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SUMMARY

Quantum networks hold the potential to enable new applications, such as secure key
distribution, high-precision distributed sensing, and distributed quantum computing. A
central functionality of a quantum network is the distribution of entanglement between
remote parties. Since experimental implementations remain in an early stage, it is im-
portant to understand both the capabilities and limitations of near-term architectures.
However, characterising quantum network performance is challenging, due to the com-
plex, stochastic nature of even simple architectures. Analytical studies can therefore play
a crucial role: they not only reduce computational cost but also reveal fundamental rela-
tionships between performance, the choice of entanglement distribution protocols, and
properties of quantum network hardware. In this thesis, we develop analytical methods
to study quantum network performance in several important scenarios.

We firstly analyse entanglement buffers, which are systems designed to generate and
store high-quality entangled states to be consumed at any time. For this setting, we de-
rive analytical expressions for two key performance metrics. The solutions are computa-
tionally efficient, make no restrictive assumptions about the entanglement purification
protocol, and allow general insights: for example, that simple purification schemes can
outperform more complex ones previously considered “optimal” in different contexts.

Then, we turn to the problem of entanglement packet generation, where multiple en-
tangled states of sufficient quality must be established simultaneously between network
users. The fast generation of entanglement packets is an essential capability for many
quantum network protocols. We obtain analytical results for the entanglement packet
generation rate under a constant entanglement generation scheme and later extend the
analysis to adaptive schemes, where entanglement parameters are tuned dynamically.
Using parameter regimes motivated by current experiments, we show that adaptivity
can enhance the entanglement packet generation rate by up to a factor of twenty.

Finally, we examine a standard assumption in performance analyses: that the initial
states in a quantum repeater chain can be approximated by a symmetrised, or “twirled”,
form. We investigate this assumption in the contexts of postselected and non-postselected
entanglement swapping, where postselection is performed based on the Bell-state mea-
surement outcomes at the repeaters. A central result is that, in many relevant cases, the
twirled approximation is exact for non-postselected swapping. More generally, we pro-
vide a systematic framework to determine when the twirled approximation is valid for
the initial states of a repeater chain.






SAMENVATTING

Quantumnetwerken bieden het vooruitzicht op nieuwe toepassingen, waaronder veilige
sleutelverdeling, hoogprecieze gedistribueerde sensoren en gedistribueerde quantum-
computing. Een kernfunctionaliteit van een quantumnetwerk is de distributie van ver-
strengeling tussen ruimtelijk gescheiden partijen. Aangezien experimentele realisaties
zich nog in een vroeg ontwikkelingsstadium bevinden, is het van belang zowel de mo-
gelijkheden als de beperkingen van nabije-toekomstarchitecturen te doorgronden. Het
karakteriseren van de prestaties van quantumnetwerken vormt echter een aanzienlijke
uitdaging, vanwege de complexe en stochastische aard van zelfs relatief eenvoudige ar-
chitecturen. Analytisch onderzoek speelt daarom een essentiéle rol: het reduceert niet
alleen de computationele complexiteit, maar legt tevens fundamentele verbanden bloot
tussen netwerkprestaties, de gekozen protocollen voor verstrengelingsdistributie en de
eigenschappen van quantumnetwerkhardware. In dit proefschrift worden analytische
methoden ontwikkeld om de prestaties van quantumnetwerken in een aantal relevante
scenario’s systematisch te onderzoeken.

In het eerste deel analyseren wij verstrengelingsbuffers: systemen die zijn ontwor-
pen voor het genereren en opslaan van verstrengelde toestanden van hoge kwaliteit,
zodat deze op elk gewenst moment kunnen worden ingezet. Voor deze context leiden
wij analytische uitdrukkingen af voor twee centrale prestatiemaatstaven. De verkregen
oplossingen zijn computationeel efficiént, maken geen beperkende aannames over het
toegepaste verstrengelingszuiveringsprotocol en verschaffen algemene inzichten. Zo to-
nen zij onder meer aan dat relatief eenvoudige zuiveringsschema’s in bepaalde gevallen
betere prestaties leveren dan complexere schema’s die in andere contexten als optimaal
werden beschouwd.

Vervolgens behandelen wij het probleem van de generatie van verstrengelingspak-
ketten, waarbij gelijktijdig meerdere verstrengelde toestanden van voldoende kwaliteit
tussen netwerkgebruikers tot stand moeten worden gebracht. De snelle generatie van
dergelijke verstrengelingspakketten is een essentiéle vereiste voor vele quantumnetwerk-
protocollen. Wij presenteren analytische resultaten voor de generatiesnelheid van ver-
strengelingspakketten binnen een constant verstrengelingsgeneratieschema en breiden
deze analyse uit naar adaptieve schema’s, waarin verstrengelingsparameters dynamisch
worden geoptimaliseerd. Voor parameterregimes die zijn geinspireerd door hedendaagse
experimentele realisaties laten wij zien dat adaptiviteit de generatiesnelheid van ver-
strengelingspakketten met maximaal een factor twintig kan verhogen.

Ten slotte onderzoeken wij een gangbare aanname in prestatieanalyses, namelijk
dat de begintoestanden in een quantumrepeaterketen kunnen worden benaderd door
een gesymmetriseerde, ofwel “getwirlde”, vorm. Deze aanname wordt geanalyseerd in
de context van zowel postgeselecteerde als niet-postgeselecteerde verstrengelingsswap-
ping, waarbij postselectie plaatsvindt op basis van de uitkomsten van Bell toestands-
metingen bij de repeaters. Een belangrijk resultaat is dat in veel relevante gevallen de
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getwirlde benadering exact geldig is voor niet-postgeselecteerde swapping. Meer alge-
meen presenteren wij een systematisch raamwerk om vast te stellen onder welke voor-
waarden de getwirlde benadering gerechtvaardigd is voor de begintoestanden van een
repeaterketen.



INTRODUCTION

1.1. QUANTUM NETWORKS

A quantum network is an infrastructure that enables the transmission of quantum in-
formation between remote parties. A key example is the sharing of entangled quantum
states between two or more parties [1, 2]. Once shared, entanglement can be used for
applications that are otherwise not possible classically. Examples include a variety of
cryptography applications such as the distribution of shared secret keys [3, 4] and blind
quantum computation [5, 6], as well as tasks for high-precision distributed sensing, such
as clock synchronisation [7, 8] and extending the baselines of telescopes [9].

On the physical level, entanglement generation schemes typically involve the trans-
mission of quantum information encoded in a photonic state [10]. In order to generate
entanglement between distantly-separated parties, the main challenge to overcome is
loss, where photons may be absorbed or scattered on their way to the intended receiver
and therefore do not arrive successfully. When travelling through optical fibre, which is
one of the most promising forms of transmitting photons, the probability that a photon
arrives successfully decays exponentially with distance. Therefore, in order to generate
a single entangled state between two distantly-separated parties, on average one has to
wait a time that increases exponentially with the distance between them, assuming that
attempts are sequential. Since quantum network applications will likely require not just
a single entangled state but the reliable delivery of many entangled states, generating
entanglement via direct transmission is not a feasible strategy when distances are large
(= 500 km for performing quantum key distribution with fibre networks [10]).

To overcome loss, it is crucial to introduce quantum repeaters. The term repeater is
borrowed from the classical world, where signal loss is also problematic in both wired
and wireless networks. Essentially, a classical repeater reconstructs a classical signal
(e.g. a string of 0s and 1s) based on the noisy signal received through error correction
schemes. However, signal reconstruction is fundamentally different when instead quan-
tum information is transmitted. This is because, unlike classical information, quantum
information is disturbed through measurement and cannot be copied [11].



6 1. INTRODUCTION

There exists a variety of proposals for quantum repeater architectures [12, 10]. The
term architecture is very general, and in this context we use it to refer to the hardware
and protocols used to generate long-distance entanglement. The architecture believed
to be most implementable in the near-term future is sometimes referred to as a first-
generation quantum repeater [13]. We will give more details about first-generation re-
peaters in the following section. Currently, several implementations of quantum net-
works and important subroutines exist in the form of proof-of-principle experiments
and test beds [14, 15, 16, 17, 18]. There is currently much theoretical research that is
devoted to understanding how best one can utilise noisy hardware in order to obtain
the best possible performance [19]. Since even small (few-user) quantum networks are
objects of significant complexity, evaluating high-level metrics such as the rate of gen-
eration of entangled states, or the quality of generated entanglement, is typically chal-
lenging and requires an approach involving a unique blend of mathematics, physics and
computer science. In this thesis, we analytically study several scenarios that are of im-
portance to near-term quantum networks. In the following section, we firstly motivate
an abstract model encompassing near-term quantum networks that encompasses the
scenarios studied in the thesis. We then go on to introduce the thesis contents.

1.1.1. MODELLING NEAR-TERM QUANTUM NETWORKS

Here, we explain the fundamental characteristics of near-term quantum networks, and
motivate the mathematical models used in each chapter. We then go on to outline the
main challenges for the performance analysis of quantum networks. From now on, we
also refer to an entangled state shared between two parties as an entangled link, or just
a link.

HERALDED ENTANGLEMENT GENERATION
When transmitting quantum information in the form of a photon over long distances,
there is a significant probability of the photon being lost. When using the transmission
of photons to mediate entanglement generation, it is therefore often necessary that a
classical heralding signal is transmitted between the repeaters after each attempt to in-
form them about whether or not the entangled state has been generated successfully.
Upon heralding success, the repeaters can continue with other network operations or
applications that make use of the newly generated entangled state. We note that there
are types of repeaters that suppress errors near-deterministically and therefore do not
rely on heralding. However, these use highly sophisticated quantum operations, such
as the reliable generation of highly entangled photonic graph states [20, 21, 22], and are
therefore viewed as far-term. Such repeaters are therefore referred to as third-generation
repeaters [13].

Moving back to the first-generation repeaters in which we are interested in this the-
sis, there are several different schemes for heralded entanglement generation [23, 24, 25,
26, 27]. These differ from each other in terms of the direction of quantum communica-
tion - e.g. from a central station to both end nodes, from both end nodes to a central
station, or from one node directly to another. They also differ in the qubit encoding,
which may be either single-rail or dual-rail (involve either one or two photons). Now,
because heralded entanglement generation involves the transmission of quantum and
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(a) (1) Photon d

(2) Heralding

d 2d/c

(b) (1) Photon
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L]
d/e
Figure 1.1: Heralded entanglement generation takes up a fixed time interval. Heralded entanglement gen-
eration schemes involve the transmission of quantum and classical information over some distance within a
physical medium that could be e.g. optical fibre (dotted line). For example, this can be (a) the full distance
between repeater nodes when the photon is sent from one node to another [31], or (b) the distance between

the repeater nodes and a central station (black square) [23, 25]. In either case, the time until success or failure
is proportional to the distance travelled by the signal divided by the speed of light, c.

classical information over long, fixed distances, a single attempt takes up a fixed time
interval (see Figure 1.1). The length of the time interval is proportional to the time it
takes light to travel between repeaters. Therefore, time is naturally divided into discrete
time steps, where in each time step a single entanglement generation attempt is carried
out. In each attempt, an entangled link is successfully generated with some probability
of success, which is dependent on the entanglement generation protocol used and the
hardware parameters of the physical system in question. For example, these parame-
ters include the probability of successful emission of a photon and the probability of the
photon successfully reaching the receiver. We also note that the abstraction of physical
hardware is not only convenient for theoretical study, but also in practice. In particular,
a network control architecture that coordinates high-level network operations such as
entanglement swapping should be compatible with multiple possible candidates of the
network hardware [28]. The time step may not only correspond to a single execution of
a physical, link-level entanglement generation protocol, but for example batches of ex-
ecutions [29], or even end-to-end entanglement generation over a repeater chain [30].
In this way, the discretisation of time enables modularity of quantum network control
protocols by abstracting not only the physical hardware, but also higher-level protocols
for entanglement distribution.
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ENTANGLEMENT SWAPPING
As explained in the previous section, if quantum repeaters are not employed, the entan-
glement generation rate decays exponentially with distance with a fibre-based imple-
mentation. First-generation repeaters overcome this limitation with a protocol known
as entanglement swapping [32]. Consider a simple scenario with two end nodes and
an intermediate (repeater) node placed between them. Suppose that the repeater node
shares an entangled link with each end node. Then, an entanglement swap transforms
the two shorter-distance links into a link shared between the end nodes, as depicted in
Figure 1.2. This is achieved by applying local quantum measurements at the repeater,
followed by classical communication of the measurement outcome to the end nodes.
To see how entanglement swapping can improve the entanglement generation rate,
let us consider the following simple scenario, again illustrated in Figure 1.2. Suppose
that the distance between the end nodes is d and that the attenuation length, which
quantifies fibre loss, is dqa(t. The probability that a photon reaches the other end is there-

_d
fore proportional to e %t , and the average waiting time to generate entanglement with

direct transmission scales as .

Teze XX _d = eﬂ,
e dat

which increases exponentially with d. In particular, the entanglement generation rate

without a repeater scales as
_d
=e dat, (1.1)

Repe o
e2e

Now, let us consider the case with the repeater. Suppose that the left-hand link is gener-
ated first. Upon successful generation, the first link is stored in memory while the sec-
ond link is being generated. When the second link is generated, an entanglement swap
is performed immediately in order to obtain end-to-end entanglement. Assuming that
the quantum memories are perfect (i.e. a link can be stored in memory for an unlimited
amount of time), the average time until end-to-end entanglement is achieved is given by

1 _d_
= 2e2datt ,

d + d

e 2dan e 2dan

Trep =T +71T)x

Here, Tj is the time to generate the first link and 7> is the time to generate the second
link. With the repeater, the entanglement generation rate scales as

__d_
X e 2dait, (1.2)

Rrep =
rep
In particular, when comparing (1.1) and (1.2) we see that placing a repeater in the middle
can improve the scaling of the entanglement generation rate by a square-root factor. By a
simple extension of the above argument, placing n — 1 repeaters between the end nodes,
also known as a repeater chain, would result in a scaling

__d_
Ry, rep o< € att,

This argument highlights that quantum repeaters based on entanglement swapping can
lead to an improved scaling of the entanglement generation rate that goes beyond the
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c 7 d /2

R aeNNs

Figure 1.2: Near-term quantum repeaters make use of entanglement swapping. With local quantum opera-
tions and classical communication, entanglement swapping transforms two shorter-distance entangled states
into a longer-distance entangled state. In a sequential repeater protocol, firstly the left-hand link is generated
(solid wavy line), and then the right-hand link (dashed wavy line). As illustrated in the text, if memories are
perfect then with the sequential repeater protocol and a single repeater, a quadratic improvement in the end-
to-end entanglement generation rate is achieved.

limitations of direct transmission. We note that our argument was assuming that the
repeater works perfectly: swapping may also be probabilistic [33, 34], or the entangled
links may be subject to noise while stored, meaning that they are no longer entangled
and the links have to be discarded [35].

NOISY MEMORIES

Above, we saw that quantum repeaters based on entanglement swapping can improve
the end-to-end entanglement generation rate. However, this comes at the expense of
constructing repeater stations in possession of quantum memories with a long memory
lifetime. Developing memories with a long lifetime is experimentally challenging and
much work is being carried out on improving the memory lifetime on various qubit plat-
forms - see e.g. [36, 37, 38, 39]. A limited memory lifetime means that the quantum
state stored in memory decoheres and therefore that the quality of stored entanglement
decreases over time, meaning that the link will eventually be rendered useless. A closely
related parameter to the memory lifetime is the decoherence rate, which is defined to be
the inverse of the memory lifetime. To perform a realistic study of near-term quantum
networks, decoherence must be taken into account. For example, consider again the
simple entanglement swapping scenario from Figure 1.2. However, suppose now that
the memory lifetime is limited. Then, it is possible that the first link expires before the
second link is generated. If the first link expires, the entire protocol must start again by
generating the first link [35]. Thus, a limited memory lifetime can have a negative effect
on the end-to-end entanglement generation rate, as well as the quality. In particular, for
a functional quantum repeater one generally expects that the decoherence rate should
be lower than the entanglement generation rate [40]. A common way of combatting de-
coherence in a quantum network protocol is with cut-offs, where a state is discarded
after its quality decays below a certain value [41, 42, 43, 44, 45]. This ensures that the
delivered entanglement is of a quality high enough such that a target application can be
executed successfully. Moreover, in general, quantum noise requires a large number of
parameters to be specified (see e.g. Chapter 8 of [11]). It is therefore common in theo-
retical studies that noise is approximated to take a simplified form. Examples are Pauli
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noise or depolarising noise, which are always in theory possible to obtain from a gen-
eral noise channel by applying certain symmetrising operations [46, 47, 48]. Using such
an approximation means that fewer parameters are required to fully specify the noise
model, and that the system dynamics are often simpler to understand. With these sim-
plifying assumptions, an analytical study is often more tractable and a simulation can be
made be more efficient.

COMBATTING NOISE WITH ENTANGLEMENT PURIFICATION

One potential avenue to improve the quality of noisy quantum states is with entangle-
ment purification [49, 50]. Given n low-quality quantum states, an n-to-k entanglement
purification protocol outputs k higher-quality entangled states with some success prob-
ability. An entanglement purification protocol is comprised of local operations, mea-
surements and classical communication. The simplest protocols are two-to-one [49,
50, 51]. Similarly to heralded entanglement generation, entanglement purification re-
quires classical communication between distant parties. This incurs extra time delays
and therefore more decoherence. Indeed, combining entanglement purification with a
heralded entanglement generation scheme can be viewed as a new heralded entangle-
ment generation scheme [51]. The probability of success and the output fidelity depend
both on the form of the initial states and on the specific entanglement purification proto-
col employed. The space of possible entanglement purification protocols is large and the
best choice of protocol varies depending on the scenario in question, such as the num-
ber of initial states and noise present in the system [52, 53]. We note that encoding states
in repeater nodes with quantum error correction schemes is a more advanced strategy
to combat noise and would remove the need for extra classical communication between
distant nodes [54]. However, quantum error correction requires powerful repeater nodes
and is therefore viewed as a component of later-generation quantum repeaters [13, 10,
12].

DEMAND FOR ENTANGLEMENT

As a quantum network is constructed to generate entanglement between users in order
to be consumed for an application, it is also important to incorporate demand from net-
work users into the model and performance analysis. This can be used to understand
the performance of the network as seen by users. Due to a lack of knowledge about the
behaviour of network users, demands are typically assumed to arrive stochastically. A
typical assumption in queueing systems is that demands for entanglement arrive ac-
cording to a Poisson process [55]. In the Poisson case, the performance analysis is often
much simpler in comparison to when demands arrive according to a general distribu-
tion. A performance analysis with the Poisson assumption is then viewed as a first step
towards understanding the system for general inter-arrival times, and can be used to
provide intuition about system behaviour in other more general cases. The format of de-
mand varies with the system studied. For example, a demand may request the delivery
of a single entangled pair [45, 44, 56, 57], an entanglement packet (multiple entangled
pairs within a short space of time) [58, 28, 59], or that a continuous supply of entangled
pairs is delivered at some rate over a given time period [60, 61].
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1.2. PERFORMANCE ANALYSIS

It can be seen from the previous section that near-term quantum networks are inherently
stochastic. There are several sources of stochasticity. Firstly, heralded entanglement
generation schemes succeed probabilistically because there is a high probability that a
photon is lost when sent across long distances. Hence, when using heralded schemes,
successful entanglement generation can take multiple trials and the time until success is
a random variable. Secondly, in entanglement purification, the inherently probabilis-
tic nature of quantum measurements results in entanglement purification succeeding
probabilistically. Lastly, we saw that limited knowledge about network users means
that demands must be modelled as arriving stochastically. Due to the impact all of these
factors, it can be challenging to understand relevant performance metrics of even the
most simple architectures, because performance metrics have a potentially complex de-
pendence on these underlying stochastic quantities. Common examples of performance
metrics include the expectation value, variance, or full distribution of a random variable
of interest, such as the time until an entangled state is delivered [62, 63, 58], or the fidelity
of delivered states [56, 64, 65].

It is extremely beneficial to characterise performance metrics with analytical meth-
ods, by which we mean that mathematical tools are used to understand such quantities.
If analytical methods are not used, a simulation must be performed to evaluate the per-
formance metrics numerically, which can take a significant amount of time and com-
putational resources. Due to the stochastic complexity of near-term networks, in many
cases an analytical study is not feasible and therefore simulation is viewed as an integral
component to evaluate performance. Several software packages have been developed
specifically for the purpose of quantum network simulation - see e.g. [66, 67, 68, 69].

Much of this thesis is dedicated to an analytical study of performance metrics in sev-
eral important scenarios. Carrying out an analytical study can save computational re-
sources, as well as provide fundamental insights of the dependency of high-level perfor-
mance metrics on network protocols and properties of the network hardware. If perfor-
mance metrics are efficiently computable, they may then be subsequently optimised, to
find fundamental limits on network performance.

The performance metrics considered in this thesis each fall into one of the following
categories:

* Rate metrics: these impact the rate with which entanglement is delivered to net-
work users. Examples include the expected waiting time for entanglement to be
delivered to users after a request is submitted [62, 63, 58], the expected probabil-
ity that a request will be served successfully [56], or the probability of successful
entanglement purification (if one is evaluating purification performance) (53, 52].

° Quality metrics: these quantify the quality of delivered entanglement. Common
examples include the (expected) fidelity of delivered states [56, 64, 65], or the out-
put fidelity after successful entanglement purification [53, 52]. Instead of fidelity,
one can also consider measures of entanglement such as the concurrence or neg-
ativity [70, 71].

° Combined metrics: these capture a mixture of the above metrics. Examples in-
clude measures of application performance, such as the secret-key rate [72, 4] or
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the number of applications that can be executed per second [73]. The latter de-
pends indirectly on the quality of states in memory, since state quality impacts the
probability of successful application execution [73, 74]. One may also artificially
construct a combined metric so that is in principle applicable to all applications,
such as a measure of the entanglement quality multiplied by the entanglement
generation rate [75].

In multi-user networks that contain many nodes in a complex topology, one may con-
sider other metrics that take into account the number of users to whom entanglement
is delivered, such as with percolation thresholds [76, 77] or the virtual neighbourhood
size [78]. However, since this thesis is only concerned with two-user scenarios, we do
not consider these metrics (although the scenarios considered may be subroutines in a
larger network - see Figure 1.3). We note that combined metrics are important because
there is typically a trade-off between entanglement generation rate and quality for all
components of the networks, from hardware to software. Thus, finding the best balance
between these factors should be achieved with a combined metric. However, in this the-
sis, we are mainly concerned with the first two forms of metric.

When carrying out a performance analysis, the choice of performance metric(s) de-
pends on the system in question. For example, in the performance analysis of entan-
glement purification protocols, it is natural to compute the probability of successful
purification and/or the fidelity of states post-purification [53, 52]. However, now sup-
pose that one is analysing a protocol that generates end-to-end entanglement along a
repeater chain that will be used for quantum key distribution, and the repeater protocol
may involve entanglement purification as a subroutine. Then, one may instead wish to
compute the secret-key rate achieved with the generated end-to-end entanglement [79,
35].

1.2.1. THESIS OUTLINE

In the previous sections, we introduced a generic model for near-term quantum net-
works. This thesis contains a selection of analytical studies of important scenarios oc-
curring in a quantum network — see Figure 1.3 for a depiction. Here, we provide a brief
introduction to the scenarios studied in this thesis, some of the results obtained, and
their impact. Each chapter also includes its own introduction for readability.

ENTANGLEMENT BUFFERS

An entanglement buffer is a system that stores high-quality entangled links and ensures
that they are readily available to consume for quantum protocols when needed. In Chap-
ters 2 and 3, we study buffers that have a single memory with a long memory lifetime (a
‘sood memory’), and several memories that are used for entanglement generation that
have a short memory lifetime (the ‘bad memories’). Whenever new link(s) are gener-
ated in the bad memories, there is the chance to purify the link in the good memory.
An important innovation we make in our study of this system is to take into account the
impact of entanglement purification on state quality. Entanglement purification can be
complex to incorporate because the probability of success and output fidelity of a pro-
tocol depend on the entangled link quality. The protocol performance therefore varies
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Entanglement packets
(Chapters 4,5)

Entanglement buffers
(Chapters 2,3)

Entanglement swapping
(Chapter 6)

Figure 1.3: Depiction of scenarios studied in the thesis. The purple dots are quantum memories, the wavy
lines are bipartite entangled states (links). Links may be consumed by network users for an application (de-
picted). See main text for more details of each chapter.

according to the state of the dynamically evolving system. In Chapters 2 and 3, we over-
come this issue and derive solutions for two key performance metrics. Our solutions
are closed-form and computationally efficient to evaluate, and keep the entanglement
purification protocol completely general. In particular, in Chapter 3, we use our solu-
tions to draw fundamental conclusions about purification policies, such as that more
frequent purification always leads to an increased average consumed fidelity. Moreover,
it enables us to easily compare different purification policies, and draw conclusions such
as that simple purification policies tend to provide a better performance than complex
purification policies. The difference between the two chapters is that Chapter 3 is a more
general model than Chapter 2: there, we include multiple bad memories, a completely
general entanglement purification policy, and carry out the analysis in discrete time. By
contrast, in Chapter 2 we consider a system with a single bad memory, a certain class of
entanglement purification policy, and carry out the analysis in continuous time. Thus,
the reader only interested in the analytical solutions should jump straight to Chapter 3.
However, we believe that the methodology presented in Chapter 2 is still highly relevant
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for use in the field.
Key system ingredients:

* Two-node scenario.

* One good (long-lasting) memory, one or multiple bad (short-lasting) memories.
* Heralded, probabilistic entanglement generation.

* Decoherence.

* Entanglement purification.

* Entangled link consumption.

System goal:

* Make sure a high-quality link is available most of the time.

ENTANGLEMENT PACKET GENERATION

Many quantum network protocols require multiple high-fidelity entangled links to be
available simultaneously. The entangled links may be subsequently processed for a quan-
tum network application such as blind quantum computation [5], or to produce a higher-
fidelity link with entanglement purification. Multiple simultaneously-existing links are
also collectively referred to as an entanglement packet [28]. The generation of entangle-
ment packets is a task of fundamental importance for a functional quantum network. In
Chapters 4 and 5, we study the performance of entanglement packet generation. Firstly,
in Chapter 4, we find analytical solutions for the average waiting time until an entan-
glement packet is generated, among other related quantities. Our solutions allow us to
better understand the impact of several important parameters on performance. These
include protocol parameters such as the number of entangled links required, and hard-
ware parameters such as the probability of entangled link generation. Secondly, in Chap-
ter 5 we consider a generalised version of the system in Chapter 4. In particular, in-
stead of the entanglement generation parameters (probability of success and generated
fidelity) being constant in each time step, we now allow the system to choose the en-
tanglement generation parameters from a given set in each time step. This is motivated
by existing entanglement generation schemes, where the probability of successful en-
tanglement generation may be increased at the expense of the quality of the generated
initial state, or vice-versa. By formulating the system as a Markov decision process, we
go on to find policies that adaptively vary the system success probability in order to op-
timise the rate of entanglement packet generation. In the experimentally-motivated pa-
rameter regimes explored, our adaptive policies are found to outperform the constant-
action policies (studied in Chapter 4) by a factor of up to 20. We conclude that, given an
adjustable rate-fidelity trade-off present in the entanglement generation scheme, it can
be highly advantageous to use adaptive protocols to boost the generation rate of entan-
glement packets.

Key system ingredients:

* Two-node scenario, multiple long-lasting memories.
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* Heralded, probabilistic entanglement generation.
* Decoherence.
System goal:

* Quickly generate multiple links that exist simultaneously (entanglement packet) .

TWIRLED APPROXIMATIONS FOR ENTANGLEMENT SWAPPING

In our final study, presented in Chapter 6, we question an assumption that is commonly
made in performance analyses: that the initial quantum states of a repeater chain are
assumed to have a symmetrised form, known as a twirled approximation. It is called this
way because any state may be transformed to such a form by implementing a twirling
map, where random quantum gates are applied [47, 46]. Using such an approximation
has many advantages: for example, twirled states require fewer parameters to be fully
specified, which can simplify the analysis because there are fewer parameters to keep
track of. Moreover, when a twirled approximation is used for the initial states of a re-
peater chain (before swapping), the symmetrised form is preserved, which simplifies
further the calculation of the end-to-end state. However, using such approximations
may also lead to an inaccuracy in the computation of the end-to-end state. Chapter
6 is devoted to quantifying this inaccuracy. We consider two scenarios: unconditional
and conditional entanglement swapping. In conditional swapping, the end-to-end state
after entanglement swapping is conditioned on the measurement outcome obtained
when the swap is performed at each repeater. In unconditional swapping, the output
state is a weighted average of all conditional outcomes. A key result is that in many im-
portant scenarios, the twirled approximation is exact for unconditional swapping. For
conditional swapping, we find bounds on the difference in post-swap fidelity from what
is obtained with the twirled approximation, for initial states with a general noisy form.
Our study may be used to assess whether the twirled approximation is justified in a given
situation.

Key system ingredients:

* Repeater chain.
* Noisy initial states.
System goal:

¢ Generate end-to-end state.







ENTANGLEMENT BUFFERING WITH
TWO QUANTUM MEMORIES

Bethany Davies*, Alvaro G. Ifiesta* and Stephanie Wehner

Quantum networks crucially rely on the availability of high-quality entangled pairs of
qubits, known as entangled links, distributed across distant nodes. Maintaining the qual-
ity of these links is a challenging task due to the presence of time-dependent noise, also
known as decoherence. Entanglement purification protocols offer a solution by convert-
ing multiple low-quality entangled states into a smaller number of higher-quality ones. In
this work, we introduce a framework to analyse the performance of entanglement buffer-
ing setups that combine entanglement consumption, decoherence, and entanglement pu-
rification. We propose two key metrics: the availability, which is the steady-state proba-
bility that an entangled link is present, and the average consumed fidelity, which quan-
tifies the steady-state quality of consumed links. We then investigate a two-node system,
where each node possesses two quantum memories: one for long-term entanglement stor-
age, and another for entanglement generation. We model this setup as a continuous-time
stochastic process and derive analytical expressions for the performance metrics. Our find-
ings unveil a trade-off between the availability and the average consumed fidelity. We
also bound these performance metrics for a buffering system that employs the well-known
bilocal Clifford purification protocols. Importantly, our analysis demonstrates that, in the
presence of noise, consistently purifying the buffered entanglement increases the average
consumed fidelity, even when some buffered entanglement is discarded due to purification
failures.

*These authors contributed equally.
This chapter has been published separately at Davies, Bethany, Alvaro G. Ifiesta, and Stephanie Wehner. "En-
tanglement buffering with two quantum memories." Quantum 8 (2024): 1458.
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2.1. INTRODUCTION

The functionality of quantum network applications typically relies on the consumption
of entangled pairs of qubits, also known as entangled links, that are shared among distant
nodes [12]. The performance of quantum network applications does not only depend
on the rate of production of entangled links, but also on their quality. In a quantum
network, it is therefore a priority for high-quality entangled states to be readily available
to network users. This is a challenging task, since entangled links are typically stored
in memories that are subjected to time-dependent noise, meaning that the quality of
stored entangled links decreases over time. This effect is known as decoherence.

A common way of overcoming the loss in quality of entangled links is to use entangle-
ment purification protocols [49, 50, 80, 81]. An m-to-n entanglement purification pro-
tocol consumes m entangled quantum states of low quality and outputs 7 states with
a higher quality, where typically m > n. The simplest form of purification schemes are
2-to-1, also known as entanglement pumping protocols. One downside of using purifi-
cation is that there is typically a probability of failure, in which case the input entangled
links must be discarded and nothing is produced.

In this work, we take a crucial step towards the design of high-quality entanglement
buffering systems. The goal of the buffer is to make an entangled link available with
a high quality, such that it can be consumed at any time for an application. We de-
velop methods to analyse the performance of an entanglement buffering setup in a sys-
tem with entanglement consumption, decoherence, and entanglement pumping. We
introduce two metrics to study the performance: (i) the availability, which is the steady-
state probability that a link is available, and (ii) the average consumed fidelity, which is
the steady-state average quality of entangled links upon consumption. We measure the
quality of quantum states with the fidelity, which is a well-known metric for this [11].

We use these metrics to study a two-node system where each of the nodes has two
quantum memories, each of which can store a single qubit (see Figure 2.1). This sys-
tem is of practical relevance since early quantum networks are expected to have a num-
ber of memories per node of this order (e.g. in [82] and [83], entanglement purification
was demonstrated experimentally between two distant nodes, each with the capability
of storing two qubits). We study a system where each node has one good (long-term)
quantum memory, G, and one bad (short-term) memory, B, per node. We therefore refer
to this entanglement buffering setup as the 1GIB system. The good memories are used
to store an entangled link between the nodes that can be consumed at any time. The bad
memories are used to generate a new entangled link between the nodes. The new link
may be used to pump the stored link with fresh entanglement.

Calculating the temporal evolution of the fidelity of an entangled link is generally a
difficult task, since the fidelity depends on the history of operations that have been ap-
plied to the link in the past. By modelling the state of the 1G1B system as a continuous-
time stochastic process, we are able to find analytical solutions for the availability and
the average consumed fidelity of the system. We illustrate the application of these re-
sults in a simplified scenario where purification has a linear action on the quality of the
buffered link.
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Figure 2.1: Illustration of the entanglement buffering system with two quantum memories (1G1B system).
Each of the nodes has two memories (G and B). Memory G is used to store the buffered link. An entangled link
is generated at a rate A in memory B. If memory G is empty when the new link is generated in B, the link is im-
mediately transferred to G. If memory G is occupied, the new link generated in B is immediately used to purify
the buffered link with probability g (otherwise, the new link is discarded). The pumping protocol consumes
the link in B to increase the quality of the buffered link in G, and it succeeds with probability p (otherwise, it
destroys the link in G). The buffered link is consumed at a fixed rate u. The quality of the entanglement stored
in G decays exponentially with rate I'. Formal definitions of the problem parameters can be found in Section
2.3.

Our main contributions are the following:

* We propose two metrics to measure the performance of an entanglement buffer-
ing system: the availability and the average consumed fidelity.

* We provide a simple closed-form expression for the availability in the 1G1B sys-
tem.

* We develop an analytical framework to calculate the average fidelity of the links
consumed in a 1G1B system. We provide a closed-form expression for pumping
schemes that increase the fidelity of the entangled link linearly with the initial fi-
delity.

Our main findings are the following:

* We confirm the intuition that, except in some edge cases, there is a trade-off be-
tween availability and average consumed fidelity: one must either consume low-
quality entanglement at a higher rate, or high-quality entanglement at a lower rate.

* Consider a situation where bilocal Clifford protocols are employed (this is one of
the most popular and well-studied classes of purification protocols [84]). Then,
if the noise experienced by the quantum memories is above certain threshold,
pumping the stored link with fresh entanglement always increases the average
consumed fidelity, even if the stored link is often discarded due to a small prob-
ability of successful pumping. We provide an explicit expression for this noise
threshold, which depends on the purification protocol employed and the fidelity
of newly generated links.
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The structure of the paper is the following. In Section 2.2, we provide a short overview
of related work. In Section 2.3, we explain the physical setup and provide a formal def-
inition of the 1G1B system as a stochastic process. In Section 2.5, we define the perfor-
mance metrics of interest and provide analytical expressions that enable their computa-
tion. In Section 2.6, we analyse the system in the case where the pumping protocol pro-
duces an output state whose fidelity is a linear function of the fidelity of one of the input
states. In Section 2.6.1, we use these results to bound the performance of the 1G1B sys-
tem, in the case where bilocal Clifford protocols are employed for entanglement pump-
ing. Lastly, in Section 2.7, we discuss the implications of this work and future research
directions.

2.2. RELATED WORK

The performance analysis of quantum networks is unique because of the trade-off be-
tween the rate of distribution of entangled links and the quality of distributed links,
both of which are important for the functionality of networking applications. This leads
to interesting stochastic problems, which are important to understand the parameter
regimes of a possible architecture. For example, [44, 41, 45] deal with the problem of
generating an end-to-end entangled link across a chain of quantum repeaters, where
both the rate of production and the quality of the end-to-end links are quantities of in-
terest. Another example is the problem of generating multiple entangled links between
two users with a high quality, which is treated in [43, 58]. In these works, the time be-
tween successfully generated entangled links is modelled by a geometric distribution.
However, the time taken up by an entanglement generation attempt is generally small
compared to other relevant time scales [14, 85]. Hence, a simplifying assumption that
we make in this work is that the time between entanglement generation attempts is ex-
ponentially distributed. This is a common assumption in the quantum networking lit-
erature (see e.g. [86, 87, 88]), because it can enable the finding of closed-form relations
between physical variables and protocol parameters. Here, we introduce and find ex-
pressions for the values of two key performance metrics in the steady state.

Previous work that incorporates entanglement purification schemes into the analy-
sis of quantum network architectures typically involves numerical optimisation meth-
ods (see e.g. [89]), or only considers specific purification protocols [90]. By contrast, in
this work we focus on presenting the purification protocol in a general way, and finding
closed-form solutions for the performance metrics of interest (albeit for a simpler archi-
tecture). This is an important step towards an in-depth understanding of how one can
expect purification to impact the performance of a near-term quantum network.

Other works have introduced the concept of entanglement buffering (preparing quan-
tum links to be consumed at a later time) over a large-scale quantum network [78, 91].
To the best of our knowledge, the only work with a similar set-up to ours is [65], which
was developed in parallel and independently of our work. There, the authors study the
steady-state fidelities of a system involving two memories used for storage (good memo-
ries), and one memory used for generation (bad memory). This work differs from ours in
multiple ways. For example, the analysis is done in discrete time and it is assumed that
the fidelity takes a discrete set of values, whereas we do not make this assumption since
we work in continuous time. Additionally, consumption of entanglement is not included
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in the system studied in [65], which may impact the steady-state behaviour.

Lastly, we note that previous work generally assumes a specific protocol for entan-
glement buffering between each pair of nodes, and does not address the following fun-
damental question: what is the best way to buffer entanglement between two users in a
quantum network?

2.3. THE 1G1B (ONE GOOD, ONE BAD) SYSTEM

We now define the 1G1B system. In Section 2.3.1, we describe and motivate the model
of the system. In Section 2.4, we define the variables of interest precisely. This facilitates
the definition of the performance metrics in Section 2.5.

2.3.1. SYSTEM DESCRIPTION
Below we provide a list of assumptions that model the 1G1B system, and provide moti-
vation for each assumptions. An illustration of the system is given in Figure 2.1.

1. Each of the nodes has two memories: one long-term memory (good, G) and
one short-term memory (bad, B). The B memories are used to generate new en-
tangled links. The G memories are used as long-term storage (entanglement
buffer).

This is motivated by the fact that storage (G) and communication (B) qubits are
often present in experimental scenarios, where the former is used to store entan-
glement and the latter is used to generate new links [92, 82, 93].

2. New entangled links are generated in memory B according to a Poisson process
with rate 1. New entangled links always have the form ppey.

Physical entanglement generation attempts are typically probabilistic and her-
alded [94, 25]. In other words, the attempt can fail with some probability and,
when this occurs, a failure flag is raised. Therefore, the generation of a single link
may take multiple attempts. The time taken by an attempt is typically fixed (this
is both the case in present-day quantum networks [14] and an assumption that
is commonly made in the theoretical analysis of quantum networks [78, 45, 58]).
Then, the time between attempts follows a geometric distribution. Since the prob-
ability of successful generation and the length of the time step is often small com-
pared to other relevant time scales [14, 85], we use a continuous approximation,
i.e. that the time between arrivals are exponentially distributed. This is a Poisson
process (see e.g. Chapter 6.8 from [95]).

3. When a link is newly generated in memory B, if memory G is empty (no link
present), the new link is immediately placed there. If memory G is not empty,
the nodes immediately either (i) attempt pumping with probability g, or (ii) dis-
card the new link from memory B (probability 1 — g).

This step is included because it may not always be a good idea to carry out pump-
ing, due to there being a possibility of this failing.

4. Links stored in memory G are Werner states.
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Werner states take the simple form
1-F 1-F, _ . 1-F, _, _
pu=FIg* X9 |+ = [0 X [+ = o X~ |+ 517 Xo ],

where {|¢*),|w"),|¢7),|w )} denote the Bell basis. A Werner state corresponds
to maximally entangled state that has been subjected to isotropic noise. The state
in the good memory is therefore fully described by one parameter: the fidelity F
to the target state |¢+ ). Any state can be transformed into a Werner state with the
same fidelity by applying extra noise, a process known as twirling [47, 96]. Hence,
this assumption constitutes a worst-case model.

. While in memory G, states are subject to depolarising noise with memory life-

time 1/T.

Depolarising noise can also be seen as a worst-case noise model [46]. After a time
t in memory, this maps the state fidelity F to

1) 1
F—»e‘”(F——)+—.
4) " 4

. Consumption requests arrive according to a Poisson process with rate y. When

a consumption request arrives, if there is a stored link in memory G, it is im-
mediately used for an application (and therefore removed from the memory). If
there is no link available, the request is ignored.

This means that the time until the next consumption request arrives is indepen-
dent of the arrival time of previous requests, and it is exponentially distributed.
This assumption is commonly made in the performance analysis of queuing sys-
tems (see e.g. Chapter 14 from [55]).

7. Assumptions about pumping:

(a) Pumping is carried out instantaneously.

This is because the execution time is generally much lower than the other
timescales involved in the problem. For example, in state-of-the-art setups,
an entangled link is generated approximately every 0.5 s [14], while entan-
glement pumping may take around 0.5-1073 s [82]. If the nodes are far apart,
classical communication between them would only add a negligible contri-
bution to the purification protocol (e.g. classical information takes less than
107 s to travel over 10 km of optical fiber).

(b) Suppose that the link in memory G has fidelity F and the link in memory B
is in state ppey. If pumping succeeds, the output link has fidelity J(F, ppew),
and remains in the good memory. If pumping fails, all links are discarded
from the system. Here, the jump function J(F, ppew) € [0,1] is dependent
on the choice of purification protocol. Given the assumption that one of the
links is a Werner state, the form of this function is

_ a(pnew) F + E(pnew)
J(F, pnew) = (F, Do) ) 2.1)
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Table 2.1: Parameters of the 1G1B system. See main text for detailed explanations.

Hardware

A Rate of heralded entanglement generation (time between suc-
cessful attempts is exponentially distributed with rate A1)

OPnew Entangled state produced after a successful entanglement gen-
eration

r Rate of decoherence (fidelity of the entangled link decays expo-
nentially over time with rate I')

Application
u Rate of consumption (specified by application)
Pumping protocol

q Probability of attempting pumping immediately after a success-
ful entanglement generation attempt (otherwise the new link is
discarded)

p Probability of successful pumping

J(F, pnew) Jump function: fidelity of the output state following successful
pumping (F is the fidelity of the Werner state stored in the good
memory)

with
P(F, pnew) = ¢(Pnew) F + d(Pnew) (2.2)

where @, b, c, d are functions of Pnew- Here, p(F, ppew) is the success proba-
bility of purification. See Appendix 2.8.1 for an explanation of why the jump
function and success probability take this form.

(c) Pumping succeeds with probability p, which is constant in the fidelity of
memory G. We see from the above that this is a special case, and that in gen-
eral the probability of purification success varies linearly with the fidelity of
the good memory. However, performing the analysis with a constant prob-
ability of success does allow us to find bounds on the operating regimes of
the system by considering the best-case and worst-case values of p (see Sec-
tion 2.6.1). Combining this with Assumption 7b, we see that this is effectively
equivalent to setting c(pnew) = 0. The jump function is then linear in the fi-
delity of memory G, and can be written as

J(F, pnew) = a(Pnew) F + b(0new),
where a:=d/p and b:= b/ p.
Implicit in the above is that the process of entanglement generation, pumping and con-

sumption ((2),(3),(6) and (7b)) are independent. We provide a summary of the parame-
ters involved in the 1G1B system in Table 2.1.
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2.4. SYSTEM DEFINITION

In this subsection, we define the state of the system mathematically, which will be the
main object of study in the rest of this work. We view the state of the system as the
number of rounds of pumping that the link in memory has undergone. From now on,
when we refer to 1G1B, we refer to the stochastic process that evolves according to the
following definition.

Definition 2.1 (1G1B system). Let s(¢) be the state of the 1G1B system at time ¢. This
takes values

i = 0 if there is a link in memory which is the result of i successful pumping rounds,

(2.3)
where i = 0 corresponds to a link in memory that has not undergone any pumping. As-
sume that the system starts with no link, i.e. s(0) = @. The system transitions from state
@ to state 0 when a new link is generated and placed in the good memory, which was
previously empty. The rate of transition from @ to 0 is then given by the entanglement
generation rate A. Pumping success occurs when a new link is produced (rate 1), pump-
ing is attempted (probability q), and pumping succeeds (probability p). Therefore, the
transition from state i to i + 1 occurs with rate Agp. The final allowed transition is from
i to @ which occurs due to consumption or purification failure, which occurs with rate
u+Agl-p).

@ if there is no link in memory,
s(n) =

We also refer to the state i = 0 as the ith purification level. Since the transitions be-
tween each state in 1G1B occur according to an exponential distribution with rate that
is only dependent on the current state of the system, this is a continuous-time Markov
chain (CTMC) on the state space {®,0,1,...}. The resulting CTMC and the rate of transi-
tions is depicted in Figure 2.2. This is the main object of study in our work.

A Agp Agp Aqp
p+ql-pA

Figure 2.2: The transitions of the 1G1B system.

Recall that we are also interested in the fidelity of the link in memory. This is de-
pendent not only on the state s(?) € {¢,0,1,...}, but also on the time spent in the states
leading up to the current purification level. This motivates the following definition.

Definition 2.2. Suppose that s(¢) = i. Then, we define random variable T() to be the
length-(i+1) vector storing the times spent in the recent purificationlevels 0, 1,..., i lead-
ing up to the current one, where time T;(f) was spent in the most recent visit to state j
(j =i-1), and time T;(¢) is the time spent so far in state i. See Figure 2.3 for a depiction
of this.
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We also need a framework with which to compute the fidelity at time ¢. Recalling
assumption (5) of Section 2.3.1, we denote decoherence by the following.

Definition 2.3. Let D;:[0,1] — [0, 1] denote the action of depolarising noise on the state

fidelity F. This has action
_ 1
Di[Fl=e ”(F— i

1
+-.
4

We now formally define the jump function.

Definition 2.4. After successfully applying purification to a Werner state with fidelity F
and a general two-qubit state ppew, the output state has fidelity J(F, pnew). We refer to J
as the jump function of the protocol. The general form of this is given in (2.1).

We note that every purification protocol has a corresponding jump function. The
exact form of J is dependent on the choice of pumping protocol, but in general is a con-
tinuous rational function of F, taking values in [0, 1].

We also need to compute the fidelity after many rounds of decoherence and pump-
ing. This essentially means composing D; and J.

Definition 2.5. Let F(f,..., ;) denote the fidelity after spending time fy,..., ; in each
purification level 0, 1, ..., i. This may be defined recursively as

FD(tg,et) = Dy | JET Vo, ..., ti21), Prew) | 2.4)

with FO () =D 1o [Fnewl, where Fpey is the fidelity of ppew.

Note that F¥) is a continuous and bounded function of its inputs, since the same is
true for D, and J. We are now equipped to define the fidelity of the system.

Definition 2.6. The fidelity of the 1G1B system at ¢ is given by

FO(T () ifs(n=i=0,

P = .( () its(t)=1i 2.5)
0, if s(t) = @.

Note that this formulation can also be adapted to incorporate a system where we
apply a different pumping protocol in each state of the CTMC. In that case, we would
employ a more general recurrence relation:

FD%ty, ..., 1) = Dy, | TP FTD(to, ..., t;i1), Prew) | » (2.6)

where the J is the jump function corresponding to the pumping protocol applied in
state i of the CTMC. For simplicity, however, we study recurrence relations of the form
(2.4). This may be used to model the situation where the same pumping protocol is
applied every time, or provide bounds for using multiple protocols, as we do in Section
2.6.1.
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F@

N

0 ‘ ‘ ‘ i

Figure 2.3: Example of the evolution of the fidelity of the buffered entanglement over time. The fidelity ex-
periences a sudden boost every time a pumping protocol is successful. Then, it decays exponentially due to
decoherence. Each state in the CTMC is identified by the number of times the current buffered link has been
purified. If s(¢) = i, the random variables {Tj (8):j=0,1,..,i—1} are the times spent in each state of the CTMC
immediately leading up to the current state, and X; (¢) is the time so far spent in state i.

2.5. PERFORMANCE METRICS

In this Section, we define two metrics to evaluate the performance of an entanglement
buffering system: the availability and the average consumed fidelity. We also provide
analytical expressions for both metrics in the 1G1B system.

2.5.1. AVAILABILITY

A natural measure for the quality of service provided to users is the probability that a
consumption request may be served at any given time. If there is a link stored in the
good memories, the consumption request is immediately served. However, if there is no
entanglement available, the request is ignored. Letting P(s(#) = i) be the probability that
the system is in state i at time ¢, we define the steady-state distribution as

;= [llr&P(s(t) =1). 2.7
Then, we define our first performance metric as follows.
Definition 2.7 (Availability). The availability A is defined as
A=1-14, (2.8)
which is the probability that there is a link in memory in the limit ¢ — oo.

This definition can be applied to any entanglement buffering setup. In the 1G1B sys-
tem, the availability is well-defined, as shown in Appendix 2.8.2. Moreover, it is possible
to derive a closed-form expression for the availability, as stated in the proposition below.

Proposition 2.1. Consider the 1G1B system (Definition 2.1). The availability is given by
A

A=l-1g=——"——, 2.9
7o A+pu+Aqg(l-p) (2.9
and the rest of the steady-state distribution is given by
A+l gipi
ar_... (2.10)

nj=—""77T7T
(/J+ﬂ,q)l+1
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See Appendix 2.8.2 for a proof of this proposition. We note that this can be derived
in a straightforward manner using the balance equations for a CTMC. Instead, we use
renewal theory, for two reasons. Firstly, this approach ties in neatly with the proof of
the formula for the average fidelity (see the next subsection). Secondly, this approach
provides a formula for the availability that is more general, as it also applies to the case
where entanglement generation is described by a general random variable instead of
being exponentially distributed. See Appendix 2.8.2 for the general formula for the avail-
ability.

2.5.2. AVERAGE CONSUMED FIDELITY

The quality of service of an entanglement buffering system can also be measured in
terms of the quality of the entanglement provided to the users. Therefore, the average
fidelity of the entangled links upon consumption can be used as an additional metric to
assess the performance of the system.

Definition 2.8 (Average consumed fidelity). The average consumed fidelity is the average
fidelity of the entangled link upon consumption, in the steady state. More specifically,

Fi=lim E[F(5)|s() #9]. 2.11)

In the definition of F, we condition on not being in @ since consumption events
do not happen when there is no link present. As before, this performance metric can
be applied to any entanglement buffering setup. In the case of the 1G1B system, it is
possible to derive an analytical expression for F which explicitly depends on the steady-
state distribution. The formula is given in the following theorem.

Theorem 2.1. In the 1G1B system, the average consumed fidelity can be written as

_ 1 x>
F= ch T (2.12)
wherenw; =lim;_.oo P(s(t) = i), and
¢ =E[F?(Qo, Q1 Q)] (2.13)

where A is the availability, Qg, Qy, ..., Q; arei.i.d. random variables with Qy ~ Exp(u+A1q),
and F is given in Definition 2.5.

Sketch proof of Theorem 2.1. Afirst step is to expand by conditioning on the value of s(¢),

ELF(5)Is(r) # @] = ) E[F(1)]s(t) = il P(s(£) = i|s(r) # @)
i=0

P(S(t) %) ; [F(5)|s(r) = i]P(s(1) = 0).
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Figure 2.4: An example timeline of the 1G1B process. Black dashes are link generation and removal. Shorter
purple dashes are pumping rounds. If there is a link present at time ¢, the random variable C(¢) is the total
time spent so far in =@ (link present). Pumping rounds occur within the time C(¢) as a Poisson process with
rate Agp. This may be used to characterise the distribution of T(¢) in the limit # — oo, which is needed to prove
Theorem 2.1.

In Proposition 2.5 (Appendix 2.8.2), we show that, when ¢ — oo, the limit can be brought
inside of the sum, and so

F= tle E[F(8)|s(t) # @]

1 [e.e]
==Y m;- Uim E[F(9)|s(1) = i],
Ajip o
where we have used the definition of the steady-state distribution and the availability
(see (2.7) and (2.8)). The values 7; may be computed using Proposition 2.1. The remain-
ing work is then to show that

lim E[F(0)1s() = 1] =E[F? (Qo,..., Q1] (2.14)

which essentially requires the characterisation of the limiting distribution of T(), since
from Definition 2.6 we recall that E[ F(£)|s(f) = i] = E[F) (T(#) |s(¢) = i] . This is achieved
with the following result: conditional on s(t) = i, T(t) — (Qo,...,Q;) in distribution as
t — oo, where the Q; are i.i.d. random variables with Qy ~ Exp(u + 1q). There are two
main steps to show this (see Figure 2.4 for graphical intuition):

1. Let C(¢) be the total time spent so far in ¢ (link in memory G) at the time ¢. The
first step is to show that C(#) — C in distribution as ¢ — oo, where C ~ Exp(u +
Aq(1 — p)). This is shown with renewal theory. For more details, see the results of
Appendix 2.8.2.

2. Characterise the limiting distribution of the time spent in each purification level
within the time C(7). These are the T;(#). We use the fact that pumping rounds
occur as a Poisson process within the time C(t). For more details, see the results
of Appendix 2.8.2.

Finally, since F @ is a continuous function of its inputs, (2.14) follows. O

For the full proof, see Appendix 2.8.2. The particularly simple form of (2.13) can be
attributed to the fact that in a CTMC, the time spent in a state is not influenced by the
state to which the system transitions. As an example, in the CTMC from Figure 2.5, the
time spent in state B before a transition does not depend on the transition itself, and this



2.6. ENTANGLEMENT BUFFERING WITH A LINEAR JUMP FUNCTION 29

time is exponentially distributed with rate 5, + r3c. In the 1G1B system, the times spent
in the states j =0,1,...,7 — 1 leading up to state i are all exponentially distributed with
rate Agp+up+21q(1—p) = u+Aq. As a consequence, the average fidelity after i successful
purifications, c¢;, does not depend on the probability of successful purification p.

I'sc

I'pa

Figure 2.5: In a CTMC, the time spent in a state is independent of the transition that happens next. In this
example, the time spent in state B before leaving is exponentially distributed with rate rg4 + rzc.

Having systematic closed-form expressions for the functions F) enables the effi-
cient computation of ¢; and, therefore, F. The calculation of F® in closed-form for a
general J is quite involved, since the recurrence relation (2.4) becomes a rational differ-
ence equation with arbitrary coefficients. However, in the following sections we consider
a jump function which is linear, for which it is possible to find a closed-form solution for
F.

2.6. ENTANGLEMENT BUFFERING WITH A LINEAR JUMP FUNC-
TION
In a purification protocol with a linear jump function, the output fidelity is a linear func-
tion of the fidelity of one of the input entangled links. When the probability of successful
purification is constant with the fidelity of the good memory, as we assume in 1G1B, this
implies that the jump function is linear. This is shown in Appendix 2.8.1. In this Section,
we compute a closed-form solution for the average consumed fidelity in a 1G1B system
assuming a linear jump function. Then, we analyse the performance of the system us-
ing the performance metrics defined in Section 2.5 (availability and average consumed
fidelity). In Section 2.6.1, we focus on bilocal Clifford protocols, an important type of
purification scheme. For a given value of target availability, we provide upper and lower
bounds on the average consumed fidelity that can be achieved by any bilocal Clifford
protocol in the 1G1B system.
Purification protocols with linear jump functions are relevant for two main reasons:

() Purification protocols are generally more effective within some range of input fi-
delities (the increase in fidelity is larger when the input fidelities are within some
interval). If the system operates within a small range of fidelities, one may approx-
imate the true jump function with a linear jump function.

(i) One can find linear jump functions that upper and lower bound a set of jump
functions of interest. These may then be used to upper and lower bound a fidelity-
based performance metric (such as the average consumed fidelity) of a system that
has the freedom to employ any of these jump functions.

In Appendix 2.8.4, we demonstrate (ii) in the case where bilocal Clifford protocols are
employed in the 1G1B system. The output fidelity of a bilocal Clifford protocol can be
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upper and lower bounded by nontrivial linear functions when one of the input states is
a Werner state (using some additional minor assumptions).

Consider a pumping scheme that takes as input a Werner state with fidelity F and an
arbitrary state ppew. In the 1G1B system, these are the states in the good and the bad
memories, respectively. A linear jump function can be written as

J(E pnew) = a(pnew) F + b(Pnew), (2.15)

with 0 < a(pnew) < 1 and (1 — a(Pnew))/4 < b(Pnew) < 1 — alpnew), as shown in Proposi-
tion 2.6. In what follows, we implicitly assume that a and b depend on ppew-

We now derive a closed-form solution for the average consumed fidelity of 1G1B
when the jump function is linear, using Theorem 2.1. The formula requires knowledge of
the steady state distribution {r; : i = ¢,0,1,...}, and the expected fidelities c;, as defined
in (2.13). Recall that we assume a constant p, and therefore the steady-state distribution
is independent of the jump function. Hence, we can use the formula for 7; from Propo-
sition 2.1. The work then lies in computing the c;, which are dependent on the choice
of jump function, recalling their definition in (2.13). From the same equation, we see
that the first step to compute c; is to find an explicit solution for the function F). The
linear jump function (2.15) allows us to do this by solving the recurrence relation (2.4).
The explicit form of F'¥) is provided in the following proposition (see Appendix 2.8.3 for
a proof).

Proposition 2.2. Consider a 1G1B system with J(F, pnew) = aF+b and F© (ty) = Dy, (Fpew),
where Fyey is the fidelity of the state ppew. Then,

, i
FO(ty, ey timg, 1) = 7 4 Y miD @ittt (2.16)
j=0

=

where the constants mﬁ.’j are given by m(()m = Few— 1, and
i—i 1 P
0 ={“l H§+b-1), ifj>0,

m\ )
] a' (Fnew — i) ifj=0.

(2.17)

fori>o0.

In the following Lemma, we use the formula for F) (found in Proposition 2) and
combine this with Theorem 2.1 to derive a closed-form expression for ¢;, and therefore
for the average consumed fidelity.

Lemma 2.1. Consider a 1G1B system with J(F, ppew) = aF + b and F© (ty) = Dy, (Faew),
where Fyey is the fidelity of the state ppew. Then, the average fidelity after i = 0 purification
rounds is given by

1 1 - a 1 l—aiyi
Y ~IS— Y ’+1+(—+b——) , 2.18
Ci 4 ( new 4) ay 4 4 Y 1—(,1)/ ( )

wherea = i+ Aq andy = a/(a +I'). Moreover, the average consumed fidelity is given by

%r"' blqp"’Fnew(,u'"/lq(l —P))

ﬁinear: . 2.19
: I'+u+Ag(1-pa) @.19)
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The closed-form solution (2.19) is obtainable since F = lAZ‘I.":’Onici is a geometric
series with the linear jump function, as can be seen from the form of 7; and ¢; as found
in Proposition 2.1 and Equation 2.18. In the following proposition, we see how F varies
with p and g.

Proposition 2.3. The quantity Fy.., has the following properties:
(@) Fiinear is @ monotonic function of q;

() Fiinear IS a monotonic function of p;

We provide a proof of Lemma 2.1 and Proposition 2.3 in Appendix 2.8.3. We now
have closed-form expression for A and Finear, Which allows for a thorough analysis of
the performance of the 1G1B system with the linear jump function. In particular, the
following conclusions may already be drawn.

* Result (a) from Proposition 2.3 implies that the average consumed fidelity is maxi-
mized for g =0 or g = 1. Consider a 1G1B system with a fixed set of parameters and
a pumping scheme with a linear jump function. If the pumping protocol is good
enough (e.g. when b = Fpew(1 — a), as explained in Appendix 2.8.3), then pump-
ing every time a link is generated (g = 1) maximises the average consumed fidelity.
Sometimes, the pumping protocol chosen may impact the average consumed fi-
delity negatively and in that case one should never pump entanglement (g = 0) to
increase the average consumed fidelity.

 Result (b) from Proposition 2.3 provides similar insights: a pumping protocol with
a good jump function always benefits from a larger probability of success, i.e. Fipea
is maximized for p = 1. When the protocol is detrimental, failure (p = 0) benefits
the overall procedure, since it frees the good memory and allows for a fresh entan-
gled link to be allocated there.

When the jump function is good (i.e. when Fiinear iS monotonically increasing in q),
we observe a trade-off between Fj;.,, and the availability A, which is a decreasing func-
tion of g, as can be seen from (2.9). This behaviour is shown in Figure 2.6. If we rarely
purify (small g), a low-quality entangled state (small Fj;,,,) will be available most of the
time (large A). In that case, the average consumed fidelity can be lower than the fidelity
of newly generated links, since the entanglement is not being purified often enough to
compensate the noise introduced by the memory over time (in Figure 2.6, the average
consumed fidelity is below the dashed line for small g). When purification is performed
more often (larger ), the quality of the stored entanglement will be higher (larger Fyca),
at the expense of a more limited availability (smaller A), since purification can fail and
destroy the entanglement stored in the long-term memory. This trade-off disappears
when the pumping scheme is deterministic (p = 1): the availability remains constant
when varying g since purification will always succeed and the stored entanglement will
not be destroyed. Note that, if the system is dominated by decoherence (I' > A, ), the
average consumed fidelity will always be smaller than F.

As a validation check, we also implemented a Monte Carlo simulation of the 1G1B
system, which provided the same availability and average consumed fidelity that we
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Figure 2.6: Trade-off between average consumed fidelity and availability. When the pumping is good enough
(see discussion in main text), the average consumed fidelity F (black line) increases with increasing purifi-
cation probability g, while the availability A (orange line) decreases. The dashed line corresponds to the
fidelity of newly generated links (Fhew = 0.8). Other parameters used in this example (times and rates in
the same arbitrary units): A =1, u =0.1, p = 0.75, T = 1/40, J(F pnew) = (1/3)F + (1 + Fnew)/3, Pnew =
Few |¢T X ¢ |+ (1= Fnew) (Jw ™ Xy ™|+ v~ Xw ™| +|¢p~X¢|) /3. This jump function corresponds to a lin-
ear approximation of a specific bilocal Clifford protocol (the DEJMPS protocol) in the high-fidelity regime [50].

obtained analytically (our code is available at https://github.com/AlvaroGl/buffering-
1G1B).

2.6.1. OPERATING REGIMES OF BILOCAL CLIFFORD PROTOCOLS

In this Subsection, we study the operating regimes of the 1G1B system, under the as-
sumption that the pumping protocol employed is a bilocal Clifford protocol [84, 97].
Firstly, we find upper and lower bounds for the availability. Then, for a desired value
of the availability within these bounds, we find lower and upper bounds for the average
consumed fidelity that can be provided by bilocal Clifford protocols. This analysis finds
limits to the performance of the 1G1B buffering system.

Bilocal Clifford protocols are one of the most well-studied types of protocol [84, 97,
98]. One of their main advantages is that they are relatively simple to execute, since they
involve a basic set of gates. To the best of our knowledge, bilocal Clifford circuits have
been the only purification protocols implemented experimentally so far (see, e.g. [82,
83]). In Appendix 2.8.4 we provide further details on bilocal Clifford protocols.

Let us start our performance analysis by discussing the availability. The maximum
value that can be achieved by any protocol (bilocal Clifford or not) is A/(A + u), as can
be seen from (2.9). This maximum value is obtained when there is no pumping or the
pumping protocol succeeds deterministically, i.e. when g =0 or p = 1. The availability
is lower bounded by A/(21 + p), and the minimum value is attained when a pumping
protocol is always applied and it never succeeds, i.e., when g =1 and p = 0.

To find bounds for the average consumed fidelity, we first need to bound the jump
functions of all bilocal Clifford protocols, which we do in the following Lemma. We
only consider nontrivial protocols, i.e. we do not consider bilocal Clifford protocols with
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J(F, pnew) = F or J(F, pnew) = Fnew, Where Fpey is the fidelity of ppew. The former trivial
jump function corresponds to a protocol that leaves the buffered link untouched, while
the second trivial jump function corresponds to a protocol that replaces the buffered link
by the newly generated link.

Lemma 2.2. Let J(F, pnew) be the jump function of a nontrivial bilocal Clifford protocol

(J(F, pnew) # F and J(F, pnew) # Fnew, Where Fyey is the fidelity of pnew). Assume pnew is a
Bell-diagonal state:

Prew = Few | DN @F| + A1 [FFNFF |+ 2 ¥ NPT+ A3 1D XD, (2.20)

with Fpew + A1+ A2 + A3 = 1. Let us define F* as

_ 2Fpew— 1+ \/(2Fnew - 1)2 —2Amin (1 —2Fnew — 2Amin)

F*
2(2Fnew -1+ 2/lmin)

(2.21)

where Apin = min(A1, A2, A3). Then, forall F € [%,F*], the jump function is lower bounded
as follows:

alF + b, < J(F, pnew) (2.22)
where
@ = 2(4F* - 1) [2Fr1ew - (Fnew + /lmin) (Fnew + Arna.x)] + 4(/lrnax - /lmin)(l - F*) and
e (4F* —1) [(4Fnew + 4Amax — 2)F* +2 — Frew — Amax] ’
p, = [oew+ Amax _ @ 2.23)

2 4
with Amax = max{Ay, Az, A3}. For F € [1/4,1], the jump function is upper bounded as

J(E pnew) < a,F + by, (2.24)
with 4(1 — Fpew) 4F, 1
a, = % and b, = “"TW (2.25)
Moreover, the success probability of the protocol is bounded by p, < p < p,, where
1
pi=3, and p,=Frey + max(dy, 12, 3). (2.26)

A proof of Lemma 2.2 can be found in Appendix 2.8.4. We show this by consider-
ing properties of the jump functions of bilocal Clifford protocols, which may be found
explicitly. Note that, despite the fact that we assume that newly generated entangled
links are Bell-diagonal, other forms of the density matrix are also valid in practice, since
they can be brought to Bell-diagonal form by adding extra noise [47, 96]. Note also
that the lower bound for the jump function (2.22) only applies when the fidelity of the
buffered link is below F*, but this is always the case in the 1G1B system, as shown in
Appendix 2.8.4.

If we regard Fpew as a fixed parameter, the upper and lower bounds to the jump func-
tion (2.22) and (2.24) are linear in F, and the bounds to the success probability (2.26) are
constant. It is now possible to find an upper and lower bound for the average consumed
fidelity by combining Lemmas 2.1 and 2.2, as we do in the following corollary.
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Corollary 2.1. The average consumed fidelity of the 1G1B system when using any (non-
trivial) bilocal Clifford protocol is lower bounded by

il" + b]ﬂ,(/]p + Fnew(lJf+ /167(1 - pl))
F = , 2.27)
F'+pu+Aq(1-pa)

and upper bounded by

_ %r+bulqp“’Fnew(ﬂ'*'/lq(l_pu))
F, = (2.28)
I'+u+AqQ1-pya,)

where ay, by, py, a,, b,, and p,, are given by (2.23), (2.25), and (2.26).

Now, we analyse the limits of the performance of the 1G1B system using the bounds
on F from Corollary 2.1. Let us start with a 1G1B system with perfect memories, i.e. with
I' = 0. This corresponds to an ideal situation that we can use as a benchmark: once we in-
troduce noise, the average consumed fidelity will be lower than in this ideal case. Figure
2.7(a) shows the achievable combinations of average consumed fidelity and availability
for Fhew = 0.8, generation rate A = 1, and consumption rate u = 0.1. Below, we list some
important observations that may be drawn from this Figure:

* The regions shaded in grey correspond to unattainable values of average fidelity
and availability, and they apply to any pumping scheme (bilocal Clifford or not).
The average consumed fidelity cannot be larger than the one provided by a hy-
pothetical protocol with jump function J(F, pprew) = 1 and probability of success
p =1, which is applied with probability g = 1 (however, such a protocol does not
exist).

* The performance of a 1G1B system that uses any bilocal Clifford protocol is con-
tained within the region shaded in blue and yellow. The yellow/blue line cor-
responds to a hypothetical protocol with jump function and success probability
saturating the lower/upper bounds from (2.22) and (2.26). For a fixed target avail-
ability, the blue line provides an upper bound on the maximum average consumed
fidelity that can be achieved by using bilocal Clifford protocols. Here, we observe
again the tradeoff between both performance metrics: if our target availability is
very close to the maximum value, we cannot increase the average consumed fi-
delity beyond Fpew (dotted line); but as we decrease the desired availability, we
can achieve a higher consumed fidelity until we reach a maximum value.

* As a reference, we show the performance of the replacement protocol (red star):
in such a protocol, every time a new link is generated in the bad memory, the
link in the good memory is replaced by the new one, without any form of pu-
rification. The replacement protocol is not bilocal Clifford because success is al-
ways declared (in bilocal Clifford circuits, success depends on some measurement
outcomes [34]). This simple protocol achieves maximum availability, given by
A = A/(A+ p). However, since no purification is performed, this protocol cannot
increase the fidelity above the initial value Fye,. In the absence of decoherence,
the replacement protocol is equivalent to applying no purification at all (g = 0).
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In Figure 2.7(b), we perform a similar analysis for a 1G1B system in which the good
memory has a finite lifetime, i.e. I' > 0. This is a more realistic scenario. The following
observations may be drawn from this Figure:

* Imperfect memories decrease the average consumed fidelity but do not affect
the availability. The availability is unaffected by the decoherence experienced by
the entangled links, and therefore can take the same range of values as in Figure
2.7(a).

* The replacement protocol no longer provides an average fidelity Fpew. Instead,
the average fidelity is lower than Fyey since the quality of the state stored in the
good memory decreases over time and is never increased beyond Fyew due to the
absence of purification. However, the replacement protocol performs better than
no pumping at all (q = 0). This is because the system can improve its fidelity every
time a new link is produced, instead of waiting for a consumption event.

¢ In the presence of noise, the lower and upper bounds for bilocal Clifford proto-
cols also shift towards lower values of average fidelity. Both the upper and lower
bounds take their minimum value at g = 0. This means that, in the presence of
noise, any pumping protocol will increase the average consumed fidelity, i.e. any
pumping (g > 0) is better than no pumping (g = 0), even if it succeeds with the
lowest-possible probability. This is in contrast to when there is no noise (Figure
2.7(a)), where the lower bound takes its minimum at g = 1 and no such conclusion
can be drawn. In fact, this conclusion (any pumping is better than no pumping)
always applies when the amount of noise, T', is above the following threshold:

Frew(l—a) - b
4Fpew(l—p)+@b+a)p-1’

T'>4up (2.29)

where a, b, and p are given by the choice of purification protocol (see (2.15)). In
Appendix 2.8.3 we compute this threshold analytically.
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Figure 2.7: Noise in the memories decreases the average consumed fidelity but does not affect the availability.
Bounds on the performance of a 1G1B system with a bilocal Clifford protocol, and with (a) noiseless memories
(I = 0) or (b) noisy memories (I' = 5- 1072 a.u.). For a given target availability, the average consumed fidelity
is within the blue/yellow region (see Corollary 2.1). Availability is maximized for g = 0 (¢ is the probability of
purification after successful entanglement generation), and it decreases for increasing q. White regions cannot
be achieved by bilocal Clifford protocols. Striped regions cannot be achieved by any pumping protocol. Red
star: performance of the replacement protocol (buffered link is replaced by new links). Dotted line: fidelity
of newly generated entangled links. Parameters used in this example (times and rates in the same arbitrary
units): A =1, g =0.1, Fnew = 0.8, pnew = Frew [@F X¢T |+ (1= Fnew) (Jw ™ Xu ™|+ v~ Xy~ |) /2.



2.7. CONCLUSIONS AND OUTLOOK 37

2.7. CONCLUSIONS AND OUTLOOK

Our work sheds light on how to buffer high-quality entanglement shared among remote
nodes in a quantum network. We have proposed two metrics to measure the perfor-
mance of an entanglement buffering system: the availability and the average consumed
fidelity. The availability corresponds to the fraction of time in which entanglement is
available for consumption. The average consumed fidelity measures the quality of the
entanglement upon consumption. We have used these performance metrics to analyse
the 1G1B system, an entanglement buffering setup that uses two quantum memories
per node. One of these memories has a finite lifetime and is used to buffer the entangle-
ment, while the other memory is only used for entanglement generation. Entanglement
generated in the bad memory can be used to pump the entanglement stored in the good
memory. We have modelled the system as a continuous-time stochastic process and
derived analytical expressions for both performance metrics. Our results confirm the
intuition that, except in some edge cases, there is a trade-off between consuming en-
tanglement at a high rate (high availability) and consuming high-quality entanglement
(high average consumed fidelity). Remarkably, we found that, in a practical scenario (i.e.
when the pumping protocol is bilocal Clifford and there is noise in the good memory),
pumping the buffered entanglement is better than no pumping in terms of average con-
sumed fidelity, even if the pumping has some probability of failure.

An assumption that allows us to find analytical solutions for our performance metrics
is that the success probability of purification is constant over time. The model would
be more realistic if the probability of successful purification was dependent on the state
fidelity at that time, since this is the case for most protocols (in particular, the probability
of successful purification is typically lower for input states with lower fidelity). This may
mean that, realistically, the computation of the average fidelity when conditioning on
successful purification may bias the system towards higher fidelity. However, we believe
the comparison of our model (constant success probability) with a more realistic one
incorporating this effect (success probability dependent on F(t)) to be beyond the scope
of this work, since we expect this to greatly complicate the analysis of the problem.

Our proposed metrics can be used to evaluate the performance of other entangle-
ment buffering systems. An interesting extension of this work would be to compare
the performance of the 1G1B system to a bipartite entanglement buffering setup with
n quantum memories per node. In such a system, one could employ more advanced pu-
rification protocols that consume more than two entangled states. We also expect that
the mathematical framework developed in this work can be used to initiate the perfor-
mance analysis of more complex systems. We leave this as future work.

2.8. APPENDIX

2.8.1. GENERAL FORM OF JUMP FUNCTION

In this Appendix, we explain the form (2.1) and (2.2) of the jump function and success
probability for a general purification protocol, for two input states pw and ppew, where

sy 1=F, . . 1-F,_ . . 1-F, _, _
O Lt e e U R I P Ve
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is a Werner state and ppew is a general two-qubit state. Suppose that the purification
protocol is described by a sequence of (possibly noisy) quantum operations that are de-
scribed by a CPTP map A, and the final measurement outcome that signals success has
measurement operator Mg,c.. From e.g. Chapter 2.4 of [11], the output state is then
given by

r MsuccA (Pw ® pnew) M;ucc

s 2.30
p(F, pnew) ( )

where

P(F pnew) =Tr [MsuccA (PW ® Pnew) M;rucc . (2.31)

We next rewrite the Werner state as
pw=F|p"X¢* [+ 1 -F)p*
=pt+F(lo*Xo*|-p")
where .
o= (v Xy |+ v Xw |+l Xo7 ),

and p is the probability of success. We therefore have

MisyccA (Pw ® Pnew) M;rucc = MsuccA (Pl ® Pnew) M:ucc
+F- MSHCC‘A ((|¢+ ><(P+ | - pl) ® Pnew) M;uccr

and taking the trace of the above yields
P(F, Pnew) = d(Pnew) + F- c(Pnew),

where ¢ and d are obtained from the choice of purification protocol, i.e. from A and
Miuycc- Similarly, the output fidelity of upon success is given by

’

ST et _F'a(Pnew)"‘E(Pnew)
@le'le) P, prew)

where

&(pnew) = <(rb+ | MSUC0A ((|¢+ ><(»b+| - pJ_) ® Pnew) Mgucc i(,b+> )
B(Pnew) = <(,b+ | Msuce A (PL ® pnew) M;rucc |Qb+> .

This confirms the form (2.1) and (2.2) for the jump function and success probability.

2.8.2. FORMULAE FOR PERFORMANCE METRICS

In this Appendix, we prove Proposition 2.1 and Theorem 2.1, which provide the formulae
for our two performance metrics (availability and average consumed fidelity). Firstly, we
describe the stochastic process in the 1G1B setup in a simplified form and we provide
some intermediate results that are necessary for the main proofs. Then, we employ those
results to prove Proposition 2.1 and Theorem 2.1.
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Figure 2.8: The simplified 1G1B process. The system alternates between the states =@ (link in memory G) and
@ (no link in memory G). The system starts in =@. The times spent in 7@ and @ are denoted by Y; and Z;,
respectively.

SIMPLIFIED 1G1B
We now only view the 1G1B system as taking one of two states: @ (no entangled link in
memory G), or 7@ (link in memory G). The system then alternates between these two
states. For an illustration, see Figure 2.8.

More formally, the simplified 1G1B process is the following.

Definition 2.9 (Simplified 1G1B). Let r(¢) € {@, 7@} denote the state of simplified 1G1B
at time t. Suppose that r(0) = 7@, i.e. the system starts when there is a link in memory
E Let Y] be the time until this first link is removed, and let Z; be the time for which the
system is empty until a fresh link is produced again. Let {Y;};>; be the times spent in =@
until the link was removed from memory G (due to consumption or failed purification),
and {Z;};>) be the times which the system spent in ¢ until a link was produced. Then,
according to our model of 1G1B, the Y; are i.i.d. and exponentially distributed with rate
B=p+Aqg(l- p),and the Z; are i.i.d and exponentially distributed with rate A.

Recall that A is the rate of generation of new entangled links, u is the rate of con-
sumption of links in memory G, q is the probability of immediately using new links for
pumping, and p is the probability of successful pumping.

We will write the distribution functions as Fy () = P(Y; <) =1- e Pt and Fz(t) =
P(Zy<t)=1-e M. The process X; := Y; + Z; defines a renewal process, which we intro-
duce with the following definition.

Definition 2.10. A renewal process {N = N(t) : t = 0} is a process such that
N(t)=max{n: A, <t} (2.32)

where Ag =0, A, = Xj +...+ X, for n = 1, and X; is a sequence ofi.i.d. and strictly positive
random variables.

The value A, is referred to as the nth arrival time of the process, and the values X;
are known as the interarrival times. From now on, we also use Ag =0, A, = Xj +....+ X,
to denote the nth time at which a fresh link is produced, causing the system to move
from @ into 7 @.

The renewal function is central to renewal theory, which we define below. Through-
out, we use the convention dg(x) = g’ (x)dx for differentiable functions g.

Definition 2.11. Let N(¢) be a renewal process. Then, the renewal function is m(¢t) ==
E[N(D)].
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We will derive formulae for the availability and average consumed fidelity using this
mathematical framework. An important result that we will use in order to do this is
the renewal theorem, which we state below. This result assumes that the X; are not
arithmetic. If X is arithmetic, this essentially means that X; only takes values in a set
{mk:m=0,%1,...}, with k£ > 0. For more details of arithmetic random variables, see
Chapter 10 of [95].

Theorem 2.2 (Renewal Theorem/ Theorem 10.1.11 from [95]). Consider a renewal pro-
cess as given in Definition 2.10. Let Fx be the distribution function of the random variable
X1, where X is not arithmetic. Let H(t) be a bounded function. Consider solutions f to
the renewal-type equation

t
f(t):H(t)+f0 f(t—x)dFx(x). (2.33)
Then, a solution is
t
(&) =H(r) +f H(t—x)dm(x). (2.34)
0

If H is bounded on finite intervals then f is bounded on finite intervals, and (2.34) is the
unique solution of (2.33) with this property.

The renewal-type equation often arises when studying renewal processes, as we will
see further on. The following result may be derived using Theorem 2.2, and is useful
when taking the infinite limit.

Theorem 2.3 (Key renewal theorem/Theorem 11.2.7 from [95]). If g : [0,00) — [0,00) is
such that

(@) g(t)=0forallt,
®) [fy°gr)dt <oo,
(c) g is anon-increasing function,

then

. t l >
thl&fo gt—x)dm(x) = [E[Xl]fo g(x)dx,

whenever X; is not arithmetic.

We are now partially equipped to show the formulae for the availability and average
fidelity. Next, we show a set of intermediate results that we will need for the main proofs.

Proposition 2.4. Let p(t) = P(r(t) = = @) be the probability that a link is available at time
t in the simplified 1G1B process. Then,

E(Y7)

—_—. (2.35)
E(Y1) +E(Z1)

lim p(f) =
t—o00
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Proof. We proceed by conditioning on the value of X;. Now,
p)=Pr(®)=-9nX1>0)+Pr{)="9nX; <) (2.36)

Notice that the event {r(#) = 7@ n Xj > t} occurs if and only if Y; > t. Further, if x < ¢,
then

P(r(t)=¢|X; =x)=p(t-x), (2.37)
since the process starts afresh at time x. Then, (2.36) becomes
t
p(H) =1—Fy(t) +f0 p(t—x)dFx(x), (2.38)

where dFx (x) = Fg((x)dx. We now see that this is of the form (2.33) with H(¢t) =1 - Fy (1),
and so by Theorem 2.2,

t
p(t) = 1—Fy(t)+f (1-Fy(t—x))dm(x). (2.39)
0
Taking the infinite limit,
t
tlim p(t)=1—1+tlimf (1-Fy(t—x)dm(x). (2.40)
—00 —00 0

It can be seen that H(t) = 1 — Fy(?) satisfies the conditions (a)-(c) required by Theorem
2.3, so we may apply this Theorem to take the limit:

. 1 <
tlggop(t) = Ex fo (1-Fy(x))dx (2.41)
- f P(Y; > 0dx = 2L (2.42)
E[X1] Jo E[X;]
Finally, using E[X;] = E[Y; + Z1] = E[Y1] + E[Z;] suffices to show (2.35). O

Recall that the average fidelity of the system at a given time ¢ is dependent on the
time spent in each purification level leading up to this point. Therefore, in order to un-
derstand the average fidelity we first of all look at the current lifetime in this simplified
setting.

Definition 2.12 (Current lifetime). Consider the simplified 1G1B system. Let C(f) be the
time spent so far in a state at time . More formally,

C(t):{t_ANm’ ifr(f) =9, (2.43)

t—ANn@ — YN+, if r(6) = @.

The first case (r(¢) = —@) is of most interest here, because it corresponds to when a
link is in memory and is subject to decoherence. See Figure 2.9 for an illustration of this
concept. In the following Lemma, we characterise the distribution of C(#), conditional
on being in the state = @.
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Figure 2.9: Current lifetime of the simplified 1G1B process. The random variable C(¢) denotes the time spent

so far in the current state at time ¢. This is most interesting when r () = =@, because it tells us the age of a link
in memory.

Lemma 2.3. Consider the simplified 1G1B system. The limiting distribution of C(t) con-
ditional on there being a link is given by

. _ 1 ©
tlggoP(C(t)>x|r(t)— @)——E[Yﬂfx (1-Fy(s))ds, (2.44)

which is an exponential distribution with parameter 3 when Y1 ~ Exp(f).

Proof. Writing

P(CH)>xnr(t) =)
P(C(¢ 1)="¢@)=
(C() > x|r(n) ) U =)

we see that the bottom of the fraction has already been dealt with in Proposition 2.4. We
therefore focus on

) (2.45)

G(t,x)=PCH)>xnr(t)="9). (2.46)

Conditioning on X;, we see that
Gt,x)=P(CH)>xnr(®)=9onX1>N+PCH>xnr()="onX;<t). (2.47)

Now, the event {C(f) > xnr(t) = 7@ N X; > t} occurs if and only if ¥; > ¢ > x. Moreover,
if y < t then the process starts afresh from time y, and

PCH>xnr(®)="@|X1=y)=G(t-y). (2.48)

Then, noting that G(¢,x) =0 for ¢ < x, (2.47) becomes

t
G(t,x) =12 (1 = Fy (1)) +f0 G(t-y)dFx(y), (2.49)

which is in the form of (2.33) with H(t) = 1 (= (1 — Fy(¢)). Then, by Theorem 2.2, G(t, x)
is given by

¢
G(t,x) = Ly=x» (1 - Fy(2) +f0 T yz (1= Fy(t=y))dm(y) (2.50)

which has limit

t—x

tlim G(t,x) =0+tlim (1-Fy(t—y)dm(y) (2.51)
—00 —0o0 Jo

§—00

N
= lim[ (1-Fy(s+x—y)dm(y), (2.52)
0
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letting s = £ — x. Then, noting that g(s) = 1 — Fy (s + x) satisfies conditions (a)-(c) of The-
orem 2.3, we may apply this to find

tlir&G(t,x) EIX] f g(s)ds [E[X f (1-Fy(s+x))ds (2.53)
[E[le (1-Fy(s))ds. (2.54)
From Proposition 2.4, we observe that
E[Y1]

ElX:] =

lim;—.oo P (r(t) = @) "

We can use this to rewrite (2.54) as follows:

}L%P(C(t)>x|r(t)=—'®) f (1-Fy(s)ds, (2.55)

E[Y1]
which we notice is only dependent on the distribution of Y;. In the case Y7 ~ Exp(f), as
considered in the 1G1B system,

lim P(C(1) > xIr(1) = ~9) = ﬁf e Psds = e7P¥, (2.56)
m ;

and so conditional on there being a link, the current lifetime approaches an exponential
distribution. O

We have now characterised the availability (Proposition 2.4) and current lifetime
(Lemma 2.3) for the simplified 1G1B system. However, note that both Proposition 2.4
and Lemma 2.3 assumed that the system starts in the state r(0) = =@. This was neces-
sary in order to satisfy all of the conditions (a)-(c) of Theorem 2.3. The result below states
that Theorem 2.3 still holds, even if the renewal process is delayed, which means that the
first arrival has a different distribution to the others. For more details of delayed renewal
processes, see [95] or [99].

Definition 2.13. Let {X;};>; be independent positive random variables such that {X;};>2
have the same distribution. Let Ag =0, A, = Z;’zl X;, and N4 = max{n: Ay, < t}. Then,
NY(¢) is a delayed renewal process.

Definition 2.14. Let N9 be a delayed renewal process. Then, md(1) = E[NY(1)] is the
delayed renewal function.

Theorem 2.4 (Key renewal theorem for delayed renewal processes/Theorem 1.20 of [99]).
Consider a delayed renewal process N(t). If g : [0,00) — [0,00) satisfies the same condi-
tions (a)-(c) of Theorem 2.3, then

t 1 00
. _ d _
}LI&L gt—x)dm“(x) —[E[lefo g(x)dx. (2.57)
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A consequence of Theorem 2.4 is that even for delayed renewal processes, the limit-
ing distribution is the same as for the non-delayed case. Therefore, the results of Proposi-
tion 2.4 and Lemma 2.3 hold even when the distribution of X; is not the same as {X;};>».
In particular, they still hold when the process starts in @. This is summarised with the
following corollary.

Corollary 2.2. Consider the simplified 1G1B process, now altered to start inr(0) = @. Let
Zy be the time for which the system is empty until the first fresh link is produced. Let Y1 be
the time in which this link is present in memory until it is removed again, and so on. Let
the probability of finding a link at time t be p(t) = P(r(t) = = @). Then,

E[Y;] A

li 1= = , 2.58
PO = e v Bz - A+ B (2.58)
and the distribution of the current lifetime of a link satisfies
1 [e.¢]
lim P(C(¢t) > x|r(t) = @) = f (1-Fy(s))ds= e P, (2.59)
t—o00 E(Y1] Jx

Recalling that 8 = p+ Ag(1 — p), we see that the formula for the availability in Propo-
sition 2.1 is already shown by (2.58).

AVAILABILITY AND AVERAGE CONSUMED FIDELITY IN 1G1B
Here, we compute the availability and the rest of the steady-state distribution of the 1G1B
system (Proposition 2.1), as well as the average consumed fidelity (Theorem 2.1).

In order to calculate the average fidelity, we not only need the time spent in =@, but
also the times spent in each pumping level leading up to the current one.

From 1G1B (Definition 2.1), one may define a simplified 1G1B system as

) = {“Q) ifs(f)=0
@ if s(t) = @.

For the characterisation of the fidelity of the link in memory at time ¢, F(t), we are in-

terested in the successful pumping attempts that occur in the the time interval [An(y), An(y +

C(1)), where C(¢) is the current lifetime (Definition 2.12). In 1G1B, the successful pump-
ing attempts are a Poisson process with rate ¢ := Apq. Since the rate is constant for all
t, the number of successful pumping attempts within the interval [An(y, Any + C(8))
has the identical distribution as the number of successful pumping attempts in the time
interval [0, C(¢)). From Corollary 2.2, we see that C(#) converges in distribution to C ~
Exp(fB). In the following Lemma, we characterise the number of successful pumping
attempts that occur within the time C, and the time spent between each pair of consec-
utive pumping rounds. See Figure 2.10 for an illustration. An observation that we use
below is that within the time interval [0, C), the times at which pumping occurs form a
separate renewal process, which is convenient for notation.

Lemma 2.4. Consider a renewal process N(t) with arrival times So = 0, S, = ?:1 R;,
with Ry ~ Exp(6). Let C ~ Exp(B) be independent of the R;. Let M = N(C) be the number
of arrivals that have occurred by time C. Let C := C — Sy be the current lifetime at time C.
Then,
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R, | time

C

Figure 2.10: Number of pumping rounds. We are interested in the number of pumping rounds that have been
carried out while a link is in memory. Here, C is the (limiting) distribution of the current lifetime in memory
(see Figure 2.9), and R; is the time between the (i — 1)th and ith pumping round.

1. Thedistribution of M is given by

6 m
PM=m)= (m) ) (2.60)
or equivalently
PM=m)= (L)m i) (2.61)
7 \p+s) \p+s) ‘

2. Conditional on M = m, the random variables (Ry,..., Ry, C) are mutually indepen-
dent and identically distributed as Exp(f + 0).

Proof. 1. We proceed by induction. Letting Fr := P(R < x) We have

oo
PM=1)=P(C>Ry) :f P(C > R1|R; = x)dFg(x)
0
o0
1)
— —Bx ., 5,70% 3, —
foe de °*dx 5+

where we have used P(C > R;|R; = x) = P(C > x) = e ¥ and R, ~ Exp(9). Then,
assuming (2.60),

P(M=m+1)=P(C> Sps1)
=P(C>Rpys1+Sm)
£ P(C> Ryp+1)P(C > Syp),
=P(C>R)P(M = m)

(5] (%)

In step (b), we have used the inductive assumption. In step (a) we have made use
of the memoryless property of the exponential distribution: Since R+ and Sy,
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are positive and independent random variables, this has as a consequence

P(C>Rpys1+Sm) =f f dFgr(r)dFs,,(S)P(C>r+5)
o Jo

:f f dFgr(r)dFs,, (S)P(C>r)P(C >s)
o Jo

=P(C>R;;+1)P(C>S,,). (2.62)
Finally, (2.61) follows from

PM=m)=PMzm)-PM=m+1)

Z(L " L)’"“
p+0o p+0o
“(ws) 5vs)

2. We firstly note that for any events E1, E», E3, it holds that
P(ElﬂEzﬂEg) =P(EinEy)—P(E; ﬂEgﬂ_'Eg), (2.63)

where —E denotes the complement of the event E. Now, consider the events

E ={R,- >xiVi=1,...,m+1}, E2={szm+1+i_fl}ei}, E3={C<’:§1Ri}.

Now,

m+1 m
E mEszgz{Rl > X1yeey Ry > X Rns1 > X1 0 Y, Ri >szm+1+ZR,~}
i=1 i=1
a B m+1 m
={R1 > X1yeees R > X, C> XN ) R >C= ZR,-}
i=1 i=1

b ~
Z{Rl > X1y Ry > X, C> Xppe1 N M = m},

where in (@) we have used the definition of C, and in (b) we have used the defini-
tion of M. Then, by (2.63), we see that

P(Ri>x1,..., Ry > X, C > Xppp1 N M = m)

m
=P|R1>Xx1,..., Rm+1 >xm+lnC2xm+1+ZRi

i=1

m+1
Ri>x1,..., Rps1 > X1 NC= Z Ri). (2.64)
i=1

-P
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By the independence of the R;, this is equivalent to

m
C=Xme1+ ) Ri‘Rl > X1, Rima1 > xm+1)
i=1
m+1
—-P|C= Z Ri|R1 > X1y Ript1 > Xims1
i=1

(2.64) = [P
m+1

[]P®Ri>x), (265

i=1

1

and we now use the memoryless property of the exponential distribution (see the

argument leading to (2.62)) to rewrite as

m
(2.64) = | P(C = X1 |Rm+1 > Xm+1) [ [ P(C = Ri|Ri > x;)
i=1

m+1

[1PRi>x), (2.66)

i=1

m+1
- [T P(C=zRi|Ri > x;)

i=1

which, using that P(C; = R; |R,- > x;)P(R; > x;) = P(C; = R; > x;), becomes
m

[TP(C=zR;>xp),

i=1

(2.64) = [P(C = Xm+1 N Ript1 > Xma1) — P(C = Rypg1 > Xma1))

m
=PRms1>C=xpns) [[ PICZ R > x1),

i=1

where we have again made use of (2.63) to rewrite the factor on the left. Now,

P(C=R, > xy) :fooP(Cz y)dFr(y)

X1

:foo e BY.5e70Y = o e~ BroIn
x p+o

and by symmetry
P(Ri=C>xpme1) = B o B+ xme1
B+0

We therefore see that
:3 (B+6) A
2.64) = ——e~ xm+1,||

( ) ﬁ+6e

i=1

g o~ (B+O)x;
B+6

B ( s \" "ﬁl (B+0) "ﬁl (p+0)
= [ = e PrOYi - p(M=m) [] e PrO%i,
B+0 \p+6 ol

i=1
It therefore follows that

m+1
P(Ry>x1,. e, R > X, C > X1 |[M = m) = [] e+,
i=1

which suffices to show the second result.
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Recalling that C(¢) converges in distribution to C, we now adapt Lemma 2.4 to apply
to C(t). In order to do this, we use the following result (for a proof, see Chapter 7 of [95]).

Theorem 2.5 (Continuous mapping theorem). Let {X,} be a sequence of random vari-
ables taking values in R*. If X,, — X in distribution as n — oo and g : R* — R! is continu-
ous, then g(X,) — g(X) in distribution as n — oo.

Corollary 2.3. Suppose that C(t) and X are independent random variables, and C(t) con-
verges in distribution to C as t — co. Then,

}lm P(C(1)>X)=P(C>X). (2.67)

Proof. Consider asequence oftimes {f,},>1 suchthat0 < f; < f, < ...and lim,_. t,; = co.
Let C;, == C(ty). Then, C,, — C in distribution. Moreover, since C,, and X are independent
for all n, the pair (C,,, —X) — (C,—X) in distribution. Now, the function g : R? — R, with
g(x,y) = x + y is continuous. Then, by Theorem 2.5, C;, - X — C — X in distribution, and
)

lim P(C,— X >0) = lim P(C(t,)— X >0)=P(C—X>0).

n—oo n—oo

Since this is true for all such sequences {¢,}, the result follows. O

In the following corollary, we let the current lifetime be dependent on the parameter
u to avoid confusion with the time of the renewal process (which is denoted as 1).

Corollary 2.4. Consider a renewal process N(t) with arrival times Sy =0, S;, = Z?:l R;,
with Ry ~ Exp(6). Suppose that C(u) converges in distribution to C ~ Exp(f) as u — oo.
Let M(u) = N(C(u)) be the number of arrivals that have occurred by time C(u). Let Cu) =
C(u) — Sy be the current lifetime at time C(u). Then, the results of Lemma 2.4 still hold
in the limit u — oco. In particular,

1. The limiting distribution of M (u) is that of M,

m
lim P(M(u)=m)=P(M=m) = (L) . (2.68)
u—0o0 B+6

2. Conditional on M(u) = m, the random variables (R, ..., R, C) converge in distri-
bution to mutually independent and identically distributed Exp(f + 8) as u — oo,
ie.

m+1
lm P(Xy > %1, Xin > X, CW) > X IMw) = m) = [] &P, (2.69)
e i=1

Proof. 1. Making use of Corollary 2.3, we have

m
lim P(M(u) = m) = lim P(C(u)>S,;) =P(C>S,;) = (L) .
U—00 U—0o ﬁ+6
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2. One may use exactly the same arguments as were used to obtain (2.65), only re-
placing C with C(u) and M with M(u), to show that

P(Ri>x1,..., Ry > X, C(1) > X1 N M (1) = m)

m
= [P (C(u) = X1 + Z Rl"Rl > X1y Rpe1 > xm+1)
i=1

i= i=1

m+1 m+1
—Plcw= Y Ri‘R1>x1,...,Rm+1>xm+1 ] 1 P®R >x).
=1

By Corollary 2.3, in the limit u — oo this satisfies

ulim PRy > X1,y Ry > X, C(10) > X1 N M(u) = m)
—00

m
= [P (C = Xm+1+ Z Ri|R1 > X1, Ript1 > xm+1)
i=1
m+1
[T PR >xi) = (2.65).
i=1

m+1

C= Z R;
i=1

-P

Ry > X1, Ript1 > xm+1)

It then follows that

ulim P(Ry > X1, e Ry > X, C(W) > Xypa1 | M(u) = m)
—00

PRy > X1, Ry > X, C(10) > X1 N M (1) = m)

= lim
1—o0 P(M(u)=m)
PRy > X1, Ry > X, C> X "M =m) 'ﬁl - (B+0)x;
P(M=m) i '
by Lemma 2.4.
O

For the case when C(u) is the current lifetime of simplified 1G1B, the random vari-
able (Ry, ..., Ry, C(u)) by definition has the same distribution as 7'(). Recall that T'(1)
contains the times spent in each purification level leading up to the current one at time
u in 1G1B (Definition 2.2). This leads to the following results.

Corollary 2.5. Conditional on s(t) = i, T(t) converges in distribution to (Qy,...,Q;) as
t — oo, where the Q; are i.i.d. random variables with Qo ~ Exp(f + 0).

We now continue with the formulae for the performance metrics. The availability
in the 1G1B system was given in Proposition 2.1 and the average consumed fidelity was
given in Theorem 2.1. Next, we prove both of them.

Proof of Proposition 2.1. From Corollary 2.2, we see that

A

A= lim P(s() = ~0) = 5.
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Further, for i =0
P(s(t) =1) = P(s(r) = ils(t) # @) - P(s(2) # @).

Letting C(¢) denote the current lifetime of simplified 1G1B at time ¢, and M(¢) denote the
number of purifications that have occurred within this time, by Corollary 2.4 it follows
that

P(s()=i)=PM)=0)-P(s()#@) > PM=1)-A

as t — oo. Recalling the distribution of M as found in Lemma 2.4, we obtain

i

Aqp .p+)tq(1—p)_A

p+Aq p+Aq

_ A,i+1qipi . N+Aq(l_p)
(WA A+pu+Ag(l—p)

}Lm P(s(t)=1)= (

We note that this result can also be derived with the global balance equations of a CTMC.
Here, we chose to use the derivation with renewal theory since it offers a more general
formula for the availability (see (2.58)) and ties in more neatly with the derivation of the
formula for the average consumed fidelity, as we will see below. O

The following proposition will be helpful in the proof of Theorem 2.1 (formula for
average consumed fidelity).

Proposition 2.5. Let {p;(1)}i=0 and{e;(t)}i=o be such that for alli,lim,_.., p;(t) = m; and
lim;_ooe;(#) = c;. Supposealso that forallt,0<e;(t)<1,0<p;(t)<land) ;—opi(t)=1.
Then

lim ) e;(Dpi(t) =) _ cim;. (2.70)
=205 i=0
Proof of proposition 2.5. To show (2.70), it suffices to show that for any € > 0, there exists
a T such thatforall t > T,
o0 (e
'Zei(t)pi(t)—Zciﬂi <e. (2.71)
i=0 i=0

We firstly bound the sum using the triangle inequality,

Y ei(Dpi() =) cim;

i=0 i=0

=) ei(®(pi(0) =) + (ei () — ci);
i=0

=

ei(DIpi(t) —mil+ ) lei (1) —cilm;. 2.72)
=0 i=0

18

( ~
i}

J

(4 (B)

We then show that (A) — 0 and (B) — 0 as t — oo. We firstly show that

o0
}L?O;)|pi(t)—ni| =0. (2.73)
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Note that, since Y72 p; () = 1, it follows that .92 7; = 1. Then, choose N such that

N €
Z Ti>1——
i=0 2
and choose T; such that
Z|p,(t) n,|< V> T

which is possible since the sum is finite. Then V¢ > T,
N
‘1—2;},(1‘)‘ ‘ Z —pi(t)))‘
i=0

N € €
;'ni_pi(t)|<§+§=€. (2.74)

I [\/]2 Iy

Now, choose T, such that Vi > Ty,
€ .
|pl(t)_nl| < ﬁ) Vi :0)-'-7N

and let T = max{Ty, T>}. Then, V¢ > T,

lel(t) ot I—lel(t) mil+ ) 1pi(0) -7l

i>N

<N-N+Zpi(t)+2m

i>N i>N
€
<€e+€e+—,
2

from (2.74). This suffices to show (2.73). Combined with the fact that the e; are bounded,
it follows that (A) — 0. We now show that (B) — 0, i.e.

o0
tlilg);)wi(t) —cjlm; =0. (2.75)

To show this, let € > 0. Choose N such that Zﬁ.\io 7; >1—e€. Choose T such that

N
Y lei(t)—cil<e, Vi>T.
i=0

This is possible since the LHS is a finite sum. Then,

o] N
Y lei® —cilmi =) le;(®) —cilmi+ Y lei () — cilm;
i=0 i=0 i>N

i>N

< (g}lei(t)—cl ) (Zn,)+ Y m

<e(l—-e)+eVit>T,

which shows (2.75). O
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Combining these results ((A) — 0 and (B) — 0) in (2.72)) suffices to show Proposition
2.5. We are now ready to prove Theorem 2.1 (formula for average consumed fidelity).

Proof of Theorem 2.1. We firstly expand out the average consumed fidelity (Definition
2.8) as a sum by conditioning on the value of s(#),

F:=E[F(0)|s(t) # ] = ) E[F(1)|s(r) = i1P(s(r) = i|s(2) # @)
i=0

———— ) E[F()Is(t) =i]P(s(t) =i 2.76
P(s(t)#(ﬁ)z[()'() 1P(s(8) =1). (2.76)
Recall that we are interested in the limit £ — co of the above. Note that from Proposition
2.1, we know the limiting values of P (s(#) # @) and P (s(¢) = i). We now claim that

lim E(F(0)ls(t) = ] = [F? Qo Q1. -, Q1) @.77)

where Q,Q1,...,Q; are i.i.d. random variables with Qy ~ Exp(i + Ag), and F is given
in Definition 2.5. We use the following result:

Theorem 2.6 (Theorem 7.2.19 of [95]). Let X,, be a sequence of random variables. Then,
X, — X indistribution ifand only ifE[g(X,)] — E[g(X)] for all bounded continuous func-
tions g.

Recall that conditional on s(f) = i, we have F(f) = F) (T(¢)) (from Definition 2.6). As
mentioned in Section 2.3, F? is a continuous and bounded function. Therefore, (2.77)
follows by combining Theorem 2.6 and Corollary 2.5

From Proposition 2.5, we therefore see that

hm E[F(D)|s(r) # @] = llm P(s(t) Z2) g [F(0)|s(t) = i]1P (s(t) = i)
1 (o]
= ;)thngo[E[F(t)IS(t) =il lim P(s(1) = i)
1 (o]
=7 Cinl)
Ak
where ¢; = [E[F(i) (QO,Ql,...,Qi)] and 7; = lim;—o P(s(?) = i). -

2.8.3. AVERAGE CONSUMED FIDELITY WITH A LINEAR JUMP FUNCTION

In this Appendix we focus on linear jump functions. Firstly, we provide bounds for the
coefficients of a linear jump function. Then, we prove Proposition 2.2, and we use that
Proposition to derive the average consumed fidelity in a 1G1B system that uses a pump-
ing protocol with a linear jump function, which we denote by?nnear (i.e., we show Lemma
2.1). We also show that Fj;,, is monotonic in the probability of pumping g and the prob-
ability of successful pumping p (Proposition 2.3). Lastly, we discuss in which situations
Finear i8 monotonically increasing in g, and we compute the noise threshold (2.29) dis-
cussed in Section 2.6.1 (above this threshold, any purification is better than no purifica-
tion).
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BOUNDS ON THE PARAMETERS OF A LINEAR JUMP FUNCTION
Proposition 2.6. Consider a jump function that is linear with the fidelity of one of the
input states, i.e.,

J(E p) = a(p)F + b(p), (2.78)

where F is the fidelity of one of the input states and p is the second input state. Then, the
coefficients a(p) and b(p) must satisfy

0<a(p)<1 and i(l —a(p)) < b(p) <1-alp).

Proof. First, we require J(F,p) < 1, which is equivalent to b < 1 —a. We also require
J(F p) = 1/4, which leads to b = (1 — a)/4. By imposing that the upper bound on b has to
be larger than the lower bound, we find that a < 1. Finally, since we want jump functions
that increase with increasing F, we want a = 0. O

DERIVATION OF Flipeqr

Proof of Proposition 2.2. Here, we consider a 1G1B system with J(F, ppew) = aF + b and
FO(15) = Dy, (Fpew), Where Fpey is the fidelity of the state ppey. Our goal is to find an
analytical solution for the fidelity of the entangled link after i consecutive successful
purifications, F @ (fo, ..., ti—1, ;). The time passed between purification j and j+1is given
by ¢;. After the i-th purification the system spent time #; without any transitions (i.e., no
purification or consumption events). We show in this proof that F) is given by

. 1 & e .

FO(tg, iy, 1)) = = + m}”e‘”%”ﬁl---*“’ (2.79)

4 5

where the constants m;.i) are given by méo) = Fhew — i, and

i—ifa 1 g s

W _ al. H(4+b-3),ifj>0,
J a' (Frew—1) if j=0.

fori>o0.

We proceed by induction. For i = 0, we have
1

FO (t0) = Dy, (Fhew) = e—l"tg (Fnew - Z

1
+ -, 2.80
2 (2.80)

from which we see that m(()o) = Fhew — i. If we assume that (2.79) is true for some i, using

the recursive relation from (2.4) we can show that (2.79) is also true for i + 1:
FU*D (g, 1) =Dy, (](F(”,p))
=Dy, (aF? +)

=e T (aF(” +b- l) o1

4 4

i
- l + (ﬁ +b-— l) e—l"t,»H + Z am(.l') e_F(tj+---+ti+ti+1)’
4 |4 4 =
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from which it follows that
m;i+1> = amy) O0=<j<i
; a 1
(i+1) =+ b_ -

mi+l 4 4

: . : i+ _ i+l (+1) _ Ji+l-j(a 1
Then, by the inductive assumption, my' " = a1 (Fyew — 1), and m| i a* I (4+b-73)
for j > 0. O

Proof of Lemma 2.1. Here we consider a 1G1B system with J(F, ppew) = aF+band F© (1)) =
Dy, (Fhew), Where Fpey is the fidelity of the state ppew. Our goal is to find a closed-form
solution for the average fidelity after i = 0 purification rounds, c;, and for the average
consumed fidelity, Fica

We defined c; as the average value of F @ (see (2.13)). Using the expression for F @
from Proposition 2.2 (also given in (2.79)), we can evaluate c; as follows

ci :=f dtifa(t,-)...f dto fa(t0)FD (ty, ... ti1, 1)

f dtlfa(tl f dtﬂfa(to)

—T(tj+..+tj—1+1;)
_+ m j i- i
> e
Jj=0
)l—j+1

z: (z)( a

a+T

-hl'—‘

1 1 a NG i
=~ +|F i l+l (—+b——) i—j l—],
: ( hew 4) ay™ey|g+b- ];a Y

where a = u+Aq, f,(t;) = ae” %" (since the times #; are exponentially distributed with
rate a), ¥ = &/ (a + I'). Using the fact that this is a geometric series, we may now obtain a
closed-form solution for c;:

1 ) iyitl ( __)1—_61"7"
c,—4+(Fnew 4) ay™ +yl-+b i) 1say (2.81)

The final formula for the average fidelity may then be computed with the results of
Proposition 2.1 and Theorem 2.1 as

Fuinear = lim E(F()]s(1) # @) =

Z CiTl;

Ty i=o0

1 a 1 1 4+b-—7
= — 4+ Y '(_+b—_)+L'(Fnew___u)znl(a7/)’

4 l-ay \4 4] (A-mg) 4 1-ay

where the constant terms are no longer in the sum since
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by the normalisation of the steady state distribution. Recalling the distribution of 7 from
Proposition 2.1, we may evaluate the sum as a geometric series,

i

& ; A& (A
> milay)' = Z( L

i=0 p+Ag i\ p+ig
By L
- " Agqpay "®
A

~ w+Aq-Agpay”

We may now substitute this into (2.82) to obtain a closed-form solution for the average
fidelity,

F 1 1 44+p-1
Flinear:_+ Y ‘(z'i‘b—— +7y- Fnew 4 4 A Ty
4 l-ay \4 4 l1-ay |u+Aqg—-Aqpayl-rng
. §+b—3 Aq(1 -
=+t -(ﬁ+b—- +7 | Fpow——— 2 1| p+tAq-p)
todmard 4 1-ay |u+Aq-Aqpay

1T+ bAgp+ Fnew(u +Aq(1 - p))
F'+u+Ag(1-pa)

(2.83)

which completes the closed-form solutions for our two performance metrics in this set-
up (in the last step we used Mathematica to simplify the expression). O

Proof of Proposition 2.3. To show (a), we compute the partial derivative of the average
consumed fidelity with respect to g:

OFincar _ » T(4Fnew = p) + Ub+a)p—1) + 4pp(b~ Frew(1 - a) (2.84)
aq AT +p+Aq(1-ap))? ' ‘

Since the sign of the derivative does not depend on g, we conclude that Fiinear iS MoNo-
tonicin q.
To show (b), we proceed similarly:

0Fjinear M4(b — Fpew) T+ +1q) + a(T + 4Fpew (1 + 19))

op AT +p+Aq(1-ap))®

. (2.85)

Since the sign of this derivative does not depend on p, we conclude that Fiinear is MonNo-
tonic in p.
O

NOISE THRESHOLD

In the previous Section, we showed that Fiinear is monotonic in g and p (Proposition 2.3).
Nevertheless, note that Fj;,.,, can be monotonically increasing or decreasing in g and in
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p depending on the values of the other parameters. For a pumping protocol with a good
enough jump function, I?“nea, becomes increasing in g. A sufficient condition is for the
jump function to satisfy b = Fpew(1 — a), as we show next. The partial derivative with
respect to g from (2.84) can be written as follows:

OF jnear
0q

where x =2+ p+Aqg(l—ap)), y=4Fhew(l—p)+ @b+ a)p—1,and z=b — Fpew(l — a).
Using the fact that b = (1 — a)/4, we find that y = 0. A sufficient condition for the partial
derivative to be positive is that z = 0, i.e., if b = Fyew(1 — a), then the average consumed
fidelity is monotonically increasing in g. Moreover, we can conclude that, if the noise
is above certain threshold (I' > —4upz/y), the derivative is positive and the pumping is
always beneficial, even if it succeeds with a very small probability.

A
= ;(Fy+4,upz), (2.86)

2.8.4. BOUNDS FOR THE PERFORMANCE OF BILOCAL CLIFFORD PROTOCOLS
In this Appendix, we find bounds to the output fidelity and the probability of success of
2-to-1 purification protocols. In particular, we show Lemma 2.2, where upper and lower
bounds on the jump function and the success probability of any bilocal Clifford protocol,
taking as input a Werner state py and a Bell-diagonal state ppp. We define the fidelity of a
state p as F(p,|¢*)) = (¢p*|p|p*), where [¢*) = (100) +[11))//2 is one of the Bell states.
We find the bounds for a system with the following restrictions.

* We consider 2-to-1 purification protocols, i.e., protocols that take two bipartite
entangled states as input and output a single bipartite state. This allows us to use
these bounds directly for the analysis of the 1G1B system.

* We restrict the pumping protocols to bilocal Clifford protocols [84, 97], which are
a well-known type of purification scheme. We provide more details about this type
of protocol in the next section.

* We assume that one of the input states is a Werner state (in the 1G1B system, this is
the state in the good memory, which suffers from depolarising noise) and the other
input state is Bell-diagonal (in the 1G1B system, this is the state generated via her-
alded entanglement generation and placed in the bad memory). Mathematically,
the input states can be written, respectively, as

O A e T U R M A P Y A}

Peo = Fop [ X ™|+ A [y Xy [+ A2 [y Xy~ |+ A3 |~ X7,
with F, Fp, A1, A2, A3 € [0,1] subjected to the normalization constraint Fyp + A +
A2 + A3 =1, and with the Bell states defined as

[00) +11) [01) +110) 1//_>_ [01) —[10) _100) —11)

Y A, NG vz

Note that any bipartite state can be brought to Bell-diagonal form while preserving
the fidelity by means of twirling (adding extra noise) [47, 96].

p*) = o)
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* We only consider newly generated states with fidelity to some Bell state larger than
1/2,i.e., we assume Fyp, > 1/2 (note that Fpp > 1/2 is equivalentto A; > 1/2 for some
i, since the states are equivalent upon some Pauli corrections). This is a necessary
and sufficient condition for the existence of entanglement (otherwise, the state is
not useful for purification).

* We assume the Werner state has fidelity F > 1/4, since the good memory is initially
occupied with a state with fidelity larger than 1/2, and this fidelity can decay at
most to 1/4 due to depolarising noise (see Definition 2.3).

In this Appendix, we firstly provide a formal definition of bilocal Clifford protocols.
Then, we prove Lemma 2.2, where bounds are found for the jump function and success
probability of bilocal Clifford protocols in a system with the above restrictions.

BIiLOCAL CLIFFORD PROTOCOLS
Bilocal Clifford protocols [84, 97] take n bipartite states as input and outputs a single
bipartite state. They consist of the following steps:

1. CT ® C' is applied to the state, where C is some Clifford circuit. A Clifford circuit
consists of Hadamard gates, phase gates S, and CNOTs [100, 101]. If the state is
held by two separate parties, one of them applies C” and the other one applies C".

2. All of the qubit pairs except one are measured (in a 2-to-1 protocol, one qubit pair
is measured and the other one is kept).

3. Depending on the parity of the measurement outcomes, success or failure is de-
clared. Local unitaries may be performed after a success.

One of the main advantages of bilocal Clifford protocols is that they are relatively
simple to execute in practice, since they involve a basic set of gates. Additionally, any
stabilizer code C can be mapped to a bilocal Clifford circuit that applies CT ® CT, allowing
the analysis of bilocal Clifford circuits from a quantum error-correction perspective [98].
This type of protocol also includes well-known purification protocols, such as DEJMPS
[50].

LINEAR BOUNDS TO THE PERFORMANCE OF BILOCAL CLIFFORD PROTOCOLS
Here, we prove Lemma 2.2, where bounds on the jump function and success probability
of every bilocal Clifford protocol are found. Consider pumping two states of the form

1-F
pw=F|0T)(®F|+ — ()P + PP [+107) (P (2.87)
Pap = Fap [ @) (@F |+ A1 [FF) (PF |+ A2 [P ) (P [+ A3 D7) (P (2.88)

Using the methods from [97], we can find the analytical expressions for the output fi-
delity and success probability for every bilocal Clifford protocol. The restriction to bilo-
cal Clifford protocols and Bell-diagonal states allows us to do this enumeration of ana-
lytical functions efficiently [97, 98]. There are only seven protocols that provide a unique
combination of J and p, as shown in Table 2.2. We refer to the i-th jump function and
success probability as J; (F, pgp) and p; (F, pgp), fori =1,...,7.
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Table 2.2: The jump function and success probability for all 2-1 bilocal Clifford protocols, with input states
given in (2.87) and (2.88) .

Protocol Jump function Success probability
1 e I 2(1-20, —2A9) F + $(1+ Ag + Ag)
2 B | 21 -2A3—2A)F + 3(1+ A3+ A)
3 St s | 21-201 —2A)F + 31+ A1 + Ay)
4 F Fyp + /11
5 F Fep+ Ao
6 F Fyp + /13
7 FBD %F + %

We see that for these particular input states, J4, J5 and Jg produce no change in the
fidelity of py. They also have a non-unity success probability. It would therefore be ad-
vantageous to simply perform no action instead of attempting Protocols 4-6. Similarly,
J7 assumes the fidelity of the Bell-diagonal state, which is the same change as perform-
ing replacement. Since replacement can be achieved with probability one, it does not
make sense to perform Protocol 7. Therefore, the only remaining ‘non-trivial’ protocols
are Protocols 1-3. In the following, we therefore find bounds for the jump function of
Protocols 1-3. Notice that there is symmetry in the A;: J, and p, can be obtained by
permuting (1,1, A3) in J; and p;, and similarly for J3 and ps.

In the following, we show Lemma 2.2.

Proof of Lemma 2.2. We firstly show the linear lower bound (i.e. the formulae given in
(2.23)). We assume that 1; = A, = A3. Then, by symmetry in the 1;, one may retrieve the
bound by setting Amin = A3 and Apax = A1. In order to show this bound, we make use of
the following collection of results. It is important to note that when showing all of the
following results, pgp, is fixed.

1. Proposition 2.7, Corollory 2.6, Proposition 2.8 — the formula for F* is derived
(Equation 2.21). This is the maximum achievable fidelity achievable in the 1G1B
system, with fixed Bell-diagonal input state pgp. Therefore, at any given time ft,
the fidelity F(¢) of the stored link in the 1G1B system (see Definition 2.6) satisfies
F(t) < F*.

2. At F = F*, Protocol 3 provides the best output fidelity,
1 (F*, pso) < J2 (F*, psp) < J3 (F*, pi)
(Proposition 2.7 and Corollary 2.6).
3. At F =1/4, Protocol 1 provides the best output fidelity, i.e.
J3(F*, pn) < J2 (F*, peo) < J1 (F”, pso),

since J;(1/4, pgp) = (Fap + A1) /2.
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Figure 2.11: Linear bounds for the jump function of bilocal Clifford protocols (black dashed lines). The jump
functions shown are J1-/3 (red lines), J4-Jg (identity operation, black line), and J; (probabilistic replacement,
blue line). F* is the highest fidelity achievable by pumping a low-fidelity Werner state with the fixed Bell-
diagonal state pgp. The lower bound holds in the range [1/4, F*]. The upper bound holds in the range [1/4,1].
Here, Fgp = 0.75 and ppp = (0.75,0.125,0.833,0.0417).

4. Fori=1,2,3, J;(F psp) is a concave function of F (Proposition 2.9).

In particular, the third result means that any straight line taken between two points on J;
must lie below the curve itself. The linear lower bound is the linear function connecting
the points

N . 1 1
(F )]l(F )pBD))) (4_1,]3 (Z!pBD))I (289)
which is given by
J1(F*, pyp) — B2t 1\ Fpot+s
F, pwp) = Fom |+ 2222
JiB(F, pep) e —i ( 4) 2

where we have used the fact that J;(1/4, pgp) = (Fgp + A;)/2. Letting Amax = A1 and Apin =
A3, this may be rearranged into the form

JiB(F, Pnew) = @i F + b,

with g; and b given in Lemma 2.2 (in (2.23)). When choosing the points in (2.89), we are
joining the line corresponding to the lowest of the J; for both F =1/4 and F = F*. By the
concavity property, this is therefore a lower bound for all of the J; in the region [1/4, F*].
See Figure 2.11 for an illustration of this lower bound.

We now show the upper bound. We choose this to be the linear function connecting
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the points (1/4, Fpp) and (1, 1), which is given by

1-F
Jus (E, Pnew) :( 1 fD

4

4

1
(+-2)e

and may be rearranged into the form
JuB(E, pnew) = auF + by,

with a, and b, given in Lemma 2.2 (in (2.25)). We show that this is an upper bound
with the following steps. Again, for ease of notation, we exploit the symmetry in 1; and
assume that 1; = 1, = A3.
1. In the domain F > 0, the jump functions J;, J, and J3 intersect at the same point
Fint. Moreover, for i =1,2,3, J;(Fnt, psp) = \/ % < Fyp. (Proposition 2.7).

2. In the domain F € [Fjyy, 1], the jump function outputting the highest-fidelity out-
come out of protocols 1-3 is J3 (Corollary 2.6).

3. Fori=1,2,3, J; is an increasing and concave function of F (Proposition 2.9).

4. Consider the tangent to J3 at F = 1. This lies below Jyp in the range F € [1/4,1]
(Proposition 2.10).

By result (3) from the above list (concavity), we see that the tangent to J3 at F = 1 upper
bounds J3 for all F. By result (2) from the above list, this also upper bounds J; and J,
in the range F € [Fipy, 1]. Therefore, by result (4), Jyz upper bounds Ji, J» and J3 in the

range F € [Fin, 1]. Moreover, for F < Fip, by results (1) and (3), J;(F, pgp) < \/@ <Fyp <
Jus(F, psp), by the definition of Jyz (Jys runs through the point (1/4, Fyp) and is increas-
ing). This suffices to show that the upper bound holds.

Finally, we show the bounds for p;. Recalling that Fyp + 1; + A2 + A3 = 1, we have

0 2 2
a_Fpl(EPBD) = 5(1—/12—/13) = §(2FBD+2A1 -1
2
> §(2FBD— 1) >0.

Therefore, p;(F, pgp) is an increasing function of F. By symmetry, p, and ps are also
increasing functions of F. Since the fidelity F(#) of the 1G1B system always lies in the
region F(t) € [1/4, F*], it follows that at any point in time, the success probability p of
purification may be bounded with

1 *
Pi (Z;pBD) =p=pi (F ;pBD)-
O

Below are the collection of results that were used to show the bounds on the jump
functions.
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Proposition 2.7. In the domain F > 0, jump functions 1-3 intersect exactly once at the
same point Fiyy, such that J;(Fins, Pnew) = \/ % < Fyp.

Proof. We firstly compute the intersection point of jump functions 1 and 2. This occurs
at the F value which satisfies

(4&1 +3A2+3/13—3)F—A1 _ (3%1 +4/12+3/13—3)F—/12
(42 +4A3—2)F— A, —A3—1 B (424 +4/13—2)F—ﬂ,1—&3—1,

or alternatively, recalling that Fyp + A + A2 + A3 =1,

(A1 —3Fsp) F— My _
(2—4F;p —4A)F -2+ Fpp+ 1

(1<2),

where to obtain the RHS we exchange labels 1 and 2 of the LHS. This is equivalent to
(M =3Fpp) F = A1) ((2—4Fgp —4A2)F =2+ Fgp + A2) - (1 = 2) =0,
which simplifies to
(A1 = A2) (2 = 16 Fyp) F* + (8Fyp — 4)F +2 — Fyp) = 0. (2.90)

Then, if 1; # Ay, the points of intersection depend only on Fyp and therefore are sym-
metric in 1;, A, and A3. The points of intersection are given by

_ 4FBD - 2 + 3\/ ZFBD
T 2(8Fyp-1)

(2.91)

and recalling that Fpp € (1/2,1], the solution lying in the domain of interest (F > 0) is

 4Fyy—2+3y2F
e 0 8Fyp—1)

Then, since Fj,¢ is symmetric in 14, A2 and A3, all jump functions intersect at the point

Fint. One may also show that
| F
Ji (Fint, Pnew) = %;

e.g. using software such as Mathematica. Since Fpp < 1/2, we have
1 F
\/;< V Fp © \/%<FBD.

We now continue with the following corollary.

Corollary 2.6. Suppose that A, = A, = A3. Then, for F = Fjy,

J3(F, psp) = J2(F, prp) = J1(F, psp), (2.92)
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Proof. From Proposition 2.7, J1, J, and J3 will not intersect again for F > Fj;,;. Therefore,
their ordering remains the same for all F > Fi;. The jump function outputting the largest
fidelity in this range will therefore also have the largest limit as F — co. We see that

3Fgp — /11'

lim Ji(F pap) =~ A
Fl—IEo]’( Pro) 4Fn + ;-2

which is a decreasing function of A;. Therefore, A3 = min{1;, 2,13} gives the largest
limit, and J; satisfies (2.92). O

From Proposition 2.7 and Corollary 2.6, we know which of J;, /> and J3 provide the
best fidelity for F € [1/2,1]. With the following proposition, we see that for some lower
fidelities, it is better to replace with the bad link rather than choose to pump.

Proposition 2.8. The largest fidelity obtainable by pumping a low-fidelity Werner state
with pgp and bilocal Clifford protocols is

*

_ 2Fay — 1+ v/ (2Fap — D2 + 2 Aimin (2Fpp — 1+ 2Amin)
22Fsp — 1+ 2Amin) ’

(2.93)

where Amin = min{lq, 12, A3}.

Proof. Consider applying pumping protocol i € {1,2,3}. This stops improving the Werner
state fidelity at the value of F such that

F* =Ji(F", ppp)
_ (A —3Fpp) F* = A;

(2—4Fg —4A)F* =2+ Fyp + A;
& 0= (2-4F, —4A))F? + (4Fsp —2)F + A,

o F*

which has solutions

_ 2Fp— 12 V/(2Fsp —1)?+21;(2Fpp — 1+2A))

F
2(2Fz;p—1+21;)

)

one of which is positive and one negative. Recalling that for F > %, the jump function
taking the largest value is J; with A; = Apin, means that the maximum fidelity achievable
is (2.93). O

Proposition 2.9. For any pgp with Fep > 1/2,, fori=1,2,3 J;(F, pgp) is a strictly concave
and increasing function of F.

Proof. We differentiate J;. Firstly, consider derivatives of functions of the form

_ax+b
Y ex+d

This may be rewritten as
p—ad
a c

c cx+d’

y:
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Then,
dy _ ad-bc ﬂ__cad—bc
dx  (cx+d)?’ dx? (cx+d)3
To check the sign of these functions, we must therefore check the sign of ad — bc. Recall-
ing that J; may be rewritten as

(2.94)

(F, - ,
Ji(E pyo) (4Fgp +4A; —2)F +2— Fgp — A;
in this case,
3 1
a=3Fp—-A;>——--=1
BD 1 2 2
1
b=/1i<—
2

c=4(Fp+Aj)—-2<4-1-2=2
d=2—(Fp+A;)=2-1=1

and it follows that ad — bc>1-1-2-1/2 =0. Then, since
1
c=4FBD+4/L,~—2>4-5+4/1,-—2=4/1i20,

it follows from (2.94) that
0 82
a—F]i (F, psp) >0, ﬁ]i (F, psp) <0.
Therefore, J; is a strictly concave and increasing function of F. O

Proposition 2.10. Suppose that A} = A = A3. Consider the tangent to J3(F, pgp) at F = 1.
Denote this by J .., (F, psp). Then, this lies below ]y for all F € [1/4,1], i.e.

Jean (F, p3p) < Jus(F, psp),

where
4(1 - Fgp) 4F;p—1
F+

3 3

Jus(F, psp) =
is the linear upper bound from Lemma 2.2.

Proof. We firstly compute the formula for the tangent to J; at F = 1. Recalling the for-
mula (2.94), this has gradient

i] (F, )\ _ad—bc _ 6F3p — 3(Fap + A3)° _ 25 1
oF 3 Pep) | poy (C+d)2 (3(FBD+A3))2 3(FBD+/13)2 3’

Since the tangent runs through the point (1, J3(1, pgp)), it has formula

2F, 1 F
— — | (F-D+—,
3(Fep+A3)? 3 Fgp+ 3

Jtan (F psp) =




64 2. ENTANGLEMENT BUFFERING WITH TWO QUANTUM MEMORIES

where we have used J;(1, pgp) = Fyp/ (Fpp + ;). We note thatat F =1,

F
Jus(1,ppp) =12 2= Jian(1, P5p).
3

Fypp+ A

Therefore, to show the proposition, it suffices to show that

1 1
Jus (erBD) = Jian (Z:pBD) ’ (2.95)

since both Jy; and /., are linear in F and therefore intersect at most once. Now,

J (l ) / (1 )_F ( e 1)( 3) -
UB 4rpBD tan 4:pBD = I'gp 3(FBD+/13)2 3 4 Fop+ A3
1 F, F
= Fpp— —+ BD - B
4 Z(FBD + Ag) FBD + A«g
Now, let x := Fyp + A3, and
1 Fp Fyp
(x) = Fyp — ~ + —22 — 22
(0= Fa 4 2x®2 x

By the assumption that A3 = min{A;, 1,13} and the condition Fyp + A1 + A2 + A3 =1, it
follows that
1-Fyp

/13€

0, (2.96)

, and x€ |Fyp,

1+2FBD]
|-

To prove the proposition, it therefore suffices to show positivity of & for x in the range
(2.96). We start by establishing the monotonicity of h:

a FBD FBD FBD
—hx)=——+ = =22 (1-x) <0,
0x ) xB x? x3 (1=

since x = Fyp + A3 < 1. We therefore see that & is decreasing. To show that £ is positive in
the range (2.96), it therefore suffices to show that

1+2F
h(—) =0,
We have
1+2F;, 1 9F;p 3Fyp
W= = Fyp— — + -
3 4 2(1+2F;p) 1+2F;
3 1
2—s(1+2Fp)
:FBD__+6FBD %
4 (1+2Fp)
1 1 —Fyp
=F +6F
DT BD (14 2F5)2

(g _1)(;__6Fw
‘(FBD 4)(1 (1+2FBD>2)'
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Then, since Fp > %, we have

(1 +2FBD) 6FBD

h >0l ——mM8MmMmm— >
(1+2F;p)2

& (1+2F,p)? > 6Fp

S 4F% —2F;p+1>0
& (1—2Fyp)? +2Fgp >0,

which holds. We therefore see that

h(x)zh(1+2FBD)>0

for all x in the range (2.96), and therefore
1 1
Jus (Z; pBD) — Jian (Zr pBD) >0.
This suffices to show the proposition. O

ADDITIONAL PROOFS
Lemma 2.5. A Bell-diagonal state

P =A0|@" X" [+ My Xu ™[+ A2 [y~ Xy~ |+ As o™X o7,
with Ag + A1 + A2 + A3 = 1, is entangled if and only if A; > 1/2 for some .

Proof of Lemma 2.5. We will analyse the entanglement of a Bell-diagonal state using the
Peres-Horodecki criterion, which states that a bipartite, 2 x 2 dimensional quantum state
p is entangled if and only if the partial transpose of p has at least one negative eigenvalue
[102, 103]. A Bell-diagonal state can be written in the Bell basis as

p=A0|o" X" |+ M|y X |+ A2 [y X |+ As ™ X7 |.

In the computational basis, {|00),]01),[10),|11)}, the Bell-diagonal state can be written
as
Ao+ A3 0 0 Ao—As
0 A+l Ai—Ap 0
0 Al - 12 /11 + /12 0
/10 - /13 0 0 Ao + Ag

p:

The partial transpose of this density matrix is given by

Ao+ A3 0 0 A=A
PT _ 0 M+ Ag—A3 0
0 A—Az A1+, 0

A=A 0 0 Ao+ A3
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The eigenvalues of the partial transpose are {; = 1—-2A;, i = 1,2,3,4. One of the eigen-
values is negative iff A; > 1/2 for some i. Therefore, according to the Peres-Horodecki
criterion, the state is entangled iff 1; > 1/2 for some i. Since these A; correspond to the
fidelity of p to one of the Bell states (e.g., F(p, [¢*)) = (¢™| p|$p™) = Ao), we conclude that
the state is entangled iff the fidelity to one of the Bell states is larger than 1/2. O

2.9. NUMERICAL SIMULATIONS

In our analytical calculations, we assumed a purification protocol with constant success
probability (which implies a linear jump function, as shown in Appendix 2.8.1). This
allowed us to derive bounds for the performance of any 1G1B entanglement buffering
system that uses bilocal Clifford protocols. However, the success probability of these pu-
rification protocols is in general linear in the fidelity of the buffered state (see Appendix
2.8.1). In this Appendix, we compare the analytical bounds, which assume a constant
success probability, to the actual values obtained via a simulation that considers the true
(linear, non-constant) success probability.

Our discrete-event simulation keeps track of the buffered link, which decoheres until
an event is triggered. These events could correspond to a consumption request (which
consumes the buffered memory) or a successful entanglement generation (which is fol-
lowed by pumping, with probability q). When purification is performed, it succeeds
with a probability that depends linearly on the fidelity of the buffered link (see Appendix
2.8.1).

To compute the average consumed fidelity and the availability, we run the simula-
tion Nsamples times. In each realization i of the process, we let the system evolve over
Isim units of time until convergence to a steady state, and we record the fidelity of the
buffered link F;(#im) (if the memory is empty, the fidelity is set to zero, as was speci-
fied in Definition 2.6). Then, we estimate the average consumed fidelity as the average
fidelity of the buffered link at %, (conditional on the buffered link being present):

Nsam es
- = Zi:l P! F; (ts5im)
F~F=—F—7Frp——— (2.97)

! )
samples

where
N, samples

Ns/amples: Zl LF; (tm)>0 (2.98)
i=

is the number of samples in which F;(Z;m) > 0 (1 is the indicator function). We measure
the error in the estimate using the standard error:

Z?Ealmples (Fi(tsim) —?I)Z
€ = N (N’ B 1) ) (2.99)

samples \” “samples

which corresponds to the square root of the unbiased sample variance divided by the
number of samples. The availability is estimated as the proportion of samples in which
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there is a buffered link at time fgjpy:

1 N, samples

AxA'=——— ) Lrum>0 (2.100)
Nsamples i=0

Note that A’ is the average of a binary random variable. We can therefore model this
random variable as Bernoulli-distributed with probability of success A’. This yields a
variance A'(1 — A’), which allows us to compute the standard error as

A'(1-A)
A= ——. (2.101)
Nsamples

Next, we study again the example from Figure 2.7, and we compare the bounds dis-
cussed in the main text with the results from our simulation. In Figure 2.12, we show
the same lower and upper bounds (yellow and dark blue lines, respectively) from Figure
2.7. We simulated three buffering systems, each of them using the unique bilocal Clif-
ford protocols 1, 2, and 3 from Table 2.2 (we neglect protocols 4-7 since they are trivial).
We emphasise that these simulations consider the true probabilities of success (which
are linear but non-constant in the fidelity of the buffered link) and the true jump func-
tions (rational in the fidelity of the buffered link) of the purification protocols. Figure
2.12 shows the availability and average consumed fidelity attained by each of these sys-
tems, for different values of g. We first note that protocols 2 (blue circles) and 3 (red
crosses) are equivalent. This is due to the symmetry of the newly generated state consid-
ered in this example, ppew = Fpew |¢+ )((/)+| + (1 = Frew) (|1//+ )(1//+| + \1//‘ Xy~ |) /2. More
importantly, the performance of the simulated systems lies within the analytical bounds,
which were derived assuming a constant probability of success. This serves as empiri-
cal evidence that our simplified model is still useful when lifting the assumption about a
constant probability of success, and can guide the design of more complex and realistic
buffering systems.
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Figure 2.12: Bounds derived assuming a constant probability of success still apply when the assumption is
lifted. (a) Noiseless memories (I" = 0) or (b) noisy memories (I' = 5- 1072 a.u.). For a given target availability, the
average consumed fidelity is within the blue/yellow region (see Corollary 2.1). Availability is maximized for g =
0 (q is the probability of purification after successful entanglement generation), and it decreases for increasing
g. White regions cannot be achieved by bilocal Clifford protocols. Striped regions cannot be achieved by
any pumping protocol. Black star: performance of the replacement protocol (buffered link is replaced by
new links). Dotted line: fidelity of newly generated entangled links. Solid lines with markers: performance of
the 1G1B system obtained via simulation, using the true jump functions and true probabilities of success of
purification protocols 1, 2, and 3 from Table 2.2, (q = 0 for the rightmost data point, decreasing in intervals of
0.111 until reaching g = 1 in the leftmost data point). The simulation considers a linear probability of success,
unlike the analytical calculations, in which this probability is assumed to be constant. Parameters used in this
example (times and rates in the same arbitrary units): A =1, u = 0.1, Fhew = 0.8, pnew = Fnew |¢)+ )(¢+| +(1-
Fnew) (| Xw* |+ v~ Xw™|) /2. Numerical parameters used in the simulation: fsjm =50, Ngamples = 10%.
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Entanglement buffers are systems that maintain high-quality entanglement, ensuring it
is readily available for consumption when needed. In this work, we study the performance
of a two-node buffer, where each node has one long-lived quantum memory for storing en-
tanglement and multiple short-lived memories for generating fresh entanglement. Newly
generated entanglement may be used to purify the stored entanglement, which degrades
over time. Stored entanglement may be removed due to failed purification or consump-
tion. We derive analytical expressions for the system performance, which is measured us-
ing the entanglement availability and the average fidelity upon consumption. Our solu-
tions are computationally efficient to evaluate, and they provide fundamental bounds to
the performance of purification-based entanglement buffers. We show that purification
must be performed as frequently as possible to maximise the average fidelity of entangle-
ment upon consumption, even if this often leads to the loss of high-quality entanglement
due to purification failures. Moreover, we obtain heuristics for the design of good purifi-
cation policies in practical systems. A key finding is that simple purification protocols,
such as DEJMPS, often provide superior buffering performance compared to protocols that
maximise output fidelity.
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3.1. INTRODUCTION

Entanglement is a fundamental resource for many quantum network applications, in-
cluding some quantum key distribution protocols [3, 104], distributed quantum sensing
[105, 106, 107, 108], and coordination tasks where communication is either prohibited
or insufficiently fast [109, 110]. Pre-distributing entanglement between remote parties
would eliminate the need to generate and distribute entangled states on demand, saving
time and resources [111, 112, 91, 78]. However, entanglement degrades over time due to
decoherence, preventing long-term storage.

Entanglement buffers are systems that store entanglement until it is needed for an
application. Passive buffers, which store entanglement in quantum memories, are con-
strained by the coherence time of these memories [113]. To overcome this limitation,
purification-based entanglement buffers have been proposed [56, 65]. These systems
store entangled states and employ purification protocols to ensure the states remain
high quality, mitigating the effects of decoherence. Purification protocols take m low-
quality entangled states as input and produce n higher-quality states as output, typically
with m > n [49, 50, 80, 81]. These protocols often involve some probability of failure, in
which case all the input states are lost and no entanglement is produced. Here, we focus
on purification-based buffers.

As proposed in ref. [56], the performance of an entanglement buffer can be mea-
sured with two quantities: the availability (probability that entanglement is available
for consumption when requested, see Definition 3.2) and the average consumed fidelity
(average quality of entanglement at the time of consumption, see Definition 3.3). As
well as having practical utility, entanglement buffers are a useful theoretical tool in or-
der to understand the impact of several important interacting processes that occur in
a quantum network: ongoing generation, purification, and consumption of entangle-
ment. Of major interest is the impact of the entanglement purification protocol on the
performance of the system. Since the success probability of entanglement purification
typically depends on the fidelity of the input states, any rate and fidelity metrics are in-
herently coupled in systems making use of purification. This coupling adds complexity
to analytical calculations. Consequently, most analytical studies on the performance of
quantum networking systems exclude purification, and its impact on performance is
typically explored with numerical methods [114, 89]. Nevertheless, as is a main result in
this work, for entanglement buffering systems closed-form solutions are obtainable for
a fully general purification protocol. One may then efficiently compute the performance
of a particular purification policy, as well as make formal statements about how often
purification should be applied to the buffered entanglement.

Here, we study the 1GnB system: a purification-based entanglement buffer with one
good (long-lived) memory and »n bad (short-lived) memories. The good memory can
store entanglement, which can be consumed at any time by an application. In contrast,
bad memories can generate entanglement concurrently but cannot store it; they act as
communication qubits. For instance, carbon-13 nuclear spins in diamond can serve as
good memories with coherence times up to 1 min [115], while electron spins in nitrogen-
vacancy centers may function as communication qubits, with coherence times generally
below 1s[116].

Each time entanglement is generated in some of the bad memories, the system may
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choose to immediately use it to purify the entanglement stored in the good memory. If
purification is not attempted, the newly generated entanglement is discarded. We illus-
trate the 1GnB system in Figure 3.1. Note that the physical platform must enable easy
access to stored entanglement for consumption and purification. However, network ac-
tivities, such as repeated entanglement generation attempts and purification, may intro-
duce additional noise, reducing memory lifetimes. For example, in ref. [14], even when
the carbon-13 nuclear spin used as a storage qubit is protected from network noise by
applying stronger magnetic fields, it exhibits a shortened lifetime of approximately 11.6
ms.

The 1GnB buffering system is a generalisation of the 1G1B system that was origi-
nally proposed in [56]. 1GI1B is a system with only one good quantum memory and
one bad memory. Here, we generalise the work in [56] in three main ways. Firstly, we
now consider several (1) bad memories. Including several bad memories in our model
now means that there is the possibility of generating multiple entangled links in the
same entanglement generation attempt, for example via frequency [117, 113, 118] or
time multiplexing [119, 120], which are commonly proposed ways of improving the rate
of entanglement generation [121, 122, 123]. Moreover, the simultaneous generation of
multiple links opens up the use of stronger purification protocols, thereby providing an
improvement to system fidelity metrics as well as the rate. Note again that the physi-
cal implementation of the buffer must allow for such multiplexing and for purification
of the generated entanglement. The second generalisation from previous work is that
we now model the system in discrete time rather than continuous time, which is more
accurate to real-world systems, as entanglement generation typically happens in dis-
crete attempts (see e.g. refs. [25, 124, 94, 125]). Finally, we now derive our solutions
for a fully arbitrary purification protocol. In particular, the solutions for performance
metrics presented in ref. [56] only apply for purification protocols with a constant prob-
ability of success (i.e. the success probability must be independent of the fidelity of the
buffered quantum state). However, in this work, we remove this assumption and derive
closed-form solutions for the availability and the average consumed fidelity of buffers
that use arbitrary purification protocols. This is in contrast to [65], where although per-
formance metrics are derived analytically and the probability of success is not necessar-
ily constant, their computation requires solving a linear system of equations, which has
dimension that scales with system parameters such as the memory lifetime.

In this chapter, we firstly provide analytical expressions for the availability, A, and
the average consumed fidelity, F, of the 1GnB system (see model description in Sec-
tion 3.2). Then, we use these expressions to find fundamental limits to the performance
of entanglement buffers. Lastly, we investigate how the 1GnB system should be oper-
ated: because there is a large amount of freedom in the choice of purification protocols,
it is not clear what purification strategies should be employed to maximise A and F. For
example, would it be beneficial to use a purification subroutine that provides a larger
fidelity boost (which could increase F) if this comes at the cost of a higher probability
of failure (which means losing high-quality entanglement more frequently, decreasing A
and maybe also F)? Our main findings are the following:

°* MONOTONIC PERFORMANCE — We show that, to maximise the average consumed
fidelity, purification must be performed as much as possible, i.e. every time en-




72

3. ENTANGLEMENT BUFFERING WITH MULTIPLE QUANTUM MEMORIES

Consumption (p,,)

[ 0
N ~—
T Purification (q)

—

Entanglement
generation (pgen)

— _j

Figure 3.1: Illustration of the 1GnB buffering system. Entanglement generation is attempted in every bad
memory (By, ..., Bp) simultaneously in each time slot. Each memory succeeds with probability pgen. The
good memory, G, stores entanglement, which decoheres at rate I'. When G is full and new entanglement is
generated in any of the B memories, a purification subroutine is applied with probability g. Entanglement is
consumed from G with probability pcon in each time slot.

tanglement is generated in any of the bad memories. This holds even if the purifi-
cation protocol has a large probability of failure. Nevertheless, there is a tradeoff
between both performance metrics, since the availability decreases when purifi-
cation is performed more frequently.

FUNDAMENTAL BOUNDS — We provide upper and lower bounds for the availability
and the average consumed fidelity of a 1GnB system, which constitute fundamen-
tal limits to the impact that a purification policy can have on the performance.

SIMPLE CAN BE BETTER THAN OPTIMAL — Simple purification protocols can greatly
outperform advanced purification protocols that maximise the fidelity of the out-
put entangled state. For example, we find that a buffering system using the 2-to-1
purification protocol from ref. [50] (known as DEJMPS) can outperform a system
using the n-to-1 optimal bilocal Clifford protocol from ref. [97], in terms of both
availability and average consumed fidelity.

3.2. THE 1GnB SYSTEM

In this section, we provide a short description of the entanglement buffering setup (see
Figure 3.1). The goal of the system is to buffer bipartite entanglement shared between
two nodes. These nodes could be, for example, two end users in a quantum network or



3.2. THE 1GnB SYSTEM 73

two processors in a quantum computing cluster. We refer to bipartite entanglement as
an entangled link between the two nodes. In the 1GnB system:

* Each node has one long-lived memory (good, G) and n short-lived memories (bad,
B).

* The G memories are used to store the entangled link. We assume the link stored
in memory is a Werner state (any bipartite state can be transformed into a Werner
state with the same fidelity by applying extra noise, a process known as twirling [47,
96]). Such a state can be parametrised with its fidelity to the target maximally en-
tangled state, F.

» The entangled link stored in G is subject to depolarising noise with memory life-
time 1/T’, which causes an exponential decay in fidelity with rate I'. That is, if the
link in memory has an initial fidelity F, after time ¢ this reduces to

1 1
F~%F——)(”+—. (3.1)
4 4

» Before each entanglement generation attempt, the system checks if a new con-
sumption request has arrived. The arrival of a new consumption request in each
time step occurs with probability pcon. If there is a link stored in memory G when
a consumption request arrives, the link is immediately consumed and therefore
removed from the memory. This takes up the entire time step. If there is no link
available, the request is discarded and the system proceeds with the entanglement
generation attempt.

* The B memories are used to generate new entangled links. In the literature, these
are usually called communication or broker qubits [92]. This communication qubit
can be, for example, the electron spin in a nitrogen-vacancy center [94, 126, 93].
Every time step that is not taken up by consumption, entanglement generation is
attempted in all n bad memories simultaneously, e.g. using frequency or spatial
multiplexing, and each of them independently generates an entangled link with
probability pgen. This means that, after each multiplexed attempt, the number
of successfully generated links follows a binomial distribution with parameters
(1, pgen). Each of these new links is of the form ppew, which is an arbitrary state
that depends on the entanglement generation protocol employed (see e.g. refs.
(25,127, 124, 128]).

° When k = 1 entangled links are generated in the B memories and the G memory is
empty, one of the links is transferred to the G memory. If the G memory is occu-
pied, the new links may be used to purify the link in memory. The system decides
to attempt purification with probability g. If the system does not decide to purify,
the new links are discarded. If the system decides to attempt purification and this
succeeds, then the resultant link in the G memory is twirled, converting it into the
form of a Werner state with the same fidelity.

Table 3.1 summarises all variables of the system. Next, we discuss how to model the
purification strategy.
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3.2.1. PURIFICATION POLICY
The main degree of freedom in the 1GnB system is the choice of purification protocol.
This is given by the purification policy.

Definition 3.1. The purification policy m is a function that indicates the purification pro-
tocol that must be used when k links are generated in the B memories,

m:kell,...,n}—m(k) € Py, 3.2)
where &2, is the set of all m-to-1 purification protocols.

Protocol 7 (k) of purification policy 7 is the (k + 1)-to-1 purification protocol that is
used when k new links are generated in the B memories (examples of basic protocols
can be found in refs. [50, 49, 84]; see ref. [129] for a survey). The purification protocol
updates the fidelity of the buffered link from F to J(F), where

1 ar(Pnew) (F— 1)+ bic(pnew)

J(F)=—-+ . (3.3)
4 cr(Pnew) (F_ i) + dj (Pnew)

We call Ji the jump function of protocol n(k). The protocol succeeds with probability

1
Pi(F) = cr(Pnew) (F_ Z) + di(Pnew), (3.4)

otherwise all of the links (including the buffered one) are discarded and the G memory
becomes empty. In Appendix B of ref. [56], the forms (3.3) and (3.4) for the output fidelity
and success probability are justified, given that the buffered link is a Werner state with
fidelity F and any other input state is given by the same arbitrary density matrix ppew. We
therefore see that the action of any purification protocol on the fidelity of the buffered
link is determined by the four parameters ay(Pnew), Dk (Pnew)s Ck(OPnew), Ak(Pnew). In
Appendix 3.6.3, we discuss the values that these coefficients can take. As an example,
we also provide the explicit form of these coefficients for the well-known 2-to-1 DEJMPS
protocol[50].

Lastly, note that purification policy = employs protocol 7z (k) when k new links are
generated. However, this does not mean that all the new links are used in the protocol.
For example, a policy may simply replace the link in memory with a newly generated link
and ignore the rest of the new links.

3.2.2. FIDELITY OF THE BUFFERED ENTANGLEMENT
Given the system description, we now view 1GnB as a discrete-time stochastic process.
In particular, at time ¢ the state of the system is the fidelity F(¢#) of the buffered link, as
this is the only quantity that can change over time. If there is no link in the buffered
memory at time ¢, we let F(¢#) = 0. This is for notational convenience, as recalling the
decoherence (3.1), one can never reach zero fidelity if there is a link present.

We now outline the characteristic behaviours of F(f) when moving from time ¢ to
time £+ 1.

Let us consider first F(#) = 0. If entanglement generation is unsuccessful, in the next
time step the fidelity will remain at that value: F(z+ 1) = 0. If entanglement generation
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Figure 3.2: Example dynamics of the 1GnB system. Here, the fidelity F(f) of the link in the G memory is plotted
against time. The vertical lines represent discretisation of time. The jumps in fidelity occur when the link is
purified successfully. In between purifications, the link is subject to decoherence and the fidelity decreases.
The link in the G memory is removed due to either failed purification or consumption. When there is no link

in memory, F(¢) = 0. The j-th consumption request arrives at time Tc(é)n. The green tick (red crosses) represent
when a consumption request is (is not) served.

is successful, in the next time step the fidelity will be Fe,y, where Fpew = (@gol Pnew [Poo)
is the fidelity of freshly generated links. We will assume that Fe, > 1/4.

If F(t) > 0, then in the next time step this could evolve in one of the following ways:
(1) if no purification is attempted then the fidelity simply decoheres by one unit of time
according to (3.1); (i7) if k new links are generated and purification is successfully per-
formed, the fidelity decoheres by one time step and is then mapped according to the
corresponding jump function (3.3); (iii) if a consumption request has arrived or if pu-
rification fails, the link is removed and the system becomes empty.

In Figure 3.2, we illustrate an example of how the fidelity may evolve.

In the following subsection, we define the two performance metrics: the availability
and the average consumed fidelity. We then present simple closed-form solutions for
these two performance metrics in the 1GnB system.

3.2.3. BUFFERING PERFORMANCE

The first step towards the design of useful entanglement buffers is to determine a suit-
able way to measure performance. Here, we define two performance metrics for entan-
glement buffers — these quantities were proposed in ref. [56], where they were used to
study the 1G1B system. Then, we provide exact, closed-form expressions for these two
performance metrics in the 1GnB system.

Our first metric is the availability. A user is able to consume entanglement only when
there is a link available in memory G at the time of requesting the entanglement. There-
fore, an important performance measure is the probability that entanglement is avail-
able when a consumption request arrives.

Definition 3.2 (Availability). The availability A is the probability that there is an entan-
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Table 3.1: Parameters of the 1G1B system. See main text for further details.

Hardware
n Number of short-lived memories
Pgen Probability of successful entanglement generation attempt
OPnew Bipartite entangled state produced after a successful entangle-
ment generation

r Rate of decoherence

Application
Pcon Probability of consumption request

Purification policy

q Probability of attempting purification immediately after a suc-

cessful entanglement generation attempt (otherwise the new links
are discarded)

Ji(F) Jump function. Given a buffered link with fidelity F, Ji(F) is
the fidelity immediately following a successful purification us-
ing k newly generated links. Rational function with coefficients
ag, by, cx, di. — see (3.3).

pi(F) Probability of successful purification using k newly generated
links. Linear function with coefficients cy, dj — see (3.4).

gled link present in memory G when a consumption request arrives. This is defined as

A= lim — Y Ljnkexists(Teon), (3.5)
m—oo m j=1

where Té(],)n is the arrival time of the j-th consumption request, and Lk exists () is and
indicator function that takes the values one if there is a link stored in memory G at time
t, and zero otherwise.

The availability may be seen as a rate metric: it determines the rate at which entan-
glement can be consumed. The second performance metric is the average consumed
fidelity, which captures the average quality of consumed entanglement.

Definition 3.3 (Average consumed fidelity). The average consumed fidelity is the aver-
age fidelity of the entangled link upon consumption, conditional on a link being present.
More specifically,
X Trinkexiss (Togh) - P (T
F= lim - , (3.6)
mmee Z;nzl Liink exists ( Tc((j)il)

where

T(E(-1)- L)+ L, if F(r—
F_m:{e (Fe-n-1+1 it Fe-1>o0, 57

0,if F(r—1)=0.
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is the fidelity of the link stored in memory G at the end of the previous timestep at time

t —1 (and therefore consumed at time #), and TC((],L is the arrival time of the j-th con-
sumption request.

The indicator function in the numerator of (3.6) is included for clarity, but is not
necessary: if there is no link in memory at time ¢, then F(t) = 0 by definition.

We note that the Definitions 3.2 and 3.3 are presented differently to how they were in
ref. [56]. This is because the new definitions have a clearer operational meaning, as they
are from the viewpoint of the consumer. However, in Appendix 3.6.1 we show that these
metrics are equivalent for the 1GnB system.

As our first main result, we derive analytical solutions for the availability and the
average consumed fidelity in the 1GnB system

Theorem 3.1 (Formula for the availability). The availability of the 1GnB system is given
by
= __Elfoccl a.s. (3.8)
E[Tgen] + E[Toccl

where Tgen, is the time to generate new entangled links and Ty is the time from when the G
memory becomes occupied until it is emptied due to consumption or to failed purification.
The expected values are given by

1
ElTgenl = —— 3.9
8 1- (1 - pgen)
and
1- A+ C(Fpew— 1)
[E[Tocc] = = = 1~ (3.10)
[1-A@1-D)-BC|P

with

P= Pcon+ q (1 - (1 - pgen)n) (1= pcon),

A q(1—pcon)a
= - ,
e _(1_q+q(1_pgen) )(l_pcon)
Bo= g1 - peon)b
= — ,
Pcon t g (1 - (1 - Pgen) ) (1= pcon)
. q(1— pcon)C
C:= - m ,
e _(1_q+q(l_pgen) )(l_pcon)
D= q(l- pcon)d~

Pcon t 4 (1 - (1 - pgen)n) (1= Ppcon) ,




78 3. ENTANGLEMENT BUFFERING WITH MULTIPLE QUANTUM MEMORIES

and
R n n-k k
a::kz—:lak' k (1 - pgen) Pgen>
P n n-k k
b:=) by P (1= pgen)" ™" Pgen»
k=1
v n n—k_k
¢=) ck- v (1= pgen)” " Pgen>
k=1
IR n n-k k
d=Y dy- v (1~ Pgen)" ™" Pgen-
k=1
Proof. See Appendix 3.6.2. O

From Theorem 3.1, we see that the availability depends on all the parameters of the
system (listed in Table 3.1), including the noise level I'. The latter may come as a sur-
prise, since one would expect noise to have an impact on the average consumed fidelity
but maybe not on the availability, which is only affected by processes that fill or deplete
the G memory. These processes are entanglement generation, failed purification, and
consumption. In our model, the probability of failed purification depends via (3.4) on
the fidelity of the buffered link, which is in turn affected by the level of noise. As a con-
sequence, noise has an indirect effect on the availability.

Theorem 3.2 (Formula for the average consumed fidelity). The average consumed fi-
delity of the 1GnB system is given by

ﬁ: —_—— a.s. (311)

with

* l~ 7
W= Pcon + q(1 = Pcon) (pgen+ Zc_d)r
1 ~

er—1+q(1—pcon)(—a+413——5+d)

=

)

I

V=41 = pcon)C,

e
z:= eF_1+pc0n+q(1—pcon)(pgen—a—Zc),

where pge, =1— (1 = pgen)”, and a, b, ¢, and d are given in Theorem 3.1.
Proof. See Appendix 3.6.2. O

We note that both A and F have been defined as random variables in Definitions 3.2
and 3.3. However, as shown in Theorems 3.1 and 3.2, these quantities are almost surely
deterministic functions of the system parameters. For clarity and convenience, we will
adopt a slight abuse of notation and treat A and F as deterministic functions. This con-
vention will be maintained throughout the remainder of the text.
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3.3. BUFFERING SYSTEM DESIGN

In this section, we discuss our main findings after analysing the performance of the
1GnB system. In Subsection 3.3.1, we study the impact of a general purification pro-
tocol on the system performance. In particular, it is shown that the availability and the
average consumed fidelity are monotonic in the parameter g that determines how fre-
quently the system attempts purification. In the remaining subsections, we investigate
how the choice of purification policy impacts the performance of the buffering system,
and we provide heuristic rules for the design of a good purification policy.

3.3.1. MONOTONIC PERFORMANCE

Each time a B memory successfully generates entanglement, there is the opportunity to
purify the buffered link. This is controlled by the parameter g, which is the probability
that, after some fresh links are successfully generated, they are used to attempt purifica-
tion (otherwise they are discarded). If purification is never attempted (g = 0), the fidelity
of the buffered link will never be increased, although the buffered link will never be lost
to failed purification. If purification is always attempted (g = 1), the availability and av-
erage consumed fidelity might be affected as follows:

* Purifying more often means risking the loss of buffered entanglement more fre-
quently, since purification can fail. This suggests availability may be decreasing in
g. However, many purification protocols have a probability of success that is in-
creasing in the fidelity of the buffered link, F. This means that, when purification is
applied more frequently to maintain a high-fidelity link, subsequent purification
attempts are more likely to succeed. Consequently, it is not clear that the availabil-
ity is decreasing in g.

* The fidelity of the buffered link increases after applying several purification rounds.
However, if purification is applied too greedily, we may lose a high-quality link and
we would have to restart the system with a lower-quality link. If a consumption re-
quest then arrives, it would only be able to consume low-quality entanglement.
Hence, it is not clear that the average consumed fidelity is increasing in g.

In the following, we address the previous discussion and show that, if purification is al-
ways attempted (g = 1), the availability is actually minimised, while the average con-
sumed fidelity is maximised. More generally, we show that A and F are both monotonic
in g, given some reasonable conditions on the jump functions Ji. The following results
(Propositions 3.1 and 3.2) may be used to answer an important question about the 1GnB
system: how frequently should we purify the buffered state in order to maximise A (or F)?
That is, what value of q optimises our performance metrics?

Proposition 3.1. The availability is a non-increasing function of q, i.e.
— =<0. (3.12)

Proof. See Appendix 3.6.4. O
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As previously explained, the monotonicity of the availability in g is not a trivial result,
and it has fundamental implications. It allows us to derive upper and lower bounds that
apply to 1GnB systems using any purification policy.

Corollary 3.1. The availability is bounded as

pgen (Y + Pcon) <A< pgen
§+¢'- pgen +¢"- (pgen)z - pgen + Pcon ,

(3.13)

with pgey =1~ (1= pgen)”, Y= €' =1, &=y Poon + Péon, §' = 1+2Y + (2 =) Peon — 2Pons
and &" := 2(1 — peon)?. Moreover, the upper bound is tight, and for any purification policy
is achieved when q = 0.

Proof. See Appendix 3.6.4. O

We refer to pg,,, as the effective generation probability, since it is the probability that
at least one new link is generated in a single (multiplexed) attempt.

The upper bound from (3.13) only depends on the effective generation probability
and the probability of consumption. This bound is achievable with any purification pol-
icy: to maximise the availability, it suffices to never purify (g = 0). A special case are
deterministic policies (those with pi(F) = 1, Yk), which achieve this bound for any gq.
This upper bound coincides with the tight upper bound found in previous work for a
1G1B system [56]. Note that the 1G1B analysis from ref. [56] was done in continuous
time, where rates were used instead of probabilities. In this framework, the maximum
availability was A/(A + u), where A was the (non-multiplexed) entanglement generation
rate and p was the consumption rate.

Unlike the upper bound, we note that the lower bound from (3.13) is not yet shown to
be tight. We believe that the availability at g = 1 of a policy that always fails purification
(ck = di =0, Vk) constitutes a tight lower bound for any other purification policy. We
leave this proof as future work.

Figure 3.3 shows the upper and lower bounds for the availability from (3.13) versus
Pgen for two different noise levels. As discussed, only the lower bound is affected by
noise. In particular, we have observed that the gap between the bounds is reduced when
the noise level increases. Another remarkable feature is that, when pgen approaches zero,
both upper and lower bounds are equal to pge,,/ pcon to first order in pgen. Hence, in the
limit of small effective generation probabilities, the availability also satisfies

*
- Pgen

A (3.14)

Pcon

Proposition 3.2. The average consumed fidelity is a non-decreasing function of g, i.e.,

oF
— >0, (3.15)
oq

if i (Fnew) = Fnew, YK €N.
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Figure 3.3: The upper bound on the availability is tight and it converges to the lower bound in the limit of
small generation probabilities. Upper and lower bounds on the availability from (3.13), versus the effective
generation probability pé‘en =1-(1- pgen)”. The availability can only take values within the shaded region.
In this example we use I' = 1 and p¢on = 0.7.

Proof. See Appendix 3.6.5. O

As previously explained, the monotonicity of F in ¢ is not a trivial result. In fact,
this behaviour is only certain for purification policies composed of protocols that can
increase the fidelity of a newly generated link. That is, when k new links are generated,
the protocol applied satisfies Ji (Fpew) = Fhew- This is a reasonable condition: otherwise,
we would be applying purification protocols that decrease the fidelity of new links.

Proposition 3.2 also allows us to derive useful upper and lower bounds for F that
apply to 1GnB systems using any purification policy.

Corollary 3.2. The average consumed fidelity is bounded as

Y +4FhewPcon <F< Y +4FhewPcon +3(1 — pcon)Pgen

, (3.16)
4y +4pcon 4y +4pcon

with y := e — 1. Moreover, the lower bound is tight, and for any purification policy is
achieved when q = 0.

Proof. See Appendix 3.6.5. O

We see that the tight lower bound from (3.16) does not depend on the number of
memories 7, the probability of successful entanglement generation pgen, or the purifi-
cation policy. This is because this bound corresponds to g = 0. In such a case, no pu-
rification is applied, and the consumed fidelity only depends on the initial fidelity (Fpew)
and the amount of decoherence experienced until consumption (given by I" and pcon)-

The bounds on F can be used to determine if the parameters of the system need an
improvement to meet specific quality-of-service requirements. For example, let us con-
sider Figure 3.4, which shows the bounds for pcon = 0.7 and two different values of I
If noise is strong (I' = 1 in this example), we observe that values of pg,, below 0.5 yield
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Figure 3.4: The upper bound on the average consumed fidelity marks unachievable values for any purifi-
cation policy. Upper and lower bounds on the average consumed fidelity F from (3.16), versus the effective
generation probability pgen =1-(1-pgen)”. F can only take values within the shaded region. In this example
we use pcon = 0.7.

F < 1/2, which means that, on average, the consumed link will not be entangled [56].
Hence, if the consumption request rate is pcon = 0.7, we need to increase pgen beyond
0.5 (by increasing the number of B memories, n, or the probability of successful entan-
glement generation, pgen) or to decrease the noise experienced in memory G in order
to provide a useful average state. When the noise level is I' = 0.1, Figure 3.4 shows that
T > 0.85. Moreover, for pgen > 0.3, the upper bound is above Fjey, which means that a

smart choice of purification policy may allow us to buffer entanglement with F > Fpey.
Ultimately, this means that, in this regime, an entanglement buffer with faulty memories
may be able to keep entanglement at higher fidelities than a perfect memory.

3.4. CHOOSING A PURIFICATION POLICY

In previous studies of entanglement buffering, the choice of purification policy was re-
stricted by the properties of the system. For example, in ref. [56] the 1G1B system was
studied, where only 2-to-1 purification protocols can be implemented, and the jump
function was assumed to be linear in the fidelity of the buffered link. Other works in-
clude simplifying assumptions (e.g. in ref. [65], a buffer is studied that employs the
purification protocol proposed in ref. [130]). The 1GnB buffering system offers more
freedom in the choice of purification protocols. In a 1GnB buffer, each entanglement
generation attempt is multiplexed and can generate up to n new links at a time. When
k < n new links are produced, any (k + 1)-to-1 purification protocol can in principle be
implemented. This provides an extra knob that can be used to tune the performance of
the system to the desired values. In this section, we investigate the impact that specific
purification policies have on the system and we provide guidelines on how to choose a
suitable purification policy. Note that an exhaustive optimisation problem would be ex-
tremely computationally expensive to solve due to the large space of purification policies
— optimising over ag, by, ¢k, di is not easy, since it is not certain that every combination
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of those parameters corresponds to an implementable purification circuit.

3.4.1. SIMPLE POLICIES: IDENTITY, REPLACEMENT, AND CONCATENATION
There are two trivial deterministic policies (pi = 1, Y k) that we will use as a baseline:

* In the identity policy, the system does not perform any operation on the buffered
link, which yields an output fidelity Ji(F) = F, Vk > 0. This is equivalent to setting
g = 0. As discussed in Section 3.3.1, the identity policy therefore maximises the
availability and minimises the average consumed fidelity.

* Inthe replacement policy, the system replaces the buffered entangled link by a new
link, yielding an output fidelity Ji(F) = Fpew, Yk > 0. This corresponds to aj =0,
by = Fpew — 1/4, ¢ = 0, and dj = 1. Since this policy is deterministic, from the
discussion in Section 3.3.1 we find that the replacement policy also provides max-
imum availability for any value of g. Since F is maximised for g = 1 (Proposition
3.2), we will only consider a replacement policy that always chooses to replace the
link in memory when a new link is generated. That is, the replacement policy im-
plicitly assumes g = 1.

Another simple strategy is the DEJMPS policy. This policy consists in applying the
well-known 2-to-1 DEJMPS purification protocol [50] using the buffered link and a newly
generated link as inputs. If more than one link is successfully generated, we use only one
of them and discard the rest. We provide the purification coefficients ay, bi, ¢, and
dy for this policy in Appendix 3.6.3. One of the main drawbacks of the DEJMPS policy
is that it does not take full advantage of the multiplexed entanglement generation, as it
only uses one of the newly generated links and discards the rest. A technique that could
improve the performance of the policy is concatenation, which consists in applying DE-
JMPS to all links (the buffered one and the newly generated ones) consecutively until
only one link remains, which will be stored in memory G. Note that the concatenation of
DEJMPS subroutines can be applied using different orders of the links (see Figure 3.5).
The order determines the output fidelity and probability of success [131], which affects
the performance of the buffering system. In what follows, we consider the concatenated
DEJMPS policy, where DEJMPS is applied sequentially to all the newly generated links
and the buffered link is used in the last application of DEJMPS, as in Figure 3.5a. In our
analysis, we found that different orderings provided qualitatively similar behaviour of
our two performance metrics (see Appendix 3.6.7 for further details).

Figure 3.6 shows the performance of several policies: identity, replacement, DEJMPS,
and concatenated DEJMPS x N. The latter is a policy that applies DEJMPS sequentially
up to N times and discards any extra links: if k < N links are generated then k concatena-
tions are performed, and if k > N links are generated, N concatenations are performed.
We note that concatenated DEJMPS x1 is just the same as the DEJMPS policy. DEJMPS
and concatenated DEJMPS are plotted for g € [0,1]. The maximum average consumed
fidelity is indicated with a dot, and it is achieved when g = 1. The first observation from
this figure is that a higher level of concatenation decreases the availability. This is be-
cause it requires multiple DEJMPS subroutines to succeed, which decreases the overall
probability of successful purification. However, a higher level of concatenation can sig-
nificantly increase the average consumed fidelity F. For example, the maximum F that




84 3. ENTANGLEMENT BUFFERING WITH MULTIPLE QUANTUM MEMORIES

(a) (b)

e p| D
E E
D| (M M [p
Y B Sl
p| M D| M
— gr—P — E—{P
J| |8 J| LS
M M
—{ P —{P
S| S

Figure 3.5: The ordering in a concatenated policy matters. Example of two different orderings when the
buffered link (G) and three newly generated links (B) are used. We call ordering (a) “concatenated DEJMPS”.
Ordering (b) is often called “nested” [30].

DEJMPS can achieve is 0.915, while concatenated DEJMPS x2 leads to F = 0.937 (for
g =1). Nevertheless, for the parameter values explored, we also find that increasing the
number of concatenations beyond two often reduces both A and F. This behaviour is
shown more explicitly in Figure 3.7, where we plot the maximum F versus the maximum
number of concatenations N. In this example, the number of B memories is n = 10, and
therefore it is only possible to perform up to 10 concatenated applications of DEJMPS.
We observe that F is maximised for two concatenations. The same was observed for dif-
ferent parameter values — in some edge cases, F increases with more concatenations,
although the increase is marginal (see Appendix 3.6.7 for further details). In conclusion,
this result shows that even if many new links are successfully generated in parallel, it can
sometimes be beneficial to use only one or two of them for purification while discarding
the rest.

3.4.2. SIMPLE POLICIES CAN OUTPERFORM COMPLEX POLICIES
In the previous section, we found that implementing a simple 2-to-1 protocol, even
when multiple links are generated in the B memories, can provide a better performance
than using all of the newly generated links for purification with concatenated 2-to-1 pro-
tocols. A follow-up question arises: what if we employ more sophisticated (k + 1)-to-1
protocols instead of simply concatenating 2-to-1 protocols? Can we then improve the per-
formance of the buffer? This is the question that we explore now.

Much recent work has focused on the search for optimal purification protocols [53,
52, 971, where optimal protocols are typically defined as those which maximise the out-
put fidelity, or in some cases the success probability. Here, we evaluate the performance
of a 1GnB system with some of these protocols, and we find a surprising result: simple
protocols like DEJMPS can vastly outperform these more complex protocols in terms
of buffering performance. In particular, we consider the bilocal Clifford protocols that
maximise the output fidelity, given in ref. [97]. We refer to this policy as the optimal bilo-
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Figure 3.6: Concatenating simple purification policies decreases A but may increase F. Performance of 1GnB
systems with different purification policies, in terms of availability A and average consumed fidelity F. The
shaded area corresponds to unattainable values of A and F (see (3.13) and (3.16)). Lines and markers show the
combinations of A and F achievable by different purification policies: identity (square marker), replacement
(star marker), DEJMPS (dashed line), and concatenated DEJMPS (solid lines). Concatenation can boost F
(e.g. the maximum F of twice-concatenated DEJMPS is larger than DEJMPS), but excessive concatenation
may eventually lead to a drop in F. Parameter values used in this example: 7 = 10, Pgen = 0.5, pnew is a Werner
state with Fhew = 0.9, pcon = 0.1, and I' = 0.02.

cal Clifford (optimal-bC) policy. In Appendix 3.6.3, we discuss the details of this policy
and provide its purification coefficients ay., by, ¢k, and dj.

Figure 3.8 shows the performance of the optimal-bC policy in comparison to DE-
JMPS and twice-concatenated DEJMPS. The optimal-bC policy provides a significantly
lower availability, A, without providing any advantage in average consumed fidelity, F.
In other words, for any desired A, using DEJMPS or twice-concatenated DEJMPS always
provides a larger F than the optimal-bC policy. If we want to increase A as much as pos-
sible, the replacement policy is better than any other, as discussed earlier. We say that
the performance of DEJMPS, twice-concatenated DEJMPS and replacement forms the
Pareto frontier [132], which informally is the set of best achievable values for A and F for
this collection of protocols. We tested different parameter combinations and found that
the Pareto frontier was often made of DEJMPS, concatenated DEJMPS and replacement.
The reason for these simple policies to outperform the optimal-bC policy is that the op-
timal bilocal Clifford protocols maximise the output fidelity at the expense of a reduced
probability of success. At some point, the sacrifice in the probability of success can out-
weigh the benefit of a larger output fidelity, thereby reducing the overall performance of
the buffer in terms of both A and F.
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Figure 3.7: Excessive concatenation worsens the performance. Maximum average consumed fidelity F
achieved by a purification policy that concatenates DEJMPS a limited number of times. Zero concatena-
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DEJMPS policy. Excessive concatenation may decrease F. Parameter values used in this example: n = 10,
Pgen = 0.5, pnew is a Werner state with Fpew = 0.9, pcon = 0.1, and T' = 0.02.

Our comparison between simple and optimal purification protocols is by no means
an exhaustive study. However, it shows that purification protocols that maximise only
the output fidelity (or probability of success) must not be blindly used in more complex
systems involving many impacting factors such as decoherence and consumption, such
as entanglement buffers. In fact, we find that discarding some of the newly generated
links and applying a 2-to-1 protocol can provide larger A and F than using all of the links
in a more sophisticated purification subroutine. Note that this does not mean that mul-
tiplexed entanglement generation is not useful: even if we only employ 2-to-1 protocols,
multiplexing boosts the effective entanglement generation rate, which allows for a more
frequent purification of the buffered link.

Additionally, we also tested other complex policies that use (suboptimal) k-to-1 pro-
tocols, such as the 513 EC policy, which uses a 5-to-1 protocol based on a [[5, 1, 3]] quan-
tum error correcting code. In Appendix 3.6.6, we explain this policy in detail and show
that it can outperform DEJMPS and twice-concatenated DEJMPS in some parameter re-
gions.

3.4.3. FLAGS CAN IMPROVE PERFORMANCE

As discussed in the previous sections, concatenating protocols multiple times does not
necessarily improve the performance of the buffer (neither in terms of A nor F). The
reason is that, when concatenating, a single failure in one of the purification subroutines
(in our examples, DEJMPS) leads to failure of the whole concatenated protocol. This can
be easily solved: instead of considering the concatenated protocol as a black box that
only succeeds when all subroutines succeed, what if we condition the execution of each
subroutine on the success/failure of previous subroutines? Consider for example the con-
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Figure 3.8: Simple policies perform better despite discarding freshly generated entanglement. Performance
of 1GnB systems with different purification policies, in terms of availability A and average consumed fidelity
F. The shaded area corresponds to unattainable values of A and F (see (3.13) and (3.16)). Lines and mark-
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(dotted line). Parameter values used in this example: 7 =5, pgen = 0.8, pnew is a Werner state with Fpew = 0.7,
Pcon =0.1,and I' = 0.02.

catenated protocol from Figure 3.5a. If any of the DEJMPS subroutines fails, the whole
protocol fails and the buffered link has to be discarded. However, we can fix this by rais-
ing a failure flag whenever any of the first two subroutines fails. If this flag is raised, the
third subroutine is not executed and we leave the buffered link untouched. The flagged
version of a concatenated protocol has a larger probability of success, but can also have a
lower output fidelity. This means that it is not clear a priori what is the impact of flags on
the buffer performance. We now analyse a simple case in which we conclude that flags
can be either beneficial or detrimental depending on the values of system parameters
such as the level of noise I', and not only on the purification policy itself.

Let us consider a policy that operates as follows. For simplicity, we assume that newly
generated states ppew are Werner states with fidelity Fpew. When k new links are gener-
ated and there is already a link stored in memory G:

1. If k = 1, we apply the replacement protocol, which has coefficients a; =0, b; =
Fhrew—1/4,c1=0,and d; = 1.

2. If k = 2, we apply the DEJMPS protocol to two of the fresh links and discard the rest.
Then, we replace the link in memory with the output from the DEJMPS subroutine,
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without checking whether it was successful or not. This means that the output fi-
delity of the protocol is the same as the output fidelity from the DEJMPS subrou-
tine. Since replacement is deterministic, the success probability of this protocol is
also the same as the success probability of the DEJMPS subroutine. The purifica-
tion coefficients for k = 2 are therefore given by ay = 0, by = a(pPnew) - (Fnew — 1/4) +
b(pnew), cx =0, and dy = c(Pnew) - (Fnew — 1/4) + d(pnew), where a, b, ¢, and d are
the coefficients of the DEJMPS protocol (given in Appendix 3.6.3).

Now, let us consider a flagged variant of the previous policy, with coefficients a}c, b;c, c;C,
and d,’c. It works as follows:

1. When k =1, we apply the replacement protocol.

2. When k = 2 links are generated, the DEJMPS protocol is applied to two of the fresh
links, and the rest are discarded. Then, the link in memory is replaced with the out-
put from the DEJMPS subroutine, but only if the subroutine succeeds (otherwise,
the buffered link is left untouched). This protocol is now fully deterministic, since
the buffered link is never removed from memory. Consequently, C;C =0,and d ;C =1.
The output fidelity of this protocol can be computed as the weighted average of the
original fidelity of the link in memory and the output fidelity of the DEJMPS sub-
routine — the first term must be weighted by the probability of failure of the sub-
routine, and the second term by the probability of success. Then, the remaining
purification coefficients can be computed as a}c =1-c(Pnew): (Fpew — 1/4)—d(pnew)
and b}c = a(Pnew) * (Frew — 1/4) + b(ppnew), where a, b, ¢, and d are the coefficients
of the DEJMPS protocol (given in Appendix 3.6.3).

By introducing the flags, we have created a protocol with probability of success p} =
1 = pi, where py is the probability of success of the original protocol. However, it can
be shown that the output fidelity of the flagged protocol is J ;C (F) = Jx(F), where J is the
jump function of the original protocol. This holds when DEJMPS can improve the fidelity
of the newly generated links, i.e. when J(Fpew) = Fhew, Where J is the jump function of
DEJMPS. The opposite regime is not interesting, since DEJMPS is decreasing the fidelity
of the links and we would be better off not purifying.

As shown in the previous example, internal flags increase the probability of success
of purification protocols, which should boost the availability of the buffer. However,
flags may have the side effect of reducing the output fidelity, and therefore it is not clear
what is their impact on the average consumed fidelity. In Figure 3.9, we show the per-
formance of a 1GnB system using the policy described above, versus the level of noise
in memory G. We show A (orange lines) and F (black lines) for the original policy (solid
lines) and the flagged policy (dashed lines). As expected, the availability is larger for the
flagged policy. The behaviour of F is more interesting. When the level of noise is low,
the flagged policy provides better performance, since it prevents high-quality entangle-
ment from being lost to a failed purification. However, when noise is strong, flagging
becomes detrimental in terms of F: the buffer is likely to store low-quality entanglement
due to the strong noise, and flags prevent the buffered link from being discarded earlier
due to failed purification and being replaced by a fresh link. Note that other strategies,
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ability A and average consumed fidelity F versus the noise level T, for a’'DEJMPS + Replacement’ policy and its
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output fidelity. The flagged policy yields larger A, but may decrease F in some parameter regimes (e.g. when I
is large). Parameter values used in this example: 7 =2, pgen = 1, pnew is a Werner state [135] with Frew = 0.7,
and pcon =0.1.

such as using the output state regardless of the success or failure flag [133] and using hy-
perentangled states [134], can also be employed for designing deterministic purification
protocols.

In conclusion, internal flags are a solid tool to improve the availability of entangle-
ment buffers based on concatenated purification protocols. However, they can decrease
the average consumed fidelity in some parameter regimes. Hence, flagged purification
policies should not be assumed to be better than their non-flagged counterparts, and
their performance should be carefully evaluated before being adopted.

3.5. OUTLOOK

In this chapter, we have studied the behaviour of entanglement buffers with one long-
lived memory and 7 short-lived memories (1G#nB system). In particular, we have pro-
vided analytical expressions for the two main performance measures: the availability
and the average consumed fidelity. These expressions provide valuable insights, such as
the fundamental limits to the performance of 1GnB systems discussed earlier.

Since our analytical solutions are not computationally expensive to evaluate, we ex-
pect our buffering setup to be easy to incorporate in more complex network architec-
tures, such as quantum repeater chains or even large-scale quantum networks. Ad-
ditionally, larger buffering systems with multiple long-lived memories, e.g. an mGnB
setup, can be implemented with multiple 1GnB systems in parallel.

Due to the vast freedom in the choice of purification policy, there are multiple ways in
which our analysis of purification strategies for entanglement buffers can be extended.
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Notably, determining the optimal ordering in which simple protocols should be applied
to newly generated links (e.g. concatenated, nested [30], or banded [131]) is left as fu-
ture work. Additionally, finding policies that optimise availability or average consumed
fidelity remains an important open question.

3.6. APPENDIX

3.6.1. A NOTE ON THE VIEWPOINT
In this appendix, we provide three further ways to compute the performance metrics A
and F. The initial (and most natural) definitions of the performance metrics (see Def-
initions 3.2 and 3.3) consist in averages from the viewpoint of the network user, who
consumed the links. In Lemma 3.1, we show that the averaging may only be done over a
single cycle of the renewal process. In Lemma 3.3, we show that the performance metrics
can also be computed as limiting values when time goes to infinity. Lastly, in Lemma 3.2,
it is shown that one may compute the metrics by averaging over time, regardless of con-
sumption arrival times.

We denote the arrival time of the j-th consumption request as TC([],)rl From now on,
we write

Te(F) =1 p={TE>0 3.17
Le.(F) = Ljink exists (F) = 0if F=0. (3.17)

In the following, we let Ny denote the natural numbers containing zero, and N = N \ {0}.
Recall that F = {F(¢),t € Np} is a discrete-time stochastic process. The value F(?) is
defined to be the fidelity at the beginning of the time step [¢, ¢+ 1). Then, since con-
sumption removes the link from the G memory, at each consumption time we have
F( TC((])L) = 0. However, the consumed fidelity at this time depends on the value of the
fidelity at time TC({)E1 — 1. We therefore introduce some new notation to more easily treat
this issue.

In order to do this, we firstly note that associated with F there is an equivalent continuous-

time stochastic process {Fcont(s) : s = 0} that is obtained from F with the following pro-
cedure: given f € N,

(i) if F(2) >0, then for s € [¢, £+ 1), Fcont(s) may be deduced by applying decoherence
(3.1) to F(1);

(i) if F(¢) =0, then Feont(s) =0for se [¢,t+1).

Conversely, F may be obtained from F.qn by taking its values at integer times.
From Fony, for ¢ € N, we define another discrete time process F~,

F~={Feont(t ) : tEN}, (3.18)

where ¢~ denotes taking the left-hand limit. In particular, the consumed fidelity F~(¢)
takes the value of the fidelity at the end of the time step [f — 1, £). The values of F~ may
also be deduced directly from F as

(3.19)

() = {e—'F (Fe-n-1+1 it Fe-1>o0,
0, if F(¢~1)=0.
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We note that the evolution of {F~ (¢), t € N} may be deduced directly from {F(?), t € N} via
(3.19), and vice-versa. The value F~ (#) may be interpreted as the state of the system ‘just
before’ time ¢, and F(t) the state ‘just after’. Each completely captures the behaviour of
the 1GnB system.

We then restate the original definitions 3.2 and 3.3 of availability, A, and average con-
sumed fidelity, F, below.

Definition 3.4 (Performance metrics, viewpoint of network user). We have

1 & — ()
A= ,}l@ooaj;h& (F T ) (3.20)

and

F= lim 5
R e (FraTdy)

I e (F (1)
(3.21)

We now present a second way to compute the performance metrics, which is the
form that is used to derive the solutions for A and F in Theorems 3.1 and 3.2 (see Ap-
pendix 3.6.2). To show this result, we use the fact that F(¢) is a regenerative process.
Informally, every time the link in the G memory is removed from the system, the pro-
cess ‘starts again), in the sense that the stochastic properties from that point onwards
are the same as when starting from any other time when the G memory is empty. This
stems from the fact that entangled link generation and consumption request arrivals are
assumed to be Markovian.

Definition 3.5 (Regenerative process, informal). A regenerative process {X(#),t=0}isa
stochastic process with the following properties: there exists a random variable V; > 0
such that

(i) {X(t+ V), t=0}isindependent of {X(#),t <V} and V7;

(i) {X(z+V1),t=0}isstochastically equivalent to {X(#), t = 0} (i.e. these two processes
have the same joint distributions).

For a formal definition of a regenerative process, see e.g. [136]. If the process is regen-
erative, it may also be shown that there is a sequence of regeneration cycles Vj = 0, {V}
such that the sequence regenerates at each cycle, i.e. {X(?),f =0} and {X(t+ V}),t = 0}
are stochastically equivalent.

We now show that our process F is regenerative. Let us assume the system starts
when a new link is freshly generated and moved to the G memory, such that F(0) = Fyew.
The system then evolves as follows: the link in the G memory may undergo some pu-
rification rounds, between which it is subject to decoherence, and then is eventually re-
moved from the G memory after time Téyc due to either purification failure or consump-
tion. The time T.!). is the time during which the G memory is occupied. In particular,

TV := min{t: F(¢) = 0}. (3.22)
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After the link is removed, the system will then attempt entanglement generation until a
successful generation. Let the time from which the G memory is emptied until a new
link is produced be Tg(gl. By the assumption that entanglement generation attempts are
independent and Bernoulli, Tg(gl ~Geo(l-(1- pgen)”). When a fresh link is generated
attime t = Té?c + Tg(gl, we have F (T(E?C + Tg(ézl) = Fphew and, from this time on, the process
behaves equivalently to how it did from time ¢ = 0. Letting V; = Téi)c + Tg(gl, we see that
F(t) is regenerative. All regeneration cycles {V;} may each be split into two phases: we
have Vi =T, c(,lc?: + Tg(g, where Téﬁ is the time during which the memory is occupied, and
Téle?l is the time during which the memory is empty and entanglement generation is be-
ing attempted. We note that since F~ is in one-to-one correspondence with F via (3.19),
then F~ is also regenerative with the same cycle lengths.

For the following results, we note two important properties of the process {V}. Firstly,
the mean cycle length E[V;] = [E[T(E?C] + [E[Tég,] is finite: this may be seen by the fact that
Tégl is geometrically distributed (and therefore [E[Tg%] < 00) and that Té?c is bounded
above by the time until the next consumption request, which is geometrically distributed,
and so E[T, ég] < [E[Té},ll] < oco. The second important property is that the {V}} are aperi-
odic, which means that V; takes values in a set of integers that have greatest common
denominator equal to one. Again, this may be seen by the fact that consumption and
entanglement generation are assumed to be geometric. If pgen < 1, the value of V; has
a non-zero probability of taking any value in N\ {1} and therefore satisfies this property.
The same holds if pgen = 1, and there is a non-zero probability of either no purification
or successful purification. The cases where the {Vi} are periodic may be accounted for
separately:

(A) If pgen = 1 and peon = 1, a link will deterministically be generated when in the
empty state, and deterministically consumed in the following time step. The fi-
delity F(t) then deterministically alternates between 0 and Fpey, and the cycle
length is always two. We therefore have

A=< ?:e—F(F —l)+l (3.23)

2’ W) '

B) If Pgen = 1, g = 1 and ¢ = di = 0, then we have deterministic link generation, and
the system always decides to purify. However, purification always fails. The fidelity
then again deterministically alternates between 0 and Fj,ew, and the cycle length is
two. We note that even if purification is always attempted and always fails, then if
a consumption request arrives, this will take priority over purification and the link
will be consumed with fidelity e ™" (Fpew — 1) + 3. Then, F will also take this value.
Moreover, by applying the PASTA property in discrete time [137], we have A =1/2.
Our metrics then take the values (3.23), as in case (A).

We note that our formulae, as given in Theorems 3.1 and 3.2, still hold for the above
cases. The solutions for edge case (A) are obtained by inputting pgen = 1 and peon = 1.
Edge case (B) can be dealt with in the same way: take pgen = 1, ¢ = 1 and the limit
¢k, dr — 0. Note that the jump function (3.3) must still be well-defined, and so neces-
sarily we must also take ay, by — 0. We then obtain (3.23). Although the proof in the
general case may not be immediately applied in these cases, our formula still holds.
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Lemma 3.1 (Performance metrics, single cycle). Suppose that the 1GnB system param-
eters are not in edge cases (A) or (B). The performance metrics in Definition 3.4 may be
written in terms of the properties of a single cycle:

E T(l)
= % a.s. (3.24)
E[Toee] + E[ Tgen]
and
F=EF (T\)IC] as. (3.25)

where C) is the event where the first link is removed due to consumption (and not failed
purification), or equivalently Cy = {Té?c = TC(CI,L }.

Proof. Let F, be arandom variable with distribution given by

t
P(F,€B)= lim % 21113 (F(s). (3.26)
s=

Then, as F~ is a regenerative process with finite mean and aperiodic cycle length, by
e.g. part (a) of Theorem 1 from [138], the above quantity exists and may be computed in
terms of the properties of a single cycle as

P(F,€B)= BV E iﬂB (F(s) |- (3.27)
Letting B be the event where a link is present in the G memory, we then see that
Vi
P(Foo>0) = grynE s;ﬂl.e_ (F™(s)) (3.28)
SN N (3.29)

EITSet) +E[Tgan]

We now show that the above expression is equal to A. Since the interarrival times of
consumption requests are i.i.d. and follow a geometric distribution, we make use of the
PASTA property in discrete time [137] to see that the availability from the point of view
of the consumer in Definition 3.2 is equal to the time average as given above, i.e.

1 t
A= lim p Y Ne (F7 () =P(Fy, >0), as. (3.30)
—ool

Then, (3.24) is shown by combining (3.30) with (3.29).
We now show the identity for F. For this, we also use the regerative property. We
define Wy = 0 and Wj to be the time at which the k-th cycle ends,

k
Wi=Y Vj. (3.31)
j=1
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Then, the sequence of times at which the link is removed from the G memory is
(k)
{kal + Tocc}kzl' (332)
We then define the subsequence
Wi+ Toe bz (3.33)

to be the times at which link removal is due to consumption (and not purification fail-
ure). We recall that in our model, when a consumption request arrives, it immediately
removes the link from the G memory. Then, (3.33) are precisely the times at which con-
sumption requests arrive to find a link in the G memory. In particular,

Wit + To bz = {Tc((])?l : F_(Tégl)’l) > 0}k>1» (3.34)

recalling that {T, é’(ﬂl} is the sequence of arrival times for consumption requests. Recalling
Definition (3.4) of F, we then see that

_ T F ) e (F (1)
F= lim ")
o Z?:l Lie. (F7 (Tcon))

M - (ix)
Zk:(in)F (Vvl'k—l + TOZIE:)

= lim

(3.35)

where we have used the identity (3.34), and defined M(m) < m as
Mm) = ({18, : F~ (18] > 0, k< m}.

Then, M(m) is the number of consumption requests up to time Tc(gfl) that arrive when
a link is stored in memory. We now show that lim,,_.., M(m) = oo a.s. so that we can
apply SLLN to the above expression. To see this, recall that {Vj}¢> are the i.i.d. interar-
rival times of a renewal process N(t) = sup{k : Wi < f}. Since |E[V1]]| < co, we have that
lim;_o N(#) = oo a.s. (see 10.1.2 of [95]). Within each of these cycles, the link is removed
from memory exactly once. The probability that this is due to consumption is bounded
below by pcon > 0, because for each cycle it is possible to consume directly after link gen-
eration, which occurs with probability p.on. Recalling the sequence of times when the
link is removed due to consumption as given in (3.34), the number of these events may
therefore be bounded below by a subsequence

Wjeo1 + T Y o1 S Wio1 + T8 Vi (3.36)

such that the ji — ji_; is geometrically distributed with parameter 1 = p¢on. We therefore
see that

lim [{Wj,—1 + Tole b=1] = 0o as. (3.37)

k—o0



3.6. APPENDIX 95

and therefore by (3.36), the total number of times when the link is consumed diverges to
infinity almost surely. From (3.35), we then have

1 a4 (ix)
i )

(Tee)ICh],

Fas.
a.s. [

where we have used the fact that the sequence {F~(W;, _1 + Téi’g’)} k=1 is i.i.d. since the
process is regenerative, and the strong law of large numbers. O

In the final lemma of this section, we see that the above metrics are equal to the time
averages over the whole process. This follows from a version of the well-known PASTA
property (Poisson Arrivals See Time Averages) in queuing theory [137], which we can
employ because the arrival of consumption requests in each time step is assumed to be
a Bernoulli process.

Lemma 3.2 (Performance metrics, time average). Suppose that the 1GnB system param-
eters are not in edge cases (A) or (B). The performance metrics in Definition 3.4 may be
computed using an average over time, i.e.

1 -
A= lim o Y Tie (F7(), (3.38)

and

_ tE(s)- Lpe (F
F= lim ==L (9)- Le. (F (5) (3.39)
t—oo 3 1e (F7(5)

Proof. The identity for A is a direct application of the PASTA property in discrete time
[137], which we also saw in the proof of Lemma 3.4.
For the second equality, from (3.21) we firstly rewrite F as

_ Ly F(1d)  Fe

) A -

where

Foi:= lim — Z F (1)
] 1
is the average fidelity seen by users, without conditioning on the fidelity being nonzero.
In (3.40), we have removed the indicator function from the sum in the numerator by re-
calling that F~ (T, C((],L) = 0 if the j-th consumption request does not find a link in memory.
Then, since Fio; = F - A and by Lemma 3.4 both F and A converge, the PASTA property
can be applied and we have that

_ 12
Fior = lim — ) F(s), a.s. 3.41
tor = 1M — S;l (s) (3.41)
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Then,
7o Froe _ : Hmf*f" RESLEC) (3.42)
A lim;—.e 7 Z§:1 ]ll.e.(F_ (5))
l‘_ F
= lim t“—(s) (3.43)
=0 ¥y Lie(F(5)

! F ()1 (F
= lim Zs=1[ (e (F(5) (3.44)

=0 ! Lie(F(9)
O

In the following, we show that our performance metrics may be computed as limiting
values of properties of F(¢). Note that this was the definition used in ref [56].

Lemma 3.3 (Performance metrics, limiting values). Suppose that the 1GnB system pa-
rameters are not in edge cases (A) or (B). Then, our performance metrics may be computed
as

A= tllm P(F (1) >0) a.s. (3.45)
F= tlim E[F (D)I|F (1) >0] a.s. (3.46)

Proof. Since F™(t) is a regenerative process with finite mean and an aperiodic cycle
length, it follows that the limiting distribution is well-defined in the following sense. As
in the proof of Lemma 3.4, we let F_ be a random variable with distribution given by
(3.26). Then, by e.g. parts (a) and (b) of Theorem 1 of [138], we have

tlim P(F (t)e B)=P(F_ € B). (3.47)
We therefore see that
tlim P(F (1)>0)=P(F,>0)=A, (3.48)
—00

where we have used the identity for A which we saw in (3.30) in the proof of Lemma 3.4.
This shows (3.45).

To show the identity for F, we make use of the renewal-reward theorem (see e.g.
10.5.1 of [95]). From the previous discussion, associated with the regenerative process
{F(1), t € N} with cycle times {Wy}, there is a renewal process N(f) = sup{k: Wi < t}. We
then define the reward Ry, as the sum of fidelity over the k-th cycle,

~ Wk
Re= ), F . (3.49)
t=Wg_1+1

Then, the cumulative reward up to time ¢ is given by

t
Cty=) F (s (3.50)
s=1

N
=) Rip+E(®), (3.51)
k=1
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where we have defined ,
E®= Y F () (3.52)

§= WN(t)+1
to be the remainder of the reward that is not contained in a full cycle. Then, we see that
C(t) 1 N()+1 B

=Dy Ry
R =

IR N+ 1
= (3.53)
N(t)+1 t
We will now the strong law of large numbers (SLLN) for both terms in the above product.
In particular, the convergence of (N(¢) + 1)/t may be seen by noticing that
YYOVe N t ZN(”“
<
N(1) N(t)+1 N(t)+1 N +1

and using SLLN shows that the upper and lower bound converge to E[V;]. From (3.53),
we therefore see that

(3.54)

cw el

lim < (3.55)
t—oo E[V1]
B[z, F ()]
= ——as. (3.56)
E(Wl
Similarly,
o )R
e OO 4 iy Zhet R N (3.57)
t—oo t—oo N(f)+1 t
E[R
= E[Ri] (3.58)
E[V1]
Combining (3.41), (3.50), (3.56) and (3.58), we therefore see that
Vi o
- C(t) Bl Fr ()
Fiot = tle Z F(s) = hm —= “E[—Vl]] a.s. (3.59)
Moreover, using part (b) of Theorem 1 from [138] , we see that
1 E[x), )]
imE[F (§))]= ———, 3.60
Im E[F (1)] E[Vi] (3.60)
and therefore Fio; = lim; .o E [F~(#)]. Then, we have
E[F (O)TNe (F (¢
lim E[F~()F~(£) > 0] = lim = )f'e'( (£)] (3.61)
t—00 f—00 P(F~(1)>0)
F~ (¢ F —
E[F(8)] ot _F (3.62)

m ——--
T i—coP(F(1)>0) A
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3.6.2. DERIVATION OF FORMULAE FOR PERFORMANCE METRICS
In this appendix, we prove Theorems 3.1 and 3.2, which contain the formulae for the
availability and the average consumed fidelity of the 1GnB system.

For these derivations, we work with the following change of variable.

Definition 3.6 (Shifted fidelity). The shifted fidelity H of the 1GnB system is given by

1
H=F- 7 (3.63)

where F is the fidelity of the link in the G memory.

This will simplify our calculations because under decoherence, the shifted fidelity
changes due to a multiplicative exponential factor. In particular, given an initial value h
of the shifted fidelity, after ¢ time steps this reduces to

h—e Th. (3.64)

We see that the shifted fidelity does not inherit linear terms under decoherence, in con-

trast to the fidelity, which decays according to (3.1). This will simplify our derivations.
After successful (k + 1)-to-1 purification, the value £ of the shifted fidelity undergoes

a jump given by

1 aih+ by

1
h+Z)"_— (3.65)

T (h) = J 1 cch+dy

where we have used (3.3). Similarly, the probability of successful purification is
_ 1
Pr(h) = pk(h+ 4_1) =crh+dg. (3.66)

Therefore, J; and j. are the jump function and success probability of the corresponding
purification events for the shifted fidelity.

Finally, we notice that the range for the fidelity F € [0, 1] translates to H € —i, %] In
particular, we have H < 0 if and only if there is no link in the G memory.

We have fully characterised the dynamics of the shifted fidelity in 1GnB (decoher-
ence, purification, and link removal). Our two key performance metrics may then be
rewritten in terms of H. Recall that with the assumption Fyew > 1/4, and the depolarising
decoherence model (3.1), a link exists at time ¢ if and only if F(#) > 1/4, or equivalently
H(t) > 0. Let us again denote the indicator function when acting on the shifted fidelity
as

1if H=0,

T . =1 =
link exists (F) Le.(H) {0 if H<0.

Recalling Definition 3.2, the availability may then be written as

A= lim =31 (Herd) (3.67)
- Le. con’ |- .
m 5

m—oo
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Recalling Definition 3.3, the average consumed fidelity may be rewritten as
L E(T Te (FTE)
ey e (P

[+ HED) L (HTEDY)

= lim -
j=1"le. con
[z HaEG) e (HEd)

=am gt 0

m—oo Z;n:l Tie. (H(ch]m))

1 —
=—-+H. 3.68

1 (3.68)

We have now written F in terms of H, where

_ | H(Te) T (H(TE)
H:= lim

mEe |y e (HTEY)

(3.69)

is the average consumed shifted fidelity. Finding a formula for F then reduces to finding
a formula for H.
From now on, we will assume that the system starts with shifted fidelity H(0) = Hpew,

where .
Hyew = Fhew — Z (3.70)

is the state of the G memory immediately after transferring a freshly generated link into
memory. Note that Hye,y is a constant, as newly generated links are assumed to be identi-
cal. The subsequent dynamics of the system will then be as follows: the link may undergo
decoherence followed by purification a number of times, until the link is removed. The
removal is due to either consumption or purification failure. After the link is removed,
entanglement generation will be attempted until success, at which point a link is trans-
ferred to the G memory with shifted fidelity Hpew. See Figure 3.10 for an illustration of
this.

Definition 3.7. We define Tp =0, {T;}72, to be the times at which H (equivalently, F) ex-
periences a change that is due to purification, consumption or entanglement generation
(or alternatively, any change that is not due to decoherence). Let S; := T; — T;_; denote
the times between each jump.

We also refer to the {T;} as the jump times. See Figure 3.10 for a depiction.
Now, recall that both the time until entanglement generation and consumption are
assumed to be geometrically distributed. Then, the distribution of S; is then given by

: (1) (1) :
min< Tyoe, T if H(T;_1) =0
l_{ { pur con} ( i 1) 3.71)

T, if H(T;_1) <0,
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H(1)
A
3/4 +
HO = Hnew 1
S, P, S5 P,
-1/4 — > >
T,=0 T, T, T, T, Time

Figure 3.10: Example dynamics of shifted fidelity in the first cycle of 1GnB. We assume that H(0) = Hpew, OF
equivalently that a freshly generated link is transferred to memory at time ¢ = 0. The {T;};>( are defined to be
the times at which there are changes in the (shifted) fidelity that are not due to decoherence. We let Tocc be
the first time at which the link is removed from the G memory. In the example, Tocc = T4.

where Tg(é)n, Tg&r, and Té’gn are independent random variables with the following distri-

butions
Tg((ie)n ~Geo (1 - (1~ pgen)”)
7 ~ Geo (q(1 = (1= pgen)™)
), ~ Geo(peon)- (3.72)

Here, starting at jump time 7;_1, Tg(é)n is the time until a new link is generated and trans-

ferred to memory, Tgl)lr is the time until there is a successful generation and the system

decides to attempt purification, and ngn is the time until there is a consumption request.

Definition 3.8. For i = 0, we define H; := H(T;) to be the shifted fidelity at the jump
times of the process. See Figure 3.10 for an illustration.

Since we assume that the system starts with a freshly generated link in memory, we
have Hy = Hpew. We note that {H;};>¢ is a Markov chain.

Definition 3.9. Let Ty be the first time at which the link in the G memory is removed
from the system. In particular, Tocc = T, where

N =min{i: H; <0}. (3.73)

Note that N is finite a.s. since it is upper bounded by the time until the first con-
sumption request arrives, which follows a geometric distribution.
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In Appendix 3.6.1, we saw that F(¢) is a regenerative process, meaning that it can be
broken down into i.i.d. cycles Vi = T, élc‘zj + Tg(gl, where Tég are the times during which the

G memory is occupied and Tg(gl are the times during which the G memory is empty. We

note that in Definition 3.9, Toec = Téyc From now on, we also refer to Tgen = Tg(gl.

It follows straightforwardly that H(f) = F(t) — 1/4 is a regenerative process with the
same cycles as F(#). We saw in Lemma 3.1 that the performance metrics may be rewrit-
ten in terms of the statistical properties of one cycle. This result also holds for H, which
we restate below. Recalling the notation introduced in Appendix 3.6.1 for F~, we will also
use the equivalent notation for H™, i.e.

Hf(t)zFf(t)—é—ll. (3.74)

Lemma 3.4 (Performance metrics for H, single cycle). The availability is given by

E[Toccl

=—4a.s. (3.75)
E[Toccl + E[Tgenl

and the average consumed (shifted) fidelity is given by
H=E|e "SVHy_, It < rg}Q a.s. (3.76)

where Cy = {rng{ < rg:ﬁ} is the event that the link is consumed at time Tycc.
Proof. The identity (3.75) follows directly from Lemma 3.1. In the same Lemma, we saw
that .

F=E[F(Tgee )Gl (3.77)

where C; is the event that the first link is removed due to consumption, and we recall the
notation

1
+ -,
4

which is necessary to capture the fidelity when consumed at time ¢, since the discrete-
1)

time stochastic process is defined such that H (TéCC = 0. The value of H~ (Téi)c) is given
by e 'S¥N Hy_, where Hy_1 is the value of the shifted fidelity at the previous jump time
(see Definition 3.7) and Sy is the time the link spends decohering in memory from that
point until the link is removed from memory (see Definition 3.9). For the conditioning,

we recall from (3.71) that C; = (1) < Tgl\ﬂ}. O

F(n=eT (F(t— 1)—l
4

By properties of geometric random variables, we already know that

1

E[T ] = —— .
1-(1- pgen)”

gen
To solve for our two performance metrics, it is then sufficient to find formulae for E[ Tjc]
and E|e TSV Hy_4 Irff(\,?l < rg:,’l . This is what we accomplish with the following results.

Definition 3.10. For i < N, let U; denote the event that purification is attempted at the
ith jump time, and R; < U; denote the event that purification is attempted and succeeds
at the ith jump time.
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Lemma 3.5. Let x and y be given by

00 i 00
xi=) E|H; []1g;|, y=) PWN>1D. (3.78)
i=1 j=1 i=1
Then,
1+y
E[Toccl = 7 (3.79)
Pcon t 4 (1 - (1 - pgen) ) (1= Ppcon)
and

(N)] _ (Hpew *+ X)(Pcon + ¢ (1 - (1 - pgen)n) (1= pcon))

Ele "SVHy_ 1t <7 . (3.80)
con pur I+y) (er_l"'pcon"'q(l_(l_pgen)n) (l_pcon))

Proof. Denoting Uy, = {T‘(:](\,II)I < TE,ZX%} and using properties of the conditional expectation,

we may write
[E[e‘FSNHN_l]lU]cV]

Ele™"SN Hy 1|t < Tl = : (3.81)
pur
P(UY)

The denominator P(UICV) may be rewritten as
P(UJCV) = [E[]lUg]]

o) i-1
]lUlc + Z ]leC 1_[ ]]‘Rj
i=2 j=1

=F

" 00
IE []lulc] + Z;IE []lUlE:IRl""YRl.*l] E
i=

i—-1
l_[ ]le
j=1

1
l_[ ]le
j=1

(o]

iéi[E[]lUlc](1+Z[E
l

-1

Yp(uy) (1+ Y P(N> i))

i=1
=P(UT) (1+7y). (3.82)
In the above, we have used the following steps:
i. One may partition the event U}, by conditioning on the value of N as
)
Uy =U Uin{N=1}).
i=1

Now, notice that we have Ul.c N {N = i} exactly when successful purification occurs
i — 1 times, and the link is consumed. Therefore,

USnIN =i} =Ufn(niZ}R;). (3.83)
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Since the Ul.C N{N = i} are mutually exclusive, it follows from the above that

(&)
Lye =, l]lUicm{N=i}
1=

(&)
= & Lupeloizin)

i

o) i-1
:]].UIC+Z]].UiCH]].Rj. (3.84)
i=2 ' j=1

ii. We use linearity of taking the expectation and take the expectation inside the sum,
which is possible by the monotone convergence theorem (see 5.6.12 of [95]). Then,
we express the joint probability in terms of conditional probabilities.

iii. We have used the fact that

E[LyelRy, o Rt | =P8, < 700 = P, <7000 = [1pe].

<
con = Tpur

iv. Notice that N > i if and only if the first i jump times are due to successful purifica-
tion. Therefore,

{N>i}l= m;lej.
We therefore have

E =|E[]].{N>,'}] =P(N>1i).

i
H ]le
j=1

Secondly, we rewrite the numerator of (3.81) in a similar way:

Ele™"SY Hy 11y 1

0 i-1
e_FSNHN_l . (]lUf + Z ]lU;: l_[ ]le)
i=2 j=1

Y

[e) i

-T's -T'S;

Hpewe 1]1U5+Ze L+1Hi]1UiC+1 H]le
i=1 j=1

iii

o0
= HpewlE [e_rsl]lUIC] + Z E [e—FSi+1 1ye . |R1,...,Ri] E
i:l 1+

|

—F [e_r Siq Uf] (Hpew + ). (3.85)

i
H; [] 1g
j=1

iv

=E

o0
o TS ]lUf] (Hnew +Y E
i=1

i
H; []1g,
j=1

In the above, we have used the following steps:

i. We have again made use of (3.84), and Hy := Hpew-
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ii. Again making use of (3.83), we have noticed that the indicator function selects the
value of N as
i-1
e_rSNHN—l . ]lUl.C H ]le — e_rSNHN—l . ]lUl.Cn{N:i}
j=1
i-1
=e TSiH; - Lye 11z,
j=1
iii. We have used linearity of the expectation, and take the expectation inside the sum,
which is possible by the monotone convergence theorem (see 5.6.12 of [95]). Then,
we express the joint probability in terms of conditional probabilities.

iv. We have again used the fact that, conditioned on Ry, ..., R;_1, e TS 1y are identi-
1
cally distributed, forall i = 1.

We now directly evaluate the multiplying factor in the above expressions. Using the par-
tition Uy = U2 {UT, S1 = i},

o0
E [e—rsl ]lUf] = [e—rsl ]lUflUl] P(U)+) E [e_FSI ]lUf|UIC’SI = i] PWUY, 81 =1)
i=1

o .
=0+) e TPUT, S =1). (3.86)
i=1
Recalling that Ut = ) < ngr}, we now evaluate

P(US,S1=1)=P(i =1, i <7

con’ pur

=Pi=1t0)-Pi=<tW)

con pur

= (1= peon)’ ' Peon- (1= g(1 = (1 = pgen)™)' ™, (3.87)

where we have used the fact that rg))n and TI()IL)H are independent, and have distributions

as given in (3.72). Therefore, combining (3.86) and (3.87), it follows that

E [e—l“Sl ]1U1°] = Z e_ri(l - pcon)i_lpcon ’ (1 —-q (1 - (1 - pgen)”))i_l
i=1

= pcone_r Z e !l (1 - (/I(l - (1 - Pgen)n))i (1- pcon)i
i=0

T
- Pcon® (3.88)

1=e (1= (1= (1= pgen)")) 0= peon)’
where to obtain the first equality we have relabelled the summing index, and to obtain
the second equality we have used the formula for a geometric series. By setting I' = 0 in
the above, we also obtain

Pcon
-(-q(1-(1- pgen)n)) (1= pcon)
Pcon

- Pcon t g (1 - (1 - pgen)n) (1= pcon) ’

[E[]lulc] =PWf) =

(3.89)
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Then, combining (3.82), (3.85) (3.88), (3.89) allows us to rewrite (3.81) as

N) < (N)) _ (Hnew *+ X)(Pcon + g (1 - (1 - pgen)n) (1= Ppcon))

con = ‘pur T 7 .
(1+y)(e" = (1-q(1-(1-pgen)")) (1 = peon))

This shows (3.80). We now show (3.79) using a similar method: firstly, we again condition
on the value of N. Recalling Definitions 3.7 and 3.9, we may rewrite T as

x oo i-1
TN:ZSi'l{NEi}:SI+ZSiH]—Rj, -
i=1 =2 j=1 3

where we have again used {N = i} = mj.;ll R; to obtain the second equality. Taking expec-
tations, it follows that

[E[e_rSNHN_l |T

E[Tn] =E

[e) i-1
S1+ Z S l—[ Ile
i2  j=1

[e) i-1
=E(S1]+ ) E[SilRy, ... Ri1]E| [] g
i=2 j=1
e} i
:[E[Sl](l+Z[E ﬂJle )
i=1 [j=1
=E[S1]1(1+Y), (3.90)

where we have used the same reasoning as was used to obtain (3.82) and (3.85). It now
¢

only remains to compute E[S;]. Recalling that S; = min{r gy, Tg,ir}, we see that
P(S1 > i) =P(zloy, > i, Tho, > 1)

=P(T(gy > D) (@50, > 1)

= (1= peon)’ - (1 = G(1 = (1= pgen)™)’,

where we have used the fact that ng)n and ngr are independent random variables, and

their distributions which are given in (3.72). Then, we may rewrite the expectation as

E[S$i]=Y P(S1>i) =Y (1- peon)’ - (1= g1 — (1 - pgen)™)’
i=0 i=0
1
1-(1-pecon)(1—g(1—-(1~- Pgen)n))
1

Pcon + g1 = pcon) (1 = (1 — pgen)™) '

where we have used the formula for a geometric series to evaluate the sum. Rearranging
terms and combining the above with (3.90), we may then write this as

1+y
Peon + (1= Peon) (1 = (1 = pgen)™’
which shows (3.79). O

E[Tn] =
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Lemma 3.6. Let x and y be defined as in (3.78). Then,

B - DHpew + H, 1-A+CH,
x = —Hyew + T y=—1+ - e (3.91)
1-A)Q-D)-BC 1-AQ10-D)-BC
where A, B, C, D are defined in Theorem 3.1 in the main text.
Proof. We firstly define the quantities
i
xi=E|H;[[1g;|, yi=PWN>p), (3.92)
j=1
which means that, recalling (3.78), x and y may be rewritten as
o0 oo
xX=) Xi, y=)_ Vi (3.93)
i=1 i=1

We now show that there is a recursive relationship between the {x;} and the {y;}. We
firstly rewrite x; by conditioning on the value of H;_;. In particular, recalling that
n;.:le ={N > i}, we have

i
H; [ 1g, =E[HiLlin>3]-

j=1

x; =E

=[E[Hi]lmj.=1Rj

Then, one may partition by conditioning on the value of H;_; in the following way:
{(N>i-1}=J{Hi-1=h,N>i-1}.
h
We may then rewrite x; as

xi =E[Hiljn>3|N<i-1]P(N<si-1)
+Y E[HiLin>y|Hi-1=h,N>i-1|P(Hi-1 =h,N>i-1),
h

which simplifies to

xi =0+ E[Hilin>ij|Hi-1=h,N>i—1|P(Hi-y =h,N>i-1). (3.94)
h

We now focus on evaluating E [ H; 1> | Hi—1 = h, N > i — 1]. We do this for h > 0, as this
is the only relevant range in the above formula. We firstly notice that this expression may
be rewritten as

E[Hiln>i|Hi-1=h,N>i-1]=E

i .
H; [] 1g,|Hi-1 = 021 R;
j=1

=E|Hilg|Hioy = b0} Ry
=E[H;1g,|Hi-1 = h], (3.95)
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where to obtain the final equality we have used the Markovian property of the system:
given the information that H;_; = h > 0, this is sufficient to understand the future be-
haviour {Hy}>;. This follows from the fact that {H;} is a Markov chain.

Recall that R; is the event where the ith jump time is due to a purification round
succeeding. Given that in the above expression we are conditioning on the value H;_;,
the random variables on which H; depends are therefore the time S; until the next round
of purification, and the number of links L; that are used for this purification (recalling
that this number determines which purification protocol is used). We must therefore
take the expectation over these two random variables.

Definition 3.11. For i < N (the i-th successful purification round), let L; be the number
of links that were produced in the bad memories just before time T;.

We then expand the expectation (3.95) to condition on the values taken by S; and L;:

E[H;1R,|Hi-1 = h] =Z[E[Hl-11Ri|H,-_1 =hSi=1tL;i=kRi|P(S;=1tL;=kRilHi-1=h)

—Z]k Th)P(S;=t,Li =k Ri|Hi-1 = h), (3.96)

where, recalling (3.65), Ji is the jump function corresponding to the (k+1)-to-1 purifica-
tion protocol from our purification policy. To evaluate (3.96), it now remains to compute
the probability distribution in the weighted sum. We again condition, to find
P(Si=t,Li=k RilHi-1=h)
=P(R;|U;,S; =t,L; =k,H;_1 = h)P(U;,S; =t,Li = k|H;_1 = h)
= pr(e” "WPW;, Si = 1,L; = k| Hi—1 = h), (3.97)
where py determines the probability of successful purification when employing the (k +
1)-to-1 protocol, recalling its definition in (3.66). Now, recalling the distribution of S;
from (3.71),
P(U;, Si=1t, Li=k|H;-1 = h) =P, >, T\, = 1, Li = k)
=Pr® >n-Pa? =1, Li=k)

con pur

- n -
= (1= peon)’ - (1 = (1 = (1= pgen)™)* - q(k)plgen(l — pgen)” %,
(3.98)
where we have used the fact that T(l) and L; are independent of Télgn.
Combining (3.96), (3.97) and (% 98) yields that [E[Hi]lRi |H,-,1 = h] may be written as

ka “h) pr(eTh) (1= peon) (1 — (1= (1 - pgen)”))f‘lq(’;) Peen(1 = Pgen) *

=Y (are™ " h+br) (1 - peon)' 1 —q(1—(1 - pgen)"))f‘lq(Z) Pien( = Pgen)™ %,
t,k
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where we have made use of the expressions (3.65) and (3.66) that define the purification
jump function and success probability for the shifted fidelity. We therefore have

E[Hilg,|Hi-i=h] =) (Ge™""h+D)(1- peon)’ (1 = q(1 = (1= pgen) g, (3.99)
t
where we have defined
v ”1 n-k k E—nb ”1 n-kk
a= Zak- k ( —pgen) Pgen» = Z k* k ( —pgen) Pgen-
k=1 k=1

Now, using the fact that (3.99) is a geometric series (starting from ¢ = 1), we obtain

E[H;1g,|Hi—1 = h] = Ah+B, (3.100)
where
A= q(1—pcon)a B= qu_pcon)B
- r n ’ - n :
e _(1_q+q(1_pgen) ) = peon) Pcon"'Q(l_(l_Pgen) ) (1 = Pcon)
(3.101)

Combining (3.94) and (3.100), we may then write

xi=) (Ah+B)-P(Hi-y =h,N>i-1)

h
=A-E[Hi_11n>i1]+B-P(N>i-1)
=Axi—1+BJ’i—1,

which is our first recursion relation for {x;} and {y;}. We now write down an analogous
recursion relation for y;. We use the same method as for the x;. In particular, using

Yi=P(N>1i)=E[1ln>i],

we again expand the expectation while conditioning on the value of H;_, in a step anal-
ogous to (3.94):

yi= Y E[lnsylHisi=h, N>i—-1]-P(Hi-1=h, N>i-1). (3.102)
h>0

In a step analogous to (3.95), we rewrite the conditional expectation as
E []]-{N>i}|Hi—l =h,N>i— 1] =E []]-R[|Hi—1 = I’l] . (3.103)
We then expand the above with the distributions of S; and L; to obtain

E[Llg|Hiy=h] =) 1-P(Si=t,Li =k Ri|Hi1=h)
t,k

=Y 1-prle " WP}, Si = t,L; = k| Hj_1 = h)
t,k

= Zk 1 ﬁk(e_rth) -(1- Pcon)t ‘1-gq1-Q1- pgen)n))t_l . Q(Z) pgen(l - Pgen)n_k»
t,
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where in the second step we have used (3.97) and in the last step we have again used the
conditional distribution in (3.98). Using again the definition for pj as given in (3.66), one
may simplify the above to obtain

E[1g,|Hi-y=h]=Y @ "h+d)-(1-peon)' - (1—q(1— (1 - pgen) ' -q, (3.104)
>0

where we have defined
~ & n n-k_k 7 A n n-k_k
c= Z Ck* (1= Ppgen)” " Pgen d= Z dy - (1= Ppgen)” " Pgen-
k=1 k k=1 k

One may again use a geometric series to evaluate (3.104), to obtain

E[1g/|Hi-1=h]=Ch+D, (3.105)
where
¢ = q(1 = Pcon)C b= qu_pcon)d
- T n ’ = 7 .
e - (1 -q+q (1 - pgen) ) (1= Ppcon) Pcon t g (1 - (1 - pgen) ) (1= pcon)
(3.106)

Combining (3.102), (3.103) and (3.105) then yields

yi=Y (Ch+D)-P(Hi_y=h,N>i-1)
h>0

=C-E[Hi-1Nnsi-1] +D-P(N>i-1)
=Cxi_1+Dyi,

which completes our second recursion relation for the {x;} and {y;}. We now combine
these to find expressions for x and y. Given the initial values

Xo = E[HyTn>0] = E[Hpew " 1] = Hpew

and
Yo=P(N>0)=1,

it follows that

x=) (Axi—1 +Byi—1) = A(x+ Hpew) + By +1)
i=1

(Cxi_1+Dy;_1) = C(x+ Hpew) + D(y +1).

P18

y:

Il
—

We therefore have a linear system of equations for x and y, which may be written as
x| (A B)\[x
- - +

y] \C DJ\y

(3.107)

AHpew + B
CHpew + D]’
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which has solution

(3.108)

x| 1 1-D B |(AHpew+B
y] A-A0-D)-BC|\ C 1-A[\CHpew+D)’

providing us with the formulae for x and y. These may be simplified in the following
way:

X= (1 - D)(AHnew +1§) +I§(CHnew + D) __ + E - DI{new + Hnew
(1-A(1-D)-BC W 1-Aa-D)-BC
_ C(AHpew+B)+(1— A)(CHpew+D) ) 1- A+ CHpew

1-A1-D)-BE +(1—A)(1—D)—EC’

y

which are in the final form for x and y, as given in (3.91). O

Proof of Theorems 3.1 and 3.2. We combine Lemmas 3.4, 3.5 and 3.6. From Lemma 3.4,
we recall that our performance metrics may be written in terms of properties of the first
cycle. From Lemma 3.5, we recall that these may be written in terms of x and y. Finally,
in Lemma 3.6 we have found formulae for x and y. In order to write down the availability,
we firstly combine (3.79) and (3.91), to find

1+y
Peon + g1 = peon)(1 — (1 — pgen)™)
1- A+ CHpew
(1-AQ-D)-BC)P
1- A+ C(Fpew— )
(1-AQ-D)-BC)P

E[Tocc] =E[TN] =

where P := peon + (1 — peon) (1 — (1 — Pgen)™). This suffices to show Theorem 3.1.
In order to write down the average consumed fidelity, we combine (3.80) and (3.91),
to obtain
. [E - DI_Inew + Hnew] : [pcon +q (1 - (1 - pgen)n) (1- pcon)]
[1 —A+ CHnew] . [er - (1 -q (1 - (1 - pgen)n)) (1- pcon)]
_ ql- pcon)(z} - dHnew) + Hpew (,Ucon +q (1 - (1 - pgen)n) 1- pcon))
q(1 = pcon) (CHpew — @) + el — (1 -q (1 - (1 - pgen)n)) (1 - pcon)

a.

»

H

where we have used the formulae (3.101) and (3.106) for A, B, C, and D. The above may
be rewritten as

a.

7

= q(1 = pcon) (lj) - (anew) + Hpew (pcon + quen(l - pcon))

- — ” (3.109)
q(1 = Peon) (€Hnew — @) + €' = (1 = qpgen) (1 = Peon)

[pcon +q(1— pcon) (Pgen - C{)] - Hpew +q(1 - pcon)B
B [Q(l - pcon)é] Hpew+el' —1+ Peon + 41— Peon) (pgen - d) ’

(3.110)
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where we have let pge, = 1— (1 - pgen)” be the effective probability of link generation. We
now convert the above to F. Recalling that Hpew = Fpew — 1/4, it follows that

— 1
F=H+-
4

[pcon +q(1 - pcon) (Pgen - (i)] - (Fhew — i) +q(1- pcon)l;

1
[LI(I - pcon)é] - (Fhew — %) +el -1+ Pcon + q(1 = Pcon) (pgen - d) 4

a.s.

| Peon+ a1 = peon) (Pgen + § = )| - Faew + § [ =1+ 41 = peon) (~a+4b - £ + d)]
- [q(l_Pcon)E] “Fpew+el' —1+ Pcon + 41— Pcon) (pgen_ a- g)

’

which is our formula for the average consumed fidelity in terms of the system parame-
ters, as is given in Theorem 3.2. O

3.6.3. PURIFICATION COEFFICIENTS ay, by, Ck, AND dj
Here, we discuss the values that the coefficients ay, by, ¢k, and dj of a purification pro-
tocol k are allowed to take. Note that these coefficients are in general functions of the
newly generated state, ppew, although here we do not write this dependence explicitly
for brevity. Then, in Subsection 3.6.3, we provide explicit expressions for the coefficients
of the DEJMPS policy discussed in the main text.

The probability of success of the protocol is given by

1
pk(F)zck(F—Z +d, (3.111)

where the fidelity of the buffered state F can take values between 1/4 (fully depolarised
state) and 1 (perfect Bell pair). Since pjy is a probability, we must enforce 0 < py < 1. At
F =1/4, this yields

0<d;<l. 3.112)
At F =1, ityields
4d <c <4(1 dy) (3.113)
3% =Ce=3 k) .
Combining (3.112) and (3.113) yields
4 <l (3.114)
——<Ccr<-. .
3-%=3

The jump function (output fidelity) of the protocol is given by

ak(F—i)+bk

1
=>4 — 4 =
Jk(F) 2 ck(F—%)+dk

(3.115)

This output fidelity must also be between 1/4 (fully depolarised state) and 1 (perfect Bell
pair). This condition can be written as 0 < ay (F — 1) + bx < 3 py. At F = 1/4, this yields

3
OShkSde. (3.116)
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Combining (3.116) and (3.112) yields
3

0sbes7. (3.117)

Similarly, the condition on the jump function at F = 1 can be written as
4 4 3
—=by < ax < —= b+ —cy + di. 3.118
30k = Ak = =3 bp+ g crt dy ( )
Combining (3.118) with (3.112), (3.113), and (3.116), we find
—-l<ap<l. (3.119)

DEJMPS AND CONCATENATED DEJMPS POLICIES

As explained in the main text, the DEJMPS policy applies the well-known 2-to-1 DEJMPS
purification protocol [50] to the buffered link and one of the newly generated links (and
discarding the rest). This policy is given by the following purification coefficients:

1
=g (5p00 + P11+ P22 —3p33),

|~

by = — (3poo —3p11 —3p22 +5p33),

~

(3.120)
Ci =

—

Poo — P11 — P22+ Pss),

— W

dy = > (P00 + P11+ P22+ p33),
Vke{1,..., n}, where p;; are the diagonal elements of ppeyw in the Bell basis { |¢* ), [¢ ™),
[w*),|v~)}. Note that we define the Bell states as follows:
_ [00) —|11) |01) +|10) _ [01) —|10)
N 77 =, + =, e —
)= )= W)= =%

Regarding a concatenated or a nested DEJMPS policy, one can find the purification
coefficients by applying (3.120) recursively. For each round of DEJMPS, the coefficients
pii in (3.120) are the diagonal elements of the output state from the previous application
of DEJMPS. These diagonal elements are given by [50]

100) + 111 (3.121)

! /
0000 + 033033

Poo = p ’

0'000'33+0'330'60

P11 = - p
. , (3.122)

0 0‘11(Tll+(7220'22

2=~

p
! /
0'11022+0110'22
P33 = f’

with P = (000 +033) (00 + 0%3) + (011 + 022) (0], +0%,), where 0;; and o7, are the Bell
diagonal elements of the two input states, o and ¢”.
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OPTIMAL BILOCAL CLIFFORD POLICY

In the main text, we compare the concatenated versions of the DEJMPS policy to the
optimal bilocal Clifford (optimal-bC) policy. When there is a buffered link in memory
and k new links are generated, the optimal-bC policy operates as follows:

° When k =1, DEJMPS is applied, using the buffered link and the newly generated
link as inputs.

* When k > 1, the optimal k-to-1 purification protocol from ref. [97] is applied to
all k new links. Then, the resulting state is used for DEJMPS, together with the
buffered link. This is illustrated in Fig. 3.11b.

The reason why we apply an optimal bilocal Clifford protocol followed by DEJMPS is
because these bilocal Clifford protocols have been shown to be optimal when the input
states are identical. Hence, they ensure that the second link used in the final DEJMPS
subroutine has maximum fidelity (see ref. [97] for a comparison of the output fidelity
using the optimal protocol versus concatenated DEJMPS). This combined protocol (op-
timal k-to-1 followed by DEJMPS, Fig. 3.11b) is not necessarily the (k + 1)-to-1 protocol
that yields the largest output fidelity. However, one would expect it to provide better
buffering performance than a simple concatenation of DEJMPS subroutines (Fig. 3.11a)
—nevertheless, in the main text we show that this intuition is incorrect.

Let us now show how to compute the purification coefficients ay, by, ¢k, and dj of
the optimal-bC policy:

° When k = 1 new links are generated, the purification coefficients a,, by, ¢, and d;
are given by (3.120), as in the DEJMPS policy.

° When k > 1, we first apply the optimal bilocal Clifford protocol, which outputs a
state ok, with diagonal elements in the Bell basis o ;;. The probability of success
of this subroutine is 8. Then, the state o is used as input for a final DEJMPS
subroutine. Using (3.120), we obtain

1
ar=—(50k00+0k11+0k22—30k33),

60}

1
by = 240, —— (30k00=30k,11 —30 )22 +50433),

2 (3.123)
Ck = 36 (0k00= Ok 11— Ok22+0k33),

1
dp = 20, (Ok00+0k11+ 0k 22 +0k33).

In the example discussed in the main text, we consider n = 4. We also consider the
newly generated links to be Werner states [135] with fidelity Fpew, i.€.,

1- F new

P = Foew [0 X9 |+ T2 [ )g |+ T Yy 1 3newl AT

(3.124)
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Figure 3.11: The optimal bilocal Clifford policy applies an optimal protocol followed by DEJMPS. Illustration
of two purification policies: (a) concatenated DEJMPS and (b) optimal bilocal Clifford.

Under these assumptions, the values of o g (fidelity of the output state from the opti-
mal bilocal Clifford protocol) and 0 are given explicitly in ref. [97]:

0, = 9 —Flow— 9 Fnew tg
32 4 4 5 7
03 = 27 5 Fhew— 9 new 27 (3.125)
32 4 4 , 4 1
04= 37 Fnew ™ glnew+ 37 Foew + 5,
1 (10 , 2 1
02,00_9_2' anew_aneW_f_g »
1 (28 4 1 2
03,00 = 0_3 . EFnew - §Fnew+ E ’ (3126)

where Fy is the fidelity of the newly generated Werner states. The rest of the diagonal
elements of o can be found using the code provided in our repository
(https://github.com/AlvaroGI/buffering-1GnB; this code is based on the methods from
ref. [97]). For Fpew = 0.7, which we use in the example from the main text, we have

o211 = 0.20589 0311 = 0.14287 0411 = 0.04545
o220 =0.02941 , {032 =0.03571 and 0420 =0.04545 . (3.127)
0233 = 0.02941 0333 = 0.03571 0433 = 0.04545

The calculations from ref. [97] can also be used to obtain 6; and o for k > 4, al-
though their methods become infeasible for k > 8 due to the large computational cost,
as discussed in their paper.


https://github.com/AlvaroGI/buffering-1GnB
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3.6.4. MONOTONICITY OF THE AVAILABILITY AND BOUNDS

In this appendix, we show that the availability of the 1GnB system (given in Theorem 3.1)
is monotonically decreasing with increasing probability of purification g (Proposition
3.1). This means that the availability is maximised when no purification is performed. If
any purification is performed, the availability can only decrease, until reaching its min-
imum value at g = 1. Using these ideas, we compute upper and lower bounds for the
availability in Section 3.6.4.

Proof of Proposition 3.1. We start by taking the partial derivative of the availability:

0A B E[Tgenl OE[Toccl

= (3.128)
04 (E[Tgen] +ElTocc))® 04

where we have used (3.8), (3.9), and (3.10). Since the first term in 3.128 is always positive,
the sign of dA/dq is the same as the sign of 9E[Tocc]/dg. Hence, we only need to show
that 0E[Tocc]/0g < 0. Next, we write E[ Tocc] explicitly in terms of g:

_ e+éq
ElToccl = 57—~ g0 (3.129)
where
€ =Y+ Pcon,
e=01- Pcon) (Pgen —-a+ Hnewé) ’
6 = €Pcon, (3.130)

6= (1= pcon) (ngen + chonpgen = Pcon@ — (Y + Pcon) d) ,
6” =0- pcon)2 ((pgen)z - pgend - pgend+ dd— EE) ’
with y = el -1, pgen i=1=(1 - pgen)” and Hpew := Few — %. The derivative of E[Tycc] can
be written as
OE[Toce] € (€' Peon—0') —266" q - £'6" q?
oq (6+8'q+6"q2) '

(3.131)

To prove that 0E[ Tycc]/0q < 0, we will now show that all three terms in the numerator
are negative.

FIRST TERM FROM (3.131) - The first term can be expanded as follows:
('Peon = 8) = ~£(1 = peon) (VY (Pgen = @) + Peon (Pgen = A~ Hnew®) =0, (3.132)

where, in the last step, we have used the following: (i) 0 < pcon < 1, (i) v = el —1=0,
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(iii) d + HpewC < Pgen> and (iv) ds< Pgen- Inequality (ii7) can be shown as follows:

- & n _
d + HpewC = Z (dy + HpewCr) (k) 1- pgen)n kpgen
k=1

n

n _

k (3.133)

1l
—

[
M=

n _
(k)(l - pgen)n kpgen -(1- pgen)n
0

k
=1-(1- pgen)" = Pgen’

where we have used the definition of ¢ and d from Theorem 3.1 and the fact that dj. +
HpewCr < 1 (this is the success probability of purification protocol k when the link in
memory has fidelity Fyey). Inequality (i v) can be shown in a similar way:

Q,
I
M=

n _
di k)(l—pgen)” pien

b
Il

1

S

IA
M=

(1- )n—k k
l(k Pegen)” Pgen (3.134)

kel
1l

I
M=

n _
( 1| (1= Peen)™ ™ Pgen = (1= Pgen)”
0

k
=1-(1- pgen)n = pgen'

where we have used dj < 1 (upper bound from (3.112)).

SECOND TERM FROM (3.131) - Regarding the second term in the numerator of (3.131),
we first note that, since pcon = 0 and y = 0, then € = 0. Moreover, g = 0 by definition.
Consequently, the second term in the numerator of (3.131) is negative if and only if §” =
0, which in turn is equivalent to ( pgen)2 — Pgen@— Pgend + ad — b¢ = 0. This can be shown
as follows:

* * ~ * a7 7l * * o~ * 7., =3 -4 * 7"
(pgen)2 - pgena - pgend +ad—-bc= (pgen)2 - pgena - pgend +ad— b§ (pgen —-d)

L4 .
= (pgen - gb_ a) (pgen -d) (3.135)
0

with these steps:

i. We use b = 0 (which follows from the lower bound in (3.117)) and ¢ < (Pgen —

dyl Hpew (shown in (3.1 33)); This last inequality must hold for any Hyew € [0,3/4],
and therefore ¢ < 4(pge, — d)/3.
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ii. To show that the first factor is non-negative, we use a + 4b13 < d + HpewC < pgen.
The first inequality can be shown using the definitions of 4, b, &, and d from Theo-
rem 3.1 and the upper bound from (3.118); while the second inequality was shown
in (3.133). The second factor (pge, — d) is also non-negative, as shown in (3.134).

THIRD TERM FROM (3.131) - Lastly, the third term in the numerator of (3.131) is
negative if and only if ¢’ = 0, since we just showed that §” = 0. Moreover, ¢’ = 0
p;,:en — d+ Hpew(€ = 0. The latter can be shown as follows:

. - i L n —kk
Pgen—a+ HpewC = Pgent ];1(_ak + HnewCk) k - pgen)n Pgen

& n
> Pgen + Z ( ( HHCW) Ck— dk) (k)(l - Pgen)n_kpgen

k=1
- (4 n _ (3.136)
- pgen + Z (3HHBW(1 dk) - 1) (k)(l - pgen)n kp{gcen
k=1
v S n-k k
= pgen Z k (1 - pgen) Pgen
k=1
20,

with these steps:
i. We use the definitions of @ and ¢ from Theorem 3.1.

ii. We use ay < 3cy/4 + di, which can be shown using the upper bound from (3.118)
in combination with the lower bound from (3.117).

iii. We use cx <4(1 —dj)/3 (upper bound from (3.113)).

iv. We note that Hypew (1 — di) = 0, since Hpew = 0 (by definition) and dy < 1 (as shown
in (3.112)).

v. We recall the definition pge, = 1— (1 pgen)” = X}_, (Z)(l - pgen)”_kpgen -(-
pgen)n-

We have now shown that all three terms in the numerator of (3.131) are negative.
Therefore, 0E[Tycc]/0g < 0 and, consequently, 0A/dq < 0. O

UPPER AND LOWER BOUNDING THE AVAILABILITY
Since 0A/dq < 0, the availability is upper bounded by the value it takes when g = 0. From
(3.129), we have

1
ElTocel| 4=0 = P (3.137)
Combining this with (3.8), we obtain
Pgen
AsA|g= ) (3.138)

Pgen *+ Pcon
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with pgen =1~ (1 = pgen)".
To evaluate A at g = 1, we first use (3.8) and (3.129) to write it as follows:
Pgen
Pgent] + A’
withn:=e+¢e', A:=6+6'+6", with g,€',6,6',6" defined in (3.130).

The solution from (3.139) constitutes a lower bound for the availability. However, n
and A implicitly depend on the parameters of the purification policy, ag, by, ck, and dy,
k €{0,...,n}. Next, we find a more general and meaningful lower bound that applies to
any purification policy.

We start by noting that

Az A, = (3.139)

* £=0 (since pcon =0and y = 0),
* ¢ =0 (as shown in (3.136)),
e =0 (sincee=0),

* &' = 0 (this can be shown using the fact that d < Pgen> sShown in (3.134), and a <
pgen, which can be shown in a similar way as (3.134) and using (3.119)),

e and §” = 0 (as shown in (3.135)).

As a consequence, none of the factors in (3.139) can be negative: pgen > 0 (by definition),
1 =0, and A = 0. This means that we can find a lower bound for A| g=1 by lower bounding
1 and upper bounding A. We first lower bound 7:

1N=7Y+ Pcon + (1 = Pcon) (Pgen —-a+ Hnewé) 27V + Pcon, (3.140)

where we have used pgen — 4+ HpewC€ = 0, which was shown in (3.136).
Regarding A, we proceed as follows:

A=6+6"+6"
= (7 + Poon) Peon + (1= Peon) (Y + 2Pcon) Pigen — Peon @+ ) — vd
+ (1= peon)? ((Pen)? = Pien(@-+ d) + ad - be)
< ( + Peon) Peon + (1 — Peon) (Yp’g*en +2PconPgen — Peon c"z)
+ (1= Peon)? ((/Ugen)2 — Pgen@+ad - 135)
; (Y + Pcon) Peon + (1 = Peon) ()/p’g*en +2Pcon pgen + Peon pgen)
+(1 - Peon)? ((pgen)2  (Plon)? +ad— 135)
= (y + Peon) Peon + (1= Peon) (¥ +3Pcon) Pgen + (1 = Peon)’ (2(p§en)2 +ad- 135)
< (Y + Peon) Peon + (1= Peon) (Y +3Peon) Pgen + (1 = Peon)? (2( pgen)z + pgen)
)2

= (¥ + Peon) Peon + (1 = Peon) (1 +7 +2Pcon) Pgen +2(1 = Peon)’ (Pgen
(3.141)
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with these steps:

i. We use —(y + peon)d < 0 and —pg,d < 0, which follows from d = 0 (shown in
(3.112)).

ii. Usingthe lower bound from (3.119) and following a similar derivation as in (3.134),
one can show that @ = —pge,,. This implies that —pcon@ < PconPgen and —Pgen @ <
(pgen)z'

iii. We use @d — b¢ < pg,,. This can be shown as follows:

: = 4. . 3 _- . 4. - = = - .
ad—bas—gbd+Zemd?—beS—gbd+(1—d)d+d”2—b55dSpgen, (3.142)

where we have used the upper bound from (3.118) in the first step; d =0 (see
(3.112)) and the upper bound from (3.113) in the second step; b = 0 (see (3.117))
and the lower bound from (3.113) in the third step; and (3.134) in the last step.

Lastly, combining (3.139) with the bounds from (3.140) and (3.141), we obtain

_ Pgn] _ Pgen (¥ + Pcon)
Pgen+ A~ E+& Pgen +&" (Pgen)?’

Az A, (3.143)
with € := ¥ Peon + Plony € = 1+27 + (2= ¥) Peon — 2P%on, and " := 2(1 — peon)?. This lower
bound is general and applies to every 1GnB system, no matter which purification policy
it employs.

3.6.5. MONOTONICITY OF THE AVERAGE CONSUMED FIDELITY AND BOUNDS
In this appendix, we show that the average consumed fidelity of the 1GnB system (given
in Theorem 3.2) is monotonically increasing with increasing probability of purification g
(Proposition 3.2), as long as the purification policy is made of protocols that can increase
the fidelity of newly generated links (i.e., Jx (Fhew) = Fnew, VK € {1,..., n}). This means that
the average consumed fidelity is maximised when purification is performed every time
a new link is generated (g = 1). Using these ideas, we compute upper and lower bounds
for the average consumed fidelity in Section 3.6.5.

Proof of Proposition 3.2. Recalling from (3.68) that F = H+1/4, showing the monotonic-
ity of H is equivalent to showing the monotonicity of F. We firstly rewrite the formula for
H as given in (3.109),

_ q(1=pcon) [E - (iHnew + Hnewpgen + HpewPcon
H= ,
q(1— pcon) [EHnew —a+ P’gken] +el -1+ Pcon
where pg., = 1 (1 - pgen)”. Now consider functions of the form g(x) = ﬁ:g . This is

non-decreasing if and only if
E = M > 0
dx (yx+6)>?
< ad—-Py=0.
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We therefore see that H is non-decreasing in ¢ if and only if

(1= pcon) b- dHnew + Hnewpgen (el“ =1+ pcon)
— HpewPcon (1 = pcon) [EHnew —a+ pgen] 20,
or equivalently
€ -1 (B — dHpew + Hnewp;en) + Peon (b= dHyew — EH2y + AHpey) =0 (3.144)

We now show this by considering the two parts of the expression:

(@ b—dHnew+ HnewPgen =0
Recall that the jump functions J; map the shifted fidelity & as

aigh+ by

]k(h) - Ckh+dk )

(3.145)

When the input state is completely mixed (h = 0), the probability of successful
purification is

Pr(0) = d,

and so we must have 0 < dj. < 1. If di > 0, the output fidelity when inputting a
completely mixed state then satisfies

T =220
k dk_

which implies b = 0. If d = 0, the output fidelity as the input state approaches the
completely mixed state is
. ag h+b k
lim ———
h—0 cih

’

and since this is bounded, it must be the case that b = 0. Therefore,
: v n k k
b= Z by k (l—pgen)n_ pgen20
k=1
and
T n n-kk
A=) dy- f (1= pgen)" " Pgen
k=1
= n-k k n *
= Z k (1= pgen) Pgen = 1-(0=pgen)” = Pgen-
k=1

Combining the above, we obtain

b — d Hyew + HnewPgen = Hnew (Pgen — d) 2 0.
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(b) b—dHpew — CH2. + GHpew = 0

new

We have that

b— dHyew — CH>oy, + GHypew
L ko k 2
1- pgen)n_ pgen(bk —diHpew — Cr Hyow + ax Hnew)

=~

1l

—
S

nk k[ @xHnew+ by
) Pgen ¢t Hoow + d — Hpew | (Ck Hnew + di)

I}
M=
S

=~

Il

—
bl

(1 - Pgen

I}
M=
S

k (1- pgen)"_kpgen . (jk(Hnew) - Hnew) * Pr (Hpew),

T
n

which is non-negative if all jump functions J; satisfy
jk(Hnew) = Hpew,
or equivalently J(Fpew) = Fpew Since I' = 0, we therefore see that (3.144) holds. O

UPPER AND LOWER BOUNDING THE AVERAGE CONSUMED FIDELITY

Here, we only consider purification policies made of protocols that can increase the fi-
delity of newly generated links (i.e., Jx(Frew) = Fnew, Vk € {1,..., n}). For these policies,
0F/dq = 0. A tight lower bound can be found by setting g = 0 in (3.11):

R — /4+ F,
F>F| _,= 1 newPeon (3.146)
1 Y + Peon
where y:= el —1. B
An upper bound for F can be found by upper bounding it maximum value, which
occurs at g = 1. Using (3.109), we can write the maximum value as

f| 1 (I - pcon) (B - (anew) + Hpew (pcon + pgen(l - pcon))
== _ _ _
a=1" 4 (1= pcon) (CHpew — @) +7y + Peon + (1 — pcon)Pgen

, (3.147)

where g, =1 - (1 - pgen)”. Using (3.116) and (3.134), it can be shown that b—dHpew <
pgen(3/4 — Hpew). Moreover, from (3.136), we know that HpewC—a = — pgen. Applying
these two inequalities to (3.147), we find the upper bound:

F<F| =i+ FhewPeon + B/ = Peon) Pyen (3.148)
~ T lg=17 4 Y + Pcon '
_ Y/4+ FaowPeon , 3 (1~ Poon) Pgen (3.149)
Y+ Pcon 4 Y+ Pcon

3.6.6. BUFFERING WITH THE 513 EC POLICY

In this appendix, we compare the performance of a 1GnB system that uses a concate-
nated DEJMPS policy to a system that uses the 513 EC policy. When there is a buffered
link in memory and k new links are generated, the 513 EC policy operates as follows:
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* When k = 1, DEJMPS is applied, using the buffered link and the newly generated
link as inputs.

* When k = 5, the purification protocol based on the [[5, 1, 3]] quantum error-correcting

code [139] from ref. [140] is applied to all k new links. Then, the output state is
twirled into a Werner state (that is, it is transformed into Werner form while pre-
serving the fidelity) and used for DEJMPS, together with the buffered link.

e Otherwise, twice-concatenated DEJMPS is applied.

This policy is heavily based on twice-concatenated DEJMPS, with the main differ-
ence being that, when k = 5, a different protocol is applied. Note that, when k =5, we
apply some twirling after the purification step to be able to use the results reported in
ref. [140], where they provide the output fidelity and the success probability of the pro-
tocol but not the full density matrix of the output state.

The purification coefficients of the 513 EC policy can be computed as follows:

* When k # 5, this policy applies DEJMPS or concatenated DEJMPS. Hence, ay, by,
¢, and dy can be found as explained in Appendix 3.6.3.

* When k = 5, the purification coefficients are given by the output fidelity and prob-
ability of success of the 513 EC protocol reported in Figure 3 from ref. [140]. Since
we apply this protocol followed by twirling and DEJMPS, we can use (3.120) to
compute the purification coefficients of the whole protocol:

1
as = @(5000+011 + 022 —3033),

1
b5 = gag (00~ 30m = 3022+ 5059),
(3.150)

2
¢s=——(00p0—011—022+033),
30
1
ds = %(000+011+022+033),

where o is the output state of the 513 EC protocol after twirling: oy is the output
fidelity from the 513 protocol (reported in Figure 3 from ref. [140]),and 01; = 02 =
o33 = (1-000)/3 (since we twirl the output state); and 0 is the probability of success
of the 513 EC protocol (reported in Figure 3 from ref. [140]).

Figure 3.12 shows the performance of the 513 EC policy versus DEJMPS and twice-
concatenated DEJMPS. In this example, twice-concatenated DEJMPS also includes twirling
before the final round of DEJMPS, to make the comparison with the 513 EC policy fairer.
In Fig. 3.12a, we assume Fpe, = 0.86 (according to Figure 3 from ref. [140], this corre-
sponds to 8 = 0.869 and oy = 0.864), and in Fig. 3.12a, we assume Fyey = 0.95 (accord-
ing to Figure 3 from ref. [140], this corresponds to 8 = 0.981 and oo = 0.978). Similar
to the optimal-bC policies discussed in the main text, we observe that the 513 EC policy
can be outperformed by DEJMPS, twice-concatenated DEJMPS, and replacement (Fig-
ure 3.12a). In some parameter regions, the 513 EC may provide better performance (Fig-
ure 3.12b), although this behaviour may not be achievable experimentally, as it requires
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both large pgen and large Fyew — in commonly used entanglement generation protocols,
there is a tradeoff between these two parameters, see e.g. ref. [141].

3.6.7. ENTANGLEMENT BUFFERING WITH CONCATENATED PURIFICATION
In this appendix, we discuss further features of 1GnB buffers that use concatenated pu-
rification policies. In 3.6.7, we consider different orderings for the purification subrou-
tines that are being concatenated. In 3.6.7, we show that increasing the number of con-
catenations is beneficial when noise in memory is very strong.

DIFFERENT CONCATENATION ORDERINGS

As stated in the main text, we tested different orderings of the concatenated purifica-
tion subroutines. In Figure 3.5, we showed two different orderings for a concatenated
DEJMPS policy: sequentially concatenated DEJMPS and nested DEJMPS. Here, we con-
sider a policy that applies a nested DEJMPS protocol to all the newly generated links, and
then uses the output state to purify the link in memory with a final round of DEJMPS.
This policy is only defined when the number of links generated is a power of 2. Hence,
we assume 7 = 4 bad memories and deterministic entanglement generation (pgen = 1)
in the following example. Figure 3.13 shows the performance of this policy compared to
concatenated versions of DEJMPS (in which DEJMPS is applied sequentially to all links,
as shown in Figure 3.5a). The performance of all policies shown is qualitatively simi-
lar. We also observe that, in this case, nesting is better than concatenating as much as
possible, but it is worse than concatenating twice.

INCREASING NUMBER OF CONCATENATIONS

In the main text, we showed that using some newly generated entangled links in the pu-
rification protocol and discarding the rest may provide a better buffering performance
than implementing a more complex protocol that uses all the newly generated links. In
particular, we showed that increasing the maximum number of concatenations in a con-
catenated DEJMPS policy does not necessarily lead to better performance. The reason
was that, as we increase the number of concatenations, the overall probability of success
of the protocol decreases. Nevertheless, this effect is irrelevant when noise is strong: the
quality of the buffered entanglement decays so rapidly that we need a protocol that can
compensate noise with large boosts in fidelity, even if the probability of failure is large.
This is shown in Figure 3.14, where we display the maximum average consumed fidelity
(i.e. assuming purification probability g = 1, see Proposition 3.2) versus the number
of concatenations. When no purification is applied (zero concatenations), F is below
0.5, meaning that the good memory stores no entanglement, on average (see ref. [56]).
As we increase the number of concatenations in the purification protocol, T increases,
although the increase is marginal. Note that this is a consequence of the strong noise
experienced by the buffered entanglement - in Figure 3.7 we showed the same plot but
considering a lower noise level and the conclusions were different: increasing the num-
ber of concatenations eventually led to a decrease in average consumed fidelity.
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Figure 3.12: The 513 EC policy may perform better than DEJMPS when new links are generated with a very
large fidelity. Performance of 1GnB systems with different purification policies, in terms of availability A and
average consumed fidelity F. In (a), newly generated links are Werner states with fidelity Fpew = 0.86, while
in (b) we assume Fnew = 0.95. The shaded area corresponds to unattainable values of A and F (see (3.13)
and (3.16)). Replacement (star marker) and identity (square marker) policies provide maximum availability.
Lines represent the achievable values when using one of the following policies: DEJMPS (solid line), twice-
concatenated DEJMPS with twirling (dashed line), and 513 EC (dotted line). Parameter values used in this
example: n=5, pgen = 1, pcon = 0.1, and I’ = 0.02.
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Figure 3.13: Different concatenation orderings seem to yield qualitatively similar performance. Perfor-
mance of 1GnB systems with different purification policies, in terms of availability A and average consumed
fidelity F. The shaded area corresponds to unattainable values of A and F (see (3.13) and (3.16)). Lines and
markers show the combinations of A and F achievable by different purification policies: identity (square
marker), replacement (star marker), DEJMPS (solid line), twice-concatenated DEJMPS (dashed line), thrice-
concatenated DEJMPS (dotted-dashed line), and nested DEJMPS (orange dotted line). Parameter values used
in this example: n =4, pgen = 1, Fnew = 0.7 (pnew is a Werner state), pcon = 0.1, and I' = 0.02.
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QUANTUM PROTOCOLS REQUIRING
STATE GENERATION WITHIN A TIME
WINDOW
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and Stephanie Wehner

Quantum protocols commonly require a certain number of quantum resource states to be
available simultaneously. An important class of examples is quantum network protocols
that require a certain number of entangled pairs. Here, we consider a setting in which
a process generates a quantum resource state with some probability p in each time step,
and stores it in a quantum memory that is subject to time-dependent noise. To maintain
sufficient quality for an application, each resource state is discarded from the memory
after w time steps. Let s be the number of desired resource states required by a protocol. We
characterise the probability distribution X(,,s) of the ages of the quantum resource states,
once s states have been generated in a window w. Combined with a time-dependent noise
model, knowledge of this distribution allows for the calculation of fidelity statistics of the
s quantum resources. We also give exact solutions for the first and second moments of
the waiting time T () until s resources are produced within a window w, which provides
information about the rate of the protocol. Since it is difficult to obtain general closed-
form expressions for statistical quantities describing the expected waiting time E(T (,s))
and the distribution X(,,s), we present two novel results that aid their computation in

This chapter has been published separately at Davies, Bethany, et al. "Tools for the analysis of quantum pro-
tocols requiring state generation within a time window." IEEE Transactions on Quantum Engineering 5 (2024):
1-20.
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certain parameter regimes. The methods presented in this work can be used to analyse
and optimise the execution of quantum protocols. Specifically, with an example of a Blind
Quantum Computing (BQC) protocol, we illustrate how they may be used to infer w and
p to optimise the rate of successful protocol execution.

4.1. INTRODUCTION

It is common for quantum computing and quantum network protocols to require the
simultaneous availability of a certain number of high quality quantum resource states.
In the domain of quantum networks, such resource states are typically entangled pairs
of qubits, where the execution of protocols such as entanglement distillation and many
quantum network applications require multiple entangled pairs to be available at the
same time [49, 50, 12]. Another example of a resource state can be found in the domain
of quantum computing, where magic state distillation relies on the presence of multiple
initial magic states [142].

Here, we study the setting in which resource states are generated using a probabilistic
process. In each time step, this process succeeds in generating one resource state with
probability p. If the state is prepared successfully, it is immediately stored in a quantum
memory that is subject to time-dependent noise. The process is repeated until all s states
required by a protocol are in memory. Such a setting is ubiquitous in quantum network-
ing, and (photonic) quantum computing. A prime example is heralded entanglement
generation, which is commonly used in present-day quantum networks (see e.g. [25, 23,
143, 29, 144, 145]).

If the noise is time-dependent, this means that when a state is placed in a quantum
memory its quality will degrade over time. In practice then, in order to deliver states of
sufficient quality, one often imposes a window of w time steps within which all s states
must be produced. If the states are produced within the desired window, the quality
of the states is high enough for the application to succeed. Otherwise, the states are
typically discarded (see Figure 4.1). In the context of quantum repeater protocols, such
awindow size is also often referred to as a ‘cut-off time’, and the analysis across multiple
nodes is generally non-trivial [41, 42, 43, 44, 45, 35]. In the context of repeater chains,
the goal is typically to deliver one state at a high rate. This is different from our case,
where the goal is to deliver multiple states. If a protocol requires s quantum resource
states of sufficiently high quality to exist simultaneously, this translates to a requirement
of s successful generation events within the window of w time steps. The motivation
of this work is to quantify the effects of noise on a quantum protocol - we consider a
time window because states may be subjected to time-dependent noise in memory, and
therefore must be discarded before they are too old. We remark that our methods apply
to many different types of hardware, including those with long coherence times [146].

When analysing the performance of protocols that rely on such a generation of re-
source states, we are interested in a number of performance metrics. For example, one
may be interested in the rate at which we can execute a protocol, the probability that the
overall quantum protocol will be successful, or a combined metric that considers the
number of successful executions of the quantum protocol per time unit. To understand
and optimise such performance metrics, we are interested in understanding a number
of quantities related to the system’s ability to prepare the resource states required by the
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Figure 4.1: Setup. In each time step, a probabilistic process generates a resource state, where p is the probabil-
ity of success (tick) and 1—p the probability of failure (cross). After generation the resource state is immediately
placed into a quantum memory subject to time-dependent noise. To ensure the states have sufficient quality
to enable a quantum protocol, states that are older than a specific window w of time steps are discarded (bin).
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Figure 4.2: Ending patterns. At the first instance 7(;,,s) when a window of w time steps contains s successes,
we are interested in how long ago each of the s links were generated. This allows one to quantify the quality of
the corresponding resource states. The information of when the s resource states were produced is contained
in the ending pattern Xy, ).

protocol.

Firstly, one may consider the waiting time 7(,,5) until there are s successes within
a window of w time steps. We remark that for fixed parameters (w, s, p) this provides
us also with information about the rate at which a protocol can be carried out, when
executed multiple times. Secondly, we look at the ending pattern X(,,s) (see Figure 4.2),
which contains the ages of the s quantum resources at time 7(,,s). Combined with a
model of decoherence, this can be used to compute the quality (fidelity) of the resources
immediately after the last state has been produced, which is when the quantum protocol
may be executed. Obtaining the distribution of X(,, 5) then gives the distribution of the
fidelities of the resource states.

The goal of this work is to provide tools that may be used to analyse the performance
of a given quantum protocol for specific choices of w, s and p, as well as to choose a
combination of these parameters to optimise its performance.

4.1.1. RESULTS
Our main contributions are summarised below.

* For all values of w, s and p, we provide formulae for the first and second moments
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of 7(y,s) (and therefore its mean and variance), and the full distribution of X(;,).
For (w, §) = (00, $), these are in a simple closed form, and similarly for (w, s) = (w, 2).
For all other values of (w, s) we present general formulae, which are in the form
of a linear system that may be solved numerically. The dimension of the system
scales as w*!. For large w and s, it is therefore difficult to obtain closed-form
expressions from these systems.

* We provide an efficient method to find bounds on the range of w and p for which
E(7 (w,s)) and X(,,5) may be approximated by E(7 (c,s)) and X(o,s) to an arbitrary de-
gree of accuracy. In a practical context, this allows one to quickly compute thresh-
olds on the window size such that increasing w further provides no improvement
for a protocol rate. Moreover, for appropriate parameter regimes, this approxima-
tion is desirable due to the fact that the dimension of the linear system to solve
for the expected waiting time E(7 ,,5)) and X(,,5) scales with w and s, as described
above. This is in contrast to the simple closed-from expressions that can be found
for the corresponding quantities in the case w = oco.

* We characterise the behaviour of E(7(y,5)) and X, in the limit of a small prob-
ability of success. In particular, we show that as p — 0, E(t(y,s) scales as p~%,
and that the distribution of X(,, sy becomes uniform. This result may be used to
gain intuition about the performance of a quantum application when the resource
generation success probability is small, without needing to perform (potentially
lengthy) numerical computations.

* We provide a demonstration of how these methods may be used in practice. We
consider a Blind Quantum Computation protocol [147]. In our model, entangle-
ment is consumed in the transmission of qubits from a client device to a server
device. The model includes noise due to imperfect entangled links and memory
decoherence. For a set-up involving a computation on four qubits, we provide an
example of how the methods from the first sections may be used to choose archi-
tecture parameters that optimise the rate of the protocol.

4.1.2. RELATED WORK

To obtain our results, we draw on methods used in the mathematical literature known
as scan statistics [148, 149]. Scan statistics is typically concerned with patterns and clus-
ters in a sequence of random events. This is a field that incorporates techniques from
multiple different areas of mathematics. In the quantum context, the problem is differ-
ent from other areas in caring about the ending pattern distribution. In this work, we
therefore use the approach that makes use of martingales, because this allows one to
obtain both E(7 (,,5)) and the distribution of X, [150]. It is possible to obtain the same
quantities with embedded Markov chains [151], but we continue here with the martin-
gale method,; firstly because the resulting formula has a smaller dimension (it is therefore
faster to compute the quantities of interest), and secondly because it has a regular struc-
ture that allows us to derive asymptotic results for small p, which is an experimentally
relevant regime. One of the aims of this work is to characterise both 7(,,5) and the dis-
tribution of the ending pattern X(,,s). However, if one is only interested in 7,5y and not
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X(w,s), then there exist other methods to compute E(7(y,5)), and also in principle the full
distribution of 7(,,5) - see e.g. [152] or [153] which give formulae to obtain the probability
generating function of 7y, 5. To our knowledge, however, these also result in a large sys-
tem of equations, and not the ending pattern distribution. We therefore do not provide
details of these other methods in this work. Other quantities related to the distribution of
T(w,s) have been explored in great depth in the scan statistics literature, which may also
have relevance to the quantum domain. For example, there exist a number of bounds
and approximations for P(t(,,5) < n) (see e.g. [148] for an overview of results), which
may prove useful in allocating time for entanglement generation in a quantum network
schedule. By contrast, in this work, we focus on the behaviour of E(7(y,5)) and X(u,q),
and their implications for the performance of quantum protocols. To our knowledge,
this work is the first to characterise the behaviour of the ending pattern distribution in
certain parameter regimes, and demonstrate an explicit example of the application of
results from scan statistics to a quantum protocol.

4.1.3. OUTLINE

The rest of the chapter is organised as follows. In Section 4.2, the quantities 7(,,5) and
X(w,s) are formally defined. In Sections 4.3.1 and 4.3.2, we give formulae for the first
and second moments of 7(y,5), and the distribution of X(;, 5). In Sections 4.3.3 and 4.3.4,
we present results that aid the understanding and approximation of these quantities.
In Section 4.4.1, the behaviour and practical relevance of the results of Section 4.3 are
outlined, specifically looking at E(7(,5)). In Section 4.4.2, we give an example of how one
may use the results of Section 4.3 to choose architecture parameters that optimise the
performance of a BQC protocol. Finally, further directions are summarised in Section
4.5.

4.2. PRELIMINARIES

We view quantum resource generation attempts as a sequence of i.i.d. Bernoulli trials
(Zi)72, with success probability p = P(Z; = 1) > 0. Then, if a protocol requires s < w
quantum resources to coexist, the time taken to complete the application is dependent
on the waiting time 7,5 to produce s successes within a window of size w. We are
also interested in the ending pattern X, sy which completes the process, because this
contains the ages of the s quantum resources present at time 7, 5). We denote the set of
possible ending patterns as Q(w, s). This contains every possible configuration of the s
successes within the scanning window, so that X, 5) € Q(w), s). A visualisation of how an
ending pattern realises the end of the process is given in Figure 4.2. More specifically, we

define
1

Q) :={xe0, ixy=x=1A Y x; =3 4.1
i=1
to be the set of all length-I binary strings x = (x1, ..., X;) that contain s successes, two of
which occur at either end of the string. Then,

w
Qw, ) :=JQ(s) 4.2)

I=s
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is the set of ending patterns. The set Q(w, s) can be thought of as containing all clusters
of s successes that were produced within a time less than or equal to w time steps. Note
that the number of possible ending patterns is given by

)
1Q(w, 8)| = . (4.3)
s—1
To see this, consider the fact that each ending pattern in Q(w, s) corresponds uniquely
to an ending scenario where the s successes are distributed within the window of w time
steps, as may be seen from Figure 2. Since the final quantum resource must always have
been prepared at the most recent time step and therefore is fixed, it remains to distribute
the remaining s — 1 successes within w — 1 time steps, meaning that the number of pos-
sible ending patterns is restricted to (4.3). The waiting time 7y, is then defined by
Tws) = 1IN {7, (4.4)

i.e. this is the time until we see the first ending pattern in the sequence of Bernoulli trials.
Here, 7, is the time taken until one particular ending pattern x is first seen, so that for
x€Q(s8) cQw,s)

Ty = MIN{t: (Z 151, Zi_ 14200 Zt) = X}, (4.5)

We note that 7(y,5) is well-defined because it is bounded above by a geometric random
variable (see Appendix 4.6.2). There is also a relationship between 7(,,s) and the distri-
bution of X, 5) given by

P(X(w,s) = X) =P(T(w,5) =Tx), (4.6)

recalling that X, takes the value of the ending pattern that completes the process. No
two ending patterns can realise the end of the process at the same time since no element
of Q(w, s) contains another, and so X(y,5) is well-defined.

4.3. FORMULAE AND APPROXIMATIONS

In the following two sections, we provide exact solutions for the first and second mo-
ments of 7(,,5), and the full distribution of X(;, 5. Formulae are provided for all possible
values of w and s. In Section 4.3.3, we look at approximating the solutions for a large w.
In Section 4.3.4, we characterise the solution behaviour for small p.

4.3.1. INFINITE WINDOW
Here, we consider the case where no resource states are discarded (or equivalently when
w = oo) and give solutions for the first and second moments of 7, ), and the distribu-
tion of X(w,s). This serves as a useful initial study of the problem, providing intuition for
the case where w is large and finite.

When no states are discarded, the waiting time to see all of the successes simply be-
comes a sum of s i.i.d. geometric random variables with parameter p. This is known as
a negative binomial distribution, and has an exact distribution given by

-1
P(T(oo,5) = 1) = (Z_ 1)(1 -p"tpt 4.7
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and expectation
s
E(T (co,5)) = —- (4.8)
p

Note that for w' > w, it is always the case that 7, ;) < T(4,5) (increasing the window size
must always decrease the time for the process to complete), and so

E(T(w,s) <ETw,s), for w' > w. (4.9)

In particular, the waiting time for a finite w will always be greater than or equal to the
infinite case. Then, using (4.8) and (4.9), we obtain a simple lower bound in terms of s
and p

s
[E(T(wys)) = —. (4.10)
p
The variance of 7(,s) is given by
s-(1-p)
Var(‘[(oo's)) = Tp, (411)

from which we can see that the standard deviation is reciprocal in p.
It is also possible to derive a simple expression for the distribution of X, 5. For a
binary string x € Q; that lives in the (now infinite) set of ending patterns Q(co, s),

P(Xio = X) =1 -p)~Sps7H, 4.12)

which can be seen by considering the probability of generating the remaining /-1 entries
of B after the first success has been generated. We see that when the window size is
infinite, the probability of generating ending patterns of the same length is constant.

4.3.2. FINITE WINDOW
s=2
When s = 2, it is possible again to derive closed-form solutions for the first and sec-
ond moment of 7(,,5) and the distribution of X, 5). We present below the formulae for
E(7(w,s)) and the ending pattern distribution.

In this case, the ending patterns are determined by the time between the two states,
i.e. |Q;(2)| = 1. We separate the process of resource generation into two parts: generation
of the first state, and generation of the second state. Generation of the first link occurs
when there is no state stored in memory. This is not limited by the window, and has a
generation time described by a geometric distribution with parameter p. To finish the
process, the generation of the second state must happen within w —1 time steps of the
first link being generated. When the process is finished, the time between the two states
is then a geometric distribution conditional on this event, which occurs with probability
1-(1-p) w=1 Then, letting L € {1, ..., w—1} be the number of attempts after the first state
to generate the second,

1- p)nfl p
1-(1-pw-t’
which gives the full ending pattern distribution, where L = n corresponds to X, €
Qn+1 (2).

P(L=n)= (4.13)
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Now, let M be the number of times a first state must be generated until the process
is finished. Since this is determined by the success of the second state within the time
window, we have

M~Geom(1-(1-p)* ). (4.14)
The total time is then given in terms of M and L by
M
Twa =y Tj+M-1)(w-1+L, (4.15)
j=1

where the random variables T; ~ Geom(p) describe the number of attempts to generate
the first state. Now, as shown in Appendix 4.6.1,

E % Tj| =E(M)E(T)) = ! ! 4.16)
= J 1 I-a-pe1) p’ .
and .
— — w _ _ w—
E(L) = 1-a-p) wpd - p) (4.17)
pl-Q1-p*-1h
The expected waiting time may then be computed as
E(T(w,2) =EME(TY) + (E(M) - D (w - 1) +E(L), (4.18)
from which we obtain ) )
E(T(w,2) =— (4.19)

.
p pl-Q1-pw

The variance of 7,2y may also be computed by making use of (4.15). The computation
is given in Appendix 4.6.1.

§>2
We now give a formula to exactly compute E(7(,,5) and the full distribution {P(X(,,,s =
X) : x € Q(w, s)}, for a finite w. This is derived using the method from [150], which makes
use of martingales. For completeness, we include an outline of the derivation in Ap-
pendix 4.6.2, where a gambling analogy is introduced to aid understanding. The result-
ing formula is in the form of a linear system of size |Q2(w), )|+ 1 that can be solved exactly.
Each matrix element defining the linear system can be computed simply and efficiently.
Further, in Appendix 4.6.2 we give a formula for the second moment of 7,5, which now
involves two linear systems of size |Q(w, s)|. A martingale method is also used for its
derivation, and for this we refer to [153]. The second moment of 7(,,5) can then be used
to calculate the variance and standard deviation of 7y ).

Before stating the first formula, we introduce some notation. We define a function *
that maps two binary strings x = (xy, ..., x¢) and y = (y1, ..., ym) to a scalar value, given by

x*y::

min(k,m) ( j
i=1

[160i,ym jﬂ-)) ) (4.20)
=1
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where for a, b € {0, 1}, the quantity 6, , is defined as

Seap) = b ifa=b; 4.21)
(@b = 0, otherwise, '

where p; := p and pg := 1 - p. From (4.20), we see that the value of x * y is obtained
by comparing the overlap of successive substrings of x and y. If two substrings match
exactly, then the corresponding term is included in the sum, and it is weighted by an
amount that is dependent on the Bernoulli parameter p. Informally, then, x * y measures
how similar the structures of x and y are. A simple example of the action of # is given as
follows. We consider the action of * on two ending patterns, recalling (4.1). Letting s =3
and w =7, suppose that x = 1010001 and y = 100011. Computing (4.20) then yields

1 1 1 1 1
X*y=—+0+040+— -—+0=—+

2 ropy P1opiny

Since all elements of Q(w, s) start and finish with a success by their definition in (4.1),
the same initial 1/p term will be present for any pair of ending patterns. Whether or
not there are higher order terms depends on the overlap of the successive substrings. In
particular, for two ending patterns x, y € Q(w, s), the quantity x * y will be of order 1/ p*
ifand onlyif x = y.

Equipped with these definitions, we now give the formula for the expected waiting
time and the ending pattern distribution.

Theorem 4.1. Let N :=|Q(w, s)|. After enumerating the ending patterns as Q(w, s) = {xD .
i=1,..,N}, let

E(T (w,s))
P(Xx=xW)
P(X=x®)
7= . (4.22)
P(X=x™)
Then
AV =eé, (4.23)
where €, := (1,0,...,0)T is a vector of length N + 1, and
0 1 1 1
21 W@ Wy @ L ) ()
21 2@ @ 4 @ L @ (V)

A= ' _ . (4.24)

21 e £ 4 V)
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The matrix A is invertible since no element of Q(w, s) contains another [150]. The
solution for v therefore always exists and is unique. One may then solve the linear sys-
tem (4.23) to obtain E(7(,,s) and the ending pattern distribution. Code is provided in
[154] that performs this task. The matrix A is fully determined by the success proba-
bility p and the parameters w and s. From (4.3), the dimension of the square matrix A
is |Q(w, s)| +1 = @(w*™!), and so the complexity of this task is increasingly difficult for
large w and s. In the following sections, we derive results that aid the understanding
and computation of the corresponding results in the two characteristic regimes of large
w, and small p. Moreover, by the definition of the star product as given in (4.20), we
see that each entry of A is a polynomial in 1/p and 1/(1 — p). As discussed previously,
each entry of the submatrix formed by removing the first row and column is greater than
or equal to 1/p, due to properties of the operator *. Entries that do not take this exact
value contain higher-order terms in 1/p, due to the fact that there is a greater overlap of
the ending patterns corresponding to the row and column indices of such an entry. The
entries of the highest power in 1/p are exactly the diagonal elements and are of order s,
because a string overlaps completely with itself and contains s successes. We note that
in principle, the solutions for ¥ can be computed analytically as functions of p by invert-
ing A directly. However, due to the scaling of the system with w and s, this is in practice
computationally laborious.

4.3.3. APPROXIMATING WITH AN INFINITE WINDOW

Now, one might ask: how large must the window size be for the approximation w = co
to be accurate? This is desirable due to the simple analytical form of the results for the
distributions of 7w, 5) and X(«,s), as seen in Section 4.3.1. This is in contrast to the solu-
tions presented in Section 4.3.2 for the case of a finite w, which scale with w and s. The
approximation becomes valid when the window size has ‘saturated’ the process, so that
increasing the window size does not provide any significant improvement for the rate.
Alternatively, the approximation becomes accurate when P (7,5 > w) is small. This in-
tuition is formalised with the following theorem.

Theorem 4.2. Let 1, be the waiting time for s successes in a w-window. Let X(,,5) be
the corresponding ending pattern. Let p denote the success probability of each trial. Let
e(w, s, p) =P(Tw,s > w). Suppose that0 < p <1 and w < oco. Then

E(T(w,s5) —E(T (c0,5))
[E(T(w,s))

<e(w, s, p) (4.25)

and
Z IP(X(w,s) =%) = P(X(co,5) =X)| < 2e(w, 5, p). (4.26)

x€Q(00,s)

We now look to evaluate e(w, s, p). Looking back at the identity (4.7) for the distribu-
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tion of 7 (,s5), we have

P(T(w,s5) > W) =P(T(c0,5) > W) (4.27)
=y (n_ 1)(1 -p)" 7 p. (4.28)
n=w+1{$—1

To evaluate the right-hand side of (4.25) it is convenient to rewrite this as a finite sum, as
provided by the following lemma. The proof of this is given in Appendix 4.6.3.

Lemma 4.1. Let 1,5 be the waiting time for s successes in a w-window, as defined in
(4.4). Suppose that0 < p <1 and w < co. Then

s—1 w L
P(T(ws >w) =Y. ( . )(1—p)w"p’. (4.29)
i=0

This sum is simple and efficient to evaluate for constant s, and can then be used
to find a range of w for which the two expectations are close. For example, if one is
interested in evaluating E(7(,,5)), when in fact w is large enough such that it may be
reasonably approximated by E(7 (,s)) = $/p, it is possible avoid solving a large system of
equations with the following method. Demanding some desired error §, one may quickly
compute

w* =min{w:e(w,s, p) <6} (4.30)

Then, for all w = w*, one may approximate E(7(y,s)) with E(7(,5)) = s/ p with accuracy
on the order of 6. The same can be done with the ending pattern distribution: if one is in-
terested in the expectation of some fidelity quantity F(X(,,s)), one may also approximate
E(F(X(w,s))) with E(F(X(c0,s))) with the same accuracy.

4.3.4. ASYMPTOTIC BEHAVIOUR OF THE EXPECTATION
From (4.9), an upper bound for E(z(,,s)) is given by E(7 (), which can be written in a
simple analytical form. In the case w = s, there is only one ending pattern x, which
corresponds to the case of s consecutive successes. From (4.23), we then have
S.1 0 1/p-1
E(Te) =x*xx= —_—=— (4.31)
=zpl 1-p

which for small p satisfies E(7(s,5)) ~ 1/p°®. In comparison, from (4.8), the scaling of the
expectation for w = oo is reciprocal in p. Further, from the form of A given in (4.24), all
entries of U will be ratios of polynomials in 1/p. Looking at the first component of 7,
which is the waiting time expectation, this tells us that there is some integer value a(w)
which dominates the scaling for small p, so that

c(w,s)

pas(W) ’

E(T(w,s)) ~ (4.32)
where c(w, s) is a constant. Now, recalling from (4.9) that E(7(,,s)) is a decreasing function
of w, we therefore expect the same of a;(w), which satisfies a(s) = s and as(c0) = 1.
Below we show that for w < oo, as(w) is always equal to s, and also derive the scaling
factor c(w, s).
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Theorem 4.3. Let 1y, be the waiting time for s successes in a w-window, as defined in
(4.4). Let X(,,5) be the corresponding ending pattern. Let p be the success probability of
the process. Then, in the limitp — 0,

1
E(r ~— (4.33)
(Ttus) 1Q(w, 5)|p*
and for all x € Q(w, s)
1
P(X, =X)—> — 4.34
(Xw,s) = X) 1Q(w, )l ( )

where |Q(w, s)| = (';’__11) is the number of possible ending patterns.

A proof of Theorem 4.3 is given in Appendix 4.6.3. It is interesting future work to
quantify the speed of convergence of (4.33) and (4.34).

As intuition for (4.34), note that for very small p, the probability of having w failures
preceding the ending pattern is high. In this case, the ending pattern distribution is
equivalent to the ending pattern distribution given we succeed in w attempts, which in
the limit of small p converges to the uniform distribution.

The behaviour captured by Theorems 4.2 and 4.3 may be viewed as two limiting be-
haviours of the problem in the regimes of small and large p, respectively. In particular,
we expect that the formula provided by Theorem 4.1 becomes useful in neither regime,
i.e. when p is neither too small or too large to apply either approximation. Moreover, it
is important to keep in mind that such a regime will depend on the choices of w and s.

4.4. ILLUSTRATION AND APPLICATION

We expect the methods presented in the above sections to be useful in choosing the op-
timal window size for a quantum protocol. To this end, we firstly analyse in more detail
the behaviour of E(7(,,5)). We then demonstrate how these methods may be used to op-
timise the performance of a BQC protocol.

4.4.1. [LLUSTRATION
We fix s = 4 as an example to showcase the characteristic behaviours of the expected
waiting time. From our investigations, the solutions for other values of s display the
same qualitative behaviour. To produce each figure, we compute E(7 ,,5)) by numerically
solving the linear system (4.23) for the specific choices of w, s and p. Recall that the size
of this linear system scales as @(w*™1). The value s = 4 is small enough so that for the w
values that we consider, the complexity of the problem is not too large to be solved on a
laptop.

In Figure 4.3, E(7 (,,4)) is plotted against w, with the success probability set to p = 0.5.
We notice the convergence to the w = co lower bound. The grey region is that given by
one standard deviation above and below the expectation. Note that one also expects the
standard deviation to converge to that of 7 4), which is given in closed form by (4.11).

In Figure 4.4, E(t(y,4)) is again plotted against w, but this time for three different
values of the success probability. In each case, the solution again approaches the cor-
responding w = oo lower bound. Each line starts at E(t,4)) = (1/p*—1)/(1 - p), corre-
sponding to w = s, and converges to the w = oo limit. This convergence is an important
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Figure 4.3: How [E(7(y,4)) varies with w. We see that E(7(y,4)) (red line) converges to the lower bound
E(7 (00,4)) = 4/ p (blue line) as w becomes large. The grey region is one standard deviation of 7, 4) above and
below its expectation (for w < co0). All quantities are evaluated with a success probability p = 0.5.
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Figure 4.4: How [E(7(y,4)) varies with w and p. We see that for larger p, E(7(,,4)) (solid line) approaches the
lower bound E(7 (o, 4)) = 4/ p (dashed line) at a higher rate.

feature, because at some point increasing w provides no significant improvement for the
protocol rate. As one would expect intuitively, the convergence occurs more quickly for a
larger p, as increasing the window size effectively saturates the problem more easily. To
quantify this, we can use the arguments of Section 4.3.3. For example, taking the desired
margin of error to be 2%, define

w* =min{w:e(w,s, p) <0.02}, (4.35)

where €(w, s, p) is given by (4.29). By Theorem 4.2 and Lemma 4.1, the approximation
E(T(w,s) = E(T(x,5) is then valid to the same margin of error for all w > w*. It is inter-
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Figure 4.5: How E(7(,,4)) varies with p. We see that E(7y,4)) (solid lines) demonstrates the reciprocal scaling
as p — 0, as encapsulated by Theorem 4.3. There is convergence to E(7 (y,4)) (dashed line). This plot was made
by discretising p into 100 points, evenly spaced in the range (0, 1).

esting to see how this compares to the smallest window size w;;,,, for which the same
approximation can be made, which is defined formally as

* . E(T(w,5) —E(T(c0,5))
w =minjw: - — < 0.02¢. 4.36
frue = min ) } (4.36)

The value w* is then an upper bound for wy; .. For example, letting p = 0.5 and s = 4
yields w* = 15, and checking with the exact solutions gives w;,,,. = 12. These are plotted
for more values of p in Figure 4.6. We see from the plot that as p increases, the bound
appears to become tighter. The value wy;,,, was plotted for only a few select values of p
because its calculation is computationally intensive.

In Figure 4.5, E(7(1,4)) is plotted against p for five different values of the window size.
One can see that the scaling of E(7(,,4)) occurs more slowly for a larger w. This indicates
the reciprocal behaviour as given in (4.33), where E(t(y,4)) ~ 1/|Q(w,4)|p*, and in the
case of alarger w the constant [Q2(w, 4)| suppresses the scaling. As p — 1, all plots simply
converge to s = 4, because in this case the process is deterministic. Further, we see again
the convergence of the expectation to the infinite window limit. If p becomes large, we
expect the problem to ‘saturate’ in the same sense as before, so that E(7,s)) = E(T (c0,s))-
The speed of this convergence can again be quantified using the results of Section 4.3.3.
Demanding the same error of 2%, we take the p* that satisfies

p* =inf{p:e(w,s, p) <0.02}, (4.37)

or equivalently, p* is the unique value of p such that e(w, s, p*) = 0.02. The value p* is
an upper bound for the true threshold py;,e,

E(T(w,s) —E(T (c0,5))
[E(T(w,s))

Pie = inf{p: ( ) |p <0.02}. (4.38)
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Figure 4.6: Comparison of thresholds on w for the infinite window approximation. One may use w* (green

line) as a threshold, which is more easily computable than wt*rue (red cross). See (4.35) and (4.36) for the
definition of these quantities. Here we assume a desired error of 2%.
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Figure 4.7: Comparison of thresholds on p for the infinite window approximation. One may use p* (green
line) as a threshold, which is more easily computable than p;; . (red cross). See (4.37) and (4.38) for the defi-
nition of these quantities. Here we assume a desired error of 2%.

where we now include dependence of the expectations on the success probability p.
In Figure 4.7, p* and p{,,,, are plotted against w. The value pj;,, is computationally
intensive to find for large values of w, and has therefore only been plotted for selected
small values of w. The bound p*, however, is efficient to compute. We observe that the
bound appears to be tighter for smaller w.

4.4.2. APPLICATION TO A BQC PROTOCOL
In the following, we provide an example of how the results from Section 4.3 may be used
in the performance analysis of a quantum network application. We consider a verifi-
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able Blind Quantum Computation (BQC) protocol [147]. This involves a client, who uses
a more powerful server device to carry out a bounded-error quantum polynomial-time
(BQP) computation [11], which is specified in the measurement-based formalism [20].
In this formalism, the computation is defined with respect to a graph G = (V, E), where
V is the set of vertices and E the set of edges. The computation is performed by firstly
creating a graph state corresponding to G, and then applying a series of measurements
(‘measurement flow’) to a subset of qubits. The BQC protocol is designed such that the
server remains ignorant of the client’s desired computation (blindness). Further, it en-
sures that the client can validate that the outcome is correct, even in the presence of
some amount of noise or a malicious server (veriability). These properties are stated
precisely in terms of the composable security properties of the protocol [155]. For the
protocol in full detail, we refer to [147]. Here, we provide a short outline of the BQC pro-
tocol, and a simple model of how it is carried out. We then apply the results of Section
4.3 to study the performance of the protocol.

PROTOCOL FEASIBILITY

The BQC protocol involves a series of rounds. In each round, the client sends |V| qubits
to the server, and also a description of the measurement flow it should carry out. If
the server is honest, it will then create a graph state by applying entangling gates cor-
responding to edges in E, carry out the corresponding measurement flow, and send the
measurement outcomes back to the client.

The protocol involves interweaving two types of rounds: computation and test rounds.
The computation rounds are used to carry out the client’s desired computation. In these
rounds, the computation measurement flow is encrypted in order to maintain blindness.
The function of the test rounds is to check for deviations from the client’s specified oper-
ations. Deviations could be due to noise, or the server being malicious. Each test round
has the outcome of either pass or fail, and the protocol is aborted if the ratio of failed test
rounds lies above a certain threshold.

Assuming the test round outcomes are i.i.d., the sufficient condition for verifiability
that we will consider is given by

2y-1

< m, (439)

Pav
as shown in [156]. Here, pgy is the average probability of failure of a test round, and y
is the inherent error probability of the BQP computation. The value k is an integer and
is corresponding to the k-colouring chosen by the client. This is a partition of the set of
vertices into k subsets, known as colours, such that there is no edge between two vertices
of the same colour. For the relevance of this to the BQC protocol, see Appendix 4.6.5 for
a description of test rounds. For deterministic computations (y = 0), (4.39) simplifies to

1
Pav < 2% (4.40)

k
When the server is honest, the quantity p,y is determined on the amount by noise, which
could for example arise from imperfect local operations and measurements, or imper-
fect memory in the server. Further, in a networked setting where the client and server
are distantly separated, the client may send its qubits to the server by making use of
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Figure 4.8: The scenario considered for the model of BQC. Generation of the entangled link is attempted
sequentially, with success probability p. Upon success, the entangled link is immediately used to transmit
qubits from the client to the server. While in the server, qubits (numbered grey circles) undergo decoherence
(brown clock). Qubits are discarded from the server after they have existed for w time steps.

entanglement that has been established between the two parties. In this way, the per-
formance of the protocol is directly dependent on properties of the quantum network
architecture connecting client and server. In such architectures, however, there is in
general a trade-off between rate and quality. In the case of this BQC protocol, demand-
ing that the condition (4.39) is met then effectively places an upper bound on the rate
of the protocol. In the following, we consider a simple model of the network and device
architectures, and provide a demonstration of how the methods presented in Section 4.3
may be used to find architecture parameters that maximise the protocol rate, given the
constraint (4.39).

MODEL OF NETWORK ARCHITECTURE
Our model of the quantum network architecture on which the BQC protocol is carried
out is summarised in the bullet points below. A depiction is in Figure 4.8.

» The server is honest, meaning that it carries out all tasks specified by the client.
The BQC protocol protects against malicious server activity, as well as being robust
to noise. Here, we solely aim to quantify the effect of noise on the protocol.

» Entanglement generation between client and server is performed with sequential
attempts. Each attempt succeeds with probability p.

» Upon entanglement success, a qubit transmission procedure takes place. We as-
sume that each qubit comes into existence in the server memory at the end of the
corresponding time step.

* Immediately after transmission, each qubitis established with fidelity Fesi(p), where
Fegt 1 [0,1] — [0,1] is a decreasing function. In this way, we include a trade-off
between rate and fidelity that is inherent to the entanglement generation pro-
cess occurring between client and server. In the following, we choose this to be
Fest(p) = 1 - Ap. Motivation for this choice of Fe is given in Appendix 4.6.4.
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* While they are stored in the server, qubits are subject to depolarising noise with a
memory lifetime of T time steps. For a d-dimensional density matrix p € 2(H),
this has action

_L _t\ g
p—eTp+(l—e T)E' (4.41)
where [ is the d-dimensional identity matrix and ¢ is the number of time steps for
which p has existed at the server. For the case of a qubit, i.e. d = 2, the fidelity then

decays as

1, _
Fest — (Fest_g)e

~l~

+ (4.42)

D=

 Toreduce decoherence, the server discards a qubit once it has been in memory for
w time steps.

 Alllocal operations and measurements by the client and server devices are perfect
and instantaneous. In particular, once all qubits required for the round are present
in the server, it immediately and perfectly applies the measurement flow that has
been specified by the client.

* Before each round, the client chooses an element of V uniformly at random. The
corresponding qubit is the first one sent. The client then cycles through the qubits
from V in some pre-defined order. With this added randomness, the resulting or-
der of the qubit ages will appear completely random. We continue with this as-
sumption because it simplifies the resulting calculation of p,y, by removing any
dependence of the qubit ages on events that occurred beyond the last w time
steps. More details of protocol test rounds are given in Appendix 4.6.5.

In our model, then, the fidelity of a qubit in the server depends only on the amount of
time it has been stored there, and the entanglement generation success probability p.
Notice that our set-up consists of the sequential attempted establishment of qubits at
the server, and the discarding of these qubits after they have existed for a pre-defined
number of time steps. We then have a situation analogous to that considered in the first
part of this work, where the qubits function as the corresponding quantum resources.
The methods given in Section 4.3 can then be applied to study this situation: the time
taken to complete a round is 7,5 time steps, where s = |V] is the number of qubits
required to produce a graph state, and 7(,,) is the waiting time as defined in Section
4.2. Furthermore, the qubit fidelities at the time when the server applies its entangling
gates and measurements are determined by the ending pattern X, 5y which finishes the
process. More specifically, it is possible to calculate p,y exactly using the ending pattern
distribution. We briefly describe this now.

Suppose that during a particular test round, at the time the server will carry out its lo-
cal operations and measurements, the fidelities of the server qubits are F= (F1,Fo, ..., Fv).
Then, given the model described in the previous section, it is possible to find a function
that tells us the probability of error of a test round, Pg(F). This is a polynomial in the
values F;, and has a form dependent on the graph G and the choice of k-colouring. The
details of how to obtain this function are given in Appendix 4.6.5. An expression for the
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average probability of error of a test round is then

Pav =Y _P(E)P(F), (4.43)
F

where P(F) is the probability of obtaining the particular fidelity vector F. Note that in
the model introduced in the previous section, the qubit fidelities F are determined by
the amount of time for which the qubits have been stored in the server. Moreover, recall
that the ages of the links are contained exactly in the ending pattern X,,s. Writing this
dependence as

F=F(Xuw,s), (4.44)

we then rewrite (4.43) to obtain an expression for the average probability of test round
failure,

Pav= Y, PXus=2Pc(Fx). (4.45)

xeQ(w,s)

This is a quantity that we can now evaluate using the methods introduced in Section 4.3.
In this way, the tools from Section 4.3 allow for the direct connection between the feasi-
bility of the BQC protocol, as determined by p,y, to its rate. Since the above formula for
Pav is dependent on the graph structure and k-colouring, some parameter regimes may
be sufficient for some calculations but not others. For example, for more complicated
graphs that require a larger k, the condition (4.39) is more strict. Further, if one chooses
a different graph or k-colouring for the calculation, the polynomial P; may differ.

NUMERICAL EVALUATION

We now aim to find optimal values of the architecture parameters p and w for one round
of the protocol. By optimality, we mean that the expected time taken to carry out a round
is minimised, while ensuring that the protocol is still feasible. Note that this does not
necessarily mean optimality for the full protocol, which is comprised of multiple rounds.
To optimise over the full protocol, one would to do a further optimisation over more
protocol parameters (for example, the ratio of computation and test rounds), which we
not not consider in this work.

There is a combination of trade-offs between rate and fidelity present in our scenario:
firstly due to varying the success probability, and secondly due to varying the window
size. An increase in p increases the rate at which successful links are generated, but de-
creases the initial fidelity of qubits in the server by an amount determined by Fes(p). We
would therefore expect that a smaller value of w is required to minimise decoherence at
the server, to ensure that the condition (4.39) is met. This in turn increases the expected
time taken to generate all necessary entangled links within the time window. More for-
mally, given a fixed p, we may find the minimal expected time for one round with the
following procedure.

1. Find the maximum value of w such that the protocol is still feasible for this value
of p,
2y—-1
L4 } . (4.46)

Wmax(p) = max{ W: Pay < m




146 4. QUANTUM PROTOCOLS REQUIRING STATE GENERATION WITHIN A TIME WINDOW

) x10*

o T =30

= T =40

S 15[ |—T =50

=

51

£05

5‘ w
0
0.04 0.06 0.08 0.1

P

Figure 4.9: Minimum expected time for one round of a BQC calculation vs. success probability of entan-
glement generation. For a given value of p, we find the maximum window size (4.46), and then use that
to compute the minimum expected waiting time. Here, p is discretised into 100 values of p that are evenly
spaced in the range [0.04,0.1]. We assume calculations on a square graph, which requires four entangled links
to be produced within a time window.

2. Compute E (T (wpa(p),9) | P This is the minimum expected time for one round.

As an example of this method put into practice, we consider the case where the client
would like to perform a BQP calculation on a square graph, so that |V| = 4. This requires
s = 4 entangled pairs to be produced within the time window. For simplicity we will
consider deterministic computations, so that the requirement on the probability of error
is pav < 1/2k. In this case, k can be chosen to be 2 (see Appendix 4.6.5 for an example of
a 2-colouring of a square graph), and the sufficient condition becomes p,, < 1/4.

In Figure 4.9, the minimum expected time to carry out a round is plotted against p
for three different values of the memory lifetime parameter 7, and Fy(p) = 1 — Ap. The
code used to produce Figures 4.9 and 4.10 is provided in [154]. We choose A = % in or-
der to best display the behaviour of the solution, given our computational resources. In
particular, the range of p that we plot is chosen to clearly show the region of the opti-
mal combination of the two trade-offs. For small p, the expected waiting time is high
due to the small entanglement generation probability. For large p, it is high due to the
small window size required due to the decrease in Feg;. We therefore see a region in the
middle of the plot where the average waiting time is minimal, or equivalently, the rate at
which rounds can be carried out is maximal. For larger T, the decoherence of qubits in
memory is reduced, and so it is possible to have a larger window size without disrupting
the condition on p,y. We thus see that the expected time for one round decreases with
T. Further, there are sharp peaks in the plots for each T, which are due to the discrete
nature of w. This can be explained as follows: in the middle of two peaks, it is possible
to increase the value of p without disrupting the condition (4.39). However, there will
come a point where this condition is in fact an equality, which is when the window cut-
off must be decreased in order to maintain the minimum quality of qubits in the server.
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Figure 4.10: Minimum expected time for one round of a BQC calculation vs. window size. For each window
size 4 < w < 15, we find the maximum success probability (4.47), and then use this to compute the expected
waiting time. We assume calculations on a square graph, which requires four entangled links to be produced
within a time window.

Since w is a discrete parameter, this causes a jump to a higher expected time.
One can do something similar when varying the window size. Given a fixed w, we
find the minimum expected time for one round with the following steps.

1. Find the maximum value of p such that the protocol is still feasible,

Pmax(W) :=sup{p: Pav ker-oJ .

2. Compute [E[T(w,s)) |

Pmax(w)*

In Figure 4.10, the minimum expected time to carry out a round is plotted against
the window size. This is again in the case of a square graph, for the same three values
of the memory lifetime parameter T. We see a similar behaviour as when varying the
success probability: a smaller w induces a larger expected time. When s is larger, qubits
are subject to more decoherence, and in order to keep condition (4.39) it is necessary to
decrease the success probability. This is what induces a larger waiting time for larger w.
We therefore again see an optimal region of w for which the expected time to carry out
one round of the protocol is minimised.

Finally, we note that in practice, in order to optimise the full BQC protocol, one would
need to consider how other aspects of the set-up, such as hardware, architecture and
protocol, affect the performance. The simple scenario chosen in this work was to high-
light the application of the results of Section 4.3. We see from Figures 4.9 and 4.10 that
for such values of T and s, the methods from Section 4.3 enable one to make a careful
choice of (w, p) that can improve the rate of rounds of the protocol by two or three times,
in comparison to other non-optimal choices of (w, p) that are also sufficient for protocol
feasibility.




148 4. QUANTUM PROTOCOLS REQUIRING STATE GENERATION WITHIN A TIME WINDOW

4.5. FURTHER DIRECTIONS

With the methods presented in this work, we focus on computing both the first and sec-
ond moments of 7y, 5), and the full distribution of X(,, 5). We have seen that for w finite
and s > 2, the formulae given here to compute E(7(,,5)) and the distribution of X(,, 5) are
in the form of linear systems that scale as [Q(w, s)| + 1. If one would like to compute the
full ending pattern distribution, then this seems to be a good scaling, since the outcome
is comprised of |Q(w, s)| probabilities. However, if one is for example only interested in
E(7(w,s)) (e.g. for computing a protocol rate), then for certain regimes of w and p it may
be useful to consider a continuous approximation, where the time between successful
resource generation attempt is exponentially distributed. Such a case is often consid-
ered in the scan statistics literature (for example, see [148]). However, how to study the
ending pattern distribution in the continuous case is not immediately clear.

We also note that a useful tool of approximation would be to further understand the
asymptotic scaling highlighted by Theorem 4.3. More specifically, it would be interesting
to know exactly how fast is the approach of (4.33) and (4.34), in terms of s and w.

In the set-up of the problem, one could also consider a more realistic model of a
quantum network architecture. For example, there may be parameter drift, when the
success probability decreases over time due to increased noise. Further, in the more
general case where the sequential attempts are not necessarily independent but Marko-
vian, methods similar to those used in this chapter may again be applied to the problem
- see [149], for example.

4.6. APPENDIX

4.6.1. IDENTITIES FOR THE CASE OF TWO RESOURCE STATES
EVALUATION OF E(7 (3,2))
Evaluation of E(L). Recalling from (4.13) the distribution of L, we have

w-1 _ n—-1
E(L) = Z M

ml-a-pwt
p w-1 nel
=—F Y na-p
1-1-pvt i P
p d =l
= —— Y (-p)
Tapet a0
- P _d1-d-p*
T1-(-pwl dp 1-p
B p 1-0-p"Y-wpa-p*!
- 1_(1_p)w71 p2

1-A-p)Y-wpd-p)*!
B p—Q1-p)w

where to evaluate the sum we have used the identity for a geometric series. O

)

Proof thatE (Zj\”: 1 Tj) =E(M)E(Ty). Thisisused to evaluate the expectation E(z(y,2)). The



4.6. APPENDIX 149

random variables M and {T;} are independent, and since the {T;} are identically dis-

tributed,
M o] m
[E(Z Tj) =) [E(Z Tj)[FD(M— m)
j=1 m=1 \j=1
=Y E(TV)-mPM=m)
m=1

= E(TDEM).

EVALUATION OF VAR(T (,2))

Recall M, T; and L, as given in Section 4.3.2. These are independent, M and T have
distributions M ~ Geom(1 — (1 — p) w=ly T; ~ Geom(p), and L has distribution as given
in (4.13). From (4.15), we have

M
Y Ti+M-D(w-1)
j=1

Var (7 (y,2)) = Var +Var(L), (4.48)

since L is independent of M and T;. Now, letting Cov(X, Y) = E(XY) - E(X)E(Y) be the
covariance,

M M
Var[ Y Tj+(M-1)(w-1)|=Var|)_ Tj|+Var(M-1)(w-1))
j=1 j=1
M
+2Cov ZTj,(M—l)(w—l)), (4.49)
j=1

where we have used the identity Var(X + Y) = Var(X) + Var(Y) + 2- Cov(X, Y). We now
evaluate (4.49) term by term. Firstly,

M 2 m 2
[E((Z Tj) ):ZE((Z Tj) )P(Mzm)
j=1 m \\j=1
=Z[E(Z TP +3 TiT,-)P(Mzm)
m \j=1 i#j
=Y (mE(TH + m(m - DE(T1)?) P(M=m)

= E(M)E(T?) + (E(M?) — E(M)) E(Ty)?.

2
Subtracting E(Y™  T;| =E(M)?E(T})? then yields
g j=1"1

Var

M
Y Tj) = E(M)Var(T}) + Var(M)E(T})>. (4.50)
j=1
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Secondly,
Var (M — 1)(w—1)):(w—1)2Var(M). (4.51)
Thirdly,
M M
Cov| 2. Tj,(M—l)(w—l)) = (w—l)Cov( > Tj,M) (4.52)
j=1 j=1
=(w- 1)(2 m*E(T)P(M = m) — E(M)*E(Ty) (4.53)
=(w- l)Van;(M)[E(Tl). (4.54)

It now remains to evaluate Var(L). We firstly calculate

w-1 nZ(l _ p)n—lp

E(L?) = 4.55
(L%) ,;1—(1—;9)”}—1 (4.55)
p ol 1
— N _ _ n-—
_[E(L)+1_(1_p)w_1 n;n(n na-p" (4.56)
Now,
w-1 d2 w-1
Y nn-Da-p)"t=0-p-— Y 0-p"
n=1 dp n=0
d (1-a-p¥
—a-pos (),
P ap? p
hence ) v
__pa-p) d_(l—(l—p) ) R
Var(L) = T—a_ el ape +E(L) - E(L)*. (4.57)

We are now equipped to compute the full variance of 7,2,

Var(z u,2) = E(M)Var(T,) + Var(M)E(T,)?
+2(w—D)Var(M)E(T1) + (w —1)*Var(M) + Var(L), (4.58)

where one may find a closed-form expression by inputting the standard identities for a
geometric random variable, which are

E(Ty) = 1 (4.59)
p
Var(T}) = — (4.60)
EM)= — - (4.61)
- 1-(1- p) w-1 .
_ w-1
Var(M) = 1-p) (4.62)

1-A-pwhHz
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4.6.2. ENDING PATTERN DISTRIBUTION AND WAITING TIME MOMENTS FOR
A FINITE WINDOW

THE WAITING TIME IS WELL-DEFINED

We show here that 7, can be bounded above by a geometrically distributed random vari-

able. Using the notation p; = p, po = 1 — p for an ending pattern x € Q;(s), this ex-

act sequence will appear in any given / consecutive trials Z;_;.1,..., Z; with probability

Yx = Px, ---Px,- Defining a new sequence of random variables (Y;,)5,,

lifZ; =x;forall(n—-1)I<i < nl;
- (4.63)

0, otherwise.

Each Y, is then Bernoulli with parameter y,. It takes the value 1 if the nth segment of [
trials exactly matches with x. There is then an associated waiting time random variable
T that is geometric with parameter y,,

Ty:=min{n:Y, =1}. (4.64)

Moreover, the waiting time to see x satisfies 7, < T - [. Taking expectations yields

l
E(T(w,s) sE(Ty) <E(@x ) = — <oo, (4.65)
X
which completes our proof. We note that the same method can be used to show that all
moments of 7,5 are finite.

THE EXPECTED WAITING TIME OF A SIMPLE PATTERN

Using the theory of martingales and a helpful gambling analogy to aid understanding,
we now derive a way to numerically compute the ending pattern distribution {P(x) : x €
Q(w, s)}, and the first and second moments of the waiting time 7(,,), in the case of a
finite window size. The result of this is Theorem 4.1 in the main text. The method was
introduced in [150], where they consider the more abstract case of a general sequence
of discrete i.i.d random variables, and a general set of ending patterns. Here, due to its
relevance to the subject of the main text, we continue with the case of i.i.d. Bernoulli
trials.

It will be useful to first of all consider the case where we wait for an instance of a single
pattern x = (xy, ..., x;) € {0, 1}, instead of waiting for any instance of the set Q(w, s). The
former case is referred to as a simple pattern and the latter as a compound pattern. In
this section we will find an exact expression for E(7 ). Here, 7 refers to the waiting time
until seeing the pattern x, and is defined in (4.5).

To provide intuition, we introduce the following scenario of gamblers in a casino.
Suppose that just before the first trial is realised, a gambler, hereinafter referred to as
Gambler 1, bets €1 on the outcome {Z; = x;}. We also suppose that the odds are fair, so
that if this is the case then she wins € L1 Moreover, if she wins, then she straight away

bets all of these winnings on the outcome {Z» = x»}. If not, the casino keeps her €1 and

lie. the expected net gain of the gambler is zero. Calling this G, we can verify explicitly by writing E(G) =

(Upp, =D -pp, +(=1D)-(1-py,)=0
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she doesn't place any more bets. For a general n, Gambler 1 then proceeds at the nth
trial in a similar way: if she has yet to lose, she bets all of her winnings on the outcome
{Z, = xn}, and if not, she doesn’t place any bet. Furthermore, at every trial we introduce
a new gambler who behaves in exactly the same way, so that Gambler 2 bets €1 on the
outcome {7, = x1}, and continues betting all of her winnings on the subsequent rounds
being equal to the next entry of x, up until she loses a round. Gambler j bets €1 on the
outcome {Z; = x1} and continues with exactly the same strategy. The game stops when
the sequence x first appears, which by definition is at the 7th trial.

Our aim now is to write down an expression for the combined net gain of the gam-
blers after the nth trial, for a general n. In order to do this concisely, we recall the defini-
tion (4.21) of the quantities 64 p). Given a realisation C; := (cy, ..., ¢;;) of the first n trials,
the winnings of Gambler j after the nth round can then be written as

) 5(-’(1ij)5(x2,Cj+l)"'5(xnfj+lxcn)
WPy =X forn-I1+1<j<n (4.66)
0, otherwise.
Here, we see that the functions 0,5 allow us to elegantly write down a Gambler’s win-

nings. With this in mind, the combined winnings of the gamblers after the n’th trial is

n . n .
W)=Y whcy= Y Wl =xxC, (4.67)
j=1 j=n—-1+1

where we have introduced the function * that was defined in (4.20), and that maps two
binary strings to a scalar value. From (4.66), we see that the net gain of the jth gambler
after the nth time-step is simply

GV, :=wc, -1, (4.68)

and similarly, the total net gain of the gamblers after the nth trial is

n

G(Cp) =) GV (Cp) =x*Cy—n. (4.69)

j=1
We can now define a sequence of random variables (G;) =0,
Gn:=G(Cp) (4.70)

which take the value of the total net gain of the gamblers after each round. In particular,
after the game ends, the total net gain is

Gr, =X*X—Ty. (4.71)

Note that x * x is a quantity that is only dependent on the pattern x. Since the game
is defined to be fair at every round, the expected total net gain when the game finishes
would intuitively be equal to zero, i.e.

E(G:,) =0, (4.72)
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A neat expression for the expected waiting time to see the sequence B follows by making
use of the linearity of expectation,

E(ty) =xx*x. (4.73)

To prove (4.72), we make use of the fact that (G,) >0 is a martingale, for which the fol-
lowing properties must hold:

(i) E(Ggl) <oo.
(i) E(Gp+11Gp,...,G1) = Gy
To show (i), we use the definition (4.71), and see that
E(IGul) < x* Cp +E(1y) <00, (4.74)

since the waiting time 7, is well-defined, and x * C, is bounded. To show condition (ii),
we use the fact that the game is fair at each round. Suppose that we have the maximum
amount of information about what has happened in the first n trials, i.e. we know that
they have taken the values (cy, ..., ¢,). Then, the conditional expectation of G, satisfies

E(Gpr1lZr=c¢1,.e, Zn=cCp) = Z G (Cpnycn+1) P(Zp+1 = Cpt1)

cn+1€{0,1}

n+1

=Y Y GYVCuneni1) Pern
j=1cns1€40,1}

n+l |
=Y GV(Cp) =G,
j=1

where to go to the final line, we have made use of the definition of GY. Since the reali-
sations of (71, ..., Z,) completely determine the values of Gy, ..., G, this also shows (ii).

We now know that (G,,) ,>¢ is a martingale. However, this is not quite enough to show
(4.72), which is what is required to obtain the final simple form for E(7y). In particu-
lar, some extra machinery is needed, in the form of Doob’s optional stopping theorem, a
proof of which can be found in [157]. A version of this is stated below.

Theorem 4.4 (Optional stopping). LetG,, be a martingale andt a stopping time. Suppose
that there exists a constant K such that|G,—G,-1|1 < K for all n. Suppose also thatt is a.s.
finite. ThenE(G;) =E(Gy).

All that remains to be done is to show that the martingale defined in (4.71) satisfies
the required properties to satisfy Theorem 4.4. Firstly, we have

|Gn—Gpl<xxCp+xxCph_1+1<K, (4.75)

where
K =2 -maxgeqpix*Ch+1. (4.76)

Secondly, we see that since 7 is bounded above by a geometric random variable, it is a.s.
finite. This gives us (4.72).
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STARTING FROM ANOTHER PATTERN

We now adapt the results above in order to find the expected time to see x, given that we
start already with some pattern y. We extend the gambling analogy in order to illustrate
this concept, and suppose that we want to calculate the expected time until seeing y
only after some number of rounds, m, say, have been realised. In particular, after the
mth round we know the first m realisations of the i.i.d Bernoulli sequence, and we call
these y = (31,..., Ym). At this point, the net gain of the gamblers is thus G,, = x * y — m.
We will evaluate the net gain of the gamblers compared to this point after each of the n
trials, which for n = m we denote by G,,. This is simply given by

Gn=Gp—Gp=(x*Cp—n)—(x*y—m) 4.77)
=x*Cp—x*y—(n—m), (4.78)

where C,, is no longer completely general as its first m entries must correspond to y.
Using the same reasoning as before, one can show that (G,,) =0 is a martingale. Then,
defining 7 as the waiting time to see x given that we have already seen pattern y, it is
again possible to use Theorem 4.4 to show that

0= [E(ery) =E(X*Xx—X*y—Tyy),
and so by the linearity of expectations,
E(Txy) =xxXx—X*}. (4.79)

We may now use the results derived above to derive a formula for E(7(,,5)) and the distri-
bution of X, 5. Given x € Q(w, s), we write

E(Tx) = E(T(w,5) +ETx — T(w,s)

=ETw,s)+ Z PXuw,s) = VETx—Tw,s)| Xw,s) =¥)
yeQ(w,s)

=E(T(w,s) + Z PXw,s = (x*xx—x%Y),
yeQ(w,s)

Where we have noticed that E(7x — T(w,5)| X(w,s) = ¥) = E(Txy). Applying Theorem 4.4
and enforcing the condition that the ending pattern probabilities must sum to one then
yields the formula (4.23).

FORMULA FOR THE SECOND MOMENT OF THE WAITING TIME

An extension to the gambling analogy given above can be used to derive the formula
for the second moment of the waiting time, for which we refer to [149]. Here, we will
only state the formula. We first of all define a new operation f that maps two elements
X,y € Q(w, s) to areal number. If x = (x1,...,xx) and y = (y1, .., Ym),

min(k,m) j
xty:= Y A=D[100ym - (4.80)
j=1 i=1

Letting Q = Q(w, 5), the second moment of 7,5 can be found through solving the fol-
lowing systems
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Theorem 4.5. Let{u;j}1<j<|q and {vj}1<j<|q| Solve the linear systems

o
Y Wijuj=1, forl<i<|Q|, (4.81)
j=1

o

Y (Nijuj+Wijvj) =1, forl<i<|Q (4.82)

j=1

with W := xD « x and Njj := xD + x). Then,

(4.83)

[E(Tz ):1+(1—zjyj—zjuj/z)-[E(r(w,s))_
(w,s) Z]uJ/Z

Code that makes use of this formula to compute E (r%w s)) is provided in [154].

4.6.3. APPROXIMATIONS

INFINITE WINDOW SIZE APPROXIMATION
Proof of Theorem 4.2. Letting € = e(w, s, p) = P(T(w,s) > w), the expectation of 7,5 can
be rewritten as

E(T(w,s) = 1 —E(T(w,s|T s < W) +€E(Tw,s|T s > w). (4.84)
Now, note that for n < w
P(Tw,s =n) =P[T (0,5 = 1),

i.e. for this range of n the distributions of 7(;,5) and 7(«,s) €xactly match. We can thus
rewrite (4.84) as

(1 _E)E(T(oo,s)lT(oo,s) =< LU) +ekE (T(wy5)|T(wy5) > LU)
=E(T00,9) ~ €E (T (00,9 T (00,9 > W) +€E (Tw,9|T(w,9) > W),
where to obtain the last equality we have expanded E(7 («,5)) in the same way as (4.84).

Now, if one considers starting the whole process again after the first w time steps, we see
that E (7w, T uw,s) > W) < w+E(T (u,5). Combining this with the fact that

E(T (00,9 T (00,9 > W) > W,

we find that
E(T(w,5) ~ E(T(o0,9) <€ (W +E(T,9) — W), (4.85)

from which (4.25) follows.
We further bound the distance between the ending pattern distributions. Making use
of
P(Xqw,s) = X) =P(Xw,5) = XITw,s) £ W1 =€) +P(X(w,5) = X|T(w,5) > WE,

we have

P(X(w,5=X) = P(X(00,5 = X) = (P(X(w,5) = XIT (w,5) > W) = P(X(00,5) = X|T (1,5) > W)€,
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and so, letting Q = Q(oo, 3),

Z IP(Xw,s) = %) —P(X(c0,5) =X)| < Z (P(X(w,s) =XIT (w,5) > W) +P(X(oo,5) = X|T (1,5) > LU))E
xeQ xeQ

=2¢e(w, s, p).
O

Proof of Lemma 4.1. Here, we show the identity (4.29) for e(w, s, p). Letting g =1 — p, we
have

o -1
ew,s,p)= 3, (n )q”_sps

n=w+1\$—1
p’ X (n-1)!
T oD, (-9
_ p’ & d! (qn—l)
(S_l)!n:w+l dqs—l

B ps ds—l (] a1
"u—de*(Z a" )

n-s

n=w+1

ps ds—l qw

T (s-Dldgs! (l—q)
B ps s—1 s—1 di ds—l—i )
_(s—l)!i_zl( i )d_qi(qw)m((l_q) )

pS = (s-1! w! (s—i—1)!

w-—i

SO R iD= a-g

Sw) i
—;(i)q p'.

ASYMPTOTIC BEHAVIOUR OF THE EXPECTED WAITING TIME AND ENDING PATTERN
Proof of Theorem 4.3. For conciseness, here we take Q = Q(w, s). A formula for the in-
verse of A is given in terms of its adjugate matrix adj A [158],

ladj Al;j == (-1)"* det Mj;. (4.86)

where M;; is the [Q| x || matrix obtained by removing row i and column j from A. Since
A is invertible, the inverse is
-1 ad] A
A= s
detA
Now consider the system (4.23). If we consider solving for 7 by multiplying through by
A1 we see that its first element is

(4.87)

detB

_—, 4.88
detA ( )

[E(T(w,s)) =
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where B is the |Q] x |Q2] matrix obtained by removing the first row and column from A, so
that B;; = x% % xJ. Since all the entries of A are polynomials in 1/p and 1/4, so are det B
and det A.

To proceed with showing (4.33), we characterise the scaling of detB and det A for
small p. Since g =1— p is close to 1 for small p, it suffices to only consider the powers of
1/ p for the analysis of the asymptotic scaling as p — 0 (recalling the definition of the star
product (4.20)). We firstly consider det B. With the observation that the higher-order
terms in 1/p are given by the star products on the diagonal, and moreover that these
each have leading order term given by 1/p®. The form of det B, then, is a polynomial
of maximum degree 1/p®. In fact, this is exactly the degree. One can compute this
contribution by considering the matrix B of highest powers: letting r = 1/p®, we have
det B ~ det B, where

0 .. 0

B 0O r .. O
B=| . . , (4.89)

. -. 0

0 0 r

and hence, det B ~ r'?! = 1/p*1¥l, We then do the same with A. In this case, det A ~ det 4,
where

0 1 1 1 1
-1 r 0 .. O

A=| -1 0 r 0, (4.90)
Do .0
-1 0 0 .. r

where the existence of a 0 in the top left-hand corner now disrupts the evaluation of det A
by multiplying along the diagonal, as we did above. Our next step is to evaluate det A by
expanding along the top row,

Q]
detA= Y (-1)*det4y, (4.91)
k=1

where Ay is the |Q] x |Q| matrix formed by removing the first row and the kth column
from A,

-1 r 0 0
0
r 0
A= 0 0 (4.92)
0 r
0
-1 0 0 r
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In Ay, the r’s are placed above the diagonal in rows 1,...,k — 1, and on the diagonal in
rows k +1,...,|Q|. The determinant of A} may be calculated by simply multiplying the
diagonal elements, to obtain

det A; = — 171, (4.93)

We then notice that any Ay can be transformed into A; by moving the kth row to the
top row. This can be achieved by performing k — 1 row operations, if it is moved by suc-
cessively exchanging with the row above it k — 1 times. Then, since each row operation
incurs a factor of (—1)¥,

det A = (-D)*1det 4, = (-1)k -1, (4.94)

With (4.91), we then see that
det A = |Q|r¥-1) (4.95)

and so det A ~ |Q|/ p*!®~D Substituting into (4.88), we find

s(QI-1) 1
E(T(w,5) ~ G = T (4.96)
To show (4.34), we employ a similar method. We have from (4.87) that
P(Xw,9 = x¥) = (—1)”’“% (4.97)
~(=D'*k %, (4.98)
where Cy is obtained by removing the first column and kth row from A4,
1 ... o1
r 0 ... .. 0
0
Cr=| : r 0 0 , (4.99)
00 r :
0
0 0 r

where in Cj the x-entries are placed below the diagonal in columns 1,...,k — 1, and on
the diagonal in columns k+1,...,|Q|. We note that Cy is the transpose of By, with the first
column multiplied by a scaling factor of —1. Therefore, det C;. = —det B = (—1)k*1 719171
and making use again of (4.95),

rIQI—l

(!
|P’(X(w,s) =x")~ |Q|I‘|Q|_1 ,

(4.100)

from which the result follows. O
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4.6.4. TRADE-OFF FUNCTION DUE TO ENTANGLEMENT GENERATION SCHEME
In this appendix, we motivate the linear trade-off function Fes; = 1 — Ap used in the BQC
analysis, which describes the fidelity of qubits in the server immediately after transmis-
sion.

Let o denote the noisy two-qubit entangled state that is produced between the client
and server when there is a successful attempt. When there is a success, the client and
server perform some qubit transmission procedure A, which could for example be tele-
portation, or a remote state preparation protocol. We assume that this protocol estab-
lishes all qubits in the server with the same fidelity Fes;. For example, this is the case if
the noisy entangled state is depolarised

4Fy -1 1-Fy
ag =
3

D)@+

I, (4.101)

and the standard teleportation protocol from [159] is applied. Here, Fy = (®* |0 |®") is
the fidelity of o to the target state. This involves performing a full measurement in the
Bell basis {|®;;)} and applying the corresponding Pauli corrections. If W) is the qubit
state to be teleported, its action is given by A®t,

Aty =Y X' Z1(®@; 11y )| ® 0)|@; ) Z) X' (4.102)
L,
where the Bell measurement acts on the registers containing the qubit state |y) and the
first qubit of 0. Suppose that the entangled state and qubit transmission procedure are
given by (4.101) and (4.102). Then after transmitting any qubit \w), the resulting fidelity
is [96]
2Fy+1
Fest = —3 (4.103)
Now, one can incorporate a general rate-fidelity trade-off inherent to the entanglement
generation protocol by specifying that Feg; is a decreasing function of p. In particular, we
draw here on an example from the single-photon scheme for entanglement generation.
When implementing a single-photon scheme [23], the fidelity of generated states is

Psuc

Fo(psuc) =1 2Pder , (4.104)
where pg, is the success probability of a physical entanglement attempt, and pge¢ is the
probability of detecting an emitted photon. In the case of a very small pg,c, one might
want to perform entanglement attempts in batches in order to minimise overhead due to
communication with higher layers of the software stack (which must be notified when
there is, or is not, a success). This scheme has been implemented with NV centres in
diamond, where typically pg,c < 1 [141]. If this is the case, choosing one time step to
correspond to a batch of M « 1/ pg attempts, the probability of producing at least one
entangled link in a time step is

p=1-01-psuc)™ = Mpgc. (4.105)
Substituting this into (4.103) and (4.104), we obtain a trade-off function of

2(1 B ZMI;’der) +1
3

Fest(p) = =1-Ap, (4.106)
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where A := 1/(3Mpget). Since M is a freely adjustable parameter, then so is A. The sim-
ple relationship (4.106) is also a general first-order behaviour for a decreasing function
in p such that Fes(0) = 1, which justifies the choice as potentially applicable to other
hardware and entanglement generation protocols.

4.6.5. COMPUTING THE ERROR PROBABILITY OF A BQC TEST ROUND

TEST ROUNDS

As mentioned previously, the protocol involves interweaving test rounds at random with
computation rounds. It is the test rounds that provide verifiability of the protocol, be-
cause they allow the client to check for deviations from the ideal measurement out-
comes. Recall that the goal of the client in the BQC protocol is to perform a BQP com-
putation, which is defined in the measurement-based formalism with respect to a graph
G = (V,E). In one round of the protocol, the client transmits |V| qubits to the server,
which (if it is honest) creates a graph state by applying CZ-gates to pairs of qubits as
given in the set of edges E. Before carrying out the protocol, the client chooses some
k-colouring {V; : j = 1,...,k}, which is a partition of the set of vertices V into different
subsets, known as colours, such that there is no edge between two vertices of the same
colour. This k then corresponds to the k in the feasibility condition (4.39).

Before each test round, the client chooses a colour Vi uniformly at random to be
the trap colour. A qubit corresponding to vertices from this set is then referred to as
a trap qubit. Any other qubit is referred to as a dummy qubit. Each trap qubit v € V;
will be [+g,) := (/0) + it 11))/v/2, for some angle 0, that is chosen uniformly at random
from © = {"4—” :k=0,1,...,7}. Each dummy qubit v € V\ V; will be |d,), where d,, € {0,1}
is chosen uniformly at random. Then, the effect of the server applying its entangling
gates is to flip each trap qubit to the orthogonal basis vector a number of times that
corresponds to the sum (modulo 2) of the neighbouring dummies. This is a quantity
that the client can compute. After constructing the graph state, the server measures its
qubits and sends the outcome to the client. The trap qubit measurement basis that is
specified by the client is {|i§v)}, for each trap v € V;, where 6, =0, + r,m, and rp € {0,1}
is chosen uniformly at random. The client compares the outcomes of the trap qubits to
what is expected if all states and local operations are perfect, declaring the test round to
be a failure if there is at least one trap measurement that is incorrect. A depiction of a
graph state, a choice of k-colouring, and a choice of qubits for a test round is given in
Figure 4.11, for the case of a square graph.

ERROR PROBABILITY FOR A GENERAL GRAPH
We suppose that the client would like to know the outcome of a BQP calculation, which
has corresponding graph G = (V, E), and that the client has chosen a k-colouring {V;} ?:1'
Then, given that the vector of fidelities at the time the server applies its operations is
F= (Fy,..., Fiv)), here we obtain a general form for the probability of error of the test
round, Pg(ﬁ). This is a generalisation of what can be found in [156], where BQC with
two qubits is considered.

We firstly find the probability of error, given that the client has chosen trap colour V;.
Call this ij. The client thus chooses to send the trap qubits v € V; as states |+g,). Then,
at the time when the test round is carried out, the trap qubits corresponding to vertices
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Figure 4.11: Test rounds in the BQC protocol. Here we choose an example where the computation is per-
formed on a square graph. The client chooses a k-colouring: here k = 2, and the two sets are coloured in
yellow and red. In this case, the red vertices correspond to trap qubits, and the yellow vertices correspond to
dummy qubits.

v € V; are each in a state p,, where
pv = Fyl+e,){+g,I+ (1= Fy)l-g,){—p,|+ (0.d.1), (4.107)
where we use (0.d.1) to write the off-diagonal elements, with respect to the basis
{l+6,2, =0,

We don't write them out in full because these end up making no contribution to Py; (B,
as we will see later. Similarly, the dummy qubits v € V'\ V; will be in the state

pv = Fyldy){dy)|+ (1 -F))ld, ®1)(d, 1| + (0.d.2), (4.108)

where here we use (0.d.2) to write the off-diagonal elements, this time with respect to
the computational basis. The state of the server is then given by the tensor product of all

of these states
pserver=Q Pv Q P Q  puw (4.109)
vevV; weW;j ueV\(Vquj)

where we have defined W; = V'\ V; to be the set of all vertices that share an edge with a
trap qubit. The server then proceeds with the next step of the BQC protocol, and applies
CZ gates to all pairs of qubits corresponding to edges in E, resulting in the state

P;erver = Upserver UT, (4.110)

where U := []y,1)er CZ(w,v)- Recall that we are interested in the probability Py, (F) that
the this results in an error. In fact, is it simpler to find a form for the success probability
ij (1:") =1- PV]. (I3 ). An error occurs when at least one of the trap qubit measurements
does not match the result that would be obtained if all states were perfect. In particu-
lar, if everything were perfect, then the client would expect the measurement outcome
corresponding to the trap qubit v to be r, ® D,, where

D,= @ duw (4.111)

weW;:(v,w)eE
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i.e. the sum (modulo 2) of all the dummy variables d, that surround the trap qubit. The
success probability is then given by

Qv; (F) :Trv(( X |(—ngva"><(—1)gvaV|)p;mer), 4.112)
l/€Vj
where for convenience, we are using the notation |(+1)g) = |+9) and [(—1)g) = |—g).

Rewriting |(—1);”+D”> = |(—1)g”>, and after examining Equations (4.109) and (4.110),

we see that the qubit registers corresponding to vertices v € V' \ (V; U W;) will make no
contribution to this quantity, so that

Qu; (F) = Try, Try, (( @ =D (=D |) a) , (4.113)

Ver

with
!

Oserver -— Uaserver fﬁ» (4.114)

where we have defined ogerver := ®uevj py®wewj pw and U := H(w',,)eEj CZw,v), and
Ej:={(v,w) € E: v eV} to be the set of all edges between any element of V; and any
other vertex. Recalling the states of our qubits as given in (4.107) and (4.108), and defin-
ing F© := F, FY := 1 - F to be used as a more concise way to write some of the terms,
we can then write

gserver:(g)( y F,‘,’“")|(—1)g;><(—1)g;|) ®( > FYNdy + yw)d + yul

Uer xy€{0,1} wer yw€l0,1}

- = Avcopeop|®| £ T A,

veV;j \x,€(0,1} jeio,1)Wil wew;
(4.115)

where in (4.115) we have rewritten the sum to be over all length-|W;| binary strings y =
(}’w)wewj € {0,1}'Vi!. We have also stored the dummy variables in a vector J, so that

d+ Vw = dy + yw. Again, we are not writing out the off-diagonal terms because these
all disappear when we take the trace, and therefore make no contribution to the final
expression. Applying the unitary operator U yields

/ — YW\ T, =2/ T, =
O server = Z l_[ F," ld+y){d+ I
Feto,n)"il welv;

® Z Fl(}xy)|(_1)gu+5u(}’)+Dv>((_l)gv"'sv(J’)"'Dv|
ver x,€{0,1} v v

where for a trap v € V;, we have defined

sp(§):= > Yw (4.116)

weW;:(w,v)EE;
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which is the sum of the binary variables y,, over all vertices neighbouring v. We can now
start to trace out registers in order to find a final expression for Qv; (F) in terms of the

qubit fidelities. Taking the inner product ((—1) g Y. (= 1)6D v) for all trap qubits v € V; and
tracing out Wj yields our final expression for the success probability as introduced in
Equation (4.112),

QBr= Y TI1 ™ I1EY, (4.117)

yE{O,l}‘Wj‘ M)EWj UEVj

This is a polynomial in the fidelities F= (F1,..., Fv)), with a form that is completely deter-
mined by the graph structure and choice of trap colour V;. The same thus holds for the
error probability Py, (E). In our model as given in Section 4.4.2, it is further necessary to
incorporate the fact that the first qubit to be sent is chosen at random. The probability
of error is then effectively symmetrised over the |V| possible starting qubits in the fol-
lowing way. Without loss of generality, letting the order in which the qubits are sent to
be lexicographical, the probability of error is then

. PO, 1 .
PVj(F)—rPVj(F):szPVj(U]F), (4.118)
J

where o is the permutation that moves the vector elements one place to the left, i.e.
o(F, ..., Fiy)) = (Fo,..., Fv), F1). To obtain the final probability of error, it remains to aver-
age over the choice of trap colour, recalling that this is chosen uniformly at random. This
gives us a final expression for PG(I:’ ),

L1 E
PG(F) = - Y Py, (). (4.119)
j=1

ERROR PROBABILITY FOR A SQUARE GRAPH
An example of such a polynomial for the case of a square graph is as follows. Con-
sider the k-colouring as in Figure 4.11, with red as the choice of trap colour. Suppose
that when the server applies its gates and measurements, the qubits have fidelities F =
(Fy, F», F3, Fy). Then, according to (4.117), the success probability is given by
Qred(F) = FiF2F3Fy + Fy (1= F2) (1= F3) (1 — Fy)
+(1-F)A-F)F(1-F)+ (1 -F)F(1 - F)kF,

and the error probability is then
Pred(F) = 1 = Qrea (F). (4.120)

By symmetry of the square graph, the error probability Pyejiow (F) is obtained by exchang-
ingtheindices 1 — 2,3 < 4 in (4.120). In the case of the square graph, the symmetrisation
maps Pred(F) — Preq(F), where

- o1

Pred(F) =1 [Pred(Fy, F2, F3, Fy) + Preq(Fa, F3, Fy, Fy)

+ Pred(F3, Fs, F1, F2) + Pred (Fu, Fi, Fo, F3) .
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Note that the symmetries of the error functions Preg and Pyejiow reflect the symmetries
of the graph, i.e. they are symmetric under the interchange of 1 — 3 or 2 — 4. Then,

Preq(F) =  (Pred (F) + Pyeitow (F)) (4.121)

N =

The other error function Pyeyow maps to the same after the symmetrisation (4.118), i.e.
ﬁyeuow(ﬁ ) = Preq(F). The probability of error, then, is given by

- 1, o~ o
Pgquare (F) = E (Pyellow(F) + Pred (F))
1 . -
= 2 (Pred(F) +Pyellow(F)) .

This is the function that we use with (4.45) to calculate p,y, for our model, and compute
the results for an example of a square graph in Section 4.4.2.
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Protocols for distributed quantum systems commonly require the simultaneous availabil-
ity of n entangled states, each with a fidelity above some fixed minimum Fapp relative to
the target maximally-entangled state. However, the fidelity of entangled states degrades
over time while in memory. Entangled states are therefore rendered useless when their fi-
delity falls below F,pp. This is problematic when entanglement generation is probabilistic
and attempted in a sequential manner, because the expected completion time until n en-
tangled states are available can be large. Motivated by existing entanglement generation
schemes, we consider a system where the entanglement generation parameters (the suc-
cess probability p and fidelity F of the generated entangled state) may be adjusted at each
time step. We model the system as a Markov decision process, where the policy dictates
which generation parameters (p, F) to use for each attempt. We use dynamic program-
ming to derive optimal policies that minimise the expected time until n entangled states
are available with fidelity greater than F,p,. We observe that the advantage of our optimal
policies over the selected baselines increases significantly with n. In the parameter regimes
explored, which are based closely on current experiments, we find that the optimal policy

*These authors contributed equally.
This chapter has been released separately at https://arxiv.org/abs/2509.17576
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can provide a speed-up of as much as a factor of twenty over a constant-action policy. In
addition, we propose a computationally inexpensive heuristic method to compute policies
that perform either optimally or near-optimally in the parameter regimes explored. Our
heuristic method can be used to find high-performing policies in parameter regimes where
finding an optimal policy is intractable.
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5.1. INTRODUCTION

Protocols for distributed quantum systems commonly require multiple entangled pairs
of qubits, also referred to as entangled links, or just links. Examples of protocols with
this requirement are applications such as verifiable blind quantum computing [147] and
quantum secret sharing [160], as well as important subroutines such as entanglement
purification [49, 50]. In some contexts, multiple simultaneously-existing links are col-
lectively referred to as an entanglement packet [28]. The fast generation of entanglement
packets is a task of fundamental importance for a functional quantum network. In this
work, we find protocols that optimise the rate of entanglement packet generation, by
adaptively varying a rate-fidelity trade-off mechanism available due to the entanglement
generation scheme.

Here, we consider a setting with two nodes that attempt entanglement generation
sequentially. In our model we assume that time is divided into discrete, uniform time
steps, where in each time step, a single entanglement generation attempt is performed.
This is very often the case in near-term quantum networks, where heralded entangle-
ment generation schemes succeed probabilistically and take up a fixed amount of time,
due to the transfer of classical and quantum information between distant nodes [25, 23,
24, 26, 27]. In our model, the time units are abstract and a single attempt is assumed
to take up one unit of time. After an attempt, an entangled link is generated with suc-
cess probability p. The link is generated with initial fidelity F = (Wool p |Woo) to the target
maximally-entangled state

1
Woo) = — (00 11)).
[Wo0) \/§(| Yy +111))

When alink is generated successfully, it is assumed to be immediately stored in memory.
While the entangled link is stored in memory, it is subject to time-dependent noise (or
decoherence), which causes the fidelity to degrade over time. We assume a simple depo-
larising noise model: given a link with initial fidelity F, the fidelity of the link after ¢ time
steps is

1

F-—»e_rt(F—— 1

+ -, (5.1)

4) 4

where I' is the decoherence rate. We assume that there is a fixed minimum fidelity Fapp
required by an application for each link. A link is discarded once the fidelity of the link
decays below Fap;, (see Figure 5.1). The goal is to generate n simultaneously-existing
links. Accordingly, we assume that each node has n memories, each with the same de-
coherence rateI'.

Suppose that at time = 0, there are no links stored in memory. We let T denote the
first time that there are n simultaneously-existing links in memory. An important per-
formance metric to consider is the expected time E[T] until completion. Depending on
the system parameters, E[7] may be excessively large. For example, if the decoherence
rate I' is large, then links are discarded soon after they are generated. Therefore, any link
in memory is likely to be discarded before enough remaining links are successfully gen-
erated for the application. The same holds if the probability of generating a link is small,
or if the initial fidelity of entangled states is small.




168 5. OPTIMISING ENTANGLEMENT PACKET GENERATION WITH ADAPTIVE POLICIES

(a) Entanglement
——— generation, p ——
o LF o
o NN ANANANANANANAUTNAE
® \LF 0
app
— . )
Link discarded
S S
[ Va0 UV
[ e Do W oW W WaWe WX |
[ e WU WU W aWe W
— —

Figure 5.1: (a) Depiction of an intermediate state with n = 4. At the beginning of each time step, the system
chooses generation parameters (p, F) € «/. Then, an entanglement generation attempt is carried out, which
with probability p generates a link with fidelity F. If successful, the generated link is immediately transferred
to memory. While in memory, the link is subject to decoherence. If the link’s fidelity falls below Fapp, it is
discarded. We are interested in the case where the system starts with no links in memory. It will then pass
through a number of intermediate states, until the first time T when it reaches an absorbing state that has n
links simultaneously available in memory. (b) Depiction of an absorbing state with n = 4.

We consider a setting where, before each entanglement generation attempt, the sys-
tem may choose the generation parameters (p, F) from a fixed set

o ={(pi,F):i=1,...,11}, (5.2)

where it is assumed that F; > Fapp for all i. The choice of generation parameters at time
t may depend on the current state of the system S;, which in our model is defined by the
number of links that are in memory at time ¢ and their corresponding fidelities.

In many entanglement generation schemes, there exists a trade-off between the prob-
ability p of successful entanglement generation and the fidelity F of the generated link.
In our model, this is captured by enforcing

Fi<Fj©pi>pj, 175] (5.3)

A well-known example of the trade-off between p and F arises in the single-click proto-
col [23], where varying the bright-state parameter «a results in a linear relationship be-
tween the two, (p, F) = (ka, 1—a), where « is a constant depending on hardware parame-
ters such as the photon loss [141]. The trade-off between p and F exists in other physical
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entanglement generation schemes and could for example be due to the number of en-
tanglement generation attempts that occur before the system is reinitialised [161], or
due to the mean photon number when a weak coherent pulse is used as a single-photon
source [162]. The same trade-off is also ubiquitous at a higher level: for example, if en-
tanglement purification is employed, then in the choice of protocol there exists a fun-
damental trade-off between the output fidelity and the probability of the purification
protocol succeeding [53]. We assume that the set of generation parameters (5.2) is finite
without loss of generality (see Section 5.4.3 for details of how an infinite action space
may be reduced to a finite one).

In this work, we model the system as a Markov decision process (MDP), which we
subsequently solve to find optimal policies. A policy 7 is a map'

n:¥ — A, (5.4)

where o is the set of generation parameters (5.2) (also referred to as the set of actions)
and . is the state space. When implementing policy 7, the generation parameters cho-
sen at time ¢ depend on the current state S; and are given by 7(S;) € «/. The state S; and
the action 7(S;) determine the possible values of the state in the next time step, S;41.
When the policy 7 is employed, we write the completion time as T = T;. The policy 7*
is called optimal if it minimises the expected completion time,

E[Ty+] :II?;Tin[E[Tn]. (5.5)

Now that we have introduced the problem, we outline our main contributions:

¢ We use dynamic programming [163] to compute optimal policies 7* and the op-
timal performance E[T;+]. We compare the optimal performance with the per-
formance of the best constant-action policy 7.0, that chooses the same action in
every time step. We evaluate policy performance in two parameter regimes that
we call the near-term regime and the far-term regime. The parameters of the near-
term regime are based on recent experiments. The far-term regime is assumed to
have an improved memory lifetime, and therefore has a more complex state space
and policy behaviour. Both parameter regimes have a trade-off relation (5.41) that
is given by the single-click protocol [23]. In both parameter regimes, we find that
the optimal policy can provide a speed-up over the constant-action policy of as
much as
E[Ty+]
———— = 0.05. (5.6)
ElTreon]
We conclude that, given an adjustable rate-fidelity trade-off available in the entan-
glement generation scheme, it can be highly advantageous to use adaptive proto-
cols to boost the generation rate of entanglement packets. Moreover, we see that
this advantage increases with n, indicating that adaptive polices will provide even
more improvement as quantum networks become more sophisticated.

n general, a policy can be non-deterministic [163]. However, since the state space is finite in our problem,
there always exists a deterministic optimal policy [164]. For clarity, we therefore introduce the policy as de-
terministic.
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* By computing 7* in the two parameter regimes, we gain insights about the struc-
ture of optimal policies. Based on our insights, we define an efficiently-computable
heuristic policy 7. Remarkably, we find that in the near-term regime, the heuristic
policy is in fact optimal, i.e. E[Ty, ] = E[T;+]. In the far-term regime, the heuristic
policy performs close to optimally, satisfying

E[Tr,] — E[Ty+]

<0.03 (5.7
E[T+]

for all n for which 7* was computed. In parameter regimes where it is not pos-
sible to compute an optimal policy 7* due to scaling of the state space ||, one
may therefore instead employ 7, and expect either optimal or close-to-optimal
performance. For such a case in our far-term regime, the heuristic policy provides
a speed-up over the constant-action policy of as much as

Ellml 1 051075, (5.8)

[E[T”con]
The remainder of this work is structured as follows. In Section 5.2, we summarise re-
lated work. Then, in Section 5.3, we formally define the MDP and briefly introduce dy-
namic programming. In Section 5.4, we present our results: in Section 5.4.1 we firstly
present an analytical solution for the optimal policy and its performance for n = 2. In
Section 5.4.2, we present our efficiently-computable heuristic policy. In Section 5.4.3,
we consider the example of a single-click entanglement generation scheme, and com-
pare the performance of the optimal policy, heuristic policy and baselines in the two
parameter regimes of interest. We also extract general conclusions about the properties
one can expect of optimal policies. We conclude and suggest possible future extensions
of our work in Section 5.5.

5.2. RELATED WORK

The scenario studied in this work is a generalisation of the one studied in [58]. In [58],
the generation parameters (p, F) were assumed to be the same in each time step. In this
work, we allow the system to choose instead from the set of generation parameters (5.2).
The system studied in [58] is therefore equivalent to the constant-action policy 7¢op, that
chooses the same generation parameters in every state. We note that the methods used
in this work are very different from [58]: here we formulate the problem as an MDP and
perform optimisation with dynamic programming, whereas in [58] analytical solutions
were derived for E[ Ty, ].

MDP-based techniques have previously shown their value for the optimisation of a
range of quantum network protocols. For example, they have been used to find optimal
entanglement swapping policies in repeater networks [42, 45, 165]. Approximate rein-
forcement learning approaches, which efficiently find approximate solutions to prob-
lems formulated as MDPs, have also been utilised in the context of quantum networks,
for example for designing entanglement routing schemes [166], optimising quantum re-
peater chains for secret key distribution [167] or entanglement distribution [62], and
designing new and improved communication protocols, particularly in networks with
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asymmetric features [168]. We also note that other works have optimised the perfor-
mance of quantum network protocols by varying the trade-off between the success prob-
ability and output fidelity, most often optimising over the bright-state parameter [75,
156, 169]. However, other than [58], the aforementioned studies all optimise the delivery
of a single entangled link. In our work, we optimise the delivery of multiple links in the
form of an entanglement packet, which is a fundamentally different problem.

5.3. METHODS

5.3.1. CONSTRUCTING THE MARKOV DECISION PROCESS

An MDP is defined as a 4-tuple (#, o, P, R) where . is the state space, < is the action
space, P is the transition function, and R is the reward function. In the following, we
elaborate on each component of the MDP for our system.

STATE SPACE

The fidelity of each link in memory is fully characterised by the time it will survive before
being discarded, which we refer to as the time-to-live (TTL) of a link. Suppose that a link
has fidelity F > Fup,p. Recalling our decoherence model (5.1), the TTL of the link is given
by

1 [ F-3
trTL(F) = —In —|- (5.9)
'\ Fapp—3
The ceiling function is taken because we work in discrete time. Letting the maximum
fidelity of a newly generated link be denoted by

Fmax =max{F: (p,F) € &/},

the maximum TTL is given by
Imax = TTL (Fmax) . (5.10)

The state S; of the system at time ¢ characterises the relevant system information. For
our system, the state is the number of links stored in memory and their TTLs (corre-
sponding to link fidelities). If there are m links in memory, the state s is given by

s={t1,..., tm}h (5.11)

where ?; € [fmax] is the TTL of the ith link, and [#max] = {1,..., fmax}. Formally, s is a mul-
tiset that may contain multiple elements of the same value, because it is possible that
t; = tj for i # j. Since the n memories are assumed to be identical, the ordering of the
TTLs in any given state is assumed to be decreasing without loss of generality, i.e. f; = t;
fori<j.

As an example, if S; = {3,2} then at time ¢ there are two links in memory, one of which
will be discarded after three time steps, and the other after two time steps. The first link
has a higher fidelity than the second link, because it will be discarded later.

We denote the set of all states with m links in memory as

Fm =0, t} 1 € [max], 71 =+ = b} (5.12)




172 5. OPTIMISING ENTANGLEMENT PACKET GENERATION WITH ADAPTIVE POLICIES

We denote the state with no links in memory as the empty set @ = {}. The process is
completed when there are n links in memory, or equivalently, when it reaches a state
se.%,. We also refer to ., as the set of absorbing states. See Figure 5.1 for an illustration.

The full state space is given by
n-1
S = Fmuioh (5.13)

m=1

We also denote the combined state space with the absorbing states as
ST =L UL (5.14)

The time T;; until completion (when policy 7 is employed) may then be written explicitly
as
T; =min{t:S; € %} (5.15)

ACTION SPACE

The action space < is the set of generation parameters (5.2). The possible generation pa-
rameters depend on the specific entanglement generation scheme used. We note that &
is without loss of generality finite (see Section 5.4.3). In Section 5.4.3 we give an example
of « for the single-click protocol.

TRANSITION FUNCTION

Suppose that at time ¢, the system is in state s, and that action a € & is chosen. Then,
the transition function P(s'|s, @) determines the probability of transitioning to state s’ in
time step £+ 1. We now write down the transition function P explicitly for our system. We
suppose that s = {fj,..., ;;} and that the action chosen is a = (p, F). There are two tran-
sitions that can occur. The first is when the entanglement generation attempt succeeds,
which occurs with probability p. In this case, a new link is generated with TTL t71,(F), as
given by (5.9). All other links decohere by one time step and are discarded if the fidelity
falls below Fpp, or equivalently when the TTL becomes zero. Since the TTL (5.9) is the
inverse of the decoherence map (5.1), decoherence over a single time step simply causes
all TTLs to reduce by one. In the event of entanglement generation success, the state in
the next time step is therefore given by

Stuce = {tj—1:tj € 5,87 > 13U {trrL(F)}. (5.16)

The second possible transition is when entanglement generation fails, which occurs with
probability 1 — p. The state in the next time step is given by

Sty = {tj—1:tj€5,1;> 1} (5.17)
We therefore have
p if s' = sgucc
P(s'ls,a)=L{1-p, ifs'= St (5.18)

0, otherwise.
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Similarly, the transitions from the state & are given by

p if s' = {trrL(F)}
P(s'|19,a)=X1-p, ifs'=0 (5.19)
0, otherwise.

The transition function is fully defined by (5.18) and (5.19).

REWARD
Since our objective is to minimise the expected completion time E[T,], the reward is
R(s,a)=-1forallac of and s€ #*.

5.3.2. DYNAMIC PROGRAMMING

We use a dynamic programming algorithm known as policy iteration to compute optimal
policies. We let R, := R(S;, a) be the reward at time step ¢, given that the state is S; and
action a is taken. Then, the value of a state s € ¥ under policy = is defined as

Ty—t

Z Rt+k

k=1

vr(s):=E

S;=s]. (5.20)

This is the definition value for episodic problems with no discounting factor — see e.g.
Chapter 3 of [163] for more details of how the value is defined for other systems. In our
system,

Trn—t
vr(s)=E| ) —1|St=s] (5.21)
k=1
=—E[Ty— 11S; =] (5.22)
= —E[Ty|So = s]. (5.23)

Then, v, (s) is simply the expected completion time, given that the process starts in state
s and policy 7 is employed.

For all s € . and any policy 7, we can calculate v (s), which is a step known as policy
evaluation. We do this with iterative policy evaluation, where the update rule

vi(s):=—=1+ ) P(s/|s,7(s) vg_1(s) (5.24)
s'es
is recursively applied. Letting vy = vi—1 = vy, (5.24) is known as the Bellman equation
for v;. The sequence {vy} obtained can be shown to converge to v, [163].

Policy iteration computes an optimal policy 7* by starting with an arbitrary policy 7y,
and then iteratively updating it until the value v, (s) of each state s has been maximised.
Let . be the policy at the k-th iteration. The policy is then updated by maximising the
value with respect to all a € «f for each state, which again can be achieved by considering
the Bellman equation for vy,,_|,

mi(s) =argmax ) P(s'|s,a)(=1+ vy, (s") (5.25)
acd  seS
=argmax Y P(s'|s, @) g, (s). (5.26)

acsl e
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Since both |.#| and |</| are finite in our MDP, policy iteration converges to an optimal
policy n* after a finite number of iterations [163].

5.4. RESULTS

5.4.1. ANALYTICAL SOLUTION FORn =2
We now analyse the case n = 2, for which we are able to find a closed-form expression for
the optimal policy 7* and its expected waiting time. This will help to provide intuition
for the properties we expect from optimal policies for larger n.
We recall the definition of the state space (5.13). For n = 2, the state space is written
explicitly as
S = {g,{l}r{Z};---»{tmax}}- (5.27)

For now, we write 7% (&) = (pg, Fz) € /. The precise choice of 7* (&) will be fixed later.
We then notice that, if a single link is present in memory, one must maximise the success
probability. This is because the process will be completed if the second link is generated
before the first is discarded. Then, although maximising the success probability also
minimises the fidelity of the generated link, this would not matter because the second
link does not impact future behaviour. In particular, we define the action

(Pmax, Fmin) = argmax{p}. (5.28)
(p,Fed

Note that by the rate-fidelity trade-off (5.3) assumed in </, we also have F,j, = min{F :
(p, F) € «/}. We then set

7% () := (Pmax> Fmin), for s € A\ {{1}}. (5.29)

In (5.29), we have not assigned the same action to 7* ({1}) because, when there is a link
with TTL of one, the link will be discarded in the next time step. Thus, there is no chance
of completing the process in the next time step. One should therefore not maximise the
success probability, as we do for the other states in (5.29). In particular, @ and {1} both
contain zero viable links, which are the number of links that have a non-zero probability
of surviving until the system reaches an absorbing state s € .#,. We therefore view & and
{1} as equivalent states, and they are assigned the same action

(1) =7"(9) = (po, Fo). (5.30)

Equivalent states may also be identified when n > 2 to perform a reduction of the state
space . (see Appendix 5.6.1), which can speed up the computation of optimal policies
with dynamic programming.

Given the structure of the optimal policy from (5.29) and (5.30), we now explicitly
compute the expected completion time E[T;+]. Assuming that the system starts in the
state Sy = &, it will alternate between two phases until completion:

(A) There are no viable links in memory (the state is either & or {1}). The system at-
tempts entanglement generation with parameters (pz, Fz) until a link is success-
fully generated.
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(B) The newly generated link survives in memory for #r1,(Fz) time steps, until it is
discarded. During the first fr1,(Fz) — 1 time steps when the link is in memory,
the system attempts entanglement generation with parameters (pmax, Fmin)- If at
least one of these attempts is successful, the process is completed. If none of these
attempts are successful, then in the final time step, the state is {1} and the system
returns to phase (A).

The expected completion time may then be computed using exactly the same method
as the one used in Section III-B of [58]. The method makes use of properties of the geo-
metric distribution. We obtain

1 1
ElTz-1= * ; (5.31)
g Pmax  Po (1 — (1= pmay) T11F2)71)
and the solution for 7* (@) and 7 ({1}) is therefore given by
(o, Fo) i { ! } 5.5
bz, = argmin ) .
e (p,Pesg P (1 — (1 - pmax) fTTL(F)—l)

We have now fully defined the optimal policy 7*(s) for all s € ., and this completes the
analytical solution. We have also derived a formula for its performance in (5.31).

The analysis for n = 2 offers valuable insights into the expected behaviour of the op-
timal policy for n > 2. As we extend to cases with larger n, we anticipate that the optimal
policy will continue to select the action (pmax, Fmin) for states with n — 1 viable links in
memory. For other states, the action chosen by the optimal policy must correctly bal-
ance the probability of generation p with the time-to-live 1y (F). This is because a link
must be generated quickly, but there must also be sufficient time for the remaining links
to be generated while that link is in memory. For n = 2, the correct balance is captured
by (5.32).

5.4.2. HEURISTIC POLICY
The size of the state space |-#| scales exponentially with n, meaning that for large n
computing optimal policies with policy iteration (Section 5.3.2) is intractable. See Ap-
pendix 5.6.1 for a detailed analysis of the scaling. With our setup, we are only able to
compute optimal policies for n < 7 in the parameter regimes that we explore in Sec-
tion 5.4.3. Here, we propose a heuristic policy 7y, that is efficient to compute for large
n and that performs close to optimally for n < 7 (see Section 5.4.3). One can therefore
expect 7y, to exhibit high performance for n > 7.

Recalling the notion of a viable link that was introduced in Section 5.4.1, we define
the function

N,: ¥ —-1{0,1,...,n—-1}

such that N, (s) outputs the number of viable links in state s. For example, recalling the
discussion in Section 5.4.1, we have N, (&) = N, ({1}) = 0. More generally, given the state
s={ty,..., t;y}, the m-th link with TTL ¢, is viable if there is a chance of completing the
process (i.e. generating n—m remaining links) before the link expires. Therefore, the link
is viable if ¢, > n— m. Recall from Section 5.3.1 that the labelling of the TTLs is assumed
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tobe decreasing, i.e. t; = ¢ for i < j. If the m-thlinkis viable, thenforall k € {1,..., m—1},
we therefore have f; > n — m and all other links are viable. The total number of viable
links in the state s is given by

Ny(s):=max{j:t;>n-jh (5.33)

Given the state s = {11,..., t;,}, we define a second function v : ¥ — . such that

V(s):{{tl,...,th(s)} if Ny(s)=1 (5.34)

a, it N,(s)=0.

The state v(s) contains the viable links of s. Identifying s = v(s) can be used to reduce
the size of the state space — see Appendix 5.6.1 for more details.

We now define the heuristic policy 7y,. As we did in Section 5.4.1 for the case n =2,
we set the actions for states with zero viable links to an arbitary value,

h(8) = (pz,Fz) € o, if N,(s) =0. (5.35)

Further, we use the intuition established in Section 5.4.1 and enforce that the policy must
choose the maximum-probability action (5.28) when there are n—1 viable links in mem-
ory,

7Th(8) == (Pmax, Fmin), if Ny(s) =n—1. (5.36)

We now consider states s such that 0 < N, (s) < n— 1. For such states, the heuristic policy
chooses the highest-probability action that generates a link TTL greater than or equal to
the smallest TTL of a viable link in memory. Explicitly, we set

mh(s) = argmax{p: trrL(F) = ty, 5 — 1}, (5.37)
(p,Flesd

if0<Ny(s)<n-1.

In particular, we see that the action taken in a given state s is only dependent on its viable
links v(s),
7 (8) = mp(v(s)) for all se &#. (5.38)

In (5.36) and (5.37), we have now fixed all actions apart from (pg, Fy), from (5.35). The
choice of (pg, F») may be fixed by either policy evaluation or performing a Monte Carlo
simulation of the system while employing 7y, with each (pg, F) € «/. Then, one may se-
lect the value that minimises E[ Ty, ]. This step involves a maximum of |«/| policy evalua-
tion steps (either carried out exactly by solving the Bellman equations (5.24), or approx-
imately by performing a Monte Carlo simulation). The complexity of policy evaluation
scales exponentially with n, but in practice the possibility to evaluate performance with
simulation allows for the computation of the heuristic and its performance for regimes
with larger state spaces than the optimal policy (see Section 5.4).

The policy my, is particularly simple in the case where, for any ¢ € {1,..., fmax}, there
exists (p, F) € o such that tr7r(F) = ¢. In other words, in &/ there are generation param-
eters that can produce a link with any TTL. In such a case, (5.37) is simply a matching
heuristic, which ensures that all viable links have the same TTL, while maximising the
success probability as much as possible.
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The intuition behind our heuristic policy is as follows. With (5.37) the heuristic pol-
icy ensures that, when at least one viable link in memory will soon expire (small TTL),
the heuristic policy tries to quickly generate all links within the remaining time. On the
other hand, if all links in memory have a large TTL, the heuristic policy tries to generate
similarly long-lasting links. This is a property we will also see in Section 5.4 in the struc-
ture of optimal policies: it is a trend that, as the links in memory decohere, the optimal
policies prioritise higher-probability generation parameters. In fact, for one of the two
parameter regimes considered, we see that the heuristic policy is in fact optimal.

5.4.3. PERFORMANCE COMPARISON

BASELINES

In the following, we compare our optimal and heuristic policies with two baseline poli-
cies. Firstly, we consider the best constant-action policy m¢on, Where

Teon(S) = (p, F) forall se & (5.39)

and (p, F) € o is the value that minimises the performance E[ T}, ]. The performance of
this policy is well-studied with analytical methods in [58].

As a second baseline, we also consider the policy 7, with uniformly random ac-
tions. Unlike all policies mentioned previously, this policy is non-deterministic. At each
time step, the action is chosen from « uniformly at random:

1
S;) = (p, F) with b. —,
Tran (S¢) = (p, F) with pro ™

forall (p,F)e«, t=0. (5.40)

PARAMETER REGIMES

In the performance evaluation, we consider generation parameters that correspond to
batched executions of the single-click protocol. When photon loss is high, one execution
of the single-click protocol has a very low success probability of generating entangle-
ment [141]. Therefore, it can be beneficial for a single entanglement generation attempt
to consist of M executions of the single-click protocol, which increases the probability
of success while minimising overhead due to communication with higher layers of the
software stack [29]. We also refer to these as batched attempts. The attempt is declared
successful if at least one of the M single-click executions succeeds. In Appendix 5.6.2, we
show that for batched single-click attempts, the trade-off between p and F is accurately
approximated as

F=Aln(l1-p)+1. (5.41)

Here, A = 1/(2pgetM) is a fixed parameter that depends on the probability of detecting
an emitted photon pget and the batch size M. The relation (5.41) holds when M ~ paelt
is large. The trade-off (5.41) is valid for a sufficiently small range p € (0, g]. Given that all
newly generated links must have fidelity F such that F > Fapp, by (5.41) the maximum

success probability g satisfies
Fapp-1

g<l-e 71 . (5.42)
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Noting that (5.41) enables a continuous choice of (p, F), we discretise the action space as
follows. The maximum TTL of a newly generated link given the trade-off (5.41) is given
by

fmax = rlJi—% trrL(AIn(1—p) +1) = trr(D). (5.43)
Similarly, we let
fmin = frrL(AIn(1—g) +1) (5.44)

be the minimum TTL of a newly generated link. Then, for each i € {fmin, ..., fmax}, We
define p; as the maximum probability with which one can generate a link with TTL i,

pi=max{p: trrr.(AIn(1-p)+1) = i}. (5.45)
We then work with the finite action space
A ={(pi, AIn(1 - p;)+ 1) 11 € {tmin, - -, fmax}} - (5.46)

We now compare the performance of our optimal and heuristic policies to our base-
lines in two parameter regimes. The first parameter regime has a high decoherence rate
I' = 0.19, which we refer to as the near-term regime. The second parameter regime has a
low decoherence rate I' = 0.1, which we refer to as the far-term regime. In both cases, we
set the minimum required fidelity to be Fypp = 1/2.

The parameter regimes are chosen as follows. Suppose that the memory lifetime of
each memory qubit consists of N executions of the single-click protocol. In recent exper-
iments, N = 5300 [170]. Since an entangled link is stored in two qubits and decoherence
acts on both of them, the total memory lifetime is then N/2 executions (for an explana-
tion, see e.g. Supplementary Note 1 of [45]). Recalling that, in our model, M executions
of the single-click protocol are batched into a single unit of time, the decoherence rate
of the linkis then I' = 2M/N. The batch size in current experiments is M = 500-1000 [29,
15], but since this is not a hardware parameter we regard it as freely adjustable. See Table
5.1 for the specific choices of parameters for both the near-term and far-term regimes.

We note that the parameter choices put a restriction on the number of links 7 it is
possible to have simultaneously in memory because necessarily n < finax, where fmax is
the maximum TTL from (5.43). Then, a reduced I' will increase tyax, thereby allowing
for more links to be present in memory. We note that, if 7 is increased, correspondingly
each node must also contain at least n high-quality memories, which is experimentally
challenging.

We ran our policy iteration experiments on a 2020 MacBook Air with an Apple M1
chip (8-core CPU), 16 GB unified memory, and a 256 GB SSD. Policy evaluation and sim-
ulation experiments were performed on a Asus ROG G14-GA401QM with an AMD Ryzen
9 5900HS (8-core CPU), 16 GB unified memory, and a 1 TB SSD. The limited memory and
CPU resources restricted the size and complexity of our workloads. All code used in the
experiments is publicly available [171].

NEAR-TERM REGIME

The parameters for this regime are I' =0.19, A =2, Fapp = 1/2 (see also Table 5.1). The
action space «f is given by (5.46). For the near-term regime, from (5.43) we have fpax = 6,
which is the maximum value of n.
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Table 5.1: Parameters for near-term and far-term regimes

Parameter Near-term Far-term
N (memory lifetime in | 5263.15 20000
number of single-click ex- | = 5300 [170]

ecutions)

Pdet (photon detection | 5x 1074 5x 1074
probability) ~4.4x1074[141]

M (batch size) 500 1000

A = 1/2pgetM) (batched | 2 1

single-click trade-off pa-
rameter (5.41))

I' = 2M/N (decoherence | 0.19 0.1
rate, (5.1))

tmax (Maximum number | 6 11
of required links, (5.43))

F,pp (minimum fidelity of | 1/2 1/2
links for application)

5.2 presents the expected completion times for the optimal policy, heuristic pol-
icy, and baselines. The optimal policy is only computed for n < 5, because for n = 6
our solver takes too long to converge due to the size of the state space becoming too
large. See Appendix 5.6.1 for a detailed analysis of the state space scaling. The heuris-
tic policy and the random-action policy performance are computed exactly by solving
the corresponding Bellman equations (5.24). We note that, for the random-action pol-
icy, the Bellman equations currently written in (5.24) require a small generalisation to
non-deterministic policies, which can e.g. be found in Chapter 3 of [163]. The optimal
policy and its performance are computed with policy iteration (see Section 5.3.2). The
performance of the constant-action policy is computed for all values of n with analytical
methods from [58].

Remarkably, for all values of n for which the optimal policy can be computed (n < 5)
we find that the heuristic policy is optimal, i.e. E[Ty, ] = E[Ty+]. This is already expected
for n = 2, because in that regime our heuristic is identical to the analytical solution for
the optimal policy as presented in Section 5.4.1. However, for n > 2, the state space and
transitions are more complex and one must use dynamic programming to show that a
policy is optimal. In fact, the optimal policy turns out to match exactly with the heuristic
policy (because multiple optimal policies can exist, this was not necessarily the case).
Given the optimal performance of the heuristic for smaller 7, one might reasonably ex-
pect that the performance of the heuristic policy is close-to-optimal for larger n, such
as for n = 6 as is shown in Figure 5.2. From the figure, we see that the heuristic policy




180 5. OPTIMISING ENTANGLEMENT PACKET GENERATION WITH ADAPTIVE POLICIES

10 7§
—e E[Ty,] s
7 /
g 10" 1 - E[Tr[con] ///
*é 106_ @ E[Tnh] ’//
.8 * .//
B 5] E[Tr"] // , .
a. 10 s,
E Ve ///
S 10° o
8 /‘):, -
b3 ,/"/
3 10’ - Pt
e i
100 _-met
1 Lo
10 = T T T T T
2 3 4 5 6

n, required number of links

Figure 5.2: Policy performance for the near-term regime. The parameters for the near-term regime are
['=0.19, 1 =2, and Fypp = 1/2 (see Table 5.1 and explanation in the main text). Plotted are the expected
completion time for the optimal policy 7*, the heuristic policy 7y, the uniformly random policy 7ran and the
constant-action policy 7¢on. There are no error bars as all points were computed either analytically or with
policy evaluation.

provides an improvement over the constant-action policy by approximately two orders
of magnitude. As discussed in Section 5.4.2, the complexity of computing the heuristic
policy is in practice more efficient than finding the optimal policy with dynamic pro-
gramming. For a parameter regime with a large state space where the optimal policy
cannot be computed with dynamic programming, it is thus highly valuable to have this
efficiently-computable heuristic policy that shows a close-to-optimal performance.

Figure 5.3 shows the ratio in performance of the optimal policy with the two baselines
and the heuristic policy. As previously discussed, the heuristic policy provides optimal
performance for the values of n investigated, meaning that the ratio is one. The advan-
tage in performance increases with 7, with the optimal (and heuristic) policies providing
a performance increase of up to a factor of E[Ty,,]/E[T5+] = 14 for the constant-action
policy and E[Ty,,,]/E[Ty+] = 56 for the random-action policy.

In Figure 5.4, the structure of the optimal policy is shown as a heat map for n = 5.
Specifically, it is shown how the action 7% (s) depends on the number of viable links in
the state N, (s) and the minimum TTL of a viable link min{z: ¢ € v(s)}. We see that the
optimal policy (and the heuristic policy) usually chooses high-probability (low-fidelity)
actions for states containing more viable links and states containing viable links that
will expire more quickly. By contrast, when there are zero viable links, the optimal pol-
icy increases the fidelity as much as possible at the expense of the success probability,
choosing the action that generates a link with the maximum TTL #y.x = 6.
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Figure 5.3: Relative policy performance for the near-term regime. Plotted are the ratio of the performance
of the optimal policy 7* to the performance of the heuristic policy 7}, and baselines 7ran, Zcon. There are no
error bars as all points were computed either analytically or with policy evaluation.

FAR-TERM REGIME

The parameters for this regime are I'=0.1, A =1, Fypp =1/2 (see also Table 5.1). The
action space & is given by (5.46). For the far-term regime, from (5.43) we have fiax = 11,
which is the maximum value of the required number of links 7. In the near-term regime,
the maximum number of required links was n = 6. We thus see that the far-term regime
has a larger state space for the same 7 (see Appendix 5.6.1).

Figure 5.5 presents the expected completion time for the optimal policy, heuristic
and baselines in the far-term regime. As was the case for the near-term regime, due
to the scaling of the state space, we are only able to compute optimal policies for n <
7. The random-action policy is computed with policy evaluation for n < 6 and Monte
Carlo simulation for n = 7. The performance of the constant-action policy is computed
analytically for all n with methods from [58]. The performance of the heuristic policy is
computed with policy evaluation for n < 8 and Monte Carlo simulation for n» =9,10,11.

From Figures 5.5 and 5.6, we again observe that the heuristic policy maintains a re-
markably close performance to the optimal policy for all values of n. As n increases,
we again see a greater advantage provided by the optimal policy and heuristic policy
over the baselines. For n = 7 we see the maximum improvement, where the optimal
policy improves on the performance of both the constant-action policy by a factor of
E(Ty.,,]/E[T7+] = 19 and random-action policy by a factor of E[ Ty, ]/E[T+] = 139.

We saw in the near-term regime that the heuristic policy is in fact optimal. In the
far-term regime, we find that the heuristic is optimal for n = 2, which again is expected
because for n = 2 the heuristic matches the analytical optimal policy from Section 5.4.1.
For n > 2, we find that the heuristic policy is no longer optimal but still exhibits strong
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Figure 5.4: Actions chosen by the optimal policy 7* for the near-term regime and n = 5 required links. The x-
axis indicates the lowest TTL of a link in a state s, min{z: ¢ € v(s)} from (5.34). The y-axis indicates the number
of viable links Ny (s) from (5.33). We note that there can be multiple states that take the same value on both
the y-axis and x-axis. In the heat map, the most commonly-chosen action is shown for all states taking those
values. A darker colour (lower number) means that the optimal policy prioritises success probability instead
of fidelity. The number in each box is the TTL of the generated link corresponding to the most-commonly
chosen action. We see that the optimal policy prioritises the success probability in states with more viable
links and states with viable links that will expire more quickly. We note that certain states in the heat map are
inaccessible, such as states with more than one viable link with the lowest TTL being six, since only a single
link can be generated at a time. Nevertheless, they are displayed for clarity.

performance. Although the lines for the optimal policy and heuristic policy appear to
overlap in Figure 5.5, we see in Figure 5.6 that for large n, the heuristic policy exhibits
slightly worse performance than the optimal value. However, the deviation is not signif-
icant, and for all n < 7 the ratio of the two performances satisfies

E[ Ty, | — E[Ty+]

<0.03. (5.47)
E[T+]

Figure 5.7 visualises the optimal policy as a heat map for the case where the required
number of links is n = 7. We again see the same patterns also seen from Figure 5.4: in
the far-term regime, the optimal policy usually chooses high-probability (low-fidelity)
actions for states containing more viable links and states containing viable links that will
expire more quickly. However, in the far-term regime we also see these rules broken in
certain circumstances. For example, consider a state s with one viable link N, (s) =1
with TTL #y,(s) = 7. In the state s, we see from Figure 5.7 that the optimal policy most
commonly chooses the same generation parameters as it would for states with no viable
links. A potential reason for this is that even though the single viable link may still survive
until the remaining links are generated, the probability that it does so is very low. Thus,
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Figure 5.5: Policy performance for the far-term regime. The parameters for the far-term regime are I' = 0.19,
A =2, and Fapp = 1/2 (see Table 5.1 and explanation in the main text). Plotted are the expected completion
time for the optimal policy 7*, the heuristic policy np,, the uniformly random policy 7an and the constant-
action policy 7¢on. Error bars are included for simulated values of E[Ty,,,] at n =7 and E[Tr,] at n=9,10,11
with a confidence interval of three standard deviations, but are too small to be visible.

we learn that sometimes it is worth abandoning viable links that have a low TTL and
directly start generating new links with a high TTL. Extending our heuristic to account
for this is a potential avenue for improvement. We also notice that, for states with no
viable links, the optimal policy chooses to generate a link with a TTL of ten, even though
itis in principle possible to generate a link with a TTL of 11. We therefore see that the TTL
(fidelity) should not necessarily be maximised when generating the first link, because
the generation probability might be sacrificed too much. We already account for this
in our heuristic policy, by making the initial action arbitrary in the step (5.35) and later
optimising over this parameter.

5.5. CONCLUSION AND FUTURE WORK

We have considered a scenario where entanglement generation attempts are sequential
in time and the generation parameters may be chosen in each time step. By formulat-
ing the problem as an MDDP, we have found policies that minimise the expected time to
generate multiple simultaneously-existing links. In the parameter regimes explored, we
have seen that our optimal policies provide a significant improvement over the constant-
action and random-action baselines. We have also found a heuristic method to compute
policies that exhibit either optimal or close-to-optimal performance in all parameter
regimes explored. The heuristic method is more efficient than finding optimal policies
with dynamic programming, and we therefore expect it to be useful in situations where
the optimal policy cannot be computed due to the scaling of the state space (e.g. when
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Figure 5.6: Relative policy performance for the far-term regime. Plotted are the ratio of the performance of
the optimal policy 7* to the performance of the heuristic policy 7}, and baselines 7ran, con. Error bars are
included for E[Ty;+ ]/E[Tr,,,] at n =7 with a confidence interval of three standard deviations, but are too small
to be visible.

the number of required links 7 is large). Our work highlights that adaptive protocols
leveraging the rate-fidelity trade-off inherent to the entanglement generation scheme
can be extremely helpful in improving quantum network performance. Moreover, in
certain important entanglement generation schemes, the rate-fidelity trade-off is eas-
ily tunable (for example, by varying the bright-state parameter or mean photon number
[141, 162]), and so our adaptive protocols are readily implementable.

Our model does not assume a specific entanglement generation protocol. In our
results, we have used the example of a batched single-click protocol. It would also be
interesting to study optimal policies for different entanglement generation schemes. A
different entanglement generation scheme may result in a different action space, and
therefore optimal policies with distinct properties to the batched single-click case.

For parameter regimes in which finding the optimal policy is not feasible with dy-
namic programming, a fruitful direction of research may be deep reinforcement learn-
ing, which finds approximate solutions.

5.6. APPENDIX

5.6.1. STATE SPACE SIZE

Here, we quantify exactly the size of the state space, |.#|. We recall from Section 5.3.1
that & = U;’l;ll Fm U{T}, where

Fm =0, i} 1 € [bmax), 1 =+ = I} (5.48)
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Figure 5.7: Actions chosen by the optimal policy 7* for the far-term regime and n = 7 required links. The
x-axis indicates the lowest TTL of a link in the state s, min{t: ¢ € v(s)} from (5.34). The y-axis indicates the
number of viable links Ny, (s) from (5.33). We note that there can be multiple states that take the same value on
both the y-axis and x-axis. In the heat map, the most commonly-chosen action is shown for all states taking
those values. A darker colour means that the optimal policy prioritises success probability instead of fidelity.
The number in each box is the TTL of the generated link corresponding to the most-commonly chosen action.
We see that the optimal policy prioritises the success probability in states with more viable links and states with
viable links that will expire more quickly. However, there are some outliers, such as states with one viable link
with a TTL of seven. We note that certain states in the heat map are inaccessible, such as states with more than
one viable link with the lowest TTL being 11, since only a single link can be generated at a time. Nevertheless,
they are displayed for clarity.

We firstly quantify |.%,,|. We note that each state in ., corresponds to a unique outcome
when choosing an element of [#4«] exactly m times, with replacement but without dif-
ferent permutations. Therefore, we have

| Lol = (( tma")), (5.49)
m

where ((Z)) denotes the k-combination with repetitions. Then,

n—1
L= 112} + ). |Fml (5.50)
m=1
£}
m=0 m '
n-1 _
= (tm”+m 1), (5.52)
m=0 m
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where in the first step we have used the fact that #; and .#; are mutually exclusive sets
for i # j, in the second step we have used (5.49), and in the last step we have used the

formula
nl| n+k-1 (5.53)
k||~ ko ’

We can further simplify (5.52) using the hockey-stick identity [172],

2)(]+r)=(w+l) (5.54)
]:

r w-—r

for w = r. Then,

=l w—1+m
|.#| = ( max (5.55)
m=0 m
=l (g ax—1+m
=y |™ (5.56)
m=0 fmax — 1
f +n-1
= ( fnax ) (5.57)
n-1
We can then bound the state space size as follows,
tmax+ 1 —1) =2 tpa+n—-1—1i
e =[] —=———— (5.58)
n-1 o h—-1-1
n=2y +n-1
> M (5.59)
i=0 n-1
max n-1
=1+ . (5.60)
n—1
To obtain (5.59), we have used the fact that
_A-x (5.61)
YT B x '

is an increasing function of x, for A> B.

By definition of our problem, we have fnax = n— 1. Then, by (5.60) we see that |.#| =
21 i.e. the size of the state space scales exponentially with n (within the feasible region
N < tmax)-

We now quantify the reduction in the size of the state space that may be obtained
by identifying states only with their viable links. Recall the function N, that counts the
number of viable links, defined in (5.33). We also recall the function v, such that v(s)
only contains the viable links of s, defined in (5.34). We define the reduced state space
Fed € & by identifying s = v(s) for all s € .. Then,

Fred=1{s€ L v(s) = s} (5.62)
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We now compute | Feql. For m =0,...,n -1, we define
Fmred = {8 € Fred : Ny(s) = m} (5.63)
where we note that for s € A4, we simply have |s| = N, (s), or equivalently all links are

viable. The set %, req is interpreted as the set of states containing exactly m viable links.
We note that . req = {J}. We also note that %, req < . We then have

n—1
|Fredl = | U Fmred (5.64)
m=0
n—1
=1+ ) |Pmred|, (5.65)
m=1

where in the second step we have used the fact that #j jeq and %} req are mutually ex-
clusive for i # j. We now compute |.%};, req|- Recalling from Section 5.4.2 that the state
s={t,..., Iy} contains m viable links when t,, > n — m, it follows that

Fmred = Ut ..., tm} i ti € [tmax] \ [n—m], 11 = -+ = ;). (5.66)

Then, we deduce |.%;, req| by the same counting argument as was used above for |.%;,, to

find
1 +m-—-n
| Fm,red| = (( e )) . (5.67)
m

Combining with (5.65), we then have

n—1
Imax +M—n
| Fredl =1+ (( ma"m )) (5.68)
m=1
n-1
Imax+2m—n-—1
m=1

where we again made use of (5.53).

5.6.2. TRADE-OFF RELATION FOR BATCHED SINGLE-CLICK SCHEME
Here, we derive a trade-off relation between p and F for batched attempts of the single-
click entanglement generation protocol [23]. In the limit of high photon losses (n <« 1),
if the success probability of a single execution of the single-click protocol is psycc, the
fidelity of a generated link is

F=1-Psuec (5.70)

2pdet

where pqe; is the probability that an emitted photon is detected [14]. When pgycc < 1, as
is typically the case for NV centres, it can be beneficial to perform attempts in batches
[29] in order to avoid overhead in the software stack (the outcome of each attempt must
be communicated to higher layers of the software stack). We now consider the case
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where one entanglement generation attempt corresponds to M executions of the single-
click protocol. If at least one of the M execution succeeds, then the entanglement gener-
ation attempt is successful. The success probability of an individual attempt is therefore
given by

p=1-(1-psuc)™. (5.71)

Letting A := 1/(2pgec M), from (5.70) we have that

(5.72)

_, (1 (1-F) )M
P= AM |
Then, using the fact that limg_.o, (1 + %)K = e*, when M ~ p;ét is large the above is ap-
proximated as

p=l-e , (5.73)
which results in the trade-off relation
Fx=1+Aln(1-p). (5.74)

The relation (5.74) is used in the illustration of our results in Section 5.4.3. The trade-off
relation F = 1 — Ap that was found in [58] can be seen as the first-order approximation of
(5.74)at p=0.

We now show that (5.74) is an accurate approximation in the regime where M ~ paelt
is large. To bound the error of the approximation, we use the following inequality:

1Yo 1y
(1——) >—>(1——) , fory>1. (5.75)
y e y

The proof of (5.75) is given in Appendix 5.6.3. We recall that the true trade-off is given by

3 _(1_(1—F))M (5.76)
= Y .
and the approximate trade-off
p=l-e 7. (5.77)
We firstly claim that p < p. Letting r = (1 — F)/A and y = M/r, we have r > 0. Then,
r\M
e e
p-p=e (1 M) (5.78)
1\
=e_r—(1——) >0, (5.79)
y

where in the final step we have made use of the upper bound from (5.75). We now bound
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the difference |p — p|. We have

lp-pl=e’ (1 1)yr (5.80)
—_ =e —_ _— .
p-p 7
.
<e"—(e‘l (1—%)) (5.81)
=e*f(1—(1—l)r) (5.82)
y
1 r
<1—(1——) , (5.83)
y

where in the second inequality we have used the lower bound from (5.75), and in the
final inequality we have used e™" < 1 (since r > 0). In particular, making use of the power
series expansion, we see that

p |~r—@(l) (5.84)
p pNy_ M! .

i.e. aslongas M ~ pa;t is large, our approximation remains accurate.

5.6.3. PROOF OF (5.75)
To prove the left inequality of (5.75), we firstly take the logarithm of both sides, to obtain

1
(y—l)ln(l—— >-1,fory>1. (5.85)
y
For ease of notation, we let
1
fy) = (y—l)ln(l—;). (5.86)
To prove (5.85), we firstly claim that
yan()lof(y) =-1 (5.87)
Letting z:=1/y, (5.87) is equivalent to
. 1-2z
llm(—)ln(l—z) =-1, (5.88)
z—0 z

which one may verify with UHo6pital’s rule: differentiating both the numerator and de-
nominator,

1-2)In(l- “In(l-2)-1
lim 3-20A=3) _ Zind-2) (5.89)
z—0 z z—0 1
-1 (5.90)

Having shown (5.87), to prove (5.85) it suffices to show that the function f(y) is decreas-
ing. We have

1
g:m(pl S (5.91)
1) 1
=ln(1——)+—. (5.92)
vy
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Since
Inl+2z)<zforz>-1, (5.93)

by letting y = —1/z it follows from the above that 3—{; < 0, which suffices to prove the left

inequality of (5.75).
We now show the right inequality of (5.75), which taking the logarithm of both sides

is equivalent to

1 1
——>ln(1—;), fory>1. (5.94)

y
Again, letting y = —1/z, by (5.93) this holds.



ON THE ACCURACY OF TWIRLED
APPROXIMATIONS IN REPEATER
CHAINS

Bethany Davies, Guus Avis and Stephanie Wehner

In the performance analysis of quantum networks, it is common to approximate bipartite
entangled states as either being Bell-diagonal or Werner states. We refer to these as twirled
approximations because it is possible to bring any state to such a form with a twirling
map. Although twirled approximations can simplify calculations, they can lead to an in-
accuracy in performance estimates. The goal of this work is to quantify this inaccuracy.
We consider repeater chains where end-to-end entanglement is achieved by performing
an entanglement swap at each repeater in the chain. We consider two scenarios: post-
selected and non-postselected entanglement swapping, where postselection is performed
based on the Bell-state measurement outcomes at the repeaters. We show that, for non-
postselected swapping, the Bell-diagonal approximation is exact for the computation of
the Bell-diagonal elements of the end-to-end state. We find that the Werner approxima-
tion accurately approximates the end-to-end fidelity when the infidelity of each initial
state is small with respect to the number of repeaters in the chain. For postselected swap-
ping, we find bounds on the difference in end-to-end fidelity from what is obtained with
the twirled approximation, for initial states with a general noisy form.

This chapter has been released separately at https://arxiv.org/abs/2509.16689
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6.1. INTRODUCTION

A common form of quantum repeater utilises entanglement swapping [32, 12, 173]. Con-
sider a simple scenario with two end nodes, each equipped with a single qubit, and an
intermediate (repeater) node equipped with two qubits. Suppose that the repeater node
shares the entangled two-qubit states p; and p, with each end node, such that the to-
tal initial state of the chain is p; ® p2. An entanglement swap transforms p; ® p» into a
two-qubit state p’ shared between the end nodes. An entanglement swap consists of a
Bell-state measurement (BSM) at the repeater node and classical communication of the
BSM outcome to the end nodes, followed by local Pauli corrections at the end nodes. If
the level of noise in the initial states, the BSM and the Pauli corrections is low enough,
then the end-to-end state p’ will be entangled (see Figure 6.1a).

In a repeater chain, N — 1 repeater nodes are placed between the end nodes. Entan-
glement is firstly shared between adjacent nodes, in the form of N entangled two-qubit
states ®Ik\’:1 pk- End-to-end entanglement is achieved by performing an entanglement
swap at each repeater node.

Swapping-based repeaters are the form of repeater most within experimental reach,
and present-day demonstrations of quantum networks have distributed entanglement
in such a way — see e.g. [14, 170]. For this reason, theoretical work on the design and
performance analysis of large-scale quantum networks typically uses swapping-based
repeaters as a basic assumption in the network model [80, 63, 75, 174, 175, 156, 89, 169,
78].

By the Bell-diagonal and Werner approximations of the two-qubit state p, we respec-
tively refer to the states

1
B)= Y, Nij|YijXVij|, 6.1)
ij=0
4F -1 1-F
W(p)=T|‘I’00><‘P00|+( - 'L 6.2

such that A;j = (¥;j| p|¥i;), F = Ago is the fidelity with respect to [Wgo), and I is the
identity matrix. Both approximations are equivalent to applying the symmetrising map
B (W) to p [135, 47], which is also known as twirling the state p. We therefore refer to
the Bell-diagonal and Werner approximations as twirled approximations.

When modelling states in a repeater chain, it can be convenient to use twirled ap-
proximations for the initial states of the chain. See Figure 6.1b for an illustration of how
twirled approximations are used in a repeater chain. Without the the approximation, we
input a pair of two-qubit initial states p; ® p», and after the entanglement swap we have
end-to-end state p’. With the approximation, each initial state is twirled with the map %3
(#), and after the entanglement swap the end-to-end state is pi, (07,).

Twirled approximations have a symmetrised form, which requires only a few param-
eters to be specified and has a direct operational interpretation. For the Bell-diagonal
approximation (6.1), there are three parameters A¢;, 111, and 1,9, which are interpreted
as the probabilities of X, Y and Z errors when applying a Pauli channel to the state | W)
to obtain the noisy state %8(p). For the Werner approximation (6.2), only a single pa-
rameter is required, which is the fidelity F [135]. Another important property is that the
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Figure 6.1: Twirled approximations in a repeater chain with N = 2 initial states. (a) The entanglement
swapping of a pair of two-qubit entangled states p; ® p2 results in the end-to-end state p’. (b) With the
Bell-diagonal (Werner) approximation %8(py) (# (p)) of the initial states, the end-to-end state pf@ (p.’W) is
simpler to compute than in case (a).

symmetric form is preserved after entanglement swapping, i.e. p/,, is Bell-diagonal and
p’, is Werner. Consequently, p, (p/,) is often simpler to compute than p', which has
many advantages in the performance analysis of large-scale quantum networks, poten-
tially with complex topologies. In particular, twirled approximations enable the analyt-
ical study of high-level network performance metrics, because the metrics may then be
more easily understood as a function of the initial states and therefore low-level prop-
erties of the hardware [75, 64, 56, 176, 174, 175]. Twirled approximations enable a more
efficient numerical simulation and optimisation of large-scale quantum networks [89,
169, 78, 62, 177, 178]. They are also used to avoid making overly specific assumptions
when modelling quantum hardware [73, 79, 178], because any noise model can in prin-
ciple be transformed into such a case with twirling.

Despite their advantages, twirled approximations can cause inaccuracies in perfor-
mance estimates. For example, suppose that the initial states p; ® p, have the same
fidelity (Wool px I'¥W00) = F, for k = 1,2. Using the Werner approximation for both states
in this scenario, the initial state is #(p1) ® # (p2), and the end-to-end state pf}// is there-
fore also Werner with fidelity Fj, = (Yool p/, W00} = F* + (1 - F)*/3 [173]. However, de-
pending on the exact form of the initial states, the true fidelity F' = (¥l o’ |¥q0) of the
end-to-end state can lie (potentially significantly) above or below the value of F),. The
same holds if we use the Bell-diagonal approximations to obtain end-to-end fidelity F,.
The principle question that we address in our work is: what is the maximum difference
|F' - Fégl (F - F7’,/| ) between the true end-to-end fidelity F' and the end-to-end fidelity
with the twirled approximation Fy, (F),)?
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We consider two different scenarios: postselected and non-postselected swapping. In
postselected swapping, the end-to-end state p’§ is postselected on the BSM outcomes
$ = (s1,...,Sn-1) obtained at the N — 1 repeater nodes. In non-postselected swapping,
the end-to-end state is a weighted average of the postselected outcomes. Let ;/)'§ be the
probability of measuring s. Then, the end-to-state after non-postselected swapping is
P pép’g. We note that this is equivalent to not having knowledge of the specific BSM
outcomes § obtained (although we note that, in the swapping protocol, the BSM out-
comes are still commicated and Pauli corrections are still applied).

Having introduced the problem, we now outline our main contributions. In Sec-
tion 6.4, we study the case of non-postselected swapping on a chain with N initial states
®1kV=1 pr and N —1repeaters, we consider a general class of entanglement-swapping pro-
tocols that we term swap-and-correct protocols (see Definition 6.3). Swap-and-correct
protocols consist of BSMs and Pauli corrections that can be applied at any node in the
chain. For all such protocols, we show that:

(i) B(p') = ply, i.e. the Bell-diagonal approximation is exact for the computation of
the Bell-diagonal components of the end-to-end state (Theorem 6.1). The Bell-
diagonal components include the fidelity, and so F' = F,.

(i) Iftheinitial fidelities Fx = (Wool o [ WPoo) satisfy 1-Fx < 1/Nforall k=1,..., N, then
F' = F),, i.e. the Werner approximation accurately approximates the end-to-end
fidelity. More precisely, we have |F' — F), | = 0((1 - F)*N?) (Theorem 6.2).

A key insight is that, in many important cases, non-postselected swapping and the use
of the Bell-diagonal approximation are equivalent. Such cases include protocols whose
performance may be expressed solely in terms of the Bell-diagonal elements %8 (p’) of
the end-to-end state p’. For example, consider the channel Afoe,l induced by standard

quantum teleportation with resource state p’ [159]. In Proposition 6.1, we show that
Ag’,l = Afgeel(p,). By result (i), we thus have Ag’;(p,) = Ag’; . In particular, the Bell-diagonal
approximation for each initial state in the chain is exact when subsequently performing
teleportation over the end-to-end state. However, exactness does not hold for all appli-
cations: we also see that for quantum key distribution, for certain input states using the
twirled approximation can lead to a large reduction in performance (Section 6.5.2).

In Section 6.4, we study the case of postselected swapping on a repeater chain with
two initial states p; ® p» and one repeater, we restrict to swapping initial states of the
form pi = p|Weo)Wool + (1 — p)ok such that F = (Pgol px |'¥00). The density matrix o is
interpreted as an arbitrary noise term. We fix F to perform a comparison with the twirled
approximation, and also fix p € [0, F] to provide meaningful bounds. (It is necessary to
fix a second parameter because for any F, there exists a state w with F = (¥l w [¥oo)
such that there is a probability p), > 0 of obtaining p’, = |[¥g0){Wol when swapping the
initial states @®? [179]. Thus, if F is the only fixed parameter, it is always possible to
obtain unit end-to-end fidelity with some non-zero probability.) Letting F; denote the
end-to-end fidelity postselected on BSM outcome s, we find:

(iii) A tight, analytical upper bound for the achievable end-to-end fidelity, F, < 1—
2p(1 - F) (Theorem 6.3). We show tightness by finding an example of a state pop¢
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such that pffst achieves this upper bound. The state p,pt has a physical interpreta-
tion: it corresponds to applying a Y -rotation (of a specified angle) with probability
1— p to a qubit of [Wqp).

(iv) A simple, analytical lower bound for F; in terms of p and F. Unlike the upper
bound, this is not tight. Moreover, we find a tighter lower bound for F} by formu-
lating the problem as a semi-definite program. We perform a symmetry reduction
of the problem, enabling efficient computation of the bound.

Our simple formulation with the parameters p and F, as well as the efficiently com-
putable bounds, allows for direct interpretation and comparison with twirled approxi-
mations (see Section 6.5.1). For example, let us consider swapping the initial states p?}z,
where

Pr=p|¥o0XW¥ool + (1 - p)|01)X01].

The state pgr (up to a local unitary rotation) closely approximates states generated in
certain physical entanglement generation schemes [127, 23]. It has

p=<Yoolpr|¥o0) =F.

By (iii), we see that
Fl(p3)<1-2F(1-F)=F*+(1-F)>

Therefore, Fg(pgz) - F7’// <2(1-F)?/3. For large F, we see that the Werner approximation
does not cause a large reduction in the maximum end-to-end fidelity.

Building on this example, in Section 6.5.1, we provide further discussion of how our
bounds may be used to assess whether the twirled approximation is accurate for given
input states. In Section 6.5.2, we further discuss the implications of our results for an ex-
plicit example application: specifically, we look at the impact of twirled approximations
for the performance of quantum key distribution over a repeater chain.

6.2. RELATED WORK

The idea that entanglement can increase (or decrease) after a postselected entanglement
swap has existed for many years [179]. Much work has since focused on a fundamental
investigation of how much the entanglement can change after the entanglement swap,
when compared to the initial states [180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190].
To answer this question, in many studies, the concurrence is used as a measure of entan-
glement [180, 181, 183, 184, 185, 186, 187, 189, 190] because for this there exists a com-
putable formula in the two-qubit case [70]. Other work has used the negativity [188], or
instead of measures of entanglement, used measures of quantum correlation [182].

In the simplest case, entanglement swapping can be seen as applying teleportation
to one end of an entangled state [159]. Much work has focused on the analysis and op-
timisation of quantum teleportation with a noisy resource state — see e.g. [191, 192, 193,
194]. However, to our knowledge, no systematic comparison has been performed with
the twirled approximation. Moreover, the idea of a postselected swap is related to that
of probabilistic teleportation [195, 196, 197], where a qubit may be teleported with max-
imum fidelity, even if the resource state not maximally entangled. This is often made
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possible by measuring in a non-maximally-entangled basis and postselecting based on
the measurement outcome. Other work has focused on the effect of noise in the resource
state on probabilistic teleportation [198]. Again, to our knowledge, no systematic com-
parison of (probabilistic) teleportation has been carried out with the twirled approxima-
tion of the resource state.

Finally, we note that twirling is a technique that is used widely outside of the context
of repeater chains. For example, twirling is used in quantum error correction to reduce
a general noise channel to a Pauli channel [46]. There has been work on quantifying the
accuracy of such an approximation for the calculation of the error correction threshold
[199, 200]. Twirling is also used as a simplifying step in security proofs [4]. Twirling is
also used in randomised benchmarking [201, 202], not as an approximation to the noise
model, but as a tool that can be applied to extract important information about a noisy
gate set.

6.3. NON-POSTSELECTED SWAPPING

6.3.1. PRELIMINARIES
Let X, Y and Z denote the usual Pauli gates, given by

0 1 0 —i 1 0
X= , Y= . , L= . (6.3)
1 0 i 0 0 -1
In what follows, we will denote the Bell basis vectors as
71
|¥;;)=LeXx'Z/ [EUOOHHD)]’ (6.4)

where i, j €{0,1}.
In the following lemmas, we restate the well-known results for the Bell-diagonal and
Werner twirling of a two-qubit state.

Lemma 6.1 (Bell-diagonal twirl). Suppose that Alice and Bob share the two-qubit state p
and each apply the same gate chosen from {I,, X, Y, Z} uniformly at random, creating the
channel

p— B(p) = i p+XeX)pXTex+Yev)py eyh +(Z®Z)p(z*®zf)]. (6.5)

Then, %8(p) is diagonal in the Bell basis and (\¥ j | B(p) “}’,-j> = (‘I’ij| 0 |‘Pl~j>,forall i,je
{0, 1}. In other words, the eigenvalues of 9 (p) are given by the diagonal elements of p when
written in the Bell basis.

Proof. See Appendix A of [47]. O

Lemma 6.2 (Werner twirl). Suppose that Alice and Bob share the two-qubit state p. Alice
applies the unitary U to register A and Bob applies U* to register B. The unitary U is
chosen uniformly at random from the Haar measure, creating the channel

pr—»?//(p)=f(U® Ut)p(UeU*) du. (6.6)
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Then, the resultant state is of the form

4F -1
W (p) = 3 [Woo) (Wool + Iy, 6.7)

where F = (Yool p |Woo) is the fidelity of p to |W o), and 14 is the identity matrix.

Proof. See Section V of [48]. O

In what follows, we refer to states of the form (6.7) as Werner states [135], which is
standard terminology in the field of quantum networks (see e.g. [80, 173, 19]). States
of the form (6.7) are also sometimes referred to as isotropic states, which are the states
that are invariant under the application of U ® U™, for any unitary U. However, note
that the term Werner state is also sometimes used to refer to the states which have U® U
symmetry, which were originally studied in [135]. These are equivalent to the states (6.7)
up to a Pauli Y rotation on one of the two qubits. We note that in order to avoid sampling
unitaries uniformly from the Haar measure, which can be computationally expensive
and difficult to realise experimentally, it is possible to implement the map (6.6) instead
by sampling from a finite set of correlated Pauli gates [47].

Definition 6.1. Given a two-qubit state p, we refer to %8(p) as the Bell-diagonal approx-
imation of p. We refer to # (p) as the Werner approximation of p.

In this work, we refer to the Bell-diagonal (Werner) approximation in a repeater chain
as when the approximation is used for all initial states in the chain (see Figure 6.1).

6.3.2. REPEATER CHAINS WITH N = 2 INITIAL STATES

In this section, we consider non-postselected swapping on repeater chains with N = 2
initial states. This section can be seen as a warm-up for our main results, which are
presented in Sections 6.3.3 and 6.4.

The entanglement swapping protocol for N = 2 initial states that we consider in this
work is implemented using the standard teleportation protocol from [159]. Given that
two parties initially share entanglement, the standard teleportation protocol uses a BSM,
classical communication and Pauli corrections to transport a quantum state between
the two parties. The protocol is given in Algorithm 1 and illustrated in Figure 6.2a. If all
states and measurements involved are perfect, then the protocol teleports a quantum
state perfectly and with probability one. If the initial shared entanglement is noisy, the
teleportation protocol effectively sends the quantum state down a noisy channel. Prop-
erties of such channels, such as the teleportation fidelity, have been widely studied [203].
The shared entangled state used for teleportation is also referred to as a resource state,
because this is consumed in the protocol in order to teleport the target state.

Algorithm 1 The standard teleportation protocol [159]
1: Input qubit state o ¢, two-qubit resource state p 4p.
2: Perform measurement on registers C A in Bell basis (6.4), to obtain outcome i j.
3: Apply correction Z/ X’ on register B.
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Postselected on BSM outcome i j, the output state after standard teleportation is

1 o o
o= —(ZIXpTrea[| Wi X¥ijl o oc ® pas) (Z/ XD, (6.8)
ij
where
p;‘j=Tr[|“Pij><“Pij|CA0'C®PAB] (6.9)
is the associated probability of obtaining measurement outcome i j. The weighted aver-
age of the postselected outcomes is given by

1
o = Z o';.].p;.j (6.10)
i,j=0
1 . . . .
=Y (ZIXDp(Wijloc®pag|Wij)e (2 XD} (6.11)
i,j=0
= A (0), (6.12)

where A‘pel is the channel induced by standard teleportation with resource state p.

Proposition 6.1 (Exactness of Bell-diagonal approximation for teleportation). Let A},el (o)
denote the result of teleporting a qubit state o (register C) with a two-qubit resource state
p (registers AB) using the non-postselected standard teleportation protocol, as defined in
(6.12). Let PB(p) denote the Bell-diagonal approximation of p. Then,

AR o) = A%, (0), (6.13)
i.e. the channel Atpel is invariant under the Bell-diagonal twirling of p.

Proof. Recalling that |¥;;) ., = (X" Z/) 4 |¥oo) ¢4, we may rewrite (6.11) in the following
way: bringing the sum inside the inner product and using the identity (6.5) for Bell-
diagonal twirling yields

A @) =4(Pooloc ® B(pas) Poodca- (6.14)

Now,
AtF;’zl(,o) (0)=4(¥ooloc ® B*(pap) [Woodca (6.15)
= 4(Pooloc @ B(pap) [Yoodca = Al (0), (6.16)

where in the second line we have used the fact that the Bell-diagonal twirling of Bell-
diagonal states leaves them invariant. O

Interestingly, Proposition 6.1 allows one to derive a simple form for the standard tele-
portation channel.

Corollary 6.1 (Standard teleportation is a Pauli channel). Let Agﬂ (o) denote the result of
teleporting a qubit state o (register C) with a two-qubit resource state p (registers AB) using
the non-postselected standard teleportation protocol, as defined in (6.12). Then, A;)el (o) is
a Pauli channel.
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(a) Je. —_

(b)

Figure 6.2: Teleportation and entanglement swapping. (a) The standard teleportation protocol involves a
BSM on the target qubit and one qubit of an entangled resource state (wavy line), classical communication
and corrections on the other half of the resource state (green arrow). (b) The standard entanglement
swapping protocol involves teleporting one half of an entangled state. (c) An example of a swap-and-correct
protocol for a repeater chain is applying teleportation sequentially.

Proof. See Appendix 6.7.1. O

We now define the entanglement swapping protocol for N = 2 initial states. In the
following, we let 2(#°) denote the set of density operators acting on Hilbert space /.

Definition 6.2. For k = 1,2, let #4, and #p, be qubit Hilbert spaces. Given a pair of
two-qubit initial states p1 ® p, such that py € 2(H# 4, ® #p,), the standard entanglement
swapping protocol (or just swapping) is defined by applying the standard teleportation
protocol to teleport register A; to register By, using p, as the resource state.

See Figures 6.2a and 6.2b for an illustration of the entanglement swapping protocol
for N=2.
The end-to-end state after a postselected swap with BSM outcome i j is then given by
applying the map (6.8) to the appropriate qubits.
The end-to-end state p’ after a non-postselected swap is given by applying the stan-
dard teleportation channel (6.12) to the appropriate qubits:
p'= (L& A (p1). 6.17)

2

A simple extension of Proposition 6.1 means that the Bell-diagonal approximation of the
state p» is exact for non-postselected entanglement swapping. However, this is not the
case for postselected entanglement swapping. We will study postselected swapping in
Section 6.4.

We now compute the result of swapping Bell-diagonal states. For convenience, we
denote a Bell-diagonal state as a length-four vector,

Bp) =Y Nij|PijX¥ij] = oo, Ao, A1o, A1) T (6.18)
ij
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Lemma 6.3 (Postselected swapping of Bell-diagonal states). Let p;.j be the end-to-end
state after performing a postselected swap on a pair of Bell-diagonal states B(p1) ® B(p2)
such that B(p1) = (Ag,...,A3)T and B(p2) = (o, ..., us3) ", with BSM outcome ij. Then,
p;j = ply foralli and j, where

Pl = A, AT, (6.19)
is Bell-diagonal, and
Ao Aopto + A1 + Aapip + Azps
A _ Aopa + A1 o + Aoz + Agpin . 6.20)
A, Aotz + Az + Agpy + A1 s
Ay Aopz + Az + A1z + Aoy

Moreover, the probability of this BSM outcome is

;o 1
pij = Z (6.21)

foralliand j.
Proof. See Appendix 6.7.1. O

We see from Lemma 6.3 that, when the initial states are Bell-diagonal, the end-to-end
state after a non-postselected swap is given by

1
1
o= Zp;-j =Py (6.22)
i,j=0
Therefore, when the initial states of the chain are Bell-diagonal, we see that postselected
and non-postselected swapping give the same end-to-end state.

Corollary 6.2. Let p’ be the end-to-end state after performing a non-postselected entan-
glement swap on a pair of two-qubit initial states p) ® p», as defined in (6.17). Then,

B(p') = ply (6.23)

where pf@ is the output state (6.19) given by swapping the Bell-diagonal approximations
B(p1) and B(p2).

Proof. See Appendix 6.7.1. O

From Corollary 6.2, we see that the Bell-diagonal approximation is exact for the com-
putation of the Bell-diagonal elements of the end-to-end state p’. This greatly simplifies
the calculation of many important properties of the end-to-end state. For quantum net-
work protocols and applications that use the end-to-end state as a resource, the Bell-
diagonal approximation %(p’) contains important information. For example, if one is
performing QKD, the secret-key fraction of certain well-known protocols is invariant un-
der Bell-diagonal twirling of the resource state [204, 205, 206]. Furthermore, as we have
seen in Proposition 6.1, if standard teleportation is performed over the end-to-end link,
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then the only contributing components are again the Bell-diagonal elements of p’. Even
if the protocol performance is not only dependent on the Bell-diagonal elements, these
elements may still contain important information about application feasibility. For ex-
ample, %B(p’) contains the information of the fidelity to |Wgo), which is an important
metric to deduce the feasibility and performance of entanglement purification proto-
cols. It is a common assumption in purification protocols that the initial states are Bell-
diagonal twirled [50, 47, 97, 52].

From Lemma 6.3, we obtain the well-known formula for the end-to-end state when
the initial states are Werner [173].

Corollary 6.3. Let p, be the end-to-end state after swapping a pair of two-qubit Werner
states W (p1) ® W (p2) with fidelities Fy, F,. Then, p), is a Werner state with fidelity F,, =
FR+(1-FR)(1-FR)/3.

Proof. A Werner state with fidelity F is Bell-diagonal, with the final three eigenvalues
equal to one another:
1-F 1-F 1-F\"

) ) . 6.24
3 3 3 ( )

Then, by applying Lemma 6.3, swapping two Werner states with fidelities F; and F, re-
sults in a Werner state with fidelity F7’,, =FF+0-F)1-F)/3. As for Lemma 6.3, this
result holds for both postselected and non-postselected swapping. O

’

Following from Corollary 6.3, defining the Werner parameter

4F -1
w:= 3 (6.25)

we see that the Werner parameter of the end-to-end state is w’ = w; w». Then, to com-
pute the Werner parameter for the output state, one only needs to multiply the Werner
parameters of the initial states. This is a well-used result in the performance analysis of
quantum networks: if one is studying a large network, which could be a repeater chain
or a more complex graph topology, it simplifies the analysis greatly to only consider the
quality of each link to be described by one parameter F, which evolves under an entan-
glement swap according to the simple multiplicative relation - see e.g. [80, 75, 45]. We
note that similar multiplicative relations have also been found for general Bell-diagonal
states [64].

6.3.3. REPEATER CHAINS WITH [N > 2 INITIAL STATES
Here, we consider non-postselected swapping over repeater chains with N initial states
and N — 1 repeaters. Due to the freedom of the order in which to perform entangle-
ment swapping and Pauli corrections, we present a generalised class of swapping proto-
cols on chains with N initial states that we term swap-and-correct protocols. For non-
postselected swapping, we then go on to generalise the results of Section 6.3.2, present-
ing an exactness result for the Bell-diagonal approximation (Theorem 6.1) and an accu-
racy result for the Werner approximation (Theorem 6.2).

Suppose that non-postselected entanglement swapping is applied sequentially. By
sequentially, we mean that the standard swapping protocol (Definition 6.2) is performed




202 6. ON THE ACCURACY OF TWIRLED APPROXIMATIONS IN REPEATER CHAINS

N-1 times, moving from one side of the chain to the other (Figure 6.2¢). Then, by Propo-
sition 6.1, the Bell-diagonal approximation is again exact for each of the N —1 states that
were treated as the resource state.

In practice, though, entanglement swapping is not likely to be implemented sequen-
tially, because it requires classical communication and Pauli corrections after every BSM
before the next BSM can be applied. With this strategy there is excessive classical com-
munication time, and each swapped state has to spend an increasingly large amount of
time waiting in memory before a BSM is applied to its qubit(s). This is problematic if
qubits are subject to time-dependent noise while stored in memory, since added noise
on the initial states can be detrimental to the quality of the final end-to-end state. For
example, it may be beneficial to, instead of applying Pauli corrections sequentially af-
ter each BSM, apply them at the end nodes after all N — 1 BSMs have been carried out.
In this way, all N —1 BSMs at each node and classical communication of the outcomes
may be carried out simultaneously, reducing the total amount of time the initial states
must spend waiting in memory. We therefore look to generalise Corollary 6.2 to all possi-
ble strategies of performing BSMs and Pauli corrections for a repeater chain of arbitrary
length.

We firstly present a definition of the class of entanglement swapping protocols under
consideration. We term these swap-and-correct protocols. The outcomes of the N —1
BSMs define the syndromes. The syndrome is a length- (N —1) list of Pauli operators such
that s; = X™ Z" means that outcome mn was measured on node i. The Pauli correction
at each stage of a swap-and-correct protocol depends on the result of the syndrome up
to that point.

Definition 6.3 (Swap-and-correct protocol, informal). For a length- N repeater chain, a
swap-and-correct protocol & dictates where to apply Pauli corrections, given the N —1
BSM outcomes that form the syndrome 5. More specifically, 22 is a map

PALX, Z, X7V 1, x, Z, x 23V (6.26)

such that 2 (5) is the correction applied to node k for k = 0,..., N. Moreover, for any syn-
drome 3, @ transforms |¥oo)(Woo|®Y into |¥oe){Wool. We refer to this as the correctness

property.

We note that for clarity, some details have been omitted from the above. For example,
there must be some associated ordering of the BSMs, so that corrections always depend
on past outcomes. This is an important property that imposes more restrictions on 2.
We refer to Appendix 6.7.1 for the full technical definition. We also note that, for the
N -1 repeater nodes, the protocol does not specify which of the two qubits in the node
the correction is applied to. This is because a BSM projection will be applied following
any correction, which means that both choices are equivalent (see Appendix 6.7.1).

Some examples of swap-and-correct protocols are:

* Sequential teleportation. Here, 2y (5) = 221 (S) = I, and 2(5) = sy, fork=2,...,N.

* Correct at end. Here, 2;(5) = I forall k =0,...,N— 1, and 2y (3) = [T} s-
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Given a swap-and-correct protocol with syndrome 2, we denote the outcome state
. - ' s NN '
of a postselected swap with syndrome s as p, anfi th.e p.robablhty of measuring § as p%.
Then, the outcome after non-postselected swapping is given by

p’ = Zp%pfs. (6.27)
s
= Az (0in), (6.28)

where pj, = ®]];’:1 P is the initial state comparised of N two-qubit entangled states, and
A is the channel induced by non-postselected swapping with 22.
We now present a generalisation of Corollary 6.2 for swap-and-correct protocols.

Theorem 6.1 (Exactness of Bell-diagonal approximation). Let 22 be a swap-and-correct
protocol for repeater chains with N initial states. Let pin = ®Ik\':1pk denote the N initial
two-qubit states. Let Ag be the channel induced by non-postselected swapping with 2.
Let %N denote the Bell-diagonal twirling of states 1,... N, such that

B (pin) = ®F_; B (k) (6.29)
is the Bell-diagonal approximation of the initial states. Then,
B (A (pin)) = Az (B (pin))- (6.30)
Moreover, the above quantity is independent of the swap-and-correct protocol 2, i.e.
B (A (pin)) = Aseq (BN (Pin)) (6.31)

where seq is the protocol where standard teleportation is applied sequentially on each
repeater.

Proof. See Appendix 6.7.1. O

We see from Theorem 6.1 that for non-postselected swapping with any swap-and-
correct protocol, the Bell-diagonal approximation is exact for the computation of the
Bell-diagonal components of the end-to-end state. As for sequential swapping, one may
then simply recursively apply the map (6.20) N — 1 times to compute the end-to-end
state.

We now turn to study the Werner approximation. With the following results, we
quantify the error incurred by using the Werner approximation to compute the end-to-
end fidelity in a repeater chain.

Lemma 6.4. Consider applying the (non-postselected or postselected) sequential swap-
ping protocol to a repeater chain with N Bell-diagonal states ®§CV:133(pk), where Fy =
(Wool px [¥Poo) is the fidelity of the k-th initial state. Let F' = (¥ool p’ [Woo) be the fidelity of
the end-to-end state p’. Then,

=

N ;1 1
[[FcsF =-[]@FR-D+-. (6.32)
k=1 2 2

k=1
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Proof. See Appendix 6.7.1. O

One may combine Lemma 6.4 and Theorem 6.1 to obtain the following result for
when swapping of N general two-qubit states.
Corollary 6.4. Let &2 be a swap-and-correct protocol for repeater chains with N initial
states. Let pin = ®2’:1 Pk denote the N initial two-qubit states, where py. has fidelity Fy. Let
Ag be the channel induced by non-postselected swapping with 2. Then, the end-to-end

fidelity after non-postselected swapping with & satisfies

N 1N 1
[T Fx = (Yool Az (pin) W0 < = [[ CFr -1 + =. (6.33)
k=1 20 2

We make the following remarks. The upper bound from (6.33) is tight: for example,
this is saturated when the twirled initial states are of the form %(py) = (Fi,1 — F,0,0).
From (6.20), it can be seen that swapping two Bell-diagonal states of rank two (in the
same subspace) outputs another Bell-diagonal state of rank two, in the identical sub-
space. Given that the rank-two ansatz is preserved, one may find a simple rule for the
fidelity decay after a swap: the parameter x := 2F — 1 evolves multiplicatively under
swapping as x' = x1xp, which is analogous to the evolution of the Werner parameter
as we saw in (6.25). We therefore see that the upper bound is tight. The lower bound is
tight for N = 2. For example, this is saturated when 28(p;) = (F;,1— F;,0,0) and %(p») =
(F2,0,1— F,,0). We do not believe that the lower bound is tight for N > 2, but we leave
further investigation of this to future work.

Theorem 6.2 (Accuracy of Werner approximation). LetZ? be a swap-and-correct protocol
for repeater chains with N initial states. Let pi, = ®1,;’:1 pi denote the N initial two-qubit
states. Let A be the map induced by non-postselected swapping with 2. Let

F' = (Yool Az (pin) [¥00) (6.34)

be the true end-to-end fidelity and F,, be the end-to-end fidelity with the Werner approx-
imation. Let Fy, be the fidelity of pi. Ifex = 1— Fi. <e€ forall k, then

N
F'-Fyl=<|(, e +0(N%e%). (6.35)
In particular, if Ne < 1, then
F'=F,. (6.36)
Proof. See Appendix 6.7.1. O

We note that if we do not have Ne « 1, we do not expect the Werner approximation
to be accurate: for example, swapping N identical Werner states with fidelity F results in
a Werner state with fidelity

F _3(4F—1)N+1 6.37)
out—4 3 4r .

which with F fixed goes to % as N — oo. By contrast, for identical initial states the lower
and upper bounds in (6.32) go to 0 and % respectively.
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6.4. POSTSELECTED SWAPPING

6.4.1. PARAMETERISATION OF INITIAL STATES

In the previous section, we studied the accuracy of twirled approximations for non-
postselected swapping. We now study the accuracy of approximations for postselected
swapping, for repeater chains with N = 2 initial states. Specifically, we address the fol-
lowing question: how large (or small) can the fidelity of the outcome state become, posts-
elected on a specific BSM outcome? We will see that for certain initial states, after a post-
selected swap, the end-to-end state can exhibit a large variation in fidelity from what is
obtained with a twirled approximation.

To illustrate the potential effect of postselecting on the BSM outcome, we consider an
example that was introduced in [179]. Consider swapping the initial states |¥g)}(¥q|®2,
where

[¥g) = cos(0)[00) +sin(f) [11) (6.38)

with the standard swapping protocol (Definition 6.2). This state has fidelity to [¥oo)
given by
7
| (WoolWe)|* = cos?(@ - n (6.39)

which can take any value between 0 and 1, depending on the value of 8. The possible
outcomes for the end-to-end state after the swap are

|Woo), with prob. 2sin?(0) cos?(6),
1
o (cos?(0) 100) +sin®(9) [11)), (6.40)

with prob. C? = cos*(6) +sin*(6).

In the above, the first outcome occurs when obtaining a measurement outcome cor-
responding to the odd-parity Bell states |‘{’1 j)» and the second outcome occurs when
obtaining a measurement outcome corresponding to even-parity Bell states, |W0 i) We
see from the above that for any 0 ¢ {0, 77/2, 7,37 /2}, there is a non-zero probability of ob-
taining an outcome state that is maximally entangled. This is in contrast to calculating
the outcome of a non-postselected swap: the Bell-diagonal approximation of each initial
state is

B(|We)(Wl®?) = F|®* XOF |+ (1 - F)|® XD | (6.41)

where F = cos®(0 — 7). By Corollary 6.2 and Lemma 6.3, the end-to-end fidelity of a non-
postselected swap is F? + (1 — F)?. One may also check that this is the weighted average
of the outcomes in (6.40). We therefore see that for certain states, after a postselected en-
tanglement swap, there is a non-zero probability of obtaining a significantly higher (or
lower) fidelity outcome than the non-postselected case. Recalling Lemma 6.3, this vari-
ation may be attributed to off-Bell-diagonal terms in the initial states (in this example,
[Wo)XPol).

The variation in end-to-end fidelity is useful to characterise because some applica-
tions benefit from further information about the quality of the state. Postselecting on
the Bell-state outcome can make certain tasks feasible: typically quantum applications
are only feasible if on average, the level of noise in the resource state is below a certain
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threshold [147, 207, 4]. Then, if a protocol is carried out by consuming many copies of
the resource state, then by postselecting on certain swap outcomes a protocol can be
made feasible, when for the non-postselected case it may not be. Furthermore, if the
protocol is already feasible in the non-postselected case, knowledge of the full distribu-
tion of end-to-end fidelity can improve performance by making use of postselection. In
Section 6.5.2 we provide an example of this for the case of quantum key distribution.

In the remainder of the section, we will find bounds on the variation in the end-to-
end fidelity after a postselected swap. Specifically, for this problem we consider states of
the form

p=pl¥eX¥ool+(1-p)o, (6.42)

where F = (Wl p[Woo) is the fidelity, o is a density matrix, and necessarily p < F. The
last condition follows from the fact that p and o are density matrices (positive semi-
definite operators with unit trace).

The form (6.42) is relevant for two reasons. Firstly, every state may be written in this
form, which can be interpreted as an ensemble of the pure Bell state (probability p), and
the state o (probability 1 — p). The state o can be interpreted as a noise component,
which is not necessarily orthogonal to | ¥og). The parameters p and F may be computed
efficiently given the state p (see Section 6.4.2), if not just directly deducible by inspection
of the form of p. Then, understanding the limits of the end-to-end fidelity of states of the
form (6.42) has direct applications in a practical scenario. Secondly, fixing the parame-
ter p as well as F is more restrictive than only fixing F, which makes it possible to find
meaningful bounds. In order to formalise this idea, we firstly define the set of states of
interest for fixed p and F.

Definition 6.4. Let F € [0,1] and p < F. We denote

SpF= {p :dos.t.p=p|VYooXWool+(1—-p)o,
(PoolpWoo) =F
o density matrix}. (6.43)

to be the set of all states of the form (6.42).
Proposition 6.2. Let F € [0,1] and p, < p1 < F. Then, Sp, r < Sp, r, but Sp, r € Sp, F-
Proof. See Appendix 6.7.2. O

From Proposition 6.2, we see that increasing p (keeping F fixed) provides a more
restrictive form for the state (6.42). For example, the set Sy r contains all valid two-qubit
states with fidelity F, and the set Sk contains only the states that have o orthogonal to
[WooXWool. The set Sp,1 has only one element, which is [Woo){¥ool.

In the following, we will study the limits of the end-to-end fidelity for states p € Sy, r.
We firstly introduce simplified notation for the end-to-end fidelity, which will be helpful
in the following sections.

Definition 6.5. Consider performing a postselected swap on a pair of two-qubit states
p1®p2. If the BSM outcome i j is obtained, we denote the end-to-end fidelity by F lfj (p1®
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p2), and the probability of this BSM outcome as p’ i (p1®p2). These quantities are written
explicitly as

1
Fj;= e ["Pij><‘Pij|3132 [WiiX¥ijl g a, P18 02 (6.44)
tj
Py =T [Wis X Wijl 4, 0, 019 02] (6.45)
where we refer to Figure 6.2b for a depiction of the qubit registers By, A;, A, and B,.

We now wish to find bounds on the end-to-end fidelity F; It for initial states py € Sp, F.
For clarity, we take the initial states to have the same parameters p and F. We note that
the results from this section also hold for the more general case (px € Sp,, r,), for which
the proofs are carried out in the Appendix.

We firstly show that it is enough to consider just a single BSM outcome.

Proposition 6.3. LetF€[0,1] and p < F, and

where Flfj is the postselected end-to-end fidelity (Definition 6.5). Then, the above quanti-
ties are independent of i and j, or alternatively

Fl{j,max = FéO,max = Fr/nax(p’ F) (6.46)
Fl{j,min = F(;O,min = Fr,nin(p’ F) (6.47)

foralli, j.

Proof. See Appendix 6.7.2. We use the idea that one may always rotate p, by a suitable
Pauli to find a w; € S, such that Flfj (p1®p2) = Fj,(p1 ® w2). O

6.4.2. ANALYTICAL BOUNDS
Here, we use analytical methods to find an exact expression for F),,.(p, F) and a lower
bound for Fr’nin(p, F). In Section 6.4.3, we will find tighter lower bounds on Fl’nin(p,F)
using semidefinite programming (SDP).

To study Fr’nax(p, F) and F' . (p,F) we firstly establish a simplified formula for the

min
end-to-end fidelity Fy,.

Lemma 6.5. Consider performing a postselected swap on a pair of two-qubit states p1 ® p2
such that py € Sp r and

pi=pl¥ooX¥ool + (1 - p)og, (6.48)
where o . is a density matrix, for k = 1,2. Let F; i and p i denote the postselected end-to-
end fidelity and probability (Definition 6.5). Then,

2pF—p? +4(1-p)’p

I
ijoij

Fl;(p18p2) = (6.49)

2p—p*+4(1-p)*p;;
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and

p_p 2
! _F_F _ ~/
pijlp18p2) = = =~ + (1= p)py; (6.50)

where l:"lfj = Flfj (01®07) and ﬁ;.j = p;.j (01®072) are the swap statistics of the noisy compo-
nents (Definition 6.5).

Proof. See Appendix 6.7.2. O

From Lemma 6.5, we see that the swap statistics of states in Sy r may be understood
only in terms of the corresponding swap statistics of the noisy components 0. Lemma
6.5 is used in the proof of Theorem 6.3, where we find an exact expression for Fr’nax( p, F).

Theorem 6.3. Consider performing a postselected swap on a pair of two-qubit states p; ®
p2. Let Fl .« (p, F) be the maximum achievable end-to-end fidelity for py € Sy, with k =
1,2, as defined in (6.46). Then,

Frax(p,F) =1-2p(1-F). 6.51)
In particular, the initial states pgy, satisfy Fy (055, = Finax(p, F), where
Popt = P1¥00XWool + (1= p) [y Xw|, (6.52)

and

lw) = VFWoo) + V1-F|¥1)) (6.53)
with F = (F-p)/(1-p)
Proof. See Appendix 6.7.2. O

We note that the saturating state (6.52) may be interpreted as |W o) having under-
gone a Y-rotation of a specified angle with probability 1 — p. We note that in the more
general case p € Sp, F,, the equality (6.51) instead becomes an upper bound (see Ap-
pendix 6.7.2).

We notice that Theorem 6.3 implies a similar result for the swapping of identical
states. More specifically, for any p € Sy, r it follows that

Fj;(0®)<1-2p(1-F) (6.54)

for any BSM outcome i j.

We see from Theorem 6.3 that F} .. (p,F) is decreasing in p. The decreasing be-
haviour is expected, because from Proposition 6.2, the set S, r shrinks as p increases
and F is fixed. One may tighten the bound (6.54) by finding the largest possible g such
that p € S4, r, which can be achieved by solving the optimisation problem

p*=max q
qa (6.55)
st. p—ql¥eX ¥l =0.
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The problem (6.55) may be solved efficiently using a simple SDP solver, which we provide
in our repository [208]. The tightened bound is then given by

F;(0®)<1-2p*(1-F). (6.56)
A simple demonstration of this procedure is with that of the Werner state (6.7). We
rewrite this as
I
W (p) = pI¥o0) (Fool + (1= ), (6.57)
where p = (4F —1)/3 and F = (Wl o [¥o0). Since I;/4 is a density matrix, it follows that
W (p) € Sp,r. However, we notice that #'(p) may also be rewritten in Bell-diagonal form

with the coefficients as given in (6.24), and therefore py € Sgr. The second case gives
the tighter upper bound for the end-to-end fidelity,

Fi;(# (0)%%) < Fpox(FEF) = 1-2F(1 - F), (6.58)

which can be easily validated with Corollary 6.3.

We make the following further observations about Theorem 6.3. At p = 0, the expres-
sion simplifies to F},,, (0, F) = 1. This is expected, because recalling the state |¥y) from
(6.38), we have Vg Wgl € So,r such that F = cos2(0 — %). Then,

1=Fj; (19X Wg|®?) < Fl o (0, F), (6.59)

which implies the same. If p € SgF, the noisy component o is orthogonal to [Wo){Wool-
In such a case, we see that (6.51) simplifies to

Fj; (0®*) < F, . (EF)=1-2F(1~F) (6.60)
=F*+(1-F)>? (6.61)
= Fj;(0R3)- (6.62)

where pgy is any Bell-diagonal state of rank two with fidelity F. In the final step, we
have recalled the formula for the postselected swapping of Bell-diagonal states from
Lemma 6.3. In particular, the state prs € Spr provides optimal end-to-end fidelity for
initial states in SgF.

Now that we have characterised F},.,(p, F), we turn to studying F, . (p,F). In the
following Proposition, we derive an analytical lower bound for this quantity.

Proposition 6.4. Let F| . (p,F) be the minimum end-to-end fidelity for p. € Sy r, as de-
fined in (6.47). Then,
p2E—p)

Flin(pF) = .
mln(p )= 1+(1_p)2

(6.63)

Proof. See Appendix 6.7.2. O
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6.4.3. LOWER BOUND WITH SDP
Unlike the upper bound in Theorem 6.3, the lower bound (6.63) is not tight. In this

section, we find a tighter lower bound for F/ . (p, F) using semi-definite programming

(SDP).
Recalling its definition in (6.47), Fr’nin( p, F) is the solution to the optimisation prob-
lem ,
i F..(01®
Prlr‘g%z ij (P12 P2)
S.t. Tr [ W00 (Yool Pk] =F (6.64)

Tr[pe] =1,

Pk — p|\1’00>(\1’00| >0, for k= 1,2.
Here, the constraints ensure that we are optimising over py € Sy, r. The first constraint
enforces py has fixed fidelity F, and the final two constraints ensure that the noisy com-
ponent o is a valid density matrix. Recalling from Lemma 6.5 the formula for swapping
two noisy states, (6.64) may be written as

2pF-p*+4(1-p)*- ply- Eyp

min 5 A
018902 2p—p~+4(1-p2)- Py,
st. p+A-p)Tr[|¥e0) (Yoolok] =F (6.65)
Trlo]l =1,

0 =0, fork=1,2.

To obtain (6.65), we have reparameterised the problem to optimise over the noisy com-
ponents Of. The quantities
F lf]. = Flfj (01 ®02) and ﬁ;.j = p;.j(ol ® 0) are the corresponding swap statistics when
only swapping the noisy components .

The domain in (6.65) is the set of product states o) ® 02, where o is a two-qubit den-
sity matrix. The domain is non-convex. Moreover, the objective function is rational, and
not manifestly convex. These two details make (6.65) difficult to approach using numer-
ical methods. We will therefore perform a relaxation of the domain, which transforms
this the problem into one that is solvable with SDP. SDP is a commonly-used technique
in quantum information [209]. The SDP formulation opens up the possibility of using
several well-studied and efficient solvers, and moreover has an important feature that,
under certain conditions, the solver converges to a global optimum.

In order to study (6.65) with SDP, we perform two steps. Firstly, we linearise the ob-
jective function. Since the objective function of (6.65) is rational, we fix its denominator
and introduce the new constraint

2

p p ~
5= =" +0-p’ Py
p_p
=5 =+ =P Te[1%00) (Foola 4, 018 02 (6.66)

For conciseness, we rewrite the above as

Tr [ |Wo0) (Poola, 4,01 ® 02] =8(p,8) (6.67)
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where
46 -2p+p?

4(1-p)?
Recalling Lemma 6.5, this is fixing the total probability to be §. Since p is fixed, § and &

are interchangeable via the linear relation (6.68).
Similarly, we rewrite both fidelity constraints as

5(p,8) = (6.68)

Tr[1W00) (Poola, 4, 0k ] = F, (6.69)
where
Fppy= 2P (6.70)
p,F)= = .

is the fidelity of the noisy component. Moreover, given that ¢ is fixed, we notice that the
objective function is given by

1

15 (BPF =" +401=p)*- P Fyo),

and so it suffices to optimise over
PooFoo=Tr[1¥00) (¥ool 5, 8, P00} (Yool a, 4, 01®072] (6.71)

which is a linear function of o) ® g,. With our constraints and objective function refor-
mulated as (6.67), (6.69) and (6.71), we are now interested in the solution to

min  Tr[|Woo) (Yool 8, I W00) (Yool a, 4, 01 ® 02]

0180
s.t. Tr[[Woo) (Wool a, 4, 01 ® 03] =6(p,0),
Tr[1Woo) (Yool a5, Ok) = Fp, P, (6.72)
Trlokl =1,

0r=0, fork=1,2.
Letting H* (p, F,§) be the solution to (6.72), we have quantity

2

Fr,nin(Ep):Hgn% %—%HI—MZH*(nF,ﬁ) : (6.73)
As well as linearising the objective function, fixing 6 allows one to study the rate-fidelity
trade-off in the entanglement swapping protocol. This is useful because, in the perfor-
mance analysis of quantum networks, it is important to understand both fidelity metrics
and rate metrics in entanglement distribution protocols. For example, if a state provides
a high fidelity with an excessively low probability of success, then this may no longer be
very useful or relevant. Notice that the definitions of F\,,(p, F) and F, , (p, F) in (6.46)
and (6.47) are currently agnostic to the probability of obtaining the BSM outcome with
minimum and maximum fidelity. Fixing the swap probability is a mechanism to study
this: with such a constraint, for a given probability 6 of a given swap outcome, one may

study the limits of the fidelity. The same study was carried out in [53], where the authors
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use SDP to study the maximum fidelity that can be achieved with practical purification
protocols, given a fixed success probability of purification. In Appendix 6.7.4, we provide
further discussion and analysis of the rate-fidelity trade-off.

Recalling that the domain over which we optimise in (6.72) is not convex (product
states), we perform a relaxation of the domain. In particular, we use

01®03 € SEP c PPT, (6.74)

where SEP is the set of separable states, and PPT is the set of four-qubit states that are still
positive after taking the partial transpose with respect to the registers A, and B, [102].
Relaxing the domain of (6.72) results in the following:

min Tr[1W00X Yool 5, B, [P00XWoola, 4, O]
st. Tr[1PooXWoola, 4, 0] = 5(p,d),
Tr[ WooX(Wools, 4, 0] = F(p, F),

Tr[[Wo0XWoolp, 4, 0] = F(p, F),
Trlo] =1,

(6.75)

=0, ol =0.

where M denotes taking the partial transpose of M on the registers A, and B,. The
optimisation problem (6.75) may now be solved with SDP. One may greatly reduce the
number of parameters in the optimisation by using the fact that the objective function
and all constraints are invariant under the application of correlated unitaries. See Ap-
pendix 6.7.3 for the full details of the symmetrisation procedure. After symmetrisation,
the number of free parameters in the optimisation is reduced from 256 to fewer than 48.
Letting H:;l( p, F,6) be the solution to (6.75), by the relaxation (6.74) it follows that

H"(p,E6) = Hy,(p, F ). (6.76)
Recalling (6.73), F; , is then bounded below by
. 1(F 2 .
Fin(po P zmin= | =L = Fo v - p)? 1, (. E), 6.77)

where the optimisation is performed in the feasible region of § (see Appendix 6.7.3 for
the calculation of the feasible region). After symmetrisation of (6.75), since the numeri-
cal optimisation over 6 is over a single parameter in a bounded domain, (6.77) is efficient
to compute (on the order of a few seconds).

6.5. DISCUSSION

6.5.1. BOUNDS COMPARISON
Here, we illustrate the results from Sections 6.3 and 6.4 with examples. In particular, we
will see how the parameters p and F affect the accuracy of twirled approximations.

For fixed fidelity F, plotted in Figures 6.3a and 6.3b is F},,.(p, F) as found in Theo-
rem 6.3, and the lower bounds for Fr’nin(p, F). In Figure 6.4, p = 0 is fixed, and the same
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Figure 6.3: Bounds for the end-to-end fidelity when swapping states p1 ® p> with

Pk =pl¥ooXWool+ (1 - p)oy, for p € [0, F] (pi € So,F for k = 1,2), with (a) F = 0.75 and (b) F = 0.9. The black
solid line is the tight upper bound on the postselected end-to-end fidelity, Fly,, (p, F). The red dashed line is
the analytical lower bound on the postselected end-to-end fidelity, F| I'n in (P, F). The black dotted line is the
SDP lower bound for Fl’mn(p, F), given in (6.77). With the Bell-diagonal approximation, the end-to-end
fidelity Ff% will lie in the grey region. With the Werner approximation, the end-to-end fidelity F7’{/ will lie on
the blue line. The plot is made for 100 values p uniformly spaced within this interval.

quantities are plotted. In all cases we have tested, the SDP lower bound for FI’nin( p,F)is
tighter than the analytical lower bound. The grey region is where the end-to-end fidelity
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will lie if the Bell-diagonal approximation is used for the initial states. In particular, the
grey region [F?, F? + (1 — F)?] is the region between the best and worst end-to-end fidelity
for Bell-diagonal states of fidelity F, from Lemma 6.4. The grey region depends only on
F, and hence is constant in Figures 6.3a and 6.3b. By Theorem 6.1, the grey region is also
where the end-to-end fidelity will lie after a non-postselected swap.

In Theorem 6.2, we saw that for 1 — F < 1/N, the Werner approximation is accurate
for non-postselected swapping. Then, given that N = 2 is fixed in Figure 6.4, for large F
the Bell-diagonal region is concentrated tightly around the Werner line.

In Figure 6.4, because p = 0 is fixed, the maximum end-to-end fidelity is constant at
F{nax(O, F) =1. This is expected from the discussion at the beginning of Section 6.4 where
we saw that, when only fixing the fidelity of the input states, one may always find states
that swap to unit fidelity. As well as the lower bounds for FI’nin (0, F), we have plotted the
lowest-fidelity outcome of the state |1//> that was given in (6.53) as an example of a state
giving output fidelity F},.(p, F). The state |u/> provides very good postselected swap
statistics for the output fidelity of certain BSM outcomes. Since the end-to-end fidelity
for a non-postselected swap must lie within the grey region and this is the weighted av-
erage of the postselected outcomes (Corllary 6.2), the low-fidelity outcomes lie signifi-
cantly below the grey region. In particular, the state |w> can also give an exceptionally
low end-to-end fidelity. We plot this line in order to give an upper bound for the tightness
of the SDP lower bound for F| . (p, F).

In Figures 6.3a and 6.3b, we see that for p = F, F],,, meets the upper limit of the
grey region. The reason is what was seen in (6.62): when the noisy component oy is
orthogonal to [W(), any rank-two Bell-diagonal state pgs provides an optimal end-to-
end fidelity, but also lies in the grey region due to being Bell-diagonal. We outline the
practical relevance in the following way. Let consider swapping the initial states p; ®
p2 with py € Sgr. Let F, (F),) denote the end-to-end fidelity with the Bell-diagonal
(Werner) approximation, such that

Fly = F},(B(p1) ® B(p2)), (6.78)
Ejy = Fj,W (p1) ® ¥ (p2)). (6.79)

Let (i j)* denote the highest-fidelity BSM outcome after swapping p; ® p2, such that

Fl;+(p1® p2) =maxF; (01 ® pa). (6.80)
(ij) ij J

Then, the corresponding output fidelity necessarily satisfies F(’ i)+ (01 ® p2) = Fyy, since
by Corollary 6.2,
Fg =3 pi;Fij. (6.81)
ij

Recalling from Lemma 6.4 that F, > F 2 the maximum deviation above the Bell-diagonal

approximation is bounded as

F;jy(01® p2) = Fig < Fpyo (F F) = F? (6.82)
=(1-F> (6.83)
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Recalling from Corollary 6.3 that F), = F+ (1 - F)?/3, the maximum deviation above the
Werner approximation is therefore

Flij+(01®p2) = F)y < F (EF) = F, (6.84)
2 2
=30-F" (6.85)

Then, by (6.83) and (6.85) we see that for large F, a large deviation above the twirled
approximation is not possible when the input states py € Sgr have an orthogonal com-
ponent, i.e.

Fiij-(p1®p2) = Fg (6.86)
Fiijy-(p1®p2) = Fy. (6.87)

For example, consider swapping the initial states p;’f with
PR =p|W¥ooXWool + (1 - p)[01)01], (6.88)

which in some contexts is referred to as the R state. Up to alocal unitary rotation, such a
state closely approximates states generated in certain physical entanglement generation
schemes [127, 23]. It has an orthogonal, non-Bell-diagonal noisy component |01){01].
We see from our analysis that, for large F (p), twirled approximations will not cause a
large decrease in end-to-end fidelity because of the orthogonal noisy component.
As another example of a direct application of our bounds, let us consider the S state
(531,
ps=pI¥ooX¥ool +(1—p)[11X11]. (6.89)
The state ps has a non-orthogonal noisy component |[11){11], with fidelity | (¥oo|11) 2=

1/2. By direct inspection of ps, we see that ps € Sy, r, where F = (1 + p)/2. By Theorem
6.3,

1+
Fl (03 = Fr’w(p, Tp) (6.90)
=1-2p(1-(1+p)/2) 6.91)
=1-pP+p. (6.92)
Moreover, we have
1 2 1
F;szzz(ﬂ) =p+-01-p)? (6.93)
2 4
and
/ » 1=-F)?°
Fj,=F*+ 3 (6.94)
1 2 N2
- (ﬂ) + (1—”) (6.95)
2 2

1 2
=p+ 5(1—19) . (6.96)
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Figure 6.4: Bounds for the end-to-end fidelity when swapping states p; ® p» with initial fidelity F € [0.5,1]
(o € So,r for k =1,2). The black solid line is the tight upper bound on the postselected end-to-end fidelity,
Fr’nax (0, F). The red dashed line is the analytical lower bound for the postselected end-to-end fidelity,

F I’n in (0, F). The black dotted line is the SDP lower bound for FI’Ilin (0, F). The purple dot-dash line is the
lowest-fidelity outcome of |u/>, as defined in (6.53) with p = 0. With the Bell-diagonal approximation, the
end-to-end fidelity F, {;5 will lie in the grey region. With the Werner approximation, the end-to-end fidelity F;V
will lie on the blue line. The plot is made for 100 values of F uniformly spaced within the interval.

Therefore, combining (6.92), (6.93) and (6.96), we see that the maximum deviation above
the Bell-diagonal (Werner) approximations when swapping the initial states p?z isbounded
above by

1+p 3(1-p)?
1+ (1-p)?
F{nax(p,Tp)—F;/ - Tp. 6.98)

Consequently, for large p (equivalently, large F), we conclude that twirled approxima-
tions do not cause large inaccuracies in estimating the output fidelity when the initial
states are p§2.

We note that one may also perform a similar study for the deviation below the twirled
approximations by computing the difference with the analytical or SDP lower bounds for
Fpin(P.F).

6.5.2. EXAMPLE: QUANTUM KEY DISTRIBUTION

We now carry out a numerical study of the accuracy of twirled state approximations
when quantum key distribution (QKD) is performed. It has been shown previously that
postselecting on the syndrome when using error correction in a repeater chain can give
an advantage [210, 211, 212]. Here, we extend these results by pointing out that an ad-
vantage can also be obtained in the absence of error correction by postselecting on the



6.5. DISCUSSION 217

N0 approximation (postsel.)
0.6 ====BD approximation (non-postsel.)| |
: \ = \Nerner approximation
\
w 0.4 * .
Y
N \
0.2t \ =]
\ -~
N
0.0 L. . . = — - — i
1 2 3 4 5 6 7
N, number of initial states
(@)
061" = N0 approximation (postsel.) ]
: \ ==BD approximation (non-postsel.)
= \\lerner approximation
0.5 ¢ 1
0.4} ]
L
v
n 03¢ i
0.2+ i
0.1t i
0.0t, , |
1 6 7
N, number of initial states
(b)

Figure 6.5: Secret-key fraction when performing quantum key distribution over a repeater chain with N
initial states p®N when (a) p = popt with F =0.95 and p = 0.5 from (6.52), and (b) p = pg from (6.88) with
fidelity F = 0.95. The black line is the secret-key fraction of the postselected protocol, the grey dashed line is
the secret-key fraction when the Bell-diagonal approximation is used for the initial states @(p)mv (or
equivalently, the secret-key fraction that is obtained with the non-postselected protocol), and the blue
dot-da}svhed line is the secret-key fraction when the Werner approximation is used for the initial states

W (p)®".

swap outcomes, and moreover that this advantage is the exact loss in performance when
using the Bell-diagonal approximation.
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Let us consider performing QKD over the end-to-end state of a repeater chain that
initially has N identical two-qubit states, p®. We assume that entanglement swapping
is performed with the correct-at-end protocol, where all BSMs may be performed simul-
taneously and a single Pauli correction is performed at one of the end nodes. Recalling
Definition 6.3, this is a swap-and-correct protocol, and we denote it as &2. Let § be the
swap syndrome, which holds the information of the N — 1 swap outcomes. We let p’g be
the final two-qubit state held by the end nodes, postselected on the syndrome being s,
and p’§ the probability of measuring s. The end nodes use the resulting end-to-end states
to perform the BBM92 protocol for QKD [104], which is also known as entanglement-
based BB84 [204]. The quantum bit error rate (QBER) of this protocol in the X (Z) basis
is the probability that when both end nodes measure their state in the X (Z) basis, they
obtain different outcomes. In the protocol, the end nodes randomly perform such mea-
surements and then use their outcomes to distil a secret key between them. The number
of secret bits that can be obtained per measurement of a state o in the asymptotic limit
is the secret-key fraction, which is given by [213]

SKF(0) = max(0,1 - h(Qx (0)) — h(Qz(0))), (6.99)

where h(x) = —xlog,(x) — (1 - x)log, (1 —x) is the binary entropy function and Qx (o) and
Qz (o) are the QBER of the state ¢ in the X and Z basis respectively. While the secret-
key fraction is one in the perfect case when both QBERs are zero, it will become zero
when the error rates are too large. We note that, the two Pauli bases used throughout
the protocol (in this case X and Z) may be chosen from the Pauli bases. For example,
if the X and Y bases are chosen instead, then the secret-key fraction (6.99) will instead
depend on the QBER in the Y-basis, Qy (o). The secret-key fraction is invariant under
the Bell-diagonal approximation,

SKF(0) = SKF(4(0)). (6.100)
For a proof of this, we refer to Appendix 6.7.5. Let A;; be the Bell-diagonal elements of o,

such that

1
Bo)=Y Aij| Wi X¥ijl. (6.101)
i,j=0

Then, the QBER in each measurement basis is given by

Qx(0) =201 + A1 (6.102)
Qy(0) =10+ o1 (6.103)
Qz(0) = A1 + A11. (6.104)

Given our setup, we compare two different ways in which the end nodes can distil a
secret key. The first option is to process measurement outcomes without keeping track
of the syndrome. We call this the non-postselected protocol, and has secret-key fraction
SKF(p'), where
' =3 Pips= Az (p®), (6.105)
N



6.5. DISCUSSION 219

and A (p®") is the channel induced by non-postselected swapping with 2. By (6.100)
and Theorem 6.1, we have

SKF(p") = SKF(%(p") = SKF(py,), (6.106)

where pl, is the output state with the Bell-diagonal approximation. In particular, the
secret-key fraction with the non-postselected protocol is exactly what is obtained with
the Bell-diagonal approximation.

The second option for the distillation of secret key is to divide all measurement out-
comes into different blocks based on their corresponding syndromes and process each
block separately. We call this the postselected protocol and write its secret-key fraction as
SKFcon. It can be calculated as

2_ P SKF(p}). (6.107)
N

Because the SKF function is convex within the domain where it is nonzero, we have

Z p% SKF(p’) = SKF(p"). (6.108)
N

We consider two types of initial states: firstly, we consider the state popt from (6.52)
that achieves the highest end-to-end fidelity. Secondly, we consider the R state pr from
(6.88). The QKD measurement basis for each state was the one found to provide maxi-
mum secret-key fraction. The results can be seen in Figure 6.5. We see from Figure 6.5a
that, when the initial states are p%\t’ , the Bell-diagonal approximation (equivalently, the
non-postselected protocol) causes a significant reduction in the secret-key fraction, es-
pecially for repeater chains with a larger number of initial states N. By contrast, from
Figure 6.5b we see that when the initial states are pﬁN , the Bell-diagonal approxima-
tion (non-postselected protocol) causes a negligible reduction in the resulting secret-key
fraction. This behaviour reflects the discussion in Section 6.5.1, where we saw that there
is not a significant difference in end-to-end fidelity from the Bell-diagonal approxima-
tion when swapping pﬁz (see (6.86)). This is in contrast to swapping pggt, which admits
the greatest possible variation in end-to-end fidelity above the Bell-diagonal approxima-
tion.

We see in Figure 6.5a that the secret-key fraction is reduced drastically when the
Werner approximation is used for the initial states W(popt)®N , and we see that the length
of the chain over which it is possible to distil key is limited to N = 3 initial states. By con-
trast, with the Bell-diagonal approximation, one can distil key for any length of chain.
The reason for this is as follows: we note that 9 (popt) = F Voo Wool+(1—F) [¥11X¥ 111 is
a rank-two Bell-diagonal state. Then, recalling Lemma 6.4 and surrounding discussion,
the resulting state ngt after non-postselected swapping p?é\t’ has Bell-diagonal compo-
nents

%(’ )— 1+1(2F—1)N [WooX(Wool + 1—1(219—1)N W1 (P11l (6.109)
Popt| = 575 00/4*' 00 5 o ISAC SN .
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By (6.102)-(6.104), the resulting QBER in each basis is then

/ 11 N
Qx(php) = 5 = 52F=D) (6.110)
Qy (Pop) =0 (6.111)
, L1 N
Qz(pbp) = 5 = 5 @F D™, (6.112)

Choosing to measure in the X and Y bases then provides the highest secret-key fraction,
given by

11
SKF (pf)pt) =1- h(E - S(@F- 1)N) (6.113)
> l—h(%) =0. (6.114)

In particular, the fact that 9(pop¢) is of rank two means that the secret-key fraction is
greater than zero for any number of initial states N in the chain. By contrast, with the
Werner approximation for the initial states W(popt)m’ , by Corollary 6.3 the end-to-end
state p’,, is also Werner with fidelity given in (6.37). The corresponding QBER for each
basis is then

Qx(py) = Qv (py) = Qz(p))

1 1(4F—1)N
=——=— . (6.115)
2 2 3
We therefore see that
) 1 1(4F-1\N
SKF(pW)zmaX 0,1-2h 5—5 T , (6.116)

which will eventually decrease to zero as N increases. Since in Figure 6.5b, the initial
states pp are each set to have the same fidelity (Wool pr |'Wo0) = (Wool popt |00 = 0.95,
we have # (pr) = # (popt), and the Werner approximation gives the same result in both
cases.

When the initial states are instead R states pﬁN , in contrast to the case of the optimal
states, the secret-key fraction with the Bell-diagonal approximation will eventually reach
zero. This is because the Bell-diagonal approximation of an R state is given by

1 1
B(pr) = F|¥YooXWool + 5(1 —F)[¥10XW¥10l + E(l -F) Y1 X¥Yul,

and this has rank three. From the map (6.20), it can be seen that swapping identical rank-
three Bell-diagonal states results in a rank-four state. Therefore, the non-postselected
outcome of swapping the states pﬁN will result in an end-to-end state p’, such that
AB(p') has rank four. In particular, the secret-key fraction will eventually decrease to
zero as the number of swaps N increases, unlike the behaviour we saw for Popt in (6.114),
where the secret-key fraction was always positive since the end-to-end state was always
within the rank-two subspace.
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6.6. CONCLUSION

We have seen that, for non-postselected swapping, using twirled approximations in a re-
peater chain can be exact or highly accurate in certain important scenarios. In particular,
the Bell-diagonal approximation is exact for evaluating the Bell-diagonal components
of the end-to-end state, and in many scenarios, non-postselected swapping and Bell-
diagonal twirling are therefore equivalent. Moreover, for non-postselected swapping
the Werner approximation is accurate in a high-fidelity regime compared to the num-
ber of initial states in the chain. The disadvantages of twirled approximations mostly
arise when postselecting on the BSM measurement outcome. For postselected swap-
ping, we have presented bounds on the end-to-end fidelity, given a general noisy form
for the initial states when there are N = 2 initial states in the chain. With an example
of evaluating the secret-key fraction when performing QKD, we demonstrated how the
insights from our work may be used to determine whether the twirled approximation is
accurate in a given scenario.

6.7. APPENDIX

6.7.1. NON-POSTSELECTED SWAPPING

REPEATER CHAINS WITH N =2

Proof of Corollary 6.1. Let the Bell-diagonal elements of p be given by 1;;, as in (6.1).
Then, by (6.14), we have

AN 0)=4(Pooloc® B(pap) Poo)ca (6.117)
1
=4 ) Lij(Pooloc®|¥iiX¥ij] 45 oo (6.118)
i,j=0
1 . . . .
=Y VX' ZloXx 'z, (6.119)
i,j=0

where in the final step we have used

(Pooloc® |¥iiXWij| 15Poodca
= (X' ZNp (Wooloc ® Woo)XWool asl Voo ca (X' Z9)1,, (6.120)

and the noticed that
1 . . o
(Wooloc® Yoo Wool agWoodca = ZXIZJU(XIZJ)T

is the (non-normalised) result after the perfect teleportation of o¢. O

Proof of Lemma 6.3. In this proof, we make use of the flip-flop trick, which is that for any
linear operator M, we have

MI|Wo) =TI M W) . (6.121)

This is also known as the flip-flop trick.




222 6. ON THE ACCURACY OF TWIRLED APPROXIMATIONS IN REPEATER CHAINS

Suppose that in the entanglement swap, the BSM outcome is mn. The output state
is then given by

! Lmn
==, 6.122
P = B L] (©.122)
where
Linn = (Z"X™) g, (¥ i B(01) ® B2 ¥ 1) p, 2, (X Z™M) g, (6.123)

We now compute L,,,,. We firstly consider the impact of each diagonal element:

(ZnXm)Bz <“Pmn|A1A2 [|\Pi1j] >BIA1 ® |‘Pi2j2>Ang]
= (ool 4, (Z"X™) gy [ (X Z00) 1, (X2 22) 4, (2™ X"™) 3, W0, 4, © 1 Wo0) 1,5 |
£ (ZnX" Z R XX 2" X1 Z1) 5, (Yool 4, 4, [ 1007, 4, ©1Wo0) 1,5 |

b L o 1
:il'(X2m+ll+1222n+]1+]2)B = [Woo) 5,5,

y 2

c 1
:(il).El\ljil+i2’j1+j2>BlBg’ (6.124)
where the addition in the subscript is modulo 2. In step (a), we have made use of the

flip-flop trick multiple times to move all Pauli operators onto register B,. In step (b), we
have used the fact that

1
(Yool a, 4, [|‘1’00>31A1 ® |‘P00>AZBZ] =3 [Wo0) B, B, (6.125)

and that reordering Pauli operators may sometimes incur a factor of —1. In step (c), we
have used the definition (6.4) of the Bell basis. Relabelling the eigenvalues as 2(p;) =
YijAij|WijX¥ij|and Bp1) = X pij |¥ij X(¥ij|, from (6.123) we see that Ly, is given
by
) Z ) Aililruizszan (Wmnla, a, [|\Iji1j1 ><\Pi1]'1 |BlA1 ® |q1i2}'2 ><\Pi2]2‘A232] [¥'mn) 4,8, x"zm
LJj1t2,J2
1
2
= 2 Aujibtipie GD® L [Pirip ey XV irwii+ ko gy,
iLjui2, j2

and so

o
=Pmn>

o
I
o

Tr Lyl = Z /11'1]'1/41'2]'2 :

i1,J1,42,j2

due to normalisation of the initial states. In the above, p),,, is the probability of obtaining
outcome mn in the BSM. From (6.122), we therefore see that the full swap outcome after
measuring mn is

! — .. PR . . . . . . . .
PpB = . Z . /111]1”12]2 i‘{"11+12'11+]2><\Pll+12:]1+]2|3132'
i, J112, ]2
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In particular, this is Bell-diagonal and independent of the measurement outcome. In the
four-vector notation from (6.18), for Z(p1) = (Ag,...,A3)" and B(p2) = (ug,...,u3)T, the

end-to-end state is p},,, = (4, ,...,Ag)T, where
Ay Aopo + Ay + Az o + Az s
Al Aopts + Ao + Aoz + A
,1 _ op1+ Arfo T A2H3 T Asfz ) _ pf@. (6.126)
A, Aopiz + Aot + A3y + A1 3
Ay Aops + Azpio + A1z + A2 iy
O

NON-POSTSELECTED SWAPPING ON REPEATER CHAINS WITH N > 2

Definition 6.6 (Swap-and-correct protocol, technical). For alength-N repeater chain, a
swap-and-correct protocol 2 dictates where to apply Pauli corrections. Given the N —1
BSM outcomes that form the syndrome 5, &2 is a map

@ ALX, Z, X2V 1, X, 7, X 73V (6.127)

such that 2 (3) is the correction applied to node k, given the syndrome §. The syndrome
is denoted such that s; = X" Z" means that outcome |¥,,,,) was measured on node i.
Moreover, & satisfies the following two properties:

(A) 2 is physically implementable. For any swap-and-correct protocol 22, there ex-
ists an associated permutation @ € Sym(/N — 1) in which the N —1 BSMs are carried
out, where Sym denotes the symmetric group. For & to be physical, then before
the kth BSM, the correction %) must only depend on outcomes of BSMs that
have already been carried out, which are given by («(1),...,a(k—1)).

(B) £ is correct. For any syndrome §, & transforms [WooXPool®Y into ¥ o)W ool.
By the assumption (A), we slightly abuse notation to write Py k) (Sa(1),---» Sa(k-1)) =
Py (3). Note that the first correction, 2, (1), is independent of s.

In particular, given a swap-and-correct protocol 22, it may be executed as follows.
Given syndrome s,

(1) Apply correction %, (1) = P,1)(S) to node a(1). Apply BSM at node a(1) to get
outcome Sq(1).

(2) Apply correction Py (2 (Sa(1)) = Pa(2)(S) to node a(2). Apply BSM at node a(2) to
get outcome Sg(2).

(N-1) Apply correction Zyn-1)(Sq(1);---» Sa(\)) = Pav-1)(5) to node a(N—-1). Apply BSM
atnode a(N — 1) to get outcome Sg(n-1).

(N) Apply corrections 2 (5) and 2y (3) to nodes 0 and N.




224 6. ON THE ACCURACY OF TWIRLED APPROXIMATIONS IN REPEATER CHAINS

We note that in principle, corrections may be applied at any point in the protocol up to
the BSM on that node. Similarly, corrections may be applied at the end nodes at any
point in the protocol. However, both strategies are captured by the above formalism
by simply combining all corrections and applying them just before the BSM (for the re-
peater nodes), and after all BSMs (for the end nodes).

In the following, we consider swap-and-correct protocols 2. As discussed above, we
note that such a protocol consists of Bell-state measurement

For the end nodes, which have indices 0 and N, there is only one qubit that this
can be applied to. However, the repeater nodes 1,... N — 1 each hold two qubits, and so
there is a choice of which qubit to apply the correction. We now claim that applying the
correction to either qubit will give the same result.

Let the qubit registers in the kth node be denoted as k; and k. Given a swap-and-
correct protocol with associated permutation a € Sym, the correction at that node is
P11 (3). Directly afterwards, the BSM on node k will be applied. Suppose that the cor-
rection is applied to register ki, and the BSM outcome is s € A (recalling from Definition
6.6 that we use of A to denote the result of the BSM). Letting ¢ = &1, (3) € A denote
the correction, the resulting projection on the total state p of the chain is then

Tri, i, | Sko Yoo XWoolk, &, SLZ CkIPCZI] = Try, k, [3k2 Cky W00\ Woolk, ky CLZ SLZP] (6.128)
= Trg k, [Ckz Sk 1P 00X Wool ik, k, SLZ CLZP] (6.129)
STk, b, [st, 1Wo0X ool b, 5, CopCl, | (6:130)

where we have (i) used cyclicity of the trace and the flip-flop trick (6.121), (ii) used the
fact that sc = +cs for ¢,s € A, and (iii) used cyclicity of the trace and s = +s, for s €
A. In particular, we notice that (6.130) corresponds to applying the Pauli correction to
register kp. We therefore see that, as long as a BSM is applied after the correction, it does
not matter to which qubit the correction is applied. The same holds for Pauli operators
arising from Bell-diagonal twirling (see Definition 6.9).

Definition 6.7. For a unitary U we denote the corresponding channel as
U(p)=UpU". (6.131)

We will use the above notation principally for U € A, where A = {I, X, Z, X 7} is the
set of possible Pauli corrections. We will let (s); denote the Pauli correction s applied to
node k.

Definition 6.8. For any map A acting on two-qubit states, we denote (A)x to be this
channel applied to the two qubits in node k.

Definition 6.9 (Twirling of the kth state). For k =1,... N—1, we denote the twirling map
of the kth state in the chain (shared between nodes k —1 and k) as

2 ()10 (- (6.132)

1
Br_1,k= 1
seA
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In (6.132), we have recalled the Bell-diagonal twirling map from Lemma 6.1. To sim-
plify notation, in (6.132) we have not specified the specific qubit of each repeater nodes
to which twirling is applied, because we will always be interested in the case where the
map %By-1,k is applied before the BSMs. By the same argument used to obtain (6.130),
applying the correction to either qubit of the repeater node is equivalent.

Lemma 6.6 (Properties of Pauli operators and Bell-diagonal twirling). The following prop-
erties hold:

(i) Fors;,s2 € A,
(s1)ko($2)k = (5182)k = (S281)k = (S2)k © ($1)k- (6.133)

(ii) Forse A, (sD)= ().

(iit) Fors€ A, we have (s)y—1 0 Bi—1,k = Bi-1,k° (Sk.

Proof. (i) Weuse thefactthat, although interchanging the order of the Pauli operators
may incur a sign difference 515, = £s,5;, this will not affect the channel (6.131)
because the sign is global.

(ii) We use that for any s € A we have s" = +s, and the incurred sign does not affect the

channel.
(iii) Recall the channel %;. from (6.132). For s € A, we have m
1
(Dk-1°0Br-1k =~ 3 (s8)_10(5)k (6.134)
s'eA
1 t
==Y (Nk10(s' Nk (6.135)
4 reA
=Bi-1,k° (ks (6.136)

where in the second line we have made the change of variable r = ss’, and used
properties (i) and (i7).
O

Definition 6.10 (Bell-state projection, single repeater node). For k =1,...,N -1, sup-
pose that BSM outcome mn is obtained at node k. Let s = X" Z" € A. We denote the
unnormalised map corresponding to projection onto this Bell state as

(M) (p) = Trg | $1Po0XWooli s o] (6.137)
From (6.131), we note that (6.137) may be written as
(M) = (Mjo$)g. (6.138)

Definition 6.11 (Postselected projection, swap-and-correct protocol). Let &2 be a swap-
and-correct protocol for repeater chains with N initial states and N — 1 repeaters. Then,
Let 5 € AN be the swap syndrome. Wwe define

A5 = O] M5 )k Oy (25(9). (6.139)

to be the non-normalised map where syndrome 3 is measured and £ is applied.
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Lemma 6.7 (Correctness property). For any swap-and-correct protocol 2 and syndrome
S, the correctness condition (property B in Definition 6.6) implies that

N-1
Py(3)-2nE)- [] 5223 =<1 (6.140)
j=1

Proof. Recalling (6.139), (6.138) and (6.133), we may rewrite

Az 5= (Mp)go Oj-vz_ll (5;2;(9) o (Po($))oo (PN(E®)N. (6.141)

We firstly note that, given s € A and the pure state |V oo)XWool;, j shared between registers
i and j, we have

()i (100X Wooli,j) = (9); (100X Wooli, ;) (6.142)

where we have used the flip-flop trick (6.121).
Letting pigeal = [WooXWool®Y, it follows from (6.141) and (6.142) that one may move
all Pauli operators to act on node N,

A5 (pidea) = Opzy (MD ko ON (5,21 () n 0 (P © (P ($) N (pideal)

N-1
= O Mo (2@ - 2n () - [ 525()) | (Pidea: (6.143)
j=1
Now, by recursively applying (6.125), we see that
- 1
ORSy (MDklpidea) = =y 00X ¥oolo - (6.144)
Then, (6.143) simplifies to
1 N-1
A@,E’ (Pideal) = 4N_—1 (:@0(@ “PN(S)- H Sjgj (S‘))N (Pideal) ’ (6.145)
j=1

from which we see that Tr[Ag 3 (pideal)] = 1/4V~!. The output state after measuring
syndrome § and applying protocol &2 is then

Ag s (pideal) N-1
I (D) - PN (D) - NZ416) i . (6.146)
Tr [Aw 5 (Pideal)] ( 0 N ]1:[1 i )N(pldeal)

For the correctness condition Ag s (pideal) = Pideal t0 hold, we therefore require
N-1
Py(35)-2nGE)- [] 5,22/ =1 (6.147)
j=1

O
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Lemma 6.8. For any swap-and-correct protocol & and syndrome s, we have
Ag,50 0oy Br-1,1 = Ao 10 Oy Bi-1,1, (6.148)

whereI = (1,...,1) is the syndrome with outcome 00 at every repeater node, and seq is the
sequential swapping protocol. In particular, if Bell-diagonal twirling is firstly applied to
all initial states, then the end-to-end state is independent of s and 2.

Proof. Recalling the identity (6.139) for Ag s and property (iii) in Lemma 6.6, we see
that

Az 50O 1 Bi-1,1= Op=) (Mo O 1 Bi-1,1 0Oy (P (D). (6.149)

In particular, we have moved all Pauli corrections to act at register N (the end node).
Recalling (6.138), we can do the same with all Pauli operators arising from the syndrome,
to obtain

Az 50O, B1= 015 MDeo O Bi-1,10 015 (525D o (Po@)n o (P (@)
N-1
= O Mo O, Br110 (20D 2n - [] 5526)) . 6150
j=1

By Lemma 6.7, due to the correctness property of &2, the term inside the brackets is
simply the identity. Then,
A0 ON Bi11= O (MD o ON  By1,1. (6.151)

We now note that Ageq i = OIIX:‘II (Mp)k, where seq denotes the sequential swapping pro-

tocol. This is because, given syndrome I, all corrections specified by this protocol are the
identity. Therefore,

A 50 O Bi-11 = Agoq 1° Ol B (6.152)
0

Proof of Theorem 6.1. Recalling Definition 6.11, we may write down the map correspond-
ing to non-postselected swapping with swap-and-correct protocol 22 as

Ap= ) Aps (6.153)

SeAN-1
where the sum is over 5€ AV™!, and Agp 3 is given in (6.139). We now claim that
BoN oA = Nyoq 10O Br1br (6.154)

where

PBon =~ (o (SN (6.155)

1
4 seEA
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denotes the Bell-diagonal twirling of the end-to-end state. We firstly make use of (6.153)
to write

BonoAp =) BonoAps, (6.156)
5

Recalling (6.141), we have
Bo.n o Mg s = Bon o Oy (MDio O (5721 () 0 (P EPNE)N (6.157)

1
=12 O (Mo (000 OY (5,21 jo (P EH PN (). (6.158)
teA

In the first step, we have used (6.141), and then moved the correction (% (5)) to act on
register N. This is possible by applying property (iii) of Lemma 6.6 with the twirling
operator % n. In the second step, we have expanded %8, v according to (6.155).

We now perform a change of variables: for j =1,..., N -1, we let

ro:=t, rj:=Sse(Paj@forj=1,...,N-1, (6.159)

where «a is the permutation associated with €2 in which BSMs are carried out (see Defini-
tion 6.6). We now claim that (6.159) defines a bijective map (¢,s) — 7, for 7 = (rg, ..., rn-1) €
AN and (t,3) € AV. It suffices to show that the map (6.159) is invertible. We show invert-
ibility by explicitly writing down the inverse of (6.159). Given 7, one may recursively
deduce (¢, ) with the map

t=ro
Sa) = Paqy(8) 1
Sa@) = Pap) ()12

Sa(N-1) = Pan-1O7Nn-1,

where at each step, the multiplier 22, i) (5) may be computed using the values (sq(1), .-, Sq(k-1))
which have been found in the previous steps. This is due physicality property of the
swap-and-correct protocol (see property A in Definition 6.6). This enforces that correc-
tions at a given node must only depend on the BSM outcomes that have previously been
obtained. Recalling the identity (6.140), we see that

N-1
(PyHPNE =+ [] rj. (6.160)
j=0
Given the bijective map (t,5) — 7, we may therefore combine (6.156) with (6.158) and
(6.160) to write
N_

1 _ —
%O,NOAQD:Z Z OII(YZII(MI)]CO(rO)OoO;V:II(r]‘)].O(H ri)
Fe AN-1 [ N

7 i=0

—

. (6.161)
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We now claim that the above is equal to Aseqjo Olly:r%k—l: k. to see this, we perform

another change of variables to & = (uy, ..., uny-1) € AN given by

k
up=ro, ug=[[rj, k=1,...,N-1 (6.162)
j=0
The above map has inverse

ro=Ug, Tp=Uk_1Ur, k=1,...,N—-1. (6.163)

and is therefore bijective. Performing this change of variable on (6.161), we obtain

1
Zononz=7 3 |ON (Mo oo ONS (wjmrup)jotun-ny] (6,164
fie AN-1
1
=2 Y |05 Mk O o tup jua . (6.165)
fie AN-1

Recalling (6.132), this may be rewritten as
N N N
PBonoNgp = TOkz_l (MDoOj1Bj-1,j (6.166)
=4V 70O B (6.167)

where have have recalled that Aseqj = Qllyz‘ll (M7)§. In particular, from Lemma (6.8) we
recall that, for any syndrome s, we have

N N
Azp50 Opo1Br-1,1 = Ngoq 1 © Ok Br-1,1-

Then, noting that | AVN=1| = 4V~1 from (6.167) we have

BonoAp= Y Apz;008Bi-1, (6.168)
e AN-1
=ApoOp_1 Br-1,1, (6.169)
where we have used the identity (6.153) for Ags. O

Proof of Lemma 6.4. We then write the eigenvalues of 28(p;) and %(p») as

B(p1) = (F,A-F)nT,
B(p2) = (B, 1 - F) )T,

where #I and U are length-3 vectors such that u; + up + us = v; + v, +vs =1land u;, v; = 0.
By Lemma 6.3, The fidelity of the end-to-end state is

F=FE+1-F)1-F)i- D),
where i - U = uj v1 + up vy + uzvs. The end-to-end fidelity F’ satisfies

FB<F <FFE+(1-F)1-F). (6.170)
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For the lower bound, we have used i - ¥ = 0. Note that this is saturated whenever & and
U are orthogonal. For the upper bound, we have used

U-v<(u+uz+us)(vry+ve.+rv3) =1,

which is saturated exactly when # = ¥ and i is one of 1,0,007, 0,1,007, or (0,0,1)T. In
particular, this is when the initial states (B)(px) are of rank two and have the same non-
Zero eigenvectors.

To show the bounds for a length-N repeater chain, we apply the bounds (6.170) in-
ductively. For the upper bound, we notice that

FR+(1-F)A1-F)= %(ZFl -2k -1+ %, (6.171)

and applying the upper and lower bounds from (6.170) inductively gives
N 1N 1
!
[[FcsF==]]@F-D+-. (6.172)
k=1 2ia 2

By Lemma 6.3, the end-to-end state is the same for both postselected and non-postselected
swapping. O

Proof of Theorem 6.2. Let #{n) denote the Bell-diagonal twirling of all initial states pi, =
®1kV=1 P such that

#in (pin) = @7, # (k). (6.173)

Then,
F'= (P00l Az (pin) ¥ 00) (6.174)
F, = (Yool Az (#(n) (pin)) W 00) (6.175)

are the true end-to-end fidelity and the end-to-end fidelity with the Werner approxima-
tion.

F' = (Yool Az (pin) I¥00) = (Yool B (A (pin)) [Wo0) (6.176)

= (ool Aseq(Bn (pin)) IPo0) » (6.177)

where in the first step we have used the fact that the fidelity is invariant under Bell-
diagonal twirling, and in the second step we have applied Theorem 6.1. Now, since

Werner states are Bell-diagonal, we have %8 (# (px)) = # (px) and Bny (#(n (0in)) = #(n1 (Pin)-
In particular, we see that

Az (Win (pin)) = Az (Bivi (#in (Pin))) = B (Aseq (#in1 (0in))) (6.178)
= Aseq (#in1 (Pin)), (6.179)

where in the first step we have applied Theorem 6.1, and in the second step we have used
the fact that the sequential swapping of Bell-diagonal states results in a Bell-diagonal
state (see Lemma 6.3). Then,

Fy = (Yool Az (#in) (pin)) ['P00) = (Yool Aseq (#in) (Pin)) [Po0) - (6.180)
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In particular, both (6.177) and (6.180) are the end-to-end fidelity after swapping N Bell-
diagonal states. For (6.177), the fidelity of the kth state is (W9l B(px) |¥Yoo) = Fx. For
(6.180), the fidelity of the kth state is again (Yool # (0x) [¥oo) = Fx. In partlcular, the
bounds from Lemma 6.4 apply to both F" and F),. Letting e; = 1 - Fj, we then have

A 1 N
|F'-F,|< - []@F-D+=-[] Fx (6.181)
2 =1 2 =
. 1 N
—[Ja-2ep+=-[]Q-e€x) (6.182)
zk: 2 =
i1 1
E( 226k+42eke,+@(1v363)) > (1—Zek+2eke,+@(N3e3) (6.183)
k k,1
LY erer +O(N3) (6.184)
k,1
é( )e%@’(N%S), (6.185)

where in (i) we have performed a series expansion to second order in the infidelity, in (ii)
we have noticed that the first- and second-order terms cancel, and in (iii) we have used
€r=1—Fr<eforallk=1,...,N and the fact that there are (g) second-order terms in the
sum. O

6.7.2. POSTSELECTED SWAPPING
Proof of Proposition 6.2. Consider p € S, . By definition, this can be written as

p=p1l¥ooX Yool + (1-p1)o, (6.186)
where o is a valid density matrix. Letting p; = p2 + (p1 — p2), Wwe may rewrite p as

Pl

p1= p2 [WooX(Wool + (1 - p2) ”11 2 [Woo ><‘1’00|+

Since p; > p», the term in the brackets is a valid ensemble of states and therefore also a
density matrix. For the converse, consider for example the states

o0 =p2I¥ooXWYool + (1 = p2) P11 {¥11l.

and suppose that this can be written in the form (6.186). Then, one may show that

— 1_
Wi XWl = pll P2 [WooXWool + 1 Py
-p2

— P2

computing the fidelity to |¥ o) then yields

— 1-
=u+—pl(“1’00|0|‘1’00>
1-p2 1-p2

which results in a contradiction as the RHS is positive (o is a density matrix). O
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Proposition 6.5 (Proposition 6.2, general version). For fixed pi, p2, F1, F», let
Fl{j,max = max{Fl'](pl,pz) S.L. pi € Sl?k,Fk}
Fl{j,min = min{Fl{j (p1,p2) S.L. pr € Spk,Fk},

where F| i is given in Lemma 6.5. Then, the above quantities are independent of (i, j), or
alternatively

/ _ _
Fij,max_FOO,max=Fmax
/ _ —

Fij,min_FOO,min_Fmin‘

Proof of Proposition 6.5. Consider py € Sy, .. We now show that for any (i, j) there is
wg € Sp,, F, such that

Fj;(p1,p2) = Foo(w1,w2). (6.187)

We claim that this is the case for w; = p; and w, = (Z/ X ® ZI X)) p, (X! Zi® X! Z1). Firstly,
itis clear that w; € Sp, F, . Also,
wr=(ZI X1 @ ZI XN p,(X1 ZT & X1 Z)

= (Z/X"® Z1X") (p2|WooX(Wool + (1 - p2)oa) (X' 27 & X' 21}

= p2¥ooXWool + (1 - p2)n2 (6.188)
where o o o o

n2 = X'Z' e X' ZNoy(Z' X' © Z! XY

is the noisy component of w;. In (6.188), we have used the flip-flop trick, which means

that the Paulis applied to both registers have no effect on the pure |¥(y) component.
One may use the same trick to show that

(Wool w2 1Woo) = (Yool (ZI X' ® ZI X1 po (X' 27 ® X' Z7) [ Woo)
= (Yool p21Wo0) = F2, (6.189)

and that therefore by (6.188) and (6.189), w, € Sp,,F,- We now show (6.187). Recalling
Definition 6.5, we have

Poo(@1 ® w2) =Tr [[Woo)X(Poola, 4, 01 ® W2] (6.190)
= Tr 100X W0l 4,4, @1 ® (2 X1) 4, (20 X7, 02 (X 201, (X7 20)3, | (6.191)
=T [[Wi; X Wi 4, 0, 01 9 2] (6.192)
=p;;(p1® p2). (6.193)

One may similarly show that

T (100X P00 5,5, [WooX(Wool 4,4, @1 ® 2] =T [[ Wi X Wi, [¥i 7 X Wi 4, 0, 018 2]
(6.194)
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from which we see that
1

W Tr [I®P00X W ool 5, B, P00 P00l 4, 4, W1 ® W3] (6.195)

F(,)()(wl ®wy) =

1
= T orapy [|‘Pij><‘yij|3132 [WiiX¥ijl g a,P1® 92] (6.196)
ij
=F;j(p1 ® P2). (6.197)
0

We now derive the formula for the end-to-end fidelity as contained in Lemma 6.5. In
the main text, the result is stated for the swapping of identical states for simplicity. Here,
for the completeness we state and prove the same Lemma for non-identical states.

Lemma 6.9 (Lemma 6.5, general version). Consider performing a postselected swap on
a pair of two-qubit states py ® py such that py € Sy, F, for k =1,2. Let Flfj = Flfj (o1 ®
p2) denote the end-to-end fidelity after measuring outcome ij in the BSM, and p;; i the
probability of measuring that outcome (Definition 6.5). Then,

p1+p2—pi1p2

. +1-p0A-pP}; (6.198)

p;‘j =
and o
, P12+ p2Fr—pip2 +4(1—p1)(1—p2)p;~j1’;j

Y pripe-pipe+40-po - p2) Py

(6.199)
where 1:"1{]. = Flfj (01®07) and ;5;.]. = p;.j(ol ®072) are the corresponding swap statistics of
the noisy components.

Proof of Lemma 6.9. We start with two states of the form

01 =p1|¥ooXW¥ool + (1 - p1)o;
p2=p2|Yoo)Wool + (1 - p2)oa,

where F; = (Wl p1|¥oo) and F> = (Yool p2 |Woo). We carry out the usual swapping pro-
tocol: we start with the state p; ® p,, which may be expanded as

p1®p2=p1p2-1Yo0) {Pool ®Wo0) Vool + p1(1—p2)-Woo) (Yool ® 02
+(A-p)p2-010|¥o0) (Wool + (1 —p1)(1—p2)-01®02. (6.200)

Supposing that the middle station measures the BSM outcome i j, the output state is

1
Pij= o (Pijlor®p2|¥ij)a 4,0 (6.201)
ij

where p’ i is the probability of obtaining the BSM outcome i j, given by

P =Tram, [(Wijl 01902 [¥i) 0 0, (6.202)
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We now obtain expressions for p;. i and p’i i in terms of p;, F; and 0;. From (6.4), we have

(A-p2), i -
(Tijlprop2|¥is), o = PP 1wy (0| + P P2 (% 2] 0 o2/ X 0 Iy)
Adz 4 4
(1-p1) - i
+pszl(IgébX’Z])Ul(lz®ZJX’)+(1—pl)(l—pg)<‘Pij|01®02|‘Pl~j>A1A2,
(6.203)

where the first three terms correspond to perfect teleportation (without Pauli correc-
tions). From (6.202), we now calculate p;.j by taking the trace of the above. Notice that
the first three terms are proportional to valid density matrices. Therefore,

;b2 p1(1—p2) N p2(1-p1)
1 4 4 4

+(1-p)A - p2)py) (6.204)

where f);.j = p;.j(al ®02). Then,

Fji=(¥ij|0i;|¥ij)p 5,
1 1-po) - 1-py) -
1 P1p2+P1( Pz)FZ+P2( - p1)

S pij o4 4

F1+(1—P1)(1—P2)F,l]ﬁ;]

where Fy. = (Wqol o |Wo) is the fidelity of the noisy components, and I:"lfj = Flfj (01 ®07).
Recalling the fidelity constraint on our initial states pj, we may rewrite

Fre=pr+ Q- pp)Fy

and simplify our formula for the end-to-end fidelity to

1 (pip2 p1(F2—p2)  p2(F1—p1) <
Fz{jzp;j A T4 T + (1= p)A - p2)E}; P - (6.205)

O

Theorem 6.4 (Theorem 6.3, general version). Consider performing a postselected swap
on a pair of two-qubit states p1 ® p2 such that py € Sy, F, fork=1,2. Then,

Fop1®p2) <1-p1(1-F) - p(1-F. (6.206)
In particular, for the case p1 = p2, F1 = F», the above bound is tight and therefore
Frax(p, F) =1-2p(1—F), (6.207)
where F}, . (p, F) is defined in (6.46).

Proof of Theorem 6.4. From Lemma 6.9, after measuring we obtain an outcome fidelity
of

Fo+ paFy — p1p2 +4(1— p1)(1 - p2) EL B!
F(/)O — pl 2 pz 1 plpz ( pl)( p2)~’00p00. (6208)
p1+p2—p1p2+4(1—=p1)(1 = p2) Py,
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Now, since Fy < 1, we have

p1Es+ paFy — pipe + 40— p1) (1 - p2) F}, By,

Fyo < —— (6.209)
pl + PZ - plpz +4(]- - pl)(l - pZ)Foopoo
We notice that the RHS of (6.209) is of the form
atx b-a 6.210)
b+x = b+x’ )

forb—a=pi(1-F)+p,(1-F) =0. Then, (6.210) is a non-decreasing function of x =
F, Py, We recall that o
EyoPoo = (¢plor1 @02 o), 6.211)

where

) =1¥00) 4,4, ® W00) B, B, - (6.212)

Since the state |¢>> is a product of two maximally entangled qubit states, this is a max-
imally entangled state between two registers of dimension d = 4, shared between the
four-dimensional registers By A; and A, B,. Therefore, since 0 ® 05 is unentangled with
repect to these registers, from [96], the fidelity to |¢)) is bounded as

T 1 1
FOOPOO:<¢|UI®UZ|¢>SE:Z' (6.213)

Combining the above results, it follows that

. PR+ peFi—pipa+40-p)(-p2)- 1
Fyo < :
1

p1+p2—p1p2+4(1—p1)(1 - p2)-
=1-p1(1-F) - p2(1-F). (6.214)

For the case p; = p2 = p, F1 = F» = F, we now show that the above bound is tight. Letting
Pk € Sp,F such that

p1=p2=pI¥eX Yool + (1 - p) |w)y|, (6.215)

with
lw) = VI Woo) + V1-F %11 (6.216)

where F = (F - p)/ (1 — p), we now compute the values of 1:"60 and ﬁ(’)o foro; =0, = |1//)
We firstly expand the initial state as

[w)®% = FIWo0)®% + (1 - B) [W11)®% + \/ E(1 = F) [Wo0) ® [¥11) + 1/ F(1 - F) [¥11) ® [ Wp) .

(6.217)
We compute the action of a Bell-state measurement on each component as the follow-
ing. Recalling that |W11) 45 = I ® X Z |¥0) 4 and that

1
(ool4, 4, [1¥00) @ 1¥00) | = 5 P00, ;. (6.218)
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we have
(Woola,a, | P10 @ 1W11) | = (X2) B, (XZ)B, (Woola, 4, | 'Po0) ®Wo0) (6.219)
= %(XZ) 5, (XZ)5, W00 5, 5, (6.220)
= % [Wo0?B, B, » (6.221)

where we have used the flip-flop trick (6.121) to move the Pauli gates from one register
to the other. Using the same method, it may be shown that

1
(Woola, 4, [ Poo) ®¥11) :(XZ)BZE|\POO>BlBZ

= % [¥11) B, B, (6.222)
and
(Woolaa, | 1¥11) ®1Wo0) | = (X2, '%NJOO)BIBz (6.223)
=(ZX), % W00} 5, B, (6.224)
= —% W11}, B, - (6.225)

Then, recalling (6.217), we see that

F 1-F S
(P00l 4,4, [|w)®2] =7t T) IWoo), B, + \/ F(A = F) (1¥11) — [¥11)) (6.226)

1
=2 [Woo?B, B, - (6.227)
We therefore see that )
Po=7 Foo=1 (6.228)
and substituting these values into (6.208), we see that the bound is saturated. O

Proposition 6.6 (Proposition 6.4, general version). Consider performing a postselected
swap on a pair of two-qubit states p1 ® p» such that py € Sy, r, for k=1,2. Then,

p1F2+ p2F1— p1p2
1+(1-p)-p2)

Fo(p1®p2) = (6.229)

Proof of Proposition 6.6. From Lemma 6.9, after measuring we obtain an outcome fi-

delity of
F> + poFy - +4(1 - p1)(1 - p2) E}, Py
F(/)O: pl 2 pz 1 plpz ( pl)( p2)~’00P00' (6230)
p1+p2—p1p2+4(1—=p1)(1 = p2) Py,
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Since F},pg, = 0, we have

Fot poFy -
Fly = Prrat ot ” Prpe . (6.231)

p1+p2—p1p2+40 - p1) (1 - p2)fy,

Now, recalling that
Poo =Tra, 8, [ P00XWoola, 4,01 ®02], (6.232)

we see that pj, < 1/2 as this is the fidelity between a separable state and a maximally
entangled state with d = 2 (see proof of Theorem 6.4). Therefore,

p1F2+p2Fr—p1p2

Flo = (6.233)
pi+p2—p1p2+2(1-p)1-p2)
F>+ poFy —
_ Pifatpain Plpz‘ (6.234)
1+(1-p1)A-p2)
Recalling (6.47), for the case p; = p» = p and F} = F, = F, the result
2pF — p2
F . (pF)= 6.235
min (P> F) 2p—p?+2(1 - p)? ( )
follows directly. O

6.7.3. SDP SYMMETRISATION
Here, we perform a symmetry reduction of the optimisation problem (6.75), which we
restate below for convenience:

H}Tin Tr[1W00) (ool B, 1¥00) (Fool 4, 4, 7|

s.t. Tr[1Woo) (Woola, 4, 0] =
Tr[|Woo) (Woola, 5, 0] = F, (6.236)
Tr[[Woo) (Wool 4,5, 0] = F,

Trlo] =1,

On

’

sl

o=0, ol >0.

In the above, the number of parameters involved in the optimisation is the number re-
quired to parameterise a quantum state over four qubits, which is of the order of 16% =
256. In the following, we will reduce this number by identifying symmetries of the above
optimisation problem, which will then enable us to find the solution more efficiently.

Firstly, we rewrite the above in terms of a rotated target state. In particular, we notice
that since the set of PPT states is invariant under the application of local unitaries, it fol-
lows that the above is equivalent to the following. Applying the Z X operator to registers
A; and By, the objective function of the above transforms to

Tr[ W00 Y00l B, B, [P00XWoola, 4, (ZX) B, (ZX) 4,0(XZ) g, (X Z) a, ]
=Tr[ W1 X1l 8, P11) (P11la,a,0],  (6.237)
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and the other constraints transform similarly, and so (6.236) is equivalent to

H(ljin Tr[[¥11) (P11l 8, [P11) (P11l 4,4, 0]

st Tr[IW11) (P11la, 4, 0] =0,
Tr[1W11) (W11l a8, 0] = lf’ (6.238)
Tr[IW11) (P11la,8,0] = F,

Trlo] =1,

g=0, crrzo,

The reason for studying (6.238) instead of (6.236) is due to the symmetry properties of
the |¥q,) state. In particular, for any one-qubit unitary U, the state |¥1;) satisfies

Ue)|¥YiX¥il(Ue) =W X¥. (6.239)
Therefore, under the transformation
o— (UHo (U®HT, (6.240)

it can be seen that the objective function and constraints of (6.238) are invariant. If oop¢
is an optimal solution of (6.238), then

Topt = f(U®4)aopt(U®4)*dU (6.241)

is also optimal, where the integration is over the Haar measure. The state oo is invariant
under the map (6.240). In order to solve (6.238) it therefore suffices to optimise over the
set of operators that are invariant under the symmetry (6.240). These states are given by

Y reMp:irr€C, (6.242)

T€SY

where S, is the symmetric group. In the above,

M= Y |rto)(F| (6.243)
kefo,1)4

where 7(k) = (kr10), kr1(2), kr1(3), kr-1(4)). Then, M; is the operator that permutes the
four registers according to the permutation 7. The unitary operators M; form a repre-
sentation of the symmetric group S4, and in particular satisfy

My My, = My,r,. (6.244)

We therefore see from (6.242) that in order to parameterise a state that is invariant under
the map (6.240), one requires a maximum of 2 - |S4| = 48 parameters. Now, we make use
of the identity

1
[P1iXWil= 3 (I - SWAP), (6.245)
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where SWAP is the operation that swaps the two qubits, and we will rewrite the con-
straints and objective function of (6.238). In the following, we will denote a permutation
by its decomposition into cycles [214]. For example, the permutation that swaps regis-
ters A} and A, is denoted by (A; Ay). Then, given the symmetrised form (6.242), the first
constraint of (6.238) becomes

S=Tr[I¥11X¥11l4,4,0] (6.246)
1
=Tr | = (Me—Maay) ) rer‘ (6.247)
2 T€Sy
1
=T | ) 1o (My—Ma, apr) (6.248)
TESy
1
== ) 1o (Tr[Mq] = Tr [Ma, a)c ) (6.249)
2 T€8,
=v'r, (6.250)

where v is a vector indexed by elements of Sy, with vy := (Tr [M;] — Tr [M(a, a,)7]) /2. This
is a linear constraint on the vector r. We may perform the same procedure for all con-
straints and the objective function in (6.238), transforming this into

T

min ur
re s
s.t. vTr:6,

xTr=1, (6.251)
T

Z reMy; = ( Z rTM‘[) ,

TES, TES,

Y M0, Y (M) =0

TESy T€S,

In the above, u, v w and x are all vectors indexed by elements of S4, with

1
tr = o (Tr [Me] =Te [ My agye] = Tt [May sy ] + T [ My a1 813217 ) (6.252)

1
vri= (Tr [M7] = Tr [M(a, a)7]) (6.253)

1
(we)r = 5 (Tr [My] =T [M(a,Byr)) (6.254)
X = Tr[M]. (6.255)

The values Tr [M;], and therefore the vectors u, v, w and x, may be computed using the
following proposition.

Proposition 6.7. Suppose that 1,7’ € Sy are conjugate, i.e. there is a v such that v’ =
v7ltv. Then,
Tr(M;) = Tr(M;y).
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In particular, Tr[M;] is determined by the conjugacy class (cycle type) of T, of which there
are the following five possibilities:

16 if cycle type 1+1+1+1
8 if2+1+1
Te[M:] =14 if2+2 (6.256)
4 if3+1
2 if4.

Proof. Since 7’ =v~!1v, we have M;s = M, -1,,, = M, -1 M; M, = M;;' M; M,,. Then,
Tr[My] = Tr[ M, ' My M, | = Tr[M;].
In particular, Tr[M;/] = Tr[M;] for all 7’ € Cl(t), where
Cl(r) = (v '7v:v e Sym(4)}

is the conjugacy class of 7/. Now, for the symmetric group, the conjugacy class is de-
termined by the cycle type [214]. The group Sym(4) has five cycle types. One may then
compute the values (6.256) by computing Tr[M;] for a given example 7 of each cycle

type. O

6.7.4. FURTHER ANALYSIS OF SDP LOWER BOUND
In this appendix, we further investigate the behaviour of the SDP lower bound for FI’nin (p,F),
which was presented in Section 6.4.3. We firstly note that one may formulate an upper
bound for F} ., (p, F) with the same method (i.e. performing a maximisation of the ob-
jective functions of (6.75) and (6.77) instead of a minimisaton). Although this is not nec-
essary, because in Theorem 6.3 we have an explicit solution for F,, .. (p, F), we computed
this solution in order to better understand the range of the end-to-end fidelity after the
PPT relaxation. Interestingly, the result of this was always F,.(p, F): in all cases tested,
the corresponding SDP upper bound was tight. More specifically, it has a simple linear
form in terms of p and F, and the corresponding probability of measuring the outcome
(6*) takes a constant value of 1/4. This matches the example of the optimal state given
in Theorem 6.3.

In the following, we will see that the SDP lower bound does not have these charac-
teristics.

OPTIMAL VALUE OF §
Despite the fact that the SDP upper bound is tight and has a simple analytical form, in the
case of no permutation symmetry we did not observe the same for the SDP lower bound.
In order to further understand its behaviour, one may analyse the value of the postse-
lected swap probability §* that minimises the expression of the lower bound (6.77), i.e.
2

Fioin(p, F) Zminl(@—p—ﬂl—p)ZH*](p,F,a)) (6.257)
s o\2 4 re

1 (F p pz

== 4+(1—p)2Hr*el(p,F,5*)). (6.258)
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Figure 6.6: Probability of the optimal postselected swap outcome plotted against p, for (a) F = 0.6 and (b)
F =0.9. Each is plotted for 100 values of p, uniformly spaced in the interval [0, F]. The black solid line is
FlLax(p, F), and the green solid line is the postselected swap probability for the states saturating this value
(6 = 1/4). The black dotted line is the lower bound found with SDP, and the green dotted line is the postselected
swap probability of the optimal state for the lower bound.

Recalling that the states saturating the upper bound have constant postselected swap
probability of 1/4, we see from Figure 6.6 that §* usually lies above this value, and is
not constant. We were not able to find a good functional fit in terms of p and F for 6.
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Figure 6.7: Bounds on the end-to-end fidelity, given a postselected swap probability 6. For three different
values of F and p = 0, each is plotted for 100 values of §, uniformly spaced in the feasible region [6 min, Omax] for
each value of F. The dotted lines are the lower bounds, bound by solving (6.259). The solid lines are the upper
bounds, found by solving the corresponding maximisation problem of (6.259). Also shown are the values §*
that form the SDP lower bound for F’ (p, F) from (6.258).

min

Similarly, we were not able to find a functional fit for the SDP lower bound: although for
large values of F this appears to be linear in some range of p (see Figures 6.3a and 6.3b
in the main text), we see from Figure 6.6 that for F = 0.6 this is not the case. We leave
further analysis of the behaviour of §* to future work.

DEPENDENCE ON §

It was mentioned in the main text that fixing the parameter 6 while optimising the end-
to-end fidelity can aid to further understand the trade-off between rate and fidelity in-
herent to the entanglement swapping process. In particular, solving the problem (6.75)
provides an answer to the question ‘given that the probability of the postselected swap
is 6, how small (large) can my fidelity become after swapping’? In order to answer how
small it can become, one may solve the following semi-definite program

Irgn Tr[ [WooXWool 5,5, P00 P00l 4, 4, 0]

s.t. Tr[[WooXPoola, 4, 0] = 6(p,6),
Tr[1Wo0)X(Poolp, 4, 0] = F(p, F),
Tr[ WooXWoolg,a, 0] = F(p, F),
Trlo] =1,

(6.259)

o=0, ol =0.

This was also given in (6.75) in the main text. To find bounds on how large the fidelity can
become, one may perform instead a maximisation of (6.259), or simply replace the ob-



6.7. APPENDIX 243

jective function by a minus sign. These bounds are shown in Figure 6.7. These are plotted
for p = 0 and three different values of F, in the feasible range of §. Interestingly, the up-
per bounds for each of the three fidelity values always coincide in their corresponding
feasible region. This extends the observation from the beginning of Section 6.4, where
we saw that no matter the value of the initial fidelity, it is always possible to obtain a unit
end-to-end fidelity (from Figure 6.7, we observe this for values of 6 below 1/4, where
all upper bounds are equal to one). Recalling the state \w) =VF|¥o) +V1-F|¥))
that swaps to unit fidelity with probability 1/4, we therefore conclude that at the point
6 = 1/4 the upper bound is tight. Then, |1//> is optimal in the sense that it has the maxi-
mum probability of swapping to perfect fidelity. Indeed, beyond 6 = 1/4, we see there is
necessarily a decrease in the end-to-end fidelity if we demand that § is larger than this
value. It can also be seen from the figure that at the extremal values of the feasible region
of 9, the upper and lower bounds meet. In particular, when § becomes close to d yin, the
lower bound goes to one. We conclude that if the postselected swap probability is made
as small as possible, the end-to-end fidelity will necessarily increase to one. Despite this,
the lower bound is not monotonic in 6: for large values of §, we see from the figure that
it increases again before joining up with the upper bound at d j5x. From this behaviour
we may conclude that, for the values of F tested, the numerical optimiser over § that
is employed in (6.257) to find the SDP lower bound is indeed finding the global mini-
mum. This is highlighted by the black circles in Figure 6.7, which are the values 6 * of the
postselected swap probability that minimise the lower bound. The value of the objective
function at each point is the SDP lower bound for Fpi, (0, F).

6.7.5. INVARIANCE OF SECRET-KEY FRACTION

As discussed in Section 6.5.2, the secret-key fraction depends on the QBER according to
(6.99). The QBER is defined as the probability that, when both nodes measure their state
in the X (Z) basis, they obtain different outcomes. Letting o be the entangled state shared
between the two nodes, the probability of obtaining an error when measuring in the Z
basis is given by

Qz =(01]0|01) + (10| 0'|10) (6.260)
Noting that
[01)¢01] +[10)10| = % (L-Ze®2Z)o,
we have
Qz(0) =Tr[(101X01] +10X10Do] (6.261)
= %Tr (s —Z®Z)o] (6.262)
= %(1 -Tr((Z® Z)o)). (6.263)

Now, since we have (Z®Z) |¥;;) = +|¥;;) forall Bell states | ¥;; ), we see that Tr [(Z ® Z)o]
only depends on the Bell-diagonal elements of o, and therefore Q~(0) = Q2 (%(0)). The
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same holds for measuring in the X-basis:

Qx (o) = %(1 -Tr((X® X)ol) (6.264)
= %(1—Tr[(X®X)88(o)]) (6.265)
= Qx(%(0)). (6.266)

By (6.99), we therefore have SKF (o) = SKF(%(0)).
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