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Preface 
 

Basis for the chosen topic of this Master thesis stems from my passion for programming and 

me wanting to expand my knowledge into the field of artificial intelligence. An opportunity was 

presented to work with interesting data at the Erasmus Medical Center (EMC) in Rotterdam, 

researching the possibilities of deep learning in the field of medical imaging. Thus, this graduation 

project was done in conjunction with the Biomedical Imaging Group Rotterdam (BIGR), part of 

the medical informatics department at the EMC in Rotterdam, The Netherlands. After more than 

one and a half years, what started as a project taking a deep learning approach towards 

investigating imaging genetics and brain MRIs, ended in a paper on deep learning age prediction 

based on MRIs for risk analysis of incident dementia. In this we found that the gap between a 

person’s predicted brain age and actual chronological age shows potential as a risk biomarker for 

future dementia, i.e. a higher gap can indicate a higher risk for future dementia. 

Part of this work has been submitted to and presented at the European Society of Medical 

Imaging Informatics (EuSoMII) annual meeting 2018, titled ‘Advances in Medical Imaging with 

Informatics and Artificial Intelligence’. At the time of delivery of this thesis, an abstract has been 

submitted to the Organization of Human Brain Mapping (OHBM) annual meeting 2019 and a 

poster presentation is being prepared for the European Congress of Radiology (ECR) 2019, 

organized by the European Society of Radiology (ESR). Lastly, a paper is being prepared for 

submission to the Journal of American Medical Association (JAMA). Hence that this thesis has 

been written in the format of an article, extended from the original paper.  

I hope you enjoy reading my thesis. 

 

Johnny Wang, 28-12-2018. 

  



6 

 

  



7 
 

Acknowledgements 
 

So okay. I took a “little” longer than expected, but I reached the finish-line! I would first like 

to thank Professor Wiro Niessen for giving me the opportunity to work at his research group. 

Ofcourse my daily supervisor, Dr. Gennady Roshchupkin. Gena, many many thanks for ALL the 

guidance you have given me. I started with zero knowledge on deep learning, but now I was 

allowed to present our work at a conference and we are even about to submit a paper. I want to 

thank Professor Julian Kooij and Professor Frans Vos for being part of my Master exam 

committee, despite your (probably) busy schedules. 

My thanks all my colleagues. To Maria for writing the paper with me. All other co-authors of 

the original paper: Aleksei, Florian, Professor De Bruijne, Professor Vernooij, Dr Adams and 

Professor Ikram. I thank everyone at BIGR and the medical informatics department. I really had a 

great time with all of you! (Honestly, the reason why I stuck around so long might just have been 

because I didn’t feel like leaving.) 

My thanks to my friends from uni. Arno, we were a great team throughout the Master. It was a 

pleasure to have been stuck with you. Tito, (wherever you are) I’m going to finish the Master first, 

see you on the other side. Kenny, brother, thank you for being there for me at all times. 

My thanks to my friends and relatives, for their continued support and cheering. 

My thanks to my family. Sisters, Marleen and Ling. Mom and Dad. Even my nephew, Oscar. 

For their patience and continued support, and cheering me up whenever I was feeling down. 

To all of you. Thank you! 

 

Johnny Wang, 28-12-2018. 



8 

 

  



9 
 

Contents 
 

Preface ............................................................................................................................................. 5 

Acknowledgements ......................................................................................................................... 7 

List of figures ................................................................................................................................ 11 

List of tables .................................................................................................................................. 12 

List of abbreviations ...................................................................................................................... 13 

 

Abstract ........................................................................................................................................ 15 

1. Introduction .......................................................................................................................... 15 

2. Methods ................................................................................................................................. 16 

2.1 Study Population............................................................................................................. 16 

2.2 Image processing ............................................................................................................ 16 

Dementia assessment ............................................................................................................. 17 

Other measurements .............................................................................................................. 17 

2.3 Deep Learning model ..................................................................................................... 17 

Attention mapping .................................................................................................................. 18 

2.4 Statistical analysis .......................................................................................................... 19 

3. Results ................................................................................................................................... 19 

3.1 Network performance ..................................................................................................... 19 

Attention map ......................................................................................................................... 19 

3.2 Logistic regression ......................................................................................................... 21 

3.3 Survival analysis ............................................................................................................. 21 

3.4 Gap-associated features ................................................................................................. 23 

4. Discussion .............................................................................................................................. 23 

Limitations ............................................................................................................................. 25 

Future recommendations ....................................................................................................... 25 

5. Conclusion ............................................................................................................................ 26 

Acknowledgments ........................................................................................................................ 26 

References .................................................................................................................................... 26 

 



10 

 

Appendix A. Deep learning and convolutional neural networks ......................................... 29 

Appendix A.1. Deep learning ................................................................................................... 29 

Appendix A.2. Convolutional Neural Networks ...................................................................... 29 

Appendix A.3. Selecting network architecture ........................................................................ 30 

Appendix A.4. Network training .............................................................................................. 30 

Appendix B. Analysis methods ............................................................................................... 31 

Appendix B.1. Logistic regression analysis ............................................................................. 31 

Appendix B.2. Cox proportional hazards regression analysis ................................................ 31 

Appendix C. Additional figures .............................................................................................. 33 

Appendix D. Additional tables ................................................................................................ 35 

 

  



11 
 

List of figures 
 

Figure 1. Flowchart showing the number of excluded participants per category. ....................... 16 

Figure 2. Graphical representation of the voxel-based morphometry pipeline. ........................... 17 

Figure 3. Graphical representation of the network architecture. .................................................. 18 

Figure 4. Performance of CNN on test dataset. ............................................................................ 20 

Figure 5. The probability density of the gap value (PAD) for male and female subjects. ........... 21 

Figure 6. Grad-CAM attention map and increase in attention map overlaid on a brain 

template. ..................................................................................................................... 21 

Figure 7. Kaplan-Meier curves presenting the dementia-free probability over time for 

participants with different gap values, divided into quintiles. ................................... 23 

 

Figure A-1. Graphic representation of a classical model (left) and machine learning model 

(right). ......................................................................................................................... 29 

Figure A-2. Graphic representation of feature extraction in machine learning and deep 

learning. ...................................................................................................................... 29 

Figure A-3. Principle of convolutional layers. An image can be seen a field of numbers. .......... 30 

 

Figure B-1. Graph of a logistic regression curve showing probability of outcome Y versus  

input variable X. ......................................................................................................... 31 

 

Figure C-1. Bar plot of attention map values per region. ............................................................. 33 

Figure C-2. Effect of adding sex as a covariate to the model on the gap value distribution. ...... 33 

Figure C-3. Grad-CAM attention map intensity per voxel overlaid on a brain template. ........... 34 

 
  

file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953411
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953412
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953413
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953414
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953415
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953416
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953416
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953417
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953417
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953747
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953747
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953748
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953748
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953749
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953793
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953793
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953807
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953808
file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953809


12 

 

List of tables 
 

Table 1. Quantitative description of the data used from the population-based Rotterdam 

Study. .......................................................................................................................... 20 

Table 2. Quantitative description of the attention map. ............................................................... 22 

Table 3. Logistic regression and Cox regression analysis for age gap and incident dementia. ... 23 

Table 4. Characteristics comparison of subjects grouped by age gap. ......................................... 24 

 

Table D-1. Quantitative description of the increase in attention map. ......................................... 35 

  

file:///C:/Users/Johnny/Desktop/Thesis/Thesis20181219.docx%23_Toc532953341


13 
 

List of abbreviations 
 

AD Alzheimer’s disease 

Batchnorm Batch normalization 

CI Confidence interval 

CNN Convolutional neural network 

CONV Convolutional layer 

CSF Cerebral spinal fluid 

DL Deep learning 

GM Grey matter 

HR Hazards ratio 

ICC Intraclass correlation coefficient 

ICV Intracranial volume 

MAE Mean absolute error 

MRI Magnetic resonance images 

MSE Mean squared error 

OR Odds ratio 

PCC Pearson correlation coefficient 

PH models Proportional hazards models 

ReLU Rectified linear unit 

VBM Voxel-based morphometry 

WM White matter 

 

  



14 

 

  



15 
 

Grey Matter Age Prediction as a Biomarker  

for Risk of Dementia: A Population-based Study 

Abstract 

The gap between predicted brain age and chronological age could serve as biomarker for early-stage 

neurodegeneration and as potentially as a risk indicator for dementia. We assess the utility of this age 

gap as a risk biomarker for incident dementia in a general elderly population. The brain age is 

estimated from longitudinal brain magnetic resonance imaging (MRI) data using deep learning 

models. From the population-based Rotterdam Study, 5656 dementia-free and stroke-free participants 

(mean age 64.67±9.82, 54.73% women) underwent brain MRI at 1.5T, including three-dimensional 

(3D) T1-weighted sequence, between 2006 and 2015. All participants were followed for incident 

dementia until 2016. During 6.66±2.46 years of follow-up, 159 subjects developed dementia. The 

entire dataset was split into control (N=5497) and incident dementia (N=159) groups. We then built a 

convolutional neural network (CNN) model trained on the control group to predict brain age based on 

brain MRI. Model prediction performance was measured in mean absolute error MAE=4.45±3.59 

years of brain age prediction. Reproducibility of prediction was tested using the intra-class correlation 

coefficient ICC=0.97 (95% confidence interval CI=0.96-0.98), computed on a subset of 80 subjects. 

Hereafter, we investigated the gap between model predicted age and chronological age of the incident 

dementia group data, compared to control group. Logistic regressions and Cox proportional hazards 

models were used to assess the association of the age gap with incident dementia, adjusted for years of 

education, ApoE4 allele carriership, GM and intracranial volume. These models showed that the age 

gap was significantly related to incident dementia (odds ratio OR=1.11 and 95% confidence intervals 

CI=1.05-1.16; hazard ratio HR=1.11 and 95% CI=1.06-1.15, respectively). Additionally, we computed 

the attention maps of CNN, which shows the importance of brain regions for age prediction. These 

were particularly focused on the amygdalae and hippocampi. We show that the gap between predicted 

and chronological brain age is a biomarker, associated with a risk of dementia development. This 

suggests that it can potentially be used as a complimentary biomarker for early-stage dementia risk 

screening. 

Keywords:  Deep Learning; age prediction; biomarker; dementia; magnetic resonance imaging; brain; 

voxel-based morphometry; survival analysis. 

 

1. Introduction  

The human brain continuously changes throughout the 

lifespan, including middle to old age. These changes 

reflect the normal aging process and are not necessarily 

pathological1. However, neurodegenerative diseases and 

dementia also affect brain structure and function2,3. A 

better understanding and modeling of normal brain aging 

can help to disentangle these two processes and improve 

the detection of early-stage neurodegeneration.   

Magnetic resonance imaging (MRI) has widely been 

used to assist the diagnosis of brain diseases or find an 

association with epidemiological outcomes. Age 

prediction models based on brain MRIs are a popular trend 

in neuroscience4–7.  The difference between predicted and 

chronological age is thought to serve as an important 

biomarker reflecting pathological processes in the brain. 

Several recent studies showed the relation between 

accelerated brain aging and various disorders, such as 

Alzheimer’s disease (AD), schizophrenia, epilepsy or 
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diabetes7–9. In recent years, convolutional neural networks 

(CNN) have become the methodology of choice for 

analyzing medical images. These models are able to learn 

complex relations between input data and desired 

outcomes. Recent studies were able to demonstrate that 

CNN models can outperform complex machine learning 

models in brain MRI-based age prediction5,6. 

Although cross-sectional studies have suggested that 

the gap between predicted and chronological age may 

serve as a biomarker for dementia diagnosis, it remains 

unclear whether this is also the case for the years preceding 

dementia diagnosis5,7. Longitudinal studies examining the 

link between such a gap and future (incident) dementia are 

lacking and are crucial for validation of this biomarker for 

early-stage neurodegeneration detection.  

One of the classical neuroimaging analysis approaches 

is the voxel-based morphometry analysis (VBM). 

Originally proposed as a hypothesis-free method, it has 

been widely used in brain imaging research field and 

demonstrated its effectiveness4,10,11. It allows analyzing the 

entire brain without any a priori defined brain regions. 

However, VBM analyzes images voxel-by-voxel and 

thereby do not take into account the spatial connectivity 

and more complex relations. 

Therefore, using a deep learning (DL) model, we 

investigated the association of the grey matter (GM) age 

gap with incident dementia in a large population-based 

sample of middle-aged and elderly subjects. 

2. Methods 

2.1 Study Population  

Data was acquired from the Rotterdam Study, an 

ongoing population-based cohort study among the 

inhabitants of Ommoord, a suburb of Rotterdam, the 

Netherlands12. The cohort started in January 1990 

(n=7983) and was extended in February 2000 (n=3011) 

and February 2006 (n=3932). Follow-up examinations 

take place every 3 to 4 years. MRI was implemented in 

2005, and 5912 persons scanned until 2015 were eligible 

for this study. We excluded individuals with incomplete 

acquisitions, scans with artifacts hampering automated 

processing, participants with MRI-defined cortical infarcts 

and participants with dementia or stroke at the time of 

scanning (Figure 1). This resulted in 5656 subjects to be 

included in this study. The Rotterdam Study has been 

approved by the Medical Ethics Committee of the Erasmus 

MC and by the Ministry of Health, Welfare and Sport of 

the Netherlands, implementing the Wet 

Bevolkingsonderzoek ERGO (Population Studies Act: 

Rotterdam Study). All participants provided written 

informed consent to participate in the study and to obtain 

information from their treating physicians.  

2.2 Image processing 

A 1.5 tesla GE Signa Excite MRI scanner was used to 

acquire multi-parametric MRI brain data, as previously 

reported12. Voxel-based morphometry (VBM) was 

performed according to an optimized VBM10,11. An 

overview of the VBM pipeline is shown in Figure 213. 

First, all T1-weighted images were segmented into 

supratentorial GM, white matter  (WM), and cerebrospinal 

fluid (CSF) using a previously described k-nearest 

neighbor algorithm, which was trained on six manually 

labeled atlases14. FMRIB’s Software Library (FSL) 

software was used for VBM data processing15. All GM 

density maps were non-linearly registered to the standard 

 

Figure 1. Flowchart showing the number of excluded 

participants per category. 
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Montreal Neurological Institute (MNI) GM probability 

template, with a 1x1x1 mm3 voxel resolution.   

A spatial modulation procedure was used to avoid 

differences in absolute GM volume due to the registration. 

This involved multiplying voxel density values by the 

Jacobian determinants estimated during spatial 

normalization. We did not apply smoothing. While VBM 

smoothing procedures increase the signal to noise ratio, 

they can affect the features which the network uses to 

learns from GM.  

Intracranial volume (ICV) estimates were obtained by 

summing total GM, WM and CSF volumes.  

Dementia assessment 

All participants were monitored for dementia at 

baseline and following visits to the study center using the 

Mini-Mental State Examination (MMSE) and the Geriatric 

Mental State (GMS) organic level. Further investigation 

was initiated for participants who scored lower than 26 for 

their MMSE or above 0 for their GMS16. Additionally, the 

entire cohort was continuously checked for dementia 

through electronic linkage between the study center and 

medical records from general practitioners and the 

regional institute for outpatient mental health care. 

Available information on cognitive testing and clinical 

neuroimaging was used when required for diagnosis of 

dementia subtype. Final diagnosis was established by a 

consensus panel led by a consultant neurologist, according 

to a standard criteria for dementia (using the Third Revised 

Edition of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-III-R)) and AD (using the National 

Institute of Neurological and Communicative Diseases 

and Stroke–Alzheimer’s Disease and Related Disorders 

Association (NINCDS–ADRDA) criteria)17,18. Follow-up 

until January 1st 2016 was virtually complete (95% of 

potential person-years). Participants were censored at date 

of dementia diagnosis, death or loss to follow-up, or at 

January 1st 2016, whichever came first. Of 5496 subjects 

included in this analysis, 159 developed dementia within 

10 years of follow-up (mean follow-up time 4.34±2.25 

years). 

Other measurements 

ApoE4 carriership was determined using a 

polymerase chain reaction (PCR) on coded 

deoxyribonucleic acid (DNA) samples. If these values 

were missing, Haplotype Reference Consortium (HRC) 

imputed genotype values for rs7412 and rs429358 were 

used to define the ApoE4 carrier status19. 

2.3 Deep Learning model 

The concept of DL and its techniques are explained in 

Appendix A.1-Appendix A.2. Briefly, a DL model takes 

a set of inputs and respective outputs from a training set 

and finds an optimal non-linear relation between the two. 

A CNN is a class of DL techniques, which takes in multi-

dimensional data as model input. These networks are 

generally used with a variety of different techniques and 

algorithms, which together define how the model 

optimizes the input-output relationship20,21. This is 

described in the model architecture. 

Our 3-dimensional (3D) regression CNN model is 

designed to predict brain age using 3D GM density maps 

from VBM as input. It is inspired by ConvNet22 and Deep 

CNN21, as shown in Figure 3 and detailed in Appendix 

A.3. Besides GM brain images, we provide information 

about the sex of the subject. This allows the network to 

adjust for GM differences between male and female 

subjects.  

 

Figure 2. Graphical representation of the voxel-based 

morphometry pipeline13. T1-weighted magnetic resonance 

images are registered to a template, normalized and segmented 

according to priors. In this study, the final smoothing step is 

omitted.  
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 The dataset, excluding subjects with incident 

dementia, was randomly split into three independent sets: 

training (3688 subjects), validation (1099 subjects) and 

test (550 subjects). Subjects with incident dementia (159 

subjects) were put in a fourth independent dataset. The 

CNN was trained using the training set, i.e. 3688 

undersampled out of 3848 available subjects for training 

as described in Appendix A.4. For training we used all 

available scans for each subjects. Prediction accuracy was 

assessed on the test set. Model accuracy was measured 

based on the absolute gap, or mean absolute error (MAE) 

of prediction for all subjects 𝑆 = {1,2, … , 𝑁}. This is 

equivalent to  

 ( 1 ) 

, where the gap of a subject gap𝑆 is the difference between 

model output and real chronological age. Additionally, 

Pearson correlation coefficient (PCC) is reported as a 

measure of linear correlation between predicted model 

output and real chronological age23.  

Attention mapping 

We retrieved attention maps from the trained networks 

using Gradient-weighted Class Activation Mapping 

(Grad-CAM)24. Attention maps show which areas on 

subject GM image are more important for age prediction. 

We expanded the Grad-CAM visualization technique to a 

3D space and adopted it to a single regression output 

problem to obtain, 

 ( 2 ) 

. The weight 𝑎𝑚 represents a partial linearization of 

network from activation maps 𝐴 onwards based on 

gradient 
𝜕𝑦

𝜕𝐴𝑚, and captures the ‘importance’ of activation 

map 𝑚 for the output 𝑦, summed for every pixel 𝑖𝑗𝑘 and 

divided by map size 𝑍. The weighted combination of the 

forward activation maps 𝐴 results in localization Grad-

MAE =
1

𝑁
∑ |gap𝑆|

𝑆

 

gap = agebrain,predicted − agechronological 

𝑎𝑚 =
1

𝑍
∑ ∑ ∑

𝜕𝑦

𝜕𝐴𝑖𝑗𝑘
𝑚

𝑘𝑗𝑖

 

𝐿raw = ReLU (∑ 𝑎𝑚𝐴𝑚

𝑚

) 

𝐿 = clip (0.5 +
1

10
∙

𝐿raw − 𝜇(𝐿raw)

𝜎(𝐿raw)
, 0, 1) 

 

Figure 3. Graphical representation of the network architecture. The overall approach can be seen as four convolutional blocks 

ending on a pooling layer, which halves feature map dimensions. Hereafter, global average pooling extracts the final feature maps 

to a one-dimensional array of a single value per feature map. Fully connected layers are used to propagate to a single regression 

output. Abbreviations: kxkxk convolutional layer, with strides of s (CONV(k,s)); kxkxk max-pooling layer, with strides of s 

(Maxpooling(k,s)); batch normalization (Batchnorm); rectified linear unit (ReLU); dropout with probability p (Dropout(p)). 
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CAM map (attention map) 𝐿raw, with intensity values >0 

after the rectified linear unit (ReLU) function21. Finally, 

values of 𝐿raw were normalized to range 0-1, where 1 

indicates the most important area for the decision-making 

process, with 𝜇(𝐿raw) mean and 𝜎(𝐿raw) standard 

deviation of attention map values, and clip thresholding 

the outcome to 0 minimum and 1 maximum to obtain the 

final normalized attention map 𝐿. 

Attention maps were computed for every individual. 

Since all brain images were registered to the same template 

space, a global average voxel-wise attention map could be 

made over attention maps of all subjects to obtain a global 

attention map for the age prediction network as 

 ( 3 ) 

, with 𝐿global as the mean of 𝐿𝑆 over all 𝑁 subjects. 

We computed the increase in attention map over age 

per voxel, to investigate the change in regions predictive 

for brain age between age groups. To this end, for each 

voxel, a linear regression from age to attention map 𝐿raw 

value was performed, according to 

 ( 4 ) 

, where the slope 𝑏 represents the increase in attention map 

value with 1 year age for voxel 𝑖𝑗𝑘25. Following is the 

resulting increase in attention map 𝐿increase.  

2.4 Statistical analysis 

Reproducibility of the CNN age prediction was 

quantified using the intraclass correlation coefficient 

(ICC(3,1)), computed on a subset of 80 persons out of the 

test set who were scanned twice with a time interval of one 

to nine weeks26. Corresponding confidence interval was 

found by means of bootstrapping27. 

In order to be able to compare our findings with 

previous studies, logistic regression models and Cox 

proportional hazards models were used to assess the 

association between the age gap and the incidence of 

dementia. Mentioned analysis methods are briefly 

explained in Appendix B. We adjusted the regression 

models for biomarkers, which are known for their relation 

with dementia: age and sex (model I); additionally overall 

GM volume and ICV (model II); and years of education 

and APOE4 carriership (model III)19,28–30. The logistic 

regression model used the occurrence of dementia-

development during follow-up as output. The proportional 

hazards and linearity assumption were met for the Cox 

proportional hazards models. Python and R were used to 

perform the statistical analyses31–34.  

3. Results 

The study population characteristics are described in 

Table 1. The algorithm was trained and validated on 

random subsets of subjects with mean age 66.09±10.76 

years and 55% females; and mean age 64.84±9.69 years 

and 54% females, respectively. The following results are 

reported for the test set (mean age 64.85±10.82 years and 

55% females). 

3.1 Network performance 

The overall performance measured on the test set was 

MAE=4.45±3.59 years (Figure 4), with a Pearson 

correlation between chronological and predicted brain age 

of PCC=0.85 (p-value=4.76x10-156). A reproducibility 

score of ICC=0.97 (95% confidence interval CI 0.96-0.98) 

was achieved.  

A split evaluation can be considered between male and 

female subjects. Figure 5 shows the network found no 

significant difference between the two groups (p-

value=0.34).  

Attention map 

Figure 6 shows the global attention map of the test set, 

indicating the areas contributing to age prediction in bright 

color, as well as the increase of attention map values over 

age. A quantitative analysis per brain region is presented 

in Table 2 and Figure C-1, which show that highest mean 

𝐿global,𝑖𝑗𝑘 =
1

𝑁
∑ 𝐿𝑖𝑗𝑘

𝑆

𝑆

 

𝐴𝑠𝑠𝑢𝑚𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙:   

𝑦𝑆 = 𝑎 + 𝑏𝑥𝑆 + 𝜀𝑆 

𝑤𝑖𝑡ℎ:  

𝑦𝑆 =  𝐿raw,𝑖𝑗𝑘
𝑆  𝑎𝑛𝑑 𝑥𝑆 = agechronological

𝑆  

𝑡ℎ𝑒𝑛:  

𝐿increase,𝑖𝑗𝑘 =
𝜕𝐿raw,𝑖𝑗𝑘

𝜕agechronological
= 𝑏𝑖𝑗𝑘  
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intensities were computed for the nucleus accumbens 

(0.89) and amygdala (0.71). Highest intensity quintiles 

were computed for the nucleus accumbens (0.99), 

amygdala (0.98) and subcallosal area (0.98). Amongst the 

higher intensity regions, we found that brain regions such 

as amygdalae and hippocampi are not only important for 

predicting brain age, but that they also become more 

important with increasing chronological age, which is 

shown in Figure 6B and Table D-1. 

 

Figure 4. Performance of convolutional neural network on test dataset. (A) The plot depicts chronological age (x-axis) and brain-

predicted age (y-axis) with mean absolute error (MAE) and Pearson correlation coefficient (PCC). The dashed line indicates perfect 

prediction x=y. (B) The figure shows reproducibility of the CNN performance. Scan 1 and 2 are taken with one to nine weeks 

interval. The dashed line indicates a perfect reproducibility. 

Table 1. Quantitative description of the data used from the population-based Rotterdam Study. 

 Train Validation Test** Incident dementia** 

Nsubj 3688 1099 550 159 

Nimg 5865 2353 550 159 

Mean age* (years±sd) 66.09±10.76 64.84±9.69 64.85±10.82 77.33±7.15 

Sex proportion* (female/male) 0.55/0.45 0.54/0.46 0.55/0.45 0.58/0.42 

Education* (years±sd) 12.64±3.89 12.63±3.81 12.58±4.00 11.43±3.57 

GM volume* (liters±sd) 0.60±0.06 0.60±0.06 0.60±0.06 0.55±0.05 

ICV* (liters±sd) 1.48±0.16 1.47±0.16 1.48±0.16 1.45±0.17 

ApoE4 carriership* (0/1/2) 0.72/0.26/0.02 0.72/0.25/0.02 0.74/0.23/0.03 0.57/0.36/0.06 

Follow-up time* (years±sd) 5.42 ±2.81 4.93±2.80 6.68±2.29 4.29±2.26 

* Values are based on Nimg. 

** Selection only includes baseline image of subjects. 

Abreviations: number of subjects (Nsubj); number of images (Nimg); grey matter (GM); intracranial volume (ICV) 
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3.2 Logistic regression 

The regression analyses are performed on baseline 

MRI data of validation, test and incident dementia dataset 

subjects. We computed a logistic regression for the three 

models, as shown in Table 3. The age gap was 

significantly associated with dementia incidence while 

age, sex, education years, GM and ICV volume and the 

ApoE4 allele carriership were included in the model, with 

model III: odds ratio OR=1.11 (95% CI 1.05-1.16) per 

year age gap. These associations were similar in a 

subsample with a follow-up time for incident dementia of 

more than 5 years, model III OR=1.09 (95% CI 1.01-1.16) 

per year age gap. 

3.3 Survival analysis  

Table 3 shows the age gap was significantly associated 

with the incidence of dementia, with model III hazard ratio 

HR=1.11 (95% CI 1.06-1.15) per year age gap. As in the  

 

 

Figure 5. The probability density of the gap value (PAD) for 

male and female subjects. The distribution shows the difference 

in prediction for these two groups. Distributions are similar as 

ηfemale=0.51 and σ2
female=5.72 for female, whereas ηmale=0.04 and 

σ2
male=5.69 for male. Resulting t-test showed no significant 

difference between the two groups as t(550)=-0.96 and p=0.34. 

 

Figure 6. Grad-CAM attention map and increase in attention map overlaid on a brain template. (A) Grad-Cam attention map 

intensity per voxel. Voxel values in the attention map have been set at 0.65 minimum threshold and capped at 0.95 maximum to 

exclude background values and focus on more important regions. (B) Increase in attention map intensity over chronological age per 

voxel. Map include only voxels with a significant increase in voxel values (p<3e-7 after Bonferroni correction by number of GM 

voxels). 
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Table 2. Quantitative description of the attention map. Mean and (lower boundary of) fifth quintile of attention map 

intensity are shown per brain region. Brain regions are grouped by lobes. 

Brain region Size (voxels) Attention map Intensity 

Mean 5th quartile 
 

Temporal Lobe 

Amygdala 4,398 0.71 0.98 

Hippocampus 6,687 0.61 0.80 

Anterior temporal lobe medial part 22,842 0.54 0.78 

Superior temporal gyrus, anterior part 14,369 0.54 0.74 

Lateral occipitotemporal gyrus (gyrus fusiformis) 12,908 0.53 0.62 

Posterior temporal lobe 143,237 0.52 0.68 

Superior temporal gyrus, central part 42,794 0.52 0.68 

Gyri parahippocampalis et ambiens 13,767 0.51 0.63 

Medial and inferior temporal gyri 55,102 0.50 0.68 

Anterior temporal lobe lateral part 11,999 0.49 0.65 

 

Insula and Cingulate gyri 

Cingulate gyrus anterior part (supragenual) 24,751 0.53 0.63 

Cingulate gyrus posterior part 24,235 0.52 0.64 

Insula 44,328 0.51 0.64 

 

Frontal Lobe 

Subcallosal area 788 0.70 0.98 

Posterior orbital gyrus 15,061 0.54 0.72 

Straight gyrus (gyrus rectus) 11,826 0.54 0.67 

Inferior frontal gyrus 55,754 0.53 0.72 

Superior frontal gyrus 166,766 0.52 0.77 

Precentral gyrus 106,145 0.52 0.77 

Medial orbital gyrus 18,554 0.52 0.77 

Pre-subgenual anterior cingulate gyrus 2,451 0.52 0.61 

Middle frontal gyrus 161,999 0.51 0.74 

Anterior orbital gyrus 19,514 0.51 0.73 

Lateral orbital gyrus 11,112 0.51 0.77 

Subgenual anterior cingulate gyrus 4,287 0.50 0.71 

 

Occipital Lobe 

Cuneus 28,209 0.57 0.67 

Lingual gyrus 36,627 0.55 0.65 

Lateral remainder of occipital lobe 131,852 0.54 0.73 

 

Parietal Lobe 

Superior parietal gyrus 130,908 0.54 0.74 

Remainder of parietal lobe (including supramarginal and angular gyrus) 131,972 0.52 0.75 

Postcentral gyrus 89,087 0.52 0.74 

 

Central Structures 

Nucleus accumbens 888 0.89 0.99 

Thalamus 20,953 0.61 0.79 

Putamen 14,502 0.60 0.74 

Pallidum (globus pallidus) 3,835 0.58 0.69 

Caudate nucleus 12,229 0.56 0.67 
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logistic regression model, associations were similar in the 

subsample with a follow-up time for incident dementia of 

more than 5 years, model III HR=1.09 (95% CI 1.02-1.17) 

per year age gap. Additionally, Figure 7 shows the 

Kaplan-Meier curves for the test set separated by age 

gap35. A clear transition can be seen from the higher gap 

group to lower gap groups, coinciding with an increasing 

probability of being free of dementia in follow-up. 

3.4 Gap-associated features 

Table 4 shows a list of features that can affect the brain 

pathology and may be associated with the gap9. 

Significantly lower values were found for GM volume in 

the highest quintile. However, systolic blood pressure and 

mild cognitive impairment were already only nominally 

significant, after Bonferroni correction36.  

4. Discussion 

In a large sample of community-dwelling middle-aged 

and older adults, using a DL model for brain age 

prediction on MRI-derived grey matter tissue density, 

we found that the gap between predicted brain age and 

chronological age was related to an increased risk of 

dementia, independent of other known risk factors for 

dementia.  

Our trained CNN model showed a similar performance 

in age prediction compared to previous studies that use a 

multimodal data model5 and DL model6, which achieved 

 

Figure 7. Kaplan-Meier curves presenting the dementia-free 

probability over time for participants with different age gap 

values, divided into quintiles. Low gap values correspond to 

chronological ages surpassing brain age, whereas high gap 

values correspond to chronological ages that are lower than the 

brain age. 

Table 3. Logistic regression and Cox regression analysis for age gap and incident dementia. Association of gap between predicted 

brain age and chronological age with incident dementia assessed by logistic regression and Cox proportional hazards models, both 

in the total study sample and in a subsample with a minimum follow-up time of 5 years. 

 Logistic Regression   Cox Regression 

Model n/N OR (95% CI) p-value   n/N HR (95% CI) p-value 

Total sample 

Model I 159/1808 1.15 (1.10-1.20) 2.67 x 10-10   159/1808 1.15 (1.11-1.20) 1.0 x 10-12 

Model II 154/1790 1.11 (1.06-1.16) 2.57 x 10-5   154/1790 1.11 (1.07-1.16) 4.6 x 10-7 

Model III 150/1714 1.11 (1.05-1.16) 4.80 x 10-5   150/1714 1.11 (1.06-1.15) 1.2 x 10-6 

Sample follow-up time > 5 years 

Model I 62/1366 1.11 (1.04-1.18) 1.26 x 10-3   62/1366 1.13 (1.06-1.20) 1.4 x 10-4 

Model II 60/1352 1.09 (1.02-1.16) 1.43 x 10-2   60/1352 1.10 (1.03-1.17) 3.2 x 10-3 

Model III 58/1305 1.09 (1.01-1.16) 2.08 x 10-2   58/1305 1.09 (1.02-1.17) 7.2 x 10-3 

Model I: age + sex. 

Model II: model I + grey matter volume + intracranial volume.  

Model III: model II + years of education + APOE4 carrier status. 

Abbreviations: confidence interval (CI); odds ratio (OR); hazard ratio (HR); number of cases (n); total number of participants (N). 
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performances of MAE=4.29 and MAE=4.16, respectively. 

Previous studies looked cross-sectionally5,6 at the 

association of the age gap and dementia occurrence, but in 

this study we were also able to look at this association 

longitudinally. As non-reversible pathological changes 

already occur years prior to diagnosis, identifying early-

stage biomarkers for dementia is of importance. The gap 

has potential to be utilized alongside other clinical risk 

factors and biomarkers to separate the population into 

categories with sufficiently distinct degrees of risk to drive 

clinical or personal decision-making, e.g. dementia 

screening and informed life planning. 

By including sex as a covariate, the covariate can 

reduce the difference in resulting age predictions between 

male and female subjects. The trained model was able to 

reduce prediction error and correct for male and female 

biases observed in the image by the model. By including 

the additional input of sex, the model is able to prevent 

over- and under prediction for male and female ages, 

respectively, as shown in Figure C-2. Here we present the 

performance in gap on male and female subjects, of one 

model including sex covariate and one without. Both early 

adapted models were trained under the same training 

settings and used the exact same training and validation 

sample sets. The model that includes the additional input 

of the subject’s respective sex, was able to reduce the 

overall gap between male and female subjects to be 

insignificant (p-value=0.23). Also bringing the mean gap 

for males and females closer to zero (one-sample t-test:  

pmale=0.88 and pfemale=0.05). 

Moreover, we retrieved attention maps from the model. 

These maps show which brain regions are most important 

for age prediction, which also provides insights into 

processes in aging and neurodegeneration. In that regard, 

literature2,29 has reported that aging affects the entire 

GM volume in the brain, as is also confirmed by the 

attention maps retrieved from the model shown in Figure 

C-3, but more significant negative association between 

Table 4. Characteristics comparison of subjects grouped by age gap. Groups consist of subjects with the 5-year age-stratified lowest 

quintile age gap values, compared to the 5-year age-stratified highest quintile age gap values. 

Characteristic Value lowest quintile (n=340) Value highest quintile (n=350) p-value 

Age gap (years) -5.7  3.9 6.9  4.5 <0.001 

Grey matter volume (mL) 605  56.9 577.6  56.2 <0.001 

Systolic blood pressure (mmHg) 138.9  21.6 143.1  21.0 0.009 

Mild cognitive impairment, n (%) 15 (4.4) 31 (8.9) 0.013 

Diastolic blood pressure (mmHg) 82.1  10.8 84.1  11.1 0.014 

Fasting glucose level (mmol/L)  5.5  1.2 5.7  1.1 0.021 

Current or past smoker, n (%) 102 (30.0) 130 (37.1) 0.027 

Body mass index (kg/m2) 27.2  3.9 27.8  4.5 0.043 

Mini-Mental State Examination score 28.0  1.8 27.7  2.1 0.095 

Total cholesterol (mmol/L) 5.6  1.0 5.5  1.1 0.323 

APOE4 carrier, n (%) 92 (27.1) 103 (29.4) 0.418 

Female, n (%) 187 (55.0) 203 (58.0) 0.428 

HDL cholesterol (mmol/L) 1.4  0.4 1.5  +- 0.4 0.549 

Age (years) 65.5  10.8 65.3  11.0 0.771 

Years of education 12.4  3.8 12.3  4 0.829 

Intracranial volume (mL) 1465.8  163.2 1466.3  164.1 0.971 

Values are presented in mean  SD unless stated otherwise. 

Abbreviations: number of participants (n); standard deviation (SD). 
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GM volume and age have been reported for several 

specific brain regions, i.e. a reduction in GM volume with 

age. From this we know that the gap can hold information 

on differences in specific brain regions linked to the age 

prediction, compared to exclusively using GM volume for 

predicting. According to literature2,29 the insula, superior 

temporal areas and multiple gyri have shown significant 

age-related GM volume difference. However, amongst 

these, most of the larger regions were often only partially 

highlighted by the network. On the other hand, brain 

structures less significantly affected by age in literature2,29, 

were more highlighted by the network, e.g.: caudate 

nuclei, amygdalae, hippocampi and thalami. 

The amygdalae and (parts of the) hippocampi in 

particular proved to be more associated to age prediction 

and also increased in attention map intensity in older 

subjects. This is in accordance to literature where 

significant negative associations between GM volume and 

age have been reported for these regions2,29. Atrophy of 

these two structures also has also shown to be more 

prevalent in dementia patients, including years before 

diagnosis37,38.  

Limitations 

We were not able to perfectly predict the age based 

only on MRI for healthy subjects. We assume that due to 

biological similarity of the brain within a range of several 

years, there will always be an according level of 

uncertainty in the age prediction. 

Furthermore, although we excluded subjects with 

dementia and stroke while training the model, there are a 

number of other factors that can affect overall or local GM 

volume, in turn affecting the age prediction and gap 

(Table 4). These additional features can introduce bias, 

which may be solved by adding the information as a 

covariate to the model. This however requires the 

respective information on the subjects, which can make the 

method less accessible for general use. 

We were unable to utilize the full scale of the input 

data. In terms of DL implementation, the model uses larger 

receptive fields and strides in the first layer compared to 

following layers. This was due to the restricted 

computational power (GPU memory) that was available to 

train the network. Thus, the model might have excluded 

valuable finer details in the input data.  

Lastly, the current CNN model is incapable of handling 

unfamiliar datasets, limiting its practical use. A drawback 

of CNN’s is that the training data should be representative 

for the data for which the trained network is used. Thus 

limiting the generalizability of our method. However, this 

can be addressed by training models on more diverse or 

new datasets.  

Future recommendations 

The CNN built for this study, uses a fairly standard 

architecture. It may be valuable to investigate more 

complex CNN architectures for this application, as smaller 

details might not have been noticed by our model. In that 

regard, our current approach uses minimally pre-processed 

GM density maps as input. It would be interesting to test 

models for raw T1-weighted brain MRIs, for the purpose 

of using non-preprocessed MRIs for gap estimation. Note 

that this however may complicate visualization analysis, 

as images are no longer segmented and registered. 

This study has investigated the association between the 

age gap and incident dementia, whilst adjusting for five 

known biomarkers, i.e. age, sex, GM volume, ICV, years 

of education and APOE4 carriership. However, it is still 

required to investigate the correlation of age gap to other 

biomarkers to prove whether it is an independent risk 

biomarker for incident dementia. Additionally, it would be 

interesting to compare the power of the age gap as a risk 

biomarker to other known biomarkers. 

As mentioned in Limitations, several cofactors also 

influence brain pathology and can affect age estimation 

and gap. Further research is needed into these gap-

associated features, which may explain gap differences.  

Investigation of the exact association between these 

features and age gap might also be interesting when 

regarding human lifestyle. On the other hand, to try and 

get a more accurate gap correlation to dementia, more of 

these features can be introduced as covariates in the 

architecture. Although, this requires the study to consider 

the practical application of acquiring and using such 

additional features. 

Lastly, this study has investigated association between 

age gap and incidence of dementia, but that is not to say 
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that dementia is the only neurodegenerative disease that 

can be traced by this variable. Follow-up studies can 

include early-stages of other neurodegenerative diseases 

or even mental diseases for investigation after their 

association with age gap, to improve our understanding of 

the human brain pathology. 

5. Conclusion 

We showed that the gap between predicted and 

chronological brain age is a biomarker associated with a 

risk of dementia development. DL visualization allows 

further investigation of the gap and neurodegeneration 

with respect to the human brain. This suggests that the age 

gap may be applicable for dementia risk screening, but 

there is still room for improvement of the model and for 

further research into the association between gap and brain 

diseases. 

Acknowledgments 

This research was made possible by The Erasmus 

Medical Center, Rotterdam. I thank my direct supervisors 

(Gennady V. Roshchupkin and Wiro J. Niessen) for their 

continued guidance during this project. I thank the other 

co-authors of the original paper (Maria J. Knol, Aleksei 

Tiulpin, Florian Dubost, Marleen de Bruijne, Meike W. 

Vernooij, Hieab H.H. Adams and M. Arfan Ikram) for 

their insights, expertise and contributions that greatly 

assisted in this research. Lastly, I thank the many 

colleagues from the department of medical informatics 

who provided their insights on this research.  

References 

1. Vinke, E. J. et al. Trajectories of imaging markers 

in brain aging: The Rotterdam Study. Neurobiol. 

Aging (2018). 

doi:10.1016/j.neurobiolaging.2018.07.001 

2. Manard, M., Bahri, M. A., Salmon, E. & Collette, 

F. Relationship between grey matter integrity and 

executive abilities in aging. Brain Res. 1642, 562–

580 (2016). 

3. Abbott, A. Dementia: A problem for our age. 

Nature 475, (2011). 

4. Franke, K., Luders, E., May, A., Wilke, M. & 

Gaser, C. Brain maturation: Predicting individual 

BrainAGE in children and adolescents using 

structural MRI. Neuroimage 63, 1305–1312 

(2012). 

5. Liem, F. et al. Predicting brain-age from 

multimodal imaging data captures cognitive 

impairment. Neuroimage 148, 179–188 (2017). 

6. Cole, J. H. et al. Predicting brain age with deep 

learning from raw imaging data results in a 

reliable and heritable biomarker. Neuroimage 163, 

115–124 (2017). 

7. Kaufmann, T. et al. Genetics of brain age suggest 

an overlap with common brain disorders. bioRxiv 

(2018). doi:10.1101/303164 

8. Holmes, G. L., Milh, M. D. M. & Dulac, O. 

Maturation of the human brain and epilepsy. 

Handbook of Clinical Neurology 107, (2012). 

9. Franke, K., Gaser, C., Manor, B. & Novak, V. 

Advanced BrainAGE in older adults with type 2 

diabetes mellitus. Front. Aging Neurosci. 5, 

(2013). 

10. Good, C. D. et al. A voxel-based morphometric 

study of ageing in 465 normal adult human brains. 

Neuroimage 14, 21–36 (2001). 

11. Roshchupkin, G. V. et al. Fine-mapping the 

effects of Alzheimer’s disease risk loci on brain 

morphology. Neurobiol. Aging 48, 204–211 

(2016). 

12. Ikram, M. A. et al. The Rotterdam Scan Study: 

design update 2016 and main findings. Eur. J. 

Epidemiol. 30, 1299–1315 (2015). 

13. Matsunari, I. et al. Comparison of 18F-FDG PET 

and Optimized Voxel-Based Morphometry for 

Detection of Alzheimer’s Disease: Aging Effect 

on Diagnostic Performance. J. Nucl. Med. 48, 

1961–1970 (2007). 

14. Vrooman, H. A. et al. Multi-spectral brain tissue 

segmentation using automatically trained k-

Nearest-Neighbor classification. Neuroimage 37, 

71–81 (2007). 

15. Smith, S. M. & Nichols, T. E. Threshold-free 

cluster enhancement: Addressing problems of 

smoothing, threshold dependence and localisation 

in cluster inference. Neuroimage 44, 83–98 

(2009). 

16. Mutlu, U. et al. Association of Retinal 

Neurodegeneration on Optical Coherence 

Tomography With Dementia. JAMA Neurol. 1–8 

(2018). doi:10.1001/jamaneurol.2018.1563 

17. McKhann, G. et al. Clinical diagnosis of 

Alzheimer’s disease. Neurology 34, 939 (1984). 

18. Román, G. et al. Vascular dementia: diagnostic 



27 
 

criteria for research studies. Neurology 43, 250–

260 (1993). 

19. Seripa, D. et al. TOMM40, APOE, and APOC1 in 

primary progressive aphasia and frontotemporal 

dementia. J. Alzheimer’s Dis. (2012). 

doi:10.3233/JAD-2012-120403 

20. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. 

Gradient-based learning applied to document 

recognition. Proc. IEEE 86, 2278–2323 (1998). 

21. Krizhevsky, A., Sutskever, I. & Hinton, G. E. 

ImageNet Classification with Deep Convolutional 

Neural Networks. Adv. Neural Inf. Process. Syst. 

1–9 (2012). 

doi:http://dx.doi.org/10.1016/j.protcy.2014.09.007 

22. Simonyan, K. & Zisserman, A. Very Deep 

Convolutional Networks for Large-Scale Image 

Recognition. arXiv Prepr. 1–10 (2014). 

doi:10.1016/j.infsof.2008.09.005 

23. Williams, S. Pearson’s correlation coefficient. The 

New Zealand medical journal (1996). 

doi:10.1136/bmj.e4483 

24. Selvaraju, R. R. et al. Grad-CAM: Visual 

Explanations from Deep Networks via Gradient-

Based Localization. Proc. IEEE Int. Conf. 

Comput. Vis. 2017–Octob, 618–626 (2017). 

25. Preacher, K. J., Curran, P. J. & Bauer, D. J. 

Computational Tools for Probing Interactions in 

Multiple Linear Regression, Multilevel Modeling, 

and Latent Curve Analysis. J. Educ. Behav. Stat. 

31, 437–448 (2006). 

26. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: 

Uses in assessing rater reliability. Psychol. Bull. 

86, 420–428 (1979). 

27. DiCiccio, T. J. & Efron, B. Bootstrap confidence 

intervals. Stat. Sci. (1996). 

doi:10.1214/ss/1032280214 

28. Ruitenberg, A., Ott, A., Van Swieten, J. C., 

Hofman, A. & Breteler, M. M. B. Incidence of 

dementia: Does gender make a difference? 

Neurobiol. Aging (2001). doi:10.1016/S0197-

4580(01)00231-7 

29. Matsuda, H. Voxel-based Morphometry of Brain 

MRI in Normal Aging and Alzheimer’s Disease. 

Aging Dis. 4, 29–37 (2013). 

30. Roses, A. D. & Saunders, A. M. APOE is a major 

susceptibility gene for Alzheimer’s disease. Curr. 

Opin. Biotechnol. 5, 663–667 (1994). 

31. Rossum, G. Van & Drake, F. L. Python Reference 

Manual. Python Software Foundation (2001). 

Available at: http://www.python.org.  

32. Ascher, D., Dubois, P., Hinsen, K., Hugunin, J. & 

Oliphant, T. Numerical Python. Lawrence 

Livermore National Laboratory (2001). Available 

at: http://www.pfdubois.com/numpy/.  

33. Chollet, F. Keras. Github repository (2015). 

Available at: https://github.com/fchollet/keras.  

34. R Core Team. R: A language and environment for 

statistical computing. R Foundation for Statistical 

Computing Available at: http://www.r-

project.org/.  

35. Rich, J. T. et al. A practical guide to 

understanding Kaplan-Meier curves. Otolaryngol. 

- Head Neck Surg. 143, 331–336 (2010). 

36. Abdi, H. The Bonferonni and Šidák Corrections 

for Multiple Comparisons. Encycl. Meas. Stat. 

103–107 (2007). doi:10.4135/9781412952644 

37. Aylward, E. H. et al. MRI volumes of the 

hippocampus and amygdala in adults with Down’s 

syndrome with and without dementia. Am. J. 

Psychiatry (1999). doi:10.1176/ajp.156.4.564 

38. Wachinger, C., Salat, D. H., Weiner, M. & Reuter, 

M. Whole-brain analysis reveals increased 

neuroanatomical asymmetries in dementia for 

hippocampus and amygdala. Brain (2016). 

doi:10.1093/brain/aww243 

39. Sathya, R. & Abraham, A. Comparison of 

Supervised and Unsupervised Learning 

Algorithms for Pattern Classification. Int. J. Adv. 

Res. Artif. Intell. 2, 34–38 (2013). 

40. Xinghuo Yu, M. Onder Efe,  and O. K. A General 

Backpropagation Algorithm for Feedforward 

Neural Networks Learning. IEEE Trans. Neural 

Networks 13, 251–254 (2002). 

41. Gill, J. K. Automatic Log Analysis using Deep 

learning and AI - XenonStack. (2017). Available 

at: https://www.xenonstack.com/blog/data-

science/log-analytics-deep-machine-learning-ai/. 

(Accessed: 19th December 2018) 

42. Xue-Wen Chen & Xiaotong Lin. Big Data Deep 

Learning: Challenges and Perspectives. IEEE 

Access 2, 514–525 (2014). 

43. Işin, A., Direkoǧlu, C. & Şah, M. Review of MRI-

based Brain Tumor Image Segmentation Using 

Deep Learning Methods. Procedia Comput. Sci. 

102, 317–324 (2016). 

44. Ker, J., Wang, L., Rao, J. & Lim, T. Deep 

Learning Applications in Medical Image Analysis. 

IEEE Access 1–1 (2018). 

doi:10.1109/ACCESS.2017.2788044 

45. Szegedy, C. et al. Going Deeper with 

Convolutions. 1–9 (2014). 

doi:10.1109/CVPR.2015.7298594 



28 

 

46. Ronneberger, O., Fischer, P. & Brox, T. U-Net: 

Convolutional Networks for Biomedical Image 

Segmentation. Miccai 234–241 (2015). 

doi:10.1007/978-3-319-24574-4_28 

47. Lin, M., Chen, Q. & Yan, S. Network In Network. 

arXiv Prepr. 10 (2014). 

doi:10.1109/ASRU.2015.7404828 

48. Perez, L. & Wang, J. The Effectiveness of Data 

Augmentation in Image Classification using Deep 

Learning. (2017). 

49. Kingma, D. P. & Ba, J. L. Adam: A Method for 

Stochastic Optimization. ICLR Conf. Proc. 1631, 

13–15 (2015). 

50. Ruder, S. An overview of gradient descent 

optimization algorithms. 1–14 (2016). 

doi:10.1111/j.0006-341X.1999.00591.x 

51. Cox, D. R. The Regression Analysis of Binary 

Sequences. J. R. Stat. Soc. Ser. B 20, 215–242 

(1958). 

52. Fox, J. Cox Proportional-Hazards Regression for 

Survival Data. Append. to An R S-PLUS 

Companion to Appl. Regres. (2002). 

doi:10.1016/j.carbon.2010.02.029 

 

  



29 
 

Appendix A. Deep learning and convolutional 

neural networks 

Appendix A.1. Deep learning 

Deep learning techniques require a set of input and 

respective output to find and optimize a non-linear relation 

between the two. By providing data to a set of algorithms, 

the method is able to train a by the user designed model. 

Generally, the user designs the model architecture by 

selecting the model components. Subsequently, the 

machine learning method iteratively adjusts the model 

parameters according to each iteration’s trained model 

performance, to create an optimized model using 

backpropagation by supervised or unsupervised learning. 

By letting the model itself choose which relevant features 

to extract from the input, deep learning facilitates the 

model to freely search the input-space and find the most 

important, possibly new, input features.  

Deep Learning is a subset of machine learning, which 

is a form of artificial intelligence often used to develop 

models. Compared to classical model building, machine 

learning techniques require a set of input and respective 

output to find and optimize a non-linear relation between 

the two. By providing this data to a set of algorithms, the 

method is able to train a by the user designed model, as 

illustrated in Figure A-1. Generally, the user designs the 

model architecture by selecting the model components. 

After which the machine learning method optimizes the 

model, i.e. model parameters are iteratively adjusted using 

backpropagation according to a loss function, to create an 

optimal model by supervised or unsupervised learning39,40.  

In machine learning, the input is usually made up of a 

set of user-defined features that are correlated to the 

output. However, deep learning allows the model itself to 

choose which relevant features to extract from the input, 

shown in Figure A-241. Although this method requires a 

lot of data for training, it facilitates the model to freely 

search the input-space and find the most important, 

possibly new, input features.  

Appendix A.2. Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a class 

amongst deep learning techniques. They allow multi-

dimensional input images and inspect these inputs by 

scanning them for relevant information20,21. Deep learning 

and CNN models have been rising in popularity and have 

been actively studied in recent years, reaching state-of-the-

art performances in many applications amongst which 

medical imaging42–44.  

CNNs regard an image as a field of numerical values, 

view small portions of this image (receptive field) and 

perform multiplications with a weight-matrix (filter) to 

extract certain information (feature) from this portion. By 

inspecting the entire image using this filter in a grid-wise 

manner, the filter extracts specific information which is 

then saved to a new matrix or image (feature map), as 

illustrated in Figure A-3. Repeating this process for the 

resulting feature maps, the network iteratively refines or 

searches for more information inside of the image that is 

relevant to the output.  

 

Figure A-1. Graphic representation of a classical model (left) 

and machine learning model (right). Classical model requires 

the user to optimize the model, whereas machine learning 

optimizes the model for the user. 

 

Figure A-2. Graphic representation of feature extraction in 

machine learning and deep learning41. Machine learning 

techniques require user specified features (e.g. wheels, 

windows, etc.) extracted from the input as input for the 

classification method. Deep learning techniques exclude the 

user from the process, take in entire inputs and perform feature 

extraction alongside classification in its method. 
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These convolutional layers are then typically combined 

with a variety of different techniques and algorithms that 

allow the network to appropriately extract the information 

from the input. Commonly used techniques are rectified 

linear units activation (ReLU), max-pooling layers, fully 

connected layers, batch normalization and dropout21,44.  

Appendix A.3. Selecting network architecture 

Several different CNN model architectures were built, 

trained and tested in this study. Examples amongst the 

models were very deep CNNs, CNNs with many feature 

maps and U-Nets22,45,46. All models achieved similar 

performances in MAE between 4.20-4.80 years and ICC 

of around 0.90. As such we decided on our current CNN 

model based on the good overall performance and 

simplicity of the architecture, which allows visualization 

by Grad-CAM and a better interpretation of the results.  

As mentioned in Section 2.3, we built a 3D regression 

CNN model to predict brain age using brain MRI of GM 

voxels and the sex covariate as input. Thus, our 

architecture consists of two branches. The first branch can 

be described as four convolutional blocks ending on a 

pooling layer. The first layer takes the input image through 

a 5x5x5 convolutional layer with strides of 2. This is done 

to effectively decrease feature map sizes, allowing the 

network to accept larger resolution input images allowed 

by GPU memory space. Hereafter, convolutional blocks 

use 3x3x3 convolution with strides of 1, as recommended 

by literature22. Each block ends on a MP layer, which 

sequentially halves feature map dimensions but increases 

their number from 32 to 48, 64 and 80, respectively. The 

last convolutional block applies global average pooling to 

extract the final feature maps to a one-dimensional array 

of a single variable per feature map47.  

After, the first branch is merged with the second 

branch, which consists of the binary input sex. Merging is 

performed by concatenation between the array of 80 single 

variable feature map representations and sex input, finally 

followed by one more fully connected layers of 32 

channels to propagate to a single regression output.  

Appendix A.4. Network training 

The CNN has been trained using the data from the 

training set of 3848 subjects. Here, over- and 

undersampling had been applied to the training set. Thus 

effectively using data of 3688 subjects to distribute the 

samples more evenly over the age range of the population 

(Nimg,train_balanced=8060 images, mean age 68.52±13.71sd). 

To avoid overfitting on the training set and to improve 

overall model performance, data augmentation was also 

applied during training48. Data augmentation included 

random small translations and mirroring in planes. We also 

used follow-up MRI scans of each subject as a ‘natural 

data augmentation’ technique. 

For optimization the performance is measured in model 

accuracy based on the mean squared error (MSE) of the 

prediction  

 ( 5 ) 

, as MSE penalizes outliers more than MAE. The model is 

optimized by the iterative process of supervised learning 

by backpropagation, using an Adaptive Moment 

Estimation (Adam) optimizer as its loss function49. Adam 

handles an adaptive learning rate whilst carrying 

momentum. The resulting optimization function is known 

to be robust whilst the hyper-parameters typically require 

little tuning, making it easy to implement50. Hyper-

parameter tuning was done empirically and the best model 

was selected based on its performance on the validation 

set. 

 

 

Figure A-3. Principle of convolutional layers. An image can be 

seen a field of numbers. A CNN uses small loops called filters 

to calculate and produce new images, called feature maps, which 

hold information on the image. 

MSE =
1

𝑁
∑(gap𝑆)2

𝑆
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Appendix B. Analysis methods 

Appendix B.1. Logistic regression analysis 

Logistic regression is a machine learning and statistical 

model approach, which is able to explain binary dependent 

variables51. It is used to relate a binary outcome to one or 

more variables, by fitting a logistic function (a variant of 

the sigmoid function) on the data samples as shown in 

Figure B-1. The logistic function for a single variable 𝑥 is 

written as 

 ( 6 ) 

, with probability 𝑝 and model coefficients 𝛽0 and 𝛽1. 

This is expanded for multiple 𝑚 variables to 

 ( 7 ) 

, with additional model coefficients 𝛽𝑖 for every 

explanatory variable 𝑥𝑖 (𝑖 = {1,2, … , 𝑚}). 

The relationship between probability and variable can 

be derived from Equation 7. For each variable the odds 

ratio (OR) can be defined as 

 ( 8 ) 

. The OR𝑖 provides an interpretation for 𝛽𝑖, as 𝑒𝛽𝑖 indicate 

the incease in probability by multiplication for every 1-

unit increase in 𝑥.  

For each variable, the p-value can be computed in 

logistic regression, indicating whether changes in the 

variable are associated with a significant increase or 

decrease in probability. Note that for multiple variables, 

this means high p-values may indicate that the difference 

is already explained by another variable in the model. 

Thus, logistic regression is utilized here as a tool to 

compare the gap with other known biomarkers in terms of 

their correlation to follow-up for dementia.  

 

Appendix B.2. Cox proportional hazards regression 

analysis 

Proportional hazards models (a.k.a. Cox models or PH 

models) are a class of survival analysis models in statistics, 

which examines the time it takes for events to occur52. 

Such models are able to relate the time passed till the 

occurrence of an event to one or more variables, which 

may be associated with that quantity of time. Similar to 

logistic regression (Appendix B.1), it fits a so called 

hazard function to the data that has the form 

 ( 9 ) 

, which includes hazard ℎ𝑖 at time 𝑡 for observation 𝑖 and 

constant 𝛼 as a baseline hazard ℎ0(𝑡). 𝛽𝑖 are model 

coefficients for every explanatory variable 𝑥𝑖𝑗 (𝑗 =

{1,2, … , 𝑚}). Following, similar to the OR, we find the 

hazard ratio (HR) as 

  ( 10 ) 

, which considers two observations 𝑖 and 𝑖′ that differ in 

𝑥𝑖. The HR𝑖 represents the risk of even in observation 

group 𝑖 compared to group 𝑖′. 

If the HR is close to 1, then that respective variable 

does not affect survival; less than 1, then that variable is 

protective and associated with improved survival; or 

𝑝(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 

𝑝(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑚𝑥𝑚)
 

odds𝑖 = 𝑒𝛽0+𝛽𝑖𝑥𝑖 

OR𝑖 =
odds(𝑥𝑖 + 1)

odds(𝑥𝑖)
= 𝑒𝛽𝑖 

ℎ𝑖(𝑡) = 𝑒𝛼(𝑡)+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2+⋯+𝛽𝑘𝑥𝑖𝑚  

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝛽1𝑥𝑖1+𝛽2𝑥𝑖2+⋯+𝛽𝑘𝑥𝑖𝑚 

𝜂𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑚 

HR𝑖 =
ℎ𝑖(𝑡)

ℎ𝑖′(𝑡)
=

𝑒𝜂𝑖

𝑒𝜂𝑖′
 

 

Figure B-1. Graph of a logistic regression curve showing 

probability of outcome Y versus input variable X. 
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greater than 1, then that variable is associated with 

increased risk or decreased survival. Also in accordance to 

the logistic regression analysis, p-values are computed for 

each variable. 
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Appendix C. Additional figures 

 

 

 

 

 

Figure C-1. Bar plot of attention map values per region. Bars show mean of each region. Variance from first to fifth quintile (upper 

and lower boundary, respectively) are indicated in red. Outliers are indicated in dark blue.. 

 

Figure C-2. Effect on the gap value distribution (red=male; blue=female) of adding sex as a covariate to the model. A comparison 

of the probability density functions for gap of two early trained models along with their respective t-test results. Both models have 

the exact same architecture with one the exception. a) Model uses only a single brain-MRI voxels input. b) Model uses two inputs, 

i.e. brain-MRI voxels and respective sex. Models were trained under the exact same settings. 
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Figure C-3. Grad-CAM attention map intensity per voxel overlaid on a brain template. Voxel values in the attention map have been 

set at 0.50 minimum and 1.00 maximum threshold to exclude background values and focus on more highlighted regions, according 

to normalization around 0.50 in the Grad-CAM implementation. 
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Appendix D. Additional tables 

 

 

Table D-1. Quantitative description of the increase in attention map. Number of positive voxels (intensity increase) and negative 

voxels (intensity decrease), and their respective fraction of region size are shown per brain region. Brain regions are grouped by 

lobes. 

Brain region Attention map intensity increase Attention map intensity decrease 

fraction (n/N) fraction (n/N) 
 

Temporal Lobe 

Amygdala 0.48 (2,093/4,398) 0.01 (65/4,398) 

Hippocampus 0.31 (2,056/6,687) 0.00 (0/6,687) 

Gyri parahippocampalis et ambiens 0.24 (3,244/13,767) 0.01 (98/13,767) 

Lateral occipitotemporal gyrus (gyrus fusiformis) 0.22 (2,798/12,908) 0.00 (0/12,908) 

Posterior temporal lobe 0.20 (28,128/143,237) 0.00 (113/143,237) 

Anterior temporal lobe medial part 0.18 (4,190/22,842) 0.02 (418/22,842) 

Superior temporal gyrus, anterior part 0.17 (2,435/14,369) 0.03 (420/14,369) 

Superior temporal gyrus, central part 0.12 (5,321/42,794) 0.00 (65/42,794) 

Medial and inferior temporal gyri 0.12 (6,529/55,102) 0.00 (0/55,102) 

Anterior temporal lobe lateral part 0.04 (467/11,999) 0.00 (2/11,999) 

 

Insula and Cingulate gyri 

Insula 0.55 (24,188/44,328) 0.03 (1,199/44,328) 

Cingulate gyrus posterior part 0.43 (10,368/24,235) 0.01 (245/24,235) 

Cingulate gyrus anterior (supragenual) part 0.31 (7,648/24,751) 0.00 (53/24,751) 

 

Frontal Lobe 

Subgenual anterior cingulate gyrus 0.53 (2,271/4,287) 0.00 (2/4,287) 

Straight gyrus (gyrus rectus) 0.43 (5,033/11,826) 0.00 (27/11,826) 

Subcallosal area 0.43 (335/788) 0.13 (106/788) 

Pre-subgenual anterior cingulate gyrus 0.24 (597/2,451) 0.00 (0/2,451) 

Superior frontal gyrus 0.19 (31,890/166,766) 0.01 (1,407/166,766) 

Inferior frontal gyrus 0.16 (8,875/55,754) 0.01 (560/55,754) 

Medial orbital gyrus 0.14 (2,603/18,554) 0.02 (410/18,554) 

Middle frontal gyrus 0.12 (19,296/161,999) 0.00 (464/161,999) 

Precentral gyrus 0.12 (12,646/106,145) 0.00 (426/106,145) 

Posterior orbital gyrus 0.08 (1,273/15,061) 0.01 (205/15,061) 

Anterior orbital gyrus 0.01 (181/19,514) 0.02 (389/19,514) 

Lateral orbital gyrus 0.01 (165/11,112) 0.00 (10/11,112) 

 

Occipital Lobe 

Lingual gyrus 0.15 (5,618/36,627) 0.00 (86/36,627) 

Cuneus 0.13 (3,645/28,209) 0.00 (29/28,209) 

Lateral remainder of occipital lobe 0.13 (16,571/131,852) 0.00 (27/131,852) 

 

Parietal Lobe 

Superior parietal gyrus 0.17 (22,515/130,908) 0.00 (145/130,908) 

Postcentral gyrus 0.12 (10,703/89,087) 0.00 (163/89,087) 

Remainder of parietal lobe (including supramarginal and angular gyrus) 0.10 (13,458/131,972) 0.00 (129/131,972) 

 

Central Structures 

Pallidum (globus pallidus) 0.81 (3,113/3,835) 0.00 (0/3,835) 

Putamen 0.72 (10,508/14,502) 0.01 (90/14,502) 

Thalamus 0.52 (10,988/20,953) 0.02 (421/20,953) 

Nucleus accumbens 0.51 (451/888) 0.02 (18/888) 

Caudate nucleus 0.30 (3,645/12,229) 0.01 (62/12,229) 
 

Abbreviations: number of positive/negative voxels in region (n); region size in number of voxels (N). 

 


