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A B S T R A C T

The design of high-precision motion stages, which must exhibit high dynamic performance, is a challenging
task. Manual design is difficult, time-consuming, and leads to sub-optimal designs that fail to fully exploit
the extended geometric freedom that additive manufacturing offers. By using topology optimization and
incorporating all manufacturing steps (printing, milling, and assembly) into the optimization formulation,
high-quality optimized and manufacturable designs can be obtained in an automated manner. With a special
focus on overhang control, minimum feature size, and computational effort, the proposed methodology is
demonstrated using a case study of an industrial motion stage, optimized for maximum eigenfrequencies. For
this case study, an optimized design can be obtained in a single day, showing a substantial performance
increase of around 15% as compared to a conventional design. The generated design is manufactured using
laser powder-bed fusion in aluminum and experimentally validated within 1% of the simulated performance.
This shows that the combination of additive manufacturing and topology optimization can enable significant
gains in the high-tech industry.
1. Introduction

The combination of additive manufacturing (AM) and topology
optimization has long been promised as a perfect marriage. However,
the step from theory to practice has been mostly limited to compo-
nents intended for use as static structures (see, e.g., [1,2]). In more
demanding applications, such as semiconductor equipment, robotics,
microscopy, medical devices, and micro-electromechanical devices, ex-
treme dynamic performance is usually required [3,4]. Studies on the
combination of AM and topology optimization with realistic complexity
for these high-tech applications are scarce, which is surprising, since
especially in such applications the potential of this combination is
expected to be significant.

The high-tech industry relies on motion systems, e.g. for high-
precision positioning of samples in microscopy and of wafers and
components in the semiconductor industry [3]. Better and better perfor-
mance is demanded for future targets, and the time-to-market is crucial
in this field [4]. Manual design of motion systems is a time-intensive
process, where a design is iterated between mechanical designers,
dynamics engineers, manufacturing experts, and control specialists. The
eigenfrequencies of the system are often limiting the performance (i.e.

∗ Corresponding author.
E-mail address: a.a.t.m.delissen@tudelft.nl (A. Delissen).

bandwidth) and a higher bandwidth can generally be obtained by
increasing the eigenfrequencies [5].

With metal AM technology maturing, a vastly increased range of
geometries can be manufactured as compared to traditional machining
processes, enabling potential for enhanced performance. However, it
also further complicates the design process for engineers aiming to fully
exploit this potential in terms of performance.

The potential of AM can be systematically exploited by using topol-
ogy optimization, where an optimized design is generated in an au-
tomated manner [6]. Much literature is already available on how to
incorporate the remaining limitations of AM into the optimization
(see, e.g., [7–12]). However, little experimental data and industrial
applications can be found beyond simple monolithic brackets based on
the maximization of stiffness (see, e.g., [1,2]). For complex applications
in the high-tech industry, the usage of topology optimization is not
straightforward. The performance of dynamic systems also depends on
the mass distribution next to its stiffness. Despite many theoretical
examples of dynamical (i.e. eigenfrequency) optimizations [13–15], the
gap towards practical implementation is still significant, particularly in
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the context of high-precision motion systems produced with metal addi-
tive manufacturing. Here, three main challenges are identified, which
apply to many complex design applications in the high-tech domain
and beyond. The challenges include various aspects of manufactura-
bility, design resolution (i.e. computational cost), and assessment of
erformance by experimental validation.

anufacturing. A manufacturing process usually requires a multi-step
equence, which does not only involve AM (laser powder-bed fusion),
ut also milling to obtain the necessary surface finish and accuracy.
dditionally, different components are assembled together to form a
ystem. As each component affects the stiffness and mass distribution,
t is critical to evaluate the performance of the entire assembled system.

hile only the performance of the complete system is evaluated, all
receding manufacturing steps must be represented in the optimization
rocess in order to arrive at a realizable design. First of all, the
M process imposes an overhang angle restriction everywhere in the
tructure. Secondly, small and fragile features need to be prevented to
void local overheating and/or warping during manufacturing. Thirdly,
he support structures required for the AM process can be removed by
illing after printing, but the amount of support structures needs to

e minimized as well in order to limit build time and material use.
ext to that, sufficient material is required to attach components at

nterface locations, for instance with bolts. It is essential to incorporate
hese practical considerations in the optimization, otherwise accounting
or them through modifications afterward will inevitably degrade the
erformance of the obtained design. Additionally, these modifications
ay be tedious to apply and would needlessly require additional design

ime.

esign resolution. A higher design resolution in topology optimization
orresponds to more freedom in representing geometric features. Ad-
itive manufacturing provides a very high spatial resolution, which
deally should correspond to the design resolution of topology opti-
ization. However, having a fine design resolution inflicts a large

omputational burden, especially since eigenfrequency computations
re involved, which easily takes up to an order of magnitude more com-
utation time compared to calculations required for static structures.
dditionally, minimum feature size control in topology optimization

through the robust formulation [16]) requires the solution to three dif-
erent eigenvalue problems in each design iteration, further increasing
he computational cost by a factor of three. Ideally, a design with fine
esolution can be obtained in a matter of hours.

alidation. Lastly, by actually building and testing a demonstrator, the
ealized performance of the optimized structure is assessed in reality.
his is the ultimate test to see if all practical issues are correctly
ccounted for and if the optimized performance is as expected.

In this work, we aim to incorporate all aforementioned steps using
n industrial case of relevant complexity, from optimization to exper-
mental validation. The main novel contribution is the combination
f different aspects required to arrive at a physical industry-relevant
roduct using topology optimization and AM and demonstration of its
romised potential. Sub-contributions include (1) the representation of
he entire (multi-step) manufacturing process into the optimization in

structured manner, (2) a simple extension of an existing overhang
ilter [8] significantly improving its geometric accuracy and enabling
he use of overhang angles and print directions not aligned with the
inite element grid, (3) a novel efficient approach to the robust for-
ulation for eigenfrequency maximization problems [16], reducing the

omputational cost by a factor three, and (4) experimental validation
f an optimized design for a high-tech case study.

This paper is organized as follows. First, Section 2 introduces the in-
ustrial design case, which is used as a demonstration for the challenges
nd optimization process. All aspects of the multi-step manufacturing
rocess are captured into the optimization formulation, and each man-
2

facturing step is explained in detail. In Section 3, an optimized design 𝜔
s obtained for the case study using the proposed methodology. Its
erformance is numerically compared with several reference designs
nd also experimentally validated. Section 4 provides a discussion on
he possibilities and limitations of the current work. Finally, concluding
emarks can be found in Section 5.

. Case description and methods

.1. Chuck optimization case

To help illustrate the challenges and methodology, the design case
f a high-precision motion stage is introduced (Fig. 1(a)). This concept
an be used, for instance, for the precise positioning of microchips
uring their production or for their inspection under a microscope.
or this application, a high level of precision and repeatability is
equired as chips consist of many stacked layers with nanometer-sized
eatures and their correct functioning critically depends on connections
etween the layers. Additionally, this setup is suited for operation
n a vacuum environment [17]. A long-stroke stage first provides an
xtended range of motion with coarse precision. On top of the long-
troke stage, a short-stroke chuck (Fig. 1(b)) is magnetically levitated
nd its position is actively controlled by a feedback system to provide
he required accuracy. This makes the short-stroke chuck the most
mportant component from a system point of view. By designing a
huck with high eigenfrequencies, a high bandwidth can be achieved,
hich results in higher operating speeds and better accuracy [5]. The
oal is therefore to maximize the eigenfrequencies of the short-stroke
huck using topology optimization.

Eight sets of permanent magnets are mounted on the chuck
Fig. 1(b)) and are used for position control in 6 degrees of freedom.
he positions of all components are given a priori and therefore cannot
e changed during the optimization. Two pairs of rectangular magnets
re used for in-plane actuation and the four circular magnets are used
or out-of-plane actuation and gravity compensation [17]. These are
pecifically tuned to support a total chuck mass of 18.5 kg. Since 11 kg
s used for the magnets (neodymium) and their mounts (stainless steel
nd aluminum), the remaining 7.5 kg is available for an optimized
luminum frame (AlSi10Mg) produced by the AM process of laser
owder-bed fusion.

The outer dimensions of the design domain (excluding compo-
ents) are 400 × 400 × 48mm. This both fits in the build-chamber of
he MetalFAB1 system of Additive Industries [18] which is used for
abrication, and meets the mass requirement when using 50% of the
aximum available volume (i.e. volume fraction). To provide sufficient

eometric freedom for the optimization, 1 × 1 × 1mm cubes are used
or the parametrization of the design as well as its analysis. The entire
huck including the external components is meshed into a grid of
27 × 430 × 49 elements. Each of these elements has a continuous
esign-density between 0 (void) and 1 (solid), defined in the design
ield 𝐱. Although the printing process provides a higher resolution than
mm, this resolution already results in a formidable computational
hallenge, as will be discussed in Section 2.2.5.

ptimization problem. For the goal of maximizing a number of eigenfre-
uencies, effective optimization formulations exist (see, e.g., [13,15]).
ollowing the formulation of Ma et al. [13], objective and constraints
re adapted to the problem at hand as

min
𝐱

3
∑

𝑖=1

1
𝜔2
𝑖

+ 𝑔supp,

s.t. 𝑉 ≤ 𝑉lim,
𝑔sol ≤ 0,
0 ≤ 𝐱 ≤ 1.

(1)

y minimizing the reciprocals of the lowest three eigenfrequencies
, the individual eigenfrequencies are maximized, with focus on the
𝑖
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Fig. 1. CAD geometry of the motion stage. (a) Model of the entire stage setup, with the chuck indicated in blue. (b) Bottom view of the chuck showing the design domain for
the topology optimization (blue) and required components. The blue and green components are made of aluminum, the yellow of stainless steel, and the red parts are neodymium
magnets. Also the plane of symmetry as used in the optimization is indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
lowest one. An additional penalty 𝑔supp is added to minimize the use
of support structures that are removed by milling (Section 2.2.2). This
ensures that support material is only added when it is beneficial for
higher eigenfrequencies. The design volume 𝑉 is limited to a maximum
of 𝑉lim, in order to satisfy the mass requirement. Another constraint 𝑔sol
is added to enforce sufficient solid material at component interfaces
(Section 2.2.1). During optimization, the challenge is to find those de-
sign parameters 𝐱 which result in a minimal objective, while satisfying
all constraints.

Optimization process. The objective and constraint values need to be
evaluated for each design iteration. These depend on the design field
𝐱, but to ensure a manufacturable design, the design field is passed
through a sequence of filters before the calculation of the eigenfre-
quencies. Each filter accounts for a different aspect towards manu-
facturability by transforming the design variables, such as enforcing
a minimum feature size, removing overhanging features, removing
material in milling, or adding the components. A graphical overview
of the full filtering and analysis structure can be found in Fig. 2. The
series of filters can be seen as a composition of mathematical operators,
which transform the initial design field 𝐱 and eventually results in
the quantities required for the optimization problem in Eq. (1). All
operations in the graph are evaluated from start to end during each
design iteration. The individual operations are explained in more detail
in Section 2.2.

The design sensitivities (i.e. gradients) of the objective and con-
straints are also calculated during each design iteration, which is
required for an effective optimization. The derivations of sensitivities
are not discussed in this manuscript, as for all operations they can
either trivially be derived, or they can be found in corresponding
literature [8,13,16,19]. Once the design sensitivities are available, the
design parameters 𝐱 are updated towards an optimal design, using the
method of moving asymptotes [20], and the process is repeated until
the design stabilizes. Typically 50–150 design iterations are required
for an eigenfrequency optimization, depending on the complexity of
the optimization formulation.

2.2. Methods

This subsection describes the specific methods involved in the chuck
topology optimization scheme outlined in Fig. 2. The large-scale com-
putational process to evaluate the eigenfrequencies is also discussed.
3

Symmetry. Starting with the first step in the scheme of Fig. 2, which
is to convert the design field 𝐱 into a symmetric design 𝐬. Although
a symmetric design is not strictly required, it is preferred to keep the
center of gravity close to the midpoint of the chuck, which in this case
gives reason to enforce symmetry. A symmetric design is achieved in
an element-wise manner, by taking the average of the element density
and the density corresponding to the element in its mirror image,
mathematically described as

𝑠𝑖 =
𝑥𝑖 + 𝑥𝑛−𝑖

2
, (2)

where the index 𝑖 represents the element position in either 𝑥, 𝑦, or
𝑧-direction and 𝑛 the total number of elements in the corresponding
direction. This operation is relatively simple to implement and effec-
tively results in a symmetric density field 𝐬, which is the average of the
design 𝐱 and the design reflected over the chosen plane of symmetry (as
indicated in Fig. 1(b)). Additionally, this operation ensures a symmetric
distribution of the design sensitivities. In the general case where
no symmetry is required in the design, the symmetry step in Fig. 2
can simply be bypassed by setting 𝐬 equal to 𝐱. The subsequent steps
remain identical. Also, multiple planes of symmetry can potentially be
introduced.

2.2.1. Additive manufacturing
In order to ensure that the optimized geometry is producible by AM,

we apply methods to control the minimum feature size and the max-
imum overhang angle. Furthermore, assuring the presence of enough
material at component interface locations requires a specific constraint.
These three measures are discussed in more detail below.

Minimum feature size. The minimum feature size is controlled by apply-
ing a projection-based robust formulation in combination with a density
filter [16,19]. Next to ensuring a minimum feature size, this method
causes the design to become more robust against shape deviations that
might occur during printing.

First, as shown in Fig. 2, a length scale is introduced into the
design by applying a density filter [19], which is standard practice in
topology optimization. This converts the symmetrized design 𝐬 into a
smoothed design 𝐝. Next, by using a projection operator, three designs
are produced: a nominal (�̄�), an eroded (�̌�, i.e. shrunk), and a dilated
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Fig. 2. Graphical overview of the optimization formulation as a flowchart (Eq. (1)). The design variables 𝐱 are passed through a sequence of filters and mathematical operations
(the blue blocks) in order to obtain the objective and constraint values (in black) corresponding to a manufacturable design. The entire sequence of operations is executed in each
design iteration, where the optimizer repeatedly determines the new design 𝐱. The design used for actual printing is indicated in green. The individual operations are explained
in detail in corresponding sections. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. A cross-section showing the effect of erosion (red) and dilation (green) on the
member size. The nominal structure is displayed in blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
4

(�̂�, i.e. grown) design, as is shown in Fig. 3. The projection operator is
defined as

𝑟(𝑑) =
tanh(𝛽𝜂) + tanh(𝛽(𝑑 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

, (3)

where 𝛽 is an intensity factor, and 𝜂 is the cut-off threshold, which
takes different values for the three designs. Together with the density
filter, the effective minimum feature size is controlled by the density
filter radius 𝑟filt, the erosion threshold 𝜂er, and the dilation threshold
𝜂di [16].

After evaluating the three designs, each will have a different perfor-
mance. By focusing the optimization on the worst-case scenario (e.g. a
min–max formulation), the robustness of the final result is improved,
and a minimum feature size is obtained [16].

In the case of stiffness maximization, it is intuitive that the eroded
design always performs worst, as less material means a lower stiff-
ness [21]. This means that only one finite element solution (that of the
eroded design) needs to be calculated, instead of three.

However, the worst-case design is not directly evident when op-
timizing for maximum eigenfrequencies, since next to the stiffness
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Fig. 4. Illustration of the original sampling scheme in 2D [8], with the graph below
showing the element density distribution of the supporting elements. For a vertical
print direction (blue arrow), the active element (blue) may be printed if the maximum
supporting density is large enough. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. The printable cone (the largest printable volume, starting from one element)
using the original implementation [8], with a 5-element (a) or 9-element support (b).

distribution, the mass distribution also plays an important role. In
order to avoid calculating the eigenfrequencies three times, we use an
adapted worst-case scenario: the mass-field 𝝆 is dilated (always more
mass) and the stiffness-field 𝐄 is eroded (always less stiffness), as is
indicated in the diagram of Fig. 2. Using these settings, a single solution
of the eigenvalue problem results in worst-case eigenfrequencies, which
are lower than in the nominal case (proof is provided in Appendix).
These values are used in the objective function of Eq. (1).

Overhang limitation. To ensure a maximum overhang angle in the
design,1 an overhang filter is used. Effectively, it converts the projected
design 𝐫 to a printable design 𝐩 (Fig. 2) by removing all features
overhanging beyond a critical angle. In this case, all three designs
are filtered, resulting in three printable designs (nominal �̄�, eroded �̌�,
and dilated �̂�). Note that the combination of the robust method with
an overhang filter affects the effective minimum feature size, which
could be corrected using more elaborate formulations [22]. Naturally,
the nominal design �̄� serves as the printable design used for actually
printing the part, as indicated by the green box in Fig. 2.

The overhang filter as proposed by Langelaar [8] proceeds layer-
wise through the structure and determines the maximum printable
density of each element in the layer, which is used as a threshold to
limit the original density. The maximum printable density is deter-
mined by taking the maximum value of the supporting elements below
the current element (3 elements in 2D as illustrated in Fig. 4, and 5 or
9 in 3D as seen in Fig. 5).

Because in the original formulation discrete elements are used as
supports, the effective maximum overhang angle is non-uniform and
dependent on the alignment with the Cartesian coordinate system of
the mesh [8]. Ideally, a printable cone has an axisymmetric maximum

1 Maximum overhang angle as measured from the normal to the buildplate.
5

Fig. 6. The improved sampling scheme in 2D. (a) An overhang angle smaller than 45◦

uses one element midpoint (green) and two interpolation points (red) below the active
element (blue) as support. (b) A diagonal print direction, where one sampling point
interpolates between the two elements to the right of the active element. Elements
indicated with cyan are used only in interpolation. The horizontal axis of the density
graph is wrapped around the corner. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

overhang angle around the print direction, independent on the mesh.
When using 5 support elements, the printable cone is pyramid-shaped
(Fig. 5(a)), which is conservative in the off-axis directions with an
effective overhang angle of 35◦ on a cubical mesh. The version with 9
support elements on the other hand shows the opposite behavior, being
less restrictive in off-axis directions with an overhang of 55◦, which vi-
olates the required maximum overhang angle (Fig. 5(b)). Additionally,
these sampling patterns only allow overhang angles of 45◦ (in case of a
cubical mesh), at print-directions aligned with the Cartesian coordinate
system of the mesh. Various other overhang prevention approaches
have been proposed, e.g. [7,9,10,12], each differing in effectiveness,
complexity, and convergence characteristics.

Here we propose a comparatively simple yet effective improved
scheme that still benefits from the regularity of the structured mesh,
but reduces the dependency on the mesh. It enables a more accurate
geometric description of the maximum overhang angle and additionally
enables an arbitrary print direction and a maximum overhang angle
other than 45◦. To do this, interpolation is used to sample densities
at locations that do not exactly coincide with an element midpoint
(Fig. 6(a)). In 2D, a triangle is projected onto the supporting plane,
which is the plane passing through the midpoints of the supporting
elements. The current element may be printed if the maximum density
within the supporting area is large enough. This maximum is located
either on one of the element midpoints within the cone or at the
boundary, for which linear interpolation is used.2 By changing the
opening angle of the projecting triangle, the maximum overhang angle
can be controlled. A rotation of the triangle results in a change of
print direction, as is illustrated in Fig. 6(b). For this case, elements
adjacent to the current element are used for the rotated case, making
the supporting surface fold around the corner.

In 3D, the supporting area is determined by a cone instead of a
triangle, as demonstrated in Fig. 7. The allowable overhang angle is
controlled by the aperture of the cone, and the print direction by its
orientation. Just like the two-dimensional case, the maximum printable
density is found at one of the element midpoints within the cone or at
the perimeter of the cone. A number of equally spaced sampling points
is defined along the perimeter, approximating the density value at those
locations using bilinear interpolation based on the density values of the
four closest elements. The weights used for the bilinear interpolation

2 This is only assumed for densities in the overhang filter. For each element
in the finite element analysis, its material density is constant throughout.
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Fig. 7. The improved sampling strategy with an arbitrary print orientation, indicated
by the blue arrow. The maximum printable density of the active element (in blue) is
determined by the elements in the direction of the support cone (green). A combination
of densities within the cone obtained directly at element midpoint (2x green dots), and
interpolated values along the perimeter of the cone (8x red dots) are used in a smooth
maximum function. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

can be precomputed since a structured grid is used, thus ensuring a
computationally efficient overhang filter.

The maximum printable density is now obtained by taking a smooth
maximum of both the values at element midpoints encompassed by the
cone and the sampled points along the perimeter of the projected cone.
Instead of 5 or 9 points, this results in a variable number of points,
depending on print orientation, maximum overhang angle, and chosen
number of perimeter points. The final step in the overhang filter is to
take a smooth minimum of the original density of the current element
and the maximum printable density, which is identical to that of the
original implementation [8].

The printable cone converges to a circular shaped cone by increas-
ing the number of sampling points, as is demonstrated in Figs. 8(a)
and 8(b), correcting the under- and over-estimation as observed in the
original 5 or 9 element support (Fig. 5). Using the improved method,
also overhang angles smaller than 45◦ (narrow support cones, Fig. 8(c))
can easily be modeled by simply adapting the shape of the supporting
cone, thus sampling at different locations. Additionally, arbitrary print-
ing orientations are enabled by rotating the supporting cone (Fig. 8(d)),
instead of requiring domain mapping [23]. Also other support patterns,
e.g., elliptic cones, are a natural extension to the method.

Note that in order for this refined overhang filter to work correctly,
only processed elements are allowed to be accessed. This can be en-
sured by changing the element traversal pattern, depending on the print
direction. In general, for overhang angles above 45◦ it becomes much
more difficult or even impossible to obtain a traversal pattern that
ensures all sampled elements are processed. A critical overhang angle
of 45◦ is used for the present study , for which the proposed overhang
filter is used for an improved geometric accuracy of the maximum
overhang limitation.

Enforcing interfaces. For the assembly of the different components to
the printed body, interfaces for bolts need to be generated. This is not
evident in the optimization, because there is no incentive to connect
the bodies other than for stiffness. In practice, sufficient material is
required at bolt locations for a hole to be drilled and threaded, as
is illustrated in Fig. 9. Only setting the required volume to solid (i.e.
frozen/non-design area) does not ensure printability of these locations,
and they may even be removed by the overhang filter. Therefore,
sufficient material is forced at the bolt locations by using an additional
constraint [24], as is depicted in Fig. 2. This is done by taking the root
6

sum of squares for the differences between the density values of the
nominal printable design �̄� and their desired value (in this case 1.0),
denoted in a formula as

𝑔sol =
1
𝑁

√

∑

𝑖∈
(1.0 − �̄�𝑖)2 − 𝜏 ≤ 0. (4)

The set of elements marked to be solid is denoted  , the number
of elements in this set 𝑁 , and a small tolerance value 𝜏 is used to
allow some slack. In this manner, the optimization process will not
only ensure the presence of material at these bolt regions, but also its
printability.

2.2.2. Milling
The next step in the (simulated) production process is milling

(Fig. 2). After obtaining a printable design, pockets are cleared of
support structures, as indicated in Fig. 10, where components are to
be mounted. Here, by support structures we mean the material that
is required for a printable design, but is removed in the milling step.
Any support structures generated outside of the milled volume are
not removed and are considered a part of the final structure. Adap-
tive formulations for topology optimization also exist, where support
structures (not in benefit to the final performance) are identified and
removed throughout the domain, instead of only in a pre-determined
volume [24,25]. However, this is not incorporated in the current work.

Mathematically, the milling operation is done by taking the print-
able designs (�̄�, �̌�, and �̂�) and setting the entries corresponding to the
milled volume to zero as

𝑐𝑖 =
{

0 ∀ 𝑖 ∈ 
𝑝𝑖 ∀ 𝑖 ∉  (5)

where 𝑐𝑖 are the entries in design vectors �̄�, �̌�, and �̂�, denoting the milled
designs and  represents the elements in the milled volume, which
are known a priori. Note that in this case, no tool access restrictions
are involved, since the relevant pockets are always accessible from the
base of the chuck. A more complex milling formulation, such as in [26],
is therefore not required in this case.

As mentioned in Section 2.1, the required mass of the unassembled
chuck is 𝑀lim = 7.5 kg, for which a constraint can be formed at this
point (Fig. 2). By a simple addition, the volume of the machined chuck
frame can be calculated as

𝑉 =
∑

𝑖
𝑐𝑖𝑉e, (6)

with 𝑉e the volume of one element. The volume limit 𝑉lim is calculated
as

𝑉lim =
𝑀lim
𝜌alu

, (7)

with material density 𝜌alu. Strictly speaking, the volume constraint
should be an equality constraint, but since the upper bound is generally
active, it can be reduced to an inequality constraint, which is easier to
implement in the optimization (Eq. (1)).

Support structure minimization. Since the milled field is used for the
volume constraint instead of the printed field, the use of support
structures is unbounded, which may lead to excessive material use
during the print process. This effect is counteracted by adding a penalty
on the volume of removed support structures, keeping the amount of
support material to a minimum. The volume of the cleared support
structures can simply be calculated from the difference between the
nominal printed volume and the volume after milling 𝑉 (Eq. (6)) as

𝑉supp = 𝑉print − 𝑉 , with 𝑉print =
∑

𝑖
�̄�𝑖𝑉e. (8)

This value is added to the objective in Eq. (1) as a penalty value (Fig. 2)

𝑔supp = 𝛼
𝑉supp , (9)

𝑁
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Fig. 8. The printable cone using different number of sampling points, overhang angle, and orientation, but using the same mesh. The top row shows the top view, and in the
bottom row, the perspective view is displayed.
Fig. 9. One of the magnets (blue), and in red the cylindrical interface volumes large
enough for a threaded and bolted connection. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. A detailed view of support structures (indicated in yellow), which are removed
by the milling operation. Supports are required to print the upper side wall of the
actuator pocket, and therefore these structures are generated in the optimization
process. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

where the volume is normalized using the number of elements marked
for milling 𝑁, and 𝛼 is a small penalty factor that determines how
much focus is on limiting the amount of support structure. This causes
support structures to appear only when they are effective in supporting
material beneficial for higher eigenfrequencies. A detail of a resulting
structure can be seen in Fig. 10.
7

2.2.3. Material interpolation
The material properties of the chuck’s milled body are a function

of density field 𝐜, as can be seen in Fig. 2. They are interpolated
using SIMP (Solid Isotropic Microstructure with Penalization), which
is a standard method in topology optimization [6]. This enforces a
penalization on intermediate design variables (neither 0 or 1), and
helps the optimization process to converge towards an interpretable
black-and-white design. In eigenfrequency optimization often problems
are encountered with localized eigenmodes in low-density areas (𝑐 ≈ 0)
and their low corresponding frequencies. To alleviate these problems
we use the approach proposed by Zhu et al. [27], where a small linear
part is added to the usual cubic power of SIMP (Eq. (10)). This prevents
the stiffness from vanishing as compared to the mass for very small
densities 𝑐. The stiffness 𝐄p and mass 𝝆p distribution of the printed and
milled part can be calculated using the eroded �̌� and dilated �̂� density
fields, respectively, as

𝐸p,𝑖 = 𝐸alu
(

𝑐min +
(

1 − 𝑐min
) (

0.1𝑐𝑖 + 0.9𝑐3𝑖
))

,
𝜌p,𝑖 = 𝜌alu𝑐𝑖,

(10)

where a minimum design variable 𝑐min prevents the stiffness matrix
from becoming (more) singular. In the current design case the sys-
tem matrix is already singular because of rigid-body-modes, but these
modes are known analytically and accounted for, as is explained in
Section 2.2.5.

2.2.4. Component assembly
At this point the distribution of density and elasticity modulus is

known throughout the milled product, and the components (magnets
and measurement bar) can be added (Fig. 2). Similar to the milling
operation, this is done by setting the entries in the final material
properties (𝐄 and 𝝆) to either that of the milled part or to that of the
components as

𝐸𝑖 =
{

𝐸c,𝑗 ∀ 𝑖 ∈ 𝑗
𝐸p,𝑖 ∀ 𝑖 ∉

⋃

𝑗 𝑗
(11)

and

𝜌𝑖 =
{

𝜌c,𝑗 ∀ 𝑖 ∈ 𝑗
𝜌p,𝑖 ∀ 𝑖 ∉

⋃

𝑗 𝑗 ,
(12)

where 𝐸c,𝑗 and 𝜌c,𝑗 denote the modulus of elasticity and density for
each component with elements 𝑗 .

Bolted interfaces are modeled by connecting two components with
a patch of solid material (Fig. 11). Since all components are modeled in
the same mesh, the connecting patch is 1 element thick. The diameter
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Fig. 11. A bolted interface with indicated frustum, used to determine the patch
diameter (left). The two discretized parts are connected by a solid patch of 1 element
thickness (right).

of the patch is calculated according to a 30◦ frustum starting at the bolt
head, corresponding to the pressure cone of the bolt [28]. In this way
the bolts are modeled in an effective, yet simple manner.

Geometry mapping. The CAD geometry of the magnetic actuators is
converted to a 3-dimensional structured grid (voxel grid) by using a
rasterizing algorithm, also called solid voxelization. Effectively, this
means that all the elements of which the center-point is inside the solid
CAD geometry are detected, and placed into the sets 𝑗 representing
the different components. The result of this operation can be seen in
Fig. 12.

The voxelization is implemented as a simple scanline algorithm
(see, e.g., [29]) in three dimensions. Rays are cast in each axis-aligned
direction, through the center of each element in the mesh. For each ray,
intersection with the geometry is tested, which generally results in one
or multiple pairs of entry–exit intersections. When an element is within
an intersected range of all three the 𝑥, 𝑦, and 𝑧-directions, its center is
inside the geometry and thus can be marked as part of the considered
geometry set 𝑗 . This process only needs to be done once, prior to the
optimization.

2.2.5. Finite element modeling
The entire domain is discretized into a grid of trilinear hexahe-

dral solid elements with a full integration scheme and dimensions
1 × 1 × 1mm, corresponding to the design resolution. For each of
the elements, the material properties associated with the respective

Fig. 12. An example of voxelization, where the original boundary representation of a
magnet and its mount (top left) is mapped onto a 1mm grid (bottom right).
8

components and/or optimization variables have been determined by
the preceding steps shown in Fig. 2, where the (penalized) Young’s
modulus 𝐄 and the mass density 𝝆 depend on the eroded �̌� and dilated
�̂� design fields, respectively (Eqs. (10)–(12)). Following standard topol-
ogy optimization procedure, the stiffness 𝐊 and mass 𝐌 matrices can
be constructed by linear scaling of each element 𝑖 with the material
properties 𝐸𝑖 and 𝜌𝑖 as

𝐊 =
𝑁el

A
𝑖

𝐸𝑖𝐊0 and 𝐌 =
𝑁el

A
𝑖

𝜌𝑖𝐌0, (13)

where 𝐊0 and 𝐌0 represent the unit stiffness and mass element matrix,
and the operator A represents the matrix assembly. The two element
matrices are identical throughout the domain, since a structured mesh
of equal-sized elements is used.

After assembly, the next step in Fig. 2 is to calculate the eigen-
frequencies. The three eigenfrequencies are found as solutions to the
generalized eigenvalue problem, denoted as

(𝐊 − 𝜔2
𝑖𝐌)𝝋𝑖 = 𝟎 for 𝑖 = 1, 2, 3

0 < 𝜔1 ≤ 𝜔2 ≤ 𝜔3,
(14)

where 𝜔𝑖 and 𝝋𝑖 are the structural eigenfrequencies and their cor-
responding eigenvectors. The entire analysis domain (including all
components) consists of a total of 9.0 million elements, and 27.6 million
degrees of freedom. This very large number of degrees of freedom
poses a computational challenge, especially because calculating a single
eigenfrequency is already an order of magnitude more expensive than
the solution of a static response.

For an efficient solution, we resort to parallelization of the prob-
lem. The finite element routines are implemented using the PETSc
library [30], which provides parallel linear solvers, data structures
for parallelization, and domain decomposition. For the solution of the
eigenfrequencies (Eq. (14)), specialized eigensolvers are used from the
SLEPc library [31], which is an add-on to PETSc. A Krylov–Schur
algorithm with a shift-and-invert strategy is used to obtain the three
lowest eigenfrequencies 𝜔𝑖 and corresponding eigenvectors 𝝋𝑖. In the
calculation of eigenvalues, the repeated solution to a large linear
system of equations is required, for which we use the iterative Stabi-
lized BiConjugate-Gradient (BiCGStab) method, preconditioned with an
algebraic multigrid preconditioner.

Since the motion stage is free-floating, no boundary conditions are
present, making the stiffness matrix singular. To prevent numerical
problems in the solvers, deflation is used to account for the six rigid
body modes (i.e. nullspace) in both the eigensolver and its internal
linear solver. The deflation ensures a solvable linear system of equa-
tions and prevents recomputation of the rigid body modes, which are
already known explicitly [32]. Further details on the aforementioned
algorithms can be found in the PETSc and SLEPc documentation [30,
31].

2.2.6. Settings
All settings as used in the optimization can be found in Table 1.

To help convergence, the first few iterations the overhang filter is
not active, but is gradually phased in during iterations 15–65, re-
ducing the aggressiveness of this filter (similar approach as in [12]).
Also the robustness factor 𝛽 is gradually increased during the op-
timization process in iterations 10–90. The chosen filter radius and
erosion/dilation thresholds result in an effective minimum feature size
of 2𝑟filt

√

𝜂er − 0.5 ≈ 3.2mm, according to [33].
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Fig. 13. (a) The (printable) geometry of the optimized chuck. b) Cross-section of the geometry, showing the internal structure of the chuck. Several small enclosed voids are
removed (blue) and for the large cavity in the middle (green), extra holes are added to allow powder evacuation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 1
Options and settings as used in the optimization.

Symb. Value Description

𝐸alu 65GPa Young’s modulus (aluminum)
𝜌alu 2700 kg∕m3 Density (aluminum)
𝐸neo 160GPa Young’s modulus (neodymium)
𝜌neo 7500 kg∕m3 Density (neodymium)
𝐸ss 200GPa Young’s modulus (stainless steel)
𝜌ss 8000 kg∕m3 Density (stainless steel)
𝜈 0.3 Poisson’s ratio (all materials)
𝑐min 10−5 Minimum density
𝑟filt 5mm Filter radius
𝜂er 0.6 Erosion threshold
𝜂di 0.4 Dilation threshold
𝛽 10−9 − 101 Projection intensity factor

45◦ Overhang angle
8 Overhang sampling points

𝜏 10−5 Solid constraint tolerance
𝛼 10−6 Support structure penalty factor

3. Demonstrator and experimental validation

3.1. Optimized design

After the optimization, a final geometry is obtained as shown in
Fig. 13(a). This geometry is the iso-surface of the voxel grid of
the nominal printable design �̄� at a density value of 0.5. The iso-
surface can be generated using the marching cubes algorithm, which
is implemented in, e.g., the open source visualization application Par-
aview [34]. Low resolution versions of the 3D model are included in the
supplementary material. The support structures and required volumes
for component interfaces can clearly be identified. Fig. 13(b) shows
the internal structure of the chuck. The final geometry contains several
enclosed voids, which were not accounted for during the optimization.
To prevent trapped metal powder, the enclosed voids are removed
by manual post-processing. Four small voids were converted to solid
9

Fig. 14. Iteration history of the eigenfrequencies.

material, and for the large void in the center, two holes were added for
powder removal after printing, as indicated in Fig. 13(b).

The evolution of the eigenfrequencies throughout the optimization
is shown in Fig. 14, from which can be seen that the final frequencies
are 607, 763, and 897Hz. However, these values refer to the robust
worst-case design (Section 2.2.1). From a verification analysis on the
nominal design, we find the expected eigenfrequencies as 667, 837, and
1011Hz. The corresponding mode shapes (Fig. 15) are as expected from
a fairly flat plate; a torsional, saddle, and umbrella mode.

To ensure a minimum length scale, the design is uniformly per-
turbed in order to obtain worst-case eigenfrequencies. In Section 2.2.1
is explained that using an eroded design for the stiffness and a dilated
design for the mass leads to lower eigenfrequencies. This effect is shown
in Fig. 16(a), where the first five eigenfrequencies of the final design
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Fig. 15. (a) The first eigenmode at 667Hz (torsion mode). (b) Second eigenmode at
837Hz (saddle mode). (c) Third eigenmode at 1011Hz (umbrella mode).

Fig. 16. (a) The eigenfrequencies as a function of the Heaviside threshold parameter.
The stiffness matrix is obtained with 𝜂er = 0.5 + 𝛥𝜂 and the mass matrix with 𝜂di =
0.5 − 𝛥𝜂. (b) The first eigenmode at 𝛥𝜂 = 0.3 contains a localized deformation. This
spurious eigenmode is caused by the large offset in the eroded and dilated design.
10
Fig. 17. Detail of the printable structure, which is optimized using the improved
overhang filter. Areas indicated in red are not allowed using the original overhang
filter with the conservative 5-element support. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. (a) Solid reference design, with equal mass or equal height. (b) Conventional
reference design, with equal mass and equal height.

are calculated with different thresholds of erosion 𝜂er = 0.5 + 𝛥𝜂 and
dilation 𝜂di = 0.5−𝛥𝜂. The offset in mass and stiffness becomes larger for
increasing 𝛥𝜂, leading to lower eigenfrequencies. However, for values
above 𝛥𝜂 ≈ 0.2 the eigenfrequencies drop significantly due to localized
eigenmodes. The first eigenmode at 𝛥𝜂 = 0.3 is shown in Fig. 16(b),
where a localized deformation can clearly be recognized. Using an
excessively large offset (𝛥𝜂) between mass and stiffness thus causes
undesired spurious modes. For the current optimization 𝛥𝜂 = 0.1 is
used, which does not cause localized eigenmodes.

An improved overhang filter has been presented in , which enables
a more geometrically accurate description of overhang. A detail of
the final optimized structure is shown in Fig. 17, with several areas
indicated which would be removed by the original overhang filter with
a 5-element support, which is too conservative [8]. This demonstrates
the added value of the improved geometric accuracy of the overhang
filter.

To get an indication of the optimized performance relative to other
designs, three reference cases are established. The first two reference
designs use a 100% material inside the design domain (Fig. 18(a)).
Since the chuck is originally optimized with a volume fraction of 50%,
the mass of a completely solid chuck will double. Therefore, the first
reference has equal height to the optimized chuck, but doubled mass.

Table 2
Results of the numerical comparison between optimized and reference designs.

Units Optimized Reference designs

Equal mass Equal height Conventional

Massa kg 7.5 7.5 15 7.5
Height mm 48 30 48 48
Mode 1 Hz 667 353 −47% 569 −15% 547 −18%
Mode 2 Hz 837 414 −51% 815 −2.6% 735 −12%
Mode 3 Hz 1011 525 −48% 944 −6.6% 880 −13%

aMass of the machined part only, excluding any components.
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Fig. 19. The first print attempt, showing the locally overheated and deformed parts,
causing recoater damage.

In the second reference design, the height of the chuck is reduced
such that the mass is equal to that of the optimized design. And
thirdly, a conventional and manually designed chuck (with equal mass
and dimensions to the optimized design) is analyzed (Fig. 18(b)). An
overview of the results for these variations can be found in Table 2.
The optimized design clearly outperforms all reference chucks. With
respect to solid designs, the performance is roughly doubled, or the
mass can significantly be reduced while still increasing performance.
When compared to a conventional and manually designed chuck, also
a considerable performance increase of about 15% can be realized.

In terms of computational time, the entire optimization took 25 h.
This means that each of the 100 design iterations which were per-
formed, requires an average of 15 min. The computations were ex-
ecuted on a 192-core computing node (8× Intel Xeon 8168 24-core
CPU and 1536 GB of memory). About 400 GB is required for the
optimization out of the total available memory.

3.2. Additive manufacturing

For larger and complex designs, the part orientation in the build
chamber is the key element for successful printing. Since print orienta-
tion is fixed throughout the optimization, several part orientations have
been analyzed prior to the optimization. Finally, it was chosen to orient
the part vertically for minimal stress in the horizontal plane, to limit the
amount of support structures required, and for an easy part separation
from the buildplate. The disadvantage of this approach is the need to
use the full build height, the initial powder investment, and longer
job duration due to the recoater time. However, this is offset by the
opportunity to print multiple parts simultaneously (up to 4 in one job)
and allowing the use of multiple lasers in the MetalFAB1 system [18].
No extra support structures nor any further adaptations to the design
were required, as the overhang filter enforces a self-supported design
(Section 2.2.1).

The first print was halted due to too large heat accumulation at
the connection of two overhanging areas. Locally melted material
protruded above the powder bed, resulting in recoater damage (see
Fig. 19). Incorporation of a process-based simulation of the print-
ing process into the optimization can potentially avoid these kind
of failures, and help in obtaining a first-time-right print, although
its computational feasibility is currently out of reach for the design
resolution targeted in this study [35]. After reorienting the parts with
respect to the recoater, the build job ran smoothly over the full part
height (Fig. 20). The selected print parameter settings are balancing
productivity (30 μm layer thickness) and density, resulting in an ’as
printed’ density above 99.95% (from cross-sectional analysis) of the
11
Fig. 20. The printed chuck after the powder-bed fusion process is finished.

Fig. 21. After machining, support structures are removed and interfaces for the
components added.

AlSi10Mg material. Two parts were printed simultaneously in a total
of 10 days, effectively resulting in 5 days build time per part.

In order to achieve surface and dimensional requirements for the
interfaces of all the magnets which cannot be achieved by the printing
process, the part is post-processed by traditional machining methods
(Fig. 21). The final step is to assemble the magnets and mount the chuck
on the long-stroke chuck, making it ready for usage (Fig. 22).



Additive Manufacturing 58 (2022) 103012A. Delissen et al.
Fig. 22. Assembled chuck in operation, levitated above the long-stroke stage.
3.3. Validation

The chuck position in all six degrees of freedom is actively con-
trolled by a closed-loop feedback loop, which can be used for a
frequency-response measurement (Fig. 23). Five eddy current sensors
and one laser interferometer provide position measurement of the
chuck, and eight (sets of) permanent magnets are able to apply forces
on the chuck when placed in magnetic fields generated by external
voice coils (Fig. 1). A force or moment can be applied on the different
degrees of freedom of the chuck 𝐟act(𝑡) = [𝐹𝑥, 𝐹𝑦, 𝐹𝑧,𝑀𝑥,𝑀𝑦,𝑀𝑧] by
applying a load on multiple actuators simultaneously. Similarly, dis-
placements in global degrees of freedom 𝐮sens(𝑡) = [𝑈𝑥, 𝑈𝑦, 𝑈𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧]
(translations or rotations) are obtained by a linear combination of the
different sensor signals. Further details on sensing, actuation, and the
multi-input multi-output system can be found in [5,17].

By adding an harmonic disturbance signal 𝐟in(𝑡) to the input forces
(Fig. 23), the behavior of the structure can be obtained independently
of the controller. After taking the discrete Fourier transforms of the
signals (𝐟in, 𝐟act, and 𝐮sens) into the frequency domain, the sensitiv-
ity function 𝐒(𝜔) and the process sensitivity function 𝐑(𝜔) can be
calculated [3] as

𝑆𝑖𝑗 (𝜔) =
𝑓act,𝑖(𝜔)
𝑓in,𝑗 (𝜔)

, 𝑅𝑖𝑗 (𝜔) =
𝑢sens,𝑖(𝜔)
𝑓in,𝑗 (𝜔)

, (15)

which are multi-input multi-output (i.e. matrix) transfer functions.
Using the analytical relations of these two transfer functions

𝐒(𝜔) = (𝐈 + 𝐏(𝜔)𝐂(𝜔))−1,
𝐑(𝜔) = 𝐏(𝜔)(𝐈 + 𝐏(𝜔)𝐂(𝜔))−1,

(16)

the transfer function of the original plant can be extracted as

𝐏(𝜔) = 𝐑(𝜔)𝐒(𝜔)−1. (17)

Here, the multi-input multi-output transfer functions of plant and con-
troller are denoted 𝐏(𝜔) and 𝐂(𝜔), respectfully.

From the frequency response functions of the two out-of-plane
rotations (tip and tilt), shown in Fig. 24, the resonance peaks can
clearly be identified, which occur at the eigenfrequencies of the chuck.
This leads to the experimentally determined eigenfrequencies, which
are summarized in Table 3. It is seen that the predicted and measured
frequencies are in close agreement, with a discrepancy of around 1%.

Fig. 23. Feedback loop with indicated measurement signals for experimental validation
of the stage.
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Fig. 24. Frequency response functions of the two out-of-plane rotations.

Table 3
Experimental validation of the optimized design, values are in Hz.

Numerical Experimental

Mode 1 667 673 −0.9%
Mode 2 837 829 +1.0%
Mode 3 1011 1021 −1.0%

4. Discussion

In the current work, topology optimization is combined with AM for
a high-performance dynamic application of industry-relevant complex-
ity. The fact that an optimal design is reached in 25 h, is paramount for
practical use. When dimensions or component positions change, re-runs
are necessary. The fast design time also facilitates comparative studies
of different product requirements by running multiple optimizations.
Especially for repeated optimization of customized products, where the
design goal (e.g. performance) is similar, these techniques can have a
huge benefit in terms of automation. In fields where time-to-market is
important, a fully automated pipeline from concept to production could
be made, only requiring the optimization structure to be set up once.

The superior performance of the optimized chuck as compared to
reference designs (Table 2) clearly demonstrates the added benefit of
combining topology optimization with AM. Recently, advances in topol-
ogy optimization of 5-axis milling have been made [26,36]. It would
be worthwhile to investigate the performance benefit of combining
AM and topology optimization, as compared to combining milling and
topology optimization, or even the combination of all three methods.

In the current design, the only manual post-processing operation
required is the removal of enclosed voids. In the large central void,
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two access holes were added to release the metal powder (as seen in
Fig. 20), and four other small voids were removed by converting them
to solid material. However, these modifications can have a detrimental
effect on the final performance. In this case the effects are negligible,
but this is not a certainty in general. Therefore, the avoidance of
enclosed voids should be taken into account during the optimization.
This is still an ongoing research topic, where promising methods have
been proposed in recent years (e.g. [37,38]).

The optimized design is experimentally validated with a discrepancy
of around 1%. This indicates that the modeling using a structured
mesh that does not exactly represent the geometry still yields accurate
results. However, the accuracy will most likely deteriorate for coarser
mesh sizes, because the geometric error in the voxelization process
will increase. Next to this, it can also be hard to model small gaps
between components, which are linked to the element size, in this case
1mm. Possible solutions include the use of substructuring for passive
components [39,40].

For the application of a high-precision motion stage, the eigenfre-
quencies are not the only important aspect in the final performance. Ac-
curate positioning is achieved by closed-loop feedback control, making
the controller and controller–structure interaction equally important.
By simultaneous optimization of both the controller and structure, even
better performance in terms of bandwidth and positioning accuracy can
be expected [5], which is an area for future research.

5. Conclusion

In this work, we have presented a fast and systematic process for
the design of structures with high dynamic performance, exploiting the
combination of additive manufacturing and topology optimization. The
methodology is demonstrated using the design case of a high-precision
motion system and is applicable to a wide range of industrial applica-
tions requiring high eigenfrequencies. All steps of the manufacturing
process (additive manufacturing, milling, and assembly) are incorpo-
rated into the optimization procedure. This results in optimized designs
that are almost directly producible. Only minimal manual modifications
were required to remove enclosed voids, otherwise trapping the metal
powder used in the laser powder-bed fusion process.

Specifically in the overhang filter, an improved sampling scheme
was proposed to allow more freedom in the choice of overhang angle
and print direction. This scheme represents the geometric overhang
more accurately in a Cartesian grid and is less dependent on the
orientation of the grid.

Small geometric features require a fine design resolution, which
comes at a computational cost. In the current work, external com-
ponents are added by voxelization into the same mesh. This has the
benefit of only having one mesh, but the disadvantage is that compo-
nents may only be separated from each other by a minimum gap size
of one element. More effective inclusion of components for dynamic
structures remains a direction for future research.

A novel cost-effective robust formulation was proposed to allow
feature size control without computation of additional eigenvalue prob-
lems. By combining the eroded design field for the stiffness matrix
and the dilated for the mass matrix, a worst-case estimate is obtained,
effectively reducing the computational cost by a factor 3 for the calcu-
lation of eigenfrequencies. In this design case, a new optimal design
is generated in 25 h using 192 CPU cores, which enables practical
use and opens new opportunities for design methodology of industrial
applications.

As is expected, the optimized design achieves superior performance.
In the current design case of a high-precision motion stage, a perfor-
mance increase of around 15% is reached as compared to conventional
designs. Additionally, the optimized design is experimentally validated
with a measured performance within 1% of the simulated performance.
13

Not only does this reinforce the confidence that the performance can
be predicted correctly, especially in this example with multiple com-
ponents, but that also the manufacturing considerations of the opti-
mization are sufficient for production. Using the outlined approach,
this study demonstrates that the benefits of topology optimization in
combination with additive manufacturing can be transferred to indus-
trial high dynamic applications, where superior performance often is
the driving factor.

Even further improvements in performance may be achieved by
optimization on a system level. In the case of a high-precision motion
system, the controller and the closed-loop interaction with the structure
are as important as the structure itself. Therefore, this provides a
valuable research direction for the next generation of dynamic systems.
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Appendix A. Proof of the robust formulation

The design sensitivities of eigenfrequency 𝜔𝑖 (Eq. (14)) with respect
to the Young’s modulus 𝐸𝑗 and mass density 𝜌𝑗 are (from, e.g., [41])

𝜕𝜔𝑖
𝜕𝐸𝑗

= 1
2𝜔𝑖

𝝋T
𝑖
𝜕𝐊
𝜕𝐸𝑗

𝝋𝑖,

𝜕𝜔𝑖
𝜕𝜌𝑗

= −
𝜔𝑖
2
𝝋T
𝑖
𝜕𝐌
𝜕𝜌𝑗

𝝋𝑖.
(A.1)

The sensitivities of the stiffness and mass matrix (Eq. 13) relate to
the unit element matrices 𝐊0 and 𝐌0 through the assembly operation,
which are positive semi-definite and positive definite, respectively. This
implies that the sensitivities of the assembled system matrices 𝜕𝐊

𝜕𝐸𝑗
and

𝜕𝐌
𝜕𝜌𝑗

are positive semi-definite.

T
𝑖
𝜕𝐊
𝜕𝐸𝑗

𝝋𝑖 ≥ 0 ∀ 𝝋𝑖 ≠ 𝟎,

𝝋T
𝑖
𝜕𝐌
𝜕𝜌𝑗

𝝋𝑖 ≥ 0 ∀ 𝝋𝑖 ≠ 𝟎.
(A.2)

Generally, these quadratic forms are positive, as they are only equal to
zero in specific cases of element deformation, such as no deformation or
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a rigid body deformation of element 𝑗. Additionally, the eigenfrequency
𝜔𝑖 is positive, which means the following relations hold
𝜕𝜔𝑖
𝜕𝐸𝑗

≥ 0 and
𝜕𝜔𝑖
𝜕𝜌𝑗

≤ 0. (A.3)

From these it is evident that increasing the Young’s modulus will
generally result in higher eigenfrequencies and increasing the mass
generally results in lower eigenfrequencies.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.addma.2022.103012.
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