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Impact of Thermodynamic Principles

in Systems Biology
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Abstract It is shown that properties of biological systems which are relevant for

systems biology motivated mathematical modelling are strongly shaped by general

thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near

equilibria and thermodynamic driving force. Each of these aspects will be demon-

strated both theoretically and experimentally.
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1 Introduction

Thermodynamic principles apply to all physical and chemical systems, including

biological systems. In this chapter it will be shown how these principles shape

their properties, especially from a quantitative model based, systems biology, point

of view.

2 Thermodynamic Principles in Mathematical Models

of Biological Systems

The key aspect of a living cell is the formation of new cells, called growth.

Growth requires that a cell produce each of the molecules present in the newly

formed cells. This occurs in a large and complex metabolic (reaction) network. This

network is composed of many reactions, which consume and produce small mole-

cules, called metabolites. Each reaction is catalysed by a specific enzyme, which is

under genetic/environmental control. Prediction of growth requires a mathematical

model of this network for which the fundamental equations are the mass balances of

intracellular metabolites. In vector notation:

dX

dt
¼ SV ðe;X; pÞ � mX; (1)

where X is the vector containing the individual intracellular metabolites Xj.

V is the vector of the rates of enzyme catalyse reactions, with vi the rate of

reaction catalysed by enzyme present at an amount ei. The rate vi depends on the

amount of enzyme present, ei, on the kinetic effect of metabolites Xj involved (e.g.

substrate, product and possible allosteric effectors) and the parameters p (e.g.

Vmax, affinities, Hill coefficient etc.). S is the so-called stoichiometric matrix

which represents the structure of the reaction network. Its rows represent the

metabolites, its columns the reactions [44]. The term mX is the so-called dilution

term.

Equation (1) requires information on the dynamic behaviour and values of

metabolite concentrations, on the values of stoichiometric coefficients, on enzyme

levels resulting from genetic regulation and on the shape/algebraic nature of the
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enzyme kinetic relations, and (1) is the basis of parameter estimation from experi-

mental data and the associated need for model reduction.

In the following sections we will show that thermodynamic principles can be

used to shed light on this information (Fig. 1):

l Metabolite concentration levels ðXjÞ and their control mechanisms
l The stoichiometry of growth (S)
l The genetic regulation of enzyme levels (ei)
l Principles of model reduction
l The kinetics of enzyme catalysed reactions based on thermodynamic driving

force

3 The Osmotic Limit Dictates Low Concentrations

of Intracellular Metabolites

Cells have a genome which contains about 5,000 genes. These genes code for about

5,000 proteins, of which about 2,000 are enzymes. Therefore, in a cell, one can

expect about 2,000 different metabolites which are small molecules (e.g. metabo-

lites in central metabolism and in pathways for amino acid, nucleotide, lipid and

carbohydrate/cell wall synthesis). Many of these metabolites are negatively charged

(having phosphate and carboxylate groups) and therefore there are also consider-

able concentrations of counter cations ðKþ;Mg2þÞ. The sum concentration of all

these small molecules is limited by a thermodynamic property called osmotic

pressure [1]. Because cells contain a cell membrane that is water permeable, the

presence of a high intracellular sum concentration of membrane impermeable

anionic/cationic small molecules leads to a water activity inside cells that is lower

than outside. This creates a flow of water into the cell, leading to increase of

intracellular pressure. The water inflow stops when the pressure has reached the

Gibbs energy
dissipation in
the network

Van’t Hoff 
Osmotic limit

Energy optimality
for gene regulation

Thermodynamic inspired,
lin-log kinetics

Model
reduction

dx
dt

= S · v(e,x,p) –μ · x

Fig. 1 Impact of thermodynamic principles in systems biology
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osmotic pressure. According to van ’t Hoff the osmotic pressure is linear in the sum

concentration C of all intracellular metabolites ðPosm ¼ CRTÞ. For example, for

C = 1 mol/L it follows that Posm ¼ 25 bar (C ¼ 1 mol/L ¼ 1,000 mol/m3, R
¼ 8.314 J/mol K, T ¼ 298 K gives Posm ¼ 24:8� 105N=m2 ¼ 25bar). From a

mechanical point of view, this pressure is counteracted by the mechanical strength

of the cell membrane/cell wall, which is obviously bound to physical limits.

Therefore there must exist a maximal sum concentration of small intracellular

molecules. Assuming a limit of 25 bar gives for this maximal sum C � 1.0 mol/L,

which gives a sum concentration of organic (anionic) metabolites of order 0.5 mol/L.

Assuming the presence of about 1,000 different metabolites in cells gives, for the

average intracellular metabolite concentration Xj; a value of about 10�3 mol/L.

Of course, there will be a wide distribution of concentrations, so we can expect

an intracellular concentration range of 10�2 to 10�4 mol/L, which is equivalent

to 20–0.20 mmol/g dry biomass. These values are indeed found as shown in

Table 1.

4 Consequences of Low Metabolite Concentrations

from a Systems Biology Point of View

The general property of low intracellular metabolite concentrations has very impor-

tant consequences at system level.

A first consequence is the near absence of spontaneous reactions. Usually the

metabolic network is considered to be totally enzyme catalysed and one assumes

implicitly that non-enzymatic reactions (which occur spontaneously) are absent.

Given the multitude of reactive molecules inside cells, one would expect much

more spontaneous reactions. Such reactions would be disadvantageous because

they are not under genetic control and they cause loss of material. The key to

suppress such reactions, in favour of enzyme catalysed reactions, is to have a

very low metabolite concentration (which kinetically “kills” the rate of a spon-

taneous reaction) in combination with matching high affinities of enzymes. This

is indeed found. So one could state that the osmotic limit enforces high affinity
enzymes.

A second general consequence is the need of active export.
Many biological systems are used in industrial processes (antibiotics, fuels,

amino acids, organic acids etc.). From an economic point of view, one aims at

high (� 1 M) extracellular concentrations of product. This implies that the final

step of product metabolism, export, has to deal with an unfavourable concentration

gradient of about 10�3 M inside and 1 M outside. Clearly, this requires active

export [6].

Another general aspect of metabolites is a fast, order of seconds, turnover time
(t.o.t.) of each metabolite. The t.o.t. of a metabolite Xj is defined as ðt:o:t:Þ Xj

¼ Xj

Vsum
,

with Xj the metabolite concentration and Vsum the sum of all production rates of this
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Table 1 Intracellular metabolite concentrations and turnover time in glucose limited aerobic

cultures of several organisms (Saccharomyces cerevisiae from [2], Penicillium chrysogenum
from [3, 4] E. coli from [5])

Metabolites Intracellular level (mmol/gDW) Turnover time (s)

P. chrysogenum S. cerevisiae E. coli P. chrysogenum S. cerevisiae E. coli

Central metabolites
G6P 4.64 5.2 1.42 23.3 17 3.6

F6P 0.71 1.4 0.38 5.7 7.3 1.2

T6P 0.55 0.13 47.8 NA

M6P 1.95 0.48 NA

6PG 0.25 0.48 0.10 3.7 4.5 1.1

Mannitol-1P 0.99 NA

G3P 0.13 0.17 57 13.1

FBP 0.9 0.64 0.82 7.2 3.2 2.5

F2,6bP 0.01 0.35 NA

2PG+3PG 0.59 2.8 1.65 2.3 6.6 2.5

PEP 0.24 2.3 1.61 0.9 5.7 2.7

Pyruvate 0.22 1.1 0.75 0.9 1.7 1.5

a-Ketoglutarate 2.05 0.31 22.1 0.6

Succinate 0.23 4.0 2.65 3.3 20 8.9

Fumarate 0.65 0.85 0.22 13.0 4.1 0.7

Malate 3.33 7.3 0.94 19.0 30 2.8

Amino acids
Alanine 21.7 32 1.34 269 3,268 76.7

Asparagine 1.5 4.7 0.58 459 1,142 81.7

Aspartate 16.3 21 2.57 717 577 35.0

Glutamate 53.0 170 74.69 658 1,112 229.0

Glutamine 28.7 64 6.14 1,243 2,401 80.0

Glycine 2.1 2.9 1.51 244 247 31.0

Histidine 0.72 6.0 0.15 432 3,141 53.8

Isoleucine 0.33 1.6 0.11 111 140 12.9

Leucine 0.73 1.0 0.36 131 125 27.1

Lysine 1.2 4.1 1.21 356 619 119.7

Methionine 0.14 0.20 0.05 58.8 66 10.5

Phenylalenine 0.19 1.6 0.13 61.2 430 23.8

Proline 0.95 3.9 0.66 206 925 101.4

Serine 5.7 0.53 453 8.0

Threonine 5.9 4.0 0.47 758 220 29.3

Tryptophan 0.11 0.51 0.02 130 788 11.9

Tyrosine 0.26 1.6 0.18 145 832 44.3

Valine 2.1 10 0.51 243 490 40.9

Ornithine 4.1 0.49 502 49.1

Adenine nucleotides
ATP 7.39 7.0 5.95 NA 1.4 2.0

ADP 1.03 1.3 2.31 NA 0.25 0.8

AMP 0.27 0.6 0.91 NA 3.1 9.4
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metabolite. Because Xj is low and Vsum can be high, one indeed finds t.o.t. of the

order of seconds (Table 1).

These fast t.o.t. have several important consequences:

l Considering product formation, where a substrate molecule is processed along a

multistep pathway to the secreted product, it follows that the time between

substrate entrance and product leaving the cell is only of order minutes. Clearly

cell factories follow the just in time principle.
l Considering the metabolite mass balances (1), we can safely neglect:

– The dilution term mXi, which is orders of magnitude smaller than the synthe-

sis term SV:
– The dynamic term dXi

dt for time scales larger than minutes (which follows

from t.o.t. of order seconds). This leads to pseudo-steady state.

l This pseudo-steady state property, which is a direct consequence of the low

metabolite levels due to an osmotic limit, is one of the most important network

properties. It allows one to write for the metabolite mass balances:

SV ¼ 0 (2)

These balance equations are the basis of the well-known stoichiometric analysis

of metabolic networks. We should also realise that, due to the pseudo-steady

state property of the metabolic reaction network, these balances also apply to

dynamic situations which allow one to formulate so-called black box stoichio-

metric/kinetic models which are reliable in a wide range of conditions (see also

“model reduction”).
l A final consequence is the need for control mechanisms on the production/

consumption of each intracellular metabolite. Cells are, in their natural environ-

ment, continuously exposed to perturbations which change the rate of synthesis/

consumption of metabolites. Given the low concentration of a metabolite, such a

perturbation leads to very quick (second time scale) and drastic (up or down)

changes in metabolite concentrations, which propagate through the network

leading to potential damaging system responses. Control of metabolite levels

is needed to limit these effects, and indeed such control mechanisms are widely

found in biological systems and, most interesting, they operate at proper time

scales. Most well known are allosteric feed back inhibition (e.g. in amino acid

synthesis pathways), and allosteric feed forward activation (e.g. in glycolysis)

mechanisms which operate within seconds. This is exactly the time scale

expected from the t.o.t. for metabolite levels. The other mechanisms are slower.

The post translational modification mechanisms (adenylation, (de)phosphata-

tion, . . . .) take in the order of minutes, consume ATP and interconvert active/

inactive enzyme, but do not change the total enzyme amount. The genetic
mechanisms (induction, repression) take in the order of tens of minutes and

change the amount of enzyme.
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5 Thermodynamic Approach to Obtain Network

Stoichiometry and Fluxes

To obtain the network fluxes (and therewith the stoichiometry of the network)

requires one to solve (2). These balances put linear constraints on the reaction/

uptake/secretion rates. The number of rates in a realistic network is typically several

hundred; however the number of metabolite mass balances in (2) (¼ constraints) is

also large. A general problem is the ATP-balance which contains uncertain ATP

stoichiometric parameters (P/O ratio, unknown growth related ATP ð¼ K
X
Þ and the

unknown growth unrelated ATP ðmATPÞ. Van Gulik and Heijnen [7] and Van Gulik
et al. [8] have shown how in vivo values for these ATP-parameters can be obtained

using extensive experiments. For many organisms this ATP-information is not

available. This means that the number of equations in (2) is always at least two

lower than the number of rates (underdetermined). This means that solving all rates

needs the specification of at least two experimental rates. Without this experimental

information one cannot predict stoichiometry. Another approach which has

received considerable attention in the past decade, and which aims to predict both

rates and stoichiometry of networks, is constraint based modelling [43]. This

approach uses an optimality criterion (e.g. maximal biomass yield) to obtain a

solution of the underdetermined (2). However, close inspection reveals that this

method still requires the above-mentioned experimentally based information:

l Specification of the uncertain ATP stoichiometric coefficients (P/O, growth

related and unrelated maintenance values). This information is needed to make

stoichiometry predictions!!
l Kinetic information, such as an experimentally determined substrate uptake rate

or a maximum O2-uptake rate. This is needed to calculate fluxes and, e.g. mmax.

Together with this experimental information the optimality criterion forces ATP

requiring processes such as futile cycles to zero and therewith one obtains a unique

flux solution and therewith stoichiometry. When the above-mentioned (ATP and

kinetic) experimental information is not available, constraint based modelling does

not lead to a unique flux solution.

Thermodynamics offers an alternative, more widely applicable, approach to

solve the network stoichiometry and fluxes for arbitrary organisms.

5.1 Thermodynamic Approach to Stoichiometry

Thermodynamics allows one, for a given specific growth rate m (under substrate

limited growth in absence of a non-catabolic product, hence only growth), to

calculate all uptake/secretion rates. Herewith, all yields are also available (yield

is ratio of rates). Heijnen and Van Dijken [9] and Heijnen [10] apply this approach
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to any heterotrophic growth system under substrate limited condition. The only

information needed is the nature of carbon source, electron donor, electron accep-

tor, N-source and temperature.

In this method, the ATP-balance in the network equation (2) is replaced by

a Gibbs energy balance on all uptake and secretion rates qi. We can define qi as a
biomass specific rate in mol of i/h per Cmol biomass. The quantity 1 Cmol of

biomass (which has the average composition C1H1:8O0:5N0:2) is the amount (24.6 g

organic dry matter) of biomass which contains 12 g of carbon (¼ 1 mol C-atom).

Compounds taken up have negative qi values, secreted compounds have positive

qi-values. The Gibbs energy balance follows then as

X
qiDG01

fi
þ qG ¼ 0: (3a)

Here
P

qiDG01
fi

is a negative quantity (second law of thermodynamics) and is the

total biomass specific rate of Gibbs energy of conversion. qG is the Gibbs energy

produced, which follows from (3a). The second law requires qG > 0.

DG01
fi
is the Gibbs energy of formation of compound i at standard condition (1 M,

298 K and at pH ¼ 7.0). In principle, one needs to take actual concentrations into

account, but this leads only in special cases to significant changes in qG [10].

The key to the use of (3a) is to obtain a relation for qG. Because cells require

Gibbs energy for growth and maintenance, we can write a Herbert–Pirt type of

relation for qG, which expresses that (in absence of non-catabolic product) the cell

needs Gibbs energy for growth and maintenance:

qG ¼ 1

Ymax
GX

mþ mG: (3b)

For mG and 1
Ymax
GX

; correlations have been established [9, 11].

5.1.1 Gibbs Energy for Maintenance

All living systems need to generate Gibbs energy for their maintenance (which

represents all processes where energy is needed for example to repair degradation

and export compounds that entered due to membrane leakage, etc.). Because living

cells have similar membranes and composition, it can be assumed that different

cells require a similar amount of energy expenditure for maintenance. It has indeed

been found that Gibbs energy needed for maintenance is very similar for a large

range of microorganisms and only depends on absolute temperature (T) [11].

The following correlation has been found for mG in
kJGibbs energy=h

CmolX

� �
:

mG ¼ 4:5 exp
69;000

R

1

298
� 1

T

� �� �
: (4)
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This correlation shows that at 25�C (298 K) 1 Cmol of cells (� 25 g dry matter)

spends, and therefore needs to generate, 4.5 kJ of Gibbs energy per hour to cover the

energy for maintenance. Also there is a steep temperature effect: for each 8�C
temperature increase mG doubles!!

This correlation applies to aerobic/anaerobic systems and arbitrary electron

donors/acceptors. The Gibbs energy is generated from the catabolic reaction, so

the maintenance reaction equals the catabolic reaction. For specific cases, one can

always set up the catabolic reaction for 1 mol donor and obtain the catabolic Gibbs

energy of reaction for 1 mol donor, called DG01
cat;D; which is negative and is in kJ of

Gibbs energy per 1 mol donor consumed in the catabolic reaction. It is then clear

that we can write for the substrate (or donor) consumption ms
inmol substrate=h

CmolX

� �
that

must be catabolised for maintenance:

ms ¼ mG

DG01
cat;D

: (5)

Table 2 shows examples of catabolic reactions consuming 1 mol donor, and

the Gibbs energy of catabolism per mol consumed donor DG01
cat;D

� �
. It is obvious

that DG01
cat;D can be two orders of magnitude different, dependent on the specific

catabolism.

For example, consider Saccharomyces cerevisiae at 30�C. It follows from (4) that

mG ¼ 7:1 kJ=h

CmolX

Under aerobic conditions using glucose as substrate, catabolism DG01
cat;D ¼

�2,843.1 kJ per mol glucose. This gives

ms ¼ 7:1

ð�2;843:1Þ ¼ �0:0025
mol glucose=h

CmolX

Also mO2
¼ 6� ms ¼ �0:015 molO2=h

CmolX
. Under anaerobic conditions the cata-

bolic ethanol forming reaction shows DG01
cat;D ¼ �225:4 kJ per mol glucose. This

gives ms ¼ 7:1
�225:4 ¼ �0:0315 mol glucose=h

CmolX
and methanol ¼ 0:063 mol ethanol=h

CmolX
:

Table 2 Catabolic reactions and their Gibbs energy of reaction, DG01
cat;D

Catabolic reactions and their Gibbs energy DG01
cat;D(kJ/mol donor)

Donor Catabolic reaction DG01
cat;D

Glucose C6H12O6 þ 6O2 ! 6HCO3
� þ 6Hþ �2,843.1

Ethanol C2H6Oþ 3O2 ! 2HCO3
� þ 2Hþ þ 1H2O �1,308.9

Glucose C6H12O6 þ 2H2O ! 2C2H6Oþ 2HCO3
� þ 2Hþ �225.4

Methanol CH4Oþ 1:20NO3
� þ 0:20Hþ ! 0:60N2 þ HCO3

� þ 1:60H2O �649.4

Iron (2þ) Fe2þ þ 1
4
O2 ! Fe3þ þ 1

2
H2O ðpH ¼ 1:85Þ �33.9

Acetate C2H3O2
� þ H2O ! HCO3

� þ CH4 �31.0

Impact of Thermodynamic Principles in Systems Biology



So, the same organism has widely different ms values due to different catabo-

lism, but still has the same Gibbs energy need for maintenance!!

5.1.2 Gibbs Energy for Growth

1
Ymax
GX

is the amount of Gibbs energy needed to synthesise 1 CmolX (in kJ/CmolX).

This amount has been found to depend only on two factors [9, 10]: first, the nature

of the carbon source for heterotrophic growth and, second, the nature of electron

donor for autotrophic growth.
Regarding the first factor, the nature of the carbon source for heterotrophic

growth, more Gibbs energy is needed when the carbon source has a smaller number

(C) of C-atoms and when its degree of reduction per C-atom (g) is different from the

degree of reduction of biomass (� 4.2). The explanation is straightforward that

synthesis of biomass monomer molecules (which contain order 6 carbon atoms with

g � 4) requires more C–C-coupling and redox reactions for C-sources with a

low number of C-atoms and which need reduction or oxidation because g of the

C-source differs from 4.2. These extra reactions lead to a higher Gibbs energy need.

For heterotrophic growth this intuition is quantified in (6a), which is a correlation:

1

Ymax
GX

¼ 200þ 18ð6� CÞ1:8 þ exp 3:8� gj j0:32 � 3:6þ 0:4Cð Þ
h i

: (6a)

This correlation shows that to synthesise 1 Cmol biomass one needs between

� 236 and 1,087 kJ Gibbs energy (dependent on C-source, e.g. 236 for glucose

(g ¼ 4, C ¼ 6) and 1,087 for CH4 (g ¼ 8, C ¼ 1).

Regarding the second factor, the nature of electron donor for autotrophic
growth, in autotrophic growth CO2 is the C-source which must be reduced to

biomass using electrons from the electron donor. The Gibbs energy needed follows

from (6b), which is also a correlation [9]:

1

Ymax
GX

¼ 1; 000ð�RETÞ¼ 3; 500ðþRETÞ: (6b)

The nature of the electron donor determines the absence (�RET) or need

(þRET) of Reverse Electron Transport. For several electron donors (e.g.

NH4þ ;NO2
�; Fe2þ) the reduction of CO2 to biomass is not feasible thermodynami-

cally. Therefore cells spend extra Gibbs energy to make the redox potential of

electrons obtained from the available donor more negative (e.g. in the production of

NADPH from the donor electrons, in a process called RET, NADPH is then used

to reduce CO2 to biomass). This extra Gibbs energy is very considerable (compare

in (6b) 3,500 and 1,000). For H2 as electron donor, (�RET), this problem does

not exist (sufficient negative redox potential) and the Gibbs energy need is 1,000 kJ/

CmolX (6b).

J.J. Heijnen



Summarising, the Gibbs energy needed to make 1 Cmol biomass ranges, depen-

dent on C-source and electron donor, is between 200 and 3,500 kJ and does not

depend on the type of electron acceptor. When the carbon source, electron donor

and temperature are known, the correlations (4, 6a/6b) give the coefficients 1
Ymax
GX

and

mG in the Gibbs energy Herbert Pirt relation (3b), which completes the Gibbs

energy balance (3a). This linear relation can be combined with all metabolite

mass balances specified in (2), using the stoichiometric matrix S where the ATP-

balance is also absent (due to unknown P/O, Kx, etc.). A constraint of minimal

Gibbs energy dissipation will put futile cycles to zero and parallel pathways are also

resolved. This set of linear balances gives, for any selected m, all rates in the

network (reaction/uptake/secretion)!! With these known rates all yields are

known such as the biomass yield YSX ¼ m
qs

or yield of catabolic products.

This thermodynamic approach has been shown to predict biomass yield with

10–15% error for a wide variety (aerobic/anaerobic/hetero/autotrophic) of micro-

bial systems where YSX spans a range of near two orders of magnitude [9].

5.2 Thermodynamic Approach for Maximal Growth Rate, mmax

Microorganisms show a very large range (0.001–1 h�1) in mmax-values and it is

relevant to understand why this is so!! A simple approach was proposed [10] which

reproduces most of this range. The concept is that cells during evolution ultimately

become limited in their energy production capacity. Most organisms generate

energy by electron transport phosphorylation. This occurs by electron transport

proteins embedded in membranes. Because membranes are space limited for

protein embedding it is logical to propose that cells have evolved to a maximal

electron transport capacity qmax
el in

mol electrons=h
CmolX

� �
which depends mainly on temper-

ature. Also it is known that smaller organisms have higher maximal growth rates,

e.g. E. coli mmax ¼ 2 h�1, Saccharomyces cerevisiae mmax ¼ 0.4 h�1 and tissue cell

cultures mmax ¼ 0.04 h�1. This is in line with the smaller surface/volume ratio

(� 6/d, with cell diameter d) which leads to a membrane surface area, hence

maximal electron capacity and mmax which is inverse to the cell diameter and

which is indeed largely observed (e.g. S. cerevisiae has a 5� larger cell diameter

compared to E. coli). This concept has in addition been inspired by the observation

that in E. coli, for different substrates which lead to different mmax, the qmax
O2

-value is

nearly constant [12].

The following correlation was proposed:

qmax
el ¼ 3 exp

69;000

R

1

298
� 1

T

� �� �
: (7a)

This electron capacity determines the maximal production rate of Gibbs energy

by catabolism (qmax
G ):
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qmax
G ¼ qmax

el

�DG01
cat;D

� �
gD

: (7b)

Here, gD is the number of electrons released in catabolism of 1 mol donor and

DG01
cat;D is the catabolic Gibbs energy per mol donor. This maximal Gibbs energy

sets mmaxaccording to (3b).

Combination of (3b) and (7b), (2) and using the correlations (4), (6a, b) and (7a)

for mG; Y
max
GX ; qmax

el and the available value for DG01
cat;D and gD immediately allows

one to calculate mmax-values for any growth system. These values agree reasonably

with known values. Table 3 shows that this simple approach can explain a 100-fold

difference in mmax.

Some final remarks:

l This thermodynamic approach uses only three correlations (4, 6a/6b, 7), is

simple and general and gives maximal qi-rates and stoichiometry.
l Effect of temperature is included (in maintenance and mmax).
l The three correlations are based on a wide range of experimental microbial

growth systems and reflect that similar biochemical pathways are used (unity of

biochemistry). When the predicted mmax or/and stoichiometry are very different

from experimental values, this indicates unusual anabolic and/or catabolic routes

which might be novel. So this method can act as a filter for unusual behavior of

biological systems.

6 Prediction of Gene Regulation of Enzymes Using Energy

Optimality

Gene regulation seems at first glance highly complicated. For example, enzyme

induction upon exposure to a new catabolic substrate involves many mechanisms

between signal transduction, gene expression and production of enzyme for the new

catabolic pathway. Model based prediction of enzyme induction therefore seems

hopeless. However one could expect that evolution has fine tuned the available

Table 3 Estimated mmax values for different microbial catabolic classes at 25�C based on limiting

Gibbs energy production

Catabolic classes DG01
cat; D

(kJ/mol donor)

gD (mol electron/

mol donor)

mmax (h�1)

Aerobic/glucose �2,843.1 24 1.5

Aerobic/acetate �844.2 8 0.70

Anaerobic/(acetate!CH4) �31.0 8 0.015

Aerobic/Fe2+ oxidation �38.6 1 0.030

Aerobic/nitrification �274.8 6 0.040

J.J. Heijnen



regulation mechanisms such that growth yield is optimal. This optimality principle

was tested using mixed substrates with Saccharomyces cerevisiae, which was

chemostat (aerobic, substrate limited) cultivated at a dilution rate D ¼ 0.1 h�1.

Different feed mixtures of glucose and ethanol as substrates were applied between

100% glucose and 100% ethanol) [7, 13, 14].

Growth on glucose differs from that on ethanol. On 100% ethanol the cell has:

l Fully induced:

– Glyoxylic acid pathway enzymes (isocitrate lyase (ICL) and malate synthase

(MS))

– Gluconeogenic enzymes PEP-carboxykinase (PEPCK) and F16 Bispho-

sphate (F16BP-ase)

l Fully repressed (or inactivated):

– Pyruvate kinase/pyruvate carboxylase (PK/PYC)

– F16 bis P-kinase (PFK)

It is obvious that, under substrate limited condition for mixed substrates, the

induction/repression pattern of these enzymes is determined by the residual

ethanol and glucose concentration, which would be the basis of a complicated

gene regulation mechanism and model to predict the occurrence and concen-

tration of these enzymes as function of the residual ethanol and glucose

concentration.

A different approach, based on energy optimality of gene expression, was

followed. Using a metabolic stoichiometric model endowed with experimentally

obtained stoichiometric values for the ATP-balance (P/O, Kx, mATP), linear pro-

gramming was applied with maximal biomass production (or the equivalent mini-

mal energy consumption) as optimality criterion. It was possible to calculate, for

each glucose/ethanol supply ratio (which is virtually equal to the ratio of their

consumption rates due to the low residual ethanol and glucose concentration) the

optimal rates of all reactions in central metabolism. It was observed that, for the

above inducible enzymes, clear predictions were made on their need as function of

increasing ethanol fraction. This approach predicted:

l The ethanol/glucose feed ratio where a particular enzyme started to be induced
l The enzyme amount then increased linear with increasing ethanol fraction

These predictions were qualitatively, but more surprising also quantitatively,

validated using the wild type yeast [13, 14]. Later additional validation was

performed with null-mutants in the above enzymes, leading to a predicted maximal

ethanol uptake rate of each mutant.

This prediction was again quantitatively confirmed [15]. This example clearly

indicates that gene regulation mechanisms might have evolved to provide maximal

biomass yield (giving a competitive edge). This maximal biomass yield is the same

as Gibbs energy optimality because enzyme induction is such that futile cycles are

avoided (e.g. simultaneous activity of FBP-ase/FPK or pyruvate carboxylase/PEP
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carboxy kinase). To the authors knowledge this is one of the earliest and most

successful examples of experimentally demonstrated thermodynamic optimality of

living cells.

7 Thermodynamics Based Model Reduction in System Biology

Mathematical models of biological systems are useful to design processes and/or to

redesign organisms using the rec-DNA tool box. Model reduction is an important

issue, given the complexity of biological systems. Model reduction aspects will be

discussed for two categories of mathematical models.

7.1 Black Box Models for Design of Biotechnological
Processes: From Complexity to Simplicity Due to
Pseudo-Steady State Coupling

We have observed that the thermodynamically based osmotic limit leads to very

low metabolite concentrations in intracellular metabolism. The immediate conse-

quence is that at process time scales larger than about 10 min (as occurs in bath, fed

batch processes) the pseudo-steady state condition for all intracellular metabolites

holds. The consequence of this condition is that all uptake and secretion rates are

directly coupled. This pseudo-steady state coupling can be evaluated by linear

rearranging the metabolite mass balances (2). Usually, in the absence of by-

products, there are only a few (two to three) degrees of freedom, meaning that all

uptake/secretion rates can be written as linear combination of only two to three rates

(usually growth rate, product formation rate, maintenance). A prime example of

such a linear relation is the Herbert–Pirt relation for substrate distribution:

qs ¼ 1

Ymax
SX

m þ 1

Ymax
SP

qp þ ms: (8a)

Furthermore, the substrate uptake relation is usually a hyperbolic relation in the

limiting substrate concentration:

qs ¼ qmax
s

Cs

Ks þ Cs

� �
: (8b)

A final relation, which holds generally under single substrate limited condition is
that there is a unique relation between qp and m:

qp ¼ fpðmÞ: (8c)
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The three equations (8a, b, c) have only one degree of freedom (e.g. Cs or m). All
the other uptake/secretion rates ðO2;CO2;NH4þ ;water;H

þ; heat; etc:Þ can be

obtained from qs; m and qp and the conservation relations (elements and charge).

This black box approach for kinetic modeling of biological processes is only

possible due to the general biological system property of low intracellular metabo-

lite concentrations, which has its origin in a thermodynamic property (osmotic

limit).

Examples of this black box approach can be widely found. A very nice example

is the model for penicillin production [8, 16] and the model developed for

biological P-removal using mixed cultures in a cyclic process [17]. These black

box models show that highly complex biological systems, comprising thousands of

reactions, can be effectively modeled with a reduced model containing only about

6–12 parameters. These models are the basis of process design. This simple

behavior of complex biological systems (from complexity to simplicity!!) is the

direct result of the metabolite pseudo-steady state property which results from an

osmotic limit!

7.2 Metabolic Reaction Network Models to Redesign
Organisms: Reducing Complexity

Genetic intervention in metabolic reaction networks is possible in many ways by,

e.g. changing enzyme levels, changing enzyme kinetics (e.g. abolish feed back

inhibition), introducing different reactions, etc. The problem is that, following such

interventions, the prediction of changes in secretion or uptake rates is very difficult

due to the complex nature of the network structure and of the highly non-linear

kinetics of the enzymes and gene regulation mechanisms. It is generally recom-

mended that a mathematical model of a metabolic (reaction) network can help to

select rationally genetic engineering targets in the redesign of organisms.

Building such a model is essentially straightforward and based on (1). Usually

matrix S is known with high confidence. Uncertainties in S (e.g. cycles, parallel

reactions, etc.) can be addressed using 13C approaches [18].

A much bigger problem is to obtain kinetic relations for each enzyme, meaning

the function v (e, x, p) in (1) for each enzyme.

Traditionally, in vitro obtained kinetic functions and parameters have been used.

Here two problems arise. First, it was found that in vitro kinetics do not reflect

in vivo kinetics [19]. Second, for many enzymes in vitro kinetics are not available.

The only solution therefore is to perform experiments with whole cells to obtain

in vivo kinetic behavior of all enzymes simultaneously. Here rapid pulse experi-

ments as pioneered by the groups of Reuss [20, 21] and Heijnen [22] offer

advantages, but the challenge is the parameter identifiability problem which calls

for model reduction as shown by Nikerel et al. [23–25].

Model reduction in biological systems has a thermodynamic basis as will be

outlined below.
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7.2.1 Pseudo-Equilibrium Reactions

A first approach for model reduction is to replace a kinetic function by an equilib-

rium relation. This is possible when the enzyme catalysed reaction is so rapid

that the reaction remains very close to equilibrium, even when the reaction rates

increase.

A strong indication of this situation is that the so-called mass action ratio of a

reaction remains nearly constant (independent from flux) and close to the reported

equilibrium constant. Many examples have been found which show this behaviour

in Penicillium chrysogenum [3, 4] and in Saccharomyces cerevisiae [26] such as for
phospho glucose isomerase, enolase, phosphoglycerate mutase, phosphoglucomu-

tase, fumarase.

Recently a near equilibrium reaction ðF6Pþ NADHþ Hþ ! mannitol� 1�
Pþ NADþÞwas used as a heterologous sensor reaction to obtain the cytosolic

NAD/NADH ratio in Saccharomyces cerevisiae [2], even under dynamic condi-

tions. It was found that the cytosolic NAD/NADH ratio was about 100. In contrast,

a ratio of 4 was obtained by analysing the total amounts of NADH and NAD in

whole yeast cells. The large difference is due to the fact that nearly all NADH is

present in the mitochondria. Even more important is that, using the cell average

NAD/NADH ratio, the DGR of glycolysis between F16BP and (2þ3 PG) was > 0,

which is impossible. Use of the cytosolic value of 100 leads to DGRwhich is slightly

negative, as expected. It can be expected that metabolism shows much more near

equilibrium reactions. However here we need much more accurate data on in vivo

equilibrium constants on a genome wide scale!!

7.2.2 Pseudo-Steady State Lumping

We have seen that many metabolites have low concentration levels (due to an

osmotic upper limit) which leads to very low turnover times (<1 s) of metabolite

pools. This allows, even in pulse experiment at a 300-s time scale, lumping of the

synthesis and consumption reactions of a fast metabolite pool into 1 “lumped

reaction”. This model reduction based on pseudo-steady state lumping leads to

much less parameters and much less parameter identifiability problems (see [23–25]).

7.2.3 Thermodynamic Inspired Kinetics

Replacing kinetics of individual reactions by equilibrium constants (pseudo-equi-

librium) and by lumped kinetics (pseudo-steady state) significantly reduces the

number of required kinetic functions and the number of parameters which need to

be indentified, with no loss of model performance!! (see [24, 25]).

Nevertheless, there remain a significant number of far from equilibrium reac-

tions into and from metabolite pools with slower turnover times for which we need
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to specify a kinetic function. Unfortunately, mechanism based enzyme kinetics

provide highly non-linear rate functions which contain many parameters. Examples

are bi–bi kinetics, Hill functions, etc.

Although the number of parameters has been significantly reduced (near-

equilibrium, pseudo-steady state based reduction) the identification of the remain-

ing parameters still poses enormous problems, due to the non-linear parameter

characteristics. Non-linear parameter estimation algorithms need a decent initial set

of parameter values, which is not available, and in addition they do not guarantee an

optimal result; they often end in a local minimum of the error criterion. Finally,

these identification problems scale very unfavourably with increasing network size

(e.g. genome scale metabolic models contain in the order of 1,000 reactions!!).

A possible solution is the use of proper approximative kinetic functions [27].

Here lin-log kinetics has been developed recently [28], which has its roots in

the concept that the rate of a process is related to the thermodynamic driving

force!! [29].

8 Thermodynamics Inspired Kinetics: Lin-Log Kinetics

8.1 Introduction

Lin-log kinetics is an approximative kinetic format which is a generalisation of the

driving force concept and has been compared recently to other approaches such as

linear, powerlaw, loglin (for review see [27]) and it was concluded that the lin-log

format has significant advantages. Therefore we will focus here on use of lin-log

kinetics.

Consider (Fig. 2) an enzyme e1 which is kinetically affected by its substrate

x1 and product x2, and is also allosterically affected by a metabolite x8. Moreover,

we consider a reference steady state (superscript 0).

1+ ++

e1

x8

x1 x2

e1
=

v1

Allosteric
effector

. . .
J

0
1

x1

x
0
1

x2

x
0
2

. x8

x
0
8e01

ε 0
11 ε 0

12 ε 0
18ln ln ln

Fig. 2 Lin-log kinetics
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We can then formulate lin-log kinetics:

v1
Jo1

¼ e1
eo1

1þ eo11 ln
x1
xi
þ eo12 ln

x2
xo2

þ eo18 ln
x8
xo8

� �
: (9)

We can compare approximative lin-log kinetics with traditional mechanistic

hyperbolic kinetics and we see (Fig. 3) a very good approximation with respect to

large changes (factor 5 up and down) in metabolite concentration.

Other approximative formats, such as power law as S- or GMA-systems and

loglin, show similar quality of approximation for such changes in metabolite

levels [27].

However metabolic reaction systems not only show large changes in metabolite
concentrations but especially one faces (in the light of metabolic engineering

ambitions) large changes in enzyme levels. For example, one can easily achieve

enzyme concentration changes of factor 10 up or down due to genetic interventions

in gene regulation (promoter libraries) or in gene dosis. Here, lin-log kinetics

shows distinct advantages compared to the other approximative kinetic formats,

as explained before [27]. A final favourable property of lin-log kinetics is that its

parameters (elasticities) are linear in (1) which is significant in the light of parame-

ter identification analysis and parameter estimation algorithms [23–25].

Lin-log kinetics has, after its conception, been successfully applied to kinetic

modelling of metabolic reaction networks using in silico studies but has also been

applied to experimental systems as will be discussed below.

General important aspects of lin-log kinetics are:

l The format is non-linear in metabolite concentrations.
l The format has a minimum number of kinetic parameters which helps minimise

the identification problem.
l The parameters (elasticities) are linear in (1) which has significant advantages

with respect to the parameter identifiability and parameter estimation [23–25].
l The elasticity parameters are bounded, e.g. Michaels–Menten kinetics ej j < 1,

for Hill kinetics ej j < n (with n subunits in the protein and signs (þ or �) are

known. This constrains the e-estimation problem.

1.5

0.5

2

1

0
0 1 2 3

x/x0

v/
J0

4 5

Vlin-log
VMM

Fig. 3 Comparison between

lin-log approximative and

hyperbolic mechanistic

kinetics
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l Lin-log kinetics cannot be applied for datasets where concentrations become

zero [28], [30]. An analogous problem also occurs in powerlaw format where an

inhibitor concentration cannot become zero.

8.2 In Silico Studies with Lin-Log Kinetics

Although Fig. 3 suggests good performance for lin-log kinetics for an individual

reaction, a basic question remains how good does the lin-log approximation work in

networks. This has been studied in several simulation studies. In a first study, where
the lin-log concept was introduced [28], a small branched reaction network, includ-

ing cofactors, was used as a test case. The strongly non-linear kinetic model

was approximated with a lin-log model using the theoretical elasticity parameters.

A rapid perturbation experiment, where metabolite concentrations did change

several fold, was successfully reproduced. Moreover, use of lin-log kinetics leads

to the so-called “design equation”, which allows one to specify new fluxes/metabo-

lite levels and to calculate analytically the required large changes in enzyme levels.

In a follow up study [31] a non-linear model of glycolysis in E. coli was success-
fully approximated using lin-log kinetics and a connected product pathway was

successfully redesigned in silico with respect to the required large changes in

enzyme activities. Even more interesting was a recent study of Smallbone et al.

[32] in which they showed that a lin-log kinetic model of glycolysis in Saccharo-
myces cerevisiae, in which elasticities were assumed equal to their reaction stoi-

chiometric coefficients, gave surprising agreement with the mechanistic Teusink

model!! More recently [30] it was shown that lin-log kinetics could also success-

fully simulate a genetic network with strongly non-linear kinetics. These simulation

results show that lin-log kinetics provide a convenient and satisfying approximation

of mechanistic kinetic functions for small and large models (metabolic, genetic),

provided that metabolite concentrations do not become zero.

Having ascertained that lin-log kinetics provides a decent approximation to non-

linear kinetics of networks, the next important problem is to identify the lin-log

parameters (elasticities) from experimental data. The obvious experimental proto-

col is to perform rapid pulse experiments. The identification of lin-log parameters

(elasticities) from such experiments was studied first in silico. Kresnowati et al. [33]

showed, for a simple linear pathway, that elasticities can easily be obtained by using

the integrated equation (1). The important aspect is that the resulting equations are

linear in elasticities, so that linear regression can be used to obtain the elasticities.

Subsequently a more complex glycolysis model was used for an in silico study of

parameter identification aspects to obtain elasticities from dynamic pulse experi-

ments [23–25]. It was found that, in such rapid pulse experiments, fundamental

identification problems occur due to occurrence of pseudo-steady state metabolite

pools (with turnover time <1 s) in the rapid pulse experiment. The identification

problem could only be resolved by providing additional information (e.g. combined
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steady state and dynamic perturbations. Also, a novel non-linear algorithm for

elasticity parameter estimation was introduced where, due to properties of the lin-

log format, one can obtain a reliable initial estimate of their values using linear

regression of the integrated equation (1).

Finally, a completely different approach to the parameter identifiability problem

in pulse experiments was shown to be possible due to the unique properties of lin-

log kinetics [34]. It was shown that use of lin-log kinetics allows a priori model
reduction by lumping pseudo-steady state pool coupled reactions. The reduced

model reproduced the dynamic pulse experiment (S. cer, anaerobic glycolysis)

accurately and allowed calculation of, e.g. flux control coefficients [34].

An interesting application of a lin-log kinetic model is to identify the function of

so-called silent genes [35, 36] which shows how lin-log kinetic models could be

used to resolve gene-annotation problems.

8.3 Application of Lin-Log Kinetics to Experimental Data

Lin-log kinetics allows a general steady state analytical solution of networks which

gives fluxes as a non-linear function of enzyme activities with flux control co-

efficients CJ as parameters [28]. This equation was successfully used to obtain

CJ-values from experimental data:

l A linear product pathway in Penicillin synthesis using fed batch data on flux

and enzymes in the penicillin pathway [37]
l The lower glycolysis in a reconstituted linear three enzyme pathway [38]
l A branch point for lysine or glutamate synthesis [39]

Estimation of elasticities from experimental data using lin-log format requires

experimental information of fluxes, enzyme levels and metabolite levels. Using an

extensive steady state dataset for lower glycolysis [38] showed that elasticity values

are easily obtained using linear regression. Also lin-log kinetics was used to set-up a

kinetic model for leucine/valine synthesis [40], glycolysis in Lactococcus lactis
[30] and a batch fermentation [41]. In the last two studies it was shown that lin-log

kinetics should not be applied to datasets where metabolite concentrations become

zero (which is obvious). Even more impressive was a recent study [42] in which a

lin-log model was parameterised on a rapid pulse experiment. The model represents

E. coli central metabolism and anabolism to all cell compounds, comprising 126

reactions and 130 metabolites (7 conserved moieties). The presence of allosteric

mechanisms was taken from the MetaCyc database. In total, 921 elasticities were

estimated using evolutionary algorithms and high performance computing. This

work is a first, genome like scale, whole cell dynamic model and shows the power

of the canonical lin-log format approach.

Parameter identification from experiments, however, remains an important

issue. Here recently Nikerel et al. [34] showed the successful application of their
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a priori model reduction approach (made possible due to lin-log format) on anaero-

bic glucose pulse experiments in Saccharomyces cerevisiae.
This short overview shows that the recently introduced lin-log kinetics, inspired

by thermodynamic principles, shows considerable promise in achieving genome

scale kinetic modelling of metabolic networks.

9 Conclusion

Thermodynamic principles do shape the properties of biological systems, with

considerable and highly interesting consequences for their mathematical models

needed in systems biology. Especially noteworthy are the far reaching conse-

quences of the osmotic limit, such as pseudo-steady state, black box kinetics, just

in time, control mechanisms, model reduction etc. Also of future importance is the

principle of energy optimality for modelling of genetic mechanisms and of thermo-

dynamic driving force (lin-log kinetics) for kinetic modelling. Lin-log kinetics

seems to hold considerable promise to obtain realistic genome scale kinetic models

(especially due to the lin-log based possibilities towards model reduction, a priori

identifiability analysis and an initial estimate of the elasticity parameters).

Abbreviations and Symbols

X Intracellular metabolite level m mol/g DM

S Stoichiometry matrix

e Enzyme amount per cell mass

p Parameter

m Specific growth rate h�1

qi Specific uptake/secretion rate mol (or kJ/h)/CmolX

Posm Osmotic pressure N/m2

v Rate of intracellular reaction mol i/h/CmolX

DG0
fi

Standard Gibbs energy of formation kJ/mol

Ymax
GX Maximal yield of biomass on Gibbs energy CmolX/kJ

Ymax
SX Maximal yield of biomass on substrate CmolX/molS

Ymax
SP Maximal yield of product on substrate molP/molS

mG Maintenance Gibbs energy requirement kJ/h/CmolX

C Number of C-atoms in carbon source

g Degree of reduction of C-source (per C-atom)

R Gas constant 8.314 J/molK

T Absolute temperature K

DG01
cat;D

Gibbs energy of the catabolic reaction per mol donor kJ/mold

Ks Affinity for substrate molS/m3

Cs Substrate concentration molS/m3

t.o.t. Turn over time s

J Flux mol/h/C-molX

eij Elasticity coefficient
xj
vi

@vi
@xj

� �
of metabolite j on enzyme i

mi Maintenance coefficient for i (O2, substrate, ethanol, etc.) mol of i=h
CmolX
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Subscripts

j Metabolite j
i Reaction i
p Product

S Substrate

x Biomass

G Gibbs energy

o O2

el Electrons

D Donor

Cat Catabolic

Superscripts

1 Biochemical standard (pH ¼ 7)
0 Standard condition (1 mol/L, 1 bar, 298 K) or reference condition, also reference steady state
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