexes’
"x18
"original model x {17}’

);

"5

sgtitle (’Plot of reduced order model compared with

ODE solver)’);

%% Using

xq = [0:

vqlinl
vqlin2
vqlin3
vqlind
vqlind
vqlin6
vqlin7
vqling8
vqlin9
vqlin10
vqlinll
vqlinl2
vqlinl3
vqlinl4
vqlinlh
vqlinl6
vqlinl7
vqlinl8
vqlinl9
vqlin20
vqlin21
vqlin22

vq01
vq02
vq03
vq04
vq05
vq06
vq07
vq08
vq09
vq010
vq01l1
vq012
vq013
vq014
vq0lb
vq01l6
vq017
vq018

J. Guldenaar (4274741)

’2 removed complexes’

’3 removed

removed complexes’

’6 removed

original model (Matlab

© 00 O Ui W

= o N - -

linear interpolation functions

n—1]’
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl(t_linearization, x_linearization (
= interpl (t_linearization, x_linearization (:
= interpl (t_linearization, x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl(t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (:
= interpl (t_linearization , x_linearization (
= interpl (t_linearization, x_linearization (
= interpl (t_linearization, x_linearization (
= interpl (t_linearization, x_linearization (
= interpl (t_linearization , x_linearization (
= interpl (t_linearization , x_linearization (
interpl (t_ode, x_ode(:,1) ,xq);

interpl (t_ode, x_ode(:,2) ,xq);

interpl (t_ode, x_ode(:,3) ,xq);

interpl (t_ode, x_ode(:,4) ,xq);

interpl (t_ode, x_ode(:,5) ,xq);

interpl (t_ode, x_ode(:,6) ,xq);

interpl (t_ode, x_ode(:,7) ,xq);

interpl (t_ode, x_ode(:,8) ,xq);

interpl (t_ode, x_ode(:,9) ,xq);

interpl (t_ode, x_ode(:,10) ,xq);

interpl (t_ode, x_ode(:,11) ,xq);

interpl (t_ode, x_ode(:,12) ,xq);

interpl (t_ode, x_ode(:,13) ,xq);

interpl (t_ode, x ode(:,14) ,Xq) ;

interpl (t_ode, x_ode(:,15) ,xq);

interpl (t_ode, x_ode(:,16) ,xq);

interpl (t_ode, x_ode(:,17) ,xq);

interpl (t_ode, x_ode(:,18) ,xq);

[N )
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=W = O
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vq019
vq020
vq021
vq022

% state

vq08
vql8
vq28
vq38
vq48
v(q58
vq68 =

% state

vq010
vqllO
vq210
vq310
vq410
vqgb10
vq610
% vq710

% state

vq01l5
vqllb
vq2l5
vq31lb
vqdlb
vqolb
vq615
% vqT7lh

% state

vq021
vql2l
vq221
vq321
vq4d21
vqH21
vq621
% vqT21

% state

vq018
vqll8
vq218

interpl (t_ode, x_ode(:,19) ,xq);

interpl (t_ode, x_ode(:,20) ,xq);

interpl (t_ode, x_ode(:,21) ,xq);

interpl (t_ode, x_ode(:,22) ,xq);

8
interpl (t_ode, x_ode(:,8) ,xq);
interpl (t red;odel, x_red_odel (:,8), xq);
interpl (t_red ode2, x_red_ode2(:,8), xq);
interpl (t_red ode3, x_red_ode3(:,8), xq);
interpl (t_red ode4, x_red oded(:,8), xq);
interpl (t_red ode5, x_red_ode5(:,8), xq);
interpl (t_red ode6, x_red ode6(:,8), xq);
10

interpl (t_ode, x_ode(:,10) ,xq);

interpl (t_red odel, x_ red odel( 10), xq
interpl (t_red_ode2, x_red_ode2(:,10), xq
interpl (t red‘ode37 x_red_ode3(:,10), xq
interpl (t_red_oded, x_red_oded4(:,10), xq
interpl (t_red_ode5, x_red_ode5(:,10), xq
interpl (t_red_ode6, x_red_ode6(:,10), xq
= interpl (t_red ode7, X;}Od;ﬁdﬂ?(: 10)
15

interpl (t_ode, x_ode(:,15) ,xq);
interpl (t_red_odel, x__ red odel( 15), xq
interpl (t_red_ ode2, x_red ode2(:,15), xq
interpl (t_red_ode3, x_red ode3(:,15), xq
interpl (t_red oded, x_red oded(:,15), xq
interpl (t_red_ode5, x_red odeb(:,15), xq
interpl (t_red_ode6, x_red ode6(:,15), x

= interpl (t ledgude7, x_red ode?( , 15 ),
21

interpl (t_ode, x_ode(:,21) ,xq);

interpl (t red;odel, x_red odel( ,21), xq
interpl (t_red_ode2, x_red_ode2(:,21), xq
interpl (t_red_ ode3, x_red_ode3(:,21), xq
interpl (t_red ode4, x_ red oded(:,21), xq
interpl (t_red_ ode5, x_red ode5(:,21), xq
interpl (t_red ode6, x_ red ode6(:,21), xq
= interpl (t_red odc?, x_red_ode7(:,21)
18

interpl (t_ode, x_ode(:,18) ,xq);

interpl (t_red_ odel, x_red odel(:,18), xq
interpl (t_red_ode2, x_red_ode2(:,18), xq

Master of Science Thesis
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vq318
vq4l8
vq518
vq618
% vq718

9% Compute RMS values between nonlinear and linear system

interpl (t_red_ode3,
interpl (t_red_ ode4,
interpl (t_red ode5,
interpl (t_red_ode6,

interpl (t_red ode7, x_red ode7(:,

x_red_ode3
x_red_ode4
x_red_odeb
x_red_ode6(:,

(:,18
(:,18
(:,18

% errors in all states for nonlienar vs linear system
RMSlinl = sqrt( (1/n)*(vq0l—vqlinl) '«(vq0l —vqlinl))/ mean(vqlinl);
RMSlin2 = sqrt( (1/n)*(vq02—vqlin2) 'x(vq02 —vqlin2))/ mean(vqlin2);
RMSlin3 = sqrt( (1/n)x*(vq03—vqlin3) '%«(vq03 —vqlin3))/ mean(vqlin3);
RMSlind = sqrt( (1/n)x(vq04—vqlind) *+«(vq04 —vqlind))/ mean(vqlind);
RMSlin5 = sqrt( (1/n)=*(vq05—vqlind) *«(vq05 —vqlin5))/ mean(vqlin5);
RMSlin6 = sqrt( (1/n)*(vq06—vqlin6) '«(vq06 —vqlin6))/ mean(vqlin6);
RMSlin7 = sqrt( (1/n)*(vq07—vqlin7) '+ (vq07 —vqlin7))/ mean(vqlin7);
RMSIlin8 = sqrt( (1/n)x*(vq08—vqlin8) '#(vq08—vqlin8))/ mean(vqlin8);
RMSIlin9 = sqrt( (1/n)=*(vq09—vqlin9) *+«(vq09—vqlin9))/ mean(vqlin9);
RMSlinl0 = sqrt( (1/n)=*(vq010—vqlinl0) *%(vq010—vqlinl10))/ mean(vqlinl0);
RMSlinll = sqrt( (1/n)x*(vq0ll—vqlinll) ’%(vq011l —vqlinll))/ mean(vqlinll);
RMSlinl12 = sqrt( (1/n)x(vq012—vqlinl2) ’%(vq012 —vqlinl12))/ mean(vqlinl2);
RMSlinl13 = sqrt( (1/n)*(vq013—vqlinl3) '«(vq013 —vqlinl3))/ mean(vqlinl3);
RMSlinl4 = sqrt( (1/n)*(vq0ld—vqlinld) «(vq01l4 —vqlinl4))/ mean(vqlinld);
RMSlinl5 = sqrt( (1/n)=(vq01l5—vqlinl5) ’%(vq015 —vqlinl5))/ mean(vqlinl5);
RMSlinl6 = sqrt( (1/n)x*(vq016—vqlinl6) %(vq016 —vqlinl6))/ mean(vqlinl6);
RMSlinl7 = sqrt( (1/n)x*(vq017—vqlinl7) ’%(vq017 —vqlinl7))/ mean(vqlinl7);
RMSIinl8 = sqrt( (1/n)=*(vq018—vqlinl8) +(vq018 —vqlinl8))/ mean(vqlinl8);
RMSlinl9 = sqrt( (1/n)=*(vq019—vqlinl9) *%(vq019 —vqlinl9))/ mean(vqlinl9);
RMSIin20 = sqrt( (1/n)=(vq020—vqlin20) *%(vq020 —vqlin20))/ mean(vqlin20);
RMSlin21 = sqrt( (1/n)x(vq021—vqlin21) *%(vq021 —vqlin21))/ mean(vqlin21);
RMSlin22 = sqrt( (1/n)x(vq022—vqlin22) *%(vq022 —vqlin22))/ mean(vqlin22);
RMS_nonlinear = [RMSlinl; RMSlin2; RMSIlin3; RMSlind; RMSlin5; RMSIlinG;
RMSlin7; RMSIlin8; RMSIlin9; RMSIlinl0; RMSlinll; RMSlin12; RMSlinl3;
RMSlinl4; RMSIlinl5; RMSIlin16; RMSIlinl7; RMSIlinl18; RMSlin19; RMSIlin20;

RMSI

x_bar = categorical ( {'RNAP’,’S70", 'DNA t’,
'RNAP: S70:DNA_t’,’RNA_t7,
'RNAP: S28 :DNA_t’,

RNAP:

. RNAP: S28 ",
’, 'RNA_t:RNA {S281}:Ribo’,
}:Ribo 7,

x_bar

, 'RNAP:S70",
S28)°
{528},
{eGFP}:Ribo’,

figure (3

in21; RMSlin22];

S707,

"eGFPdark ’

reordercats (x_bar,{ '/RNAP’  ’S70’, 'DNA_t’,
'RNAP:S70:DNA t’,’RNA t7,
'RNAP: S28 :DNA_t7,
'RNA_t:RNA_{S28}:Ribo’,
"eGFPdark”’

RNAP: §28 ",

b

)3

barh (x_bar, RMS_nonlinear) ;

J. Guldenaar (4274741)

'eGFP 7 |

’S5287,

'S287,
"eGFP ",

"Ribo 7,
'RNA_t:RNA_{eGFP} ',
'RNAP: S28 :DNA_{eGFP}’ })

'DNA_{S28} ", 'DNA_{eGFP} ",
"RNAP: S70 :DNA_{S28} ",
"RNA_{eGFP} ",

RNA {S28}°

'RNA_t:RNA {S28}
'RNA_t:RNA_{eGFP

)

"Ribo 7,

'DNA__{S28} ’, 'DNA_{eGFP}’
'RNAP: S70:DNA_{S28} 7,
'RNA_ {eGFP} *
'RNA_t:RNA_{eGFP} 7,

'RNAP: 528 :DNA_{eGFP}’ });

RNA_{
'RNA_ t:RNA_
'RNA_t:RNA_

Master of Science Thesis
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title (7 RMS values between non—reduced

system ) ;

ylabel (’Species $X i$7,

xlabel ('RMS value for

system ) ;

%% Compute RMS values
% errors in state 8

RMS18 = sqrt( (1/n) =

RMS28 = sqrt( (1/n) =

*

RMS38 = sqrt( (1/n)

*

RMS48 = sqrt( (1/n)
RMS58 = sqrt( (1/n) =
RMS68 = sqrt( (1/n) =

% Rl\’[S78 = sqrt( (1/n)
(:, 8) )

% errors in state 10

RMS110 = sqrt( (1/n)
10) ) ;

RMS210 = sqrt( (1/n)
10) ) ;

RMS310 = sqrt( (1/n)
10) )

RMS410 = sqrt( (1/n)
10) )

RMS510 = sqrt( (1/n)
10) )

RMS610 = sqrt( (1/n)
10) )

*

% RMST710 = sqrt( (1/n)

x_red_ode7(:, 10) )

% errors in state 15

RMS115 = sqrt( (1/n)
15) ) 5

RMS215 = sqrt( (1/n)
15) ) ;

RMS315 = sqrt( (1/n)
15) ) ;

RMS415 = sqrt( (1/n)
15) ) ;

RMS515 = sqrt( (1/n)
15) ) 5

Master of Science Thesis

*

*

given species between

nonlinear system and linearized

“interpreter ', ’latex’);
linearized and nonlinear

between non—reduced and reduced order system

(vq08 — vql8) "*x(vq08
(vq08 — vq28) "*x(vq08
(vq08 — vq38) "*x(vq08
(vq08 — vq48) " (vq08
(vq08 — vg5h8) '+ (vq08

(vq08 — vqg68) *+(vq08

x (vq08 —

(vq010 —
(vq010 —
(vq010 —
(vq010 —
(vq010 —
(vq010 —

* (vqO010

(vq015 —
(vq015 —
(vq015 —
(vq015 —

(vq015 —

vq78) 7x(vq08

vql1l0) *%(vq010 — vqll0))
vq210) "% (vq010 — vq210))
vq310) 'x(vq010 — vq310))
vq410) ’x(vq010 — vq410))
vq510) % (vq010 — vg510))

vq610) "% (vq010 — vq610))

vql8)) / mean(x_ode(:, 8) )
vq28)) / mean(x_ode(:, 8) )
vq38)) / mean(x_ode(:, 8) )
vq48)) / mean(x_ode(:, 8) )
vq58)) / mean(x_ode(:, 8) )
vq68)) /

mean(x_ode(:, 8) )

— vq78)) / mean(x_red_odeT7

mean (x_ode (:,
mean (x_ode (:,
mean (x_ode (: ,
mean (x_ode (: ,

mean (x_ode (: ,

S~ T~ T~ T~ T~

mean (x_ode (: ,

— vq710) "x(vq010 — vq710)) / mean(

vqlls) ’x(vq01l5 — vqllh))

vq215) "% (vq015 — vq215))

/

/
vq315) "% (vq015 — vq315)) / mean(x ode(:
vqd15) "% (vq015 — vqdl5)) /

/

v515) % (vq0l5 — vg515))

mean (x_ode (:,

mean (x_ode (:,

mean (x_ode (: ,

mean (x_ode (: ,

J. Guldenaar (4274741)
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Matlab code

RMS615 = sqrt( (1/n) =

15) )

b

(vq015 —

% RMS715 = sqrt( (1/n) % (vq015

x_red ode7(:,

% errors

RMS121 =

21) )
RMS221 =

21) )
RMS321 =
21) )
RMS421 =
21) )
RMS521 =
21) )
RMS621 =

21) )

in state 21
(1/n)
(1/n)
(1/n)
(1/n)
(1/n)
(1/n)

sqrt (
sqrt (
sqrt (
)

sqrt (
)

sqrt (
sqrt (

b

15) )

*

*

*

*

% RMS721 = sqrt( (1/n)

x_red_ode7(:,

% errors

RMS118 =
18) )
RMS218 =
18) )
RMS318 =
18) )
RMS418 =
18) )
RMS518 =
18) )
RMS618 =

18) )

in state 18
ﬁqrt( (1/n)
sart((1/n)
sqrt( (1/n)
sfqru (1/n)
sart((1/n)
sqrt( (1/n)

b

21) )

*

*

*

*

*

% RMS718 = sqrt( (1/n)

x_red_ode7 (:,

%% Collect

data

RMS1 = zeros(3,6) ;

RMSI(1,
RMS1(2,
RMS1(3,

H)
S
D) =

RMS2 = zeros (2,6) ;

RMS2(1,
RMS2(2,

D) =
1) =

J. Guldenaar (4274741)

18) )

(vq021 —
(vq021 —
(vq021 —
(vq021 —
(vq021 —
(vq021 —

* (vq021

(vq018 —
(vq018 —
(vq018 —
(vq018 —
(vq018 —

(vq018 —

vq615) 'x(vq015 —

— vq715) "x(vq015

vql21l) 7% (vq021
vq221) % (vq021
vq321) 'x(vq021
vq421) 'x(vq021
v521) 7% (vq021

vq621) % (vq021

— vq721) 'x(vq021

vqll8) % (vq018
vq218) % (vq018
vq318) 'x(vq018
vq418) 'x(vq018
vg518) 7% (vq018

vq618) % (vq018

vq615))

/

— vq7l5))

vql21))
vq221))
vq321))
vq421))
vq521))

vq621))

~ T~ T~ T~ T~

— vqT721))

vql18))
vq218))
vq318))
vqal18))
vq518))

vq618))

/
/
/
/

/
/

mean (x_ode (: ,

/ mean (

mean (x_ode (:,
mean (x_ode (: ,
mean (x_ode (: ,
mean (x_ode (: ,
mean (x_ode (:,
mean (x_ode (:,

/ mean (

mean (x_ode (:,
mean (x_ode (:,
mean (x_ode (: ,
mean (x_ode (: ,
mean (x_ode (:,

mean (x_ode (:,

* (vq018 — vq718) "x(vq01l8 — vq718)) / mean(

[RMS18 RMS28 RMS38 RMS48 RMS58 RMS68] ;
[RMS110 RMS210 RMS310 RMS410 RMS510 RMS610]
[RMS115 RMS215 RMS315 RMS415 RMS515 RMS615]

[RMS121 RMS221 RMS321 RMS421 RMS521 RMS621]
[RMS118 RMS218 RMS318 RMS418 RMS518 RMS618]

)

k)

)

)

: % state

; % state
: % state

o state 8
10

% state 15

21
18
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x_barl = categorical ( {’'x 8 [RNA t]’, ’x {10} [RNA {S28}]’, ’'x {14} |
RNA t:RNA {S28}]'});

x_bar2 = categorical ( {’'x {20} [eGFP]’, ’x {17} |[RNA_t:RNA {eGFP}]|’} );

x_barl = reordercats( x_barl, {’x 8 [RNA t]’, ’x {10} [RNA {S28}]",
{14} [RNA_t:RNA_{S28}]’});

x_bar2 = reordercats( x_bar2, {’'x {20} [eGFP]’, ’x {17} [RNA_t:RNA {eGFP
HY s

% x_bar = categorical( { '1 — x {8, red,i }/x 8 [RNA t] 7,

% 'l — x {10, red,i}/x {10} [RNA {S28}] ’, ...

% "1 — x {15, red, i}/x {15} [RNA_ t : RNA {S28}]

%o T — x {21, red, i}/x {21} [e {GFP}] 7, ...

%o "1 — x {18, red, i}/x {18} [RNA t: RNA {eGFP}] > })
%o

% x_bar = reordercats(x_bar,{ '1 — x {8, red,i }/x 8 [RNA_t] 7,
%o "1 — x {10, red,i}/x {10} [RNA {S28}] ’, .

%o "1 — x {15, red, i}/x {15} [RNA t : RNA {S28}] ° ,

%o 1 — x {21, red, i}/x {21} [e {GFP}] ', ...

% "1 — x_ {18, red, i}/x {18} [RNA_t: RNA {eGFP}] ' });
figure (4);

bl = bar(x_barl, RMS1);

ylabel (’Relative errors for system order reduction by removing i states’)

; %, ’Interpreter ', latex’

set (bl, {’DisplayName’} ,...
{7i=1", ...

=27,

=3,

o= 40,

=57, ...

=675
set (bl1(1,1), ’'facecolor’, [0.71 0.87 0.36] );
set (b1(1,2), ’'facecolor’, [0.84 0.85 0.10] );
set (b1(1,3), ’'facecolor’, [0.93 0.69 0.13] );
set (b1(1,4), ’'facecolor’, [0.87 0.56 0.29] );
set (b1(1,5), ’'facecolor’, [0.84 0.36 0.26] );
set (bl1(1,6), ’'facecolor’, [0.95 0.36 0.26] );
legend () ;
figure (5);
b2 = bar (x_bar2, RMS2);

ylabel (’Relative errors for system order reduction by removing i states’)
; % , ' latex’

N

"Interpreter’

set (b2, {’DisplayName’} ,...
{'i=1", ...
=27,
i=3",
i =47,
i=5", .
1:6’}’)7

set (b2(1,1), ’'facecolor’, [0.71 0.87 0.36] );
set (b2(1,2), ’'facecolor’, [0.84 0.85 0.10] )

Master of Science Thesis J. Guldenaar (4274741)
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Matlab code

legend ()

)
% legend (’position’

function dxdt = Kron fun(t, x)

k1 = 1/10;
k 2 = 1/10;
k3 = 1/10;
k4 = 1/10;
k5 = 1/10;
k6 = 1/10;
k7 = 1/10;
k 8 = 1/10;
k9 = 1/10;
k10 = 1/10;
k1l = 1/10;
k 12 = 1/10;
k13 = 1/10;
kld = 1/10;
k15 = 1/10;
k 16 = 1/10;
k17 = 1/10;
k18 = 1/10;
k19 = 1/10;
kdeg = 1/10;

gamma = 1/100;

"facecolor’
"facecolor’
"facecolor’
"facecolor’

A = zeros(28,28) ;

A(2,1) = k1
A(1,2) =k 2;
A(23,3) = k3;
A(5,23) = k4;
A(24,6) = k5;
A(8,24) =k6;
A(10,9) = k7;
A(9,10) = k_8;
A(25,11) = k9;
A(13,25) = k10;
A(26,14) = k11;
A(14,26) = k_12;
A(27,16) = k13;
A(18,27) = kl4;
A(28,19) = ki5;
A(19,28) = k_16;
A(22,21) = k17,
A(4,22) = Kk18;

J. Guldenaar (4274741)
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[ =
N
—~
w
w
~
I
—

—_—— B —
=1
— |

NN
—~
w N
o=
(G20
vm
RS
=
N
D
.=
(2
~—
| N
=

[\)
(e}
IS
N—
|
—

(17,9 :1;

=

11,11
21,12

==
N
—
ot
—
—_
N2
—_

17(13,13) =1;
Z(8,14) =1;

ot
—
w
—
I
o=

—
()
—
ot
— —
Il
eioniies

7(14,16) =1;

TR

1; Z(14,18) =

3,19)=1;

b

—_
\]
=
oo

(
1

—

Il
N»—lN
e~ N

14,21)=1;

—
oo
[\

—
—_— —
Il

= e

19,22

\]
2O
w
=
Il
_

D = diag( [kl, k 2, k3, 0,0,k5,k19,0,k7,k 8,k9,0,0,k11,kdeg k13, kdeg,0,

k15, kdeg, k17 ,k18 k4 ,k6,k10, kdeg+k 12, k14, kdeg+k 16])

L=D-A;
dxdt = —ZxLxexp(Z’*xlog(x))

% 7Zs = Z(1:end,
% K = [K zeros(23,4)];

[0}

; % + Zxones(28,1)

[1:19 21:28]);

o vxred = D % exp(Z’ xlog(xred) )

% Construct incidence matrix

% B = zeros (28,23);

%o

% B(1,1) = —1;
% B(2,1) = 1;
% B(1,2) = 1;
% B(2,2) = —1;
% B(3,3) = —1;
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Matlab code

% B(23,3) =1

% B(5,4) = 1;

% B(6,5) = —1;
% B(4,5) = 1;

% B(4.,6) = —1;
% B(8,6) = 1;

% B(9,7) = —1;
% B(10,7) = 1;
% B(10,8) = —1
% B(9,8) = 1;

% B(11,9) = —1;
% B(25,9) = 1;
% B(25,10) = —1;
% B(13,10) = 1;
% B(14,11) = —1;
% B(26,11) = 1;
% B(16,12) = —1;
% B(27,12) = 1;
% B(27,13) = —1;
% B(18,13) = 1;
% B(19,14) = —1;
% B(28,14) = 1;
% B(28,15) = —1;
% B(19,15) = 1;
% B(21,16) = —1;
% B(22,16) = 1;
% B(22,17) = —1;
% B(4,17) = 1;
% B(7,18) = —1;
% B(12,18) = 1;
% B(26,19) = —1;
% B(27,20) = —1;
% B(28,21) = —1;
% B(15,22) = —1;
% B(20,23) = —1;
%

function dxdt = Kron_red_fun(t, xred)

k1l = 1/10;
k 2 =1/10;
k3 = 1/10;
ki = 1/10;
k5 = 1/10;
k6 = 1/10;
k7 = 1/10;
k 8 = 1/10;
k9 = 1/10;
k10 = 1/10;
k11 = 1/10;
k 12 = 1/10;
k13 = 1/10;
k14 = 1/10;
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k15 = 1/10;
k 16 = 1/10;
k17 = 1/10;
k18 = 1/10;
k19 = 1/10;
kdeg = 1/10;

gamma = 1/100;

A = zeros(28,28) ;

A(2,1) = k1;

A(1,2) =k 2;

A(23,3) = k3;

A(5,23) = k4;

A(24,6) = k5;

A(8,24) =k6;

A(10,9) = k7;

A(9,10) = k_8;
A(25,11) = k9;
A(13,25) = k10;
A(26,14) = kl1;
A(14,26) = k_12;
A(27,16) = k13;
A(18,27) = kl4;
A(28,19) = kl5;
A(19,28) = k_16;
A(22,21) = k17;
A(4,22) = k18;

A(12,7) = k19;

Z = zeros(22,28);
Z(1,1)=1; Z(2,1)=1;
7(6,2)=1;

Z(673):]~; Z(373): )
7(14,4)=1; Z(18.,4) = 1;
Z(8,5)=1:Z(3,5)=1;Z(6,5)
7(6,6)=1:Z(4,6)=1;
7(20,7)=1;
7(10,8)=1;Z(4,8)=1;Z(6,8)=1;
7(11,9)=1;,Z(17,9)=1;
Z(1,10)=1;
Z(11,11)=1;2(5,11) =1,
Z(21,12)=1;
7(5,13)=1;Z(13,13) =1,
7(10,14)=1;Z(8,14) =1;
7(10,15)=1;
Z(15,16)=1;2(14,16)=1;
Z(8,17)=1;

Z(17,18)=1; 7Z(14,18)=1;
7(8,19)=1; Z(13,19)=1
7(13,20) = 1;
Z(18,21)=1;2(14,21) =1;
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Matlab code

7,23)=1;

D = diag( [kl, k 2, k3, 0,0,k5,k19,0,k7,k 8,k9,0,0,k11,kdeg,k13,kdeg,0,
k15, kdeg, k17, k18 k4 ,k6,k10, kdeg+k 12,k14,kdegtk 16]) ;

L=D-A;

red_ord = 6; % reduction order for the Kron reduction order method

L1l = L(1l:end—red_ord, 1l:end—red_ ord);

L12 = L(1l:end—red_ord, end—red_ ord+1l:end);

L21 = L(end—-red_ord+1:end, 1l:end— red_ ord);

L22 = L(end — red_ord +1: end , end — red_ord +1: end);

Znew = Z(:, l:end-red_ord) ;

Lhat = LI11 — L12xinv (L22)*L21; % Schur complement for auxiliary dynamics

dxdt = — ( ZnewxLhat )xexp(Znew’xlog(xred) ); % + Zlxones(21.1)

%dxdt = —ZxLxexp(Z’+log(xred)) 4+ gammax(xin_red — xred);

C-5 Linearization

function y = Linearization_func(t, x)

Alinearization =

[—0.498000000000000,0,0,0,0,0.100000000000000,0,0,0,0,2.34000000000000,0,0,0,0,0,0

y = Alinearization*x;

clear

all; close all;

clce;

syms k1 k 1 k2 k3 k4 k5 k6 k 6 k7 k8 k9 k 9 k10 k11 k12 k 12 k13 k14 k15

kdeg real

syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

x20 x21 x22 x real

syms vx

J. Guldenaar (4274741)
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N = zeros(22,23);

29
30
31
32
33
34
35
36
37
38
39
40
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44
45
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49
50
51
52
53
54
55
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58
59
60
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N(1,1) = —1; N(2,1) = —1; N(6,1) = 1;
N(1,2) = 1; N(2,2) = 1;N(6,2) = —1;
N(6,3) = —1; N(3,3) = —I;N(7,3) = 1;
N(7,4) = —1;N(8,4) = 1;N(3,4) = 1;N(6,4) = 1;
N(6,5) = —1;N(4,5) = —1;N(9,5) = I;
N(9,6) = —1;N(10,6) = 1;N(4,6) = 1; N(6,6) = 1
N(11,7) = —1N(17,7) = —1;N(1,7) =
N(11,8) = 1;N(17,8) = 1;N(1,8) = —1,
N(11,9) = —1:N(5,9) = —1;N(22,9) = 1;
N(22,10) = —1;N(5,10) = 1;N(13,10) = 1;
N(10,11) = —1;N(8,11) = —1;N(15,11) = 1;
N(15,12) = —1;N(14,12) = —1;N(16,12) = 1;
N(16,13) = —1;N(17,13) = 1;N(14,13) = 1;
N(8,14) = —1;N(13,14) = —1;N(18,14) = 1;
N(18,15) = —1;N(8,15) = 1;N(13,15) = 1;
N(18,16) = —1;N(14,16) = —1;N(19,16) = 1;
N(19,17) = —1;N(14,17) = 1;N(20,17) = N(18,17) = 1;
N(20,18) = —1;N(21,18) = 1;

N(10,19) = —1;

N(8,20) = —1;

N(13,21) = —1;

N(15,22) = —1;

N(18,23) = —1;

vx (1) = klsx1%x2;

vx(2) = k_1%x6;

vx(3) = k2%xx3%x6;

vx(4) = k3x*xT7;

vx(5) = kdxx6xx4;

vx(6) = k5xx9;

vx(7) = k6xx11xx17;

vx(8) = k_6xx1;

vx(9) = k7+x11%x5;

vx(10) = k8%x22 ;

vx(11) = k9xx10xx8;

vx(12) = k10xx15xx14;

vx(13) = kllxx16;

vx(14) = k12xx8xx13;

vx(15) = k_ 12%x18;

vx(16) = k13%*x18xx14;

vx(17) = k14xx19;

vx(18) = k15%x20;

vx(19) = kdegxx10;

vx(20) = kdegx*x8;

vx(21) = kdegxx13;

vx(22) = kdegxx15;

vx(23) = kdegxx18;

VX = VX ;

xdot = Nxvx;
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128 Matlab code

syms T

T(1,2) = k_1;
T(1,10) = -k _6;
T(1,1) = —k1;
T(1,9) = k6;
T(2,2) = k_1;
T(2,1) = —kI;
T(3,23) = k3;
T(3,3) = —k2;
T(4,24) = k5;
T(4,6) = —k4;
T(5,25) = kS;
T(5,11) = —k7;
T(6,23) = k3;
T(6,24) = k5;
T(6,2) = —k_1;
T(6,1) = ki;
T(6,3) = —k2;
T(6,6) = —k4;
T(7,3) = k2;
T(7,23) = —k3;
T(8,23) = k3;
T(8,28) = k _12;
T(8,17) = —kdeg;
T(8,14) = —k9;
T(8,19) = —k12;
T(9,6) = k4;
T(9,24) = —k5;
T(10,24) = k5;
T(10,15) = —kdeg;
T(10,14) = —k9;
T(11,10) = k_6;
T(11,11) = —k7;
T(11,9) = —k6;
T(13,25) = k8;
T(13,28) = k_12;
T(13,20) = —kdeg;
T(13,19) = —k12;
T(14,27) = ki1;
T(14,22) = kl4;
T(14,16) = —k10;
T(14,21) = —k13;
T(15,14) = k9;
T(15,26) = —kdeg;
T(15,16) = —k10;
T(16,16) = k10;
T(16,27) = —k11;
T(17,27) = ki1;
T(17,10) = k_6;
T(17,9) = —k6;
T(18,22) = kl4;
T(18,28) = —k 12-kdeg;
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T(18,19) = k12;
T(18,21) = —k13;
T(19,21) = k13;
T(19,22) = —k14;
T(20,22) = kl14;
T(20,7) = —k15;
T(21,7) = k15;

T(22,11) = k7;

T(22,25) = —k8;

wn
o
=
w
=
N

= zeros (22,28) ;
1,1)=1; Z(2,1)=1;
6,2)=1;

6,3)=1; Z(3,3)=1;
1

8

5)=1;Z(3 )_1z 5)
6.6)=1:7(4,6)—

—
—
-
—
—
I
—_ =

(G20 \]
. =
o
W =
~ DN
|| S~—
=l

17(13,13) =
7(8,14)

—
(an)
-
ot
— —
Il

»—~ = e

=1;Z(14,16) =
17,18)=1; Z(14,18)=1;
8,19)=1; Z(13,19)=
)=
19,22):1;

9,24)=1;

NNNNNNNNNNNNNNNNNNNNNNNNNNNDNDN

—
(@]
[N}
\]

— — — —
Il

e

X = [Xl x2 x3 x4 xb x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

x20 x21 x22]°

syms L D A

D = diag( [kl, k 1, k2, 0,0,k4,k15,0,k6,k 6,k7,0,0,k9,kdeg,k10,kdeg,0,
k12, kdeg,k13,k14 ,k3,k5,k8 kdeg,kll ,k 12+kdeg])

% A = zeros(28,28)

A(1,1) = 0;
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Matlab code

A(2,1) = k1;
A(1,2) =k 1;
A(23,3) = k2;
A(5,23) = k3;
A(24,6) = k4;
A(8,24) =k5;
A(10,9) = k6;
A(9,10) = k_6;
A(25,11) = k7;
A(13,25) = k8;
A(26,14) = k9;
A(27,16) = k10;
A(18,27) = kl11;
A(28,19) = k12;
A(19,28) = k_12;
A(22,21) = k13;
A(4,22) = kl14;
A(12,7) = k15;
L=D-A;
—ZxL — T ;

f = Nxvx;

syms gamma real

[0;3.98000000000000;1.99000000000000;1.99000000000000;2;0;0.0100000000000000;0.010

% f2 = Nxvx + gammasx(xin — x);
% 3 = Nxvx +

syms jac

jac = jacobian (f, x);

xin =

jac = subs(jac, x1, xin(1));
jac = subs(jac, x2, xin(2));
jac = subs(jac, x3, xin(3));
jac = subs(jac, x4, xin(4));
jac = subs(jac, x5, xin(5));
jac = subs(jac, x6, xin(6));
jac = subs(jac, x7, xin(7));
jac = subs(jac, x8, xin(8));
jac = subs(jac, x9, xin(9))
jac = subs(jac, x10, xin(10)
jac = subs(jac, x11, xin(11)
jac = subs(jac, x12, xin(12)
jac = subs(jac, x13, xin(13)
jac = subs(jac, x14, xin(14)
jac = subs(jac, x15, xin(15)
jac = subs(jac, x16, xin(16)
jac = subs(jac, x17, xin(17)
jac = subs(jac, x18, xin(18)
jac = subs(jac, x19, xin(19)

J. Guldenaar (4274741)

gammax(xin — x) — zetaxD_ zeta;
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jac = subs(jac, x20, xin(20));

241
242
243
244
245
246
247
248
249
250
251

jac = subs(jac, x21, xin(21));
jac = subs(jac, x22, xin(22));
jac = subs(jac, k1, 1/10);
jac = subs(jac, k 1, 1/10);
jac = subs(jac, k2, 1/10);
jac = subs(jac, k3, 1/10);
jac = subs(jac, k4, 1/10);
jac = subs(jac, k5, 1/10);
jac = subs(jac, k6, 1/10);
jac = subs(jac, k_6, 1/10);
jac = subs(jac, k7, 1/10);
jac = subs(jac, k8, 1/10);
jac = subs(jac, k9, 1/10);
jac = subs(jac, k 9, 1/10);
jac = subs(jac, k10, 1/10);
jac = subs(jac, k11, 1/10);
jac = subs(jac, k12, 1/10);
jac = subs(jac, k 12, 1/10);
jac = subs(jac, k13, 1/10);
jac = subs(jac, k14, 1/10);
jac = subs(jac, k15, 1/10);
jac = subs(jac, kdeg, 1/10);
jac double (jac);

T

Alinear = zeros(22,22);
k = 1:22
for m = 1:22

Alinear (m,k) =

for

end

end

Master of Science Thesis
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Appendix D

D-1 Acronyms

Delft University of Technology (TU Delft)

3mE
CFFL
DCSC
E. Coli
eGFP
ICMS
MM
ODE
QSSA
S28
S70
TU Delft

Mechanical, Maritime and Materials Engineering
Coherent Feedforward Loop

Delft Center for Systems and Control
Escherichia Coli

Green Fluorescent Protein

Institute of Complex Molecular Systems
Michaelis-Menten

Ordinary Differential Equation
Quasi-steady state approach

o-factor 28

o-factor 70

Delft University of Technology

Master of Science Thesis

Glossary

J. Guldenaar (4274741)
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