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Summary

Trajectory tracking with four-Mecanum-wheeled-vehicles (FMWVs) is a critical aspect of autonomous
navigation, applied in industry, healthcare, and education. Increasing trajectory tracking accuracy in-
creases efficiency, productivity, and safety. This research applies model-based control to achieve
trajectory tracking of an FMWV to answer the research question: What are the benefits of using
a dynamic-model-based trajectory tracking controller, for a four-Mecanum-wheeled-vehicle, over a
kinematic-based one?

To answer this question, an FMWV is designed and built. This consists of designing and implementing
the vehicle’s hardware and software, the localization, the kinematic-model-based trajectory tracking
control, and the dynamic-model-based trajectory tracking control.

The vehicle’s hardware is designed according to a set of requirements. The PC and microcontroller,
however, were adopted from the Mirte project, as the software from this project is also used as a basis
for this research to save time in software development. The consequence of this design decision was
that the software had to be designed such that the computational power matched that of the PC. This
is achieved in all software parts, apart from the localization.

Then, the dynamical plant model is formulated. The plant model is constructed of a simplified tire
model, a DC motor model, a translational dynamic model, and a yaw moment model. The result is a
nonlinear dynamical model that incorporates friction estimation for an FMWV. To design and implement
two trajectory-tracking Linear Quadratic Regulators (LQRs), two models are used. First, a kinematic
model of an FMWV from literature is adapted by incorporating a DC motor model to create the baseline
controller. The velocity state is expanded by including the pose in the world frame to formulate the new
state space. In this way, a linear state space is formulated, suitable for an LQR. Second, the dynamical
plant model is linearized offline algebraically for use in an LQR. As the pose of the vehicle influences
the linearization, at each controller time step, the linearization and consequent LQR gain are updated
using the current reference in the trajectory.

The simulation validation shows the benefits of using a dynamic-model-based controller in the low-
friction scenario. In this scenario, the vehicle overshoots its target by 67mm when using the kinematic
model-based controller. When using the dynamic model-based controller, the overshoot does not oc-
cur. This is explained by the lack of slip modeling in the kinematic model, which assumes a no-slip
infinite friction scenario. The dynamic model incorporates a simplified tire model to estimate the avail-
able friction. Because of this, the vehicle tracks the trajectory without overshooting in the low-friction
scenario. In the high-friction scenario, the behavior of the controllers is comparable, which is to be
expected as the tire operates in the linear region of the friction coefficient.

In experimental validation, it is again concluded that in the high-friction scenario, the performance of
both controllers is comparable. The results from the experiments in the low-friction scenario differed
from the expectation. The trajectory of neither controller overshot the reference. Nonetheless, the ben-
efits of using the dynamic model-based controller were shown. The dynamic model-based controller
outperformed the kinematic model-based control in the low-friction scenario, in consistency, and in a
reduction in translational longitudinal and lateral RMSE of 32.2% and 41.6% respectively.

From this research, it can be concluded that the main benefits of using a dynamic-model-based trajec-
tory tracking controller, for a four-Mecanum-wheeled-vehicle, over a kinematic-based one are apparent
in low-friction conditions. In low-friction conditions, the simulation and experimental validation show a
reduction in translational RMSE. The simulation shows a reduction in maximum deviation from the
trajectory, the experiment, however, shows a similar maximum deviation from the trajectory. This dif-
ference is attributed to localization and hardware challenges.
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1
Introduction

Vehicles play a big role in the transportation of goods and personnel efficiently across various terrains
and applications. To meet the ever-growing demand for advanced transportation solutions, continuous
research and development (R&D) is essential. To save cost and time, scaled vehicles, small versions
of their full-sized counterparts, are employed to test new technologies and design principles before
applying them to full-sized vehicles. These scaled models provide valuable insights into vehicle dy-
namics, control strategies, automation, and other critical areas, thereby streamlining the transition of
innovations from concept to full-scale implementation.

Traditional vehicles rely on steering mechanisms or differential drive to change their heading angle.
Equipped with conventional wheels that rotate around their axles, these vehicles can only move along
their longitudinal axis. When a steering mechanism is applied, the wheels can also rotate around the
contact point with the ground to reach states outside this axis. They must rotate around a vertical axis
to change their heading angle, to be able to drive in a different direction. This results in a system with
only two Degrees Of Freedom (DOF) in a non-slip scenario.

In contrast, vehicles fitted with omnidirectional wheels exhibit significantly enhanced maneuverability.
Such a vehicle has the unique capability of omnidirectional movement. In 2D translational movement,
the omnidirectional vehicle can not only move along the longitudinal axis but also the lateral axis and
any combination of these two. In rotational movement, the vehicle can rotate around its axis, compara-
ble to the differential drive vehicle. The omnidirectional vehicle therefore has three DOF in a non-slip
scenario [1]. In practice, this means that the omnidirectional vehicle can reach any state in the planar
environment without requiring extra orientation maneuvers. This feature is particularly advantageous
for industrial applications involving precise trajectory tracking.

This research goes into the behavior of a scaled omnidirectional vehicle. It involves developing, con-
structing, and programming a scaled omnidirectional robot. This robot is built to compare two trajectory-
tracking controllers designed specifically for an omnidirectional vehicle. The baseline trajectory con-
troller is implemented following the design from previous research. An advanced controller is proposed
to improve the trajectory tracking performance over the baseline. Both the baseline and proposed con-
trollers are validated through simulation and experimental trials to assess their effectiveness.

The findings are expected to contribute to the field of vehicle dynamics and control. By demonstrating
the benefits of the proposed controller in a scaled vehicle the research supports the adoption of this
technology in full-sized omnidirectional vehicles. This can lead to more efficient and versatile trans-
portation solutions across various industries, enhancing the overall performance and efficiency of the
transportation of goods and personnel.

1
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1.1. Historical Highlights
This section elaborates on historical highlights in the field of mobile robotics in general, followed by
highlights from the field of omnidirectional vehicles.

1.1.1. Mobile Robotics
During World War 2 the first mobile robots emerged in the form of flying bombs. Smart features were
included that enable detonation within a certain range of the target, guiding systems, and radar control.

After the war, in 1948, the Machina Speculatrix was presented [2]. It was a wheeled robot fitted with a
light sensor. The robot would move toward a light source, and, if present, avoid obstacles on the way.
In 1962, a robot called The John Hopkins Beast was presented [3]. It was controlled by boolean logic,
implemented with logic gates controlling analog voltages. The cybernetic robot was able to wander
around a room and look for black wall outlets using a Sonar sensor.

The first intelligent robot was created in 1972 called Shakey. It could perform tasks that required plan-
ning, route-finding, and rearranging of simple objects [4]. In 1988, the first Autonomous Mobile Robot
(AMR) was presented. It could travel from one location to another, turn the light switches on and off,
open and close doors, and push movable objects around. The planner could devise a plan to perform
all the required actions in the right order. Other examples from space exploration include the Viking
program in 1976 and Interstellar Exploration Rover in 2003 both designed and constructed by NASA.
Both robots were designed to do unmanned exploration on Mars. Industrial examples include the ware-
house robot made by Kiva Systems in 2005 and the Quadruped robot made by Boston Dynamics in
2005 as well, intended to carry heavy loads over terrain too rough for wheeled vehicles. [5].
The examples of mobile robots above show the advancement of the capabilities of mobile robots
through decades of research and development. They provide the base for the future development
of mobile robots used for research, industrial, and personal applications. From this base, with current
technologies, the possibilities of robots to create are close to endless.

1.1.2. Omnidirectional Robots
A specific type of mobile robot is the omnidirectional robot. The base for this type of robot was already
laid on August 6, 1919, when J. Grabowiecki filed a patent for an invention about vehicle propulsion
and steering mechanisms. Part of this patent was the design of an omnidirectional wheel as seen in
Fig. 1.1. The patent was granted on May 14, 1921 [6]. This early innovation laid the groundwork for
the future of omnidirectional movement in robotics.

In the following decades, a significant amount of research has been done in the field of omnidirectional
movement. Examples are the Omni wheel, as shown in Fig. 1.1, the Mecanum wheel, as shown in Fig.
1.2a, spherical wheels, and caster wheels. Currently, the most used type in industry is the Mecanum
wheel. It was developed and patented in 1975 by Bengt Ilon while employed at MecanumAB in Sweden
[7]. The wheel Ilon developed consists of a wheel-shaped base: a cylindrical chassis with a mounting
surface in the middle of the length of the cylinder. To the surface of this cylinder, rollers are mounted
at a 45° angle to the wheel plane as seen in Fig. 1.2. When the wheel is spun, the force exerted by the
wheel is partially dispersed by the roller. The remaining force is not in the plane of rotation, enabling
omnidirectional movement by combining the forces of the other 3 wheels.
The Mecanum wheel is widely used in the industry due to its capabilities. The wheels provide en-
hanced maneuverability in areas where space is critical, such as warehouses. Due to the improved
maneuverability, using the Mecanum wheels can reduce the required total floor space. Also, the time
needed to complete a trajectory requiring extra maneuvers with traditional wheels is reduced. Another
advantage is the scalability of the Mecanum wheel. It can be used from small picking robots to large
transportation units. This makes them applicable in warehouses of all sizes. Due to its precise control
capabilities, a vehicle equipped with Mecanum wheels is ideal for use with automated driving. Due to
these advantages, the wheels have been implemented in several industries including manufacturing,
logistics, healthcare, agriculture, and research.
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Figure 1.1: Omnidirectional wheel patented by J. Grabowiecki in 1919 [6]

(a) 3D Model of a Mecanum wheel (b) Exploded 3D Model of a Mecanum wheel

Figure 1.2: Mecanum wheel model [8].

For high-speed, long-range transportation efficiency and durability of a wheel are key. The Mecanum
wheel has more complexity and therefore more failure points. The Mecanum wheels are less durable
than Mecanum wheels at high speed. Also, less traction is available in forward movement compared
to a traditional wheel. The benefits of the Mecanum wheel therefore do not outweigh the downsides
for high-speed, long-range transportation.

In manufacturing, however, Mecanum wheeled robots are used to streamline transportation between
production lines. Also, small picking robots can be fitted with Mecanum wheels to improve their ef-
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ficiency. Precise autonomous movement and navigation remove the need for drivers, which in turn
enhances safety by removing human error [9]. The same applies in logistics where Mecanum wheeled
vehicles are used to pick and deliver items in tight aisles of warehouses. In healthcare, Mecanum
wheeled vehicles are used to provide autonomous movement in tight areas such as hospitals, nursing
homes, and elderly houses for patient assistance devices.

1.2. Motivation
A Four-Mecanum-Wheeled-Vehicle (FMWV) can move omnidirectional. This ability enables complex
movements applied in applications where maneuvering space is limited and holonomic movement can
increase time- and space efficiency.
FMWVs are primarily used autonomously. In such autonomous applications, trajectory tracking capa-
bility is required. When the FMWV is autonomously applied in an industrial application, improvement of
the trajectory tracking performance of a vehicle decreases the probability of accidents caused by path
deviation [10]. An added benefit of decreasing the path deviation is the psychological effect on workers
as they feel safer working with and around the vehicles, as the path is predictable [9]. Economically, a
decrease in path deviation of the FMWV increases the efficiency of the vehicle in both time and energy
consumption [11].

Apart from an increase in trajectory tracking performance, an FMWV is also less complex as no mecha-
nism is needed for steering the wheels. Therefore, the steering rack, ball joints, and steering knuckles
are no longer maintenance items or points of failure. Moreover, a higher number of combinations to
control the four electric motors is possible, increasing the maneuverability of the vehicle.
Adding to the economic and psychological motivations of improving the trajectory tracking performance
of an FMWV, other motivations exist. For example, in education, it can be used to teach students about
vehicle modeling, simulation, kinematics, dynamics, programming, robotics, and several other topics.
Improving on the state of the art could motivate students as they see how their contribution could make
an economic and psychological impact.

1.3. Objective
In this project, the main goal is to design a vehicle equipped with four Mecanum wheels with trajectory
tracking capabilities. To achieve this goal, several sub-goals are defined as follows:

1. To design the vehicle’s hardware such that the specified hardware requirements are met. The
hardware requirements involve the number of wheels, minimum velocity, battery capacity, current
capacity, computational power, and localization capabilities.

2. To design the vehicle’s software such that a ROS network runs on the vehicle’s embedded PC.
This network consists of actuator-, sensor-, and processing nodes that, together, form the trajectory-
tracking control system.

3. To design the vehicle’s localization such that the pose and velocity are updated at a minimum
frequency of 25Hz. The localization must be robust against wheel slip to facilitate localization in
a low-friction scenario.

4. To implement a baseline trajectory tracking controller and propose a new trajectory tracking con-
troller incorporating dynamic modeling.

5. To validate the design in simulation such that the differences between the baseline and proposed
controller become apparent.

6. To validate the findings of the simulation in experiments and explain the differences where appli-
cable according to the key performance indicators.

The designed vehicle could, after the conclusion of this project, serve as a test-bed for further research
and education.

Consequently, the research question that will be answered in this thesis is:
What are the benefits of using a dynamic-model-based trajectory tracking controller, for a four-Mecanum-
wheeled-vehicle, over a kinematic-based one?



2
Related Work

This chapter elaborates on related work regarding the control of FMWVs. Firstly, several sources de-
scribing the modeling and control of an FMWV are discussed in order of the complexity of the proposed
control method. Secondly, different onboard-, and offboard localization methods are discussed.

2.1. Modeling and Control of a Four-Mecanum-Wheeled-Vehicle
The kinematics of the Mecanum wheel were already described by Muir and Newman in 1987 [12]. Ac-
cording to their work, a Mecanum wheeled robot can be modeled by its body speed equations as listed
in Eq. 2.1. A no-slip frictionless scenario is assumed. Here, vx, vy and Ωz are the vehicle velocities in
the vehicle frame of reference as shown in Fig. 2.1, ωi represent the angular wheel velocities, l1 is the
distance between the two axles of the vehicle, known as the wheelbase, and l2 is the distance between
the mounting surfaces of the left and right wheels, known as the track width. rframe is the distance
from the vehicle’s geometric center to the wheel’s mounting point, which could be considered as the
radius of the frame.

vxvy
Ωz

 =
rframe

4

 1 1 1 1
1 −1 −1 1

− 1
l1+l2

1
l1+l2

− 1
l1+l2

1
l1+l2



ω1

ω2

ω3

ω4

 (2.1)

2.1.1. Feed-forward Control
The inverse of this relationship is used for feed-forward control of the vehicle [13]. The relationship
consists of a matrix that is not square, therefore, the inverse cannot be taken of this matrix. Instead,
the left inverse matrix is determined to find the relationship that can be used for feed-forward control as
stated in Eq. 2.2. Using feed-forward control, different goals such as line-following, remote control, and
object avoidance can be achieved, however with low accuracy. The main advantages of applying the
Mecanum wheel are the ability for omnidirectional movement, the high load-carrying capacity, and the
compact design. The main cons of applying the Mecanum wheel are its discontinuous wheel contact,
its high sensitivity to floor irregularities, and its complex wheel design. Especially the high sensitivity to
floor irregularities is a source of path deviation when applying feed-forward control.

ω1

ω2

ω3

ω4

 =
4

rframe


1 1 −(l1 + l2)
1 −1 (l1 + l2)
1 −1 −(l1 + l2)
1 1 (l1 + l2)

 ∗

vxvy
Ωz

 (2.2)

2.1.2. Motion Planning
A dynamical model of a mechanical system is created by describing the forces present in the system.
The main forces exerted on the FMWV are shown in Fig. 2.1. This figure also shows the vehicle-, and
world frame of reference. This model only uses the vehicle frame of reference.

5
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Figure 2.1: Vehicle- (x,y), and world (X,Y) reference frames with wheel forces.

The dynamic model can be used to predict the system behavior based on the current state and inputs
of the system. To determine each wheel’s exerted force, the interaction between the wheel and the
ground must be modeled. This can be implemented using a hyper-tangent-based simplified slip model
[14]. The accuracy of this model is shown by implementing motion planning without feedback. The
variables are defined in Tab. B.1 in App. B. The model is defined in Eq. 2.3a to Eq. 2.3e and will be
elaborated on below.

The model is constructed as follows. Firstly, in Eq. 2.3a, the slip velocity is determined using the angu-
lar wheel velocity inputs and the current velocities of the vehicle. This follows from the fact that wheel
slip with a conventional wheel is defined as the difference in velocity between the wheel surface and
the vehicle velocity. Following from tire modeling, the friction coefficient in the current vehicle state is
calculated with the previously calculated slip velocity in Eq. 2.3b.

It is assumed that the center of gravity coincides with the geometric center of the vehicle. In that case,
the weight is distributed equally on all four wheels on a flat surface. The normal force can then be
calculated using a quarter of the mass of the vehicle. The total maximum force exerted by each wheel
is obtained by multiplying the normal force with the previously calculated friction coefficient in Eq. 2.3c.
This force is separated into a longitudinal component, in the y direction, and a lateral component, in the
x direction. The sum of these separated forces from each wheel constitutes the total force acting on the
center of gravity of the vehicle as calculated in Eq. 2.3d. From these forces, the vehicle accelerations
can be calculated using 2.3e
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vslip,i =
[
cos(γi) sin(γi) di sin(γi − αi) ri sin(γi)

]
×
[
˙⃗p
φ̇i

]
, (2.3a)

µi = c1 tanh(c2vslip,i) for i = (1 . . . 4), (2.3b)

Fi =
mg

4
µi for i = (1 . . . 4), (2.3c)

[
Fx
Fy

]
=

[
cos

(
π
4

)
(F1 − F2 − F3 + F4)

sin
(
π
4

)
(F1 + F2 + F3 + F4)

]
, (2.3d)

v̇ =

[
v̇x
v̇y

]
=

1

m

[
Fx
Fy

]
(2.3e)

When comparing motion planning using a kinematic model and motion planning with a dynamic model,
including slip modeling, it is clear that the dynamical model is closer to reality and therefore shows less
path deviation when used in motion planning. The results are shown in Fig. 2.2a and 2.2b. It must be
noted that in this model, the vehicle’s yaw rate is assumed to be zero due to the lack of yaw moment
modeling.

(a) trajectory tracking without slip modeled (b) trajectory tracking with slip modeled

Figure 2.2: Results of incorporating slip in a kinematic model [14].

The yaw moment can however be described by studying the forces exerted on the vehicle’s body [15].
As seen in Fig. 2.3b, the relevant forces Fi,p can be decomposed into Fi,x & Fi,y. The magnitude of
these forces can be calculated using Eq. 2.4a, Eq. 2.4b, and Eq. 2.4c.

Fi,p = Fisin(α) (2.4a)

Fi,x = Fi,pcos(α) = Fisin(α)cos(α) (2.4b)

Fi,y = Fi,psin(α) = Fisin
2(α) (2.4c)

To describe the robot’s motion, a second frame of reference is defined where x’ and y’ are centered
around the vehicle’s center of mass. In this reference frame, the forces are defined as in Eq. 2.5 and
2.6 and graphically shown in Fig. 2.3b.[

Fx′

Fy′

]
=

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

] [
Fx
Fy

]
(2.5)
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(a) Driving force decomposition (b) Attached coordinate system & Center of mass coordinate system

Figure 2.3: Force decomposition of a Mecanum wheeled robot taken from [15].

F⃗L = Fx′ ûx′ + Fy′ ûy′ (2.6)
The robot’s translational motion can be obtained using Newton’s second law as stated in Eq. 2.7, where
m is defined as the robot’s mass and A⃗CM the acceleration.

A⃗CM = F⃗L/m (2.7)
The robot’s rotational motion involves the yaw moment exerted on the body. This yaw moment is
defined by Eq. 2.8. In this equation, r⃗CM defines the location of the center of mass in the attached
reference frame (x,y), r⃗i the position vector of wheel i in the attached reference frame (x,y), and r⃗i′ the
position vector of wheel i in the reference frame of the center of mass. The yaw moment T⃗ will generate
a rotation around the center of mass, indicating a rotation around z′.

T⃗ =

4∑
i=4

r⃗i × F⃗i,p − r⃗CM ×
4∑
i=4

F⃗i,p (2.8)

The yaw rate following from the yaw moment can then be described by Eq. 2.9, where I is the vehicle’s
moment of inertia around z′ axis, ω̇z the yaw acceleration, and ûz′ the unit vector along the z′ axis.

Ωz =
T⃗

I
ûz′ (2.9)

2.1.3. Proportional Integral Derivative Control
A Proportional Integral Derivative (PID) controller is the least complex feedback controller. The con-
troller output is defined in Eq. 2.10 below and consists of a proportional part, an integral part, and a
derivative part[16]. With these three components, the controller takes into account the past, the current,
and the future vehicle-states.

U(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(2.10)
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To calculate the actual input to the system and construct a trajectory controller with the PID controller
the kinematic model from Eq. 2.1 is used. In this way, a control signal in the form of four angular
wheel velocities is calculated. The performance of the PID controller is outperformed by a higher-order
controller, especially in the presence of disturbances. The controller however has low complexity and
requires little computational power. The tuning of the controller is done heuristically. No experiments
were done to prove the real-life performance of the controller.

A more advanced PID controller is the Fuzzy Proportional Derivative (FPID) Controller. An FPID Con-
troller can be used for trajectory tracking [17]. Fuzzy gain scheduling is applied to determine the gain
of the PID controller for the Mecanum wheeled robot. The research goal was to ensure that the system
can handle changing conditions and reduce localization errors induced by the slipping of the wheels.
It was shown that the fuzzy PID controller has increased performance over a standard PID controller.
Again, the linear kinematic model from Eq. 2.1 was used. It must be noted that the gain scheduling
proposed here is only possible in areas that have been mapped beforehand.

2.1.4. Linear Quadratic Regulator
The kinematic model from Eq. 2.1 can be expanded by considering the energy loss due to the wheels’
viscous friction [18]. This expanded model can then be used for position rectification control of an
FMWV. The control is constructed in two layers. The first is velocity control, and the second is the posi-
tion control. The velocity control is implemented with a Linear Quadratic Regulator (LQR). The position
control is implemented using feedback from a vision sensor. In between the accurate position measure-
ments, the position is dead reckoned using the kinematic model and feedback from the wheel encoders.

2.1.5. Pure Pursuit Algorithm
A Pure Pursuit path-tracking algorithm can be used for trajectory tracking with an FMWV [19]. The
localization is done using beacons in the robot’s proximity at known locations. By determining the
distance to each beacon the location of the vehicle is determined. The localization is used as input to
a nonuniform dual-rate EKF to determine the immeasurable states in the system. A derived version
from the kinematic model, shown in Eq. 2.1, is used as a model for the EKF. It is shown that using
a nonuniform dual-rate EKF gives higher accuracy results in comparison to using a uniform dual-rate
EKF. For control, a pure pursuit path-tracking algorithm is used. This algorithm uses a variable gain
that depends on the proximity of the next target point. When the vehicle is in close enough proximity
to the target, the next target point on the trajectory is set as a new reference.

2.1.6. Sliding Mode Control
Second-order nonlinear equations can be applied with a Sliding Mode Controller (SMC) to create a
trajectory tracker that can operate in the presence of uncertainties and external force disturbances,
[20]. The model equations do not need to be linearized. The kinematic model from Eq. 2.1 is used,
combined with a dynamical model that considers DC motor dynamics, linearized friction coefficients,
and an external force disturbance. The novel part of this paper is the description of the external forces
and the matched and unmatched uncertainties. The controller design ensures chattering-free trajectory
tracking of the trajectory in simulation. The resulting trajectory in simulation with corresponding input
is shown in Fig. 2.4a & 2.4b respectively.

2.1.7. Nonsingular Terminal Sliding Mode Control
Trajectory tracking control of a Mecanum wheeled vehicle can be implemented with Nonsingular Termi-
nal Sliding Mode Controller (NTSMC) [21]. The goal is to improve the trajectory tracking accuracy by
focusing on the nonlinearities and uncertainties in the dynamics of the Mecanum wheeled robot. The
novel part of this paper is the nonsingular terminal slide mode algorithm proposed for controlling the
motion on a predefined path.

The NTSMC is a variation of the conventional SMC. The mean difference from the SMC is the finite
convergence time on the sliding manifold. Nonsingular operation is achieved by avoiding the singularity
at x = 0 for negative powers of x in the calculation of the sliding mode variable s [22].
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(a) (b)

Figure 2.4: Resulting trajectory and corresponding control input from simulation of trajectory tracking with Sliding Mode Control
in the presence of uncertainties and disturbances [20].

NTSMCwas compared to a conventional SMC. Experiments show the superiority of NTSMC over SMC.
In lateral movement, NTSMC shows a higher tracking precision in trajectory tracking and heading angle
error. The control signal from the NTSMC does however show more chattering. This chattering was
however alleviated in further research [23] using a fuzzy adaptive recursive terminal sliding mode con-
trol algorithm. What is noteworthy in this research is the ability of trajectory tracking without relying on
sensors. However, in longer trajectories, the accumulative drifting error becomes too large. Therefore,
future research must include sensors.

2.1.8. Model Predictive Control
A Model Predictive Controller can be implemented to control an omnidirectional robot with the goal of
path tracking in an energy-efficient way [24]. The kinematic model from Eq. 2.1 is used, combined with
a dynamical model of the FMWV. The dynamical model from Eq.2.11a is linearized around the current
trajectory point in every time step. Conversions from the input voltage and current to wheel speed and
torque are given in Eq. 2.11b and 2.11c respectively. The downside of this approach the MPC is the
high computational load on the hardware. The upside of the MPC is the robustness to disturbances
while maintaining minimal power consumption as the control method uses both model prediction as
well as feedback. All variables are defined in Tab. B.2 in App. B.

m 0 0
0 m 0
0 0 J

v̇xv̇y
ω̇

 =

FxFy
Fz

−

F cxF cy
F cz

−

F vxF vy
F vZ

+

δ1δ2
δ3

 (2.11a)

ua(k) = La
dia(k)

dt
+Raia(k) +K1ωh(k) (2.11b)

T (k) = lK2ia(k) (2.11c)

2.1.9. Nonlinear Model Predictive Control
Another implementation of an FMWV path follower is presented in [25]. A Nonlinear Model Predic-
tive Controller (NMPC) is used for trajectory tracking with an FMWV. A Laser Imaging, Detection, And
Ranging (LiDAR), four-wheel encoders, and an IMU are used to localize the FMWV, using an Extended
Kalman Filter (EKF) to fuse the sensor values into a location estimate. The kinematic model from Eq.
2.1, is used as a model in the NMPC controller for the FMWV. No comparison to other control methods
is shown, therefore the performance is difficult to interpret.
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2.2. Onboard Localization
Onboard localization consists of the localization of a vehicle relative to its initial position using onboard
measurements.

2.2.1. Open-loop Localization
It is possible to calculate the pose, which consists of the position and the orientation, of a moving
object by having an accurate initial position, velocity information from wheel motor encoders, and the
kinematic model as proposed in Eq. 2.1 [21]. Using the Runge-Kutta method, shown in Eq. 2.12 & 2.13,
these variables can be combined to determine the pose of the next time-step. T is the sampling period,
it should be sufficiently small to ensure constant acceleration. ω is the heading angle of the vehicle in
the world frame, θ̇ is a vector containing the angular velocity of each wheel, and h(ω) the kinematics
of the FMWV as in Eq. 2.1. This localization method is vulnerable to drift in the pose estimate due to
modeling errors. The advantage however is the low computational load and the consequent ability of
a relatively high refresh rate.

xq(k)yq(k)
ωq(k)

 =

xq(k − 1)
yq(k − 1)
ωq(k − 1)

+
τ

4

T
[
h(ω(k − 1))θ̇(k − 1) + h(ω(k))θ̇(k)

]
2

(2.12)

where: h(ω) =
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2 cos(ω)
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 (2.13)

2.2.2. LiDAR based Localization
A more robust onboard localization method is the use of a LiDAR sensor. Combined with a Simul-
taneous Localization And Mapping (SLAM) algorithm, this technology can be used to determine the
FMWV’s pose relative to an initial location [26]. Several variations of the classic SLAM algorithm have
been developed. Map-based LiDAR localization removes the mapping from the algorithm to reduce
computational load [27]. The downside is that a map of the area has to be available beforehand, and
the accuracy depends on the quality of the map. Visual-SLAM combines a camera with the SLAM
algorithm to achieve localization. It has to be noted that when using visual information, lighting of the
area is important as the quality of the information depends greatly on light intensity [28]. Another algo-
rithm, Visual-LiDAR SLAM, is another solution that combines odometry from both a mono camera, and
a LiDAR [28]. A cheaper implementation is the LiDAR-Inertial localization system [29], which is based
on LIO-SAM that adopts a fusion framework of a factor graph.

2.2.3. Combining Localization Methods using Extended Kalman Filter
Accurate state estimation can be implemented with a Kalman Filter. Such a filter will fuse data from
data from multiple different sensors to obtain an overall pose estimate whose error is less than using a
single sensor in isolation [30]. An Extended Kalman Filter is required when the state transition model
is nonlinear. Such filters are implemented on mobile robots using the ROS environment.

2.3. Off-board Localization
Off-board localization requires components external to the FMWV to localize itself within a frame. This
type of localization is implemented by Visible Light Communication based Indoor Positioning Systems
(VLC-IPS) that use visible LEDs for indoor localization. Time Difference of Arrival (TDOA) is used to
determine the FMWV’s pose indoors. Other implementations involve wireless connectivity such as
Bluetooth and Wi-Fi [31]. In the case of Wi-Fi, the locations of different access points are known. The
location can then be calculated by determining the signal strength for each access point at a specific
point in space.



3
Vehicle Design

The development of a four-Mecanum-wheeled vehicle (FMWV) with advanced trajectory tracking capa-
bilities involves a comprehensive process that includes design, construction, programming, and model-
ing. This chapter provides an in-depth examination of these stages. Section 3.1 begins with a detailed
description of the FMWV’s physical design, highlighting the key components and structural consider-
ations. Section 3.2 then delves into the details of the vehicle’s software architecture, including the
algorithms and control systems implementation. Finally, Section 3.3 discusses the dynamic modeling
of the vehicle, where the principles of dynamics are applied to develop a robust plant model. This
model serves as a crucial tool for simulating and analyzing the vehicle’s performance under various
conditions, ensuring that the FMWV can accurately track designated trajectories.

3.1. Hardware Design
This section starts with a detailed description of the physical requirements set for the vehicle design.
The considerations made for each component are elaborated on to come to the selection of the right
components for each part of the system. In general, the components are chosen so that some surplus
is available from the requirement.

3.1.1. Requirements
The following requirements must be taken into account to ensure the trajectory-tracking capability of
the vehicle.

1. The vehicle must be fitted with 4 Mecanum wheels.

2. The frame of the vehicle must be large and strong enough to carry all sensors and actuators.

3. The vehicle must be able to move at 2 m/s in the longitudinal direction.

4. The wheel speed must be measurable.

5. The vehicle must be able to operate at 50% motor power for 15 minutes on one battery charge.

6. The vehicle must provide power to all its components at the specified voltage and with sufficient
current capacity.

7. The vehicle must contain a microcontroller able to process all signals from and to all components.

8. The vehicle must contain a portable computer powerful enough to process all parts of a trajectory
tracking system.

12
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Figure 3.1: DC motor as used on the FMWV as listed in App. A

9. The vehicle must be able to locate itself relative to its initial position in a 4 m by 4 m room.

3.1.2. Wheels
The wheels of the vehicle must be chosen such that they meet the requirements of the Mecanum
wheel as described by the patent of Mecanum [7]. A spectrum of wheels is available that meet this
requirement. The wheels must also be able to be mounted to the motors in such a way that the torque
of the motors can be transferred to the wheels. The chosen wheels meet all requirements. The wheels
are 100mm in diameter and feature a screw-on type mounting mechanism.

3.1.3. Motors and Wheel Encoders
The vehicle must be able to move at 2m/s. The minimal angular velocity of the wheels can be calcu-
lated using Eq. 3.1, where ω is the angular velocity, v the translational velocity, and d the diameter of
the wheel. Considering a translational velocity 2m/s and a diameter of the wheel 0.1m, the minimal
angular velocity of the wheels must be 40 rad/s, equal to 382RPM.

ω =
2πv

πd
=

2v

d
(3.1)

Apart from a minimum angular velocity of the wheels, the motors must be chosen such that the angu-
lar velocity of the wheels can be controlled with feedback. The motors must therefore feature wheel
encoders suitable for angular velocities of more than 382RPM.

The chosenmotors, as seen in Fig. 3.1, are geared so that they can rotate at 400RPMand feature wheel
encoders mounted on the motor shaft. Therefore, to measure the angular velocity of the wheels, the
gear ratio must be taken into account. According to the data sheet in Appendix A, the gear ratio is 21:1.

Therefore, the chosen motors with wheel encoders meet the requirements.

3.1.4. Motor Drivers
The motor drivers must be chosen according to the maximum current Imax drawn by the motors. For
a DC motor, the maximum current is drawn when the motor shaft is kept stationary i.e. blocked. The
datasheet of the motors in App. A provides the blocking current of 1.2A.

The motor drivers were chosen to fit the requirements. The L298n Motor Driver is a dual H bridge
able to deliver a continuous current 1.5A and a peak current 2.5A per channel. This means that it can
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continuously supply the blocking current of the motors.
Other benefits of this motor driver include the less than 0.1µA standby current and the built-in overheat
protection with hysteresis effect. The input signal voltage must be between 1.8V and 7V. The supply
voltage must be between 3V and 30V. The output voltage will be between 0V and the supply voltage
according to the duty cycle of the input PWM signal.

3.1.5. Light Detection and Ranging Unit
To localize the robot in a space, a Light Detection And Ranging unit or LiDAR unit is added to the
vehicle. The performance of the LiDAR unit is largely determined by its range, resolution, and update
frequency. Other performance measures include the measurement’s accuracy, and precision, mean-
ing how repeatable the measurements are. Other factors include the available drivers for the unit and
cost. The drivers must provide support for the inclusion of the sensor in a ROS network.

The chosen LiDAR unit, the LD06 LiDAR, boasts a measurement range 12m, a scanning frequency
of 13Hz, and an average range accuracy of 45mm. The measurement range of 12m ensures that the
LiDAR can detect all walls of the 4m room as specified by the requirements. Using a Simultaneous Lo-
calization and Mapping or SLAM algorithm, this sensor can be used to localize the vehicle in reference
to its initial position. The main downside however is the update rate of the scans and consequently the
update rate of the position estimation. This can be improved by using a sensor with a superior update
rate, however, the cost of such a sensor is out of the scope of this low-cost-oriented project.

3.1.6. Integrated Motion Unit
To increase the update rate of the position estimation, an Integrated Motion Unit or IMU can be in-
tegrated into the system to provide intermediate movement information. For this, an IMU must be
selected that can measure the translational as well as the angular accelerations of the vehicle. Apart
from that, a driver must exist that can publish the data to a ROS network.

Firstly an IMU was chosen for which no driver could be found that enabled ROS connectivity. Therefore,
an IMU was chosen that specifically had a ROS driver available. The MPU9150 can provide accelera-
tion measurements up to 16 G and send this measurement over an I2C bus to the receiver. The IMU
provides lateral acceleration as well as angular acceleration. The measurement can be provided at
a maximum frequency of 8 kHz. This is well over the update frequency of the pose from the LiDAR
SLAM.

3.1.7. Microcontroller and Portable Computer
The Mirte Educational Robot was built previously around a Raspberry Pi Pico H microcontroller com-
bined with an Orange Pi Zero2 using a custom PCB. As the electronics of this project were used as the
basis for this project, the microcontroller and PC were kept unchanged unless required. The software
must be designed with a maximum computational load suitable for the Orange Pi Zero2.

3.1.8. DC-DC Converter
As the vehicle must provide power to all its components at the specified voltage and with sufficient
current capacity a power supply had to be chosen. The supply voltage is chosen at 12V as this is
the voltage required by the DC motors. However, the microcontroller, the PC, the IMU, and the LiDAR
require a supply voltage of 5V. Therefore, a DC-DC buck converter must be introduced. This converter
will convert the input voltage to an output voltage of 5V suitable for the aforementioned components.
As can be calculated from the current draw of the 5V components listed in Tab. 3.1, the total current
draw on the 5V bus is maximum 0.9A.

The chosen DC-DC buck converter can supply 3A at 5V. According to the summation above, this
meets the requirements.

3.1.9. Battery
The battery must be chosen according to three main parameters. Nominal supply voltage in V, capacity
in mAh, and the current capability in C rating. As can be calculated from Tab. 3.1, the 5V bus will at
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(a) (b)

Figure 3.2: (a) OrangePi Zero2 [32]. (b) Raspberry Pi Pico [33].

Table 3.1: List of power consumption per device

Component Description Voltage(V) Current(A)
Motors JGA25-370 DC encoder geared motors 12 4.8
Motor driver L298n Motor Driver Controller 12 -
Microcontroller Raspberry Pi Pico 5 0.1
PC Orange Pi Zero2 running Ubuntu and ROS 5 0.5
LiDAR Okdo LiDAR Hat LD06 5 0.29
IMU MPU9250 IMU 5 0.004

maximum draw 0.894A, not taking into account losses. Considering 11% losses, this will result in a
maximum current draw of 1.0A at 5V. At the 12V bus, the resultant maximum current draw will be
0.41A. The total maximum current at the 12V will be 5.21A. At half motor power, the current draw of
the 5V bus will not change. The resultant motor current draw will be 2.4A. In 15 minutes, at half of its
capabilities, the system will consequently consume 600mAh. This defines the minimum requirement
of the capacity of the battery.

The C rating of a battery defines its capability to deliver current. It is defined by how many times the
battery could theoretically drain its own capacity in one hour.

For flexibility during experiments, a battery is chosen with a significantly higher capacity than required.
The chosen battery has a capacity of 2200mAh. The maximum current draw of the system is 5.21A.
Therefore, the minimum C rating of the battery is 2.36C. The chosen battery has a C rating of 30C
which is also significantly higher than required. However, this ensures optimal performance of the
vehicle, without restriction from the battery.

3.1.10. Frame
According to the requirements, the frame of the vehicle must be able to carry all sensors and actuators
as listed in Tab. 3.2. With proper space management, all sensors fit on the frame. This could not be
determined beforehand, as it is not clear yet what sensors and actuators would be used throughout the
project.

3.1.11. Assembly
The assembly of all separate components into a functional FMWV is performed in stages. Firstly the
frame, the motors, and the wheels were assembled. Later, when the electronics were ready with basic
functionality, the PC and the microcontroller were added which resulted in the first test drive of the
vehicle. The partially built vehicle is shown in Fig. 3.3. All connections to the motors and encoders
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Table 3.2: List of hardware components of the four-Mecanum-wheeled-vehicle

Component Description Amount Dimensions (mm)
Frame Composite frame supporting all components 1 330x142x35
Mecanum Wheel Mecanum wheels made of plastic and metal. 4 100x47x100
Motor JGA25-370 DC encoder geared motor 4 60x32x25
Motor driver L298n Motor Driver Controller 2 45x45x30
Battery Soaring 2200MAH 3S 30C LiPo 1 115x35x22
Microcontroller Raspberry Pi Pico 1 51x25x15
PC Orange Pi Zero2 running Ubuntu and ROS 1 55x20x64
LiDAR Okdo LiDAR Hat LD06 1 64x55x53

were soldered to connectors that can be easily and reliably fitted. Subsequently, the IMU, as seen in Fig.
3.4a, and the LiDAR, as seen in Fig. 3.4b, were connected securely. Unlike all other peripherals that
are connected to the microcontroller is the LiDAR connected to the PC directly. An I2C communication
bus is set up to enable communication between the PC and the LiDAR. The result from the assembly
is shown in Fig. 3.5.

Figure 3.3: Partially built four-Mecanum-wheeled vehicle.

3.2. Software Design
Following the design and assembly of the FMWV, the vehicle software is designed. For this, the soft-
ware framework of the Mirte Educational project is used together with the PC and Microcontroller from
this project. This section will define the framework used and the adaptations that have been made to
adapt the Mirte framework to the FMWV.
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(a) (b)

Figure 3.4: (a) Inertial measurement unit of type MPU9250 [34]. (b) Light detection and ranging unit of type LD06 [35].

3.2.1. ROS
The Mirte software framework is built using the Robot Operating System (ROS). ROS is a set of soft-
ware libraries and tools that enable the user to build robot applications.[36] A ROS network consists of
Nodes and Topics. Nodes can publish and subscribe to topics. Nodes communicate using predefined
message types. Because of these message types, the coding language of the node does not matter
as long as the messages are published in the predefined message types. In this way, a structured way
of communication is created, where different modules can be inserted as nodes.

An example of a simple ROS structure is shown in Fig. 3.6. The sensor node is the hardware interface
with a sensor. The sensor node reads the sensor data and publishes this data to a predefined sensor
topic using the sensor message type. The controller node is subscribed to the sensor topic and uses
the sensor data to determine the required actuator input. The required actuator input is published to
the actuator topic, where the subscribed actuator node takes the actuator input message and handles
the hardware interaction.

3.2.2. Mirte Framework
The complete Mirte software framework is shown in Fig. 3.7. This framework is used as the basis for
the FMWV. However, only part of the framework is kept. Referring to Fig. 3.7, the browser part is
removed. In the computer part, that runs on the OrangePi Zero2, the rosparam andmirte-ros-package
is used. In the hardware section, the mirte-telemetrix is used.

The rosparam file is a configuration file where the parameters of the ROS network are defined. It de-
fines what components are present in the network and the mappings of these components to the correct
General Purpose Input/Output (GPIO) pins.

This configuration file is used in themirte-ros-package, specifically in themirte_bringup file. Inmirte_bringup
the launch file for the ROS network is specified. It makes sure to start all required nodes and ser-
vices. The mirte_control and mirte_teleop are replaced by the trajectory controller designed in 5.
mirte_telemetrix defines the communication with the hardware, in this case, the microcontroller. This
microcontroller is running themirte_telemetrix_aio programming that is designed to control and process
all actuators and sensor data respectively.

3.2.3. Adaptation of the Mirte Framework
The Mirte robot is a differential-drive robot with two traditional wheels. The robot is fitted with several
accessories that enable line following and object avoidance. For this project, these sensors are not
applicable and therefore not installed.
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Figure 3.5: The assembled four-Mecanum-wheeled- vehicle.

The Mirte framework is used for motor control, encoder feedback, and IMU data transfer. The settings
in the rosparam file were adapted for the specific motors and encoders. The same IMU as the Mirte
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Figure 3.6: Schematic view of an example ROS structure

Figure 3.7: System overview of the Mirte Framework [37].

is used and requires no additional work. The LiDAR module is included by publishing the scan data to
the scan topic. The LiDAR and its implementation were added.

3.2.4. Controller Implementation
The control and its ROS implementation were constructed using Matlab and Simulink software pack-
ages. Matlab scripting is applied to implement the initialization and logic of the control. A ROS Simulink
interface is available that enables the controller to be implemented as a node as described in the ex-
ample in Sec. 3.2.1. The controller design is discussed in Ch. 5.

Important for this implementation is the inclusion of safety features. Two safety features were included.
Firstly, a voltage limit is introduced to limit the requested voltage sent to the motor topic. Secondly, an
angular wheel velocity limit is introduced to protect the hardware from over-revving. For this, angular
wheel velocity feedback using wheel encoders is implemented.

3.3. Plant Model
A plant model is created to simulate the FMWV and design the model-based trajectory tracking con-
trollers. The plant model is a combination of threemodels. As a base, themodel described in Sec. 2.1.2
taken from [14] is used. Here, a dynamical model is formulated. The model, as listed in Equations 2.3a
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Figure 3.8: System overview of the framework adapted from the Mirte framework [37]

through 2.3e, describes the translational motion of an FMWV, lacking the model of yaw moment.

Therefore, the description of the yaw moment is added by adapting the description of the torque around
the vehicle’s center of mass from [15], as described in Sec. 2.1.2. As seen in Fig. 2.3, this research
uses a different notation of wheel numbering. This will be adapted to use the same as in the base model.
Therefore, if an anticlockwise rotation is taken to be the positive direction of rotation, this translates to
F1 and F3 to be in the negative rotation direction, where F2 and F4 are directed in the positive rotation
direction.

Using Newton’s second law for rotation listed in Eq. 3.2a, the yaw moment T can be related to the yaw
acceleration Ω̇ around the vertical axis, through the center of mass by the inertia I of the rotating body.
As in the base model, the assumption is made that the center of mass is equal to the geometric center
of the vehicle, implying a uniform weight distribution. The combined model is listed in Eq. 3.2b to 3.2e.
The resultant acceleration vector can be integrated once to obtain the vehicle velocities. The pose is
obtained by integrating the vehicle velocities over time.

Ω̇z =
T

Ivehicle
(3.2a)
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This model however lacks the DC motor dynamics. This must be included as the motor dynamics
introduce an actuator delay. Especially in highly dynamic maneuvers, this will be an evident deviation
from reality. Therefore, the DC motor model is implemented as listed in Eq. 3.3b, where rwheel is the
wheel radius, ωi the angular wheel velocity, Iwheel the inertia of aMecanumwheel, k the torque constant,
R the ohmic resistance of the DC motor’s armature, and Ei the voltage applied across the armature
[38]. The ohmic resistance is needed as the torque generated by a DC motor is proportional to the
armature current, which can be calculated using Ohm’s law. The angular wheel velocity is negatively
proportional to the generated motor torque.

Iwheel =
1

2
mr2wheel (3.3a)

ω̇wheel,i =
1

Iwheel
(
−k2

R
ωwheel,i +

k

R
Ei) (3.3b)



4
Observer Design

This section provides a detailed elaborating of the observer design essential for accurate state estima-
tion of the robot, including both pose and velocity measurements. The observer uses three types of
sensors to gather pose and velocity information. This redundancy is included to ensure accurate local-
ization, regardless of the available friction. Firstly, the vehicle’s pose is accurately determined through
a LiDAR sensor operating in conjunction with a Simultaneous Localization and Mapping (SLAM) algo-
rithm which is, in theory, able to localize the vehicle without influence from the available friction. Sec-
ondly, the vehicle’s velocity is measured using four encoders, which, when integrated with the wheel
configuration matrix, offer reliable velocity estimations in the case of high friction and minimal slip. This
type of localization is not robust to low-friction, however can be used for high frequency localization be-
tween the SLAM measurements. Thirdly, an Inertial Measurement Unit (IMU) is employed to capture
both linear and angular accelerations of the vehicle, providing dynamic insights into its movement. To
fuse the data from these sensors into one precise high-frequency state estimate, an Extended Kalman
Filter (EKF) is implemented. This sophisticated fusion technique ensures that the observer delivers
an accurate measurement of the robot’s state by optimally integrating the sensor data together with a
system model.

4.1. SLAM
A LiDAR sensor is a laser range measurement device that is mounted perpendicularly on the shaft of a
motor. The output of this sensor at each measurement is a list of range measurements combined with
the corresponding angle at which this measurement was taken. Combining this list of measurements,
a range cloud is obtained.

The data contained in the range cloud is just data without the SLAM algorithm. The range cloud is used
to construct a map of the surroundings by feature-matching scans with each other. From the matched
features, the pose can be estimated. Loop closure is added to make sure that the map is closed when
the vehicle reaches a location for the second time. In this sense, loop closure is a feedback mechanism
to the pose estimation. This results in an accurate location estimation, however at the cost of a relatively
high computational load.

4.2. Encoder with Kinematic Model
A more computationally efficient implementation of pose and velocity estimation is by the use of the
encoders mounted on the motors of the wheels. The motor shaft is charged with a positive and a cor-
responding negative magnetic charge. Two hall effect sensors are mounted close to the motor shaft.
Both hall effect sensors measure the change in magnetic field. In this way, the angular velocity of the
shaft can be measured. By comparing the signal of both hall effect sensors, the direction of rotation
can be determined by checking which of the two signals is lagging. Once the angular displacement
and velocity of the motor shaft are known, the angular displacement and velocity of the wheel can be
calculated through the gear ratio. Combining the angular wheel velocity of all four wheels with the

22
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kinematic model from Eq. 2.1 the velocity and corresponding change in location can be calculated.

The main benefit of this method is the reduced computational load compared to the SLAM algorithm.
The downside, however, is that the estimation of the change in position is based on a kinematic model,
which introduces a model error. This error is enhanced even further when the wheels slip over the
surface.

4.3. Inertial Measurement Unit
An Inertial Measurement Unit (IMU) is a sensor that measures linear acceleration, angular velocity, and
angular position. An IMU is comprised of 3 accelerometers, 3 magnetometers, and 3 gyroscopes. The
accelerometers are used to measure the linear acceleration of the device in the x, y, and z directions.
The magnetometers are used to determine the angular position of the device. The gyroscopes mea-
sure the angular acceleration of the device around the x, y, and z-axis. The resulting measurements
are the roll, pitch, and yaw rates.

4.4. Extended Kalman Filter
An EKF can fuse the pose and velocity measurements from the LiDAR, encoders, and IMU, together
with a model of the vehicle, into one accurate state estimate. The EKF is the nonlinear extension of a
Kalman Filter (KF). A nonlinear state space as in Equations 4.1 and 4.2 is assumed. It can be proved
that the EKF is unbiased and has minimum variance but this is out of the scope of this project.

xk+1 = f(xk) + wk (4.1)
yk = h(xk) + vk (4.2)
wk ∼ N (0, Q) (4.3)
vk ∼ N (0, R) (4.4)

Estimates of xk are recursively approximated using a predicted state, as in Eq. 4.5, and a filtered state,
as in Eq. 4.6

xk ∼ N (x̂k|k−1, Pk|k−1) (4.5)
xk ∼ N (x̂k|k, Pk|k) (4.6)

During the prediction stage, the state of the system is estimated using the dynamics of the system
combined with the previous state. This can be written as in Eq. 4.7 where Ak is a linearization around
xk of the nonlinear function of the dynamics of the system, and wk represents the assumed to be
Gaussian, additive process noise as defined in Eq. 4.3 where Q is the covariance matrix of the additive
process noise.

x̂k+1|k = Akx̂k|k (4.7)
Pk+1|k = APk|kA

⊺ +Q (4.8)

The measurement update stage consists of estimating the state of the system using the newest filtered
measurement of the state. The measurement function is defined by Eq. 4.2. Using the measurement
and the Kalman gain as defined by Eq. 4.9, where Ck is the linearization of the measurement function
around xk, the state is estimated at time k as in Eq. 4.10 with covariance as defined in Eq. 4.11.

Kk = Pk|k−1C
⊺
k (CkPk|k−1C

⊺ +R)−1 (4.9)
x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k) (4.10)
Pk|k = Pk|k−1 −KkCkPk|k−1 (4.11)
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In this project, the EKF is implemented using a ROS package specifically designed for use in mobile
robots using the ROS environment. The package, named robot_localization, developed by Charles
River Analytics, Inc., contains not only the implementation of the EKF but also deals with the intricacies
of using the EKF in a ROS environment.

In configuring the package, a careful decision has to be made on what variable is used from what
source of information. This is specified by defining the configuration matrix for each sensor. The full
configuration file is found in App. C An example is shown below for a sensor that delivers a twist-type
message that contains translational and angular velocities. Of this message, vx, vy, and yaw rate are
used. The order of the boolean values in the configuration matrix are:
(x, y, z, roll, pitch, yaw, vx, vy, vz, roll rate, pitch rate, yaw rate, v̇x, v̇y, v̇z)

1 <rosparam param="twist0_config">[false, false, false,
2 false, false, false,
3 true, true, false,
4 false, false, true,
5 false, false, false]</rosparam >

Apart from the configuration matrix, for each sensor, the covariance matrix must be specified. The
packages used for encoder processing and the IMU provide a covariance estimation. The SLAM pack-
age does not, so the covariance is estimated.

The SLAM covariance is calculated by having the sensor stationary, measuring the output for four min-
utes, and calculating the covariances of the measured signals. The measurement result is shown in
Fig. 4.1a to 4.1c. The calculated covariances are listed in Tab. 4.1.

Table 4.1: Calculated covariances of the LiDAR SLAM pose measurement.

Variable Covariance
x (m) 7.5346e-06
y (m) 8.9605e-05
ψ (rad) 5.5360e-05

After configuring each sensor separately, the process noise must be tuned. This is done in the experi-
mental phase by running the experiment and checking the convergence of the estimate to the ground
truth. By measuring the pose of the vehicle physically at the start and end point of the trajectory, and
comparing this to the estimated begin and end point, the best combination is found heuristically.
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(a)

(b)

(c)

Figure 4.1: Measurement from stationary LiDAR sensor combined with the SLAM algorithm to determine the covariance of the
pose estimation.



5
Control System Design

This chapter will elaborate on the control system design used to implement a trajectory tracking FMWV
as found in App. D and E. Firstly, the control algorithm will be selected. Secondly, the plant model will
be adapted to be compatible with the chosen control algorithm. Lastly, a tuning theory will be presented
that provides a guideline for tuning the proposed controller.

5.1. Selection of Control Algorithm
This section will elaborate on the selection of the appropriate control algorithm. To do so, the advan-
tages and disadvantages of the three control algorithms will be considered. Firstly, the linear quadratic
regulator will be discussed, followed by the model predictive controller and the sliding mode controller.
A controller will be chosen and tuned.

5.1.1. Linear Quadratic Regulator
An LQR is an optimal control strategy designed to control linear systems. A quadratic cost function,
as shown in Eq. 5.1c, is minimized to find the optimal feedback gain matrix K. In this equation, Q
and R represent the weighting matrices for the state deviation and the control efforts respectively. The
minimization is subject to the linear time-invariant (LTI) first-order dynamic constraint as listed in Eq.
5.1a as well as the initial condition listed in Eq. 5.1b. There, x is the state, A the state matrix, B the
input matrix and u the input. The gain K is found as in Eq. 5.1d

ẋ(t) = Ax(t) +Bu(t) (5.1a)
x(t0) = x0 (5.1b)

J =

∫ ∞

0

(x⊺(t)Qx(t) + u⊺(t)Ru(t))dt (5.1c)

K = R−1B⊺P (5.1d)

where P is obtained by solving the Riccati equation:

PA+A⊺P − PBR−1B⊺P +Q = 0 (5.1e)

The advantages of the LQR are listed below:

Stability: When the system is controllable and observable, the LQR guarantees closed-loop stability.
Computational efficiency: Since the LQR only deals with LTI systems, the calculation of the gain

and application of the gain as the controller is not computationally heavy. This makes the LQR
suitable for real-time applications with limited computational resources.

The disadvantages are listed below:

Linearity assumption: The LQR assumes the system to be LTI. However, many physical systems
are not LTI. If this is the case, the model has to be adapted, for example using linearization.

26
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Fixed gain: In an LQR, the gain is calculated offline. The gain is then constant for the system like in
a proportional controller. In the case of an LTI system, this is not a problem. For most physical
systems, however, operational conditions can change over time, reducing the optimality of the
control.

Lack of constraint handling: The only constraints the optimal gain calculation takes into account
are the model matrices and the initial condition. Other constraints can however not be taken into
account in this control method.

5.1.2. Model Predictive Control
Model Predictive Control (MPC) is an optimal control technique that minimizes a cost function over a
finite receding horizon. At a given iteration of its control loop, xc is the current state, xg the reference
state. The control input uc must be calculated such that the current state is brought closest to the
reference state. The MPC implements this by solving a discrete-time optimal control problem [39]. The
discretized state transition equation is listed in Eq. 5.2c. The trajectory is also discretized into states x1,
..., xn, where n is the length of the prediction horizon. The cost function to be minimized is listed in Eq.
5.2a subject to the constraints as listed in Eq. 5.2b, 5.2c, and 5.2d. Here, T (xn, xg) is the terminal cost
used to penalize the mismatch between the reference and the current state. Ri(xi, ui) is the running
cost that accounts for the control effort along the trajectory. I(xi, ui) is a system of inequality constraints
to characterize the set of admissible states and actions.

J = T (xn, xg) +

n∑
i=1

Ri(xi, ui) (5.2a)

xi = xc (5.2b)
xi+1 = f(xi, ui) (5.2c)
I(xi, ui) ≥ 0 (5.2d)

Summarizing, at each time step, the current state is either measured or estimated using the internal
plant model of the system to be controlled. Using the internal plant model, N optimal control actions
are calculated. The first control action of the array of control actions over the prediction horizon is then
applied to the actual plant, the other control actions are discarded. This makes the controller robust as
the optimal control problem takes into account disturbances in the calculation of the control input.

The advantages of an MPC are listed below:

Adaptive control: At each time step, the control action is calculated to be optimal for that instant with
the prediction horizon in mind. In this way, the control is adapted to external disturbances.

Constraint handling: In the optimization, constraints on the admissible state space can be taken into
account.

The disadvantages of an MPC are listed below:

High computational load: At each time step, the current state has to be measured or estimated, the
next states have to be predicted, and a cost function has to be minimized. The online optimization
poses a significant computational load on the processor. This load increases with the complexity
of the model. This can cause issues in mobile systems where computational power might be
limited.

Model Dependence: The control actions are calculated using the predictions made with the internal
plant model. Therefore, the accuracy of the plant model has a great influence on the performance
of the controller.

5.1.3. Sliding Mode Control
SMC is a control technique that applies discontinuous switching control law to drive the state toward
the sliding surface. Once reached, high control effort is used to keep the state on the sliding surface.
The sliding surface is predefined in the state space. Pure SMC is used less often as the controller is
asymptotically stable, meaning the closer the state is to the equilibrium, the slower the convergence
rate. Therefore, a specific class of SMC, the more modern Terminal Sliding Mode Controller (TSMC),
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will be considered. Here, the steady-state convergence is achieved by ramping up the control input to
speed up the convergence to ensure that the state reaches the equilibrium in finite time[40]. For TSMC
a system of the form of Eq. 5.3a, where f(x, t) is the state transition function, b(x, t) the internal un-
certainty function, x the state vector, u the input vector, and ξ(x, t) represent the external disturbances.
Here, ueq is defined by Eq. 5.3b. The sliding vector is defined as in Eq. 5.3c. The time to reach
equilibrium is defined by Eq. 5.3d. Here, x is the state variable, β, and γ are tuning parameters where
γ = q

p with q and p positive odd integers.

ẋ = f(x, t) + b(x, t)t+ ξ(x, t) (5.3a)

ueq = −
(
∂s

∂x
b(x, t)

)−1 (
∂s

∂x
f(x, t) + ξ(x, t)

)
(5.3b)

s = ẋ+ β|x|γsgn(x) (5.3c)
ts = β−1(1− γ)−1|x(0)|1−γ (5.3d)

The advantages of the TSMC are listed below:

Robustness: The TSMC is robust to system uncertainties and external disturbances.
Suitability for nonlinear systems: TSMC handles nonlinear system dynamics without linearization.

The disadvantages of the TSMC are listed below:

Chattering: Due to the discontinuous switching of control laws close to the sliding surface, a TSMC
is prone to high-frequency oscillations in the control signals, potentially causing increased wear
on actuators.

5.1.4. Selection
The goal of the project is to reduce path deviation in an FMWV trajectory tracking vehicle. Therefore,
in Ch.. 3, an FMWV is designed. This vehicle is fitted with an OrangePi Zero2 microcomputer. As
discussed in Ch.. 4, the microcomputer is tasked with the processing of a SLAM algorithm, as well as
an extended Kalman filter. Apart from that, a wheel angular velocity controller is implemented. Con-
sidering this system, it was determined that the computational burden on the microcomputer imposed
by the selected control algorithm should be minimized. This rules out the MPC, as it imposes the high-
est computational load. The LQR was selected to be the most suitable, as the TSCM imposes an
increased wear on the physical system. TSMC provides high disturbance rejection with the trade-off
being high frequency oscillations in the control signal imposing increased wear on the actuator. This is
not desirable, as disturbance rejection is not a requirement. Therefore, the LQR is selected to be the
most fitting control strategy for this project due to its stability guarantee, computational efficiency, and
ease of implementation. A problem however arises when analyzing the plant model formulated in Sec.
3.3. The plant model is nonlinear and therefore not directly suitable for use with the LQR. Therefore in
Sec. 5.2 two methods of linearizing the plant dynamics are discussed.

5.2. Control-oriented System Modeling
In Sec. 3.3, the FMWV was modeled using a dynamical description. In this section, the same FMWV
will be modeled, however with the purpose of using the model with an LQR in mind. This means that
a linear state space equation of the model should be determined. Firstly, the system will therefore be
modeled using kinematics, which will serve as the baseline controller. Secondly, the dynamical plant
model will be linearized to be suitable for application in a controller which will be the proposed controller.

5.2.1. Kinematic Modeling
The kinematic equations describing the steady state velocities of the FMWV are presented in Equa-
tions 2.1 and 2.2 [12]. These equations however do not model the DC motor dynamics. Therefore,
introducing the dynamical DC motor torque model from [41], as listed in Eq. 5.4a is applied. There,
TL,i is the load torque on the motor i, ωi the angular velocity of wheel i, kt the torque constant of the
DC motor, R the ohmic armature resistance, and Ei the voltage applied to DC motor i. The torque is
related to the angular acceleration of the wheel by applying Newton’s second law of rotational motion
as listed in Eq. 5.4b [38].
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TL,i =
−k2t
R

ωi +
kt
R
Ei (5.4a)

ω̇i =
TL,i
Ir

(ωi, Ei) (5.4b)

[38] also proposes a kinematic model of an FMWV with different mounting orientations of the Mecanum
wheels to the vehicle frame. Combining this model with the kinematic model of [12], the state space
equation in Eq. 5.5 is obtained. In this state space representation of the FMWV, W is the wheel
configuration matrix presented as in Eq. 2.1. The vehicle velocities, vx, vy, and Ω are defined in the
local vehicle frame.

v̇xv̇y
Ω̇

 = − k2t
IrR

vxvy
Ω

+
kt
IrR

W


E1

E2

E3

E4

 (5.5)

The goal of this project is to design a trajectory-tracking FMWV. This requires the state to be expanded,
as currently, only the velocities in the reference frame of the vehicle are represented. The pose of the
vehicle in the world frame is required to create adequate control over the pose of the vehicle. Therefore,
the velocities in the vehicle frame are translated to the world frame using Eq. 5.6 [42]. This is used to
calculate the position in the world frame by translating and integrating the vehicle velocities measured
by the onboard sensors. The inverse of this matrix can be used to translate the coordinates from the
vehicle reference frame to the world reference frame.ẋworldẏworld

ψ̇world

 =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ∗

vx,vehiclevy,vehicle
Ωz

 (5.6)

The combined kinematic model is represented below.



v̇x
v̇y
Ω̇z

ẋworld
ẏworld
ψ̇

 =


−c1 0 0 0 0 0
0 −c1 0 0 0 0
0 0 −c1 0 0 0

cos(ψ) −sin(ψ) 0 0 0 0
sin(ψ) cos(ψ) 0 0 0 0

0 0 1 0 0 0

 ∗


vx
vy
Ω

xworld
yworld
ψworld

+

ktrframe
4IrR


1 1 1 1
1 −1 −1 1

− 1
l1+l2

1
l1+l2

− 1
l1+l2

1
l1+l2

0 0 0 0
0 0 0 0
0 0 0 0

 ∗


E1

E2

E3

E4

 (5.7)

The problem with this model is that the state space model is dependent on the state. This requires
linearization around an equilibrium point and consequent continuous updating of the controller gain. To
alleviate this problem, the approach of [43] is applied. Here, the world-to-vehicle frame conversion is
done before the controller ensuring that the input to the controller is fully in the vehicle frame. This way,
the state dependency is removed from the state space equation. The obtained state space equation is
presented in Eq. 5.8. The controller performance is not affected by this translation, the computational
load is however greatly reduced.
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

v̇x
v̇y
Ω̇z

ẋvehicle
ẏvehicle
ψ̇

 =


−c1 0 0 0 0 0
0 −c1 0 0 0 0
0 0 −c1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 ∗


vx
vy
Ω

xvehicle
yvehicle
ψ

+

ktrframe
4IrR


1 1 1 1
1 −1 −1 1

− 1
l1+l2

1
l1+l2

− 1
l1+l2

1
l1+l2

0 0 0 0
0 0 0 0
0 0 0 0

 ∗


E1

E2

E3

E4

 (5.8)

5.2.2. Dynamic Modeling
In Sec. 3.3 a dynamical plant model of an FMWV is described. This model describes the translational
as well as the rotational movement of the vehicle. This model is made nonlinear by the friction coeffi-
cient estimation, using the hyper tangent function, and the DC motor dynamics. This model must be
linearized to be used for LQR control.

Linearization is implemented by calculating the Jacobian around an equilibrium point following the
methodology used in [44]. Therefore, firstly, the Jacobian of both the state matrix A as well as the
input matrix B must be computed as seen in Eq. 5.9d. The linearization will be around the reference
state. In this reference state, the input required for equilibrium can be calculated by setting the state
space equation equal to zero and filling in the reference state values. The four inputs, the input volt-
ages to the motors Ei, are the remaining unknowns, where 6 equations are available. Therefore the
reference input uref can be calculated. In this way, a linearized model is obtained in the form of Eq.
5.9c that can be used for the calculation of the LQR gain. The resultant control input is implemented
as in Eq. 5.9e.

x̄ = x− xref , ū = u− uref (5.9a)
˙̄x = ẋ = f(x, u) (5.9b)

˙̄x ≈ f(xref , uref ) +
∂f(xref , uref )

∂x
+
∂f(xref , uref )

∂u
= Alinx̄+Blinū (5.9c)

Alin =



∂v̇x
∂vx

∂v̇x
∂vy

∂v̇x
∂Ωz

∂v̇x
∂x

∂v̇x
∂y

∂v̇x
∂ψ

∂v̇y
∂vx

∂v̇y
∂vy

∂v̇y
∂Ωz

∂v̇y
∂x

∂v̇y
∂y

∂v̇y
∂ψ

∂Ω̇z

∂vx
∂Ω̇z

∂vy
∂Ω̇z

∂Ωz

∂Ω̇z

∂x
∂Ω̇z

∂y
∂Ω̇z

∂ψ

∂ẋ
∂vx

∂ẋ
∂vy

∂ẋ
∂Ωz

∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂ψ

∂ẏ
∂vx

∂ẏ
∂vy

∂ẏ
∂Ωz

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂ψ

∂ψ̇z

∂vx

∂ψ̇z

∂vy

∂ψ̇z

∂Ωz

∂ψ̇z

∂x
∂ψ̇z

∂y
∂ψ̇z

∂ψ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=xref

Blin =



∂v̇x
∂E1

∂v̇x
∂E2

∂v̇x
∂E3

∂v̇x
∂E4

∂v̇y
∂E1

∂v̇y
∂E2

∂v̇y
∂E3

∂v̇y
∂E4

∂Ω̇z

∂E1

∂Ω̇z

∂E2

∂Ω̇z

∂E3

∂Ω̇z

∂E4
∂ẋ
∂E1

∂ẋ
∂E2

∂ẋ
∂E3

∂ẋ
∂E4

∂ẏ
∂E1

∂ẏ
∂E2

∂ẏ
∂E3

∂ẏ
∂E4

∂ψ̇
∂E1

∂ψ̇
∂E2

∂ψ̇
∂E3

∂ψ̇
∂E4



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u=uref

(5.9d)

u = uref −K(x− xref ) (5.9e)
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5.3. Controller Implementation, Tuning, and Reference Generation
The controller is implemented in Matlab Simulink. From Simulink, using the Simulink Coder toolbox,
the model is converted and compiled to C code to make it suitable for real-time implementation.

Bryson’s rule states that to determine the weights for an LQR, Eq. 5.10a must be used. This rule
serves as a base for tuning the weights but a heuristic tuning process must be applied to find the best
performance.

In this research, tuning of the state-deviation-weight matrix Q is done in simulation. This is done by
increasing the weights until oscillations occur, indicating that the gain on state correction became too
aggressive. At this point, the weights are slightly reduced to eliminate the oscillations and achieve a
more stable performance. The simulation is then run with both controllers to ensure no faulty behavior.

The control-weight matrix R, on the other hand, was kept constant during this tuning process. Ad-
justments to R were found to reduce the system’s tracking performance. Specifically, increasing the
control weights led to low-magnitude control inputs, reducing the tracking accuracy. On the other hand,
decreasing the control weights resulted in control inputs that exceeded the physical limitations of the
system, as the maximum allowable voltage of 12V was exceeded. After tuning, the controllers show a
balance between control input magnitude and tracking performance, without oscillations.

Qii =
1

maximum acceptable value of x2i
, i = 1, 2, ..., l (5.10a)

Rwii =
1

maximum acceptable value of u2i
, i = 1, 2, ..., k (5.10b)

Since the FMWV is controlled not only on pose but also on velocity, a suiting reference must be gener-
ated. The main reference is the pose over time, also called the trajectory. The vehicle’s actual velocity
is used in the reference velocity generation to improve the robustness of the control. Starting with the
trajectory, a reference velocity is calculated by differentiating the trajectory to time. It should be noted,
that the reference trajectory is defined in the world frame, where the reference velocity must be defined
in the vehicle reference frame. Therefore, the differentiated trajectory,

[
ẋref (t) ẏref (t) ψ̇ref (t)

]⊺ is
translated into the vehicle frame using Eq. 5.11, to obtain

[
vx,ref (t) vy,ref (t) Ωref (t)

]⊺ [45].

vx,ref (t)vy,ref (t)
Ωref (t)

 =

[
cos(ψref (t)) sin(ψref (t))
−sin(ψref (t)) cos(ψref (t))

]ẋref (t)ẏref (t)

ψ̇ref (t)

 (5.11)

This velocity vector in the vehicle frame of reference could be combined with the trajectory to obtain the
complete reference state vector. However, this relation would only hold in an ideal world. In the real
world, however, disturbances are expected. Consequently, it will happen that the trajectory tracking is
either leading or lagging the reference trajectory. An example that could introduce a lag between the
reference and the actual trajectory, could be actuator lag on the physical FMWV as described in the
plant modeling in Sec. 3.3. If in this case the reference velocity would be kept as in the ideal case, the
reference would not correspond to the actual required velocity. Therefore, a P controller is designed
that counteracts the delta velocity. This delta velocity is calculated below, where G is a gain to be tuned
in the experimental phase. ∆vx(t)∆vy(t)

∆Ω(t)

 = G

vx,refvy,ref
Ωref

−

vx,actualvy,actual
Ωactual

 (5.12)

The combined, compensated reference signal is formulated below.

vx,ref,comp(t)vy,ref,comp(t)
Ωref,comp(t)

 =

[
cos(ψref (t)) sin(ψref (t))
−sin(ψref (t)) cos(ψref (t))

]ẋref (t)ẏref (t)

ψ̇ref (t)

+G

vx,refvy,ref
Ωref

−

vx,actualvy,actual
Ωactual

 (5.13)



6
Simulation Validation

In this chapter, the designed vehicle and control system are validated. This is done in several steps.
First, the DC motor model is simulated to verify the model and its parameters. Second, the tire model
is simulated. Third, the control performance of the controller designed with the kinematic-based linear
model will be compared to the controller designed with the linearized dynamic model.

6.1. DC Motor Model
In Sec. 3.3, a dynamical model of a DCmotor is presented. The parameters of this model are calculated
using the datasheet of the used DC motor. The wheel inertia is calculated assuming uniform weight
distribution in the wheel. The simulated DCmotor torque curve is shown in Fig. 6.1a. From the figure, it
can be noted that the stall torque of the motor is 0.51Nm and the no-load angular velocity is 41.89 rad/s
which translates to approximately 400RPM, which are the rated stall torque and angular velocity of this
motor respectively. The data was captured by applying a virtual step of 12V to the simulated DC motor
with the parameters from the datasheet of the JGA25-370 DCmotor using theMatlab Simulink software.

Fig. 6.1b shows a comparison of the step response of the dynamical DCmotor model and the linearized
model. Since the linearized model does not take into account the inertia of the wheel, it can be noted
that the step response is instantaneous for the linearized model. The curve of the dynamical model
clearly shows the expected rise time caused by the wheel’s inertia, combined with the finite torque.

32
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(a) Simulated torque curve of the JGA25-370 DC motor
(b) Comparison of the dynamical DC motor model and its linearization

using a 12V input step.

6.2. Tire Model
The tire model is presented in Ch. 3.3 as part of the plant model in Eq. 3.2c. In this model, two
parameters c1 and c2 are to be defined. c1 represents the friction coefficient between the wheel contact
point and the floor surface. c2 represents a unitless parameter similar to tire stiffness. Two values of
the friction coefficient are chosen for simulation as listed in Tab. 6.1. c2 is set to be 0.5−. The results
are shown in Fig. 6.2. A clear distinction can be seen in the level of friction that is generated. The
slope in the linear region is increased, however as c2 is kept constant, the width of the linear region is
not changed.

Figure 6.2: Comparison of friction coefficient with constant tire stiffness as used in the simulation.
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6.3. Controller Performance
This section describes the differences between the two controllers, designed in Ch. 5, by applying the
baseline and the proposed controller to the simulated FMWV in two scenarios. After defining the test
scenario, a set of performance metrics is defined. These metrics are consequently checked to evaluate
the performance of the controllers in all scenarios.

Table 6.1: List of different tests comparing the performance of the kinematic model- and dynamic model-based LQR.

Test # c1 Controller model
1 0.5 Kinematic
2 0.5 Dynamic
3 0.093 Kinematic
4 0.093 Dynamic

6.3.1. Scenario
The simulated scenario consists of a square trajectory with sides of 1m in length that will be traversed
in a clockwise direction as seen in Fig. 6.3. The reference is generated throughout 50 s where every
10 s the next reference point is published. The vehicle must reach the reference point as quickly as
possible without overshooting. The scenario is simulated on two surfaces, one with a high and one with
a low friction coefficient. The high friction coefficient, c1 = 0.5, referring to the notation of Eq. 3.2c, is
the static friction coefficient between dry concrete and polyurethane rubber. The low friction coefficient,
c1 = 0.093, is the coefficient between a wooden floor with a layer of dust and polyurethane rubber. In
both cases, the polyurethane rubber is referred to as the rubber on the contact surface of the FMWV.

Figure 6.3: Reference path

6.3.2. Performance Metrics
A set of performance metrics must be determined to evaluate the performance of both controllers. The
main metrics are the tracking error metrics. The Root Mean Square Error (RMSE) is a measure of
the path deviation over the whole trajectory. The RMSE is calculated using Eq. 6.1a The RMSE does
however not show the outliers of the error. Therefore the Maximum Error (MaxE) must also be taken
into account. The MaxE is calculated using Eq. 6.1b.

As the controllers are implemented on a real-time embedded system, the computational load must be
limited. The computational load must not exceed the capabilities of the onboard PC. This metric is
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checked in the experimental phase.

RMSE =

√√√√ 1

N

N∑
i=1

(xi − xi,ref )2 (6.1a)

MaxE = max

(√
(xi − xi,ref )2 + (yi − yi,ref )2

)
(6.1b)

6.3.3. Performance Evaluation: High Friction
Fig. 6.4a shows the traversed path of the vehicle in test 1 & 2, with high friction between the wheels
and surface. The difference between the two controllers is not notable from this diagram. As seen in
Tab. 6.2, the RMSE in longitudinal as well as lateral direction of the vehicle, in tests 1 and 2 is only
2mm apart over a trajectory of 4m distance. Also, the MaxE in longitudinal as well as lateral direction
is zero, rounded to the nearest thousandth.

A difference can however be noted in the angular wheel velocities and the jerk imposed on the wheels
in Fig. 6.5a, and 6.5c respectively. As seen in Fig. 6.5c, the jerk is increased on the initial startup
of the motors. This difference shows the increase in the absolute value of the gain. The same state
error invokes a higher control input. This is consequent to the dynamic model-based control account-
ing for the slipping of the wheels, whereas the kinematic model-based controller does not. Therefore,
to achieve the same acceleration, a higher input is required according to the dynamic model-based
controller. The difference can be seen visually in Fig. 6.5a. Due to the increase in jerk and consequent
acceleration, the vehicle can start decelerating earlier resulting in a reduced total effort. To calculate
whether the amount of energy used has been reduced as well, the current would have to be calculated,
but this is out of the scope of this project.

As seen in Fig. 6.5e, the slip velocity in the high-friction scenario is limited to peaks of 0.09m/s. Com-
bining this information with the friction coefficient, as shown in Fig. 6.5g, it can be seen that the wheels
operate in the linear region of the friction coefficient curve. This confirms again the previous observa-
tion that the amount of wheel slip is limited. This is also the main reason that the difference between
the two controllers is limited in these scenarios. It is expected that when the vehicle operates in the
nonlinear part of the friction coefficient curve, the difference between the two controllers becomes more
apparent. This will be researched in the next section.

6.3.4. Performance Evaluation: Low Friction
As predicted in the previous subsection, the differences between the controllers become more visible
when the friction coefficient is low, implying a more slippery surface such as a dusty wooden floor. Fig.
6.4 shows the traversed path of the simulated vehicle when again controlled by the kinematic model-
based LQR, as well as the dynamic model-based LQR, in the low-friction scenario respectively. In
this scenario, the vehicle overshoots its target by 67mm as reflected by the MaxE in Tab. 6.2 when
controlled by the kinematic model-based LQR. When controlled by the dynamic model-based LQR, the
vehicle shows similar performance as in the high-friction scenario. As seen in Tab. 6.2, the RMSE
in longitudinal as well as lateral direction of the vehicle in the low-friction scenario are increased by
48% and 30% compared to the high-friction scenario respectively. As expected from Fig. 6.4b, the
increase in RMSE is less when the dynamic model-based LQR is applied. Similarly, as seen in Tab.
6.2, the MaxE is 67mm and less than 0.1mm when using the kinematic model-based and dynamic
model-based LQR respectively.

Figures 6.6a & 6.6b show the lateral velocity curves over time of the simulated FMWV in high and
low-friction scenarios respectively. From these figures, notably, the kinematic model-based controlled
FMWV reaches a higher velocity magnitude of 0.65m/s compared to 0.58m/s of the dynamic model-
based controller FMWV in the low-friction scenario and 0.75m/s compared to 0.65m/s in the low-friction
scenario.

Also, it is notable that the maximum velocity magnitude in the high-friction scenario is lower than in
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the low-friction scenario. This seems counter-intuitive. However, this is caused by the lagging of the
position compared to the current reference position as seen in Fig. 6.6b. This causes the velocity to
be increased further than the reference velocity to try to counteract the delta position in time. The kine-
matic model-based controller however does not take into account the friction limit of the wheels, which
can be seen in Fig. 6.5h, and therefore is not able to control the velocity in a way where the overshoot
in position is avoided.

(a) (b)

Figure 6.4: Cartesian diagrams of the traversed path in simulation using both the kinematic model-based LQR and the
dynamic model-based LQR. The scenario is repeated with high friction, test 1 & 2, and with low friction, test 3 & 4.

Table 6.2: Key Performance Indicators from simulation of a kinematic model-based LQR, and a dynamic model-based LQR

Metric
Scenario

High friction Low friction
Kinematic
based (1)

Dynamic
based (2)

∆
(absolute)

∆
(%)

Kinematic
based (3)

Dynamic
based (4)

∆
(absolute)

∆
(%)

RMSE longitudinal (mm) 58 60 2 3.4 86 78 -8 -8.8
RMSE lateral (mm) 58 60 2 3.4 86 78 -8 -8.8
RMSE angular (rad) <0.1 <0.1 <0.1 - <0.1 <0.1 <0.1 -
MaxE (mm) <0.1 <0.1 <0.1 - 67 <0.1 -67 -100



6.3. Controller Performance 37

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Comparison of the angular wheel velocity, angular wheel jerk, friction coefficient, and slip velocity of evaluated
controllers in a square reference path with high- and low friction conditions respectively. Only data from wheel 1 is shown.

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Comparison of velocity states of evaluated controllers in a square reference path with high- and low-friction
scenarios respectively.



7
Experimental Validation

Following the methodology established in the simulation validation in Ch. 6, the controller’s perfor-
mance is assessed through a series of four tests, distributed across two distinct scenarios. This sec-
tion begins with a comprehensive description of the experimental setup, detailing the environment, and
procedures used to conduct the tests. Subsequently, the adjustments made to the control system in
preparation for the experiments are explained. Finally, the vehicle’s performance is evaluated, provid-
ing insights into its operational effectiveness under the tested conditions.

7.1. Experimental Setup
The vehicle must track a trajectory in a high-friction, and a low-friction scenario. The high-friction sce-
nario is easily achieved as this is the nominal condition for most households. However, the challenge
is to create a low friction surface to test the potential of the proposed dynamic model-based controller
found in the simulation validation in Ch.6. As found by [46], the friction coefficient of a floor surface can
be reduced by up to 92 % by introducing a sand-like material spread evenly on the floor surface. In a
practical sense, sand was not an option due to space contamination. Therefore, flour was chosen as
it is easy to clean using a vacuum cleaner but still similar to fine sand in a way that greatly reduces
the available friction. It must be noted that the exact friction coefficient was not determined due to time
constraints. The experimental low-friction scenario is shown in Fig. 7.1.

7.2. Control System Adjustments
In preparation for the experiments, the controllers designed in Ch.5 are adapted to the embedded
platform. First, the control frequency was adapted to 25Hz. This actuator frequency is chosen by con-
sidering the operating frequency of the Kalman filter which is 30Hz. By choosing an actuator frequency
just below the sensor frequency, it is made sure that for each new actuator command, a new measure-
ment is used. At this set of operating frequencies, the four cores of the embedded PC do not surpass
60% of their capacity and operate at an average of 50% of their capacity. Operating around 50% of the
embedded PC increases the robustness of the system, as it allows for unforeseen computations as
they might occur.

One sacrifice that had to be made was the implementation of the SLAM algorithm. Without the con-
trol system running, this algorithm already saturated all four cores of the embedded PC. Using this
implementation, it is measured that the update frequency of the vehicle’s pose published by the SLAM
algorithm did not surpass 0.5Hz. This update frequency makes the SLAM system’s contribution to the
system’s performance negligible. Therefore, it is decided that the full capabilities of the ROS network
must be used. A separate PC was configured to operate in the same LAN network and corresponding
ROS network as the robot. The localization using SLAM is then structured as follows. On the robot,
the scan data taken from the LiDAR sensor is published on the scan topic at 10Hz. As seen in Fig.
7.2, the SLAM software on the separate PC reads the scan data and publishes the calculated pose on
the pose topic of the ROS network. The pose is set to update at 2Hz. This is however only achieved
when the grid of the map is constructed of 100mm by 100mm cells. The trade-off between accuracy

38



7.3. Performance Evaluation: High Friction 39

Figure 7.1: Experimental low-friction scenario created with a layer of flour on a wooden floor surface.

Legend

Node on ES

Node on PC

Topic

MessageScan 
message

LiDAR
Node

Scan
Topic Pose

message

SLAM
Node

Pose
Topic

EKF
Node

Scan
message

Pose
message

ROS master ROS param

Figure 7.2: Overview of a ROS network where a SLAM node is run on a PC which communicates with the remaining ROS
network on the embedded system.

and update frequency makes it so that the SLAM localization does not benefit to the trajectory tracking
performance of the FMWV. During heuristic testing of the settings, it was even found that the perfor-
mance was worsened because of the time lag the pose estimate from the SLAM algorithm contained.
When the grid size is reduced, the lagging is no longer problematic. The location estimate however
becomes precise to 100mm, which is 10% of one side of the square trajectory.
To complete the localization on the vehicle, the EKF is set up. To ensure the correct operation of the
EKF, the variance of the pose and velocity measurements need to be determined. The variance is
determined by keeping the vehicle stationary and recording the pose and velocity for each sensor for 1
minute. Of the obtained signals, the variance is calculated. The process noise of the EKF is determined
heuristically according to the performance of the localization. Apart from that, the controller weights
are tuned in an attempt to take into account the modeling errors that cause the differences between
the simulations and the experiments.

7.3. Performance Evaluation: High Friction
Fig. 7.3a shows the traversed path of the vehicle in the high-friction scenario, controlled by the baseline
controller. Fig. 7.3b shows the traversed path of the vehicle in the high-friction scenario, controlled by
the proposed dynamic-model-based controller. This high-friction scenario experiment corresponds to
the simulation result in Fig. 6.4a. This figure and analysis show that tracking with only minor refer-



7.3. Performance Evaluation: High Friction 40

ence deviations is expected from the simulation. However, the maximum absolute deviations of 77mm
and 68mm from the reference path are noted for the baseline and proposed controller respectively
in specific experiments. The mean maximum absolute deviations from the reference path are 47mm
and 54mm, as listed in Tab. 7.1. Since the maximum deviations are 63% and 26% larger than the
mean maximum deviations, these are considered outliers caused by localization error. A deviation in
localization is further enhanced by actuator error and delay. Actuator error is when the expected output
torque for a defined input voltage is not as expected from the datasheet. Actuator delay, however, is
something that is expected in the system. This delay is the difference in time between the command
given and the command performed. Command line saturation, motor dynamics, or computational delay
cause this type of delay.

A consistent deviation in lateral displacement can be observed from Fig. 7.3 and Fig. 7.5. This deviation
is consistent over both low and high-friction surface scenarios and for the two considered controllers.
This deviation is explained by observing the experiment visually combined with the data. Visually it can
be noted that when the vehicle is within 40mm to the target position when moving in the lateral direc-
tion, the motor torque becomes lower than required to overcome the friction of the wheels to maintain
a non-zero angular velocity. This type of friction is not modeled. It is the friction felt when rotating the
wheels on one side of the vehicle to achieve lateral movement. The error is corrected as expected
once the vehicle moves to the next reference point in a longitudinal direction.

(a) (b)

Figure 7.3: Cartesian diagrams of the traversed path in the experiment using both the baseline kinematic model-based LQR,
(a), and the dynamic model-based LQR (b). The experiment is performed on a surface with high friction.

Analyzing Fig. 7.4, it can be noted that the vehicle’s velocity in longitudinal and lateral directions is
lagging for both the baseline and the proposed controller which is caused by a combination of actuator
delay and wheel slip. It must also be noted that both controllers experience an oscillatory behavior
in deceleration, however of a larger magnitude for the proposed controller. This oscillation is caused
by the lack of resistive friction in the models used for the design of the controllers. According to the
model, acceleration and deceleration of the vehicle are achieved with the same magnitude. However,
in the experiment, it can be seen that in deceleration the magnitude of deceleration is higher due to
the unmodeled resistive friction acting on the vehicle’s and its wheels. The controller consequently
receives an undershoot of the vehicle velocity as input and increases the control input. Combined with
the actuator and sensor delay present in the system an oscillation of the vehicle velocity results.

As in Ch.6, KPIs are used to numerically compare the baseline and proposed controller’s trajectory
tracking performance. From the simulation analysis, both controllers are expected to perform similarly
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Comparison of velocity states in a square reference path using both the kinematic model-based LQR and the
dynamic model-based LQR.

in the high-friction scenario. The KPIs from the experiments are listed in Tab. 7.1. It must be noted,
that however the percentile differences are large, the absolute differences are small. The difference in
mean RMSE is 8mmand 18mm for the longitudinal and lateral directions respectively. The difference in
mean maximum error is 7mm, which is negligible over a trajectory of 1m by 1m. These deviations can
be attributed to localization errors. Therefore, it is concluded that the controllers behave similarly in the
high-friction scenario, as expected from the simulation, however with deviation caused by localization
error, actuator lag, and sensor lag.

7.4. Performance Evaluation: Low Friction
The simulation in Ch.6 shows and elaborates on the differences between the tracking performance of
the baseline and the proposed controller in a low-friction scenario. In the simulation, the vehicle con-
trolled by the baseline controller overshoots the reference trajectory. Fig. 7.5 shows the trajectory of
the FMWV on a low friction surface. Fig. 7.5a shows the trajectory of five representative experiments
where the FMWV is controlled by a kinematic model-based trajectory tracking LQR. Fig. 7.5b shows
the trajectory of five representative experiments where the FMWV is controlled by a dynamic model-
based trajectory tracking LQR. A total of 55 experiments were done to come to the results presented.

From these figures, it can be concluded that the result deviates from the simulation as the vehicle
does not overshoot the trajectory for either controller in the low-friction scenario. Other differences
are however apparent. From the trajectories, it can be noted that when the vehicle is controlled by
the baseline controller in some experiments the path deviation has outliers of up to 74mm where the
proposed controller does not show such outliers. On the other hand, when the vehicle is controlled
by the baseline controller it can be noted that the lateral error when moving towards a reference point
laterally is reduced from 63mm to 33mm consistently. This behavior is discussed before in Sec. 7.3.
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(a) (b)

Figure 7.5: Cartesian diagrams of the traversed path in the experiment using both the baseline kinematic model-based LQR,
(a), and the dynamic model-based LQR (b). The experiment is performed on a surface with low friction.

From Fig. 7.6 it can be noted that the maximum velocity both longitudinally and laterally is lower
when the vehicle is controlled by the proposed controller compared to the baseline. The mean of the
maximum lateral velocities vx is reduced from 0.72m/s to 0.65m/s. Also, the magnitude of the yaw
rate is of greater magnitude when the vehicle is controlled by the proposed controller compared to the
baseline. The mean of the maximum absolute yaw rate is increased from 0.13 rad/s to 0.18 rad/s.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Comparison of velocity states in a square reference path using both the kinematic model-based LQR and the
dynamic model-based LQR.

The KPIs for the low-friction scenario are listed in Tab. 7.1 below. In both longitudinal and lateral direc-
tions, the dynamic model-based controller shows a lower mean RMSE than the kinematic model-based
controller. The mean angular RMSE is however increased when using the dynamic model-based con-
trol. The mean MaxE is similar for both controllers with only 3mm difference, which could be attributed
to localization error.

From these observations, it can be concluded that in the current experimental setup, the dynamic
model-based controller outperforms the kinematic model-based controller in the low-friction scenario.
More importantly, in both the high- and low-friction scenarios the dynamicmodel-based controller shows
a reduction in means RMSE in translational movement.

Table 7.1: Key Performance Indicators from the experiments of a kinematic model-based LQR, and a dynamic model-based
LQR trajectory tracker.

Metric
Scenario

High friction Low friction
Kinematic
based (1)

Dynamic
based (2)

∆
(absolute)

∆
(%)

Kinematic
based (3)

Dynamic
based (4)

∆
(absolute)

∆
(%)

mean RMSE longitudinal (mm) 71 63 -8 -11.3 80 54 -26 -32.2
mean RMSE lateral (mm) 84 66 -18 -21.5 95 55 -39 -41.6
mean RMSE angular (rad) 0.022 0.060 0.038 142.6 0.028 0.068 0.040 175.1
mean MaxE (mm) 47 54 7 14.9 49 52 3 6.1
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Conclusion

Trajectory tracking is defined as the ability of a vehicle to track a reference position and velocity over
time. In this research, model-based-control is applied to achieve trajectory tracking of an FMWV to an-
swer the research question: What are the benefits of using a dynamic-model-based trajectory tracking
controller, for a four-Mecanum-wheeled-vehicle, over a kinematic-based one?

To answer this question, an FMWV is designed and built. This consists of designing and implementing
the vehicle’s hardware and software, the localization, the kinematic-model-based trajectory tracking
control, and the dynamic-model-based trajectory tracking control.

The vehicle’s hardware is designed according to a set of requirements. Each component is chosen
according to these requirements. The PC and microcontroller, however, were adopted from the Mirte
project, as the software from this project was also used as a basis for this research to save time in soft-
ware development. The consequence of this design decision was that the software had to be designed
such that the computational power matched that of the PC. This is achieved in all software parts, apart
from the localization. For the localization, a combination of three types of sensors is used, combining
to a total of 6 sensors. Four encoders, one IMU and one LiDAR were installed on the vehicle. The four
encoders together provide a pose and velocity measurement. The IMU provides a linear and an angu-
lar acceleration measurement. The LiDAR provides laser scan measurements, which are processed
by a SLAM algorithm to calculate the vehicle’s pose and velocity. However, the SLAM algorithm is com-
putationally too heavy for the OrangePi PC. An attempt is made to transfer the algorithm to a separate
PC, however, the localization performance is insufficient.

Following the design of the vehicle’s hardware, software, and localization, the plant model is defined.
The plant model is constructed of a simplified tire model, a DC motor model, a translational dynamic
model, and a yaw moment model. The result is a nonlinear dynamical model that incorporates friction
estimation for an FMWV.

To design and implement two trajectory-tracking LQRs, two models are used. First, a kinematic model
of an FMWV from the literature is adapted to this research by incorporating a DC motor model. The
velocity state is expanded by including the pose in the world frame to formulate the new state space.
This expansion makes the state dependent on the pose of the vehicle. Therefore, the pose in the world
frame is transformed into the vehicle’s reference frame. The same is done for the input to the controller
to ensure correct operation. In this way, a linear state space is formulated, suitable for an LQR.

Second, the dynamical plant model is linearized for use in an LQR. The pose of the vehicle influences
the linearization. Therefore, the model is linearized offline algebraically. At each controller time step,
the linearization and consequent LQR gain are calculated numerically during runtime.

The simulation validation shows the benefits of using a dynamic model-based trajectory tracking con-
troller in a low-friction scenario. In this low-friction scenario, the vehicle overshoots its target in longi-
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tudinal and lateral directions using the kinematic model-based controller by 67mm but does not with
the dynamic model-based controller. This difference is explained by the lack of slip modeling in the
kinematic model, which assumes a no-slip infinite friction scenario. The dynamic model incorporates a
simplified tire model to estimate the available friction. Because of this, the vehicle tracks the trajectory
without overshooting in the low-friction scenario. In the high-friction scenario, the behavior of the con-
trollers is comparable, which is to be expected as the magnitude of the slip velocity is low enough that
the tire operates in the linear region of the friction coefficient.

During experimental validation, it was again concluded that in the high-friction scenario, the perfor-
mance of both controllers was comparable. The results from the experiments in the low-friction scenario
differed from the expectation. The trajectory of neither controller overshot the reference as predicted
in the simulation. Nonetheless, the benefits of using the dynamic model-based controller were shown.
The dynamic model-based controller outperformed the kinematic model-based control in the low-friction
scenario, both in consistency, and a reduction in translational longitudinal and lateral RMSE of 32.2%
and 41.6% respectively.

From this research, it can be concluded that the benefits of using a dynamic-model-based trajectory
tracking controller, for a four-Mecanum-wheeled-vehicle, over a kinematic-based one are apparent in
low-friction conditions. In high-friction conditions, the performance is comparable. In the low-friction
scenario, the simulation showed a reduction of RMSE of 8.8% in both longitudinal and lateral direc-
tions from the baseline to the proposed controller. The experimental validation showed a reduction
of RMSE of 32.2% and 41.6% respectively. The experimental validation differed from the simulation
validation in MaxE as the simulation validation showed a decrease inMaxE of 67mm where the exper-
imental validation showed an increase of MaxE of 3mm from the baseline to the proposed controller
in the low-friction scenario. To determine the cause of this deviation, several limitations of the imple-
mented FMWV are discussed below.

The results differed from the simulation, therefore, several possible sources of deviation are identified.
The torque delivery could be improved, the localization performance could be improved by solving the
LiDAR SLAM challenges, the quality of the Mecanum wheels could be improved, and the exact friction
coefficients could be determined to reduce the difference between the simulation and experiment. In
this way, the performance of the trajectory control could be improved upon further and resemble the
simulation more closely.

One potential source of deviation is the rated torque. The experiment showed a difference with the sim-
ulation in lateral tracking performance, particularly when the reference point is within 50mm distance
from the vehicle. The control input, the motor voltages, is below the level needed to generate a torque
large enough to maintain the rotation of the wheels. This could be solved by expanding the controller
model such that the output is a set of wheel angular velocities. This way, a wheel angular velocity
controller can be implemented to control the motor voltages to ensure the correct wheel angular veloc-
ity. Another solution could be to model the resistive friction in the plant model. This way, the friction
can be taken into account in the design and tuning of the control system. Adding resistive friction to
the controller model would be possible in the dynamic model-based controller as the model is force-
based. For the kinematic model-based controller, integrating the nonlinear resistive friction model is
more challenging as the friction would have to be modeled as a source of energy loss. A brute force
method would be to change to motors with higher torque at lower RPM to reduce the stalling voltage.
This will reduce the stalling distance to the reference point. This solution is seen as a last resort option.

Another factor to consider is the LiDAR SLAM trade-off. During the experiments, the trade-off between
computational load and accuracy of the localization made it so that the LiDAR SLAM localization did
not improve the pose estimate of the EKF. Either the frequency was adequate at 2Hz, but with an
accuracy of 100mm or the accuracy was adequate with an accuracy of 25mm but with a frequency
of 0.5Hz and consequent lag of up to 2 s. The result of the trade-off can be improved in two ways.
First, the SLAM algorithm could be optimized. MathWorks, the producer of the Matlab Simulink soft-
ware package, created the algorithm used in the implementation and was therefore expected to be a
high-level implementation. It could be possible that this implementation is not optimal for the use in
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ROS on an OrangePi Zero2. Therefore, a ROS-optimized SLAM algorithm might be the solution to
reducing the computational load of the SLAM algorithm. Second, the computational hardware could be
changed to a more powerful processor such that the update frequency will be optimized by increasing
the number of parallel computations or speeding up the single computations. Another way to handle
the sensor lag of the SLAM pose estimate could be to incorporate a strategy in the EKF that deals with
Out-Of-Sequence-Measurements (OOSM) [47].

The quality of the Mecanum wheels is also a critical aspect. During testing, it was found that the quality
of the Mecanum wheels could influence the performance of the controller. It was found that some of
the rollers had a higher resistance to rotation on the axis. The consequence of this resistance is that
when this particular roller with more resistance is active, instead of free rolling as modeled, the roller
exerts a force in the direction orthogonal to the axis of the roller therefore disturbing the vehicle’s motion.
However labor-intensive, this could be improved by lubricating the axis of rotation of the rollers after a
set of experiments. Another solution would be to use higher-quality Mecanum wheels that incorporate
roller bearings pressed into the rollers, as seen in Fig.8.1, instead of a metal axle with a plastic roller
without roller bearing.

Figure 8.1: Roller of a Mecanum wheel with integrated bearing[48].

Another structural issue is the rigidity of the frame. The frame used for mounting all sensors and actu-
ators is not equipped with independent suspension for each wheel. To ensure all wheels make equal
contact with the surface, the frame came equipped with a hinge at the center of the frame such that
both the vehicle’s axles could rotate freely around the vehicle’s longitudinal center line. The downside
of this hinge however is that over time the low-quality hinge developed slack. Therefore the two halves
of the frame could rotate and move longitudinally slightly in respect to each other. This distorts the
location and orientation of the wheels. This is a source of error for trajectory tracking. This could be
improved by removing the hinge to make a solid frame. The vehicle is expected to operate on a flat
surface, so a hinge is not required.

Lastly, determining the exact friction coefficients could greatly enhance the accuracy of the plant model.
The experimental friction coefficient could be measured such that the controller can be tuned in the
simulation. This could be a contributing factor explaining the difference between the simulation and the
experiment.



References

[1] J. Palacín et al. “Phasor-Like Interpretation of the Angular Velocity of the Wheels of Omnidirec-
tional Mobile Robots”. In: Machines 11 (2023).

[2] William Grey Walter: Machina Speculatrix [Online]. (2024, Jul, 16). URL: https://www.ros.org/
blog/2021-06-29-machina-speculatrix/.

[3] Hopkins Beast autonomous robot mod 2 with vision [Online]. (2024, Jul, 16). URL: https://
cyberneticzoo.com/cyberneticanimals/1962-5-hopkins-beast-autonomous-robot-mod-
ii-sonarvision-jhu-apl-american/.

[4] Shakey the Robot [Online]. (2024, Jul, 16). URL: https://www.sri.com/hoi/shakey-the-
robot/.

[5] L. Yang et al. “Path Planning Technique for Mobile Robots: A Review”. In:Machines 11.10 (2023),
p. 980.

[6] J. Grabowiecki. “Vehicle Wheel”. US Patent: 1,303,535. 1919.
[7] B. E. Ilon. “Wheels for a course stable self-propelling vehicle movable in any desired direction on

the ground or some other base”. US Patent: 3,876,255. 1975.
[8] D. Nedelkovski. Arduino Mecanum Wheels Robot. (2024, Jun, 6). URL: https://howtomechatr

onics.com/projects/arduino-mecanum-wheels-robot/.
[9] F. Jacob et al. “Picking with a robot colleague: A systematic literature review and evaluation of

technology acceptance in human–robot collaborative warehouses”. In: Comput. Ind. Eng. 180
(2023), p. 109262.

[10] I. Kubasakova et al. “Implementation of Automated Guided Vehicles for the Automation of Se-
lected Processes and Elimination of Collisions between Handling Equipment and Humans in the
Warehouse”. In: Sensors 24.3 (2024).

[11] L. Xie, K. Stol, and W. Xu. “Energy-Optimal Motion Trajectory of an Omni-Directional Mecanum-
Wheeled Robot via Polynomial Functions”. In: Robotica 38.8 (2020), pp. 1400–1414.

[12] P. Muir and C. Neuman. “Kinematic modeling for feedback control of an omnidirectional wheeled
mobile robot”. In: IEEE Int. Conf. Robot. Autom. (1987), pp. 1772–1778.

[13] I. Doroftei, V. Grosu, and V. Spinu. “Omnidirectional Mobile Robot - Design and implementation”.
In: Bioinspiration and Robotics Walking and Climbing Robots (2007), pp. 511–528.

[14] B. Van de wal et al. “Simplified Wheel Slip Modeling and Estimation for Omnidirectional Vehicles”.
In: IEEE Int. Conf. on Advanced Motion Control (AMC). 17th. 2022, pp. 389–395.

[15] E. Matsinos. “Modelling of the motion of a Mecanum-wheeled vehicle”. In: arXiv (2012).
[16] X. Chen, L. Cheng, and T. Li. “Adaptive Motion Tracking Control for Omnidirectional Mobile

Robots Based on Characteristic Model”. In: 41st Chinese Control Conf. (CCC). 2022, pp. 2876–
2881.

[17] E. Malayjerdi, H. Kalani, and M. Malayjerdi. “Self-Tuning Fuzzy PID Control of a Four-Mecanum
Wheel Omni-directional Mobile Platform”. In: Electrical Engineering (ICEE), Iranian Conf. on.
2018, pp. 816–820.

[18] P. Viboonchaicheep, A. Shimada, and Y. Kosaka. “Position rectification control for Mecanum
wheeled omni-directional vehicles”. In: 1 (2003), 854–859 vol.1.

[19] R. Pizá et al. “Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-
Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels”. In: Appl. Sci. 12.7
(2022).

47

https://www.ros.org/blog/2021-06-29-machina-speculatrix/
https://www.ros.org/blog/2021-06-29-machina-speculatrix/
https://cyberneticzoo.com/cyberneticanimals/1962-5-hopkins-beast-autonomous-robot-mod-ii-sonarvision-jhu-apl-american/
https://cyberneticzoo.com/cyberneticanimals/1962-5-hopkins-beast-autonomous-robot-mod-ii-sonarvision-jhu-apl-american/
https://cyberneticzoo.com/cyberneticanimals/1962-5-hopkins-beast-autonomous-robot-mod-ii-sonarvision-jhu-apl-american/
https://www.sri.com/hoi/shakey-the-robot/
https://www.sri.com/hoi/shakey-the-robot/
https://howtomechatronics.com/projects/arduino-mecanum-wheels-robot/
https://howtomechatronics.com/projects/arduino-mecanum-wheels-robot/


References 48

[20] V. Alakshendra and S. Chiddarwar. “A robust adaptive control of mecanum wheel mobile robot:
simulation and experimental validation”. In: Int. Conf. on Intelligent Robots and Systems (IROS).
2016, pp. 5606–5611.

[21] Z. Sun et al. “Path-following control of Mecanum-wheels omnidirectional mobile robots using
nonsingular terminal sliding mode”. In: Mech. Syst. Signal Process 147 (2021), p. 107128.

[22] X. Yu, Y. Feng, and Z. Man. “Terminal Sliding Mode Control – An Overview”. In: IEEE Open J.
Ind. Electron. Soc. 2 (2021).

[23] Z. Sun et al. “Fuzzy adaptive recursive terminal sliding mode control for an agricultural omnidi-
rectional mobile robot”. In: Comput. Electr. Eng. 105 (2023), p. 108529.

[24] Y. Han and Q. Zhu. “Robust Optimal Control of Omni-directional Mobile Robot using Model Pre-
dictive Control Method”. In: 2019 Chinese Control Conf. (CCC). 2019, pp. 4679–4684.

[25] A. A. Umar and J.S. Kim. “Nonlinear model predictive path-following for Mecanum-wheeled om-
nidirectional mobile robot”. In: Trans. Korean Inst. Electr. Eng. 70.12 (2021), pp. 1946–1952.

[26] L. Huang. “Review on Lidar-based Slam Techniques”. In: Int. Conf. Signal Process. Mach. Learn.
(CONF-SPML) (2021).

[27] C. Hungar. “Map-based Localization for Automated Vehicles using LiDAR Features”. In: IFAC-
PapersOnLine 50 (2021), pp. 276–281.

[28] J. Zhang and S. Singh. “Visual-lidar odometry and mapping: low-drift, robust, and fast”. In: IEEE
Int. Conf. Robot. Autom. (ICRA). 2015, pp. 2174–2181.

[29] X. Wang, D. Ding, and W. Fu. “A Robust Lidar-Inertial Localization System Based on Outlier
Removal”. In: China Automation Congress (CAC). 2021, pp. 2420–2425.

[30] T. Moore and D. Stouch. “A Generalized Extended Kalman Filter Implementation for the Robot
Operating System”. In: Proc. 13th Int. Conf. Intell. Auton. Syst. (IAS-13). Springer, 2014.

[31] V. Varshney, R. K. Goel, and M. A. Qadeer. “Indoor positioning system using Wi-Fi & Bluetooth
Low Energy technology”. In: 13th Int. Conf. Wireless Opt. Commun. Networks (WOCN). 2016,
pp. 1–6.

[32] Orange Pi Zero2 [Online]. (2024, Jul, 9). URL: http://www.orangepi.org/html/hardWare/
computerAndMicrocontrollers/details/Orange-Pi-Zero-2.html.

[33] Raspberry Pi Pico/Pico H/Pico W RP2040-Based MCU Boards [Online]. (2024, Jul, 9). URL:
https://nl.mouser.com/new/raspberry-pi/raspberry-pi-pico-boards/.

[34] IMU Breakout - MPU-9250 [Online]. (2024, Jun, 6). URL: http://wiki.sunfounder.cc/index.
php?title=IMU_Breakout_-_MPU-9250.

[35] OKdo Lidar Module with Bracket [Online]. (2024, Jun, 6). URL: https://www.okdo.com/nl/p/
okdo-lidar-module-with-bracket/.

[36] ROS. Why ROS? [Online]. (2024, Jun, 6). URL: https://www.ros.org/blog/why-ros/.
[37] Robohouse. Mirte Documentation v0.1 [Online]. (2024, Jun, 6). URL: https://docs.mirte.

org/.
[38] M. Hijikata, R. Miyagusuku, and K. Ozaki. “Wheel Arrangement of Four OmniWheel Mobile Robot

for Compactness”. In: Appl. Sci. 12.12 (2022), p. 5798.
[39] I. Moreno-Caireta, E. Celaya, and L. Ros. “Model Predictive Control for a Mecanum-wheeled

Robot Navigating among Obstacles”. In: IFAC-PapersOnLine 54 (2021), pp. 119–125.
[40] X. Yu, Y. Feng, and Z. Man. “Terminal Sliding Mode Control – An Overview”. In: IEEE Open J.

Ind. Electron. Soc. 2 (2021), pp. 36–52.
[41] A. Hughes and B. Drury. “Chapter 3 - D.C. motors”. In: Electric Motors and Drives. Fifth Edition.

Newnes, 2019, pp. 89–129.
[42] M. Bersani et al. “Vehicle state estimation based on Kalman filters”. In: Int. Conf. Electr. Electron.

Technol. Automot. 2019, pp. 1–6.
[43] M. A. Khan et al. “Nonlinear Control Design of a Half-Car Model Using Feedback Linearization

and an LQR Controller”. In: Appl. Sci. 10 (2020).

http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-Zero-2.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-Zero-2.html
https://nl.mouser.com/new/raspberry-pi/raspberry-pi-pico-boards/
http://wiki.sunfounder.cc/index.php?title=IMU_Breakout_-_MPU-9250
http://wiki.sunfounder.cc/index.php?title=IMU_Breakout_-_MPU-9250
https://www.okdo.com/nl/p/okdo-lidar-module-with-bracket/
https://www.okdo.com/nl/p/okdo-lidar-module-with-bracket/
https://www.ros.org/blog/why-ros/
https://docs.mirte.org/
https://docs.mirte.org/


References 49

[44] A. Altalbe A. Shahzad. “Computing of LQR Technique for Nonlinear System Using Local Approx-
imation”. In: Comput. Syst. Sci. Eng. 46 (2023), pp. 853–871.

[45] M. Bersani et al. “Vehicle state estimation based on Kalman filters”. In: Int. Conf. Electr. Electron.
Technol. Automot.(AEIT) (2019), pp. 1–6.

[46] K. Li et al. “Friction Measurements on Three Commonly Used Floors on a College Campus under
Dry, Wet, and Sand-covered Conditions”. In: Saf. Sci. 45 (2007), pp. 980–992.

[47] S.R. Maskell et al. “Multi-target out-of-sequence data association: Tracking using graphical mod-
els”. In: Information Fusion 7 (2006), pp. 434–447.

[48] Mecanum AluminiumWheel Roller Set [Online]. (2024, Jul, 9). URL: https://robu.in/product/
152mm-mecanum-wheel-roller-set-bearing-type-1pcs/.

https://robu.in/product/152mm-mecanum-wheel-roller-set-bearing-type-1pcs/
https://robu.in/product/152mm-mecanum-wheel-roller-set-bearing-type-1pcs/


A
Datasheet DC motor

50



 

 

 

JGA25‐370 Geared Motor SKU	114090046	
 

Please	use	this	motor	as	an	alternative	to	JGB37‐371	and		Encoder	Geared	Motor	JGA25‐371	

What	is	the	Geared	motor?	

The	geared	motor	uses	a	gear	set	to	convert	the	original	high	speed	and	low	torque	of	the	motor	to	
a	low	speed	and	high	torque	state.	So	what	are	the	benefits	of	geared	motors?	Under	the	same	
voltage	conditions,	you	can	manually	clamp	the	motor	to	stop	it,	but	once	it	is	a	gear	motor,	it	is	
more	difficult	to	stop	the	motor	with	an	external	force	because	the	"force"	of	the	motor	becomes	
larger.	Therefore,	when	you	use	a	geared	motor,	you	will	find	it	is	slower	than	a	motor	that	does	not	
slow	down,	but	it	can	provide	a	larger	load.	Geared	motors	are	typically	used	where	high	torque	is	
required,	such	as	an	elevator,	which	will	carry	more	than	a	dozen	people	upstairs,	which	will	
require	a	lot	of	torque.	Of	course,	there	will	be	some	energy	loss	during	deceleration,	but	it	will	still	
bring	a	lot	of	convenience	to	our	lives.	

Introduction:	

This	Motor	not	encoder,	Mainly	used	in	robot	platform	and	car	provides	power,	Good	
quality	and	long	lifetime,	high	torque	and	low	noise.		

If	you	need	an	encoder,	you	can	choose	JGA25‐371	Geared	Motor	with	Encoder.	



Specification:	

Voltage	

V	

No‐load	 Maximum	efficiency	pointed	 Blockage	

speed	

r/min	

electric	
current	

A	

speed	

r/min	

electric	
current	

	A	

Torque	

Kg.cm	

Power	

		W	

Torque	

Kg.cm	
electric	
current	

		A	

6	 190	 0.2	 133	 0.5	 0.75	 1.1	 4.0	 2.1	

12	 350	 0.1	 245	 0.65	 1.4	 2.4	 5.2	 2.2	

size:	

	

Part	List	

1	x	JGA25‐370	Geared	Motor	

	
ECCN/HTS	

ECCN  ERA99 

HSCODE  8501101000 

UPC   

https://www.seeedstudio.com/JGA25‐370‐Geared‐Motor‐p‐4119.html/8‐14‐19 



B
Definition of Variables

Table B.1: Definitions of variables [14].

Variable Definition
v⃗slip,i slip velocity of wheel i
αi angular coordinate of wheel i in vehicle frame
γi orientation of rollers of wheel i
d distance between wheel and vehicle center
r wheel radius
φ̇i angular velocity of wheel i
˙⃗p vehicle velocity in world frame

[
vx vy ωz

]T
m vehicle mass

c1, c2 model parameters to be estimated

Table B.2: Definitions of variables [24].

Variable Definition
m mass of vehicle
J moment of inertia
F c coulomb friction
F v viscous friction
δ disturbance caused by slipping
ua armature voltage
ia armature current
La armature inductance
Ro resistance
l motor reduction

K1,K2 constants
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C
EKF Configuration File

1 #Configuation for robot odometry EKF
2 frequency: 30
3 sensor_timeout: 2
4 two_d_mode: true
5 transform_time_offset: 0.0
6 transform_timeout: 0.0
7 print_diagnostics: true
8 debug: false
9

10 map_frame: map
11 odom_frame: odom
12 base_link_frame: base_link
13 world_frame: odom
14 publish_tf: true
15 # -------------------------------------
16 # LiDAR SLAM:
17
18 pose0: /pose
19 pose0_config: [false, false, false,
20 false, false, false,
21 false, false, false,
22 false, false, false,
23 false, false, false]
24 pose0_differential: true
25 pose0_relative: false
26 pose0_queue_size: 5
27 pose0_rejection_threshold: 2 # Note the difference in parameter name
28 pose0_nodelay: false
29 # -------------------------------------
30 # Wheel odometry:
31
32 odom0: /mobile_base_controller/odom
33 odom0_config: [true, true, false,
34 false, false, true,
35 true, true, false,
36 false, false, true,
37 false, false, false]
38 odom0_queue_size: 10
39 odom0_nodelay: false
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40 odom0_differential: false
41 odom0_relative: false
42
43 # Complete the imu0 configuration
44 # imu configure:
45
46 imu0: /mirte/movement/imu
47 imu0_config: [false, false, false,
48 false, false, false,
49 false, false, false,
50 true, true, false,
51 true, true, false]
52 imu0_nodelay: false
53 imu0_differential: false
54 imu0_relative: false
55 imu0_queue_size: 10
56 imu0_remove_gravitational_acceleration: true
57
58 use_control: false
59
60 process_noise_covariance: [1e-2, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,
61 0, 1e-2, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,
0,

62 0, 0, 1e-2, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,

0,
63 0, 0, 0, 1e-2, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,
0,

64 0, 0, 0, 0, 1e-2, 0, 0,
0, 0, 0, 0, 0, 0, 0,

0,
65 0, 0, 0, 0, 0, 1e-2, 0,

0, 0, 0, 0, 0, 0, 0,
0,

66 0, 0, 0, 0, 0, 0, 1e-2,
0, 0, 0, 0, 0, 0, 0,

0,
67 0, 0, 0, 0, 0, 0, 0, 1

e-2, 0, 0, 0, 0, 0, 0,
0,

68 0, 0, 0, 0, 0, 0, 0,
0, 1e-2, 0, 0, 0, 0, 0,

0,
69 0, 0, 0, 0, 0, 0, 0,

0, 0, 1e-2, 0, 0, 0, 0,
0,

70 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1e-2, 0, 0, 0,

0,
71 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1e-2, 0, 0,
0,

72 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 1e-2, 0,
0,

73 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1e
-2, 0,

74 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,

1e-2]
75
76
77 initial_estimate_covariance: [1e-9, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,
78 0, 1e-9, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,
0, 0,

79 0, 0, 1e-9, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0,

80 0, 0, 0, 1e-9, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0,

81 0, 0, 0, 0, 1e-9, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0,

82 0, 0, 0, 0, 0, 1e-9, 0,
0, 0, 0, 0, 0, 0,
0, 0,

83 0, 0, 0, 0, 0, 0, 1e-9,
0, 0, 0, 0, 0, 0,

0, 0,
84 0, 0, 0, 0, 0, 0, 0,

1e-9, 0, 0, 0, 0, 0,
0, 0,

85 0, 0, 0, 0, 0, 0, 0,
0, 1e-9, 0, 0, 0, 0,
0, 0,

86 0, 0, 0, 0, 0, 0, 0,
0, 0, 1e-9, 0, 0, 0,
0, 0,

87 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1e-9, 0, 0,
0, 0,

88 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1e-9, 0,
0, 0,

89 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1e

-9, 0, 0,
90 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,
1e-9, 0,

91 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 1e-9]



D
Matlab Code

D.1. Simulink Initialization
1 %% simulation parameters
2 dt = 1e-3; % step size: 0.1ms
3 ts = 50; % simulation time
4 step_time = 10; % input step time
5 stat1_dyn0 = 1; % 1: fixed kinematic gain, 0: dynamic dynamical

gain
6 input_idx = 2; % index to choose between input signals
7 denominator_transient_base = [1e-2 1];
8 step_vec = [0.5,1,0]; % input after step time
9 input_amplitude = 2;

10 input_frequency = pi/8;
11 update_freq_gain = 10;
12 coder.extrinsic("lqr");
13
14 %% vehicle parameters
15
16 g = 9.81; % gravitational constant
17 m = 2; % mass of vehicle
18 m_w = 0.163; % mass of wheel: 163g
19 r_w = 0.05; % wheel radius 5cm
20 tw = 0.125; % half the trackwidth
21 wbh = 0.15; % half wheelbase
22 k_torque = 0.2865; % torque constant motor from datasheet
23 resistance = k_torque/0.5099458*12; % resistance motor: calculated using

blocking torque of motor
24 I = m*(tw^2+wbh^2); % inertia vehicle
25 I_wheel = (m_w*r_w^2)/2; % inertia wheel
26 c1 = k_torque^2/I_wheel/resistance; % state space constant 1
27 c2 = k_torque /I_wheel/resistance; % state space constant 2
28 wheel_speed_limit = 400*2*pi/60; % wheel speed limit in rad/s
29 motor_voltage_limit = 12; % motor input voltage limit
30 gamma = pi*[0.25; 0.75; 0.75; 0.25]; % angle of roller to wheels
31
32 % omega1 = 0.093; % low friction
33 omega1 = 0.5; % high friction
34 omega2 = 5; % constant tire stiffness equivalent parameter
35
36 d = sqrt(wbh^2+tw^2); % distance from geo centre to wheel

57
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37 alpha = [atan(wbh/-tw)+pi; atan(wbh/tw); atan(-wbh/-tw)+pi; atan(-wbh/tw)
]; % angle of wheel to geo centre xline

38 R = [-cos(gamma) -sin(gamma) -d*sin(gamma-alpha) r_w*sin(gamma)];
% matrix for dynamic model

39
40 W = r_w/4*[ 1, -1, -1, 1;

% wheel configuration matrix for kinematic model
41 1, 1, 1, 1;
42 -1/(tw+wbh),1/(tw+wbh),-1/(tw+wbh),1/(tw+wbh)];
43
44
45 W_inv = -1/r_w*[1, 1, -(tw+wbh);

% left inverse of wheel
configuration matrix

46 -1, 1, (tw+wbh);
47 -1, 1, -(tw+wbh);
48 1, 1, (tw+wbh)];
49
50 %% LQR
51
52 Rw = 1/144*diag([2,2,2,2]); % control weights
53 Qsim = diag([1e0,1e0,1e-9,1e1,1e1,1e-3]); % output weights used in

simulation
54 Qexp = diag([1e1,1e1,1e-3,1e3,1e3,1e-3]); % output weights used in

experiment
55 A = [ % system state matrix
56 -c1 0 0 0 0 0;
57 0 -c1 0 0 0 0;
58 0 0 -c1 0 0 0;
59 1 0 0 0 0 0;
60 0 1 0 0 0 0;
61 0 0 1 0 0 0
62 ];
63 B = [c2*W; % system input matrix
64 zeros(3,4)];
65
66 K = lqr(A,B,Qsim,Rw); % kinematic model based gain

calculation
67
68
69 %% lidar
70
71 covariance_lidar = [7.5e-07, 0, 0, 0, 0, 0, ...
72 0, 9.2e-07, 0, 0, 0, 0, ...
73 0, 0, 5.8e-07, 0, 0, 0, ...
74 0, 0, 0, 1e-3, 0, 0, ...
75 0, 0, 0, 0, 1e-3, 0, ...
76 0, 0, 0, 0, 0, 1e-3];

D.2. Algebraïc Linearization of Dynamic Model
1 clearvars -except K
2 %% parameters
3 gam = pi*[0.25; 0.75; 0.75; 0.25]; % angle(rad) of roller to wheel
4 g = 9.81; % gravitational constant (m/s^2)
5 m = 2; % mass (kg)
6 r = 0.1; % wheel radius (m)
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7 tw = 0.125; % half the trackwidth (m)
8 wbh = 0.15; % half the wheelbase (m)
9 w1 = 0.8; % friction constant 1

10 w2 = 30; % friction constant 2
11 d = sqrt(wbh^2+tw^2); % distance from geo center to wheel
12 k_torque = 0.25; % torque constant motor
13 alpha = [atan(wbh/-tw)+pi; atan(wbh/tw); atan(-wbh/-tw)+pi; atan(-wbh/tw)

];
14 I = m*(tw^2+wbh^2); % inertia of the vehicle
15 vx = sym('vx'); % error state vx
16 vy = sym('vy'); % error state vy
17 omega = sym('omega'); % error state Omega
18 x = sym('x'); % error state x
19 y = sym('y'); % error state y
20 psi = sym('psi'); % error state psi
21 E = sym('E',[4 1]); % error input voltages of motors
22 vslip = sym('vslip',[4 1]); % slip velocity of wheels (m/s)
23
24
25 %% model definition
26 for i = 1:4
27 vslip(i) = cos(gam(i))*vx + sin(gam(i))*vy + d*sin(gam(i)-alpha(i))*

omega + r*sin(gam(i))/k_torque*E(i);
28 end
29 u = w1*tanh(w2*vslip);
30 F = m*g*u/4; % magnitude of force per wheel
31 Fx = cos(pi/4)*(F(1)-F(2)-F(3)+F(4)); % force in direction x on vehicle
32 Fy = sin(pi/4)*(F(1)+F(2)+F(3)+F(4)); % force in direction y on vehicle
33 T = (tw+wbh)/2*(-F(1)+F(2)-F(3)+F(4));
34
35 vx_dot = Fx/m; % acceleration in x direction
36 vy_dot = Fy/m; % acceleration in y direction
37 omega_dot = T/I; % angular acceleration around the

z-axis
38 x_dot = cos(psi) * vx - sin(psi) * vy;
39 y_dot = sin(psi) * vx + cos(psi) * vy;
40 psi_dot = omega;
41
42 %% Jacobian calculation
43 A11 = diff(vx_dot, vx);
44 A12 = diff(vx_dot, vy);
45 A13 = diff(vx_dot, omega);
46 A14 = diff(vx_dot, x);
47 A15 = diff(vx_dot, y);
48 A16 = diff(vx_dot, psi);
49
50 A21 = diff(vy_dot, vx);
51 A22 = diff(vy_dot, vy);
52 A23 = diff(vy_dot, omega);
53 A24 = diff(vy_dot, x);
54 A25 = diff(vy_dot, y);
55 A26 = diff(vy_dot, psi);
56
57 A31 = diff(omega_dot , vx);
58 A32 = diff(omega_dot , vy);
59 A33 = diff(omega_dot , omega);
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60 A34 = diff(omega_dot , x);
61 A35 = diff(omega_dot , y);
62 A36 = diff(omega_dot , psi);
63
64 A41 = diff(x_dot, vx);
65 A42 = diff(x_dot, vy);
66 A43 = diff(x_dot, omega);
67 A44 = diff(x_dot, x);
68 A45 = diff(x_dot, y);
69 A46 = diff(x_dot, psi);
70
71 A51 = diff(y_dot, vx);
72 A52 = diff(y_dot, vy);
73 A53 = diff(y_dot, omega);
74 A54 = diff(y_dot, x);
75 A55 = diff(y_dot, y);
76 A56 = diff(y_dot, psi);
77
78 A61 = diff(psi_dot, vx);
79 A62 = diff(psi_dot, vy);
80 A63 = diff(psi_dot, omega);
81 A64 = diff(psi_dot, x);
82 A65 = diff(psi_dot, y);
83 A66 = diff(psi_dot, psi);
84
85
86 B11 = diff(vx_dot,E(1));
87 B12 = diff(vx_dot,E(2));
88 B13 = diff(vx_dot,E(3));
89 B14 = diff(vx_dot,E(4));
90
91 B21 = diff(vy_dot,E(1));
92 B22 = diff(vy_dot,E(2));
93 B23 = diff(vy_dot,E(3));
94 B24 = diff(vy_dot,E(4));
95
96 B31 = diff(omega_dot , E(1));
97 B32 = diff(omega_dot , E(2));
98 B33 = diff(omega_dot , E(3));
99 B34 = diff(omega_dot , E(4));

100
101 A = [A11 A12 A13 A14 A15 A16; A21 A22 A23 A24 A25 A26; A31 A32 A33 A34 A35

A36; A41 A42 A43 A44 A45 A46; A51 A52 A53 A54 A55 A56; A61 A62 A63 A64
A65 A66;];

102 B = [B11 B12 B13 B14; B21 B22 B23 B24; B31 B32 B33 B34; zeros(3,4)];
103
104 Afunc = matlabFunction(A);
105 Bfunc = matlabFunction(B);
106
107 %% equilibrium calculation
108 Enew = solve([vx_dot; vy_dot; omega_dot] == [0;0;0], E); % finding wheel

speeds at equalibrium as a function of vx, vy, & omega
109 Efunc = matlabFunction([Enew.E1;Enew.E2;Enew.E3;Enew.E4]);
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62

Figure E.1: Simulink implementation of the kinematic- and dynamic model-based trajectory tracking LQRs for simulation.
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Figure E.2: Simulink implementation of the kinematic model-based trajectory tracking LQR
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Figure E.3: Simulink implementation of the dynamic model-based trajectory tracking LQR
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