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A B S T R A C T

Neurotechnology has made great strides in the last 20 years. However, we still have a long way to go to
commercialize many of these technologies as we lack a unified framework to study cyber-neural systems
(CNS) that bring the hardware, software, and the neural system together. Dynamical systems play a key role
in developing these technologies as they capture different aspects of the brain and provide insight into their
function. Converging evidence suggests that fractional-order dynamical systems are advantageous in modeling
neural systems because of their compact representation and accuracy in capturing the long-range memory
exhibited in neural behavior. In this brief survey, we provide an overview of fractional CNS that entails
fractional-order systems in the context of CNS. In particular, we introduce basic definitions required for the
analysis and synthesis of fractional CNS, encompassing system identification, state estimation, and closed-loop
control. Additionally, we provide an illustration of some applications in the context of CNS and draw some
possible future research directions. Advancements in these three areas will be critical in developing the next
generation of CNS, which will, ultimately, improve people’s quality of life.
. Introduction

We have witnessed an increase in the popularity of neurotech-
ology, which in part has been propelled by several Silicon Valley
ompanies such as NeuraLink (Regalado, 2020) (founded by Elon
usk), Google, and Facebook, just to mention a few. This trend is

ow emerging in Europe as well with a variety of start-up companies
cross different countries. Yet, we have a long path going forward to
ommercialize these devices to a clinical domain (Carmena, Sajda, &
obinson, 2019; Chavarriaga, 2020; Lewis, 2020). Among the different
eurotechnologies, the one experiencing the biggest growth is the
eurostimulation device, which assesses the neural activity (e.g., by
racking the change in electrical potential) and injects a timely stimulus
e.g., current from electrical neurostimulation devices) that aims to
isrupt such activity (Rodgers, 2020). These devices consist of tightly
ntegrated hardware and software components that monitor and reg-
late the dynamics of the neural system. Together, the intertwined
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behavior generated by the interaction of the hardware/software and
the neural systems form the so-called cyber-neural system (CNS).

Neural systems, such as the brain, generally exhibit quite di-
verse activity patterns across subjects under different operational
setups (Bargmann et al., 2014). Therefore, it is important to develop
tools to translate these behaviors to enable CNS to become tomorrow’s
reality. Many efforts world-wide, such as the Brain Initiative (Insel,
Landis, & Collins, 2013), Human Connectome Project (Van Essen et al.,
2013), and Human Brain Project (Markram, 2012), have sought to
understand the brain in health and disease. Additionally, they also seek
to provide new insights into how to ‘‘reverse-engineer the brain," a
grand challenge deemed by the National Academy of Engineering (NAE,
2022). Consequently, it is imperative to establish a unified robust
framework to understand and regulate brain activity across individuals
and regimes (both healthy as well as diseased/disordered) (LeDoux,
vailable online 6 July 2022
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1998; Markram, 2012; Van Essen et al., 2013). Ultimately, this under-
standing will lead to an improvement in treatments and therapies for
diseased patients, which will enhance their overall quality of life.

Fortunately, each year, we get new insights and a better under-
standing about life-changing neurological diseases. These advances in
understanding neural systems and in providing adequate treatment for
these diseases have been mostly achieved with the help of technol-
ogy that can measure and record neural activity (Fairclough & Lotte,
2020). Scientists and researchers use these measurements of the brain’s
activity to create models of the brain.

There are different methods to analyze and design cyber-neural
systems. One useful tool in modeling is a dynamical network sys-
tem (Bassett & Sporns, 2017). For example, Presigny and Fallani (2021)
provide an overview of the recent advances in modeling the multi-
scale behavior of the brain using dynamical networks. These models
have allowed researchers to draw conclusions regarding the brain’s
topology and function. While many studies have used linear dynamical
systems to model neural behavior (Ashourvan et al., 2020; Li, Inati,
Zaghloul, & Sarma, 2017; Pequito, Ashourvan, Bassett, Litt, & Pappas,
2017), these models are unable to capture the nonlinear and non-
Markovian behavior exhibited in the brain (Shlesinger, Zaslavsky, &
Klafter, 1993; West, 2016; Zhang & Chen, 2012). On the other hand,
several studies have used more complex nonlinear models; however,
these models are not easy to interpret and explain in the context of
brain dynamics (Bonilla, Rivero, Rodríguez-Germá, & Trujillo, 2007;
West, Turalska, & Grigolini, 2015).

Fractional-order dynamical systems, which originated in physics
and economics and quickly found their way into engineering applica-
tions (Baleanu, Diethelm, Scalas, & Trujillo, 2012; Kilbas, Srivastava,
& Trujillo, 2006; Petráš, 2011; Podlubny, 1998; Sabatier, Agrawal, &
Machado, 2007; Valério, Trujillo, Rivero, Machado, & Baleanu, 2013;
West, 2014), are appealing mainly due to their representation as a
compact spatiotemporal dynamical system with two easy-to-interpret
sets of parameters, namely the fractional-order coefficients and the spatial
matrix. Fractional-order coefficients capture the long-range memory in
the dynamics of each state variable of the system, and the spatial matrix
represents the spatial coupling between different state variables.

Fractional-order systems provide an efficient way to model many
different systems, including viral spreading (Oustaloup, Levron, Victor,
& Dugard, 2021), heat flux (Battaglia, Le Lay, Batsale, Oustaloup,
& Cois, 2000; Victor, Melchior, Malti, & Oustaloup, 2016), the hu-
man bronchus (Duhé, Victor, Melchior, Abdelmounen, & Roubertie,
2022), human muscles (Melchior, Pellet, Petit, Cabelguen, & Oustaloup,
2012), the nervous system (Werner, 2010), electrocardiogram sig-
nals (Turcott & Teich, 1996), brain activity (Lundstrom, Higgs, Spain,
& Fairhall, 2008; Teich, Heneghan, Lowen, Ozaki, & Kaplan, 1997;
Thurner, Windischberger, Moser, Walla, & Barth, 2003), and anoma-
lous diffusion (Chen, Sun, Zhang, & Korošak, 2010). Furthermore,
fractional-order systems have been used in domains as disparate as
biological networks (West, Turalska, & Grigolini, 2016), cyber–physical
systems (Xue & Bogdan, 2017; Xue, Rodriguez & Bogdan, 2016),
nanotechnology (Baleanu et al., 2010), finance (Scalas, Gorenflo, &
Mainardi, 2000), quantum mechanics (Shahin, Ahmed, & Omar, 2009),
phasor measurement unit (PMU) data in the power grid (Shalalfeh,
Bogdan, & Jonckheere, 2020), and networked control systems (Cao, Li,
Ren, & Chen, 2009; Chen, 2010; Ren & Cao, 2011), to mention a few.

In this brief survey, we focus our attention on neural behav-
ior, which can be accurately represented by fractional-order sys-
tems (Baleanu, Machado, & Luo, 2011; Lundstrom et al., 2008; Moon,
2008; Teich et al., 1997; Thurner et al., 2003; Werner, 2010; West et al.,
2016). Fractional-order systems have also been explored in the context
of neurophysiological networks constructed from electroencephalo-
graphic (EEG), electrocorticographic (ECoG), or blood-oxygen-level-
dependent (BOLD) data (Chatterjee, Romero, Ashourvan, & Pequito,
387

2020; Magin, 2006).
Furthermore, we provide an overview of the work that has been
done on controlling, estimating, and predicting neural dynamical sys-
tems modeled using fractional-order dynamics both in the continuous-
time and discrete-time domains, towards the next generation of CNS,
which are important for advancing the understanding of neural systems
as well as treatments for neurological diseases. Specifically, the focus
of our brief survey is threefold:

• Control: We review different methods to control fractional-order
systems, including a few previously presented methods in Efe
(2011). The work in Birs, Muresan, Nascu, and Ionescu (2019)
presents a survey of recent advances in fractional-order control
for time delay systems, and the works in Chen, Petras, and Xue
(2009), Matušŭ (2011) provide overviews of the application of
fractional calculus to control theory. In this paper, we review
proportional–integral control, sliding mode control, backstepping
control, adaptive control, optimal control, and model predictive
control for fractional-order systems. Control of fractional-order
systems is important to study so as to develop methods and
therapies to mitigate and potentially eliminate diseases in the
brain.

• System Identification: System identification of continuous-
time fractional-order systems has been examined for non-
commensurate (i.e., fractional-order coefficients are non-uniform
across states) systems (Mayoufi, Victor, Chetoui, Malti, &
Aoun, 2021; Victor, Malti, Garnier, & Oustaloup, 2013), for
commensurate-order systems with time delays (Narang, Shah,
& Chen, 2011), for thermal systems modeled as fractional
linear systems (Gabano, Poinot, & Kanoun, 2011), and for
lithium-ion batteries using a nonlinear optimization least squares
method (Eddine, Huard, Gabano, & Poinot, 2018). For discrete-
time fractional-order systems, system identification has been
studied to determine the best estimate of the fractional-order
system parameters with unknown inputs (Gupta, Pequito, &
Bogdan, 2018a, 2018b) and when the data is only partially
observable (Gupta, Pequito, & Bogdan, 2019) as well as with non-
asymptotic finite-sample complexity guarantees (Chatterjee & Pe-
quito, 2022). In what follows, the focus will be on estimating the
parameters of fractional-order systems from brain measurements,
such as electroencephalography (EEG) and electrocorticography
(ECoG). Therefore, we focus on system identification methods for
discrete-time fractional-order systems, which is a necessary step
in understanding the intricacies of the brain.

• Estimation: We discuss the methods for estimating and pre-
dicting the state of fractional-order systems (Chatterjee & Pe-
quito, 2019; Miljković, Popović, Djordjević, Konstantinović, &
Šekara, 2017; Najar, Abdelkrim, Abdelhamid, & Mohamed, 2009;
Sabatier, Farges, Merveillaut, & Feneteau, 2012; Safarinejadian,
Asad, & Sadeghi, 2016; Safarinejadian, Kianpour, & Asad, 2018;
Sierociuk & Dzieliński, 2006). This problem is important in antic-
ipating and mitigating irregular brain behavior such as an oncom-
ing seizure. Chatterjee, Alessandretti, Aguiar, and Pequito (2021)
proposed the design of a minimum-energy estimation framework
for discrete-time fractional-order networks, where they assume
that the state and output equations are affected by an additive dis-
turbance and noise, respectively, that are deterministic, bounded,
and unknown. First proposed by Mortensen (Mortensen, 1968),
and later refined by Hijab (Hijab, 1980), minimum-energy esti-
mators produce an estimate of the system state that is the ‘‘most
consistent" with the dynamics and the measurement updates of
the system (Aguiar & Hespanha, 2006; Alessandretti, Aguiar,
Hespanha, & Valigi, 2011; Bonnabel & Slotine, 2015; Buchstaller,
Liu, & French, 2020; Fagnani & Willems, 1997; Fleming, 1997;
Ha & Aguiar, 2018; Haring & Johansen, 2020; Hassani, Aguiar,
Athans, & Pascoal, 2009; Krener, 2003; Pequito, Aguiar, & Gomes,

2009; Swerling, 1971; Willems, 2004).
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Section 2 overviews continuous-time fractional-order dynamics.
Section 3 summarizes discrete-time fractional-order dynamics. Sec-
tion 4 presents the results on the stability of fractional-order systems.
Section 5 provides a summary of the work on controllability and
observability of fractional-order systems. Section 6 summarizes the
work on proportional–integral–derivative controllers for fractional-
order dynamical systems. Section 7 reviews sliding mode control
for fractional-order systems. Section 8 outlines the procedure for
constructing a backstepping controller for fractional-order systems. Sec-
tion 9 summarizes adaptive control for fractional-order systems. Sec-
tion 10 discusses the methods for performing system identification on
fractional-order systems. Section 11 overviews the techniques for state
estimation of fractional-order systems, including the method known as
minimum-energy state estimation. Section 12 presents fractional opti-
mal control for continuous-time fractional-order systems. Section 13
gives a background on model predictive control for fractional-order
systems. Section 14 summarizes simulation results pertaining to system
identification, state estimation, and closed-loop control of fractional
cyber-neural systems. Finally, Section 15 presents possible directions
for future research.

2. Continuous-time fractional-order systems

To model, analyze, and control fractional-order dynamics, we
first provide an overview of both continuous-time and discrete-time
fractional-order systems. We start by introducing the fractional-order
system in continuous-time (Kilbas & Trujillo, 2001, 2002).

Riemann–Liouville and Caputo proposed the two commonly used
definitions of fractional-order differintegration. However, Riemann–
Liouville’s definition poses restrictions on the interpretation of the
initial conditions (Podlubny, 1999). Caputo’s definition may require
special attention regarding the initialization scheme (Jean-Claude,
Nezha, & Alain, 2013; Trigeassou & Maamri, 2011). Regardless, the
latter has been widely used in control systems engineering, and it is
the following:

𝛥𝛼𝜎(𝑡) = 1
𝛤 (𝑚 − 𝛼) ∫

𝑡

0

𝛥𝑚𝜎(𝜏)
(𝑡 − 𝜏)𝛼+1−𝑚

d𝜏, (1)

here 𝛥𝛼 is the fractional differintegration operator, 𝛼 ∈ R+ is the
ractional-order exponent, and 𝛤 (𝛼) = ∫ ∞

0 𝑒−𝑡𝑡𝛼−1 d𝑡 is the Gamma
function (Baleanu et al., 2012). Given the definition in (1), let 𝑚 ∈ Z
with 𝑚 − 1 < 𝛼 < 𝑚. For an 𝑚 satisfying the previous relation, the 𝛼
order derivative of a function of time, 𝜎(𝑡), has the following Laplace
transform:

∫

∞

0
𝑒−𝑠𝑡𝛥𝛼𝜎(𝑡) d𝑡 = 𝑠𝛼𝑆(𝑠) −

𝑚−1
∑

𝑘=0
𝑠𝛼−𝑘−1𝛥𝑘𝜎(0), (2)

where 𝑆(𝑠) = ∫ ∞
0 𝑒−𝑠𝑡𝜎(𝑡) d𝑡.

If a fractional-order system is initially in a resting state (i.e., the
nitial conditions are zero), then the operator 𝛥𝛼 acting in the time do-
ain has a counterpart 𝑠𝛼 in the 𝑠-domain. In this case, we can describe

he transfer function of a fractional-order system by a fractional-order
ifferential equation
(

𝑎𝑛𝛥
𝛼𝑛 + 𝑎𝑛−1𝛥𝛼𝑛−1 +⋯ + 𝑎1𝛥𝛼1 + 𝑎0

)

𝑦(𝑡)

=
(

𝑏𝑚𝛥
𝛽𝑚 + 𝑏𝑚−1𝛥𝛽𝑚−1 +⋯ + 𝑏1𝛥𝛽1 + 𝑏0

)

𝑢(𝑡),
(3)

which we can rewrite as
𝑌 (𝑠)
𝑈 (𝑠)

=
𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 +⋯ + 𝑎1𝑠𝛼1 + 𝑎0
𝑏𝑚𝑠𝛽𝑚 + 𝑏𝑚−1𝑠𝛽𝑚−1 +⋯ + 𝑏1𝑠𝛽1 + 𝑏0

, (4)

where 𝑎𝑘, 𝑏𝑘 ∈ R and 𝛼𝑘, 𝛽𝑘 ∈ R+.
Therefore, we can write an affine and fractional-order nonlinear

non-commensurate system as

𝛥𝛼𝑥(𝑡) = 𝐟 (𝑥(𝑡)) + 𝐠(𝑥(𝑡))𝑢(𝑡) (5)
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where 𝛼 ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚 is the control input, and 𝐟 and 𝐠 ≠ 0 are the
vector functions of the system-state 𝑥(𝑡) ∈ R𝑛. A special case of Eq. (5)
is given as a state-space representation

𝛥𝛼𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡),
(6)

here 𝑥(𝑡) ∈ R𝑛 and 𝛼 ∈ R𝑛. Eq. (6) is referred to as the linear non-
commensurate fractional-order system. The transfer function, which
characterizes the relationship between 𝑌 (𝑠) and 𝑈 (𝑠), where 𝑌 (𝑠) and
𝑈 (𝑠) are the Laplace transforms of the output and input, respectively,
f the state-space system in (6), is given as

(𝑠) = 𝐶 (𝑠𝛼𝐼 − 𝐴)−1 𝐵 +𝐷. (7)

herefore, we have the following solution for the homogeneous case
i.e., 𝑢(𝑡) = 0)

(𝑡) = 𝐸𝛼 (𝐴𝑡𝛼) 𝑥(0) = 𝛷(𝑡)𝑥(0), (8)

here 𝐸𝛼 (𝐴𝑡𝛼) is the Mittag-Leffler function (Oldham & Spanier, 1974)
efined as

(𝑡) ≡ 𝐸𝛼 (𝐴𝑡𝛼) =
∞
∑

𝑘=0

(

(𝐴𝑡𝛼)𝑘

𝛤 (1 + 𝛼𝑘)

)

.

Therefore, we can write the solution of the fractional state equation
and the output equation in (6) as

𝑦(𝑡) = 𝐶𝛷
(

𝑡 − 𝑡0
)

𝑥
(

𝑡0
)

+ 𝐶 ∫

𝑡

0
𝛷(𝑡 − 𝜏)𝐵𝑢(𝜏) d𝜏 +𝐷𝑢(𝑡).

Despite the fact that real-world systems have continuous-time sig-
als in nature, in reality, we measure and control these systems
sing digitized technologies, which motivates the study of discrete-time
ractional-order systems (Caponetto, 2010; Goodrich & Peterson, 2015;
ahmoud, 2012). Subsequently, we now introduce the discrete-time

escription of the fractional-order dynamics.

. Discrete-time fractional-order systems

In what follows next, we briefly introduce discrete-time
ractional-order system models. We start by introducing the
rünwald–Letnikov derivative as

𝛼𝜎(𝑡) = lim
ℎ→0

1
ℎ𝛼

𝑘
∑

𝑗=0
(−1)𝑗

(

𝛼
𝑗

)

𝜎(𝑡 − 𝑗ℎ), (9)

where 𝛥𝛼 is the fractional differintegration operator and 𝛼 ∈ R+ is the
fractional-order exponent (Podlubny, 1999). If 𝛼 > 0, 𝑚 = ⌈𝛼⌉, and 𝜎
s continuously differentiable at least 𝑚 times, then, for 𝑡 ∈ (𝑎, 𝑏], the
rünwald–Letnikov definition is equivalent to the Riemann–Liouville
efinition (Diethelm, 2010, Theorem 2.25). Subsequently, it is possible
o consider the Grünwald–Letnikov difference equation (or, simply
peaking, the discrete derivative) as follows (Dzielinski & Sierociuk,
005)

𝛼𝜎[𝑘] = 1
ℎ𝛼

𝑘
∑

𝑗=0
(−1)𝑗

(

𝛼
𝑗

)

𝜎[𝑘 − 𝑗], (10)

here 𝛼 ∈ R is the fractional-order exponent and ℎ is a sampling time
nd 𝑘 ∈ N is the sample number for which the derivative is calculated.
n what follows, and without loss of generality, we consider unitary
ampling time, i.e., we consider ℎ = 1.

A discrete-time linear fractional-order system (DTLFOS) is described
s follows:
𝛼𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘] +𝑤[𝑘], (11)

here 𝑥[𝑘] ∈ R𝑛 is the state for time step 𝑘 ∈ N, 𝐴 ∈ R𝑛×𝑛 is the
tate coupling matrix and 𝛼 ∈ (R𝑛)+ is the vector of fractional-order
oefficients. The signal 𝑢[𝑘] ∈ R𝑛𝑢 denotes the input corresponding to

𝑛×𝑛𝑢
he actuation signal, and the matrix 𝐵 ∈ R is the input matrix that
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scales the actuation signal. The term 𝑤[𝑘] ∈ R𝑛 denotes the process
noise or additive disturbance, whose stochastic characterization (or the
lack thereof) will be clear from the context in which these systems
are being used. These models are similar to classical discrete-time
linear time-invariant system models with the exception of the inclusion
of the Grünwald–Letnikov fractional derivative, whose expansion and
discretization for the 𝑖th state, 1 ≤ 𝑖 ≤ 𝑛, can be expressed as (Dzielinski
& Sierociuk, 2005; Vinagre, Podlubny, Hernandez, & Feliu, 2000)

𝛥𝛼𝑖𝑥𝑖[𝑘] =
𝑘
∑

𝑗=0
𝜓(𝛼𝑖, 𝑗)𝑥𝑖[𝑘 − 𝑗], (12)

where 𝛼𝑖 is the fractional-order coefficient corresponding to the state 𝑖
and

𝜓(𝛼𝑖, 𝑗) =
𝛤 (𝑗 − 𝛼𝑖)

𝛤 (−𝛼𝑖)𝛤 (𝑗 + 1)
. (13)

Simply put, larger values of the fractional-order coefficients imply a
lower dependency on the previous data from that state (i.e., a faster
decay of the weights used as linear combination of previous data).

We now review some essential theory for fractional-order systems,
including an approximation of (11) with 𝑢[𝑘] = 0 for all 𝑘 ∈ N as an
LTI system. Using the expansion of the Grünwald–Letnikov derivative
in (12), we have

𝛥𝛼𝑥[𝑘] =
⎡

⎢

⎢

⎣

𝛥𝛼1𝑥1[𝑘]
⋮

𝛥𝛼𝑛𝑥𝑛[𝑘]

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

∑𝑘
𝑗=0 𝜓(𝛼1, 𝑗)𝑥1[𝑘 − 𝑗]

⋮
∑𝑘
𝑗=0 𝜓(𝛼𝑛, 𝑗)𝑥𝑛[𝑘 − 𝑗]

⎤

⎥

⎥

⎥

⎦

=
𝑘
∑

𝑗=0

⎡

⎢

⎢

⎣

𝜓(𝛼1, 𝑗) … 0
⋮ ⋱ ⋮
0 … 𝜓(𝛼𝑛, 𝑗)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷(𝛼,𝑗)

⎡

⎢

⎢

⎣

𝑥1[𝑘 − 𝑗]
⋮

𝑥𝑛[𝑘 − 𝑗]

⎤

⎥

⎥

⎦

=
𝑘
∑

𝑗=0
𝐷(𝛼, 𝑗)𝑥[𝑘 − 𝑗]. (14)

The above formulation distinctly highlights one of the main peculiar-
ities of DTLFOS in that the fractional derivative 𝛥𝛼𝑥[𝑘] is a weighted
linear combination of not just the previous state but of every single
state up to the current one, with the weights given by (13) following a
power-law decay.

Plugging (14) into the DTLFOS formulation (11) with 𝑢[𝑘] = 0 for
all 𝑘 ∈ N, we have
𝑘+1
∑

𝑗=0
𝐷(𝛼, 𝑗)𝑥[𝑘 + 1 − 𝑗] = 𝐴𝑥[𝑘] +𝑤[𝑘], (15)

or, equivalently,

𝐷(𝛼, 0)𝑥[𝑘 + 1] = −
𝑘+1
∑

𝑗=1
𝐷(𝛼, 𝑗)𝑥[𝑘 + 1 − 𝑗] + 𝐴𝑥[𝑘] +𝑤[𝑘], (16)

which leads to

𝑥[𝑘 + 1] = −
𝑘
∑

𝑗=0
𝐷(𝛼, 𝑗 + 1)𝑥[𝑘 − 𝑗] + 𝐴𝑥[𝑘] +𝑤[𝑘], (17)

since 𝐷(𝛼, 0) = 𝐼𝑛, where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.
Alternatively, (17) can be written as

𝑥[𝑘 + 1] =
𝑘
∑

𝑗=0
𝐴𝑗𝑥[𝑘 − 𝑗] +𝑤[𝑘]

𝑥[0] = 𝑥0, (18)

where

𝐴𝑗 =

{

𝐴 − diag(𝜓(𝛼1, 1),… , 𝜓(𝛼𝑛, 1)) if 𝑗 = 0
(19)
389

−𝐷(𝛼, 𝑗 + 1) if 𝑗 ≥ 1.
4. Stability

Stability can be described as the behavior of the state of a system
after a reasonable amount of time. While there are different notions of
stability, in effect, a system is stable if the behavior of the system is
bounded. The prior literature describes conditions for continuous-time
fractional-order systems (Benzaouia, Hmamed, Mesquine, Benhayoun,
& Tadeo, 2014; Li, Chen, & Podlubny, 2009; Monje, Chen, Vinagre, Xue,
& Feliu-Batlle, 2010) and for single-input single-output continuous-
time commensurate systems (Dastjerdi, Vinagre, Chen, & HosseinNia,
2019). Li, Chen, and Podlubny (2010) provide the generalized Mittag–
Leffler stability conditions of continuous-time fractional-order systems
using the Lyapunov direct method. In what follows, we summa-
rize the stability conditions for continuous-time commensurate linear
fractional-order systems. Let 𝜎(𝐴) = {𝜆1,… , 𝜆𝑛} be the spectrum (set
of eigenvalues) of 𝐴. We say that the commensurate system in (6) is
stable if

arg
(

𝜆𝑖
)

> 𝛼 𝜋
2
, for all 𝑖 = 1,… , 𝑛, (20)

where arg(𝑧), in the complex plane, is the 2D polar angle 𝜑 from the
positive real axis to the vector representing 𝑧, and 0 < 𝛼 < 2 (Rivero,
Rogosin, Tenreiro Machado, & Trujillo, 2013). In the case of the trans-
fer function in (7), we have that 𝜎(𝐴) corresponds to the poles of the
system, and the previous stability condition of (20) also applies. Notice
that, in the integer order case (𝛼 = 1), the stability condition of (20)
describes the open left half 𝑠-plane. For a more detailed discussion on
the stability of continuous-time systems, we refer the reader to Chen,
Ahn, and Podlubny (2005), Matignon (1996), Ortigueira (2000).

For discrete-time fractional-order systems, the authors of Dzieliński
and Sierociuk (2008) leverage an infinite dimensional representation
of truncated discrete-time linear fractional-order systems (i.e., with
finite memory) to give conservative sufficient conditions for stability.
While the work in Busłowicz and Ruszewski (2013) does provide
necessary and sufficient conditions for practical and asymptotic sta-
bility of discrete-time fractional-order systems, they only consider
commensurate-order systems. Recent work has introduced stability
conditions for multivariate discrete-time linear fractional-order systems
with arbitrary fractional coefficients and leverages these conditions to
study the stability of a real-world EEG cognitive motor data set modeled
as a discrete-time fractional-order system and to provide evidence of its
relevance in the context of cognitive motor control (Reed, Bogdan, &
Pequito, 2021).

That said, a simple to state necessary and sufficient condition
like (20) for both continuous and discrete-time non-commensurate
systems is still missing. This limits the capability to assess the stability
of such systems and their applicability in the context of neural systems
and possibly some neurological diseases, such as epilepsy.

5. Controllability and observability

Controllability is a prerequisite in the ability to manipulate a system
state to zero in a finite amount of time. On the other hand, observ-
ability is necessary to obtain a complete picture of the system on the
whole. For continuous-time systems, Matignon and d’Andréa Novel
(1996) give results on the controllability and observability of finite-
dimensional continuous-time fractional-order systems. Balachandran
et al. (2013) give a comprehensive overview of the conditions for
controllability and observability of continuous-time linear fractional-
order systems. Similarly, Guermah, Djennoune, and Bettayeb (2008)
provide these results for discrete-time linear fractional-order systems.
The work in Mozyrska and Pawłuszewicz (2012) derives the conditions
for controllability and observability of finite memory discrete-time
fractional-order systems.

Previous work has examined the design of controllable networks
exhibiting discrete-time linear fractional-order dynamics using energy-

based methods (Kyriakis, Pequito, & Bogdan, 2020) and by maximizing
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the rank of the controllability matrix through a greedy algorithm (Cao,
Ramos, Bogdan, & Pequito, 2019). Similarly, there has been work in
selecting the minimal number of EEG sensors to achieve observability
for discrete-time fractional-order systems (Gupta et al., 2018a; Pequito,
Bogdan, & Pappas, 2015; Tzoumas, Xue, Pequito, Bogdan, & Pappas,
2018; Xue, Pequito, Coelho, Bogdan & Pappas, 2016).

A system is controllable if there exists a control input such that
he final state can be driven to zero in a finite amount of time. In
articular, for continuous-time linear fractional-order systems modeled
y (6), the system is controllable on [𝑡0, 𝑡1] if for every pair of vectors
𝑥(𝑡0), 𝑥(𝑡1) ∈ R𝑛, there is a control 𝑢(𝑡) ∈ 𝐿2([𝑡0, 𝑡1],R𝑚) such that the
olution 𝑥(𝑡) of (6) which satisfies 𝑥(𝑡0) = 𝑥0 also satisfies 𝑥(𝑡1) = 𝑥1,
here 𝐿2([𝑡0, 𝑡1],R𝑚) is the space of all square integrable R𝑚 valued
easureable functions defined on [𝑡0, 𝑡1]. Thus, we say that (6) is

ontrollable on [𝑡0, 𝑡1] if and only if the controllability Gramian matrix
𝑡1

𝑡0
(𝑡1 − 𝜏)𝛼−1𝐸𝛼,𝛼(𝐴(𝑡1 − 𝜏)𝛼)𝐵𝐵⊺𝐸𝛼,𝛼(𝐴⊺(𝑡1 − 𝜏)𝛼) d𝜏

s positive definite for some 𝑡1 > 𝑡0 (Balachandran et al., 2013, Theorem
).

For discrete-time linear fractional-order system modeled by
11), the system is controllable if there exists a control sequence
𝐮[0],… ,𝐮[𝑇 − 1]} such that 𝐱[𝑇 ] = 𝟎 from any initial state 𝐱[0] ∈ R𝑛
n a finite time (Guermah et al., 2008). To present the conditions
or controllability and observability for discrete-time fractional-order
ystems, we first start by noticing that the discrete-time linear
ractional-order system (11) can be re-written as (Gupta et al., 2018a,
emma 2):

[𝑘] = 𝐺𝑘𝑥[0], (21)

here

𝑘 =

{

𝐼𝑛, 𝑘 = 0
∑𝑘−1
𝑗=0 𝐴𝑗𝐺𝑘−1−𝑗 , 𝑘 ≥ 1

(22)

ith 𝐴0 = 𝐴 −𝐷(𝛼, 1), 𝐴𝑗 = −𝐷(𝛼, 𝑗 + 1), for 𝑗 ≥ 1, and

(𝛼, 𝑗) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜓(𝛼1, 𝑗) 0 … 0
0 𝜓(𝛼2, 𝑗) … 0
0 ⋮ ⋱ 0
0 0 … 𝜓(𝛼𝑛, 𝑗)

⎤

⎥

⎥

⎥

⎥

⎦

. (23)

The linear discrete-time fractional-order system modeled by (11)
s controllable if and only if there exists a finite time 𝐾 such that
ank(𝑊𝑐 (0, 𝐾)) = 𝑛, where 𝑊𝑐 (0, 𝐾) = 𝐺−1

𝐾
∑𝐾−1
𝑗=0 𝐺𝑗𝐵𝐵

⊺𝐺⊺
𝑗𝐺

−⊺
𝐾 (Guer-

mah et al., 2008, Theorem 4). Furthermore, an input sequence
[

𝐮⊺[𝐾 − 1],𝐮⊺[𝐾 − 2],…𝐮⊺[0]
]⊺ that transfers 𝐱[0] ≠ 0 to 𝐱[𝐾] = 0 is

given by

⎡

⎢

⎢

⎢

⎢

⎣

𝐮[𝐾 − 1]
𝐮[𝐾 − 2]

⋮
𝐮[0]

⎤

⎥

⎥

⎥

⎥

⎦

= −[𝐺0𝐵𝐺1𝐵…𝐺𝐾−1𝐵]⊺𝐺
−⊺
𝐾 𝑊 −1

𝑐 (0, 𝐾)𝐱[0]. (24)

Similarly, a system is observable if and only if the initial state
[0] can be uniquely determined from the knowledge of the control
nput and observations. For continuous-time systems, the system is
bservable on an interval [𝑡0, 𝑡1] if 𝑦(𝑡) = 𝐶𝑥(𝑡) = 0 for 𝑡 ∈ [𝑡0, 𝑡1]
mplies 𝑥(𝑡) = 0 for [𝑡0, 𝑡1]. Hence, the system in (6) is observable on
𝑡0, 𝑡1] if an only if the observability Gramian matrix 𝑊 = ∫ 𝑡1𝑡0 𝐸𝛼(𝐴

⊺(𝑡−
0)𝛼)𝐶⊺𝐶𝐸𝛼(𝐴(𝑡− 𝑡0)𝛼) d𝑡 is positive definite (Balachandran et al., 2013,
heorem 1).

For linear discrete-time fractional-order systems modeled by (11),
he system is said to be observable if and only if there exists some 𝐾 > 0
uch that the initial state 𝐱[0] at time 𝑘 = 0 can be uniquely determined
rom the knowledge of {𝐮[0],… ,𝐮[𝐾−1]} and {𝐲[0],… , 𝐲[𝐾−1]}. There-
ore, by Theorem 5 in Guermah et al. (2008), the linear discrete-time
390

ractional-order system is observable if and only if there exists a finite r
ime 𝐾 such that rank(𝐾 ) = 𝑛, where 𝐾 =
[

𝐶𝐺0, 𝐶𝐺1,… , 𝐶𝐺𝐾−1
]⊺

or, equivalently, rank(𝑊𝑜(0, 𝐾)) = 𝑛, where 𝑊𝑜(0, 𝐾) =
∑𝐾−1
𝑗=0 𝐺

⊺
𝑗𝐶

⊺𝐶𝐺𝑗 .
urthermore, the initial state at 𝐱[0] is given by

[0] = 𝑊 −1
𝑜 (0, 𝐾)⊺

𝐾 [̃𝐾 −𝐾 ̃𝐾 ], (25)

here ̃𝐾 =
[

𝐮⊺[0],𝐮⊺[1],… ,𝐮⊺[𝐾 − 1]
]

, ̃𝐾 =
[

𝐲⊺[0],… , 𝐲⊺[𝐾 − 1]
]⊺,

nd

𝐾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 … 0 0
𝐶𝐺0𝐵 0 … 0 0
𝐶𝐺1𝐵 𝐶𝐺0𝐵 … 0 0
𝐶𝐺2𝐵 𝐶𝐺1𝐵 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝐺𝐾−2𝐵 𝐶𝐺𝐾−3𝐵 … 𝐶𝐺0𝐵 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

. Proportional–integral–derivative control

A proportional–integral–derivative controller (PID controller or three-
erm controller) is a control loop mechanism. It employs feedback and
s commonly used in industrial control systems and a variety of other
pplications that need a continuously modulated control because of its
implicity and ease of implementation. A PID controller continuously
omputes an error value as the difference between the desired setpoint
SP) and a measured process variable (PV) and implements a correction
ased on proportional, integral, and derivative terms of the error (P, I,
nd D, respectively). For example, the proportional (P) term multiplies
given constant with the error, an integral (I) term sums the error in

revious time steps, and the derivative (D) term examines the rate of
hange of the error. These components sum together to create the PID
ontroller.

The interpretability and comprehensibility of PID controllers make
hem a typical choice across many applications and in many industries.
t is possible, with the right set of parameters, that a PID controller
an reach the desired setpoint in a controlled manner, with minimal
elay and overshoot. For instance, it is well-known that in general the
ntegral term decreases the steady-state error whereas the derivative
erm decreases the oscillations (Bennett, 2001; Shah & Agashe, 2016).

The work in Podlubny (1999) provides the framework for
ontinuous-time fractional-order PID control, which we summarize
ext. The fractional order version of PID controllers is defined using
he following transfer function

(𝑠) = 𝑘𝑝 +
𝑘𝑖
𝑠𝜆

+ 𝑘𝑑𝑠𝜇 . (26)

For 𝜆 = 1 and 𝜇 = 1, we obtain the standard integer-order setting with
hree degrees of freedom: 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 . However, in (26), we have five
arameters to determine, yielding five independent specifications that
e are forced to meet. If we place the controller in front of a plant,

pecified as 𝐺(𝑠), in a unity feedback loop, then the first specification
s on the phase margin as it is tightly coupled with the stability of
he control system. The equations that define the phase margin are
0 log ||

|

𝐶
(

𝑤𝑔𝑐
)

𝐺
(

𝑔𝑔𝑐
)

|

|

|

= 0 dB and arg
(

𝐶
(

𝑤𝑔𝑐
)

𝐺
(

𝑤𝑔𝑐
))

= −𝜋 + 𝜑𝑝𝑚,
here 𝑤𝑔𝑐 is the gain crossover frequency and 𝜑𝑝𝑚 the phase margin.

Subsequently, we may force a flat magnitude response |𝐺(𝑗𝑤)𝐶(𝑗𝑤)|
round the gain crossover frequency. We can ensure this response,
ee Monje, Vinagre, Feliu, and Chen (2008), by setting the deriva-
ive d

d𝑤 (arg(𝐶(𝑗𝑤)𝐺(𝑗𝑤))) to zero when 𝑤 = 𝑤𝑔𝑐 . Moreover, ensuring
this constraint makes the closed-loop control system robust against
variations in the gain of 𝐺(𝑠).

Another specification supposes that a controller introduces the
roperty of noise rejection in high frequencies. This property can be
ccomplished by fixing a critical frequency, 𝑤ℎ. If this frequency is
xceeded, then the magnitude of the transfer function 𝑇 = 𝐶𝐺∕(1 +
𝐺) (corresponding to the complementary sensitivity function) will be

maller than a pre-selected level.
Next, we want to ensure that a good output disturbance is not

ejected. To address this, we can force an upper bound (𝑀) on the
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sensitivity function’s magnitude below a pre-defined frequency
(

𝑤𝑠
)

.
Hence, it follows that

20 log |𝑆(𝑗𝑤)|𝑤≤𝑤𝑠 = 20 log
|

|

|

|

1
1 + 𝐶(𝑗𝑤)𝐺(𝑗𝑤)

|

|

|

|𝑤≤𝑤𝑠
≤𝑀 dB.

In the final step, to achieve a zero steady-state error, we need to design
the controller 𝐶(𝑠) with an integral component.

Notice that, although solving the necessary set of equations from the
constraints above is one way to establish the parameters 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 , 𝜆,
nd 𝜇, this requires the prior knowledge of the model order, dead
ime, poles and zeros. In the scenario where we do not have this prior
nowledge, we may resort to autotuning (Chen, Moore, Vinagre, &
odlubny, 2004; Monje et al., 2008).

Other frequency domain approaches based on unity-feedback that
se fractional-order differ-integration have been studied in Oustaloup,
elchior, Lanusse, Cois, and Dancla (2000), Oustaloup et al. (2008).
hese techniques have been used in many applications, ranging from
ath planning for robotics (Melchior, Orsoni, Lavialle, & Oustaloup,
001) to system identification (Malti & Victor, 2015). The following
utorials overview three generations of related controllers (Lanusse,
alti, & Melchior, 2013; Shah & Agashe, 2016). We outline the basics

or the first generation controller, which is a constant-phase controller
round the required open-loop gain crossover frequency 𝜔𝑔𝑐 and is
btained through a band-limited real fractional differentiator

(𝑠) = 𝐶0

(

1 + 𝑠∕𝜔𝑙
1 + 𝑠∕𝜔ℎ

)𝑛
,

here 𝐶0, 𝜔𝑙, 𝜔ℎ, and 𝑛 ∈ R. This controller will ensure robustness
f the phase margin when the plant phase is constant. However, to
imultaneously take the control effort level and the steady-state error
nto account, the first-generation controller becomes

𝐹 (𝑠) = 𝐶0

(

𝜔𝐼
𝑠

+ 1
)𝑛𝐼( 1 + 𝑠∕𝜔𝑙

1 + 𝑠∕𝜔𝑛

)𝑛 1
(1 + 𝑠∕𝜔𝐹 )𝑛𝐹

,

where 𝑛𝐼 , 𝑛𝐹 ∈ N and 𝜔𝐼 , 𝜔𝐹 ∈ R+. The robustness of the phase margin
s guaranteed if 𝜔𝑔𝑐 is within a frequency range for which the plant
hase is constant (Lanusse et al., 2013).

. Sliding mode control

In control systems, sliding mode control (SMC) is a nonlinear control
method that adjusts the dynamics of a nonlinear system by applying
a discontinuous control signal (a set-valued control signal). This con-
trol signal compels the system to ‘‘slide’’ along a cross-section of the
system’s normal behavior. In this case, the state-feedback control law
is not a function continuous in time. Instead, it can switch between
continuous structures based on the state space’s current position to
achieve the desired behavior. There are two stages in SMC: (i) the
reaching phase, which is the phase that lasts until the hitting of a
trajectory to the switching subspace; (ii) the sliding mode, which is
the motion after the previous phase. A relevant property of stage (ii)
is the robustness against disturbances and variations in the process
parameters – i.e., the invariance property.

Now, we present a set of results regarding SMC for continuous-time
fractional order systems. Given the 𝑛th order fractional dynamic system
in (5) and the following switching function

𝜎(𝑡) = 𝛬 (𝑥(𝑡) − 𝑟(𝑡)) , (27)

where 𝑟(𝑡) is a reference signal and 𝛬 is a parameter designed to make
the sliding manifold a stable subspace when 𝜎 = 0, where stability is
defined in (20). This entails that, despite the process being nonlinear,
the nominal plant model is linear. If 0 < 𝛼 < 1 and 𝑟 is the vector
of differentiable command signals, then the goal of the reaching law
approach is to get 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡)) for some 𝑘 > 0. When 𝛼 = 1, it
orresponds to �̇�(𝑡) = −𝑘 sgn(𝜎(𝑡)), which ensures 𝜎(𝑡)�̇�(𝑡) < 0 whenever
≠ 0. This solution is the time derivative of the Lyapunov function
= 1𝜎(𝑡)2, where the physical meaning of the time derivative of the
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Lyapunov function is to provide the sliding manifold with an attractor
such that, once the error vector gets trapped to it, then the subsequent
motion takes place in the proximity of the sliding hypersurface.

Next, we need to show that the aforementioned mechanism also
works for non-integer differentiation order (Vinagre & Calderón, 2006).
We start by differentiating 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡)) at the order −𝛼, so we
obtain

𝛥1 (𝛥−𝛼 (𝛥𝛼𝜎(𝑡))) = −𝑘𝛥1 (𝛥−𝛼 sgn(𝜎(𝑡))) .

Then, we differentiate at order unity to obtain �̇�(𝑡) given as

̇ (𝑡) = −𝑘𝛥1−𝛼 sgn(𝜎(𝑡)).

Because 0 < 𝛼 < 1, it follows that sgn
(

𝛥1−𝛼 sgn(𝜎(𝑡))
)

= sgn(𝜎(𝑡)).
orcing 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡)) makes the locus described by 𝜎 = 0 a
lobal attractor.

It is easy to check that choosing 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡))−𝑝𝜎(𝑡) with 𝑝 >
has the same effect on the reaching dynamics of integer-order. Notice

hat with 𝑝𝜎 = 𝑝|𝜎(𝑡)| sgn(𝜎), the following relation holds between �̇�(𝑡)
nd sgn(𝜎(𝑡)):

̇ (𝑡) = −𝑘𝛥1−𝛼 sgn(𝜎(𝑡)) − 𝑝𝛥1−𝛼(|𝜎(𝑡)| sgn(𝜎(𝑡)))

= −𝛥1−𝛼((𝑘 + 𝑝|𝜎(𝑡)|) sgn(𝜎(𝑡))).

otice that, since sgn
(

𝛥1−𝛼 sgn(𝜎(𝑡))
)

= sgn(𝜎), the reaching dynamics,
overned by the above expression, generate a stronger push from both
ides of the switching manifold. This effect translates into a higher
ttraction strength of the switching manifold for any 𝜎(𝑡) with 𝑝 ≠ 0
han it does for 𝑝 = 0. Moreover, for a fixed 𝜎(𝑡), larger values of 𝑝 create
arger values of �̇�(𝑡), which leads to reaching the place characterized by
= 0 more quickly. If we select the Lyapunov function 𝑉 (𝑡) = 1

2𝜎(𝑡)
2

and compute its 𝛼th order derivative, using the Leibniz’s differentiation
rule, we obtain

𝛥𝛼𝑉 (𝑡) =
∞
∑

𝑘=0

𝛤 (1 + 𝛼)
𝛤 (1 + 𝑘)

𝛤 (1 − 𝑘 + 𝛼)𝛥𝑘𝜎(𝑡)𝛥𝛼−𝑘𝜎(𝑡),

.e., an expression with infinitely many terms. Therefore, we are not
ble to infer the attractiveness of 𝜎(𝑡) = 0, deduced from 𝜎(𝑡)𝛥𝛼𝜎(𝑡) < 0,
r more specifically, from 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡)) − 𝑝𝜎(𝑡).

Recalling definition (1), the following equality holds

(𝑡)𝛥𝛼𝜎(𝑡) =
𝜎(𝑡)

𝛤 (1 − 𝛼) ∫

𝑡

0

𝛥𝜎(𝜏)
(𝑡 − 𝜏)𝛼

d𝜏.

he previous relation imposes two possibilities to have 𝜎(𝑡)𝛥𝛼𝜎(𝑡) < 0:

(i) if 𝜎(𝑡) > 0, then 𝛥𝜎(𝑡) (the first derivative of 𝜎(𝑡)) must be negative;
(ii) if 𝜎(𝑡) < 0, then 𝛥𝜎(𝑡) (the first derivative of 𝜎(𝑡)) must be positive.

n conclusion, an appropriately designed control law is sufficient for
losed-loop stability, forcing 𝜎𝛥𝛼𝜎(𝑡) < 0. Therefore, the stability
equirement 𝜎(𝑡)�̇�(𝑡) < 0 (or 𝜎(𝑡)𝛥𝜎(𝑡) < 0) of the integer-order system
s obtained naturally, whenever we impose 𝜎(𝑡)𝛥𝛼𝜎(𝑡) < 0.

In Efe (2011), the following is proposed. Compute the 𝛼th-order
erivative of (27), which is
𝛼𝜎(𝑡) = Λ (𝛥𝛼𝑥(𝑡) − 𝛥𝛼𝑟(𝑡)) = Λ (𝐟 (𝑥(𝑡)) + 𝐠(𝑥(𝑡))𝑢(𝑡) − 𝛥𝛼𝑟(𝑡)) .

ext, setting the previous expression equal to −𝑘 sgn(𝜎(𝑡)) − 𝑝𝜎(𝑡) and
olving for 𝑢 yields the following control signal

(𝑡) =
−𝛬𝐟 (𝑥(𝑡)) + 𝛬𝛥𝛼𝑟(𝑡) − 𝑘 sgn(𝜎(𝑡)) − 𝑝𝜎(𝑡)

𝛬𝑔(𝑥(𝑡))
, (28)

where 𝛬𝑔(𝑥(𝑡)) ≠ 0. Having the encountered control law, deduced
from a nominal model, an important question is to determine what the
response of the system would be whenever the model in (5) is a nominal
representation of a plant with uncertainties 𝛥𝐟 (𝑥(𝑡)) and 𝛥𝐠(𝑥(𝑡)), such
s
𝛼𝑥(𝑡) = (𝐟 (𝑥(𝑡)) + 𝛥𝐟 (𝑥(𝑡))) + (𝐠(𝑥(𝑡)) + 𝛥𝐠(𝑥(𝑡)))𝑢(𝑡). (29)
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Combining (28) and (29) yields the following dynamics

𝛥𝛼𝜎(𝑡) = −
(

1 +
Λ𝛥𝐠(𝑥(𝑡))
𝜦𝐠(𝑥(𝑡))

)

(𝑘 sgn(𝜎(𝑡)) + 𝑝𝜎(𝑡))

+
𝜦𝛥𝐠(𝑥(𝑡))
𝜦𝐠(𝑥(𝑡))

𝜦 (𝛥𝛼𝑟(𝑡) − 𝐟 (𝑥(𝑡))) +𝜦𝛥𝐟 (𝑥(𝑡)).
(30)

Hence, we have the following properties:

• If there are no uncertainties, i.e., 𝛥𝐟 (𝑥(𝑡)) = 𝛥𝐠(𝑥(𝑡)) = 0, then we
have 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡)) − 𝑝𝜎(𝑡) to observe the sliding regime
after hitting the sliding hypersurface;

• If 𝛥𝐠(𝑥(𝑡)) = 0 and the columns of 𝛥𝐟 (𝑥(𝑡)) are in the range
space of 𝐠(𝑥(𝑡)), then 𝛥𝛼𝜎(𝑡) = −𝑘 sgn(𝜎(𝑡)) − 𝑝𝜎 + 𝜦𝛥𝐟 (𝑥(𝑡)). This
case requires that condition |𝐴𝛥𝐟 (𝑥(𝑡))| < 𝑘 hold to ensure that
𝜎(𝑡)𝛥𝛼𝜎(𝑡) < 0;

• If the uncertainty terms are nonzero, then (30) is valid, which
implies that the designer has to carefully set 𝑘 and 𝑝 to keep the
attractiveness of the subspace defined by 𝜎(𝑡) = 0 The following
two conditions are required to ensure that 𝜎(𝑡)𝛥𝛼𝜎(𝑡) < 0:

|

|

|

|

𝛬𝛥𝑔(𝑥(𝑡))
𝛬𝑔(𝑥(𝑡))

|

|

|

|

< 1
(

1 +
𝛬𝛥𝑔(𝑥(𝑡))
𝛬𝑔(𝑥(𝑡))

)

𝑘 >
|

|

|

|

𝛬𝛥𝑔(𝑥(𝑡))
𝛬𝑔(𝑥(𝑡))

𝛬 (𝛥𝛼𝑟(𝑡) − 𝑓 (𝑥(𝑡))) + 𝛬𝛥𝑓 (𝑥(𝑡))
|

|

|

|

.

The columns of 𝛥𝐟 (𝑥(𝑡)) and 𝛥𝐠(𝑥(𝑡)) are assumed to be in the range
space of 𝐠(𝑥(𝑡)), i.e., the uncertainties are matched. If the previ-
ous condition is not satisfied, then the closed-loop performance will
deteriorate.

Finally, notice that the first hitting to the switching subspace occurs
when 𝑡 = 𝑡ℎ, where 𝑡ℎ = (|𝜎(0)|𝛤 (𝛼 + 1)∕𝑘)1∕𝛼 .

8. Backstepping control

Backstepping is a technique developed in the 1990s by Petar V.
Kokotovic and others (Kokotovic, 1992; Lozano et al., 1992). The goal
of this technique is to design stabilizing controls for a special class
of nonlinear dynamical systems. These systems consist of subsystems
that radiate out from an irreducible subsystem, which we can stabi-
lize using some method. Due to its recursive structure, the designer
can start the design process at the known stable system and ‘‘back
out’’ new controllers that progressively stabilize each outer subsystem.
The process of stabilization stops when the final external control is
achieved. In other words, backstepping is based on the definition of a
set of intermediate variables and the process of ensuring the negativity
of Lyapunov functions that are combined to form a common control
Lyapunov function for the overall system.

In fact, we can use the backstepping technique in a particular but
wide class of systems. Consider the following system

𝛥𝛼1𝑥1(𝑡) = 𝑥2(𝑡)

𝛥𝛼2𝑥2(𝑡) = 𝐟
(

𝑥1(𝑡), 𝑥2(𝑡)
)

+ 𝐠
(

𝑥1(𝑡), 𝑥2(𝑡)
)

𝑢(𝑡),
(31)

where 𝑥1 and 𝑥2 are the state variables, 0 < 𝛼1, 𝛼2 < 1 are positive frac-
tional differentiation orders, 𝐟 and 𝐠 are known and smooth functions
of the state variables such that 𝐠(𝑥1(𝑡), 𝑥2(𝑡)) ≠ 0. Additionally, consider
the intermediate variables of backstepping design:

𝑧1(𝑡) = 𝑥1(𝑡) − 𝑟1(𝑡) − 𝐴1(𝑡)

𝑧2(𝑡) = 𝑥2(𝑡) − 𝑟2(𝑡) − 𝐴2(𝑡),

where 𝐴1(𝑡) = 0, 𝐴2(𝑡) is an intermediate variable of backstepping
design, and 𝛥𝛼1 𝑟1(𝑡) = 𝑟2(𝑡).

Subsequently, consider the Lyapunov function with variable of
interest 𝑧

𝑉 (𝑡) = 1
2
𝑧2(𝑡).

ow, from Section 7, we have that 𝑧(𝑡)𝛥𝛼𝑧(𝑡) ensures 𝑧(𝑡)�̇�(𝑡) < 0, for any
0 < 𝛼 < 1. That said, we formulate the backstepping control technique
for the plant described by (31) by recurrently checking the quantities
𝑧 (𝑡)𝛥𝛼1𝑧 (𝑡) and 𝑧 (𝑡)𝛥𝛼1𝑧 (𝑡) + 𝑧 (𝑡)𝛥𝛼2𝑧 (𝑡) as the following steps:
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1 1 1 1 2 2 e
1. Check 𝑧1(𝑡)𝛥𝛼1𝑧1(𝑡):

𝑧1(𝑡)𝛥𝛼1𝑧1(𝑡) = 𝑧1(𝑡)
(

𝛥𝛼1𝑥1(𝑡) − 𝛥𝛼1 𝑟1(𝑡)
)

= 𝑧1(𝑡)
(

𝑥2(𝑡) − 𝑟2(𝑡)
)

= 𝑧1(𝑡)
(

𝑧2(𝑡) + 𝑟2(𝑡) + 𝐴2(𝑡) − 𝑟2(𝑡)
)

= 𝑧1(𝑡)
(

𝑧2(𝑡) + 𝐴2(𝑡)
)

2. Choose 𝐴2(𝑡) = −𝑘1𝑧1(𝑡), with 𝑘1 > 0, this would entail that

𝑧1(𝑡)𝛥𝛽1𝑧1(𝑡) = −𝑘1𝑧21(𝑡) + 𝑧1(𝑡)𝑧2(𝑡)

3. Check 𝑧1(𝑡)𝛥𝛼1𝑧1(𝑡) + 𝑧2(𝑡)𝛥𝛼2𝑧2(𝑡):

𝑧1(𝑡)𝛥𝛼1𝑧1(𝑡) + 𝑧2(𝑡)𝛥𝛼2𝑧2(𝑡)

= −𝑘1𝑧21(𝑡) + 𝑧1(𝑡)𝑧2(𝑡) + 𝑧2(𝑡)
(

𝛥𝛼2𝑥2(𝑡) − 𝛥𝛼2 𝑟2(𝑡) − 𝛥𝛼2𝐴2(𝑡)
)

= −𝑘1𝑧21(𝑡) + 𝑧2(𝑡)
(

𝛥𝛼2𝑥2(𝑡) − 𝛥𝛼2 𝑟2(𝑡) − 𝛥𝛼2𝐴2(𝑡) + 𝑧1(𝑡)
)

= −𝑘1𝑧21(𝑡) + 𝑧2(𝑡)
(

𝐟
(

𝑥1(𝑡), 𝑥2(𝑡)
)

+ 𝐠
(

𝑥1(𝑡), 𝑥2(𝑡)
)

𝑢(𝑡)

− 𝛥𝛼2 𝑟2(𝑡) − 𝛥𝛼2𝐴2(𝑡) + 𝑧1(𝑡)
)

4. Force 𝑧1(𝑡)𝛥𝛼1𝑧1(𝑡)+𝑧2(𝑡)𝛥𝛼2𝑧2(𝑡) = −𝑘1𝑧21(𝑡)−𝑘2𝑧
2
2(𝑡), with 𝑘2 > 0,

which implies that

𝐟 (𝑥1(𝑡), 𝑥2(𝑡))+𝐠(𝑥1(𝑡), 𝑥2(𝑡))𝑢(𝑡)−𝛥𝛼2 𝑟2(𝑡)−𝛥𝛼2𝐴2(𝑡)+𝑧1(𝑡) = −𝑘2𝑧2(𝑡)

5. Obtain for 𝑢:

𝑢(𝑡) = −
𝐟
(

𝑥1(𝑡), 𝑥2(𝑡)
)

− 𝛥𝛼2 𝑟2(𝑡) + 𝑘1(𝑡)𝛥𝛼2𝑧1(𝑡) + 𝑧1(𝑡) + 𝑘2𝑧2(𝑡)

𝐠
(

𝑥1(𝑡), 𝑥2(𝑡)
) .

In fact, we can generalize the aforementioned procedure for systems
f higher order of the form
𝛼𝑖𝑥𝑖(𝑡) = 𝑥𝑖+1(𝑡), for 𝑖 = 1,… , 𝑞 − 1
𝛼𝑞𝑥𝑞(𝑡) = 𝐟

(

𝑥1(𝑡),… , 𝑥𝑞(𝑡)
)

+ 𝐠
(

𝑥1(𝑡),… , 𝑥𝑞(𝑡)
)

𝑢(𝑡),

here the resulting control law, in this case, is

(𝑡) = −
𝐟 (𝑥1(𝑡),… , 𝑥𝑞(𝑡)) − 𝛥

𝛼𝑞 𝑟𝑞(𝑡) − 𝛥
𝛼𝑞𝐴𝑞(𝑡) + 𝑧𝑞−1(𝑡) + 𝑘𝑞𝑧𝑞(𝑡)

𝐠(𝑥1(𝑡),… , 𝑥𝑞(𝑡))
, (32)

where 𝑘𝑗 > 0, for 𝑗 = 1,… , 𝑞, and 𝐴𝑖 is given by the following
recurrence relation:
𝐴1(𝑡) = 0, 𝑧0(𝑡) = 0

𝐴𝑖+1(𝑡) = −𝑘𝑖𝑧𝑖(𝑡) + 𝛥𝛼𝑖𝐴𝑖(𝑡) − 𝑧𝑖−1(𝑡), for 𝑖 = 1,… , 𝑞 − 1.

ow, the result of applying the control law in detailed in (32) is
𝑞
∑

𝑖=1
𝑧𝑖(𝑡)𝛥𝛼𝑖𝑧𝑖(𝑡) = −

𝑞
∑

𝑖=1
𝑘𝑖𝑧

2
𝑖 (𝑡). (33)

inally, to ensure the negativeness of the right-hand side of (33) is the
ame as to ensure the negativity of ∑𝑞

𝑖=1 𝑧𝑖(𝑡)�̇�𝑖(𝑡), and the trajectories
n the coordinate system spanned by 𝑧1(𝑡),… , 𝑧𝑞(𝑡) will converge the
rigin point.

. Adaptive control

Adaptive control is the control method used by a controller that must
dapt to a system with parameters that either vary over time or are
nitially uncertain. Therefore, it is desirable to have a control law that
dapts itself to the changing conditions. In other words, adaptive con-
rol is a good alternative for industrial applications where the process
arameters change, and the controller needs to automatically adapt
tself to the new operating conditions. This aptitude is called adaptive-
ess. Here, the role of fractional calculus is to design non-integer-order
daptation laws or select reference models of non-integer-order (Monje

t al., 2010).
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Fig. 1. Diagram of the MRAC control scheme.

A broadly adopted adaptive control structure is the so-called model
reference adaptive control (MRAC) – see Fig. 1. This control strategy is
grounded on the assumption that the changes in the process parameters
are slower than other changes in the closed-loop system. Hence, the
parameter adjustment mechanism employs the difference between the
model output (𝑦𝑚(𝑡)) and the process response (𝑦(𝑡)) and uses the
gradient rule to adjust the parameters of the control law:

𝛥𝛼𝜙(𝑡) = −𝜂
𝜕𝐽 (𝑡)
𝜕𝜙(𝑡)

= −𝜂𝑒(𝑡)
𝜕𝑒(𝑡)
𝜕𝜙(𝑡)

, (34)

where 𝜙(𝑡) is a generic parameter of the control law, 𝑒(𝑡) = 𝑦(𝑡) − 𝑦𝑚(𝑡)
is the instantaneous model following error, and 𝐽 (𝑡) = 𝑒2(𝑡)

2 is the
instantaneous performance measure.

It is worth noticing that, when 𝛼 = 1 as in (34), we get the
traditional linear-time invariant update laws. Additionally, we refer
to Monje et al. (2010) for a detailed example considering a fractional-
order reference model, where stability is also sought. Furthermore, the
benefit of using a fractional-order system in MRAC is that it is possible
to achieve a shorter transient regime compared to the classical case
for linear time-invariant systems. This property might be critical in
applications demanding a high-speed response.

10. System identification

Learning a fractional-order dynamical system’s parameters, i.e., the
fractional-order coefficients and the spatiotemporal matrix, is challeng-
ing. Specifically, the maximum-likelihood approach poses limitations
due to the nonlinearity of the objective. However, some approaches
were successfully developed for discrete-time linear fractional-order
systems in Gupta et al. (2018a, 2018b, 2019), where an approximate so-
lution is based on a variant of the expectation–maximization algorithm.
Nonetheless, such approaches do not enable a finite-time assessment of
the uncertainty associated with the parameters, which play a key role
in the context of CNS.

Therefore, in what follows, we present a recent approach that relies
on a bilevel iterative bisection scheme (Chatterjee & Pequito, 2022) to
perform identification of the spatial and temporal parameters of a linear
discrete-time fractional-order system. First, consider

�̃�[𝑘] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥[𝑘]
𝑥[𝑘 − 1]

⋮
𝑥[𝑘 − 𝑝 + 1]

⎤

⎥

⎥

⎥

⎥

⎦

(35)

as the augmented state vector and assuming that the system is causal,
i.e., the state and disturbances are all considered to be zero before the
initial time (i.e., 𝑥[𝑘] = 0 and 𝑤[𝑘] = 0 for all 𝑘 < 0), we have

�̃�[𝑘 + 1] =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴0 … 𝐴𝑝−2 𝐴𝑝−1
𝐼 … 0 0
⋮ ⋱ ⋮ ⋮
0 … 𝐼 0

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�

�̃�[𝑘] +

⎡

⎢

⎢

⎢

⎢

⎣

𝐼
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
�̃�𝑤

𝑤[𝑘]

̃ ̃𝑤
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= 𝐴�̃�[𝑘] + 𝐵 𝑤[𝑘], (36) d
for all 𝑘 ≥ 0. Note that (36) is an LTI system model, which we refer to
as the 𝑝-augmented LTI approximation of (11).

Having established the 𝑝-augmented LTI approximation of a DTL-
FOS in (36), we can consider the two-level iterative bisection-like
approach to identify the spatial and temporal parameters of the
DTLFOS in (11). In particular, we start by noting the fact that for
the Grünwald–Letnikov definition of the fractional derivative provided
in (12), 𝛼𝑖 = 1 and 𝛼𝑖 = −1 can be interpreted, respectively, to be the
discretized version of the derivative and the integral for 1 ≤ 𝑖 ≤ 𝑛, as
defined in the sense of ordinary calculus.

To proceed with a bisection-like approach to identify {𝛼𝑖}𝑛𝑖=1 and �̃�,
we first fix the endpoints of the search space for 𝛼𝑖 to be 𝛼𝑖 = −1 and
𝛼𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛. We also calculate the value of 𝛼𝑐,𝑖 = (𝛼𝑖 + 𝛼𝑖)∕2.
Now, given the values of 𝛼𝑖, 𝛼𝑖, and 𝛼𝑐,𝑖, we calculate, using the ordinary
least squares (OLS) technique described in detail below, the row vectors
̃𝑖, 𝑎𝑖, and �̃�𝑐,𝑖, respectively, that guide the evolution of the states in the
𝑝-augmented LTI approximation

�̃�𝑖[𝑘 + 1] = �̃�𝑖�̃�𝑖[𝑘] + �̃�𝑤𝑖 𝑤𝑖[𝑘], (37)

here �̃�𝑖 = �̃�𝑖 when 𝛼𝑖 = 𝛼𝑖, �̃�𝑖 = �̃�𝑖 when 𝛼𝑖 = 𝛼𝑖, and �̃�𝑖 = �̃�𝑐,𝑖 when
𝛼𝑖 = 𝛼𝑐,𝑖 with �̃�𝑤𝑖 being obtained by extracting the 𝑖th row of �̃�𝑤 for
1 ≤ 𝑖 ≤ 𝑛.

Next, we propagate the dynamics according to the obtained values
of the parameters �̃�𝑖 and calculate the mean squared error (MSE)
between the states obtained as a result of the estimated �̃�𝑖’s and the
observed states. If the MSE is smaller corresponding to the 𝛼𝑖 case, then

e set 𝛼𝑖 = 𝛼𝑐,𝑖. If the MSE is smaller corresponding to the 𝛼𝑖 case,
then we set 𝛼𝑖 = 𝛼𝑐,𝑖. This approach is repeated until |𝛼𝑖 − 𝛼𝑖| does
not exceed a certain pre-specified tolerance 𝜀. Algorithm 1 summarizes
the procedure of determining the spatial and temporal components of
a DTLFOS using the two-level iterative bisection-like approach that we
have outlined above.

Therefore, for the estimation of the temporal components of a DTL-
FOS, we specify the iteration complexity of the bisection-like process
and then, we investigate the finite-sample complexity of computing the
spatial parameters using a least squares approach.

First, numerical and experimental evidence suggests that the com-
putation of the temporal parameters of a DTLFOS, using, e.g., a
wavelet-like technique described in Flandrin (1992), does not directly
depend on the number of samples or observations used for the afore-
mentioned estimation procedure. Empirical evidence suggests that a
small number of samples (usually 30 to 100) suffice in order to compute
{𝛼𝑖}𝑛𝑖=1. Furthermore, we can certify the iteration complexity of the
bisection method to find the spatial and temporal parameters of a
DTLFOS. Specifically, the bisection-based technique detailed above to
find the temporal components of a DTLFOS is minmax optimal and the
number 𝜈 of iterations needed in order to achieve a certain specified
tolerance 𝜀 when this technique is used is bounded above by

𝜈 ≤
⌈

log2
( 2
𝜀

)⌉

. (38)

Secondly, we can now delve into the problem of identifying the
spatial parameters using a least squares-like approach and its finite-
time guarantees. We start with the 𝑝-augmented LTI model of (36),
i.e.,

�̃�[𝑘 + 1] = �̃��̃�[𝑘] + �̃�𝑤𝑤[𝑘]. (39)

The OLS method then outputs the matrix �̃�[𝐾] as the solution of the
following optimization problem

�̃�[𝐾] ∶= argmin
�̃�∈R𝑑×𝑑

𝐾
∑

𝑘=1

1
2
‖

‖

�̃�[𝑘 + 1] − �̃��̃�[𝑘]‖
‖

2
2 , (40)

y observing the state trajectory of (36), i.e., {𝑥[0], 𝑥[1],… , 𝑥[𝐾 +
]}, and the process noise 𝑤[𝑘] being independent and identically

istributed (i.i.d.) zero-mean Gaussian.
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Algorithm 1 Learning the parameters of a DTLFOS
1: for 𝑖 = 1 to 𝑛 do
2: Initialize 𝛼𝑖 = −1, 𝛼𝑖 = 1, and tolerance 𝜀.
3: Calculate 𝛼𝑐,𝑖 = (𝛼𝑖 + 𝛼𝑖)∕2.
4: Given the above values of 𝛼𝑖, 𝛼𝑖, and 𝛼𝑐,𝑖, find, using the or-

dinary least squares (OLS) method, the row vectors �̃�𝑖, 𝑎𝑖, and
�̃�𝑐,𝑖, respectively, that guide the evolution of the states in the
𝑝-augmented LTI approximation �̃�𝑖[𝑘 + 1] = �̃�𝑖�̃�𝑖[𝑘] + �̃�𝑤𝑖 𝑤𝑖[𝑘].

5: Propagate the dynamics according to the obtained OLS esti-
mates and calculate the mean squared error (MSE) between the
propagated states and the observed state trajectory.

6: if MSE is lower for the 𝛼𝑖 case then
7: Set 𝛼𝑖 = 𝛼𝑐,𝑖.
8: else if MSE is lower for the 𝛼𝑖 case then
9: Set 𝛼𝑖 = 𝛼𝑐,𝑖.
0: end if
1: Terminate if |𝛼𝑖 − 𝛼𝑖| < 𝜀, else return to step 3.
2: end for

Thus, prior to characterizing the sample complexity of the OLS
ethod for the 𝑝-augmented LTI approximation of the DTLFOS, we
efine a few quantities of interest. The finite-time controllability Gramian
f the approximated system (36), 𝑊𝑡, is defined by

𝑡 ∶=
𝑡−1
∑

𝑗=0
�̃�𝑗 (�̃�𝑗 )𝖳. (41)

ntuitively, the controllability Gramian gives a quantitative measure of
ow much the system is excited when induced by the process noise 𝑤[𝑘]
cting as an input to the system.

Additionally, given a symmetric matrix 𝐴 ∈ R𝑑×𝑑 , we define 𝜆max(𝐴)
nd 𝜆min(𝐴) to denote, respectively, the maximum and minimum
igenvalues of the matrix 𝐴.

Lastly, for any square matrix 𝐴 ∈ R𝑑×𝑑 , the spectral radius of the
atrix 𝐴, 𝜌(𝐴), is given by the largest absolute value of its eigenvalues.
lso, the operator norm of a matrix is denoted by

𝐴‖op = inf{𝑐 ≥ 0 ∶ ‖𝐴𝑣‖ ≤ 𝑐‖𝑣‖ for all 𝑣 ∈ 𝑉 }.

Hence, we have the following result that characterizes the sample
omplexity of the above OLS method for the DTLFOS approximation.
ix 𝛿 ∈ (0, 1∕2) and consider the 𝑝-augmented system in (36), where
̃ ∈ R𝑑×𝑑 is a marginally stable matrix (i.e., 𝜌(�̃�) ≤ 1) and 𝑤[𝑘] ∼
(0, 𝜎2𝐼). Then, there exist universal constants 𝑐, 𝐶 > 0 such that,
[

‖

‖

�̃�[𝐾] − �̃�‖
‖op ≤

𝐶
√

𝐾𝜆min
(

𝑊𝑘
)

×
√

𝑑 log
(𝑑
𝛿

)

+ log det
(

𝑊𝐾𝑊 −1
𝑘

)

]

≥ 1 − 𝛿, (42)

for any 𝑘, such that
𝐾
𝑘

≥ 𝑐
(

𝑑 log
(𝑑
𝛿

)

+ log det
(

𝑊𝐾𝑊
−1
𝑘

)

)

(43)

olds.

emark 1. We note here that although the operator norm parameter
stimation error in (42) is stated in terms of �̃�, the operator norm
rrors, associated with the matrices 𝐴0, 𝐴1,… , 𝐴𝑝−1, are strictly lower
ompared to ‖

‖

�̃�[𝐾] − �̃�‖
‖op, since 𝐴0, 𝐴1,… , 𝐴𝑝−1 are submatrices of �̃�,

nd for any operator norm, the operator norm of a submatrix is upper
ounded by one of the whole matrices (see Lemma A.9 of Foucart and
auhut (2013) for a proof).

Additionally, it is worth mentioning that a similar finite-sample
omplexity bound similar to the one presented before can also be
erived when we consider the ordinary least squares identification of
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the spatial parameters of a DTLFOS with inputs. For instance, within the
purview of epileptic seizure mitigation using intracranial EEG data, the
objective is to suppress the overall length or duration of an epileptic
seizure. Thus, the goal is to steer the state of the neurophysiological
system in consideration away from seizure-like activity, using a control
strategy like model predictive control (Chatterjee et al., 2020).

11. Minimum-energy state estimation

Most of the estimators that exist for fractional-order dynamical
systems are obtained under the assumption that the disturbance and
noise have Gaussian distributions (Miljković et al., 2017; Najar et al.,
2009; Sabatier et al., 2012; Safarinejadian et al., 2016, 2018; Sierociuk
& Dzieliński, 2006). However, such an assumption is not realistic in the
context of neural systems as disturbance frequencies can only lie within
a specific frequency band. Therefore, in what follows, we present the
so-called minimum-energy state estimation, where it is assumed that the
disturbance and noise are unknown, but deterministic and bounded
uncertainties.

Now, consider a left-bounded sequence {𝑥[𝑘]}𝑘∈Z over 𝑘, i.e., with
lim sup𝑘→−∞ ‖𝑥[𝑘]‖ <∞. Then, the Grünwald–Letnikov fractional-order
difference, for any 𝛼 ∈ R+, can be re-written as

𝛥𝛼𝑥[𝑘] ∶=
∞
∑

𝑗=0
𝑐𝛼𝑗 𝑥[𝑘 − 𝑗], 𝑐𝛼𝑗 = (−1)𝑗

(

𝛼
𝑗

)

,

𝛼
𝑗

)

=

⎧

⎪

⎨

⎪

⎩

1 if 𝑗 = 0,
𝑗−1
∏

𝑖=0

𝛼 − 𝑖
𝑖 + 1

=
𝛤 (𝛼 + 1)

𝛤 (𝑗 + 1)𝛤 (𝛼 − 𝑗 + 1)
if 𝑗 > 0,

(44)

or all 𝑗 ∈ N. The summation in (44) is well-defined from the uniform
oundedness of the sequence {𝑥[𝑘]}𝑘∈Z and the fact that |𝑐𝛼𝑗 | ≤ 𝛼𝑗

𝑗! ,
hich implies that the sequence {𝑐𝛼𝑗 }𝑗∈N is absolutely summable for
ny 𝛼 ∈ R+ (Alessandretti, Pequito, Pappas, & Aguiar, 2020; Sopasakis
Sarimveis, 2017).
With the above ingredients, a discrete-time fractional-order dynam-

cal network with additive disturbance can be described, respectively,
y the state evolution and output equations
𝑙

∑

𝑖=1
𝐴𝑖𝛥

𝑎𝑖𝑥[𝑘 + 1] =
𝑟
∑

𝑖=1
𝐵𝑖𝛥

𝑏𝑖𝑢[𝑘] +
𝑠
∑

𝑖=1
𝐺𝑖𝛥

𝑔𝑖𝑤[𝑘], (45a)

𝑧[𝑘] = 𝐶 ′
𝑘𝑥[𝑘] + 𝑣

′[𝑘], (45b)

with the variables 𝑥[𝑘] ∈ R𝑛, 𝑢[𝑘] ∈ R𝑚, and 𝑤[𝑘] ∈ R𝑝 denoting the
state, input, and disturbance vectors at time step 𝑘 ∈ N, respectively.
The scalars 𝑎𝑖 ∈ R+ with 1 ≤ 𝑖 ≤ 𝑙, 𝑏𝑖 ∈ R+ with 1 ≤ 𝑖 ≤ 𝑟, and 𝑔𝑖 ∈ R+

with 1 ≤ 𝑖 ≤ 𝑠 are the fractional-order coefficients corresponding,
respectively, to the state, the input, and the disturbance. The vectors
𝑧[𝑘], 𝑣′[𝑘] ∈ R𝑞 denote, respectively, the output and measurement
disturbance at time step 𝑘 ∈ N. We assume that the (unknown but
deterministic) disturbance vectors are bounded as

‖𝑤[𝑘]‖ ≤ 𝑏𝑤, ‖𝑣
′[𝑘]‖ ≤ 𝑏𝑣′ , 𝑘 ∈ N, (46)

for some scalars 𝑏𝑤, 𝑏𝑣′ ∈ R+. We also assume that the control input
𝑢[𝑘] is known for all time steps 𝑘 ∈ N. We denote by 𝑥[0] = 𝑥(0) the
initial condition of the state at time 𝑘 = 0. In the computation of the
fractional-order difference, we assume that the system is causal, i.e., the
state, input, and disturbances are all considered to be zero before the
initial time (i.e., 𝑥[𝑘] = 0, 𝑢[𝑘] = 0, and 𝑤[𝑘] = 0 for all 𝑘 < 0).

Next, consider the quadratic weighted least-squares objective
function


(

𝑥[0], {𝑤[𝑖]}𝑁−1
𝑖=0 , {𝑣

′[𝑗]}𝑁𝑗=1
)

=
𝑁−1
∑

𝑖=0
𝑤[𝑖]𝖳𝑄−1

𝑖 𝑤[𝑖] +
𝑁
∑

𝑗=1
𝑣′[𝑗]𝖳𝑅−1

𝑗 𝑣′[𝑗]

+ (𝑥[0] − �̂�0)𝖳𝑃−1
0 (𝑥[0] − �̂�0), (47)
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subject to the constraints
𝑙

∑

𝑖=1
𝐴𝑖𝛥

𝑎𝑖𝑥[𝑘 + 1] =
𝑟
∑

𝑖=1
𝐵𝑖𝛥

𝑏𝑖𝑢[𝑘] +
𝑠
∑

𝑖=1
𝐺𝑖𝛥

𝑔𝑖𝑤[𝑘] (48a)

and

𝑧[𝑘] = 𝐶 ′
𝑘𝑥[𝑘] + 𝑣

′[𝑘], (48b)

for some 𝑁 ∈ N, with the weighting matrices 𝑄𝑖 (0 ≤ 𝑖 ≤ 𝑁 − 1), 𝑅𝑗
(1 ≤ 𝑗 ≤ 𝑁), and 𝑃0 chosen to be symmetric and positive definite,
and �̂�0 chosen to be the a priori estimate of the system’s initial state.
The minimum-energy estimation procedure seeks to solve the following
optimization problem

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
{𝑥[𝑘]}𝑁𝑘=0 ,{𝑤[𝑖]}

𝑁−1
𝑖=0 ,{𝑣′[𝑗]}𝑁𝑗=1


(

𝑥[0], {𝑤[𝑖]}𝑁−1
𝑖=0 , {𝑣

′[𝑗]}𝑁𝑗=1
)

subject to (48a) and (48b),
(49)

for some 𝑁 ∈ N.
To derive the solution to (49), we first start with some alternative

formulations of the discrete-time fractional-order system in (45a) and
(45b) and relevant definitions that will be used in the sequel. Then,
we present the solution and some additional properties of the derived
solution, i.e., the exponential input-to-state stability of the estimation
error.

In what follows, we consider the mild technical assumption that
𝑙

∑

𝑖=1
𝐴𝑖 is invertible. Additionally, we consider a truncation of the last

v temporal components of (45a), which we will refer to as the v-
approximation for the DTLFOS. That being said, the DTLFOS model
in (45a) can be equivalently written as

𝑥[𝑘 + 1] =
∞
∑

𝑗=1
�̌�𝑗𝑥[𝑘 − 𝑗 + 1] +

∞
∑

𝑗=0
�̌�𝑗𝑢[𝑘 − 𝑗] +

∞
∑

𝑗=0
�̌�𝑗𝑤[𝑘 − 𝑗], (50)

where �̌�𝑗 = −�̂�−1
0 �̂�𝑗 , �̌�𝑗 = �̂�−1

0 �̂�𝑗 , and �̌�𝑗 = �̂�−1
0 �̂�𝑗 with �̂�𝑗 =

∑𝑙
𝑖=1 𝐴𝑖𝑐

𝑎𝑖
𝑗 , �̂�𝑗 =

∑𝑟
𝑖=1 𝐵𝑖𝑐

𝑏𝑖
𝑗 , and �̂�𝑗 =

∑𝑠
𝑖=1 𝐺𝑖𝑐

𝑔𝑖
𝑗 . Furthermore, for any

positive integer v ∈ N+, the DTLFOS model in (45a) can be recast as

�̃�[𝑘 + 1] = �̃�v�̃�[𝑘] + �̃�v𝑢[𝑘] + �̃�v𝑟[𝑘], �̃�[0] = �̃�0, (51a)

𝑦[𝑘 + 1] = 𝐶𝑘+1�̃�[𝑘 + 1] + 𝑣[𝑘 + 1], (51b)

where

𝑟[𝑘] =
∞
∑

𝑗=v+1
�̌�𝑗𝑥[𝑘 − 𝑗 + 1] +

∞
∑

𝑗=v+1
�̌�𝑗𝑢[𝑘 − 𝑗] +

∞
∑

𝑗=0
�̌�𝑗𝑤[𝑘 − 𝑗], (52)

with the augmented state vector �̃�[𝑘] = [𝑥[𝑘]𝖳,… , 𝑥[𝑘 − v + 1]𝖳, 𝑢[𝑘 −
1]𝖳,… , 𝑢[𝑘− v]𝖳]𝖳 ∈ Rv×(𝑛+𝑚) and appropriate matrices �̃�v, �̃�v, and �̃�v,
where �̃�0 = [𝑥𝖳0 , 0,… , 0]𝖳 denotes the initial condition. The matrices �̃�v

and �̃�v are formed using the terms {�̌�𝑗}1≤𝑗≤v and {�̌�𝑗}1≤𝑗≤v, while the
remaining terms {�̌�𝑗}1≤𝑗<∞ and the state and input components not
included in �̃�[𝑘] are absorbed into the term �̃�v𝑟[𝑘]. Furthermore, we
refer to (51a) as the v-approximation of the DTLFOS presented in (45a).

To obtain the minimum-energy estimator, let us consider the
quadratic weighted least-squares objective function


(

�̃�[0], {𝑟[𝑖]}𝑁−1
𝑖=0 , {𝑣[𝑗]}

𝑁
𝑗=1

)

=
𝑁−1
∑

𝑖=0
𝑟[𝑖]𝖳𝑄−1

𝑖 𝑟[𝑖] +
𝑁
∑

𝑗=1
𝑣[𝑗]𝖳𝑅−1

𝑗 𝑣[𝑗]

+ (�̃�[0] − �̂�0)𝖳𝑃−1
0 (�̃�[0] − �̂�0), (53)

subject to the constraints

̄[𝑘 + 1] = �̃�v�̄�[𝑘] + �̃�v𝑢[𝑘] + �̃�v �̄�[𝑘], (54a)

𝑦[𝑘 + 1] = 𝐶𝑘+1�̄�[𝑘 + 1] + �̄�[𝑘 + 1], (54b)

for some 𝑁 ∈ N. The weighting matrices 𝑄𝑖 (0 ≤ 𝑖 ≤ 𝑁 − 1) and 𝑅𝑗
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(1 ≤ 𝑗 ≤ 𝑁) are chosen to be symmetric and positive definite. The term 𝑊
̂0 denotes the a priori estimate of the (unknown) initial state of the
system, with the matrix 𝑃0 being symmetric and positive definite.

Subsequently, we consider the weighted least-squares optimization
problem

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
{�̄�[𝑘]}𝑁𝑘=0 ,{�̄�[𝑖]}

𝑁−1
𝑖=0 ,{�̄�[𝑗]}𝑁𝑗=1


(

�̃�[0], {𝑟[𝑖]}𝑁−1
𝑖=0 , {𝑣[𝑗]}

𝑁
𝑗=1

)

subject to (54a) and (54a),
(55)

for some 𝑁 ∈ N. We denote the state vector that corresponds to the
solution of the optimization problem (55) by �̂�[𝑘]. Then, �̂�[𝑘] satisfies
the recursion

̂[𝑘 + 1] = �̃�v�̂�[𝑘] + �̃�v𝑢[𝑘] +𝐾𝑘+1
(

𝑦[𝑘 + 1] − 𝐶𝑘+1
(

�̃�v�̂�[𝑘] + �̃�v𝑢[𝑘]
))

,

(56)

given 0 ≤ 𝑘 ≤ 𝑁 − 1, with initial conditions specified for �̂�0 and
{𝑢[𝑗]}𝑘𝑗=0, and with the update equations

𝐾𝑘+1 =𝑀𝑘+1𝐶
𝖳
𝑘+1(𝐶𝑘+1𝑀𝑘+1𝐶

𝖳
𝑘+1 + 𝑅𝑘+1)

−1, (57a)

𝑀𝑘+1 = �̃�v𝑃𝑘�̃�
𝖳
v + �̃�v𝑄𝑘�̃�

𝖳
v , (57b)

and

𝑃𝑘+1 = (𝐼 −𝐾𝑘+1𝐶𝑘+1)𝑀𝑘+1(𝐼 −𝐾𝑘+1𝐶𝑘+1)𝖳 +𝐾𝑘+1𝑅𝑘+1𝐾𝖳
𝑘+1

= (𝐼 −𝐾𝑘+1𝐶𝑘+1)𝑀𝑘+1, (57c)

with symmetric and positive definite 𝑃0.
Notice that the dynamics of the recursion in (56) (with the initial

conditions on �̂�0 and the values of {𝑢[𝑗]}𝑘𝑗=0 being known) along with
the update Eqs. (57) together solve (55). It is interesting to note here
that the output term 𝑦[𝑘 + 1] presented in (56) and (54a) is the output
of the v-approximated system (51), which, in turn, is simply a subset
of the outputs 𝑧[𝑘 + 1] obtained from (45b), truncated v time steps in
the past, provided 𝑣[𝑘] and 𝐶𝑘 are formed from the appropriate blocks
of 𝑣′[𝑘] and 𝐶 ′

𝑘 for all 𝑘 ∈ N.
Secondly, the minimum-energy estimator has exponential input-to-

state stability of the estimation error.
In order to prove the exponential input-to-state stability of the

minimum-energy estimation error, we need to consider the follow-
ing mild technical assumptions. Specifically, there exist constants
𝛼, 𝛼, 𝛽, 𝛾 ∈ R+ such that

𝛼𝐼 ⪯ �̃�v�̃�
𝖳
v ⪯ 𝛼𝐼, �̃�v�̃�

𝖳
v ⪯ 𝛽𝐼, and 𝐶𝖳

𝑘𝐶𝑘 ⪯ 𝛾𝐼, (58)

or all 𝑘 ∈ N.
Additionally, notice that the state transition matrix for the dynamics

n (51a) is given by

(𝑘, 𝑘0) = �̃�(𝑘−𝑘0)
v , with 𝛷(𝑘0, 𝑘0) = 𝐼, (59)

or all 𝑘 ≥ 𝑘0 ≥ 0. We also consider the discrete-time controllability
ramian associated with the dynamics (51a) described by

𝑐 (𝑘, 𝑘0) =
𝑘−1
∑

𝑖=𝑘0

𝛷(𝑘, 𝑖 + 1)�̃�v�̃�
𝖳
v𝛷

𝖳(𝑘, 𝑖 + 1), (60)

nd the discrete-time observability Gramian associated with (51a) to be

𝑜(𝑘, 𝑘0) =
𝑘
∑

𝑖=𝑘0+1
𝛷𝖳(𝑖, 𝑘0)𝐶𝖳

𝑖 𝐶𝑖𝛷(𝑖, 𝑘0), (61)

or 𝑘 ≥ 𝑘0 ≥ 0. We also make the following assumptions regarding
omplete uniform controllability and complete uniform observability of the
-approximated system in (51a).

As such, we have to also consider that the v-approximated sys-
em (51a) is completely uniformly controllable, i.e., there exist
onstants 𝛿 ∈ R+ and 𝑁𝑐 ∈ N+ such that
𝑐 (𝑘 +𝑁𝑐 , 𝑘) ⪰ 𝛿𝐼, (62)
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for all 𝑘 ≥ 0. And, similarly, the v-approximated system (51a) is
ompletely uniformly observable, i.e., there exist constants 𝜀 ∈ R+ and
𝑜 ∈ N+ such that

𝑜(𝑘 +𝑁𝑜, 𝑘) ⪰ 𝜀𝛷𝖳(𝑘 +𝑁𝑜, 𝑘)𝛷(𝑘 +𝑁𝑜, 𝑘), (63)

or all 𝑘 ≥ 0.
Next, we also present an assumption certifying lower and upper

ounds on the weight matrices 𝑄𝑘 and 𝑅𝑘+1 in (53). That is, without
oss of generality, we assume that the weight matrices 𝑄𝑘 and 𝑅𝑘+1
atisfy

𝐼 ⪯ 𝑄𝑘 ⪯ 𝜗𝐼 and 𝜌𝐼 ⪯ 𝑅𝑘+1 ⪯ 𝜌𝐼, (64)

or all 𝑘 ≥ 0 and constants 𝜗, 𝜗, 𝜌, 𝜌 ∈ R+.
Hence, it is possible to establish lower and upper bounds for the

atrix 𝑃𝑘 but is not required to show that the estimation error is
exponentially input-to-state stable. Specifically, the minimum-energy
estimation error 𝑒[𝑘], given by

[𝑘] = �̂�[𝑘] − �̃�[𝑘], (65)

s such that there exist constants 𝜎, 𝜏, 𝜒, 𝜓 ∈ R+ with 𝜏 < 1 such that
he estimation error 𝑒[𝑘] satisfies

𝑒[𝑘]‖ ≤ max

{

𝜎𝜏𝑘−𝑘0‖𝑒[𝑘0]‖, 𝜒 max
𝑘𝑜≤𝑖≤𝑘−1

‖𝑟[𝑖]‖, 𝜓 max
𝑘𝑜≤𝑗≤𝑘−1

‖𝑣[𝑗 + 1]‖

}

(66)

for all 𝑘 ≥ 𝑘0 ≥ max{𝑁𝑐 , 𝑁𝑜}.
It is interesting to note that the bound on the estimation error

𝑒[𝑘] in (66) actually depends on ‖𝑟[𝑖]‖, where 𝑘0 ≤ 𝑖 ≤ 𝑘 − 1 for
all 𝑖 ∈ N. In fact, a distinguishing feature of DTLFOS is the presence
of a finite non-zero disturbance term in the input-to-state stability
bound of the tracking error when tracking a state other than the origin.
This disturbance is dependent on the upper bounds on the non-zero
reference state being tracked as well as the input. While the linearity
of the Grünwald–Letnikov fractional-order difference operator allows
one to mitigate this issue in the case of tracking a non-zero exogenous
state by a suitable change of state and input coordinates, this approach
is not one we can pursue in this paper, since the state we wish to
estimate is unknown. However, it can be shown that as the value of v in
the v-approximation increases, the upper bound associated with ‖𝑟[𝑖]‖
decreases drastically since the v-approximation gives us progressively
better representations of the unapproximated system. This further im-
plies that ‖𝑟[𝑖]‖ in (66) stays bounded, with progressively smaller upper
bounds associated with ‖𝑟[𝑖]‖ (and hence, ‖𝑒[𝑘]‖) with increasing v.

Lastly, the estimation error associated with the minimum-energy
estimation process in (65) is defined in terms of the state of the v-
approximated system �̃�[𝑘]. In reality, as detailed above, with larger
values of v, the v-approximated system approaches the real system dy-
namics, and thus we obtain an expression for the estimation error with
respect to the real system in the limiting case, where the input-to-state
stability bound as presented in (66) holds.

12. Fractional optimal control

Fractional optimal control finds the optimal control strategy to
manipulate a fractional-order dynamical system to achieve a specific
goal. Usually the goal is to achieve a certain desired state behavior
while minimizing the amount of control effort (Riewe, 1996). The
fractional optimal control problem with a finite-time horizon can be
formulated as follows:

(cost function) minimize
𝐮 ∫

𝑇

𝑡0
(𝐱(𝑡) − 𝐱𝑑 (𝑡))⊺𝑄(𝐱(𝑡) − 𝐱𝑑 (𝑡)) + 𝐮(𝑡)⊺𝑅𝐮(𝑡) d𝑡

(constraints) subject to 𝛥𝛼𝐱(𝑡) = 𝐴𝐱(𝑡) + 𝐵𝐮(𝑡)

other linear constraints on 𝐱(𝑡) and 𝐮(𝑡),
396

(67) c
where 𝐱(𝑡) ∈ R𝑛 is the state of the system, 𝐱𝑑 (𝑡) ∈ R𝑛 is the desired state
of the system, 𝐮(𝑡) ∈ R𝑚 is the control input, 𝑄 is the cost on the state
achieving the desired behavior, 𝑅 is the cost on the control effort, 𝛥𝛼
s the Caputo fractional-order derivative, 𝐴 ∈ R𝑛×𝑛 is the state matrix,
nd 𝐵 ∈ R𝑛×𝑚 is the control input matrix.

Many mathematical techniques for solving fractional optimal
ontrol problems have been proposed, including numerical
olvers (Agrawal, 2004; Agrawal & Baleanu, 2007; Baleanu, Defterli,

Agrawal, 2009; Nemati, Lima, & Torres, 2019) and discrete
ethods (Almeida & Torres, 2015). Other works have considered

ractional optimal control using the following schemes, including
istributed fractional optimal control (Zaky & Machado, 2017),

finite-time horizon (Biswas & Sen, 2011), multi-dimensional
ractional optimal control (Agrawal, Defterli, & Baleanu, 2010), an
uler–Lagrange formulation (Agrawal, 2002; Frederico & Torres,
007, 2008; Torres & Malinowska, 2012), and reinforcement
earning (Gupta, Yin, Deshmukh, & Bogdan, 2021). Furthermore,
ractional optimal control has been used in the following applications,
ncluding cloud computing (Ghorbani, Wang, Xue, Pedram, & Bogdan,
014), regulating diabetes (Ghorbani & Bogdan, 2013, 2014),
yber–physical systems (Bogdan & Marculescu, 2011), regulating
eart disease (Bogdan, Jain, Goyal & Marculescu, 2012; Bogdan, Jain,

Marculescu, 2013), data-centers-on-chip (Bogdan, 2015), power
anagement (Bogdan, Marculescu, & Jain, 2013; Bogdan, Marculescu,

ain & Gavila, 2012), and chemical processing plants (Petráš, 2021).
Fractional optimal control is at the core of receding horizon ap-

roaches referred to as model predictive control, and overviewed in
ore detail next.

3. Model predictive control

Model predictive control (MPC) is a control strategy that allows the
ontrol of processes while satisfying a set of constraints. At its core,
PC uses explicit process models (which may be linear or nonlinear) to

redict how a plant will respond to arbitrary inputs. For each instant of
ime, an MPC algorithm seeks to optimize plant behavior in the future
y computing a series of control inputs over a time horizon called the
rediction horizon by solving an optimization problem — often with
onstraints. Once this step is complete, the computed control inputs
orresponding to the first subsection of the prediction horizon (called
he control horizon) are then sent to the plant. This procedure is then
epeated at subsequent control intervals (Qin & Badgwell, 2003). This
eceding horizon strategy implicitly introduces closed-loop feedback.

Next, we consider the case where the predictive model is a linear
ractional-order system. Based on the state signal’s evolution predicted
y the model, and by regarding the impact of an arbitrary control
nput signal in the state’s evolution, we can set out to adapt the
timulation signal in real-time by choosing the parameters that lead
o stimulation signals within a safe range towards optimizing some
easure of performance that encapsulates the goal of steering abnormal

ctivity to normal ranges. In general, however, our predictive model
ill not precisely match the real dynamics of the system. Therefore,
ur proposed stimulation strategy will periodically re-evaluate the
urrent estimated state and corresponding predictions and re-compute
he appropriate optimal stimulation strategy.

First, in the fractional-order model predictive control framework,
e will focus on the design of a model predictive controller for a

possibly time-varying) discrete-time fractional-order dynamical system
odel
𝛼𝑥[𝑘 + 1] = 𝐴𝑘𝑥[𝑘] + 𝐵𝑘𝑢[𝑘] + 𝐵𝑤𝑘 𝑤[𝑘], (68)

here 𝑤[𝑘] denotes a sequence of independent and identically dis-
ributed random vectors, following an  (0, 𝛴) distribution (with the
ovariance matrix 𝛴 ∈ R𝑛×𝑛) and 𝐵𝑤𝑘 denotes the matrix of weights
hat scales the noise term 𝑤[𝑘]. The objective is to design the feedback

ontroller such that it minimizes a quadratic cost functional of the input
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and state vectors over a finite time horizon 𝑃 (the prediction horizon).
In other words, the objective is to determine the sequence of control
inputs 𝑢[𝑘],… , 𝑢[𝑘 + 𝑃 − 1] that minimizes a quadratic cost function of
the form

(cost function) minimize
𝑢[𝑘],…,𝑢[𝑘+𝑃−1]

E
{

𝑃
∑

𝑗=1
‖𝑥[𝑘 + 𝑗]‖2𝑄𝑘+𝑗

+
𝑃
∑

𝑗=1
𝑐𝖳𝑘+𝑗𝑥[𝑘 + 𝑗]

+
𝑃−1
∑

𝑗=0
‖𝑢[𝑘 + 𝑗]‖2𝑅𝑘+𝑗

}

(constraints) subject to 𝑥[𝑘]

= observed or estimated
current state

𝛥𝛼𝑥[𝑘 + 𝑗 + 1]

= 𝐴𝑘+𝑗𝑥[𝑘 + 𝑗] + 𝐵𝑘+𝑗𝑢[𝑘 + 𝑗]

+ 𝐵𝑤𝑘+𝑗𝑤[𝑘 + 𝑗],

𝑗 = 0, 1,… , 𝑃 − 1,

other linear constraints on
𝑥[𝑘 + 1],… , 𝑥[𝑘 + 𝑃 ],

𝑢[𝑘],… , 𝑢[𝑘 + 𝑃 − 1],

(69)

where 𝑄𝑘+1,… , 𝑄𝑘+𝑃 ∈ R𝑛×𝑛 and 𝑅𝑘,… , 𝑅𝑘+𝑃−1 ∈ R𝑛𝑢×𝑛𝑢 are given
positive semidefinite matrices. Here, 𝑄 ∈ R𝑛×𝑛 is a positive semidefinite
matrix if 𝑥𝖳𝑄𝑥 ≥ 0, for every 𝑥 ∈ R𝑛, and ‖𝑥‖𝑄 =

√

𝑥𝖳𝑄𝑥 in that case.
The quadratic term on the input, which represents the electri-

al neurostimulation signal, is intended to add a penalization term
or stimulating the patient too harshly, since this may be unsafe,
reate discomfort for the patient, or result in harmful psychological ef-
ects (Moratti & Patterson, 2014). It is also interesting to note that even
f we need the estimation of the system states in the above problem,
he presence of a separation principle for discrete-time fractional-order
ystems (Chatterjee, Romero, & Pequito, 2019) gives us guarantees that
e can perform model predictive control with state estimation for these

ystems.
Note that, here, 𝑃 is called the prediction horizon, and the framework

only deploys the control strategy associated with the first 𝑀 time steps
(referred to as the control horizon). Simply speaking, after we reach state
𝑥[𝑘 + 𝑀 − 1], we update 𝑘 with 𝑘 + 𝑀 − 1 and recompute the new
solution. This way, we have robust solutions, since, by design, the op-
timal strategy is constantly being re-evaluated based on the short-term
control action implementation of a long-term prediction (Bequette,
2013; Petráš, 2021).

14. Applications in cyber-neural systems

System identification

We present some preliminary results regarding the performance
of the above approach. Specifically, we use 1000 noisy measure-
ments taken from 4 channels of an intracranial electroencephalographic
(iEEG) signal, which records the brain activity of subjects undergoing
epileptic seizures. The signals were recorded and digitized at a sampling
rate of 512 Hz at the Hospital of the University of Pennsylvania,
Philadelphia, PA. Subdural grid and strip electrodes were placed at
specialized locations (dictated by a multidisciplinary team of neurolo-
gists, neurosurgeons, and a radiologist), with the electrodes themselves
consisting of linear and two-dimensional arrays spanning 2.3 mm in
diameter and having a inter-contact spacing of 10 mm (Ashourvan
et al., 2020; Khambhati et al., 2015).

The least squares optimization problems described in Section 10
are solved using the convex optimization package CVX (Grant & Boyd,
397
2008, 2014) in MATLAB with the aid of a window-based approach
using a finite subset of the entire range of measurements. This is done
because the time series under consideration is nonlinear, and it is not
possible to characterize the entire gamut of measurements using very
few parameters. Fig. 2 shows the performance of our method on the
above data. Additionally, we also show in Fig. 3 the variation of the
error of the least squares predictions with respect to the observed
data, with varying window sizes in the least squares optimization
problems. We see that the identified system parameters are able to
predict the system states fairly closely, thus demonstrating that our
approach can be used to learn the system parameters of a discrete-time
fractional-order system.

Minimum-energy state estimation

In this section, we consider the performance of the minimum-
energy estimation paradigm on real-world neurophysiological networks
considering EEG data. Specifically, we use 150 noisy measurements
taken from 4 channels of a 64-channel EEG signal which records the
brain activity of subjects, as shown in Fig. 4. The subjects were asked
to perform a variety of motor and imagery tasks. Furthermore, we
select the 4 channels positioned over the motor cortex of the brain,
which enables us to predict motor actions such as the movement of the
hands and feet. The data was collected using the BCI2000 system with
a sampling rate of 160 Hz (Goldberger et al., 2000; Schalk, McFarland,
Hinterberger, Birbaumer, & Wolpaw, 2004). The spatial and temporal
parameter components of the fractional-order system assumed to model
the original EEG data were identified using the methods described
in Gupta et al. (2018a). The matrices 𝐵𝑖 =

[

1 1 1 1
]𝖳 for all 𝑖.

The results of our approach, considering different values of v, are
shown in Figs. 5 and 6 (for v = 2), Figs. 7 and 8 (for v = 10), and
Figs. 9 and 10 (for v = 20), which show, respectively (for each value of
v), the comparison between the measured output of the network with
noise and the estimated response obtained from the minimum-energy
estimator, and also the juxtaposition of the measurement error and
the estimation error of the minimum-energy estimation process. We
find that the minimum-energy estimator is successfully able to estimate
the states in the presence of noise in both the dynamics and the
measurement processes.

We also note from Figs. 5 and 6 that when v = 2, we get compara-
tively larger estimation errors associated with the last 50 or so samples
of Channel 4 and that this behavior can be mitigated by increasing the
value of v, e.g., by choosing v = 10 or v = 20. This is in line with the
discussion at the end of Section 11, and choosing a larger value of v can
always, in practice, provide us with better estimation performances, as
seen from this example.

Neurostimulation using fractional-order model predictive control for
epileptic seizure mitigation

In what follows, we propose to illustrate the use of the fractional-
order system model predictive control (FOS-MPC) framework for
neurostimulation in the context of mitigating epileptic seizures. We
demonstrate the workings of the proposed approach on four different
experimental scenarios relying primarily on intracranial electroen-
cephalographic (iEEG) data: (i) an iEEG signal demonstrating an epilep-
tic seizure simulated by the neural mass model proposed by Jansen and
Rit (Jansen & Rit, 1995; Jansen, Zouridakis, & Brandt, 1993); (ii) an
iEEG signal simulated by a neural field model proposed by Martinet
et al. in Martinet et al. (2017) that replicates the spatiotemporal
dynamics of a seizure; (iii) an iEEG signal simulated by the phenomeno-
logical ‘Epileptor’ model proposed in Jirsa, Stacey, Quilichini, Ivanov,
and Bernard (2014); and (iv) real-time iEEG signals for three human
subjects undergoing epileptic seizures. For all of the above cases, we
start by considering an epileptic seizure, captured by a linear fractional-
order system (FOS) model, whose parameters are obtained through
a system identification method using brainwave data obtained from

iEEGs.
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Fig. 2. Performance of our system identification approach on real-life intracranial EEG data. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
Fig. 3. Variation of the error of the least squares prediction with respect to the observed data, with varying window sizes in the least squares optimization problems. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
𝐵

a
o
f
l
a
p
1
w
u
s

Epileptic seizure simulated by the jansen–rit neural mass model
Although initially proposed to account for human EEG rhythms and

visual evoked potentials, the Jansen–Rit neural mass model (Jansen
& Rit, 1995) has also been used to shed light on human epilepti-
form brain dynamics (Wendling, Bellanger, Bartolomei, & Chauvel,
2000; Wendling, Benquet, Bartolomei, & Jirsa, 2016). The Jansen–Rit
neural mass model is composed of three interacting subpopulations
that include: the main subpopulation, the excitatory feedback subpop-
ulation, and the inhibitory feedback subpopulation. The structure of
the model is such that the main subpopulation comprises cells that
receive neuronal signals in feedback from the excitatory and inhibitory
subpopulations.

The use of neural mass models akin to the Jansen–Rit model in feed-
back control frameworks is well documented. All the works in Soltan,
Xia, Jackson, Chester, and Degenaar (2018), Wang, Niebur, Hu, and Li
(2016), Wei, Wei, Xia, Zuo, and Shen (2019), Wei, Wei, and Zuo (2019),
Wei, Wei, Zuo, Yu and Li (2019), Xia et al. (2019) use neural mass
models, in the control theory sense, for the suppression of epileptic
seizures. In what follows, we will demonstrate the effectiveness of
our proposed control strategy on a seizure simulated by the classical
Jansen–Rit neural mass model with standard parameter values.

First, we need to determine the parameters 𝐴 and 𝛼 that model both
398

spatial coupling and fractional coefficients, respectively, that craft the t
evolution of the state 𝑥[𝑘] ∈ R𝑛 in the fractional-order system (FOS)
model.

𝛥𝛼𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘] + 𝐵𝑤𝑤[𝑘], (70)

with 𝑤[𝑘] denoting additive white Gaussian noise (AWGN). Since the
system is single-input-single-output (SISO), we have both 𝐴 and 𝛼 to
be scalars. To identify the parameters 𝐴 and 𝛼, we used the method
proposed in Gupta et al. (2018a). The parameters obtained are 𝐴 =
−0.0054 and 𝛼 = 1.4881. Furthermore, we assume that 𝐵 = 1 and
𝑤 = 0.1.

For the cost function in (69), we utilized 𝑄𝑘 = 𝐼𝑛, 𝑅𝑘 = 𝐼𝑛𝑢 ,
nd 𝑐𝑘 = 0𝑛𝑢×1 (with 𝑛 = 𝑛𝑢 = 1), to emphasize minimizing the
verall energy in the measured iEEG signal, while penalizing slightly
or overly aggressive stimulation. Furthermore, we included a safety
inear constraint of −5 ≤ 𝑢[𝑘] ≤ 5. Our predictive model was based on
(𝑝 = 15)−step (15 ms) predictive model approximation of the FOS

lant, with a (𝑃 = 20)−step (20 ms) prediction horizon and (𝑀 =
0)−step (10 ms) control horizon. The results are presented in Fig. 11,
hich provide evidence that the proposed stimulation strategy allows
s to achieve amplitude suppression using a (time-varying) impulse-like
timulation scheme. Note that the actuation signal 𝑢𝑘 kicks in at about

he 4-second mark in the figure.
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Fig. 4. The distribution of the sensors for the measurement of EEG data is shown on the left. The channel labels are shown along with their corresponding numbers and the
selected channels over the motor cortex are shown in red. The corresponding network formed by the EEG sensors is shown on the right. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).
Fig. 5. Comparison between the measured output of the v-augmented system (with v = 2) versus the estimated output of a minimum-energy estimator implemented on the same,
in the presence of process and measurement noises for 4 channels of a 64-channel EEG signal. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
Epileptic seizure simulated by the mean-field model proposed by Martinet
et al. (2017) .

Next, we turn our attention towards a computational model that
uses traveling wave dynamics to capture inter-scale coupling phe-
nomena between large-scale neural populations in the cortex and
small-scale groups in cortical columns (Martinet et al., 2017). Modeling
the complex spatiotemporal dynamics of epileptic seizures is a challeng-
ing task, mainly because of the interaction of myriad scales in both time
and space.

The neural field model proposed by Martinet et al. in Martinet
et al. (2017) is a modified version of the mean-field model proposed
in Steyn-Ross, Steyn-Ross, and Sleigh (2013) that seeks to explain the
phenomena, origin, and spatiotemporal dynamical properties of seizure
propagation and spike-and-wave discharges (SWDs). Additionally, their
work advances the hypothesis that increased diffusion of extracellular
potassium concentrations in space influences the interlaced coupling
399
of human seizures. In what follows, we will use the simulated seizure
data obtained from the aforementioned model and then consider our
closed-loop MPC neurostimulation scheme on the same model.

To determine the system parameters 𝐴 and 𝛼 in (70), we utilize
roughly 2 seconds of pre-ictal activity captured by the model. Note that
here, we will only consider 𝑛 = 4 channels for our proposed approach
to mimic the capabilities available in the NeuroPace® RNS® device.
Applying the methods in Gupta et al. (2018a) yields the following FOS
parameters:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0.2969 −0.0203 −0.2922 0.0587
0.2574 −0.1726 −0.1905 0.1535
0.5348 −0.1066 −0.3471 −0.0169
0.4007 −0.6752 0.0044 0.3186

⎤

⎥

⎥

⎥

⎥

⎦

, (71)

and

𝛼 =
[ ]𝖳 . (72)
0.8114 0.8334 0.8034 0.8413
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Fig. 6. Comparison between the measurement error of the v-augmented system (with v = 2) versus the estimation error of a minimum-energy estimator implemented on the same,
n the presence of process and measurement noises for 4 channels of a 64-channel EEG signal. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.).
Fig. 7. Comparison between the measured output of the v-augmented system (with v = 10) versus the estimated output of a minimum-energy estimator implemented on the same,
in the presence of process and measurement noises for 4 channels of a 64-channel EEG signal. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
w

Additionally, we consider a single control signal 𝑢𝑘 that affects all the
channels equally, i.e., 𝐵 =

[

1 1 1 1
]𝖳 and the matrix of weights

𝐵𝑤 = 0.05𝐼4, with 𝐼4 being the 4 × 4 identity matrix.
Using the FOS-MPC neurostimulation strategy with 𝑄𝑘 = 𝐼𝑛, 𝑅𝑘 =

𝑛𝑢 , and 𝑐𝑘 = 0𝑛𝑢×1 (with 𝑛 = 4 and 𝑛𝑢 = 1), and safety linear
onstraints of −100 ≤ 𝑢[𝑘] ≤ 100, we find from Fig. 12 that our
roposed approach successfully suppresses seizure-like activity using a
time-varying) impulse-like stimulation scheme. In this case, we use a
𝑝 = 10)−step (20 ms) predictive model approximation of the FOS plant,
ith a (𝑃 = 10)−step (20 ms) prediction horizon, and (𝑀 = 8)−step

(16 ms) control horizon. Here too, the actuation signal 𝑢𝑘 kicks in at
about the 4-second mark.

Epileptic seizure simulated by the epileptor, a phenomenological model of
seizures by Jirsa et al. (2014)

Next, we investigate the performance of our proposed approach on
the Epileptor model (Jirsa et al., 2014), which is a phenomenological
model able to accurately reproduce the dynamics of a wide variety of
human epileptic seizures recorded with iEEG electrodes.
400

𝑥

The Epileptor model consists of a system of coupled nonlinear
ordinary differential equations in five state variables and one dummy
variable. The model can be thought of as two two-dimensional sub-
systems, one for generating fast discharges on a faster timescale and
the other for generating sharp-wave events (SWEs) on an interme-
diate timescale. These two subsystems are linked and evolve on the
very slow timescale of a permittivity variable. This allows for the au-
tonomous transition between fast and slow pathological seizure states.
The dynamics of the Epileptor can be represented as follows:

�̇�1 = 𝑦1 − 𝑓1(𝑥1, 𝑦1, 𝑧) − 𝑧 + 𝐼rest,1
�̇�1 = 𝑦0 − 5𝑥21 − 𝑦1
𝜏0�̇� = 4(𝑥1 − 𝑥0) − 𝑧

�̇�2 = −𝑦2 + 𝑥2 − 𝑥32 + 𝐼rest,2 + 2𝑢 − 0.3(𝑧 − 3.5)

𝜏2�̇�2 = −𝑦2 + 𝑓2(𝑥2)

�̇� = −𝛾(𝑢 − 0.1𝑥1), (73)

here 𝑥1(𝑡) and 𝑦1(𝑡) govern the rapid discharges on the fast timescale,
(𝑡) and 𝑦 (𝑡) govern SWEs on the intermediate timescale, 𝑧(𝑡) is the
2 2



Annual Reviews in Control 54 (2022) 386–408E. Reed et al.

i

f
t
E
u

Fig. 8. Comparison between the measurement error of the v-augmented system (with v = 10) versus the estimation error of a minimum-energy estimator implemented on the
same, in the presence of process and measurement noises for 4 channels of a 64-channel EEG signal. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.).
Fig. 9. Comparison between the measured output of the v-augmented system (with v = 20) versus the estimated output of a minimum-energy estimator implemented on the same,
in the presence of process and measurement noises for 4 channels of a 64-channel EEG signal. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
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permittivity variable that operates on a slow timescale, 𝑢(𝑡) is a dummy
variable that acts as a low-pass filter, 𝑥0, 𝑦0 are threshold constants,
𝜏0, 𝜏2 are time constants for the permittivity and the SWE-generating
subsystems, respectively. Additionally, 𝐼rest,1 and 𝐼rest,2 are injection
currents, 𝛾 is the time constant of the low-pass filter, and the functions
𝑓1 and 𝑓2 are defined as follows:

𝑓1(𝑥1, 𝑥2, 𝑧) =

{

𝑥31 − 3𝑥21 when 𝑥1 < 0,
(𝑥2 − 0.6(𝑧 − 4)2)𝑥1 otherwise,

(74)

and

𝑓2(𝑥2) =

{

0 when 𝑥2 < −0.25,
6(𝑥2 + 0.25) otherwise.

(75)

Noise is introduced into each equation as linear additive white
Gaussian noise with zero mean and a variance 𝜎21 = 0.025 for the
irst subsystem and 𝜎22 = 0.25 for the second subsystem. The descrip-
ions along with the standard values of the parameters used in the
pileptor model are provided in Table 1. In what follows, we will
se the simulated seizure data obtained by integrating the system (73)
401
using the Euler–Maruyama method (Kloeden & Platen, 2013) with the
standard values of the parameters provided in Table 1 and the initial
conditions (𝑥1(0), 𝑦1(0), 𝑧(0), 𝑥2(0), 𝑦2(0), 𝑢(0)) = (0,−5, 3, 0, 0, 0) from the
Epileptor model and then implement the proposed closed-loop MPC
neuromodulation scheme on it.

To determine the parameters 𝐴 and 𝛼 that model both spatial cou-
ling and fractional coefficients, respectively, that craft the evolution
f the state dynamics in (70), we use the method proposed in Gupta
t al. (2018a). Here, like the Jansen–Rit model, the system is SISO, and
ence 𝐴 and 𝛼 are scalars. The parameters obtained are 𝐴 = −0.0051
nd 𝛼 = 1.0614. Furthermore, we assume that 𝐵 = 1 and 𝐵𝑤 = 0.25.

We implement the FOS-MPC neurostimulation strategy with 𝑄𝑘 =
𝑛, 𝑅𝑘 = 𝐼𝑛𝑢 , and 𝑐𝑘 = 0𝑛𝑢×1 (with 𝑛 = 𝑛𝑢 = 1) and safety linear
onstraints of −50 ≤ 𝑢[𝑘] ≤ 50. In this case, our predictive model was

based on a (𝑝 = 20)−step predictive model approximation of the FOS
plant, with a (𝑃 = 20)−step prediction horizon and (𝑀 = 10)−step
control horizon. The results are presented in Fig. 13, which provide
evidence that the proposed stimulation strategy allows us to achieve
amplitude suppression for a seizure simulated by the Epileptor model
with standard parameter values.
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Fig. 10. Comparison between the measurement error of the v-augmented system (with v = 20) versus the estimation error of a minimum-energy estimator implemented on the
same, in the presence of process and measurement noises for 4 channels of a 64-channel EEG signal. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.).
Fig. 11. Results of the proposed FOS-MPC closed-loop neurostimulation strategy on an iEEG seizure simulated by the Jansen–Rit neural mass model. The simulated iEEG signal
with the seizure is depicted in blue, the controlled signal is depicted in red, and the stimulation pulses are shown in green. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 1
Descriptions and standard parameter values of the Epileptor model.
Source: Adapted from Jirsa et al. (2014).
Parameters Description Values

𝑥0 , 𝑦0 Threshold constants 𝑥0 = −1.6, 𝑦0 = 1
𝜏0 Time constant of the permittivity variable 2857
𝜏2 Time constant of the SWE-generating subsystem 10
𝐼rest,1 , 𝐼rest,2 Injection currents 𝐼rest,1 = 3.1, 𝐼rest,2 = 0.45
𝛾 Time constant of the low-pass filter 0.01
15. Conclusions and directions for future research

Cyber-neural systems are becoming pervasive in today’s society, yet
they still lack the capability of performing real-time closed-loop control
on neural activity. Control systems engineers will play a vital role in
bringing this technology to reality as they develop the tools required
by interdisciplinary teams involved in envisioning the next generation
of neurotechnology.
402
That said, we provided a glance at some of the latest trends and
techniques in fractional-order based system modeling, analysis, and
closed-loop control towards the development of future neurotechnolo-
gies. In particular, we present results on system identification, state
estimation, and closed-loop control for discrete-time fractional-order
dynamical systems.

There are a plethora of interesting research directions that can be
taken from here, which are pinpointed next.
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Fig. 12. Results of the proposed FOS-MPC closed-loop neurostimulation strategy on an iEEG seizure simulated by the traveling wave dynamics model proposed in Martinet et al.
(2017). The simulated iEEG signal with the seizure is depicted in blue, the controlled signal is depicted in red, and the stimulation pulses are shown in green. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Results of the proposed FOS-MPC closed-loop neurostimulation strategy on an iEEG seizure simulated by the Epileptor model. The simulated iEEG signal with the seizure
s depicted in blue, the controlled signal is depicted in red, and the stimulation pulses are shown in green. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
ystem identification

System identification of fractional-order systems is an extremely
nder-explored field in general, with a lack of a systematic and unified
heory, with some preliminary approaches utilizing wavelets (Flan-
rin, 1992), frequency-domain techniques (Adams, Hartley, & Lorenzo,
006; Dzieliński et al., 2011), or a sequential combination of wavelets
nd expectation–maximization (EM) (Gupta et al., 2018a).

Although approaches using the EM algorithm for linear (Gibson &
inness, 2005) as well as nonlinear system identification (Schön, Wills,
Ninness, 2011) have existed in the literature for a while now, one

mmediately notices that there is a long-standing problem in character-
zing theoretical robustness guarantees for these approaches. We can
raw inspiration from preliminary analyses of finite-sample robustness
uarantees for EM in Balakrishnan, Wainwright, and Yu (2017), Wu,
ang, Zhao, and Zhu (2016), Yan, Yin, and Sarkar (2017) to charac-
erize the sample complexity in identifying linear time-invariant (LTI)
ystems and do the same for fractional-order systems.

In practice, it would be important to investigate approaches to
dentify the spatial and temporal parameters of fractional-order systems
403
based on bootstrapping (Tjärnström, 1999), which uses an alternating
scheme to obtain progressively better identifications of the parame-
ters. Future work should focus on chalking out a general theory that
identifies certain classes of fractional-order systems.

Alternatively, one could also look into strategies behind using
recurrent neural networks (RNNs) to identify the fractional-order
systems’ parameters. One of the most celebrated results in neural
network theory, the universal approximation theorem (Cybenko, 1989;
Funahashi, 1989; Hornik, Stinchcombe, & White, 1989), states that
continuous functions can be arbitrarily well-approximated by single-
hidden-layer feedforward neural networks. While recent work (Hutter,
Gül, & Bölcskei, 2021) seems to suggest the presence of allied results
when RNNs are used to identify stable LTI systems optimally in the
sense of metric entropy (Zames & Owen, 1993), it remains to be seen
whether universal approximation theorem-like results can be derived
when RNNs are used to identify fractional-order systems.

It would also be interesting to investigate fundamental
information-theoretic connections between the number of samples
needed to perform online system identification for fractional-order
systems that would, in turn, allow for a more robust control design
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using the same number of samples. Furthermore, one could also
potentially look into the number of samples needed to uniquely
identify the parameters of fractional-order systems and whether
different identified realizations potentially correspond to different
fractional-order systems.

State estimation

Although fractional-order systems have found vast success in model-
ing the spatiotemporal properties of EEG signals, some of the properties
accounted for by these models actually originate from unknown sources
external to the system under consideration. Future work should focus
on modeling these external sources by unknown input stimuli and then
focus on state estimation of the resultant model with unknown inputs.

Real-time neural activity can be monitored to self-regulate brain
function. This is known in the literature as neurofeedback (Marzbani,
Marateb, & Mansourian, 2016), and it would be interesting to study
how the introduction of feedback to such a system changes our
perspectives on this problem.

While the construction of resilient state estimators has grown over
the last decade, little effort has been put in developing resilient versions
of state estimators for fractional-order systems. In particular, assuming
that the disturbance and noise distributions do not follow a Gaussian
distribution, it is imperative to build a resilient and attack-resistant
version of the minimum-energy state estimator. Specifically, it is im-
portant to consider adversarial attacks or artifacts associated with the
measurement process since adversarial attacks on sensors often do not
follow any particular dynamic or stochastic characterization.

Last but not least, it is crucial to understand how to design filter-like
methods that solve the problems of simultaneous system identification
and state estimation suitable for the deployment in real-time CNS.

Closed-loop control

Very rarely in practical settings do we have deterministic
fractional-order models. As we saw, neural signals are particularly
prone to artifacts from outside the brain. Furthermore, stabilizing the
underlying models in the presence of disturbances becomes relevant
in the treatment of disorders like epilepsy, Parkinson’s, or Alzheimer’s
disease.

In recent years, there have been increasing research efforts into
finding possible therapies for the aforementioned diseases using neuro-
feedback (Marzbani et al., 2016). Future work, therefore, should focus
on developing controllers and observers for fractional-order systems
with the associated process and measurement noise as well as inves-
tigating the possible existence of separation principle-like results akin
to those already existing in the field of linear stochastic control theory.

Another direction of work entails deriving robustness guarantees for
controlling discrete-time fractional-order systems using an inner-outer
loop control strategy. Specifically, in this context, we seek to dis-
cover the advantages and disadvantages of truncating a discrete-time
fractional-order systems according to a given truncation horizon, thus
approximating the fractional-order systems as an augmented LTI system
and performing model predictive control.

Additionally, one could also rely on some tools from robust control,
namely integral quadratic constraints (IQCs) (Megretski & Rantzer,
1997). IQCs are, essentially, inequalities used to describe possible
input–output signals resulting from a system component that is chal-
lenging to model because it is either nonlinear, time-varying, noisy,
or switch stochastically or adversarially with time. A particular issue
of interest is to explore the trade-offs in performance when fractional-
order systems (which represents the inner loop) are written as an
augmented LTI system due to a fixed truncation horizon versus when
they are modeled as a non-Markovian nonlinearity with IQCs.

Additionally, although finite-time LTI truncations of fractional-
order systems with constant truncation horizons are considered in
404
this paper, fractional-order systems inherently possess infinite long-
term memory. The question becomes whether the theory of linear
control systems in infinite dimensions (Curtain & Zwart, 2012) can be
used to provide key insights into control-theoretic properties such as
controllability, observability, and stabilizability for such systems. While
there have been some preliminary works in this direction (Baleanu,
Fedorov, Gordievskikh, & Taş, 2019; Sabatier, 2021; Wei, Chen, Wang,
& Wang, 2019; Zitane, Boutoulout, & Torres, 2020), further investiga-
tion is needed. Consequently, future work of fractional-order systems
must use mathematical techniques previously applied to analyze partial
and delay differential equations, in particular, operator equations and
𝐶0-semigroup theory (Bamieh, Paganini, & Dahleh, 2002).

From an engineering or applied control point-of-view, it is im-
portant to pinpoint some limitations and drawbacks of current
event-triggered open-loop stimulation strategies (i.e., they can be in-
efficient or even cause seizure-like activity). Consequently, it serves
as a call to action for neurophysiologists and engineers that work
with neurostimulation (as well as deep brain stimulation) devices,
to validate in vitro and in vivo scenarios. That said, the advances in
computational processing power made in the last 10–20 years have
made the prospects of turning ideas that were theoretically devised
and previously impossible to implement in real-life into realizable
technology. MPC and fractional-order systems-based technologies both
fall under this category and have thus been significantly overlooked
in the industry. However, both are growing in popularity amongst
several research communities, and some predict a considerably more
widespread impact than originally thought.

Despite this promising outlook, validation is insufficient to estab-
lish a framework since several foundational problems still need to be
addressed. Specifically, determining the robustness of the stimulation
strategies concerning the parameters of the models (e.g., the dynamics
and the stimuli deployed, as well as the approximations considered to
attain real-time stimulation) in devices with low storage, and limited
battery and computation capabilities. Towards this goal, only inter-
disciplinary work between scientists and engineers will lead to the
necessary success that ultimately will be reflected in the improve-
ment of the quality of life for patients with neurological disorders
(e.g., epilepsy).
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