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Abstract

Quantum coin flipping is a cryptographic primitive in which two or more parties that do not
trust each other want establish a fair coin flip. These parties are not physically near each other
and use quantum communication channels to interact. A quality of protocols is measured by
the best possible cheating strategy, which is the solution of a complex semidefinite optimization
problem. In this master thesis we show new explicit bounds in multiparty quantum coin flip-
ping, we investigate how to explicitly formulate these problem in a standard form, we show that
a fair coin flip results in the lowest possible bias and we determine more measures of the quality
of a protocol. Furthermore, this master thesis presents a rigorous and detailed mathematical de-
scription of semidefinite optimization, quantum information theory and quantum coin flipping.

This thesis also includes an article written together with J. Mulderij, T. Attema, I. Chiscop and F.
Phillipson on distributed quantum computing. In this article, we pose new questions and for-
mulate integer linear programs that solve to find optimal assignment of qubits to computers for
a given network of quantum computers and quantum algorithm.
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Preface

“It is easier to square the circle than to get round a mathematician.”
- Augustus De Morgan

Thismaster thesis on quantum coin flipping is the result of nine months doing research on
what is fair and how to prevent cheating in protocols to establish randomness. With this
thesis I complete the master Applied Mathematics with a specialisation in optimization

at the Delft University of Technology. I conducted this thesis in an internship at the department
of Cyber Security and Robustness at TNO, located at Anna van Buerenplein in The Hague.

I started at TNO in September of 2018 on an internship project on quantum applications. In
this internship I got to know TNO very well and and it even resulted in an article on quantum
phase estimation. In April 2019 I started my graduation project at TNO on parameter optimiza-
tion of practical implementations of quantum key distribution systems. During the process of
gathering literature and information I got interested in the elegant combination of quantum
information theory and semidefinite optimization. After some thorough research I proposed to
focus the thesis on this subject, in particular in the application of quantum coin flipping.

Nine months later and this thesis is the result. Of course, I could not have done this alone. I
want to thank Thomas Attema, for his excellent supervision, confidence and time to discuss yet
another mathematical problem1; David de Laat, for sharing his knowledge on quantum infor-
mation theory and semidefinite optimization2, motivating me and inspiration; Karen Aardal,
for her good advises and supervision of this thesis; Joost Bosman, for his eagerness to learn new
subjects, enthusiasm and good questions; Serge Fehr, for taking the time and interest in this
thesis; special thanks to Sander Gribling, for his interest, help with filling in the details of this
thesis and inviting me to get to know Centrum Wiskunde & Informatica (CWI) in Amsterdam.

I would like to thank Jesse Mulderij and Nicholas Meinhardt3, for collaborating, pondering about
quantum related topics, attempting heavy sports like bouldering and cheese fondue, and always
making time for a good talk.

Furthermore, I would like to thank my parents and family, not for understanding this thesis,
but for taking the risk of trusting that these equations actually mean something4. I also want
to thank my friends from Delft, Zeeland, and elsewhere, for paying interest in my graduation
project, but also provide me with sufficient distraction in the form of games, sports, drinks, par-
ties, and so on.

1Quick problem: Let x, y be positive integers. Prove that if (x2 + y2)/(xy + 1) is integer, it is a perfect square.
2I really appreciated the comments on mathematical notation, (American) English, and LATEX typesetting.
3Who will keep an eye on the guys, now that we both graduated?
4To be honest, I do not know what quantum mechanics actually means.
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I am thankful for my time at the department of Cyber Security and Robustness of TNO and get-
ting to know colleagues and interns5, I enjoyed going to TNO every day. I learned a lot about
working in a research organisation. I cherish the conversations and discussions and I am glad
to be able to attend not one, but two Christmas parties.

I also want to thank the treasury department of Rabobank and in particular Frank Mulder, for
giving me the opportunity to get to know this financial institution. I learned a lot during these
months and I enjoyed being part of this close team.

Last but not least, I would like to thank Alice and Bob, your relation might not always be pup-
pies and sunshine, but you have been a great inspiration.

Of course, a preface is always complete when it includes a poem, especially when it is related
to the subject.

A Psychological Tip

Whenever you’re called on to make up your mind,
And you’re hampered by not having any,
The best way to solve the dilemma, you’ll find,
Is simply by spinning a penny.

No—not so that chance shall decide the affair
While you’re passively standing there moping;
But the moment the penny is up in the air,
You suddenly know what you’re hoping.

- Piet Hein
I hope you enjoy reading this thesis.

- Roy van Houte
The Hague, January 6, 2020

5Special thanks of course go to Stijn Pletinckx, for his immeasurable endeavor to be acknowledged in theses.
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Notation

The following notation is used throughout this thesis.

Notation Description
[n] The set of integers {1, . . . , n}
N The set of all positive integers {1, 2, . . . }
Z The ring of integers
Q The field of rational numbers
R The field of real numbers
C The field of complex numbers

X ,Y, . . . Complex Euclidean spaces
L(X ,Y) The linear operators fromX → Y
L(X ) The linear operator fromX → X
T (X ,Y) Superoperators, linear operators fromL(X )→ L(Y)
D(X ) The set of density matrices onX

Herm(X ) The set of Hermitian operators onX
Sym(X ) The set of symmetric matrices onX
IX Identity operator on the spaceX
JX The all-ones matrix onX
J The Choi-Jamiołkowski map

[·, ·] The commutator of linear operators
ρ, σ, . . . Density operators
�,� Positive (semi)definite, Loewner partial order
·> Transpose of a vector or operator
·† Hermitian transpose of a vector or adjoint of an operator
·∗ Optimal value or solution to an optimization problem
⊗ Tensor product of vector spaces, a tensor or the Kronecker product
X n The n-fold Cartesian productX × · · · × X︸ ︷︷ ︸

n

,direct sumX ⊕ · · · ⊕ X︸ ︷︷ ︸
n

vec The vectorize functionL(Y,X )→ X ⊗ Y
⊕ Direct sum of vector spaces, XOR-operation on {0, 1}
Tr Trace of an operator

TrX Partial trace overX
Re The real part of a complex number or matrix
Im The imaginary part of a complex number or matrix
|·〉 ket, notation of a quantum mechanical state (vector)
〈·| bra, notation of the conjugate of a state

〈·, ·〉, 〈·|·〉 Inner product
‖ · ‖ The norm in a Euclidean space
h Planck’s constant, h = 6.62607015 · 10−34 Js
~ Planck’s reduced constant, ~ = h/2π.
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Chapter 1

Introduction

“A mathematician is a blind man in a dark room looking for a
black cat which isn’t there.”

- Attributed to Charles Darwin

W riting a collaborative paper is often a holistic phenomenon: working together results in more
than everyone individually. However, when it comes to, for example, the order in which au-

thors appear in the article, it may be subjective what is considered to be fair. Flipping a fair coin
will settle the debate [1]1. But how to flip a coin when two parties are not physically near each other? And
how to make sure that a cheater does not influence the outcome too much? Fortunately, quantum communi-
cation provides the answer. A rich and elegant subject on the intersection of quantum physics, analysis and
optimization. Altogether a subject, which leads to a lot collaboration by itself.

1.1 Quantum Coin Flipping

In this thesis we consider the problem of creating shared randomness between two or more par-
ties that do not trust each other. Besides the situation described in the introduction of this chap-
ter, another applications can be found in the context of mental poker [2]. In this setting, players
wish to play a game of poker and do not trust each other. It is therefore essential that a deck of
cards is shuffled in a random way and that a potential cheater is limited in his or her ability to fix
a prefered outcome. Randomness in its most primitive form is a coin flip. Combining coin flips
gives random strings of bits or, equivalently, random numbers. If we have two parties, Alice and
Bob, at different locations, a simple protocol would be to let one of the parties generate a private
coin flip and share it with the other party. However, in this case the generator has full control
over the protocol and can force any outcome if he or she decides to cheat.

Therefore, Alice and Bob use a protocol that requires actions on both sides and communication
over a channel. They want to meet the following conditions:

1. If Alice and Bob are both honest, then the outcome should be a realization of a Bernoulli
random variable with equal probability for both outcomes.

2. If one of the players is dishonest, then the deviation from a fair coin as a result of cheating
should be limited. For any cheating strategy, the probability that the honest player will find

1In this article, the order of the first and last pair of authors is determined by a coin toss
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Chapter 1. Introduction

a chosen outcome is in some interval [1/2− ε, 1/2 + ε]. The smallest value ε that applies
to every cheating strategy is called the bias of a protocol.

If for such a protocol ε = 0, then the dishonest player cannot influence the coin at all, in which
case a protocol is called perfect. If ε = 1/2, then he or she can completely determine the outcome
of the coin flip and a protocol is called completely broken. The main goal of studying coin flipping
protocols is to determine protocols that have a bias as small a possible.

In a coin flipping protocol, both players have their own space of (quantum) information and
a shared space with which they can both interact and communicate. A quantum coin flipping
protocol consists of a number of alternating operations on their private and shared information
ending a measurement which determines the outcome of the coin. Players might have a pref-
erence for a specific outcome. For example when authors want to determine the order of their
names in an article. Consequently, if a cheater is present we know that he or she will only pre-
fer one certain outcome. In this case we consider the weak bias. If honest players do not have
a preference and the preference of a cheater is not predetermined, we look at the strong bias. A
protocol in itself is not weak or strong. But a specific protocol will often be designed to result in
a good weak or strong bias. We will mostly discuss protocols with a good strong bias.

Protocols that use classical communications and do not make any assumptions on the computa-
tional power of both players, do not exist [3, 4], neither weak nor strong. However, if we consider
protocols that use classical communication with computational assumptions, then there do ex-
ist protocols to create a realization of a fair coin flip in which a cheater can not influence the
outcome. For example Blum’s coin flipping protocol [5], described in Section 5.1 provides a pro-
cedure to generate fair randomness. This method is based on the assumption that it is compu-
tationally hard to factor integers. These are the same assumptions that are made in for example
RSA encryption. It is currently unknown whether there exists a polynomial time algorithm to
factor integers. Furthermore, it is unknown whether integer factorization is NP-complete.

These open questions on the problem of factoring integers do, however, not apply in quantum
computing. Storing information and performing operations on quantum mechanical systems
is different from ordinary computers and allows for effects that cannot be replicated efficiently
by classical computers. An example of a quantum algorithm is Shor’s factoring algorithm [6], that
factors integers in time O((log n)2(log log n)(log log log n)), where n is the integer. Complex-
ity assumptions related to other mathematical problems than factoring, might also defeat the
security on a quantum computer. This means we have to be careful with using complexity as-
sumptions and we want to discard them altogether if possible.

Nevertheless, cryptography and security in ICT applications remains a requirement and we there-
fore have to look for solutions. Two main directions to look are:

1. Designing post quantum coin flipping protocols. These protocols can be executed on clas-
sical computers using classical information channels and rely on complexity assumptions
that are also valid for quantum computers, i.e., mathematical problems that are most prob-
ably also hard for quantum computers. Lattice based schemes or code based schemes offer
solutions in, e.g., key distribution and commitment schemes. These schemes can be used
make secure coin flipping protocols;

2. A second way of establishing a quantum safe coin flipping protocol is to use quantum in-
formation and communication by itself. In this case the security is fundamentally pro-
vided by the physical laws of quantum mechanics. This means the states of the systems
and operations are quantum mechanical instead of classical.

If we investigate the second option in which we use quantum information and communication
as a fundamental basis for protocols, we first have to mathematically formalize the problem. This
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Chapter 1. Introduction

means we have to specify what the laws of quantum mechanics are, which manipulations in the
systems are possible and how to optimize over these possibilities.

A cheater will perform different operations on the system than specified by the protocol. The
sequence of these alternate operations is called a cheating strategy. An equivalent way of describ-
ing a cheating strategy is in terms of density operators of the system after the alternative op-
erators are applied. A density operator is a positive semidefinite operator with unit trace. We
want to find a cheating strategy that results in the highest probability of measuring a chosen
outcome of the honest party. The objective and constraints are given by linear superoperators
and the optimization problem to find the optimal cheating strategy therefore becomes a com-
plex semidefinite program. The highest probability of successfully cheating leads to the bias of a
protocol. Hence, the bias of a quantum coin flipping protocol given by a semidefinite program.

Two honest players wish to find a coin flip, that results in the probability of heads and tails with
equal probability. We call this balanced coin flipping. If two honest players decide to do a coin
flip that has not the same probability for both outcomes, we will refer to this as imbalanced coin
flipping. Depending on the application, there might be a trade-off between the optimal cheating
probability and whether or not the coin flip is balanced. For example, it might be preferable to
choose an imbalanced quantum coin flipping protocol with a 55% chance of finding heads and
45% chance of finding tails and a strong bias of 10%, rather than a balanced protocol with a strong
bias of 25%. It is therefore interesting to know what the relation is between the probability of both
outcomes when both players are honest and the minimal bias of corresponding quantum coin
flipping protocols.

Using duality and constructing feasible solutions of these semidefinite programs it is possible
to derive a lower bound that holds for any kind of quantum coin flipping protocol. Furthermore,
the mathematical framework of two player quantum coin flipping can be extended in a natural
way to a multiplayer setting. In this setting we assume that a known fraction of the players may
behave dishonest, but we do not know which exact players.

A coin flip can result in three possible outcomes: heads, tails or abort. Depending on the sit-
uation, a cheater might have a preference for these outcomes. Suppose that a cheater above all
wants to maximize the probability of the outcome 1. This leads to the primary optimization to
determine optimal cheating strategy. Within this set of possible optimal cheating strategies, a
cheater may want to minimize his or her probability of aborting the protocol. This optimization
program is a modification of the primary optimization problem and is applied to several explicit
protocols. In a similar way, if we weigh the outcomes of a protocol, we formulate an optimiza-
tion program that determines the optimal expected win and a corresponding optimal cheating
strategy.

In this thesis we answer the following main question.

Main question: How can semidefinite optimization be used to solve problems and questions in
quantum coin flipping?

This main question is answered by considering the following subquestions.
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The subquestions of this thesis are:

1. How can one find the optimal cheating strategy and cheating probability of a quantum coin
flipping protocol?

2. Is balanced coin flipping the optimal way of achieving protocols with the lowest possible bias?

3. How can one explicitly setup the semidefinite programming problems to solve?

4. How can one determine the optimal probability of a secondary preference in quantum coin
flipping and what are its values for explicit protocols?

5. How can we use new bounds on quantum coin flipping to determine better explicit bounds on
multiparty quantum coin flipping?

1.2 Mathematical Problem Statement

The bias of a given protocol is the maximum deviation from a fair coin regarding all players, all
outcomes and all possible cheating strategies. The goal is to find a protocol with a bias as low as
possible, because in that case honest players are secured against cheaters as much as possible.

The problem can be broken down into three stages. First, we fix a quantum coin flipping proto-
colP , an honest player and an outcome the cheater wants the honest player to output. Suppose
that Alice is honest and Bob wants to enforce outcome 0. For a given cheating strategy2 X , we
denote the resulting probability of Alice measuring the outcome 0 by PA,0(X,P). The optimal
cheating probability is

P ∗A,0(P) = sup{PA,0(X,P) : X is a cheating strategy against Alice in protocolP}. (1.2.1)

The other three situations, in which Bob cheats and forces outcome 1 on Alice and Alice cheats to
force outcomes 0 or 1 on Bob, have similar definitions denoted by PA,1(X,P), PB,0(X,P) and
PB,1(X,P) respectively.

This optimization problem is a complex semidefinite programming problem. To quantify the
bias of a protocol we have to take all four possible situations of cheaters and outcomes into ac-
count. The worst possible deviation from a fair coin is called the strong bias,

ε(P) = max{P ∗A,0(P), P ∗A,1(P)P ∗B,0(P), P ∗B,1(P)} − 1

2
. (1.2.2)

In the field of quantum coin flipping, a protocol that has a low bias is considered to be a good
protocol, since cheaters have relatively little influence on the distribution of the coin. Ideally we
want to find a best protocol. The best bias and corresponding protocol is given by

ε∗ = inf{ε(P) : P is a quantum coin flipping protocol}. (1.2.3)

Kitaev in 2002 proved that ε∗ ≥ 1/
√

2− 1/2 ≈ 0.20711 . . . . This proof is based on formulating
the semidefinite programming approach of determiningP ∗A,0(P). Combining the dual semidef-
inite programs for both parties cheating and forcing a certain outcome leads to lower bounds.
In 2009 Chailloux and Kerenidis proved that this bound is in fact tight. These results hold for
two party quantum coin flipping. In 2004 an assymptotic bound was found for the multiplayer
situation.

2In Section 5.4 we will discuss what kind of mathematical object a cheating strategy X is.
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Theorem 1.2.1 (Ambainis, Burhman, Dodis and Röhrig, 2004, [7]) For group ofk players of whom g
are honest the bias of quantum coin flipping is

1

2
−Θ

(g
k

)
. (1.2.4)

It is particularly hard to determine explicit bounds for given values of g and k, so our goal will be
to determine upper and lower bounds on the multiplayer bias.

Lower bounds on the multiplayer bias can be determined by extending Kitaev’s method for two
players to many players.

To determine upper bounds on the bias, we build protocols for k players based on rounds of two
player quantum coin flipping protocols. To get the asymptotic result of Theorem 1.2.1 it won’t
be sufficient to use coin flipping protocols that are suitable for weak and strong coin flipping. A
third variation of coin flipping is introduced, called coin flipping with penalty, in which a cheater
that has been detected loses a specified amount of money. By making the amount of money de-
pend on the round in the overall protocol, the cheaters are more careful and this in the end leads
to the asymptotically optimal bias of Theorem 1.2.1.

1.3 Quantum Coin Flipping Protocols

The first classical coin flipping protocol was introduced in 1981 in the article “Coin flipping by
telephone: A protocol for solving impossible problems” by Manuel Blum [5]. In the now famous
article by Bennett and Brassard in 1984, that presented the first quantum key distribution proto-
col [8], the authors also gave a quantum coin flipping protocol. However, this protocol has bias
ε = 1/2 and hence is completely broken.

An overview of explicit protocols and families of protocols are shown in Table 1.1.

Table 1.1: Known quantum coin flipping protocols with their type and bias. Remarks
are indicated by (1): completely broken, (2): practically implementable, (3): family of
protocols, (4): optimal, (∗) this (long) expression can be found in the corresponding
reference.

Protocol or authors Type Bias Decimal form year Remark Ref.
Bennett & Brassard Strong 1/2 0.5 1984 1 [8]

Aharonov, Ta-Shma,
Vazirani & Yao

Strong
√

2/4 0.35355 . . . 2000 [9, 10]

Spekkens & Rudolph Strong (
√

5− 1)/4 0.30902 . . . 2001 [10]
Spekkens & Rudolph Strong 1/4 0.25 2001 [11]

Ambainis Strong 1/4 0.25 2004 [12]
Mochon Weak 1/6 0.16667 . . . 2005 [13]
Mochon Weak ∗ 0.192 . . . 2004 3 [14]

Berlín, Brassard,
Bussières & Godbout

Strong 2/5 0.4 2009 2,3 [15, 16]

Chailloux & Kerenidis Strong (
√

2− 1)/2 0.20711 . . . 2009 3,4 [17]
Mochon Weak 0 0 2007 3,4 [18]

Singh Arora,
Roland & Weis

Weak 1/10 0.1 2019 3 [19]

Very little is known about the relation between the optimal strong or weak bias and the number
of rounds or dimensions of the private and message spaces of a protocol. One result is a weak
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Chapter 1. Introduction

lower bound on the number of

Theorem 1.3.1 (A. Ambainis, [12]) Suppose we have a quantum coin flipping protocol with a weak bias
ε > 0. Then the number of rounds of this protocol is at least Ω(log log(1/ε)).

This theorem suggests that as ε approaches zero, the number of rounds goes to infinity.

Related subjects to quantum coin flipping are for example oblivious transfer protocols, in which
a sender sends information to a receiver, without the receiver knowing whether or what infor-
mation has been sent [20]. This applications do not necessarily share the same properties, but
the security of these protocols can be modelled in a similar way as quantum coin flipping using
semidefinite optimization. A coin flip can be considered as a realization of a Bernoulli random
variable. A die roll withn sides is a realization of a uniform random variable on the set{1, . . . , n},
and is therefore a natural generalization of quantum coin flipping. Quantum die rolling is dis-
cussed by Sikora in 2017 [21], and provides extensions to the bounds for coin flipping. Similar to
multiple parties for quantum coin flipping, one can also consider multiple players in quantum
die rolling.

1.4 Contributions

The contributions of this thesis to quantum coin flipping are relatively diverse and build upon
several existing problems. The contributions in this thesis are:

1. A comprehensive description of semidefinite optimisation, quantum information theory
and quantum coin flipping.

2. We introduce known results of two player quantum coin flipping in order to establish
bounds in multiparty quantum coin flipping. This leads to new explicit bounds that are
better than the bounds on which the proof of Theorem 1.2.1 is based.

3. We present variations on problems in quantum coin flipping. We show how we can find
the best cheating strategy is we have an ordered list of preferences of outcomes and how
to optimize the expected win based on weights of the different outcomes.

4. We explicitly model a quantum coin flipping protocol as a quantum circuit. From this
quantum circuit it is easy to determine the standard form of a protocol which is used in
the optimization program. Based on the standard form, the optimal cheating strategies,
probabilities and biases of three protocol are solved numerically.

5. We show that balanced coin flipping is preferable over imbalanced coin flipping. This re-
sult has not been discussed in literature and strengthens the setting of balanced coin flip-
ping on which many theory is based.

6. We present a detailed description of parts that are skipped by literature such as a rigorous
proof of strong duality, assumptions that lead to symmetry in the pair of programs and re-
ductions of multiparty quantum coin flipping. We also give a detailed description on why
real and complex semidefinite programming are equivalent and how we can transform
complex to real semidefinite programs.

7. The joined work on distributed algorithms in networks of quantum computers. This is a
separate topic of this thesis that does not have a lot of overlap with quantum coin flipping
and is therefore discussed in Part I.

Because of the differences between the subjects quantum coin flipping and quantum network
optimization, the thesis is split in two parts. In Part I we look a quantum coin flipping and in
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Part II we look at modelling quantum circuit design problems in networks of quantum comput-
ers.

In Part I we have the following structure. First, in Chapter 2, we develop the necessary math-
ematical preliminaries. In Chapter 3 we look at the theory of semidefinite programming applied
to real and complex operators. Next, in Chapter 4 we present the necessary ideas from quan-
tum mechanics and quantum information theory and consider some interesting applications of
semidefinite programming in quantum information theory. In Chapter 5.4 we combine semidef-
inite optimization and quantum information theory to describe the problem of quantum coin
flipping and derive bounds. Finally we end with conclusions and recommendations for further
research in Chapter 6.

Part II consists of an introduction on the subject of Distributed quantum computing and quan-
tum networks and this is followed by the article.
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Chapter 2

Mathematical Preliminaries

“We (Halmos and Kaplansky) share a philosophy about linear
algebra: we think basis-free, we write basis-free, but when the
chips are down we close the office door and compute with matri-
ces like fury. ”

- Irving Kaplansky

To describe quantum systems, we need to define states, unitary operations, measurements and
combinations of systems in terms of Euclidean spaces, operators and tensor products. Semidefi-
nite programming requires knowledge of positive semidefinite operators and inner products on
the space of operators. Both can be done in the language of linear algebra, as we will see later in
Section 4. In this chapter we introduce the necessary mathematical tools to describe the problem
rigorously.

Throughout this thesis we will make use of Hilbert spaces. In this chapter, we assume these
spaces are finite dimensional (overR andC) as the applications are based on finite dimensional
spaces. This means that every space can be regarded as the vector space Rn or Cn for some
positive integer n, and thus in particular as a complex Euclidean space. When dealing with
multiple vector spaces it is sometimes more convenient to refer to them in an abstract way as
A,B,X ,Y, . . . instead of the more explicit Cn.

2.1 Complex Euclidean Spaces and Tensor Products

The first mathematical tool we describe is the tensor product of vector spaces [22]. Informally, the
tensor product allows us to describe a vector space that consists of ‘vectors of vectors’ from different
spaces that share the same scalar field. We will first give the general definition, followed by some
examples and properties.

Definition 2.1.1 (Tensor product of vector spaces) Let X ,Y be finite-dimensional vector spaces over
the field of complex numbers C. Then the tensor productX ⊗Y is the vector space over C generated by the
elements x⊗ y, x ∈ X , y ∈ Y , called elementary tensors, for which it holds that:

1. For all x1, x2 ∈ X and y ∈ Y ,

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y. (2.1.1)

2. For all x ∈ X and y1, y2 ∈ Y ,

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2. (2.1.2)

3. For all α ∈ C, x ∈ X and y ∈ Y ,

α(x⊗ y) = (αx)⊗ y = x⊗ (αy). (2.1.3)
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Notice that the set {x⊗ y : x ∈ X , y ∈ Y} ⊆ X ⊗ Y is in general not a vector space.

Since bothX and Y are finite dimensional, every tensor inX ⊗ Y can be written as
∑

i∈I
xi ⊗ yi, (2.1.4)

for some finite index set I and vectors xi ∈ X , i ∈ I , and yi ∈ Y, i ∈ I .

We will first consider an intuitive description on finite dimensional spaces. Suppose X = Cn

andY = Cm, thenX ⊗Y is isomorphic toCnm. This isomorphism is given by the map (defined
on elementary tensors):

ψ : Cn⊗Cm ∼−→ Cnm

(a1, . . . , an)⊗ (b1, . . . , bm) 7→ (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm).
(2.1.5)

In particular,
dim(X ⊗ Y) = dim(X ) · dim(Y). (2.1.6)

If {e1, . . . , en} is a basis ofX and {f1, . . . , fm} is a basis of Y , then

{ei ⊗ fj : i ∈ [n], j ∈ [m]}, (2.1.7)

is a basis ofX ⊗ Y and every element can be written as

n∑

i=1

m∑

j=1

αijei ⊗ fj , (2.1.8)

for number αij ∈ C, i ∈ [n], j ∈ [m].

Example 2.1.1 Suppose we have two vectors (2,−3), (−1, 4) ∈ C2, then C2⊗C2 can be associated
with C4 by the map 2.1.5. Therefore

ψ((2,−3)⊗ (−1, 4)) = (−2, 8, 3,−12). (2.1.9)

On the other hand, suppose we have the vector (0, 1, 2,−3) ∈ C4, then it is easy to see that there is no pair
of vectors x, y ∈ C2 such that ψ(x ⊗ y) = (0, 1, 2,−3). Otherwise, the product of the first component
of x and y has to be zero, therefore one of these first components has to be zero and necessarily x⊗ y has to
have at least another component zero, which is not the case.

However, we can write

(0, 1, 2,−3) = ψ((1, 0)⊗ (0, 1) + 2(0, 1)⊗ (1, 0)− 3(0, 1)⊗ (0, 1)), (2.1.10)

as a linear combination of simple tensors in terms of the standard basis.

Also the inner product of two vector spaces can be extended to an inner product of the tensor
space. More specifically, if X ,Y are two complex Euclidean spaces with inner products 〈·, ·〉X
and 〈·, ·〉Y respectively, then X ⊗ Y is a complex Euclidean space with inner product 〈·, ·〉 de-
fined on simple tensors and extended linearly on the extended linearly on the first argument en
conjugate linear on the second argument toX ⊗ Y by

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉1〈y1, y2〉2, for all x1, x2 ∈ X , y1, y2 ∈ Y. (2.1.11)

IfX andY are complex vector spaces, thenL(X ,Y) denotes the space of all linear mapsX → Y .
The spaceL(X ,Y) is a complex vector space itself. IfX = Y , thenL(X ,X ) is also denoted sim-
ply byL(X ).
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The identity map on X is denoted by IX . If explicitly X = Cn, then we also write In. Simi-
larly, forX = Cn the elementary matrices are represented by the set of matricesEij for i, j ∈ [n].

(Eij)k` =

{
1 if k = i and j = `

0 otherwise
, for k, ` ∈ [n], (2.1.12)

The set of elementary matrices forms a basis ofL(X ) and thus every operatorX ∈ L(X ) can be
written as the matrix

X =
n∑

i=1

n∑

j=1

〈Eij , X〉Eij . (2.1.13)

A real operatorX ∈ L(Rn) is called symmetric ifX = X> and the set of symmetric operators is
denoted by Sym(Rn) which forms a real vector space. A complex operatorX ∈ L(Cn) is called
Hermitian if X = X† and the set of all Hermitian operators is denoted by Herm(Cn). The set
Herm(Cn) is a real vector space but not a complex vector space. This can easily be seen from the
fact that ifX ∈ Herm(Cn), then iX = −iX†.

An important map in L(X ,C) where X = L(Cn) for some positive integer n, is the trace of
an operator. Suppose an operatorX ∈ L(Cn) is represented by a matrix

X =



X11 . . . X1n

...
. . .

...
Xn1 . . . Xnn


 , (2.1.14)

then the trace is the linear map, defined by

Tr(X) =
n∑

i=1

Xii. (2.1.15)

An important property of the trace is that Tr(XY ) = Tr(Y X) for allX,Y ∈ L(X ). In particu-
lar, ifU is a unitary operator inL(X ), then

Tr(UXU †) = Tr(XU †U) = Tr(X) (2.1.16)

and thus the trace map is independent of the chosen basis.

Linear maps between spaces can also be extended to linear maps between the tensor product
of their spaces in a natural way. From a pair of operators A ∈ L(X ,X ′) and B ∈ L(Y,Y ′) we
define an operator inL(X ⊗ Y,X ′ ⊗ Y ′) on simple tensors by

A⊗B : X ⊗ Y → X ′ ⊗ Y ′
x⊗ y 7→ (Ax)⊗ (By).

(2.1.17)

Explicitly we can define the map given a basis of a finite dimensional vector space

Ψ: L(Cn,Cm)× L(Cp,Cq)
∼−→ L(Cnp,Cmq)

(A,B) =






a11 . . . a1m

...
. . .

...
an1 . . . anm


 ,



b11 . . . b1q

...
. . .

...
bp1 . . . bpq





 7→



a11B . . . a1mB

...
. . .

...
an1B . . . anmB




(2.1.18)
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=




a11b11 . . . a11b1q . . . a1mb11 . . . a1mb1q
...

. . .
...

...
. . .

...
a11bp1 . . . a11bpq . . . a1mbp1 . . . a1mbpq

...
...

...
...

an1b11 . . . an1b1q . . . anmb11 . . . anmb1q
...

. . .
...

...
. . .

...
an1bp1 . . . an1bpq . . . anmbp1 . . . anmbpq




. (2.1.19)

This map is called the Kronecker product, named after Leopold Kronecker (1823-1891), and is
used in many fields of science. Form = q = 1 this map reduces to the map from Equation 2.1.5
by regarding n× 1 and p× 1-matrices as vectors.

Example 2.1.2 Consider the matricesA =

(
1 2
3 4

)
, B =

(
5 6
7 8

)
∈ L(C2), then

Ψ(A⊗B) =




1

(
5 6
7 8

)
2

(
5 6
7 8

)

3

(
5 6
7 8

)
4

(
5 6
7 8

)


 =




5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32


 ∈ L(C4). (2.1.20)

If v = (1, 2) andw = (3, 4) thenψ(v ⊗ w) = (3, 4, 6, 8) so

Ψ(A⊗B)ψ(v ⊗ w) =




5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32







3
4
6
8


 =




195
265
429
583


 , (2.1.21)

and,

ψ((Av)⊗ (Bw)) = ψ

((
5
11

)
⊗
(

39
53

))
=




195
265
429
583


 , (2.1.22)

hence both Equations 2.1.21 and 2.1.22 yield the same result as expected.

So far, we described the relation and properties of the tensor product of vector spaces. We will
now zoom in on a particular linear operator, the partial trace. For a vector spaceX over a field C,
the trace operator is defined as a functional, i.e. Tr: L(X )→ C, so similarly we could define the
trace on a tensor product Tr: L(X ⊗ Y) → C for some vector spacesX ,Y over C. The partial
trace is a generalization of this linear operator, that maps to L(X ) or L(Y) instead of the field
C. As we will see in Section 4 this operation corresponds to describing quantum mechanical
subsystems.

Definition 2.1.2 (Partial trace operation) LetX ,Y be vector spaces overC. Then the partial trace over
Y is the unique linear operator

TrY : L(X ⊗ Y)→ L(X ), (2.1.23)

defined by
TrY(X ⊗ Y ) = X Tr(Y ), (2.1.24)

for all X ∈ L(X ), Y ∈ L(Y). Similarly we can define the partial trace over X as the unique operator
defined by

TrX : L(X ⊗ Y)→ L(Y)

X ⊗ Y 7→ Tr(X)Y,
(2.1.25)

for allX ∈ L(X ), Y ∈ L(Y).
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In short, one could write TrY = IX ⊗ Tr and TrX = Tr⊗IY .

We can use the association Cn⊗Cm ∼= Cnm from Equation 2.1.18 and the standard basis to
explicitly express the partial trace operator. For example ifX = C2 and Y = C3, then

TrY




1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36




=




Tr




1 2 3
7 8 9
13 14 15


 Tr




4 5 6
10 11 12
16 17 18




Tr




19 20 21
25 26 27
31 32 33


 Tr




22 23 24
28 29 30
34 35 36







=

(
24 33
78 87

)
∈ L(C2).

(2.1.26)

Similarly if we take the trace overX = C2 we get

TrX




1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36




=




Tr

(
1 4
19 22

)
Tr

(
2 5
20 23

)
Tr

(
3 6
21 24

)

Tr

(
7 10
25 28

)
Tr

(
8 11
26 29

)
Tr

(
9 12
27 30

)

Tr

(
13 16
31 34

)
Tr

(
14 17
32 35

)
Tr

(
15 18
33 36

)




=




23 25 27
35 37 39
47 49 51


 ∈ L(C3).

(2.1.27)
In general, if we have vector spacesX1, . . . ,Xn, then the partial trace overXk for some 1 ≤ k ≤ n
of an linear operator on the tensor product X1 ⊗ · · · ⊗ Xn is defined on a basis of the linear
operators

TrXk
: L(X1 ⊗ · · · ⊗ Xn)→ L(X1 ⊗ · · · ⊗ Xk−1 ⊗Xk+1 ⊗ · · · ⊗ Xn)

Ei1,j1 ⊗ · · · ⊗ Ein,jn 7→ Tr(Eik,jk)Ei1,j1 ⊗ · · · ⊗ Eik−1,jk−1
⊗ Eik+1,jk+1

⊗ · · · ⊗ Ein,jn

=

{
Ei1,j1 ⊗ · · · ⊗ Eik−1,jk−1

⊗ Eik+1,jk+1
⊗ · · · ⊗ Ein,jn if ik = jk

0 otherwise
,

We have seen that there is an isomorphism between Cn⊗Cm and Cnm. Furthermore, note
that the vector space of n×m-matrices,L(Cn,Cm) has the same dimension as Cn⊗Cm, and
therefore there is an isomorphism between these spaces. The following linear map given by its
action on the basis represents such an isomorphism

vec: L(Y,X )
∼−→ X ⊗ Y

Ei,j 7→ ei ⊗ ej .
(2.1.28)

This linear map, called the operator-vector correspondence, has the following important properties.

First of all, with regard to a general systems of equations, we have the relation

(A⊗ C) vec(B) = vec(ABC>). (2.1.29)

The partial trace overX orY of an outer product of elements in the tensor productX ⊗Y relates
to the ordinary matrix product by the equations

TrY(vec(A) vec(B)†) = AB†, (2.1.30)
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and
TrX (vec(A) vec(B)†) = A>B. (2.1.31)

All of these properties can be proven by considering a basis of the linear maps. We will prove
identity 2.1.30 and identity 2.1.31 will follow similarly by taking TrY in the last step.

LetA = (aij)i∈[n],j∈[m] andB = (bij)i∈[n],j∈[m] be complex matrices. Then

vec(A) vec(B)† =


∑

i∈[n]

∑

j∈[m]

aijei ⊗ ej




∑

k∈[n]

∑

`∈[m]

bk`ek ⊗ e`



†

=
∑

i,k∈[n]

∑

j,`∈[m]

aijbk`(ei ⊗ ej)(ek ⊗ e`)>

=
∑

i,k∈[n]

∑

j,`∈[m]

aijbk`(eie
>
k )⊗ (eje

>
` ).

(2.1.32)

If we now take the partial trace of the expression with regard to the space Y we get

TrY(vec(A) vec(B)†) =
∑

i,k∈[n]

∑

j,`∈[m]

aijbk`(eie
>
k ) Tr(eje

>
` )︸ ︷︷ ︸

δj`

=
∑

i,k∈[n]


∑

j∈[m]

aijbkj


 (eie

>
k )

= AB†.

(2.1.33)

Similarly, if we take the partial trace with regard to the space X we eliminate the matrix eie>k
and findA>B as the result.

In semidefinite programming we consider pairs of programs called primal and dual semidefi-
nite optimisation programs. If the primal program is defined by an operator in L(X ,Y), then
the dual program is determined by the adjoint operator inL(Y,X ). Formally the adjoint is defined
as follows:

Definition 2.1.3 LetX ,Y be complex Euclidean spaces and Φ ∈ L(X ,Y) a linear operator. The adjoint
of Φ, denoted by Φ† ∈ L(Y,X ), is the unique operator such that for everyX ∈ X and Y ∈ Y holds

〈Φ(X), Y 〉 = 〈X,Φ†(Y )〉. (2.1.34)

The existence and uniqueness of such an operator is not trivial. In the case of finite dimensional
vector spaces the adjoint of an operator is the transpose (real) or Hermitian transpose (complex)
of its matrix. The operation of taking the adjoint is conjugate linear on the space of operators as
can be easily seen from the definition.

An explicit example of an operator from which we will need the adjoint is the partial trace map.
This operator appears in the semidefinite program that encodes the cheating strategy of quan-
tum coin flipping.

Lemma 2.1.1 LetX ,Y be complex Euclidean spaces. The map

ΩY : L(X )→ L(X ⊗ Y)

X 7→ X ⊗ IY ,
(2.1.35)

is the adjoint operator of the partial trace TrY ∈ L(X ⊗ Y,X ).
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Proof: LetA ∈ L(X ), B ∈ L(X⊗Y), then we can writeB =
∑

i∈I Xi⊗Yi forXi ∈ L(X ), Yi ∈
L(Y) for some index set I (we could for example take a basis ofL(X ). Then

〈ΩY(A), B〉 =

〈
A⊗ IY ,

∑

i∈I
Xi ⊗ Yi

〉
=
∑

i∈I
〈A⊗ IY , Xi ⊗ Yi〉 =

∑

i∈I
〈A,Xi〉X 〈IY , Yi〉Y

=
∑

i∈I
〈A,Xi〉X Tr(Yi) =

∑

i∈I
〈A,Xi Tr(Yi)〉 =

∑

i∈I
〈A,TrY(Xi ⊗ Yi)〉

=

〈
A,TrY

(∑

i∈I
Xi ⊗ Yi

)〉
= 〈A,TrY(B)〉.

(2.1.36)
Hence the adjoint of the map ΩY is the partial trace over Y . �

As a special case we can consider the ‘full’ trace map Tr : L(X )→ C (if we associateL(C) with
C) and its adjoint

ΩX : C→ L(X )

z 7→ zIX .
(2.1.37)

Another map that is useful is the map that changes the basis of matrix. LetU ∈ L(X ) be a unitary
matrix and define Φ ∈ T (X ) by Φ(X) = UXU †. Then the adjoint of Φ is Φ†(X) = U †XU ,
which is clear from the fact that

〈UXU †, Y 〉 = 〈UX, Y U〉 = 〈X,U †Y U〉, (2.1.38)

for everyX,Y ∈ L(X ).

2.2 Positive Semidefinite Operators on Euclidean Spaces

The main mathematical object of this thesis will be positive semidefinite operators on real and
complex Euclidean spaces. These operators will be the decision variables of semidefinite optimi-
sation programs and will be the representative mathematical object for quantum states. We will
first of all introduce real positive semidefinite operators and later show that complex semidefi-
nite operators can be related to real operators and share the same properties. We will consider
properties of positive semidefinite operators

Definition 2.2.1 A symmetric operatorX ∈ Sym(Rn) is positive semidefinite, denoted byX � 0, if for
all v ∈ Rn we have v>Xv ≥ 0.

Similarly,X is positive definite, denoted byX � 0, if for all v ∈ Rn \{0}we have v>Xv > 0.

The sum of two positive semidefinite matrices is again positive semidefinite. Scalar multiples of
positive semidefinite matrices are also again positive semidefinite. These properties are imme-
diately clear from the definition and lead to the fact that the set of all positive semidefinite ma-
trices form a cone. However the product of positive semidefinite matrices is not always positive
semidefinite. In particular the product is not always symmetric. This is shown by the following
example, let

X =

(
4 2
2 1

)
, Y =

(
2 −1
−1 1

)
, (2.2.1)

thenXY =

(
6 −2
3 −1

)
. The eigenvalues ofX are 0, 5 and the eigenvalues of Y are (3±

√
5)/2.

Definition 2.2.1 can be applied easily in many circumstances to show that an operator is positive
semidefinite. However, there are a number of equivalent statements that may be more practical
in some cases.
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Lemma 2.2.1 (Equivalent statements for positive semidefinite operators) Let X be a symmetric
matrix on Rn, the following statements are equivalent

1. X is positive semidefinite.
2. All eigenvalues ofX are non-negative.
3. X has a Cholesky decomposition; i.e., there exists an n× k-matrixL such thatX = LL>.
4. X is a Gram matrix, i.e. there exist vectors v1, . . . , vn ∈ Rk such thatXij = v>i vj .
5. All principal minors ofX are non-negative, i.e. for all I ⊆ [n] we have

detXI,I ≥ 0. (2.2.2)

Proof: We will prove these statements in a the following way

1. =⇒ 2. =⇒ 3. =⇒ 4. =⇒ 1.

3 =⇒ 5. =⇒ 1.
(2.2.3)

1. =⇒ 2. Suppose X is positive semidefinite and let v be an eigenvector corresponding to an
eigenvalue λ ofX , then

0 ≤ v>Xv = x>(λv) = λx>x = λ‖x‖2, (2.2.4)

hence λ ≥ 0.

2. =⇒ 3. Suppose X has a spectral decomposition X =
∑n

i=1 λiviv
>
i , with λi ≥ 0 for all

i ∈ [n], if we letL = (
√
λ1v1 · · ·

√
λnvn), we haveX = LL>.

3. =⇒ 4. Suppose we have a Cholesky decomposition of X , i.e. X = LL>. If we let vi be
the i-th row ofL, then clearlyXij = v>i vj .

4. =⇒ 1. SupposeX is the Gram matrix of v1, . . . , vn ∈ Rk. Let y ∈ Rn, then

y>Xy =
n∑

i=1

n∑

j=1

yiXi,jyj =
n∑

i=1

n∑

i=1

yiv
>
i vjyj =

∥∥∥∥∥
n∑

i=1

yivi

∥∥∥∥∥

2

≥ 0, (2.2.5)

and thusX is positive semidefinite.

3. =⇒ 5. Suppose X has a Cholesky decomposition X = LL>. Let I ⊆ [n], then XI,I

has a Cholesky decomposition of LIL>I , where LI is created by removing all rows not in I from
L. Since XI,I has a Cholesky decomposition we conclude that X is positive semidefinite and
thus detXI,I ≥ 0.

5. =⇒ 1. Suppose every principal minor ofX is non-negative. We will prove the statement by
induction. Clearly the statement holds for every 1× 1-matrix, which is just a number. Suppose
the statement holds for all (n− 1)× (n− 1)-matrices.

Suppose X has an eigenvalue λ < 0 and all other eigenvalues are positive, then detX < 0
and we have a contradiction. So there must be another eigenvalue µ ofX for which µ ≤ 0. Let x
and y be their corresponding orthonormal eigenvectors. We pick a number r ∈ R such that the
vector z = x + ry has a coordinate equal to zero, say zi = 0 for some index i ∈ [n]. Consider
the (n − 1) × (n − 1)-principal submatrix Y = X[n]\{i},[n]\{i} of X created by removing both
column and row i. Similarlyw = z[n]\{i} is created by removing the i-th index. We now have

w>Y w = z>Az = x>λx+ (ry)>µ(ry) = λ‖x‖2 + r2µ‖y‖2 = λ+ r2µ < 0, (2.2.6)

which contradicts the induction hypothesis. We thus concludeX has to be positive semidefinite.
�
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The fifth statement of Lemma 5 can be sophisticated in the case of positive definite matrices and
is referred to as Sylvester’s criterion. This criterion does not require to check every principal minor
by only the leading principal minors.

Theorem 2.2.2 (Sylvester’s criterion, J.J. Sylvester) Let X be a symmetric matrix, then X is posi-
tive definite if and only if all leading principal minors ofX are positive, that is, for all k ∈ [n]

∆k := detX[k],[k] > 0. (2.2.7)

It would be natural to think this theorem extends to positive semidefinite matrices too, by replac-
ing positive by non-negative. This, however, is not true. As an example we can consider the
matrix

X =




1 1 1
1 1 1
1 1 x


 , (2.2.8)

for some x ∈ R. Then clearly ∆1 = ∆2 = ∆3 = 0, independent of x. If x is negative, then
clearly e>3 Xe3 = x < 0 and we thus have to concludeX is not positive semidefinite. Algorithmi-
cally, this makes a big differences. Sylvester’s criterion requires us to calculate n determinants,
whereas 2.2.1.5 requires to make 2n − 1 calculations of determinants.

The second statement of Lemma 2.2.1 relates the eigenvalues to positive semidefiniteness. The
following theorem by Semyon A. Gershgorin (1901-1933) gives a set that is easy to determine,
in which the eigenvalues of a real or complex operator must lie. This theorem shows that an
operator is positive semidefinite if all the elements in this set have positive real part. This im-
plies that the corresponding operator is positive semidefinite without explicitly calculating the
eigenvalues.

Theorem 2.2.3 (Gershgorin circle theorem, S.A. Gershgorin, 1931) LetX be ann×n-matrix over
C (not necessarily symmetric). For i ∈ [n] define the radius ri =

∑n
j=1,j 6=i |Xij | and the closed discs

with radius ri and centerXii byB(Xii, ri) = {z ∈ C : |z −Xii| ≤ ri}, called the Gershgorin discs of
X .

Then every eigenvalue ofX lies within one of the Gershgorin discs.

Proof: Let λ be an eigenvalue ofX and v an eigenvector. We can always choose an eigenvector
from the eigenspace with at least one coordinate equal to 1 and all other components having
a modulus |vi| ≤ 1. If we now look at the eigenvalue equation Xv = λv, then for the i-th
component

n∑

j=1

Xijvj = λvi = λ, (2.2.9)

which is equal to

Xii +
n∑

j=1
j 6=i

Xijvj = λ. (2.2.10)

We can now apply the triangle inequality and see that

|λ−Xii| =

∣∣∣∣∣∣

n∑

j=1,j 6=i
Xijvj

∣∣∣∣∣∣
≤

n∑

j=1,j 6=i
|Xij ||vj | ≤

n∑

j=1,j 6=i
|Xij |, (2.2.11)

and thus the result follows. �

An immediate consequence of Gershgorin’s circle theorem is a sufficient condition of for an op-
erator to be positive semidefinite.
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Corollary 2.2.4 LetX be a symmetric matrix that is diagonally dominant, i.e. for all i ∈ [n] we have

Xii ≥
∑

j=1
j 6=i

|Xij |.
(2.2.12)

ThenX is positive semidefinite.

Proof: IfX is symmetric, then all eigenvalues are real. Let λ be an eigenvalue ofX . BecauseX
is diagonally dominant, we know from Gershgorin’s circle theorem (Theorem 2.2.3) that there
exists an i ∈ [n] such that λ ∈ [Xii − ri, Xii + ri]. Because Xii ≥ r we have λ ≥ 0. Hence all
eigenvalues are positive and thusX is positive semidefinite. �

The converse of Corollary 2.2.4 is in general not true. An easy example is given by the 3×3 all-ones
matrix

J3 =




1 1 1
1 1 1
1 1 1


 ∈ L(R3). (2.2.13)

Clearly J3 is not diagonally dominant. However, the three eigenvalues of J3 are 3,0,0 and there-
fore J3 is positive semidefinite by Lemma 2.2.1.

Another characterisation of positive semidefinite matrices is given by the following lemma, due
to Lipót Fejér (1880-1959).

Lemma 2.2.5 LetX be a symmetric matrix, we have the following equivalence
1. X is positive semidefinite;
2. For all Y � 0 we have 〈X,Y 〉 ≥ 0.

Proof: 1. =⇒ 2. SupposeX � 0 and its spectral decomposition is

X =
n∑

i=1

λiviv
>
i , (2.2.14)

where λi ≥ 0 for any i ∈ [n] and let Y � 0, then

〈X,Y 〉 =

〈
n∑

i=1

λiviv
>
i , Y

〉
=

n∑

i=1

λi〈viv>i , Y 〉 =
n∑

i=1

λiv
>
i Y vi ≥ 0, (2.2.15)

since v>i Y vi ≥ 0 for any i ∈ [n].

2. =⇒ 1. Suppose for all Y � 0 we have 〈X,Y 〉 ≥ 0. In particular for any y ∈ Rn the
matrix Y = yy> is positive semidefinite, therefore

〈X,Y 〉 = 〈X, yy>〉 = y>Xy ≥ 0, (2.2.16)

and henceX is positive semidefinite. �

Operators on Euclidean spaces can be extended to operators on the direct sum and tensor prod-
uct of these spaces. These operators preserve the property of being positive semidefinite, which
follows relatively straightforward from the definitions. This property is essential when describ-
ing quantum systems and interactions. First we will consider the direct sum of operators.

Lemma 2.2.6 Let X ∈ Sym(Rn) and Y ∈ Sym(Rm) be symmetric matrices and then the matrix
X ⊕ Y ∈ Sym(Rn) ⊕ Sym(Rm) is positive semidefinite if and only if both X and Y are positive
semidefinite.
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Proof: “ =⇒ ” SupposeX ⊕ Y is positive semidefinite, let v ∈ Rn, then

(v ⊕ 0)>(X ⊕ Y )(v ⊕ 0) = v>Xv ≥ 0. (2.2.17)

Similarly, for u ∈ Rm we have

(0⊕ u)>(X ⊕ Y )(0⊕ u) = u>Y u ≥ 0, (2.2.18)

soX � 0 and Y � 0.

“ ⇐= ” Suppose X,Y � 0. Let z ∈ Rn⊕Rm, then z = u ⊕ v for some u ∈ Rn, v ∈ Rm,
and thus

z>(X ⊕ Y )z = u>Xu+ v>Y v ≥ 0, (2.2.19)

and thusX ⊕ Y is positive semidefinite. �

In general a matrix of the forX1 ⊕X2 ⊕ · · · ⊕Xm is positive semidefinite if allXi are positive
semidefinite for i ∈ [m].

For the tensor product of linear operators we use the second statement of Lemma 2.2.1. The
spectrum of the tensor product is given by the set of pairwise products of the spectra of both
operator individually. This is formally stated in the following lemma.

Lemma 2.2.7 Let X ∈ L(Rn), Y ∈ L(Rm) be diagonizable operators, with eigenvalues λi, i ∈ [n],
µj , j ∈ [m] and eigenvectorsui, i ∈ [n], vj , j ∈ [m] respectively. The operatorX⊗Y ∈ L(Rn⊗Rm)
has eigenvalues λiµj and corresponding eigenvectors ui ⊗ vj for i ∈ [n] and j ∈ [m].

Proof: We can write the spectral decomposition as

X =
n∑

i=1

λiuiu
>
i , Y =

m∑

j=1

µjvjv
>
j , (2.2.20)

then

X ⊗ Y =
n∑

i=1

m∑

j=1

λiµj(uiu
>
i )⊗ (vjv

>
j ) =

n∑

i=1

m∑

j=1

λiµj(ui ⊗ vj)(ui ⊗ vj)>, (2.2.21)

from which the statement directly follows. �

It is now easy to see why the tensor product preserves positive semidefiniteness.

Lemma 2.2.8 Let X ∈ L(Rn), Y ∈ L(Rm). If X and Y are positive semidefinite, then X ⊗ Y is
positive semidefinite.

Proof: Clear. Since the spectrum of X ⊗ Y is {λiµj : i ∈ [n], j ∈ [m]} and contains only
non-negative products. �

Similar to the direct sum, if we have a number of positive semidefinite operatorsX1 ∈ L(X1), . . . , Xn ∈
L(Xn) then the operator X1 ⊗ · · · ⊗ Xn ∈ L(X1 ⊗ · · · ⊗ Xn) is positive semidefinite as well.
This is a direct consequence of applying Lemma 2.2.8 repeatedly.
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Chapter 3

Semidefinite Programming

“The price of metaphor is eternal vigilance.”
- Norbert Wiener

Semidefinite programming is a relatively new and very powerful optimization formalism. It allows for a
flexible description or relaxations of many problems in for example combinatorics and graph theory. Solv-
ing a semidefinite program can be done in polynomial running time and is therefore efficient. In this section
we look at the descriptions of a general real and complex semidefinite programs, duality theory, examples
and methods of solving. We provide the necessary mathematical concepts to understand these subjects.

Useful sources that have been used here are the book on convex optimization by Boyd and Van-
denberge [23], lecture notes from the Mastermath course on semidefinite optimization in 2018
[24], and Handbook on semidefinite, conic and polynomial optimization by Anjos and Laserre
[25]. Much of the notation is used from Watrous’ book on quantum information theory [26].

3.1 Linear Programming

We start with the widely known general linear program (LP), which is given by

p∗ = sup{c>x : Ax = b, x ∈ Rn, x ≥ 0}. (3.1.1)

In this program c ∈ Rn and b ∈ Rm are vectors and A ∈ L(Rn,Rm) is a real m × n-matrix.
The decision variablex is a vector inRn. This optimization program is characterized by the cone
of vectors for which every component is positive, denoted by x ≥ 0. The dual of Program 3.1.1 is
given by

d∗ = inf{b>y : A>y ≥ c, y ∈ Rm}. (3.1.2)

Many theoretical and practical problems can be formulated as linear programs. Moreover, if we
restrict the vectors, x to be integer, i.e., all components are integer, then the problem becomes
an integer linear program (ILP). Many difficult combinatorial optimization problems can be for-
mulated as an integer linear program such as the travelling salesman problem and chromatic
number of a graph.

Linear problems can be solved quickly, that is, there exist an algorithm that solves the problem
with a running time that is polynomial in the input size. This can established by the ellipsoid
method or an interior point method. However in practice the simplex method works well, con-
trary to the fact that it has a worst case exponential running time1.

1this result actually depends on the pivoting rules used in the simplex method. It is unknown whether there exist
pivoting rules that do lead to polynomial worst case performance.
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Contrary to linear programs, integer linear programs are in general NP-hard and therefore can-
not be solved quickly unless P = NP.

A natural option would be to look for an approximation of the exact problems with the advantage
of solving the problem quickly. Natural relaxations of ILPs to LPs are therefore a good option.
However, some problems yield an arbitrary large ratio between the optimal and relaxed solu-
tions, this makes some of the problems less suitable to relax to LPs.

The best option would be to have a programming formulation more sophisticated than linear
programming whilst retaining the polynomial running time. One of the options is semidefinite
programming.

Informally semidefinite programming is the result of three actions: 1) replacing vectors by ma-
trices, 2) regarding a new inner product, now on matrices, and 3) posing a new partial ordering
on matrices.

We will define the necessary mathematical structures and the define the general semidefinite
program. To begin, we have to define a matrix inner product. We pose the ‘inner product’ and
show that it actually satisfies all requirements of an inner product. The inner product is called
the trace inner product or Frobenius inner product after Ferdinand G. Frobenius (1849 – 1917). We de-
fine this inner product for linear operators on a complex Euclidean space. By restricting to the
field of real numbers we end up with the same properties. The trace inner product is defined by

〈·, ·〉 : L(X )× L(X )→ C

(X,Y ) 7→ Tr(X†Y ) =
n∑

i=1

n∑

j=1

XijYij .
(3.1.3)

This inner product is linear in the second argument, conjugate linear in the first argument and
positive definite.

If we want to optimise over complex matrices we do require the inner product to map to R,
because the whole space C cannot be ordered. This can be done by restricting to Hermitian ma-
trices. To show this, suppose thatX,Y are Hermitian matrices. By using the fact thatX = X†,
Y = Y † and the cyclic property of the trace, it follows that

〈X,Y 〉 = Tr(X†Y ) = Tr((X†Y )†)) = 〈X,Y 〉. (3.1.4)

Since the spacesL(X ) andX ⊗ X correspond to each other using the map vec, we can identify
that this forms an isometry, i.e.,

〈X,Y 〉 = 〈vec(X), vec(Y )〉. (3.1.5)

An inner product generates an induced norm, which in this case unsurprisingly is called the
Frobenius norm, denoted by ‖ · ‖F or even just ‖ · ‖. Therefore

‖X‖F =
√
〈X,X〉 =




n∑

i=1

n∑

j=1

|Xij |2



1/2

. (3.1.6)

Finally, we need to introduce a partial order. The set (R,≥) forms a totally ordered field, how-
ever, the complex numbers can not be totally ordered. Since complex numbers can be repre-
sented by operators in L(R2), as we will see in Section 3.8, we can not have a total ordering on
L(Rn) for n ≥ 2 orL(Cn) for n ≥ 1.
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The partial ordering we will use is called the Loewner order, after Charles Loewner (1893-1968)
and is given by the relationX � Y if and only ifX − Y is positive semidefinite. A partial order
is a relation that is reflexive, antisymmetric and transitive, so for allX,Y, Z ∈ L(Cn) we must
have:

1. (Reflexivity): X � X . This is clearly the case sinceX −X = 0 � 0.

2. (Antisymmetry) Suppose X � Y and Y � X . Let Z = X − Y , then Z � 0 and Z � 0.
Let x ∈ Cn, then

0 ≤ x†Zx = −x†(−Z)x ≤ 0, (3.1.7)

so we conclude thatZ = 0 and henceX = Y .

3. (Transitivity) SupposeX � Y and Y � Z , then

X − Z = (X − Y ) + (Y − Z) � 0, (3.1.8)

since the sum of two positive semidefinite matrices is again positive semidefinite. SoX �
Z .

Based on the Loewner partial order we can define inequalities of the form

α1A1 + α2A2 + · · ·+ αmAm � B, (3.1.9)

for matrices A1, . . . , Am, B ∈ L(Cn) and numbers α1, . . . , αm ∈ C. Such an inequality is
called a linear matrix inequality (LMI).

3.2 Semidefinite Programming

Based on the inner product and the Loewner order, we will define a general semidefinite pro-
gram. We will first do this for real Euclidean spaces and later extend it to complex spaces.

Let A1, . . . , Am, C ∈ Sym(Rn) be real symmetric n × n-matrices and b1, . . . , bm ∈ R be real
numbers. From this we define a general semidefinite program has the form

P ∗ = sup{〈C,X〉 : 〈Ai, X〉 = bi, i ∈ {1, . . . ,m}, X � 0}. (3.2.1)

The objective of this program is the mapX 7→ 〈C,X〉 and the constraints are the set of equalities
〈A1, X〉 = b1, . . . , 〈Am, X〉 = bm. The feasible region of this program is the set

{X ∈ L(Rn) : 〈A1, X〉 = b1, . . . , 〈Am, X〉 = bm, X � 0}, (3.2.2)

and elements are called feasible. If the feasible region of a semidefinite program is empty, then
the semidefinite program is called infeasible and P ∗ = −∞.

The dual of a semidefinite program as given in 3.2.1 is given by the program

D∗ = inf

{
m∑

i=1

biyi :

m∑

i=1

yiAi − C � 0, y ∈ Rm

}
. (3.2.3)

LetC ∈ Sym(Rn). We will come back to the importance of the dual program in 3.4.

As an example, we consider the following semidefinite program:

sup{〈C,X〉 : TrX = 1, X ∈ Sym(Rn), X � 0}. (3.2.4)
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Note that the constraint Tr(X) = 1 is equivalent to 〈I,X〉 = 1. The dual semidefinitie program
is

inf{y : yIn � C, y ∈ R}. (3.2.5)

In this case the primal and dual optimal values are attainable and equal. In particular the optimal
value is the largest eigenvalue of the matrixC , P ∗ = D∗ = λmax(C).

The optimal value of a semidefinite program is not necessarily attained. Consider for example
the program

P ∗ = inf
{
〈E11, X〉 : 〈E12, X〉 = 1, 〈E21, X〉 = 1, X ∈ L(R2), X � 0

}
. (3.2.6)

If X =

(
X11 X12

X21 X22

)
, then the first pair of constraints translate to X12 = X21 = 1. The

optimal value of this program is P ∗ = 0. To see why, note that for n ≥ 1 the sequences X11 =
1/n, X22 = n are feasible solutions and thus the infimum of X11 is limn→∞ 1/n = 0. Yet the
optimum cannot be attained, otherwise

0 ≤ detX = 0 ·X22 − 1 = −1 < 0. (3.2.7)

The class of semidefinite programs includes linear programs. This can be seen by encoding the
linear program 3.1.1 into a semidefinite program by letting C = diag(c1, . . . , cn) ∈ Sym(Cn)
and Ai = diag(Ai1, . . . , Ain) ∈ Sym(Rn). If X � 0, then Xii ≥ 0 for i ∈ [n]. As a result,
we associate the diagonal ofX with the vector xwe have all the requirements. The off-diagonal
elements do not play a role anymore.

A more abstract, but equivalent, description is in terms of super operators. A super operator is
a linear operator on a space of linear operators, i.e., Φ : L(X ) → L(Y). The set of linear super
operators is denoted by T (X ,Y) or simply T (X ) if X = Y . A graphical representation of the
space of super operators is given in Figure 3.1.

X X

L(X )

Y Y

L(Y)

T (X ,Y) = L(L(X ), L(Y))

Figure 3.1: The operators in T (X ,Y) map operators that act on the spaceX to Y .

The space T (X ,Y) is also a complex Euclidean space and has dimension

dimT (X ,Y) = dimL(X ) · dimL(Y) = (dimX )2(dimY)2. (3.2.8)

Using the map vec, we have the association

T (X ,Y) ∼= L(X ⊗ X ,Y ⊗ Y). (3.2.9)

If a super operator maps Hermitian operators to Hermitian operators, i.e., Φ(X) ∈ Herm(Y)
for every X ∈ Herm(X ), then Φ is called Hermitian preserving. The introduction of super oper-
ators allows us to describe an alternative standard form of a semidefinite program. This form
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allows for more efficient description of the problems that arise in quantum information theory,
but can always be converted to other standard forms too.

The alternative form can also be applied to real semidefinite programming in which Hermitian
matrices reduce to symmetric matrices.

Definition 3.2.1 (Alternative definition of a semidefinite program) Let X ,Y be complex
Euclidean spaces. A complex semidefinite program is defined by a triple (Φ, C,B), where C ∈
Herm(X ),B ∈ Herm(Y) and Φ ∈ T (X ,Y) a Hermitian preserving map, as the program

sup{〈C,X〉 : Φ(X) = B,X ∈ Herm(X ), X � 0}. (3.2.10)

The dual of this program is

inf{〈B, Y 〉 : Φ†(Y ) � C, Y ∈ Herm(Y)}, (3.2.11)

where Φ† is the adjoint operator of Φ.

We will first show that this alternative Definition agrees with Definition 3.2.1 by showing that
both forms can be transformed into the other.

Suppose we have a semidefinite program in the form of 3.2.1 with a list of constraints 〈Ai, X〉 =
bi whereAi ∈ Herm(Cn) and bi ∈ R for i ∈ [m]. We can then define Φ ∈ T (Cn,Cm) as

Φ(X) =

n∑

i=1

〈Ai, X〉Ei,i =




〈A1, X〉 0 . . . 0
0 〈A2, X〉 . . . 0
...

...
. . .

...
0 0 . . . 〈Am, X〉


 ∈ Herm(Cm). (3.2.12)

and

B =
n∑

i=1

biEi,i =




b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bm


 ∈ Herm(Cm). (3.2.13)

then the optimization program sup{〈C,X〉 : Φ(X) = B,X ∈ Herm(X ), X � 0} in the form
of Definition 3.2.1 is equivalent to 3.2.1.

On the other hand, suppose we have a semidefinite program of the form of 3.2.1 and let for
k, ` ∈ [m]:

Zk` =





Ekk if k = `,

1√
2

(Ek` + E`k) if k > `,

i√
2

(Ek` − E`k) if k < `,

(3.2.14)

then the set {Zk` : k, ` ∈ [m]} is a real orthonormal basis2 for Herm(Cm). Consequently the
equation Φ(X) = B is uniquely determined by the set of equations

〈Zk`,Φ(X)〉 = 〈Zk`, B〉, k, ` ∈ [m], (3.2.15)

2Consequently dimR(Herm(Cn)) = n2.
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We can use the adjoint of Φ such that 〈Zk`,Φ(X)〉 = 〈Φ†(Zk`), X〉 and by defining Ak` =
Φ†(Zk`) and bk` = 〈Zk`, B〉. We can rephrase the semidefinite program as

sup 〈C,X〉
s. t.〈Ak`, X〉 = bk`, k, ` ∈ [m],

X � 0,

(3.2.16)

which is the standard form of the definition in Equation 3.2.1.

To show that the programs in Definition 3.2.1 are in the same form, we show that every Hermitian
matrix can be written as a difference of two positive semidefinite matrices and every matrix in-
equality can be written into a matrix equality by introducing a slack positive semidefinite matrix.

First, let Y ∈ Herm(Y) with spectral decomposition

Y =
m∑

i=1

λiyiy
†
i . (3.2.17)

Now let

P =

n∑

i=1

max{0, λi}yiy†i , N =

n∑

i=1

max{0,−λi}yiy†i . (3.2.18)

Then clearly P,N are positive semidefinite, because all of their eigenvalues are non-negative by
construction and furthermore Y = P −N . Also note that PN = 0. For any Hermitian opera-
tor this decomposition is unique and is called the Jordan-Hahn decomposition. This means that we
can regard every Hermitian operator onY as a positive semidefinite operator on the spaceY⊕Y .

Secondly, we will show that inequality constraints are equivalent to equality constraints by intro-
ducing slack operators. LetX,Y ∈ HermX . The statementX � Y is equivalent toX−Y � 0.
This constraints is equivalent to the equalityZ = X − Y , for someZ � 0.

We conclude that both the primal and dual semidefinite programs in Definition 3.2.1 are of the
same form because they can be transformed into each other.

3.3 Quadratic Programming Relaxations

Linear programs can be solved efficiently. On the other hand, quadratic programs can not be
solved efficiently with currently known algorithms3. This major drawback of quadratic pro-
grams naturally asks whether we can approximate these programs. In this section we consider
a semidefinite relaxation.

A general quadratic program is defined as

inf{x>Cx+ c>x : x>Aix+ a>i x = bi, i ∈ [m], x ∈ Rn}. (3.3.1)

where A1, . . . , Am, C ∈ Sym(Rn) is are symmetric real matrices, a1, . . . , am ∈ Rn vectors
and b1, . . . , bm ∈ R are real numbers. We can incorporate the decision variable x ∈ Rn in the
matrix

Y =

(
1 x>

x xx>

)
=

(
1
x

)(
1
x

)>
∈ L(Rn+1). (3.3.2)

3Whether efficient algorithms exists is still open
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Note that this matrix is symmetric and in particular positive semidefinite. Furthermore 〈E11, Y 〉 =
Y11 = 1. We can rewrite the program as

inf{〈C, xx>〉+ c>x : 〈Ai, xx>〉+ a>i x = bi, i ∈ [m], x ∈ Rn}. (3.3.3)

By substituting xx> ∈ Sym(Rn) with a positive semidefinite matrix X ∈ Sym(Rn) we relax
the problem and find the semidefinite program

inf

{
〈C,X〉+ c>x :〈Ai, X〉+ a>i x = bi, i ∈ [m],

(
1 x>

x X

)
� 0, X ∈ Sym(Rn), x ∈ Rn

}
.

(3.3.4)

Note that the optimization program 3.3.4 is not in standard form, however by adding and trans-
forming the constraint and the objective we find that it is indeed a semidefinite program. If we
let the matrices

S =

(
0 1

2c
>

1
2c C

)
, Ti =

(
0 1

2a
>
i

1
2ai A

)
∈ Sym(Rn+1), for all i ∈ [m], (3.3.5)

then the semidefinite program

inf{〈S, Y 〉 : 〈Ti, Y 〉 = bi, i ∈ [m], 〈E11, Y 〉 = 1, Y ∈ Sym(Rn+1), Y � 0}. (3.3.6)

is equivalent to Program 3.3.4.

From this perspective one can view quadratic programming as semidefinite programming with
a rank constraint, since adding rank(Y ) = 1 and 〈E11, Y 〉 = 1 automatically results in a feasible
solution of the form in Equation 3.3.2.

3.4 Duality Theory of Semidefinite Programming

The primal and dual programs presented in Equations 3.2.1 and 3.2.3 are defined in general in
different spaces. However, the objective values of feasible solutions are related. Every feasible
dual solution is an upper bound for the primal optimal solution and every primal feasible solu-
tion is a lower bound of the dual optimal solution. This property is called weak duality.

More formally, supposeX is a primal feasible solution and y is a dual feasible solution, then

b>y − 〈C,X〉 =
m∑

i=1

biyi − 〈C,X〉 =

m∑

i=1

〈Ai, X〉yi − 〈C,X〉

=

〈
m∑

i=1

yiAi − C,X
〉
≥ 0,

(3.4.1)

where in the last inequality we used 2.2.5 and as a result we get b>y ≥ 〈C,X〉, so in particular
is we consider the supremum and infimum, we have P ∗ ≤ D∗. More general, for every primal
feasible solutionX and every dual feasible solution y, we have

〈C,X〉 ≤ P ∗ ≤ D∗ ≤ b>y. (3.4.2)

This means that every dual feasible solution forms an upper bound for the primal problem and
vice versa. The duality gap of an optimization problem is the non-negative numberD∗ − P ∗.
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3.4.1 Strong Duality

A particularly interesting situation is when the duality gap is zero, i.e., the primal and dual opti-
mal values are the same.

In many applications of semidefinite programming this is the case and we say that strong duality
holds. A sufficient condition for strong duality is given by Slater’s condition, named after Morton
Slater. This condition connects existence of interior points of the feasible region of the primal
or dual program to strong duality.

Theorem 3.4.1 (Strong duality, Slater’s theorem) Consider the primal and dual standard semidefi-
nite program as presented in equation 3.2.1 and 3.2.3. Then the following statements hold:

1. If the primal semidefinite program is bounded from above and there exists a feasible solution 0 ≺
X ∈ Sym(Rn), then strong duality holds, i.e., P ∗ = D∗. Moreover, there exists a dual feasible
solution y ∈ Rm such that

∑m
i=1 biyi = D∗.

2. If the dual semidefinite program is bounded from below and there exists an y ∈ Rm such that∑m
i=1 yiAi − C � 0, then strong duality holds, i.e., P ∗ = D∗. Moreover, there exists a primal

feasible solutionX ∈ Sym(Rn) such that 〈C,X〉 = P ∗.

These statements also apply to the alternative Definition 3.2.1, in which we consider a positive
definite primal feasible solutionX ∈ Herm(X ) for which Φ(X) = B. Similarly we can consider
a dual feasible solution Y ∈ Herm(Y) for which Φ†(Y ) � C .

3.5 Applications of Semidefinite Programming to Graph Theory

In this Section we will discuss three major applications of semidefinite programming to graph
theory: the Lovász ϑ-number for approximating the stability number and chromatic number,
the maximum edge biclique problem and the Max-Cut relaxation to a semidefinite program.
These applications have lead to the popularity of semidefinite programming and demonstrate
its power.

3.5.1 The Lovász ϑ-number

Two important numbers in graph theory are the stability number and the chromatic number of
a graph. The stability number α(G) is the largest size of a subset of vertices such that no two
vertices in this subset are connected. The chromatic number χ(G) is the smallest number of
colours required to colour every vertex inG such that every pair of vertices that is connected by
an edge has a different colour. For these numbers we have the relation

α(G) ≤ χ(G), (3.5.1)

where G is the complement graph of G defined by the same vertex set and the complement of
the edge set.

Calculating the stability or chromatic number of a graph is an NP-complete problem. This means
that it is expected to be impossible to determine efficiently (unless P = NP). An approximation
of the stability number of a graph is given by the Lovász ϑ-number. This number is the optimal
value of a semidefinite program.

Definition 3.5.1 LetG = (V,E) be a graph, then the Lovász number or Lovász theta function of a graph
is defined as

ϑ(G) = sup{〈J,X〉 : Tr(X) = 1, Xi,j = 0, {i, j} ∈ E,X � 0}. (3.5.2)
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The Lovász ϑ-number is has the following major property.

Theorem 3.5.1 (Lovász sandwich theorem) For any graphGwe have

α(G) ≤ ϑ(G) ≤ χ(G). (3.5.3)

In particular, for perfect graphs we have α(G) = χ(G), so ϑ(G) = α(G) = χ(G), and thus
semidefinite optimization gives an exact method for determining the stability number.

Example 3.5.1 Consider the Petersen graph, shown in Figure 3.2.

1

2

3

5

4

6

7

8

10

9

Figure 3.2: The Petersen graph has 10 nodes and 15 edges. Every node has degree
three.

The Lovász theta number of this graph is ϑ(G) = 4 and a stable set of G is {2, 5, 8, 9}. Since α(G) ≤
ϑ(G) = 4, this proves this stable set is optimal. Furthermore ϑ(G) = 5/2. ColoringG with three colors
with different colors for the sets {1, 3, 9, 10}, {2, 4, 6} and {5, 7, 8} is valid and since χ(G) ≥ ϑ(G))
also optimal.

3.5.2 Semidefinite Programming Relaxations of the Maximum Edge Biclique Prob-
lem

Another application of semidefinite programming is found in finding relaxations of the maxi-
mum edge biclique problem [27]. In this problem we consider a bipartite graphG = (V,E), i.e.,
a graph whose vertex set can be partitioned in V = V1 t V2 such that there are no edges within
V1 and within V2.

A biclique is a complete bipartite subgraph where (u1, u2) is an edge for every u1 ∈ U1 ⊆ V1

and u2 ∈ U2 ⊆ V2. A complete bipartite graph with a vertex set partition of sizes n and m
is denoted by Kn,m. The maximum edge biclique problem asks to find a biclique that has the
maximum number of edges in a bipartite graph. This number is denoted by κ(G) and is defined
by

κ(G) = max{|E(Kn,m)| : Kn,m ⊆ G}. (3.5.4)

Determining κ(G) is NP-complete, since the maximum edge biclique problem is a reduction of
the clique problem [28]. This is contrary to the fact the maximum vertex biclique problem can be
solved in polynomial time by using the matching algorithm.
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An integer linear program (with quadratic constraint formulation) is given by

κ(G) = max
∑

e∈E
xe

s. t. xu1v1xu2v2 =

{
0 if (u1, v2) 6∈ E or (u2, v1) 6∈ E,
xu1v2xu1v2 otherwise,

for all (u1, v2) ∩ (u2, v2) = ∅,
xuv ∈ {0, 1} for all (u, v) ∈ E.

(3.5.5)

For any feasible solution x ∈ {0, 1}E of this program, we can define the matrix

X =
1∑

e∈E xe
xx> ∈ Sym(RE), (3.5.6)

this matrix is positive semidefinite and has rank one. Another property ofX is that it’s unit trace

〈I,X〉 = Tr(X) =
1∑

e∈E xe
x>x =

1∑
e∈E xe

∑

e∈E
x2
e = 1, (3.5.7)

since x2
e = xe for all e ∈ E.

We can rewrite the integer linear program in terms of this matrix as follows:

κ(G) = max 〈J,X〉

s. t. Xu1v1,u2v2 =

{
0 if (u1, v2) 6∈ E or (u2, v1) 6∈ E,
Xu1v2,u1v2 otherwise,

for all (u1, v2) ∩ (u2, v2) = ∅,
〈I,X〉 = 1,

X � 0,

X =
1∑

e∈E xe
xx>, xuv ∈ {0, 1} for all (u, v) ∈ E.

(3.5.8)

If we remove the last constraint we get a semidefinite program. The optimal value of this pro-
gram is denoted by σ(G) and we thus have the inequality κ(G) ≤ σ(G). If we also remove the
constraint first constraint we find another relaxation that is equal to the lovász ϑ-number of the
graph Γ(G). Γ(G) is defined by the vertices V (Γ(G)) = E and ((u1, v1), (u2, v2)) ∈ E(Γ(G))
if and only if G({u1, v1, u2, v2}) is a complete bipartite subgraph of G, i.e., isomorphic to K1,2

orK2,2
∼= C4. This means we have the inequalities4

κ(G) ≤ σ(G) ≤ ϑ(Γ(G)). (3.5.9)

The relative sizes between the pair κ(G) and σ(G) and the pair σ(G) and ϑ(Γ(G)) can become
arbitrarily large, which shows that this approximation might be very bad. Nevertheless, for the
three graph numbers κ, σ and ϑ, the bipartite graph product results in the product in of these
numbers. This also leads to the tensor product of semidefinite programs, which also has appli-
cations in quantum information theory.

3.5.3 The Max-Cut Problem and Semidefinite Relaxation

The third application of semidefinite programming we will discuss is the Max-Cut problem.

4Pasechnik calls this type of inequalities biparite sandwiches, as a reference to Theorem 3.5.1.
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Given a graph G = (V,E) and we want to split the set of vertices in two disjoint subsets such
that the number of edges between these parts is as high as possible. More formally let U ⊆ V
and define δ(U) be the set of all edges with one endpoint in U and one in V \U , called the cut.
Thus our optimization problem is

Max-Cut(G) := max{|δ(U)| : U ⊆ V }. (3.5.10)

The feasible region of max-cut is the complete power set of V and has size 2|V |. Contrary to
the min-cut problem, which can be solved in polynomial time, the Max-Cut is an NP-complete
problem, in particular it is the last of Karp’s 21 NP-complete problems [29]. We can rewrite the
problem as an (integer) quadratic program by introducing for a given U ⊆ V the variables x ∈
{−1, 1}n defined as

xv =

{
1 if v ∈ U,
−1 if v ∈ V \U.

(3.5.11)

For {u, v} ∈ E we can look at

1− xuxv
2

=

{
0 if u, v are on the same side,
1 if u, v are on different sides.

. (3.5.12)

We can therefore reformulate the program as

Max-Cut(G) = max





∑

{u,v}∈E

1− xuxv
2

: x ∈ {−1, 1}n


 . (3.5.13)

If we letX = xx>, thenX has the defining properties

1. Xvv = (xv)
2 = 1, for all v ∈ V .

2. X is positive semidefinite.

3. X has rank 1.

we can therefore write 3.5.13 as a semidefinite program with rank constraints. We can relax the
problem by deleting the rank constraint and we therefore obtain the semidefinite program

SDP(G) = max





∑

{u,v}∈E

1−Xuv

2
: Xuu = 1, u ∈ V,X � 0



 . (3.5.14)

IfAG is the adjacency matrix of a graphG, i.e.,Aij is 1 if ij is an edge ofG and 0 otherwise, and
DG the degree matrix, DG = diag(deg(v1), . . . ,deg(vn)), then LG = DG − AG is the Laplacian
matrix ofG. We can reformulate 3.5.14 as

SDP(G) = max

{
1

4
〈LG, X〉 : X � 0, Xii = 1∀i ∈ [n]

}
. (3.5.15)

An important result is that for any graphGwe have the inequality

Max-Cut(G) ≤ SDP(G) ≤ 1.1383 ·Max-Cut(G). (3.5.16)

Solving SDP(G) returns a matrix X � 0 and not explicitly a description of how to partition
the graph in two pieces. To do this we apply the hyperplane rounding procedure. This randomized
procedure results in vectorx ∈ {−1, 1}|V |with corresponding value less than or equal to 1.1383·
Max-Cut(G) with high probability. The procedure works as follows. Let X be the Gram matrix
of the vectors ξu ∈ R, u ∈ V , then we pick a random vector r of norm 1 and calculate xu =
sign(r>ξu) for all u ∈ V . The sets {u ∈ V : xu = −1} and {u ∈ V : xu = 1} form a partition
of V . If its cut has a value≤ 1.1383 ·Max-Cut(G), we return this cut and otherwise pick another
vector r and repeat the procedure.
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Example 3.5.2 If we use the Petersen Graph of Figure 3.2 again. Solving the semidefinite relaxation, we
find SDP(G) ≤ 25/2. If we partition the graph in {1, 3, 4, 6, 7, 10} and {2, 5, 8, 9}, we find a cut of
value 12. Since a maximum cut has a value less than or equal to the semidefinite programming relaxtion,
this cut is optimal.

3.6 Grothendieck’s Constant

The inequality of the Max-Cut semidefinite program can be extended to a more general setting.
In the Max-Cut setting the matrix had to be the Laplace matrix of a graph, but clearly not every
matrix is the Laplacian of a graph. If we consider the set of all square n × n complex matri-
cesL(Cn), then the corresponding quadratic problem and semidefinite relaxing still differ by a
constant factor. The following theorem more formally states this result.

Theorem 3.6.1 (Grothendieck’s constant, A. Grothendieck, 1953) LetA ∈ L(Cn) and
∣∣∣∣∣∣

n∑

i=1

n∑

j=1

Aijxiyi

∣∣∣∣∣∣
≤ 1, (3.6.1)

for all xi, yi ∈ R with |xi|, |yi| ≤ 1 for all i ∈ [n]. Then there exists a numberK(C, n) dependent only
on n such that ∣∣∣∣∣∣

n∑

i=1

n∑

j=1

Aij〈Xi, Yj〉

∣∣∣∣∣∣
≤ K(C, n), (3.6.2)

for all vectorsXi, Yi in a complex Hilbert space for which ‖Xi‖, ‖Yi‖ ≤ 1 for all i ∈ [n].

The smallest such constant is called Grothendieck’s constant afterAlexanderGrothendieck (1928-
2014) and denoted byKG(C, n). In particular

KG(C) = sup{K(C, n) : n ∈ N}. (3.6.3)

The exact value ofKG(C) is unknown, but it is known that

KG(C) <
π

2 log(1 +
√

2)
≈ 1.7822 . . . (3.6.4)

If we restrict ourselves to real numbers and real positive semidefinite operators, similar results
exist.

3.7 Solving Semidefinite Programs

Semidefinite programs can be solved in polynomial time. This was first proven using the the
ellipsoid method [23]. This method starts with an ellipsoid5 that contains the feasible region of
the semidefinite program. Using a polynomial time oracle based on the objective we can create
a new ellipsoid that contains an optimal solution. This ellipsoid has a smaller volume. By repeat-
ing this process the volume of the ellipsoid decreases to zero sufficiently fast and the optimum
can be approximated. This method requires some numerical stabilization in practice and has a
relatively slow running time. The ellipsoid method is powerful theoretical tool, but is not used
in practice.

Interior point methods are in practice faster than the ellipsoid method and can for some semidef-
inite programs informally be described as a combination between Newton’s method with con-
straints [30]. These methods are used in the solvers for convex optimization programs in for

5An ellipsoid is a non-singular linear transformation of the unit ball.
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example the CVX package, that we will use in this thesis to solve problems.

The previous methods for solving convex optimization problems and in particular semidefinite
optimization problems is based on the classical computing. Using quantum computing and ob-
jects such as quantum oracles we can get an additional speed up [31, 32]. Currently, there are no
quantum computers available with sufficient qubits and fidelity to be able to practically solve op-
timization problems. As development progresses there might be a moment when it is preferable
to use a quantum computer for convex optimization problems.

3.8 Semidefinite Programming over Complex Operators

So far we considered the various definitions, properties and applications of semidefinite opti-
mization over real matrices. However, the application of quantum coin flipping is formulated
in terms of complex matrices. In this section we will show that we can switch between real and
complex semidefinite optimization by considering complex numbers as a special class of 2× 2-
matrices over the real numbers and in general the size of the matrices involved increases by a
factor of two.

We begin by associating the field of complex numbers with the following field of matrices

Γ =

{(
a −b
b a

)
: a, b ∈ R

}
⊆ L(R2), (3.8.1)

We define the following field isomorphism:

ψ : C
∼−→ Γ

z = a+ bi 7→
(
a −b
b a

)
=

(
Re(z) − Im(z)
Im(z) Re(z)

)
.

(3.8.2)

It can easily be checked, by considering the sum of two elements z = a + bi, w = c + di ∈ C,
that

ψ(z + w) = ψ((a+ c) + (b+ d)i) =

(
a+ c −(b+ d)
b+ d a+ c

)

=

(
a −b
b a

)
+

(
c −d
d c

)
= ψ(z) + ψ(w),

(3.8.3)

and

ψ(zw) = ψ((ac− bd) + (ad+ bc)i) =

(
ac− bd −ad− bc
ad+ bc ac− bd

)

=

(
a −b
b a

)(
c −d
d c

)
= ψ(z)ψ(w).

(3.8.4)

As a result we for example have ψ(z−1) = ψ(z)−1 for all z 6= 0, so

ψ(z−1) = ψ

(
1

a2 + b2
a− bi

)
=

1

a2 + b2

(
a b
−b a

)
. (3.8.5)

and indeed we see

ψ(z−1)ψ(z) =
1

a2 + b2

(
a b
−b a

)(
a −b
b a

)
=

1

a2 + b2

(
a2 + b2 0

0 a2 + b2

)
= I. (3.8.6)

Note that this map does not preserve the inner product. This is a property that we will require
for the to associate complex an real matrices and we therefore introduce a factor 1√

2
. For our

purposes we only use Hermitian matrices.
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For a matrixX ∈ Herm(Cn), let

Re(X) =
X +X

2
, Im(X) =

X −X
2i

. (3.8.7)

It is easy to check that both matrices are real and in particular Re(X) is symmetric and Im(X)
is skew-symmetric. We now consider the map

Ψ: Herm(Cn)→ Sym(R2n)

X 7→ 1√
2

(
Re(X) − Im(X)
Im(X) Re(X)

)
,

(3.8.8)

then we have the following important property.

Proposition 3.8.1 For everyX,Y ∈ Herm(Cn), we have

〈X,Y 〉 = 〈Ψ(X),Ψ(Y )〉. (3.8.9)

Proof: We can always write X = Re(X) + i Im(X) and Y = Re(Y ) + i Im(Y ). Since X and
Y are Hermitian, Re(X) and Re(Y ) are symmetric and Im(X) and Im(Y ) are skew symmetric.
Another fact we use is that every pair of symmetric and skew-symmetric matrices is orthogonal
to each other. The inner product between the matrices is.

〈X,Y 〉 = 〈Re(X) + i Im(X),Re(Y ) + i Im(Y )〉
= 〈Re(X),Re(Y )〉+ i〈Im(X),Re(Y )〉 − i〈Re(X), Im(Y )〉+ 〈Im(X), Im(Y )〉
= 〈Re(X),Re(Y )〉+ 〈Im(X), Im(Y )〉.

(3.8.10)
On the right hand side we find the inner product

〈Ψ(X),Ψ(Y )〉 =
1

2
Tr

((
Re(X) − Im(X)
Im(X) Re(X)

)(
Re(Y ) − Im(Y )
Im(Y ) Re(Y )

))

=
1

2
Tr

(
Re(X) Re(Y )− Im(X) Im(Y ) −Re(X) Im(Y )− Im(X) Re(Y )
Re(X) Im(Y ) + Im(X) Re(Y ) − Im(X) Im(Y ) + Re(X) Re(Y )

)

= Tr(Re(X) Re(Y )− Im(X) Im(Y ))

= Tr(Re(X) Re(Y )>) + Tr(Im(X) Im(Y )>)

= 〈Re(X),Re(Y )〉+ 〈Im(X), Im(Y )〉.
(3.8.11)

We see that both expressions indeed do coincide. �

If we have a general semidefinite program over the complex number of the form

(P ) : sup{〈C,Z〉 : 〈Ai, Z〉 = bi, i ∈ I, Z ∈ Herm(Cn), Z � 0}, (3.8.12)

then we would like to write is as a double size real semidefinite program by applying the map Ψ

(P ′) : sup{〈Ψ(C), X〉 : 〈Ψ(Ai), X〉 = bi, i ∈ I,X ∈ Sym(R2n), X � 0}. (3.8.13)

Clearly, if Z is feasible for (P ), then Ψ(Z) is feasible for (P ′) and has the same objective value
due to the fact that Ψ preserves the inner product. On the other hand, if X is feasible for (P ′),
it does not necessarily have the right form. At first, it may seem as if the optimal value (P ′) may
therefore be bigger than (P ′) and we can only enforce this form by adding more constraints.

The following lemma does however show that adding constraints is not necessary and by apply-
ing a transformation to any feasible solution we end up with a feasible solution that does have
the right form. In abstract terms, this transformation is given by integrating over the symmetries of
im Ψ.
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Lemma 3.8.2 If X is a feasible solution to (P ′), then there exists a feasible solution Y with the same
objective value such that Y ∈ im(Ψ). Hence solving (P ′) also solves (P ).

Proof: Let X be a feasible solution of (P ′), and consider the following maps σ, τ : L(R2n) →
L(R2n):

σ :

(
A B
C D

)
7→
(
D B
C A

)
, τ :

(
A B
C D

)
7→
(
A −C
−B D

)
, (3.8.14)

whereA,B,C,D ∈ L(Rn). Note thatG = {I, σ, τ, στ} forms a group acting on real 2n× 2n-
matrices that is isomorphic to Klein’s four group V4. Now consider the operator

Y =
1

|G|
∑

g∈G
g(X), (3.8.15)

then

Y =
1

4

((
A B
C D

)
+

(
D B
C A

)
+

(
A −C
−B D

)
+

(
D −C
−B A

))

=
1

2

(
A+D B − C
C −B A+D

)
= Ψ

(
A+D√

2
+ i

C −B√
2

)
,

(3.8.16)

thusY is in the image of Ψ. We now have to show that theY is feasible for (P ′) and has the same
objective value.

First, note that for everyX,Y ∈ L(R2n) and g ∈ G

〈X,Y 〉 = 〈g(X), g(Y )〉, (3.8.17)

since g permutes the position of the matrix elements both matrices and thus the sum of the
product of all elements is preserved. Thus, for every i ∈ I

〈Ψ(Ai), Y 〉 =
1

4

∑

g∈G
〈Ψ(Ai), g(X)〉 =

1

4

∑

g∈G
〈g(Ψ(Ai)), g(g(X))〉

=
1

4

∑

g∈G
〈Ψ(Ai), X〉 = 〈Ψ(Ai), X〉 = bi.

(3.8.18)

Similarly

〈Ψ(C), Y 〉 =
1

4

∑

g∈G
〈Ψ(C), g(X)〉 =

1

4

∑

g∈G
〈g(Ψ(C)), g(g(X))〉

=
1

4

∑

g∈G
〈Ψ(C), X〉 = 〈Ψ(C), X〉.

(3.8.19)

As claimed. �

The transformation of the complex semidefinite program to the real semidefinite program also
conserves the dual program. With that we mean that applying the transformation and then con-
sidering the dual is the same as first considering the dual and then apply the map transformation.
This allows for a more flexible choice of solving either the real primal or real dual semidefinite
program.

To show this fact is true, we first need the following lemma.

Lemma 3.8.3 Let X ∈ Herm(Cn), then X is positive semidefinite if and only if Ψ(X) is positive
semidefinite.
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Proof: We will use the association Cn ∼= Rn⊕Rn. Let z ∈ Cn arbitrary and a = Re(z), b =
Im(z) and define x = a⊕ b ∈ R2n. We show that

z†Xz =
√

2x>Ψ(X)x. (3.8.20)

We work out the left hand side. Note that we can write z = a+ ib andX = Re(X) + i Im(X)

z†Xz = (a> − ib>)(Re(X) + i Im(X))(a+ ib)

= (a> − ib>)(Re(X)a+ iRe(X)b+ i Im(X)a− Im(X)b)

= a>Re(X)a− a> Im(X)b+ b>Re(X)b+ b> Im(X)a

+ i(a>Re(X)b+ a> Im(X)a− b>Re(X)a− b> Im(X)b).

(3.8.21)

Note that the sum a>Re(X)b + a> Im(X)a − b>Re(X)a − b> Im(X)b consists of only real
numbers and thus the sum is real. Since z†Xz is real, it’s imaginary part is zero, so

z†Xz = a>Re(X)a− a> Im(X)b+ b>Re(X)b+ b> Im(X)a. (3.8.22)

If we evaluate the right hand side we get

√
2x>Ψ(X)x = (a> ⊕ b>)

(
Re(X) − Im(X)
Im(X) Re(X)

)
(a⊕ b)

= (a> ⊕ b>)

(
Re(X)a− Im(X)b
Im(X)a+ Re(X)b

)

= a>Re(X)a− a> Im(X)b+ b> Im(X)a+ b>Re(X)b.

(3.8.23)

so indeed z†Xz =
√

2x>Ψ(X)x and thusX is positive semidefinite if and only if Ψ(X) is. �

As a consequence, we can apply the map Ψ to the dual complex semidefinite problem too

(D) : inf





m∑

j=1

bjyj :

m∑

j=1

yjAj − C � 0, y1, . . . , ym ∈ R



 , (3.8.24)

which give the program

(D′) : inf





m∑

j=1

bjym :
m∑

j=1

yjΨ(Aj)−Ψ(C) � 0, y1 . . . , ym ∈ R



 , (3.8.25)

because of the linearity of Ψ the set of numbers y1, . . . , ym ∈ R is feasible for (D) if and only if∑
j=1 yjAj − C � 0 and thus if and only if

∑

j=1

yjΨ(Aj)−Ψ(C) = Ψ


∑

j=1

yjAj − C


 � 0, (3.8.26)

which means that the solution y1, . . . , ym is also feasible for (D′).

This gives us a ‘commutative diagram’ of the form

(P ) (D)

(P ′) (D′)

dual

Ψ Ψ

dual
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Chapter 4

Quantum Mechanics and Quantum
Information Theory

“Quantum mechanics: a bunch of positive semidefinite things
that interact with other positive semidefinite things in some kind
of linear way.”

- Jamie Sikora

Quantum mechanics is the collection of theories in physics that describe interactions at the very small scale.
These interactions are fundamentally different from what we experience on the macroscopic scale and lead to
phenomena that have no analogous effect in classical mechanics. In this section we consider the postulates
of quantum mechanics in terms of linear algebra and functional analysis. This toolbox of mathematical
objects gives us the possibility of describing a number of optimization problems in quantum information
theory, including quantum coin flipping.

This chapter is mainly based on the book of Nielsen and Chuang [33], which is one of the standard
works in this field, the book on quantum mechanics by Griffiths [34] and the recently published
book on quantum information theory by Watrous [26].

4.1 The Postulates of Quantum Mechanics

In this section we describe the postulates of quantum mechanics. Contrary to classical mechan-
ics, the description and phenomena of quantum mechanics are hard if not impossible to intu-
itively grasp. Consequently there are phenomena which do not have a classical analogue. It is
therefore a natural to resort to a mathematical description that allows for a rigorous treatment
and analysis. The four postulates describe what mathematical structure a quantum mechanical
system has, how it evolves over time, how to extract information from the system by measuring
and how to describe systems consisting of multiple information carriers.

The first postulate of quantum mechanics describes the mathematical structure of the state of a
system at a specific moment in time. All of the other postulates build upon this postulate so it is
natural that this postulate is considered first.

Postulate I: Quantum mechanical systems are described by Euclidean spaces over the
field of complex numbers. The state of a quantum mechanical object is fully described
by a unit vector in this space.

Postulate I describes the state space as a finite dimensional space. In general this does not have
to be the case, but is sufficient for applications in quantum information theory. This means that
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in general any state space is isomorphic toCn for somen ≥ 0. If the Euclidean space of a system
is (isomorphic to) C2, we call such a object an qubit. This is an analogy to the two state classical
bits, whose states are described by the finite field {0, 1}.

The notation of quantum mechanics differs slightly from linear algebra. Vectors (states) are
written in ket notation: |ψ〉 ∈ X . If X = C2 then the standard basis of this space is written

as |0〉 :=

(
1
0

)
, |1〉 :=

(
0
1

)
. Consequently, every qubit can be written as

|ψ〉 = α |0〉+ β |1〉 =

(
α
β

)
, (4.1.1)

for some complex numbers α, β ∈ C satisfying |α|2 + |β|2 = 1.

Elements from the dual vector spaceX † ofX are written in bra notation: 〈ψ| ∈ X †. A bra vector
is the Hermitian transpose of a ket vector. If we apply a bra to a ket we get an inner product in
this space is, which is a bracket and is denoted by 〈ψ1|ψ2〉.

For a given quantum mechanical system, we want to alter the state of let it evolve over time.
Such an evolution has to satisfy some properties: it has to be linear, it should map unit vectors
to unit vectors in the same space and the evolution has to be reversible. Mathematically, these
requirements are fulfilled exactly by unitary operations on this space. The second postulate of
quantum mechanics states that all unitary operators are valid transformations of the system.

Postulate II: Evolution of a quantum state is described by unitary transformations on the
state space.

A special kind of evolution is time evolution. Time evolution is also given by a unitary operation
but is physically described by the interactions with its environment. The Hamiltonian of a system
can be regarded as the ‘energy’ of the system and the evolution is given by a partial differntial
equation in Postulate II’.

Postulate II’: Time evolution of a quantum mechanical systems is described by
Schrödinger’s equation:

i~
∂ |ψ(x, t)〉

∂t
= H |ψ(x, t)〉 , (4.1.2)

whereH is the Hamiltonian of the system and ~ is the reduced Planck constant.

The corresponding time transformation is the unitary operator

Ut = exp(−itH/~), (4.1.3)

where exp is the exponential operator on operators defined by

exp: L(X )→ L(X )

X 7→
∞∑

i=1

1

n!
Xn = I +X +

1

2
X2 +

1

6
X3 + · · · (4.1.4)

For example, the Hamiltonian of an electron in a hydrogen atom is given by

H =
p2

2m
+ V (x) = − ~2

2m
∇2 − e2

4πε0‖x‖
, (4.1.5)

where p = −i~∂t is the impulse operator, m the mass of the electron and V (x) the Coulomb
potential for any x ∈ R3. Moreover,∇2 = ∂2

x + ∂2
y + ∂2

z the Laplacian operator, e the charge
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of a proton and ε0 the electric permittivity of the vacuum. Note that the solution to this system
is a function of the spatial coordinates and time to C, this means the state space is an infinite
dimensional Hilbert space.

For finite dimensional systems, we can describe evolutions of the system by unitary matrices.
Suppose we have a one qubit system with standard basis {|0〉 , |1〉}, then the Hadamard transform
is the operation

H =
1√
2

(
1 1
1 −1

)
∈ L(C2). (4.1.6)

This gate can be used to create systems in a superposition (with respect to the standard basis).

Another set of useful operations are the Pauli matrices, defined by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
∈ L(C2). (4.1.7)

The Hadamard and Pauli-matrices act on single qubits. A gate that acts on two qubits is for
example the CNOT-gate, which stand for controlled-not-gate, defined by

CNOT = |0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗X =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (4.1.8)

If we look at its action on the standard basis {|00〉 , |01〉 , |10〉 , |11〉}we see that if the first qubit
is in state |0〉, then the state of the second qubit is not changed. However if the first qubit is in
state |1〉, we apply anX-gate on the second qubit. Because it is sufficient (by linearity) to define
gates on a basis, we have fully characterized the CNOT-gate.

Three CNOT gates can be combined to form a SWAP gate as represented in the following cir-
cuit.

• •

•

Figure 4.1: Implementation of a SWAP-gate by three alternating CNOT gates.

To see why this works, one can easily apply the three gates to a state in the standard basis. The
matrix representation of the SWAP-gate on two qubits is

SWAP2 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (4.1.9)

Contrary to evolution, measurements are not always reversible. Measuring the system may change
the system. The outcome of a measurement is not always predetermined and is the outcome of
a random process. After measuring the system adopts a state that corresponds to this outcome
in such a way that immediately measuring again yields the same result. This phenomena of ir-
reversible changing the state of the system is called the collapse of the wave function.

Example 4.1.1 Suppose we have a qubit in the state

1

2
|0〉+

1

2

√
3 |1〉 , (4.1.10)
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then measuring in the basis{|0〉 , |1〉} yield the outcome 0 with probability (1/2)2 = 1/4 and the outcome
1 with probability (

√
3/2)2 = 3/4. If the outcome was 1, then the current state of the system would have

collapsed and now is |1〉.

Mathematically, the formalism of measuring is given by Postulate III.

Postulate III: A measurement is described by a set of operators {Ma : a ∈ Σ} on the state
space of the system for some set of measurement outcomes Σ, satisfying the completeness
relation ∑

a∈Σ

M †aMa = I. (4.1.11)

on the state space. The probability of measuring a ∈ Σ is

p(a) = 〈ψ|M †aMa |ψ〉 , (4.1.12)

and the state after the measuring outcome awith p(a) 6= 0 is

|ψa〉 =
1√
p(a)

Ma |ψ〉 . (4.1.13)

The completeness axiom is a direct result of the fact that the probability of finding any outcome
is 1 ∑

a∈Σ

p(a) =
∑

a∈Σ

〈ψ|M †aMa |ψ〉 = 〈ψ|
∑

a∈Σ

M †aMa |ψ〉 = 〈ψ| I |ψ〉 = 1. (4.1.14)

because |ψ〉 is a unit vector in its state space, the state after measuring is a quantum state because
the norm of the state is one

〈ψa|ψa〉 =
1

p(a)
〈ψa|M †aMa |ψ〉 =

1

p(a)
p(a) = 1. (4.1.15)

If we are not interested in the state after the measurement, then the only important operators
are {M †aMa : a ∈ Σ}. Note that the operatorsM †aMa are positive semidefinite because of their
Cholesky decomposition as shown in Lemma 2.2.1. In particular we can define a set of positive
semidefinite operators {Πa : a ∈ Σ}with the property

∑

a∈Σ

Πa = I, (4.1.16)

to be the measurement operators. The probability of the measurement is

p(a) = 〈ψ|Πa |ψ〉 . (4.1.17)

Finally, we have to explain how to describe combinations of multiple quantum systems and in-
teractions. This is where the tensor product of Euclidean spaces an all its properties come into
play.
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Postulate IV: Multiple quantum mechanical systems can be described as one by the
tensor product of their Euclidean spaces. The possible states are unit vectors within this
tensor product space.

If X1, . . . ,Xn are the state spaces of the individual systems, then the combined
system has a state space

X1 ⊗ · · · ⊗ Xn, (4.1.18)

and any state is described by a linear combination of simple tensors

|ψ1〉 ⊗ · · · ⊗ |ψn〉 , (4.1.19)

for |ψ1〉 ∈ X1, . . . , |ψn〉 ∈ Xn.

A simple tensor of quantum states |ψ1〉⊗|ψ2〉 is also often written like |ψ1〉 |ψ2〉or simply |ψ1ψ2〉.

In particular the state space of an n-qubit system is interesting from the perspective of quan-
tum computing and quantum information theory, this is described by the Euclidean space

X = C2⊗ · · · ⊗C2

︸ ︷︷ ︸
n

∼= C2n . (4.1.20)

and a basis is given by {|b〉 : b ∈ {0, 1}n}.

In general the state space of the combined system is isomorphic to Cm, where m = dim(X1) ·
. . . · dim(Xn).

Unitary operations allow for a lot of flexibility in transforming the state space. The second pos-
tulate states that we can also transform the combined system with unitary operations on X1 ⊗
· · · ⊗ Xn. However, operations that are common in classical computing do not always extend
in a similar way to quantum computing, because of the restriction that evolution has to be uni-
tary. One of these operations is copying information. The impossibility of copying an arbitrary
quantum state is given by the no cloning theorem.

Theorem 4.1.1 (No cloning theorem) LetX be a complex Euclidean space, then does not exist a unitary
operationU onX ⊗ X with the property

U : |ψ〉 |0〉 7→ |ψ〉 |ψ〉 , (4.1.21)

for every |ψ〉 ∈ X .

Proof: Suppose such a unitary operation U does exist and let |0〉 , |1〉 be two basis states of X .
U is unitary so by linearity we find

U(|0〉+ |1〉) |0〉 = U |0〉 |0〉+ U |1〉 |0〉 = |0〉 |0〉+ |1〉 |1〉 . (4.1.22)

However, we can also applyU directly:

U(|0〉+ |1〉) |0〉 = (|0〉+ |1〉)(|0〉+ |1〉) = |00〉+ |01〉+ |10〉+ |11〉 . (4.1.23)

It is clear from Eq. 4.1.22 and 4.1.23 thatU is in fact not linear, so such aU does indeed not exist.
�

Summarized we have the following correspondences between the physical phenomena and the
mathematical descriptions
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Physical phenomena Mathematical description
I States ↔ Unit vectors in a complex Euclidean space,

II Evolution ↔ Unitary operators,
II’ Time evolution ↔ Schrödinger’s equation,
III Measurements ↔ Positive semidefinite operators,
IV Multiple systems ↔ Tensor products.

In the following sections and Chapters we will build structures on this basis and exploit the math-
ematical properties to reason about its properties. In particular the density matrix formalism
will allow us to extend our toolbox by describing ensembles and ways to ignore parts of the sys-
tem.

V Ensembles ↔ Unit trace, positive semidefinite operators;
VI Ignoring systems ↔ Partial trace.

We will first consider one of the consequences that do not have a classical analogue.

4.2 Entanglement of Quantum Mechanical States

An entangled state is a state that does not have an analogue in classical mechanics. One qubit
cannot be fully described without referring to another qubit. We present this concept by consid-
ering the following two qubit state (in C2⊗C2):

|ψ〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉). (4.2.1)

This state has norm one and is therefore a valid quantum mechanical state of the system. Sup-
pose that this system can be written like |ψ〉 = |ψ1〉 |ψ2〉 for some |ψ1〉 , |ψ2〉 ∈ C2. Then by
the postulates of quantum mechanics, doing any measurements or operations on the individual
qubits does not affect the other. Assume |ψi〉 = αi |0〉 + βi |1〉 for some αi, βi ∈ C, i ∈ {1, 2}
normalized. Then

|ψ〉 = (α1 |0〉+ β1 |0〉)(α2 |0〉+ β2 |1〉)
= α1α2 |0〉 |0〉+ α1β2 |0〉 |1〉+ β1α2 |1〉 |0〉+ β1β2 |1〉 |1〉 .

(4.2.2)

In Equation 4.2.1 we see that the states |0〉 |1〉 and |1〉 |0〉 do not appear. If |0〉 |1〉 does not ap-
pear, then α1β2 = 0, hence α1 = 0 or β2 = 0. If α1 = 0, then |0〉 |0〉 has amplitude 0, but this
is not the case. However, if β2 = 0, then |1〉 |1〉 has amplitude 0, which is also not the case. We
conclude that |ψ〉 is not the tensor product of two single qubit states. As a consequence, if we
measure the first qubits in the standard basis we have an equal probability of 1/2 for finding the
outcome 0 or 1 and the system will collapse to the state |0〉 |0〉 of |1〉 |1〉 respectively. This means
that the state of the second system was also affected whilst only performing a physical measure-
ment of the first qubit.

This has rather big implications. Suppose we bring both qubits in the shared state |ψ〉 and we
physically separate them. Because we cannot determine the outcome before, there is not actual
transfer of information, but the collapse of the wave function is instantaneously, no matter how
big the distance between the qubits is. This phenomena in quantum mechanics has be experi-
mentally confirmed [35].

4.3 The Density Operator Formalism

The state vector of a quantum mechanical systems gives all the possible information there is to
know about one specific state of the system. However, sometimes it is possible that randomness
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is present in a higher level in the system. For example when there is probability distribution of
sending a specific state. In this case the we cannot describe the state of the system solely by a ket-
vector in the same space, but we need an ensemble. An ensemble is a collection of pairs (pi, |ψi〉)
for i ∈ I with I some index set, where pi is the probability of having state |ψi〉 ∈ X .

To describe an ensemble we use the density operator or density matrix formalism of quantum me-
chanics. This operator describes all the information of the system.

Definition 4.3.1 (Density operator) Suppose we have an ensemble with states |ψi〉 ∈ X and probabil-
ity pi for all i ∈ I , where I is some index set. Then the density matrix of this ensemble is

ρ =
∑

i∈I
pi |ψi〉 〈ψi| ∈ L(X ). (4.3.1)

The immediate thing to notice is that Definition 4.3.1 is an eigenvalue decomposition of the den-
sity operator ρ, if the states in {|ψi〉 : i ∈ I} are orthogonal. If there is a state |ψ〉 ∈ X such that
ρ = |ψ〉 〈ψ| we call ρ a pure state and a mixed state otherwise. Algebraically, pure states are the
density operators that have rank 1.

Density matrices have two important properties that follow easily form the definition:

1. The matrix ρ has trace 1.

Proof: By using the linearity of the trace we get

Tr ρ = Tr

(∑

i∈I
pi |ψi〉 〈ψi|

)
=
∑

i∈I
pi Tr |ψi〉 〈ψi|

=
∑

i∈I
pi〈ψi|ψi〉 =

∑

i∈I
pi = 1.

(4.3.2)

2. The matrix ρ is positive semidefinite.

Proof: Let |ϕ〉 be a state from the system, then:

〈ϕ| ρ |ϕ〉 = 〈ϕ|
(∑

i∈I
pi |ψi〉 〈ψi|

)
|ϕ〉 =

∑

i∈I
pi〈ϕ|ψi〉〈ψi|ϕ〉

=
∑

i∈I
pi|〈ϕ|ψi〉|2 ≥ 0.

(4.3.3)

Conversely, if these two properties are met, then the operator is also a density matrix. If an
operatorX ∈ L(Cn) has a spectral decompositionX =

∑n
i=1 λi |ϕi〉 〈ϕi|, thenX is the density

matrix of the ensemble {(λi, |ϕi〉) : i ∈ I}. This allows us to define the set of all density matrices
of a quantum mechanical system with Euclidean space X by D(X ) = {X ∈ L(X ) : X �
0,TrX = 1}. The geometric name of this object is the complex spectraplex, it is the semidefinite
analogue of the n-simplex

{(x1, . . . , xn+1) ∈ Rn+1 : x1 + . . .+ xn+1 = 1, x1, . . . , xn+1 ≥ 0}. (4.3.4)

The set D(X ) is not a vector space. Scaling a density matrix also scales the trace and thus the
result is in general not of unit trace anymore. The set D(X ) is a convex set, which is a simple
consequence of the fact that the cone of semidefinite matrices is convex and the trace map is
linear. The extreme points ofD(X ) are the density matrices that are pure states.
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A visual description of pure and mixed states can be constructed by the Bloch sphere. To start,
the set of density operators onX = C2. Every density matrix ρ ∈ D(C2) can be written as

ρ =
1

2
(I2 + a1X + a2Y + a3Z), a1, a2, a3 ∈ R . (4.3.5)

The vectora = (a1, a2, a3) ∈ R3 is called the Bloch vector ofρ. The eigenvalues ofρ are 1
2(1+‖a‖)

and 1
2(1 − ‖a‖). Since ρ � 0, we have ‖a‖ ≤ 1. Pure states correspond to Bloch vectors with

norm 1 and can be parametrized by the states

|ψ〉 = cos(θ/2) |0〉+ exp(iϕ) sin(θ/2) |1〉
= cos(θ/2) |0〉+ (cos(ϕ) + i sin(ϕ)) sin(θ/2) |1〉 , (4.3.6)

for some θ ∈ [0, π] and ϕ ∈ [0, 2π). The Bloch-vector of this state is given by

a = (a1, a2, a3) = (〈ψ|X |ψ〉 , 〈ψ|Y |ψ〉 , 〈ψ|Z |ψ〉)
= (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ R3 .

(4.3.7)

A visual representation is shown in Figure 4.2.

Y

Z

X

θ

|1〉

|0〉

φ

|ψ〉

Figure 4.2: The Bloch sphere in (real) three dimensional space. The poles in the Z-
direction correspond (Up to multiplication with complex number on the unit circle
in C.) to the states |0〉 and |1〉, in theX-direction to (|0〉+ |1〉)/

√
2, (|0〉+ |1〉)/

√
2

and in theZ-direction (|0〉+ i |1〉)/
√

2, (i |0〉+ |1〉)/
√

2. Mixed states exist within
the Bloch ball.

All the postulates of quantum mechanics can be rephrased in terms of the density operator. At
first, it might seem that the density operators formalism is more general than state vector for-
malism. This is true if we consider the same Euclidean space. However, if we consider a bigger
Euclidean space, then the formalisms do coincide, which is represented by the existence of pu-
rifications we will encounter later (Theorem 4.3.3).

For evolution of the system we apply a unitary operation U on both sides of the matrix, that
is

ρ 7→ UρU †. (4.3.8)
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This is justified because if we look at the Postulate II and apply the mapU to every state individ-
ually, we get |ψi〉 7→ U |ψi〉we get

ρ 7→
∑

i∈I
pi(U |ψi〉)(U |ψi〉)† =

∑

i∈I
piU |ψi〉 〈ψi|U †

= U

(∑

i∈I
pi |ψi〉 〈ψi|

)
U † = UρU †.

(4.3.9)

Similarly, we can rephrase Schrödinger’s equation in terms of density matrices.

Proposition 4.3.1 (Von Neumann equation) The time evolution of the density matrix is given by the
von Neumann equation

i~
∂ρ

∂t
= [H, ρ] = Hρ− ρH, (4.3.10)

whereH is the Hamiltonian of the system.

Proof: We work out both sides of the commutator [H, ρ] = Hρ−ρH . We do use the Schrödinger
equation of Postulate II’ for ordinary ket-vectors, so

Hρ = H
∑

i∈I
pi |ψi〉 〈ψi| =

∑

i∈I
piH |ψi〉 〈ψi| =

∑

i∈I
pi

(
i~
∂ |ψi〉
∂t

)
〈ψi|

= i~
∑

i∈I
pi
∂ |ψi〉
∂t
〈ψi| ,

(4.3.11)

and for the term ρH we can use the fact thatH is Hermitian to obtain

ρH =
∑

i∈I
pi |ψi〉 〈ψi|H =

∑

i∈I
pi |ψi〉 (H |ψi〉)† =

∑

i∈I
pi |ψi〉

(
i~
∂ |ψi〉
∂t

)†

= −i~
∑

i∈I
pi |ψi〉

∂ 〈ψi|
∂t

.

(4.3.12)

In the last step we use the total derivative to to obtain the required expressions

[H, ρ] = i~
∑

i∈I
pi

(
∂ |ψi〉
∂t
〈ψi|+ |ψi〉

∂ 〈ψi|
∂t

)
= i~

∑

i∈I
pi
∂(|ψi〉 〈ψi|)

∂t

= i~
∂

∂t

∑

i∈I
pi |ψi〉 〈ψi| = i~

∂ρ

∂t
.

(4.3.13)

�

Remark 4.3.1 Since time evolution is just a special case of the more general evolution of a state, we could
also apply the unitary operationU = exp(−itH/~) to get the solution

ρ 7→ exp(−itH/~)ρ exp(itH/~). (4.3.14)

Postulate III can also be translated in density matrix formalism by applying the measurement
operators to the ket-states individually. Suppose we have a measurement defined by a set {Ma :
a ∈ Σ} as in postulate III, then we can extend the measurement to density matrices by

p(a) =
∑

i∈I
pi Pr(a|i) =

∑

i∈I
pi Tr(M †aMa |ψi〉 〈ψi|) = Tr(M †aMaρ). (4.3.15)
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The state after measuring a ∈ Σ is

ρa =
1

Tr(M †aMaρ)
MaρM

†
a ∈ D(X ). (4.3.16)

If we perform a measurement on a system and do not keep track of the results of the measure-
ment, we can incorporate the probability of the measurement result into the description of the
state of the system after measuring. That is

ρ′ =
∑

a∈Σ

p(a)ρa =
∑

a∈Σ

MaρM
†
a . (4.3.17)

If we regard measuring in this sense as the operation ρ 7→∑
a∈ΣMaρM

†
a , then measuring is in

general not linear, but is does map density matrices to density matrices, as we will see later, this
is an example of a quantum channel.

For a measurement that is described by a set of positive semidefinite operators{Πa � 0 : a ∈ Σ}
for which

∑
a∈Σ Πa = IX , the probability of measuring outcome a ∈ Σ is

p(a) = Tr(Πaρ). (4.3.18)

Finally, if we have multiple quantum systems that are described by Euclidean spacesX1, . . . ,Xn,
then in terms of density matrices the whole system can be described by elements from the tensor
space

D(X1)⊗ · · · ⊗D(Xn) = D(X1 ⊗ · · · ⊗ Xn). (4.3.19)

Simple tensors in this set are then described by

ρ1 ⊗ · · · ⊗ ρn, (4.3.20)

for ρ1 ∈ D(X1), . . . , ρn ∈ D(Xn) and every tensor is a convex combination of these simple ten-
sors.

IfX1 = · · · = Xn = C2, then a density matrix that describes all qubits in the spaceX1⊗· · ·⊗Xn
is given by a 2n × 2n-matrix. As n grows the size becomes very big really quickly. For quantum
simulations, this is one of the major bottlenecks.

Besides the ability to describe ensembles of quantum states with density matrices, there is an-
other major motivation to regard quantum systems in this formalism: the ability to ignore sys-
tems. Suppose we describe a system on a Euclidean space X ⊗ Y by a density matrix ρ ∈
D(X ⊗Y). If we want to describe the system if we only look at the spaceX , then mathematically
the state is described by TrY(ρ) ∈ D(X ).

The other way around can be incredibly useful. Regarding a given system in a sufficiently bigger
space (by taking the tensor product) will allow us to describe every density operator as a pure
state and every quantum channel as a unitary operation. The latter method is often referred to by
the following quote.

“Going to the church of larger Hilbert space.”
- John A. Smolin

This means that is we allow a more flexible view by considering higher dimensional spaces, we
end up with simpler and more degenerate descriptions of the same objects but from a different
perspective.

The first description we will encounter is purification of density matrices. Let X be a complex
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Euclidean space and ρ ∈ D(X ) be a density matrix. A purification is a state |ψ〉 ∈ X ⊗ Y for
some complex Euclidean space Y such that the full description of |ψ〉 on X alone is exactly the
density matrix ρ, i.e., ρ = TrY |ψ〉 〈ψ|.

It is a first sight not obvious that that a purification always exists. The following theorem states
that for a sufficiently large space Y , a purification indeed does exist.

Theorem 4.3.2 (Existence of purifications) LetX andY be two complex Euclidean spaces and ρ a density
operator onX . Then there exists a purification |ψ〉 ∈ X ⊗ Y of ρ if and only if dim(Y) ≥ rank(ρ).

Proof: “ =⇒ ” Suppose a purification exists and letX ∈ L(Y,X ) such that |ψ〉 = vec(X), then
by Equation 2.1.30

ρ = TrY(vec(X) vec(X)∗) = XX∗. (4.3.21)

So rank(ρ) = rank(X) and thus dimY ≥ rank(ρ).

“⇐= ” Suppose dim(Y) ≥ rank(ρ) =: r, a spectral decomposition of ρ is

ρ =

r∑

i=1

pi |ϕi〉 〈ϕi| . (4.3.22)

Let |ξ1〉 , . . . , |ξr〉 ∈ Y be an orthonormal set of vectors. These exist because r does not exceed
the dimension of Y . By letting

X =

r∑

i=1

√
pi |ϕi〉 〈ξi| , (4.3.23)

we have ρ = XX∗. If we now let |ψ〉 = vec(X) we get the required relation. �

Note that dim(X ) ≥ rank(ρ) for all operators, so in particular density operators. This means
that if we let Y = X we are always certain to find a purification of a density operator.

This theorem does not state anything about uniqueness and uniqueness does not apply in gen-
eral. However, there is a connection between different purifications of the same density matrix
on the same spaceX .

The following theorem, called the purification theorem, informally states that two purifications
in the same spaceX ⊗Y of a given density operator onX agree onX by taking the partial trace
and can be transformed into each other using a unitary operation on the space Y . It is exactly
this property of purifications that makes quantum bit commitment impossible, as we will see
later.

Theorem 4.3.3 (Purification theorem) Let |ψ1〉 , |ψ2〉 ∈ X ⊗Y be purifications of a density operator
ρ ∈ D(X ), i.e.,

ρ = TrY(|ψ1〉 〈ψ1|) = TrY(|ψ2〉 〈ψ2|), (4.3.24)

then there exists a unitary operationU acting onY such that |ψ2〉 = (IX ⊗ U) |ψ1〉.

Proof: Suppose we have a pair of purifications |ψ1〉 , |ψ2〉 ∈ X⊗Y of a density matrixρ ∈ D(X ).
Let A,B ∈ L(Y,X ) such that vec(A) = |ψ1〉 and vec(B) = |ψ2〉, we thus have the identities
ρ = AA† = BB† by Equation 2.1.30. This means that r := rank(ρ) = rank(A) = rank(B).
Let |ϕ1〉 , . . . , |ϕr〉 ∈ X be a sequence of orthonormal eigenvectors of ρ corresponding to the
eigenvalues p1, . . . , pr, i.e., the spectral decomposition of ρ is

ρ =

r∑

i=1

pi |ϕi〉 〈ϕi| . (4.3.25)
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We also have singular value decompositions ofA andB given by

A =

r∑

i=1

√
pi |ϕi〉 〈αi| , andB =

r∑

i=1

√
pi |ϕi〉 〈βi| . (4.3.26)

for vectors |α1〉 , . . . , |αr〉 , |β1〉 , . . . , |βr〉 ∈ Y . Now we create a unitary matrix V such that V
maps the vectors |βi〉 to |αi〉 for all i ∈ [r]. It follows that

AV =
r∑

i=1

√
pi |ϕi〉 〈αi|V =

r∑

i=1

√
pi |ϕi〉 (V −1 |αi〉)† =

r∑

i=1

√
pi |ϕi〉 〈βi| = B. (4.3.27)

Finally, we letU = V > and calculate

(IX ⊗ U) |ψ1〉 = (IX ⊗ U) vec(A) = vec(IXAU
>)

= vec(AV ) = vec(B) = |ψ2〉 .
(4.3.28)

Hence, |ψ〉 and |ϕ〉 are related by a unitary transformation on Y . �

We have seen that density matrices and quantum states coincide in a larger dimensional space
complex Euclidean space. A similar observation holds for unitary evolution and measurements
and any combination of them. Both can be regarded as unitary operations on a large space. We
can regard these interactions with the system as a quantum channel. A quantum channel is a
map Φ ∈ T (X ,Y) of which we require that it maps density matrices to density matrices. In
particular:

1. If Tr(ρ) = 1, for some ρ ∈ D(X ), then Tr(Φ(ρ)) = 1. This property is called trace preserv-
ing.

2. If ρ � 0, then Φ(ρ) � 0. In this case the map Φ is called positive.

However, properties 1 and 2 alone are not enough. A problem might occur when we add another
system with space Z . We can extend the of the channel to a channel in T (X ⊗ Z,Y ⊗ Z) in a
canonical way by considering Φ ⊗ IL(Z). However, if Φ is positive, then Φ ⊗ IL(Z) is not nec-
essarily always positive. We need to be more strict, since the result of applying this channel in
Y ⊗ Z should still be positive semidefinite. We call an operator Φ ∈ T (X ,Y) completely positive
if for every Euclidean spaceZ the operator Φ⊗ IL(Z) ∈ T (X ⊗ Z,Y ⊗ Z) is positive.

A quantum channel is now defined as an operator that is both trace-preserving and completely
positive.

Quantum channels in T (X ,Y) may be quite abstract to describe. By changing the space again,
quantum channels get a description in terms of linear maps that we are familiar with. Suppose
we associateX with Cn. The Choi-Jamiołkowski isomorphism is given by

J : T (X ,Y)
∼−→ L(Y ⊗ X )

Φ 7→ (Φ⊗ IL(X ))(vec(IX ) vec(IX )†) =

n∑

i=1

n∑

j=1

Φ(Eij)⊗ Eij .
(4.3.29)

The inverse of this map is given by

F 7→ (X 7→ TrX (F (IY ⊗X>)). (4.3.30)

This isomorphism has two important properties

1. The map Φ is trace-preserving if and only if TrY(J(Φ)) = IX .
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2. The map Φ ∈ T (X ,Y) is completely positive if and only if J(Φ) is a positive semidefinite
operator.

This means we have an association between quantum channels from spaces X to Y and opera-
tors inL(Y ⊗X ) that are positive semidefinite and the partial trace overY is the identity onX .

Finally, we discuss that every quantum channel can be described unitary operations in larger
spaces. This perspective is given by Stinesprings representation theorem. By adding a suffi-
ciently large space Z , which is just theoretical and we can not access, all quantum channels be-
come unitary operations. After applying this operations on the larger space, we ignore this extra
space and only take the actual space the channels maps to into account.

Theorem 4.3.4 (Stinespring’s representation of quantum channels, [36]) LetX andY be Euclidean
spaces. Then Φ ∈ T (X ,Y) is a quantum channel if and only if there exists an isometryU fromX toY⊗Z
for some Euclidean spaceZ such that

Φ(ρ) = TrZ(UρU †), (4.3.31)

for every ρ ∈ D(X ).

This theorem describes an arbitrary quantum channel in terms of isometries. If dimX 6= dim(Y⊗
Z) then we can always extend both spacesX andY⊗Z to spaces of dimension lcm(dimX ,dim(Y⊗
Z)) and canonically to extend the channel to obtain unitary representations.

4.4 Application of Semidefinite Programming: Optimal Measurements

This application can be found in the book The Theory of Quantum Information by John Watrous [26]
and the article by Eldar, Megretski and Verghese [37].

Suppose we have a two player system connected by a quantum communication channel. Alice
sends states from a finite set according to a distribution to Bob. Without any other means of
communication Bob, has to measure these states and determine in which state Alice had sent a
qubit. Bob knows which ensemble Alice uses, but not which particular state she will send. Bob’s
task is to find measurements that result in the highest probability of detecting a state correctly.

More formally, suppose Alice sends repeatedly one of the states ρ1, . . . , ρm ∈ D(X ) with proba-
bility p1, . . . , pm respectively, for some integerm ≥ 1. This information is public and in partic-
ular Bob knows the states and the distribution.

Bob has to determine a collection of measurement operators Π1, . . . ,Πm � 0 on X associated
with the states ρ1, . . . , ρm with the property of being positive semidefinite and

m∑

i=1

Πi = IX , (4.4.1)

such that the probability of finding the correct state is as high as possible. This probability is
given by

m∑

i=1

pi Tr(Πiρi). (4.4.2)

Therefore, we can state this problem as the following optimization program:

sup

{
m∑

i=1

pi Tr(Πiρi) :

m∑

i=1

Πi = IX ,Π1, . . . ,Πm � 0

}
. (4.4.3)
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We will show that this optimization problem can be phrased as a semidefinite program. Let
Y = Cm and define

C =
m∑

i=1

Eii ⊗ piρi = p1ρ1 ⊕ · · · ⊕ pmρm ∈ Herm(Y ⊗ X ). (4.4.4)

The matrixC therefore contains all information about the system. The decision variables Π1, . . . ,Πm

can be summarized in one variable

X =
m∑

i=1

Eii ⊗Πi = Π1 ⊕ · · · ⊕Πm ∈ Herm(Y ⊗ X ). (4.4.5)

The partial trace ofX overY is equal to the sum
∑m

i=1 Πi. Thus, the primal optimization problem
can be written as

sup 〈C,X〉
s.t. TrY(X) = IX ,

X � 0.

(4.4.6)

The dual is given by
inf Tr(Y )

s.t.IY ⊗ Y � C,
Y ∈ Herm(X ).

(4.4.7)

As an example we take the BB84 quantum key distribution protocol [8]. We have the four states

ρ1 = |0〉 〈0| =
(

1 0
0 0

)
, ρ2 |1〉 〈1| =

(
0 0
0 1

)
,

ρ3 = |+〉 〈+| = 1

2

(
1 1
1 1

)
, ρ4 = |−〉 〈−| = 1

2

(
1 −1
−1 1

)
,

(4.4.8)

where

|±〉 =
1√
2

(|0〉 ± |1〉). (4.4.9)

Furthermore, we have uniform probability of sending any of these states, i.e., p1 = p2 = p3 =
p4 = 1/4. Then the matrixC is given by the 8× 8-matrix

C =




1/4 0
0 0 ∅

0 0
0 1/4

1/8 1/8
1/8 1/8

∅ 1/8 −1/8
−1/8 1/8




. (4.4.10)

When solving the problem in SDPT3 4.0 [38], we find that the optimal solution is given by Π1 =
1
2ρ1, . . . ,Π4 = 1

2ρ4 with optimal value 1/2. Thus measuring in these operators yields a prob-
ability of 50% of correct detection. A dual optimal solution can easily be found by letting Y =
1
4IX ∈ Herm(X ). This yields the objective value of 1/2 and all constraint satisfy

1

4
IX � piρi, for all i ∈ {1, . . . , 4}. (4.4.11)

This confirms the optimality of both solution by weak duality.
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The BB84 problem is easily extended to the situation of the six-state protocol [39]. In this case
Alice sends one of the states ρ1, . . . , ρ6 where

ρ5 =
1

2

(
1 −i
i 1

)
, ρ6 =

1

2

(
1 i
−i 1

)
, (4.4.12)

with probability 1/6. This results in the optimal measurements Π1 = 1
3ρ1, . . . ,Π6 = 1

3ρ6 with
corresponding probability 1/3 of correct detection. Similarly in this situation, a dual optimal
solution is given by Y = 1/6IX ∈ Herm(X ), with objective value 1/3 and all constraints

1

6
IX � piρi, for all i ∈ {1, . . . , 6}, (4.4.13)

are satisfied.

4.5 Quantum Bit Commitment

In this section we discuss quantum bit commitment. This is both an application of quantum in-
formation theory and a step towards quantum coin flipping. Similarly to quantum coin flipping,
in quantum bit commitment, two parties do not trust each other. We will model the way parties
can cheat using semidefinite programming and give bounds on the probability of cheating ef-
fectively using duality theory.

Suppose Alice wants to commit information to Bob. She will send Bob encrypted information,
but only wants to reveal the actual information when she chooses to do so. Bob agrees on this
condition, but does not want Alice to change the bit in the meantime. We want the protocol to
have two important properties:

1. The protocol has to be binding, meaning that once Alice committed the bit to Bob, she can
not change the bit anymore.

2. Furthermore, the protocol has to be hiding, that is, it has to be impossible for Bob to know
the bit until Alice allows him to know.

If we make no complexity assumptions, then bit commitment using classical bits of information
is impossible [40]. Since quantum information theory offers a more general way of interacting
with information, we may hope that quantum bit commitment is possible. Nevertheless it is not. A
simple argument is given by using the purification theorem 4.3.3.

Suppose there exists a quantum protocol for bit commitment. Let A,B be two complex Eu-
clidean spaces. If Alice’s bit is in {0, 1} she prepares the system in the state |ψ0〉 ∈ A ⊗ B or
|ψ1〉 ∈ A ⊗ B respectively. She now sends the information in the space B to Bob. If she wants
the commitment to be hiding, she wants the system that Bob can interact with to be the same in
both cases, i.e.,

TrA |ψ0〉 〈ψ0| = TrA |ψ1〉 〈ψ1| . (4.5.1)

However, by the purification theorem 4.3.3, this means there exists a unitary operation U ∈
L(A) such that

(U ⊗ IB) |ψ0〉 = |ψ1〉 , (4.5.2)

thus Alice can change the bit by only interacting with her systemA, the bit is therefore not bind-
ing.

A quantum bit commitment protocol in which it is impossible to cheat does not exist. We will
now determine how big the probability is of cheating successfully if either of the parties cheat.
To do so, we first look at the structure of a general quantum bit commitment scheme:
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1. Alice has a bit b ∈ {0, 1} and produces the corresponding state |ψb〉 ∈ A ⊗ B. She sends
the part of state in the space B to Bob. This is the commitment phase.

2. Alice sends the rest of the state |ψb〉 in the spaceA to Bob together with the bit b. This is
the reveal phase.

Bob can now check the correctness of the state by measuring the complete state he re-
ceived with the operators {|ψb〉 〈ψb| , IA⊗B − |ψb〉 〈ψb|}.

We will now determine optimization programs for both parties that maximize their probability
of cheating successfully.

If Bob wants to cheat, he wants to know the bit b after the commitment phase but before the
reveal phase, he want to find a pair of operators Π0,Π1 on B that maximizes the probability of
correct detection. This reduces the problem to the optimal measurement problem of Section 4.4.
With equal probability, Bob possesses the states TrA(|ψ0〉 〈ψ0|) and TrA(|ψ1〉 〈ψ1|), the proba-
bility of correct detection is therefore

1

2
Tr(Π0 TrA(|ψ0〉 〈ψ0|)) +

1

2
Tr(Π1 TrA(|ψ1〉 〈ψ1|)). (4.5.3)

Of course the {Π0,Π1} has to be a measurement so we need the constraints Π0 + Π1 = IB and
Π0,Π1 � 0. The semidefinite program optimizing the probability of correct detection is

P ∗A = sup

{
1

2
〈Π0,TrA(|ψ0〉 〈ψ0|)〉+

1

2
〈Π1,TrA(|ψ1〉 〈ψ1|)〉 : Π0 + Π1 = IB,Π0,Π1 � 0

}

(4.5.4)
and the dual is

D∗A = inf

{
Tr(X) : X � 1

2
TrA(|ψ0〉 〈ψ0|), X �

1

2
TrA(|ψ1〉 〈ψ1|), X ∈ Herm(B)

}
. (4.5.5)

On the other hand, if Alice wants to cheat, she has to take several steps into account. She has
to send a state in the commitment phase but wants to change the state later to a chosen bit
b ∈ {0, 1} such that she passes Bob’s correctness test.

We denote the state she prepares in the first part and sends to Bob by ρ ∈ D(B). After the
commitment phase she decides on a bit b ∈ {0, 1} and prepares one of the corresponding states
ρ0, ρ1 ∈ D(A⊗B). Of course she can not alter the state that Bob owns anymore, so we have the
pair of constraints TrA(ρ0) = TrA(ρ1) = ρ. The probability that Bob agrees with the measure-
ment is

1

2
〈|ψ0〉 〈ψ0| , ρ0〉+

1

2
〈|ψ1〉 〈ψ1| , ρ1〉. (4.5.6)

The cheating SDP for Alice is thus given by

P ∗B = sup

{
1

2
〈|ψ0〉 〈ψ0| , ρ0〉+

1

2
〈|ψ1〉 〈ψ1| , ρ1〉 : TrA(ρ0) = ρ,TrA(ρ1) = ρ,

Tr(ρ) = 1, ρ, ρ0, ρ1 � 0

} (4.5.7)

and the dual

D∗B = inf

{
t : tIB � Z0 + Z1, IA ⊗ Z0 �

1

2
|ψ0〉 〈ψ0| ,

IA ⊗ Z1 �
1

2
|ψ1〉 〈ψ1| , Z0, Z1 ∈ Herm(B), t ∈ R

}
.

(4.5.8)
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Strong duality applies in both cases. Let X be dual optimal for Program 4.5.5 and (t, Z0, Z1) be
dual optimal for Program 4.5.8. Then by taking the product and using all dual constraints we
find

P ∗BP
∗
A = D∗BD

∗
A = tTr(X) = 〈tIB, X〉

≥ 〈Z0 + Z1, X〉 = 〈Z0, X〉+ 〈Z1, X〉

≥ 1

2
〈Z0,TrA(|ψ0〉 〈ψ0|)〉+

1

2
〈Z1,TrA(|ψ1〉 〈ψ1|)〉

=
1

2
〈IA ⊗ Z0, |ψ0〉 〈ψ0|〉+

1

2
〈IA ⊗ Z1, |ψ1〉 〈ψ1|〉

≥ 1

4
〈|ψ0〉 〈ψ0| , |ψ0〉 〈ψ0|〉+

1

4
〈|ψ1〉 〈ψ1| , |ψ1〉 〈ψ1|〉 =

1

2
.

(4.5.9)

From P ∗BP
∗
A ≥ 1/2 we conclude that max{PA, PB} ≥ 1/

√
2. This strengthens the result that

quantum bit commitment is impossible by showing that any protocol allows for one of the play-
ers to cheat with at least 70% success.

We will revisit the application of quantum bit commitment in Chapter 5 and discuss its applica-
tion to quantum coin flipping. Furthermore, a slight variation on the lower bound on the cheat-
ing probability shown in this section also applies in the more general setting of quantum coin
flipping.

4.6 More Applications of Semidefinite Programming in Quantum In-
formation Theory

In this section we discuss a two other applications of the combination of quantum information
theory and semidefinite programming. Other references of these applications and more can be
found in Lecture notes by John Watrous [41].

Some of these applications are calculating the maximum output fidelity of a quantum channel,
Tsirelson’s inequality as a generalizations of Bell’s inequality [42], hedging bets with correlated
quantum strategies [43], quantum XOR games [44], determining the quantum min- and max-
entropy, quantum query complexity [45] and a quantum graph variant of the Lovász ϑ-function
[46, 47].

4.6.1 Calculating the Fidelity of Two Density Operators

The fidelity of a pair of quantum states is a measure of the amount in which states are the same.
The fidelity is expressed as a number in the interval [0, 1], with the value to 1 if and only two
states are the same.

Let ρ, σ be two density operators onX . The Fidelity between ρ and σ is

F (ρ, σ) = Tr(
√√

ρσ
√
ρ). (4.6.1)

In this definition we use the functional calculus for a positive semidefinite operator
X =

∑
i∈I λixix

†
i ∈ Herm(X ) defined by

√
X =

∑

i∈I

√
λixix

†
i . (4.6.2)

Definition 4.6.1 is practical to use in numerical situations, but might be unpractical in theoretical
applications, such as in proving bounds. There are other equivalent characterizations to this
definition that might be more useful in these situations. One of them is Uhlmann’s theorem,
which described the fidelity in terms of the maximum inner product of purifications of both
density operators.
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Theorem 4.6.1 (Uhlmann’s theorem) Let ρ, σ ∈ D(X ) be density operators and |ψ〉 ∈ X ⊗ Y be a
purification of ρ for some complex Euclidean space Y , i.e., ρ = TrY |ψ〉 〈ψ|. Then the fidelity between ρ
and σ is

F (ρ, σ) = sup{|〈ψ|ϕ〉| : |ϕ〉 ∈ X ⊗ Y and |ϕ〉 ∈ X ⊗ Y is a purification of σ}. (4.6.3)

From Uhlmann’s theorem it is for example clear that the fidelity is a number in [0, 1] andF (ρ, σ) =
F (σ, ρ) for all ρ, σ ∈ D(X ). Another characterization of the fidelity function is given by Alberti’s
theorem.

Theorem 4.6.2 (Alberti’s theorem) Let ρ, σ ∈ D(X ) be two density operators. The fidelity between ρ
and σ is

F (ρ, σ) =
√

inf{〈ρ,X〉〈σ,X−1〉 : X ∈ Herm(X ), X � 0}. (4.6.4)

Uhlmann’s theorem and Alberti’s theorem are equivalent expressions for the fidelity, but it is not
immediatly clear how they are connected. It is relatively easy to derive Uhlmann’s theorem from
Definition 4.6.1, but to prove Alberti’s theorem we need some detailed topological arguments.
There is a more elegant way to prove the equivalence of Uhlmann’s and Alberti’s theorems by
using semidefinite optimization. Consider the following semidefinite optimization program

sup

{
1

2
Tr(X) +

1

2
Tr(X∗) :

(
ρ X
X† σ

)
� 0, X ∈ L(X )

}
, (4.6.5)

It is relatively easy to show that this program is equivalent to Uhlmann’s theorem. The dual
semidefinite program is

inf

{
1

2
〈ρ, Y0〉+

1

2
〈σ, Y1〉 :

(
Y0 −I
−I Y1

)
� 0, Y0, Y1 ∈ Herm(X )

}
. (4.6.6)

By using Slater’s condition 3.4.1, we can show that strong duality holds and thus the optimal value
of Program 4.6.6 is F (ρ, σ). With some relatively easy manipulations, it is possible to show that
4.6.6 is equivalent to Alberti’s theorem. In this case the topological arguments that were required
to give a direct proof are handled in Slater’s condition.

4.6.2 Optimal Quantum Cloning

The application in this section uses semidefinite optimization to find the optimal probability of
successfully counterfeiting money that is characterized by quantum information [48]. In theory,
it is possible to embed qubits into banknotes and store quantum information as a way of identi-
fying a legal banknote. If the probability of counterfeiting money is low, then the system will be
considered secure. We will sketch the problem and formulate the corresponding semidefinite
program.

Consider an ensemble of quantum states |ψ1〉 , . . . , |ψn〉 ∈ X with probability p1, . . . , pn re-
spectively, for some integer n ≥ 1. Each note contains one of these states and is also labelled by
a unique number.

If an owner wants to check the validity of their note, the bank will use the unique number to
determine which of the states |ψi〉 for some i ∈ {1, . . . , n}, is embedded in the note. This can
be done by using a private hash function. The bank then measures the embedded state in the
set of operators {|ψi〉 〈ψi| , IX −|ψi〉 〈ψi|} and declare whether the note is legal or counterfeited
respectively.

If we want to make copies of these states that pass the validity test with the highest probability.
The problem is that although the ensemble of notes is known, we do not know which of the states
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corresponds to the unique number. Simply measuring the state arbitrarily will collapse the state.

To counterfeit an arbitrary note as good as possible, we are looking for a quantum channel Φ :
D(X )→ D(Y1 ⊗ Y2) where Y1 and Y2 are both isomorphic toX . This means the quantum in-
formation of one note is being transformed into quantum information of two notes in the same
space. An ideal channel that copies the note does not exist in general, which we proved in the no
cloning theorem (Theorem 4.1.1). Our objective is to find the best possible channel. That is, we
want a quantum channel Φ ∈ T (X ,Y1 ⊗ Y2), that optimizes the probability of passing the test

n∑

i=1

pi 〈ψi ⊗ ψi|Φ(|ψi〉 〈ψi|) |ψi ⊗ ψi〉 . (4.6.7)

By the Choi-Jamiołkowski map, we can describe any channel Φ ∈ T (X ,Y1 ⊗ Y2) uniquely by a
positive semidefinite operator J(Φ) on Y1 ⊗ Y2 ⊗ X for which the partial trace over Y1 ⊗ Y2

is the identity on X . With this representation we can rewrite the objective as well and find the
following semidefinite program:

sup

{
n∑

i=1

pi
〈
ψi ⊗ ψi ⊗ ψi

∣∣ J
∣∣ψi ⊗ ψi ⊗ ψi

〉
: TrY1⊗Y2 J = IX , J � 0

}
. (4.6.8)

To find the corresponding quantum channel we can apply the inverse of the Choi-Jamiołkowski
isomorphism from Equation 4.3.30. The dual of this program is

inf

{
Tr(Y ) : IY1⊗Y2 ⊗ Y �

n∑

k=1

pk
∣∣ψk ⊗ ψk ⊗ ψk

〉 〈
ψk ⊗ ψk ⊗ ψk

∣∣ , Y ∈ Herm(X )

}
.

(4.6.9)
Analysing this pair of semidefinite programs results in bounds and optimal counterfeiting chan-
nels that prove unconditional security. It is unlikely that Wiesner’s quantum money will find a
real world implementation. Decoherence will affact the quantum information really quicly and
make the validity test unreliable. However, it might be that this method of embedding quantum
information as a way of authenticating can be applied in a more general setting.
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Quantum Coin Flipping

“Humor is the ability to see three sides to one coin.”
- Ned Rorem

This chapter focuses on formalizing and describing classical and quantum coin flipping. We consider dif-
ferent protocols and discuss new and known results. An important measure of the quality of a protocol is the
bias, which is the largest possible deviation from a fair coin. The major goal of creating a quantum coin flip-
ping protocol is to make the bias as low as possible. However, some fundamental limitations in classical and
quantum coin flipping prevent arbitrary small biases from existing. We will encounter these limitations,
describe explicit protocols and introduce new extensions on these protocols.

5.1 Coin Flipping using Classical Communication

We will start with a classical coin flipping protocol, that introduced the subject in the field of
cryptography. This protocol is described in the paper ‘Coin Flipping by Telephone: a Protocol
for Solving Impossible Problems’ by computer scientist Manuel Blum in 1983 [5]. This protocol
can be viewed as the coin flipping variant of the well known RSA-protocol for asymmetric key
distribution [49] and is based on an equivalent mathematical problem to factoring that provides
complexity.

Protocol 5.1.1 (Blum’s coin flipping protocol, [5]) 1. Alice picks two different prime numberp, q ≡
3 (mod 4) and sends the productN = pq to Bob. She keeps the factors p and q private.

2. Bob randomly picks a number x ∈ {0, . . . , N − 1} and sends s = x2 mod N to Alice.

3. Alice computes the unique four square roots of s in Z /N Z, namely {−x, x,−y, y} for some y ∈
Z /N Z where y 6= x. She can use modular exponentiation and the Chinese remainder theorem to
do this efficiently.

4. Alice randomly picks one of the four roots and sends it to Bob.

5. The winner is determined by the following rules:

(a) If Alice’s choice is±x, then Alice wins, Bob has to announce to Alice that she won;

(b) If Alice’s choice is ±y, then Bob wins, Bob announces this to Alice and proves he won by an-
nouncing the value x he chose.

The important part is that Bob can easily calculate the number s, but it’s hard to calculate all
square roots and in particular find ±y without knowledge of the factors of N . However, Alice
knows the factors ofN and can therefore calculate the square root of s efficiently. However, she
does know which of the roots Bob picked, because they are all valid.
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We will show how Alice can calculate the four roots of an element s ∈ Z /N Z efficiently. Al-
ice will calculate the square roots in the fields Fp and Fq first, this can be done easily by modular
exponentiation. In Fp the two different roots of s are given by±s p+1

4 (mod p). To see why we
square the element.

(
±s p+1

4

)2
(mod p) = s

p+1
2 (mod p) = s

p−1
2 · s (mod p) = s (mod p). (5.1.1)

where we have used Euler’s criterion that tells us that s
p−1
2 = 1 (mod p) for all squares s ∈ Fp.

Furthermore p+1
4 is an integer since p ≡ 3 (mod 4), therefore we can apply modular exponenti-

ation. The same arguments hold to determine the roots in the fieldFq for the square roots±s q+1
4

(mod q).

We can now make four pairs of square roots in Fp×Fq . By the Chinese remainder theorem
we can now find for the four square roots of s in the ring Z /N Z.

This elegant separation of the information that Alice knows and Bob does not, and vice versa
is the reason this protocol works. Alice has the ability to calculate all square roots of s but does
not know which of these Bob took to create s in the first place. On the other hand, Bob does know
x and s but in order for him to always win, he has to announce y to Alice. If Bob knows the fac-
torisation of N he can compute the square roots (he knows the same information as Alice), but
the converse is also true: if Bob know the four square roots he can factorN . This result is shown
in the following lemma.

Lemma 5.1.1 If we know four different square roots of some s ∈ Z /N Z, where N = pq and p, q ≡ 3
(mod 4) are two different unknown prime numbers, then we can calculate p, q efficiently from the four
square roots.

Proof: Suppose we have four different square roots −x, x,−y, y ∈ Z /N Z of some element
s ∈ Z /N Z. We will show that z = gcd(x − y,N) is one of the prime factors of N . First note
that r|N , therefore r ∈ {1, p, q,N}. We have to exclude two cases

1. Suppose r = N , then N |(x − y) and thus x = y (mod N), but we assumed x and y are
different square roots, so we have a contradiction.

2. Suppose r = 1. Since 0 = x2 − y2 = (x − y)(x + y) we have N |(x − y)(x + y), and
since x−y andN are coprime, we must have thatN |(x+y), but then x = −y (mod N).
Which is again a contradiction.

Therefore r is a prime factor of N and is obtained by just calculating the greatest common di-
visor, which can be done efficiently by the Euclidean algorithm. The other prime factor can of
course be obtained by simply calculatingN/r. �

Since factoring is in the class NP, and no efficient algorithm (yet?) exists, we deduce that taking
square roots in the ring Z /N Z is at least as hard.

Before we proceed, we give an example of how this algorithms works with explicit numbers.

Example 5.1.1 Let p = 19 and q = 31, then N = 589, so we work in the ring Z /589Z. This ring is
isomorphic to Z /19Z×Z /31Z by the Chinese remainder theorem. Bob now picks an arbitrary element
from this ring, say x = 201 ∈ Z /N Z, and calculates s = x2 (mod N) = 349 (mod 589) and
sends this number to Alice. Alice will calculate all square roots of s in the fields F19 and F31:

± s p+1
4 (mod p) = ±75 (mod 19) = ±11 (mod 19) = 8, 11 (mod 19),

± s q+1
4 (mod q) = ±88 (mod 31) = ±16 (mod 31) = 15, 16 (mod 31).

(5.1.2)
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This gives four possible square roots and Alice now calculates the corresponding element inZ /589Z by the
Chinese remainder theorem

(8 (mod 19), 15 (mod 31)) 7→ 46 (mod 589),

(8 (mod 19), 16 (mod 31)) 7→ 388 (mod 589),

(11 (mod 19), 15 (mod 31)) 7→ 201 (mod 589),

(11 (mod 19), 16 (mod 31)) 7→ 543 (mod 589).

(5.1.3)

A simple check confirms that the square of all these numbers is indeed 349 (mod 589). We can now rec-
ognize x = 201,−x = 388 and y = 46,−y = 543. From s itself it is impossible to know which of the
four Bob picked. Alice chooses and announces her choice. If her choice is±x = 201, 388 then Bob has to
announce that Alice won. If Alice took±y = 46, 543, then Bob won, and he has to prove this to Alice by
announcing x.

Of course in this example it is very easy to brute force the factorization ofN and determine all square roots
of s. As the size of p and q factoring becomes practically impossible with the current methods. The lack of
knowledge Alice has does not depend on the size of the prime factors.

5.2 Complexity Assumptions and Shor’s Algorithm

Complexity assumptions such as in Blum’s coin flipping protocol make this protocol secure. Both
parties have different pieces of information and calculating all the information requires a lot of
computing power.

However, the complexity assumption of the discrete logarithm problem, which is the founda-
tion of for example factoring, is not valid anymore in the context of quantum computing. In
1994 Peter Shor published an algorithm [6] on a quantum computer that is capable of factoring
a composite numberN inO((logN)3) operations [33]. Shor’s algortihm, as it is most commonly
referred to, is based on order finding. In order finding, we consider two positive integersx,N that
do not share a common factor and the goal is to find the smallest r such that xr = 1 (mod N).
This problem is a specific instance of the phase estimation algorithm which provides a general
algorithm for the discrete logarithm problem in abelian groups.

A natural question would be if we could perform a coin flipping protocol with classical commu-
nication that is not completely broken, without having to resort to any complexity assumption
at all. The answer is no. This can be proven using game theory. The optimization we will em-
ploy in the following sections applies to quantum coin flipping. By restricting this model such
that it represents the most general setting in classical coin flipping, we find a game theoretic
description. This game has a number of properties: it is executed by two players, it is a zero-sum
game, both players have all information about the state of the game, there are only two possible
outcome and no turns that introduce chance into the game. The famous book Theory of games
and economic behavior by John von Neumann and Oskar Morgenstern in 1944 [4], shows that such
game has a strategy such that a player can win with certainty. Translating this back to coin flip-
ping, we find that any classical coin flipping protocol is completely broken. More details on this
proof and references can be found in [3].

5.3 Coin Flipping Based on Classical or Quantum Bit Commitment

One of the two main solutions to the vulnerability of security of classical coin flipping using dis-
crete log based problems is by considering a protocol that uses classical communications, but is
also secure against using quantum computers. Complexity classes in quantum computing are
related to classical computing and in some cases overlap. In particular can quantum computers
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simulate classical computers by just considering computational states {|0〉 , |1〉} of every qubit
and operations that map computational states to computational states1. This means that if we
have a classical protocol that is based on a mathematical problem that is hard to solve for a quan-
tum computer (and therefore also hard for a classical computer), then the protocol is secure by
complexity assumptions.

Two of these mathematical problems are finding the shortest vector of a lattice and code based
schemes. These problems serve as the building blocks for cryptographic primitives. For example,
there do exist post-quantum bit-commitment schemes [50]. We will use these schemes to build
a post-quantum protocol for coin flipping for two parties.

Protocol 5.3.1 (Coin flipping protocol based on bit commitment, [51]) This protocol is based on a post-
quantum bit-commitment protocol that we regard as a black-box.

1. Alice and Bob both independently flip a fair coin a, b ∈ {0, 1} respectively.

2. Alice commits a to Bob, and similarly Bob commits b to Alice using the black-box post-quantum bit
commitment protocol.

3. If each party received the commitment of the other party, they can reveal their bit, so both Alice and
Bob now the information of a, b. They can check whether the information they received corresponds
to the commitment.

4. If the checks agree, the result of the coin flip is a + b mod 2. Both parties announce the result. If
the results are different the protocol is aborted.

A graphical representation of the steps in Protocol 5.3.1 is shown in Figure 5.1. This show that
both parties first commit and after receival reveal their information.

Alice Bob

a, fB(b) b, fA(a)

a, b, fA(a)a, b, fB(b)

Check (b, fB(b)) Check (a, fA(a))

a+ b mod 2 a+ b mod 2

fA(a) fB(b)

a b

Random a ∈ {0, 1} Random b ∈ {0, 1}

Figure 5.1: A quantum coin flipping protocol based on bit commitment. Both Alice
and Bob commit their bit and reveal after receival. The XOR (addition modulo 2) is
the result of the process.

1The no-cloning theorem (Theorem 4.1.1) does, for example, not hold if we just consider computational states.
Measuring in the computational basis doe no longer change the state.
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To show why this protocol is secure. We have to look for it’s vulnerabilities. Suppose that Alice
is honest and Bob is dishonest. Because of the symmetry in this problem the situation in which
Alice is dishonest and Bob is honest is the same. One strategy for him, is to change the distri-
bution of his coin flip. We denote this by some random variableB, which is 0 with probability p
and 1 with probability 1− p, for some p ∈ [0, 1]. Alice her private coin flipA is fair has thus has
equal probability for both outcomes. Since the bit-commitment is secure, the resulting coin flip
is a realisation of the random variableX = A+ B mod 2. The range ofX is again {0, 1} and
thus the distribution is determined by

Pr(X = 0) = Pr((A = 0 andB = 0) or (A = 1 andB = 1))

= Pr(A = 0) Pr(B = 0) + Pr(A = 1) Pr(B = 1)

=
1

2
p+

1

2
(1− p) =

1

2

(5.3.1)

The commitment and revealing phase are secure and therefore Bob can’t cheat in this phase.

If we want to make the protocol applicable for multiparty, we have to beware that dishonest par-
ties may work together to perturb or even fix the outcome. As it turns out, one honest player is
sufficient to be protected against cheating.

Protocol 5.3.2 (Post-quantum multiparty coin flipping protocol based on bit commitment) This
protocol uses a post-quantum bit commitment scheme as a black-box. This protocol is based on n players.

1. All players independently flip a fair coin ai ∈ {0, 1} for i ∈ {1, . . . , n}.

2. Every players i ∈ {1, . . . , n} commits ai to all other players publicly.

3. If each party received the commitment of the other party, then every party reveals his of her bit. The
full information a1, . . . , an is now known to every player and players can check whether the bit and
commitment they received agree with each other.

4. If no players aborts the protocol, the result of the coin flip is an + · · ·+ ak mod 2 and all parties
announce the result.

When at least one players is honest, disturbing the distribution or even when some of the coin
flips are dependent by dishonest players doesn’t influence the outcome. This is shown in Lemma
5.3.1 and is a direct generalization of the two party argument.

Lemma 5.3.1 Let A1, . . . , An be coin flips with probability p1, . . . , pn respectively. If there is at least
one i ∈ {1, . . . , n} such that pi = 1/2 and independent of A1, . . . , Ai−1, Ai+1, . . . , An, then X =
A1 + . . .+An mod 2 is a fair coin flip.

Proof: Without loss of generality, we assume p1 = 1/2 andA1 is independent fromA2, . . . , An.
Note that B = A2 + . . . + An mod 2 is a coin flip with parameter p for some p ∈ [0, 1]. Note
thatX = A1 ⊕B and thus

Pr(X = 0) = Pr((A1 = 0 andB = 0) or (A1 = 1 andB = 1))

= Pr(A1 = 0) Pr(B = 0) + Pr(A1 = 1) Pr(B = 1)

=
1

2
p+

1

2
(1− p) =

1

2
,

(5.3.2)

soX is fair coin flip. �

In this case the post-quantum bit commitment scheme is secure and therefore a dishonest player
cannot influence this step. The result is a fair coin if all parties announce the same outcome.
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5.4 Quantum Coin Flipping

In the previous sections, we looked at coin flipping protocols in which players communicated
through classical channels. This lead to perfect protocols if make complexity assumptions and
an impossibility result if we do not make complexity assumptions. In this section we consider
protocols in which we communicate and interact with information through classical channels.
We will not make complexity assumptions and instead use the properties of quantum informa-
tion itself to secure the protocols.

To quantify this, we will determine how much a cheater can make the protocol deviate from a
fair coin. We will first formalize the bias, quantum coin flipping protocols and present how to
cheat. First, let P ∗A,0 and P ∗A,1 be the maximum probability of Alice outputting a 0 resp. 1 when
Bob is cheating and Alice is honest. Similarly, P ∗B,0 and P ∗B,1 is the maximum probability of Bob
outputting a 0 resp. 1 when Alice is cheating and Bob is honest. Here the maximum is taken over
all cheating strategies. Informally, a cheating strategy is a number of steps taken by a cheater in the
protocol to achieve a certain predefined goal. In describing quantum coin flipping in terms of
semidefinite optimization we will mathematically formalize the concept op cheating strategies
as well.

A good protocol will limit the possibility of a cheater perturbing the outcome of the protocol
by a lot. It is a priori not always clear whether Alice or Bob will be a cheater and furthermore,
if a cheater is present, which outcome he or she will try to establish. The worst-case scenario is
therefore considered when we look at all four possible variations, determined by the probabilities
P ∗A,0, P

∗
A,1, P

∗
B,0 andP ∗B,1. This leads to the definition of the strong bias of a coin flipping protocol.

If we do know that players have a preference, e.g., Alice prefers the outcome 0 and Bob the out-
come 1, it is useless to consider the situations in which they would cheat to find their opposite
outcomes P ∗A,0 and P ∗B,1. In this case we take these preferences into account and determine the
weak bias.

Definition 5.4.1 The strong bias of a coin flipping protocol is defined as the number

ε = max{P ∗A,0, P ∗A,1, P ∗B,0, P ∗B,1} −
1

2
. (5.4.1)

Similarly, the weak bias of a coin flipping protocol in which Alice prefers the outcome 0 and Bob the outcome
1, the bias is given by

εWCF = max{P ∗A,1, P ∗B,0} −
1

2
. (5.4.2)

This definition can be interpreted such that for a given protocol and cheating strategy, the re-
sulting coin will be perturbed to a unbiased coin with probability in the interval [1/2−ε, 1/2+ε].
Note that any quantum coin flipping protocol has a weak bias less than or equal to the strong bias.

We will first consider and compare some quantum coin flipping protocols. The first protocol
by Andris Ambainis consists of three rounds of communications and is based on qutrits: states
in the spaceX ∼= C3.

Protocol 5.4.1 (Ambainis’ coin flipping protocol, [12]) This protocol uses two qutrits, first in the pos-
session of Alice. The basis states are denoted by {|0〉 , |1〉 , |2〉}.

1. Alice picks a random element i ∈ {0, 1} and creates the two-qutrit state

|ψi〉 =
1√
2

(|i〉 |i〉+ |2〉 |2〉) ∈ X ⊗ X . (5.4.3)

Alice sends the first qutrit to Bob.
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2. Bob picks a random bit j ∈ {0, 1} and sends it to Alice by classical means.

3. Alice reveals i to Bob and she sends him send the second qutrit. Bob now has the whole state |ψi〉

4. Bob will now measure the state he received form Alice in the operators

{Π0 = |ψ0〉 〈ψ0| ,Π1 = |ψ1〉 〈ψ1| ,Π∅ = IX⊗X −Π0 −Π1} (5.4.4)

If the outcome of his measurement is ∅, then Bob aborts the protocol. Otherwise he can check it the
bit that Alice send is correct.

5. If Bob does not abort the protocol, then both Alice and Bob will output i+ j mod 2.

It is clear that this protocol is not completely symmetric. Alice her task is to create the two-qutrit,
whilst Bob does not interact with the state other then measuring it. On the other hand, Bob has
the possibility to detect when Alice cheats, whilst Alice does not have this possibility. Neverthe-
less

Lemma 5.4.1 The quantum coin flipping procedure presented in protocol 5.4.1 has optimal cheating prob-
abilitiesP ∗A,0 = P ∗A,1 = P ∗B,0 = P ∗B,1 = 3/4 and consequently the bias is ε = 1/4.

When we formalize the protocol into a standard form in which we can determine the optimal
cheating strategy with semidefinite programming, we will also confirm the optimal values in
Lemma 5.4.1.

The following quantum coin flipping protocol is inspired on BB84 the quantum key distribu-
tion protocol. Alice will send a (rotated) BB84 states and Bob will measure them in one of the
two basis arbitrary basis. The outcome is determined by a coin flip of Bob and the encoded bit of
Alice.

Protocol 5.4.2 (Berlín et al.’s quantum coin flipping, [15]) Let α be a number in [0, π/4].

1. Alice picks a two random bits a, x ∈ {0, 1} independently and prepares

|ψa,x〉 =





cosα |0〉+ sinα |1〉 for a = 0, x = 0,

cosα |0〉 − sinα |1〉 for a = 1, x = 0,

sinα |0〉 − cosα |1〉 for a = 0, x = 1,

sinα |0〉+ cosα |1〉 for a = 1, x = 1,

(5.4.5)

and sends this state to Bob.

2. Bob picks a random b ∈ {0, 1} and measures the qubit he received in the basis {|ψb,0〉 , |ψb,1〉}. He
also picks a random bit y ∈ {0, 1} and sends this bit to Alice.

3. After Alice received Bob’s bit, she sends him both her basis a and bit x.

4. If the basis agree, i.e., a = b, and the state Bob measured is not |ψa,x〉, he aborts the protocol.

5. If Bob does not abort the protocol both parties output the coin x+ y mod 2.

Similar to Ambainis’ protocol 5.4.1, in Protocol 5.4.2 Alice does not have the possibility to abort
whilst Bob does. Contrary to Ambainis’ protocol, this protocol by Berlín et al. can be implemented
using existing quantum key distribution infrastructure, which has been done in 2011 [16]. How-
ever, the cheating probabilities of the Berlín et al. protocol are worse than those of Ambainis’
protocol.
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Lemma 5.4.2 The cheating probabilities of Protocol 5.4.2 are

P ∗A,0 = P ∗A,1 = cos2 α, P ∗B,0 = P ∗B,1 =
3 + sin(2α)

4
. (5.4.6)

The protocol is balanced if and only if α = arctan(1/3) ≈ 0.32175... ≈ 18.43◦, then ε = 9/10.

A plot of the optimal cheating probabilities of Protocol 5.4.2 is shown in Figure 5.2.

α→

ε
→

1
/
2

1
/
4

0 π/4π/8arctan(1/3)

P ∗B,0, P
∗
B,1P ∗A,0, P

∗
A,1

2
/
5

Figure 5.2: In this plot, the cheating probabilities (corrected for the bias by the term
1/2) are shown as a function of the input parameter α ∈ [0, π/4]. The bias is the
maximum of both curves and has a minimum at α ≈ 0.32175 . . . .

The two protocols we discussed share a common structure: they manipulate quantum and clas-
sical information in an alternating way, send information back and forth and measure a final
state that fixes the outcome of the protocol. The following definition describes this in a rigorous
way and allows us to analyse quantum coin flipping protocols.

Definition 5.4.2 (Quantum coin flipping protocol, two parties) A quantum coin flipping protocol with
two parties is defined by the following collection of structures and rules:

1. A triple of complex Euclidean spaces A,M and B, respectively the spaces in which the quantum
information of Alice, the message space and Bob exist.

2. A positive integerN , denoting the number rounds in the protocol.

3. The initial state of the system:

|ψ0〉 = |0〉A ⊗ |0〉M ⊗ |0〉B ∈ A⊗M⊗B. (5.4.7)

4. TwoN -tuples of unitary operations:

UA,1, . . . , UA,N and UB,1, . . . , UB,N , (5.4.8)

whereUA,i acts onA⊗M andUB,i acts onM⊗B for every i ∈ {1, . . . , N}.

5. A measurement {ΠA,0,ΠA,1,ΠA,∅} on the spaceA, representing the outcomes 0, 1 or abort respec-
tively.

6. A measurement {ΠB,0,ΠB,1,ΠB,∅} on the spaceB.

7. Bob prepares the state |0〉 ∈ M and sends it to Alice before the first round. Alice and Bob apply their
unitary operations in an alternating way onA⊗M andM⊗B. Before both parties measure the
quantum state, Bob sends the state inM to Alice.
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These structures satisfy

(ΠA,0 ⊗ IM ⊗ΠB,1) |ψN 〉 = (ΠA,1 ⊗ IM ⊗ΠB,0) |ψN 〉 = 0, (5.4.9)

where |ψN 〉 is the state of the system just before measuring

|ψN 〉 = (IA ⊗ UB,N )(UA,N ⊗ IB) · · · (UA,1 ⊗ IB) |ψN 〉 . (5.4.10)

The whole protocol can be described as a sequence of alternating operations done by Alice and
Bob and sending messages to each other and in the end measure the result and determine the
output head, tails or abort the protocol. This is shown graphically in Figure 5.3.

UA,1 UA,2

UB,1 UB,2

UA,N
ΠA. . .

. . .

{0, 1}|0〉 ∈ A

|0〉 ∈ M

|0〉 ∈ B UB,N {0, 1}

. . .

ΠB

M

Figure 5.3: The general two player quantum coin flipping protocol consisting of N
rounds. The entire process consists of applying unitary operations in an alternating
way onA⊗M andM⊗B and finally measuring the state inA and B.

The fact that we do have to take interactions other than unitary operations (such as measure-
ments or the introduction of classical randomness) in Item 4 of Definition 5.4.2 into account is
a direct consequence of Stinespring’s representation theorem 4.3.4. In particular we can regard
any possible action on the system as a quantum channel and than apply Stinespring’s represen-
tation theorem to obtain a description solely by unitary operations. This approach is thoroughly
described in Watrous’ lecture notes on quantum coin flipping [26]. In general, this does of result
in larger spacesA,M and B.

Item 7 does not affect the generality of a quantum coin flipping protocol, since adding trivial
operations IA⊗M and IM⊗B yields the same result. However, it does lead to more symmetry in
the semidefinite program for determining the optimal cheating strategy, as we will see later.

Furthermore, if we want the coin flip to be balanced, we require

〈ψn| (ΠA,0 ⊗ IM ⊗ΠB,0) |ψn〉 = 〈ψn| (ΠA,1 ⊗ IM ⊗ΠB,1) |ψn〉 = 1/2. (5.4.11)

Consequently, the probability of aborting the protocol if both players are honest, is 0.

Remark 5.4.1 Definition 5.4.2 does not state whether a protocol is strong or weak since this is only relevant
in determining the bias of a protocol. A protocol may however be suitable for a strong or weak situation
depending on whether it yields a good quality by considering its bias.

Alice and Bob do not share any entanglement between their spaces when they start the protocol.
If they would share entanglement, say the EPR state (|00〉 + |11〉)/

√
2, they would not have to

apply any operation at all and could immediately measure in the standard basis to get a protocol
with bias 0.

We are now ready to state one of the most important results in quantum coin flipping, i.e., Ki-
taev’s lower bound based on semidefinite optimization.
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Theorem 5.4.3 (A.Y. Kitaev, 2002, [52], unpublished) Every strong quantum coin flipping protocol has
bias ε ≥ 1/

√
2− 1/2.

Before we can prove this result, we have to determine what cheating means with respect to Def-
inition 5.4.2. Suppose that Bob is a cheater and wants to enforce outcome 1 on Alice. He can not
interact with the space A immediately, but he can alter the preparation of the message space
and his own unitary operations UB,1, . . . , UB,N . Suppose ρA,j ∈ D(A ⊗M) is the state right
after Alice applied the operation UA,j for some j ∈ {1, . . . , N} and σA,j ∈ D(A ⊗M) be the
state after Bob applied his replacement channel for the operationUB,j . Then Bob could not have
changed the state on Alice her space, so we have the constraint

TrM ρA,j = TrM σA,j . (5.4.12)

If the state of the system before Bob’s operation is pure, then the state after his operation on
M⊗ B is also pure, for sufficiently large B. This means that Bob effectively applied an opera-
tion I ⊗ U on the whole system for some unitaryU operation onM⊗B. We can always pick a
purification of the system that satisfies Equation 5.4.12.

From Bob’s perspective as a cheater, we can alter the system in any possible way by preparing
states ρA,0, . . . , ρA,N ∈ D(A⊗M) that take into account that we cannot access Alice her space
and Alice performs operations on the system, specified by the protocol. This is schematically
represented in Figure 5.4.

UA,1 UA,2

ρA,1 ρA,2

UA,N
ΠA. . . {0, 1}|0〉 ∈ A

|0〉 ∈ B
ρA,N

. . .
M

ρA,0
|0〉 ∈ M

Figure 5.4: This diagram depicts the situation of Bob cheating. Bob replaces his
unitary operations UB,1, . . . , UB,N with the preparation of states ρA,0, . . . , ρA,N
while Alice performs the same operations as in Figure 5.3. Bob has knowledge on
the state of the system at any time, but he is still unable to perform operations on
the systemA directly.

Now that we have specified any possible way a cheater can interact with the system, we want to
optimize over all these possible ways such that Alice will measure a chosen outcome with maxi-
mum probability. This is shown in Proposition 5.4.4.
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Proposition 5.4.4 (Cheating strategy by semidefinite programming) Consider a quantum
coin flipping protocol as in Definition 5.4.2 and suppose that Alice is honest. The optimal cheat-
ing strategy for Bob such that Alice measures the outcome 1 with probability as high as possible,
is given by the optimal solution of the following semidefinite program over the density matrices
ρA,0, . . . , ρA,N ∈ D(A⊗M):

P ∗A,1 = sup Tr((ΠA,1 ⊗ IM)ρA,N )

s. t. TrM(ρA,0) = |0〉 〈0|A
TrM(ρA,1) = TrM(UA,1ρA,0U

†
A,1)

TrM(ρA,2) = TrM(UA,2ρA,1U
†
A,2)

...

TrM(ρA,N ) = TrM(UA,NρA,N−1U
†
A,N )

ρA,0, . . . , ρA,N ∈ Herm(A⊗M)

ρA,0, . . . , ρA,N � 0.

(5.4.13)

Its dual is given by the semidefinite program over the operatorsZA,0, . . . , ZA,N ∈ Herm(A)

D∗A,1 = inf 〈0|ZA,0 |0〉
s. t. ZA,0 ⊗ IM � U †A,1(ZA,1 ⊗ IM)UA,1

ZA,1 ⊗ IM � U †A,2(ZA,2 ⊗ IM)UA,2

...

ZA,N−1 ⊗ IM � U †A,N (ZA,N ⊗ IM)UA,N

ZA,N � ΠA,1

ZA,0, . . . , ZA,N ∈ Herm(A).

(5.4.14)

Remark 5.4.2 Some references pose the constraint ZA,N = ΠA,1 in the dual semidefinite program, e.g.
[7] and [53]. If we apply the primal and dual pair of Definition 3.2.1 we find the dual constraint ZA,N �
ΠA,1 as suggested in Proposition 5.4.4 and this constraint can for example be found in [41]. However, the
constraint ZA,N = ΠA,1 will lead to the same optimal solution but yields a different feasible region. Ki-
taev’s proof for the lower bound uses all of the dual constrains, including this last constraint. The statement
and proof remains virtually the same and only acquires an extra inequality instead of an equality.

Any feasible cheating strategy of the primal semidefinite program in Proposition 5.4.4 is repre-
sented byN + 1 positive semidefinite matrices. It is a priori not clear that these operators have
unit trace and therefore represent quantum states. This can be shown by considering for j = 0:

Tr(ρA,0) = Tr(TrM(ρA,0)) = Tr(|0〉 〈0|A) = 1, (5.4.15)

because |0〉 〈0|A is a valid quantum state and therefore has unit trace. Suppose for j ∈ {0, . . . , N−
1} that Tr(ρA,j) = 1, then

Tr(ρA,j+1) = Tr(TrM(ρA,j+1))

= Tr(TrM(UA,j+1ρA,jUA,j+1))

= Tr(UA,j+1ρA,jUA,j+1)

= Tr(ρA,j) = 1.

(5.4.16)

Thus by induction
Tr(ρA,0) = Tr(ρA,1) = . . . = Tr(ρA,N ) = 1, (5.4.17)
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and therefore the operators ρA,0, . . . , ρA,N are indeed quantum states in the setD(A⊗M).

We analyze why Proposition 5.4.4 is correct. First, suppose Alice is honest and Bob is dishonest
and wants to enforce the outcome 1. This means Bob wants to maximize the probability after the
final round of communication for Alice to measure the outcome 1. The state in the final round
is ρA,N and Alice measures only her own qubits, so she applies ΠA,1 to her system and nothing
happens to the message qubits, i.e., the identity IM is applied. The probability of measuring the
outcome 1 is now given by taking the trace of (ΠA,1⊗ IM)ρA,N according to the measurements
postulate of quantum mechanics.

The constraints are modeled according to Definition 5.4.2. Since Alice is honest, she starts with
all of her private qubits in state |0〉. This is represented by the first constraint

TrM(ρA,0) = |0〉 〈0|A . (5.4.18)

Furthermore, Bob wants to alter the quantum states to his advantage but only has access to the
message space. If we do not consider the message space, Alice applies the unitary operations
according to the protocol, therefore

TrM(ρA,j+1) = TrM(UA,jρA,jU
†
A,j), j = 0, . . . , N − 1. (5.4.19)

This objective and these constraints forms the semidefinite program for finding the optimal
cheating strategy.

If both players are fair, then the probability of aborting the protocol is 0. However, if a cheater is
present it may be possible that an honest player detects a cheater and aborts the protocol. Since
ρA,N determines the state of the system from the perspective of Alice just before measuring, the
probability of aborting the protocol is

Tr((ΠA,∅ ⊗ IM)ρA,N ). (5.4.20)

We will now show that the the dual of the primal semidefinite program in Proposition 5.4.4 is
correct. We first transform it to it’s standard form

sup{〈A,X〉 : Φ(X) = B,X ∈ Herm((A⊗M)N+1), X � 0}, (5.4.21)

whereA ∈ Herm((A⊗M)N+1),B ∈ Herm(AN+1) and Φ ∈ T ((A⊗M)N+1,AN+1) a Her-
mitian preserving superoperator.

We can do this by letting our decision variable be the direct sum of all density matrices of the
intermediate states, i.e.,

X = ρA,0 ⊕ ρA,1 ⊕ · · · ⊕ ρA,N

=




ρA,0 0 . . . 0
0 ρA,1 . . . 0
...

...
. . .

...
0 0 . . . ρA,N


 ∈ Herm((A⊗M)N+1).

(5.4.22)

By Lemma 2.2.6 this matrix is also positive semidefinite. We can define the constraint linear
form as

Φ(X) = Φ0(X)⊕ Φ1(X)⊕ · · · ⊕ ΦN (X) (5.4.23)

where

Φj(X) =

{
TrM(ρA,0) for j = 0,

TrM(ρA,j)− TrM(UA,jρA,j−1U
†
A,j) for j = 1, . . . , N,

(5.4.24)
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and
B = (|0〉 〈0|A)⊕ 0⊕ · · · ⊕ 0

=




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 ∈ Herm(AN ).

(5.4.25)

Furthermore, the objective is given by

A = 0⊕ · · · ⊕ 0⊕ (ΠA,1 ⊗ IM)

=




0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 ΠA,1 ⊗ IM


 ∈ Herm((A⊗M)N ),

(5.4.26)

then the optimization problem is of the form sup{〈A,X〉 : Φ(X) = B,X � 0}. The dual is
given by inf{〈B, Y 〉 : Φ∗(Y ) � A, Y ∈ Herm(AN+1)}.

The dual variables can be written as

Y = ZA,0 ⊕ ZA,1 ⊕ · · · ⊕ ZA,N

=



ZA,0 . . . 0

...
. . .

...
0 . . . ZA,N


 ∈ Herm(AN+1).

(5.4.27)

This means the dual objective becomes

〈B, Y 〉 = 〈|0〉 〈0|A , ZA,0〉+ 〈0, ZA,1〉+ · · ·+ 〈0, ZA,N 〉
= 〈|0〉 〈0|A , ZA,0〉 = 〈0|ZA,0|0〉A

(5.4.28)

and the adjoint of Φ is given by

Φ†(Y ) = Φ†0(Y )⊕ · · · ⊕ Φ†N (Y ), (5.4.29)

where

Φ†j(Y ) =

{
ZA,j ⊗ IM − U †A,j+1(ZA,j+1 ⊗ IM)UA,j+1 if j = 0, . . . , N − 1,

ZA,N ⊗ IM if j = N.
(5.4.30)
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To prove this operator is indeed the adjoint we show

〈Φ(X), Y 〉 = 〈Φ0(X)⊕ · · · ⊕ ΦN (X), ZA,0 ⊕ · · · ⊕ ZA,N 〉 =

N∑

j=0

〈Φj(X), ZA,j〉

= 〈TrM(ρA,0), ZA,0〉+
N∑

j=1

〈TrM(ρA,j)− TrM(UA,jρA,j−1U
†
A,j), ZA,j〉

= 〈ρA,0, ZA,0 ⊗ IM〉+

N∑

j=1

(
〈ρA,j , ZA,j ⊗ IM〉 − 〈UA,jρA,j−1U

†
A,j , ZA,j ⊗ IM〉

)

= 〈ρA,0, ZA,0 ⊗ IM〉+
N∑

j=1

(
〈ρA,j , ZA,j ⊗ IM〉 − 〈ρA,j−1, U

†
A,j(ZA,j ⊗ IM)UA,j〉

)

= 〈ρA,0, ZA,0 ⊗ IM − U †A,1(ZA,1 ⊗ IM)UA,1〉+ · · ·
· · ·+ 〈ρA,N−1, ZA,N−1 ⊗ IM − U †A,N (ZA,N ⊗ IM)UA,N 〉+ 〈ρA,N , ZA,N ⊗ IM〉

=
N∑

j=0

〈X,Φ†j(Y )〉 = 〈X,Φ†(Y )〉.

(5.4.31)
We can now write Φ†(Y ) into a list of N + 1 constraints that provides a clearer formulation of
the dual.

We will now consider the situation where Bob is honest and Alice is dishonest. We can look
at Figure 5.3 and replace every interaction of Alice in the system with the preparation of a state
ρB,j for j ∈ {0, . . . , N}. This is shown in Figure 5.5.

ρB,0 ρB,1

UB,1 UB,2
ΠB. . . {0, 1}

|0〉 ∈ A

|0〉 ∈ B
UB,N

ρB,N

|0〉 ∈ M

. . . M

Figure 5.5: This diagram depicts the situation of Alice cheating and is thereby simi-
lar to Figure 5.4. Note that Alice can perform a last interaction with the system after
she received the systemM from Bob in roundN . Hence the semidefinite programs
are of the same form.

If Bob is honest and Alice wants to cheat (say she wants to force outcome 1), then the primal SDP
to find her optimal cheating strategy is analogously given by

P ∗B,1 = sup Tr((IM ⊗ΠB,1)ρB,N )

s. t. TrM(ρB,0) = |0〉 〈0|B
TrM(ρB,1) = TrM(UB,1ρB,0U

†
B,1)

TrM(ρB,2) = TrM(UB,2ρB,1U
†
B,2)

...

TrM(ρB,N ) = TrM(UB,NρB,N−1U
†
B,N )

ρB,0, . . . , ρB,N ∈ Herm(M⊗B)

ρB,0, . . . , ρB,N � 0.

(5.4.32)
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Again, the dual of this SDP is given by the semidefinite program over the operatorsZB,0, . . . , ZB,N ∈
Herm(B)

D∗B,1 = inf 〈0|ZB,0 |0〉
s. t. IM ⊗ ZB,0 � U †B,1(IM ⊗ ZB,1)UB,1

IM ⊗ ZB,1 � U †A,2(IM ⊗ ZB,2)UB,2

...

IM ⊗ ZB,N−1 � U †B,N (IM ⊗ ZB,N )UB,N

ZB,N � ΠB,1

ZB,0, . . . , ZB,N ∈ Herm(B).

(5.4.33)

If we have a given quantum coin flipping protocol in the form of Definition 5.4.2, we determine
the optimal cheating probabilities and thus the bias by solving four semidefinite programs. An
important property that is essential in Kitaev’s proof, is strong duality of the semidefinite pro-
gram.

Lemma 5.4.5 Strong duality holds for the semidefinite program and its dual given in Proposition 5.4.4,
i.e.,P ∗A,1 = D∗A,1 and there exist a primal optimal solution that attains the optimum. Analogously, strong
duality holds for the semidefinite primal and dual pair in Program 5.4.32 and 5.4.33: P ∗B,1 = D∗B,1 and
there exists a primal optimal solution that at taints the optimum.

Proof: Clearly the feasible region is non-empty, because playing honest is a strategy. We prove
that the feasible region is bounded. LetX = ρA,0⊕ · · ·⊕ ρA,N � 0 be a feasible solution for the
primal problem. Then

‖X‖2 =
N∑

j=0

‖ρA,j‖2. (5.4.34)

For arbitrary j ∈ [N ], let λ1, . . . , λr ≥ 0 be the eigenvalues of ρA,j , then

‖ρA,j‖2 = Tr(ρ2
A,j) = λ2

1 + · · ·+ λ2
r ≤ (λ1 + · · ·+ λr)

2 = (Tr(ρA,j))
2 = 1. (5.4.35)

Hence for every feasible solutionX we have ‖X‖ ≤
√
N + 1 <∞, and thus the feasible region

is bounded.

We will now determine a strictly feasible dual solution. LetZA,j = (2 +N − j)IA ∈ Herm(A)
for every j ∈ {0, . . . , N}, then

ZA,N = 2IA � ΠA,1. (5.4.36)

and

ZA,j ⊗ IM = (2 +N − j)IA⊗M � (2 +N − (j + 1))IA⊗M

= U †A,j+1((2 +N − (j + 1))IA ⊗ IM)UA,j+1 = U †A,j+1(ZA,j+1 ⊗ IM)UA,j+1.
(5.4.37)

Thus Y = ZA,0 ⊗ · · · ⊗ ZA,N is a solution for which Φ†(Y ) � A. Slater’s condition is met and
thus strong duality holds. The same argument applies when Alice is a cheater and Bob is honest.
�

We are now ready to prove Kitaev’s lower bound for strong quantum coin flipping.

Proof of Theorem 5.4.3 Consider a dual feasible solution of the semidefinite program and de-
note this in both cases where Alice and Bob are honest by ZA,0, . . . , ZA,N and ZB,0, . . . , ZB,N
respectively, such that P ∗A,1 + δ = 〈0|ZA,0 |0〉 and PB,1 + δ = 〈0|ZB,0 |0〉 for some arbitrary
δ > 0.
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We define a family of quantum states and numbers. For j ∈ {0, . . . , N} denote the following
(ket-) states

|ψj〉 = (IA ⊗ UB,j)(UA,j ⊗ IB) · · · (IA ⊗ UB,1)(UA,1 ⊗ IB) |0〉 ∈ H, (5.4.38)

that is, |ψj〉 is the state of the system after round j if both players are honest. Based on the optimal
dual solutions we also define the numbers

Fj = 〈ψj | (ZA,j ⊗ IM ⊗ ZB,j) |ψj〉 ∈ R . (5.4.39)

We will now prove the following equations that immediate lead to the full proof

(P ∗A,1 + δ)(P ∗B,1 + δ) = F0, (5.4.40)

Fj ≥ Fj+1 for j = 0, 1, . . . , N − 1, (5.4.41)

FN ≥
1

2
. (5.4.42)

In Figure 5.6 the inequalities are shown and which parts of the four optimization programs lead
to the inequalities.

Constraint 1

Constraint 2

ConstraintN + 1

D∗A,1D
∗
B,1

P ∗A,1P
∗
B,1

F0

F1

F2

FN

1/2

=
=

≥
≥

≥
···

≥
≥

...

Constraint 1

Constraint 2

ConstraintN + 1

...

Bob’s cheating
SDP (primal)

Alice’s cheating
SDP (primal)

Bob’s cheating
SDP (dual)

Alice’s cheating
SDP (dual)

δ-close dual variables
ZA,0, . . . , ZA,N

Strong dualityStrong duality

δ-close dual variables
ZB,0, . . . , ZB,N

Constraint 3

ConstraintN

Constraint 3

ConstraintN

+δ +δ

+δ +δ

Figure 5.6: Schematical outline of Kitaev’s proof. The proof uses strong duality, dual
optimal variables and all dual constraints to derive a chain of inequalities that lead
to the result.
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To prove Equation 5.4.40 we have use strong duality from Lemma 5.4.5 We can now calculate the
product

(P ∗B,1 + δ)(P ∗A,1 + δ) = 〈0|A ZA,0 |0〉A 〈0|B ZB,0 |0〉B
= 〈0|A ZA,0 |0〉A 〈0|M IM |0〉M 〈0|B ZB,0 |0〉B
= 〈0|A⊗M⊗B (ZA,0 ⊗ IM ⊗ ZB,0) |0〉A⊗M⊗B = F0.

(5.4.43)

Next, to prove Equation 5.4.41 we use the dual constrains of the semidefinite program pair. From
the dual SDP where Alice is honest and Bob is dishonest we have

ZA,j ⊗ IM � U †A,j+1(ZA,j+1 ⊗ IM)UA,j+1, for j = 0, . . . , N − 1. (5.4.44)

Similarly, if Alice is dishonest and Bob is honest we have the constraint

IM ⊗ ZB,j � U †B,j+1(IM ⊗ ZB,j+1)UB,j+1, for j = 0, . . . , N − 1. (5.4.45)

We will now apply this

Fj = 〈ψj |ZA,j ⊗ IM ⊗ ZB,j |ψj〉
≥ 〈ψj |U †A,j+1(ZA,j+1 ⊗ IM)UA,j+1 ⊗ ZB,j |ψj〉
= 〈ψj | (U †A,j+1 ⊗ IB)(ZA,j+1 ⊗ IM ⊗ ZB,j)(UA,j+1 ⊗ IB) |ψj〉
≥ 〈ψj | (U †A,j+1 ⊗ IB) · · ·
· · · (ZA,j+1 ⊗ (U †B,j+1(IM ⊗ ZB,j+1)UB,j+1)) · · ·
· · · (UA,j+1 ⊗ IB) |ψj〉

= 〈ψj | (U †A,j+1 ⊗ IB)(IA ⊗ U †B,j+1) · · ·
· · · (ZA,j+1 ⊗ IM ⊗ ZB,j+1) · · ·
· · · (IA ⊗ UB,j+1)(UA,j+1 ⊗ IB) |ψj〉

= 〈ψj+1|ZA,j+1 ⊗ IM ⊗ ZB,j+1 |ψj+1〉 = Fj+1.

(5.4.46)

Finally we prove Equation 5.4.42. Note that for any state |ϕ〉 ∈ A ⊗M⊗B we have

〈ϕ| (ZA,N ⊗ IM ⊗ ZB,N ) |ϕ〉 ≥ 〈ϕ| (ΠA,1 ⊗ IM ⊗ΠB,1) |ϕ〉 (5.4.47)

In particular if we take |ϕ〉 = |ψN 〉, then

FN ≥ 〈ψN | (ΠA,1 ⊗ IM ⊗ IB)(IA ⊗ IM ⊗ΠB,1) |ψN 〉 =
1

2
. (5.4.48)

This concludes the proof that (P ∗A,1+δ)(P ∗B,1+δ) ≥ 1/2 and thus max{P ∗A,1, P ∗B,1}+δ ≥ 1/
√

2,
from which it immediately follows that max{P ∗A,1, P ∗B,1} ≥ 1/

√
2, since δ > 0 was arbitrary.

Thus the bias of any two player strong quantum coin flipping protocol is

ε ≥ max{P ∗A,1, P ∗B,1} −
1

2
≥ 1√

2
− 1

2
≈ 0.20711 . . . (5.4.49)

The remarkable fact of this theorem and lower bound is how the proof uses two pairs of optimiza-
tion programs and combines their dual constraints to eliminate the dependence of the unitary
operations and measurements and therefore applies to any protocol.

From this proof it is clear that in the same way max{P ∗A,0, P ∗B,0} ≥ 1/
√

2 and this leads to the
same conclusion for strong quantum coin flipping. This proof does however not apply to the set-
ting of weak coin flipping, simply because applying the proof toP ∗A,0P

∗
B,1 yields the trivial lower

bound of 0 in the final step.
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5.5 Coin Flipping beyond Kitaev’s Proof: Optimal Coin Flipping

Kitaev’s proof of a lower bound on the strong bias of a coin flipping protocol is based on the pair
of inequalities max{P ∗A,0, P ∗B,0} ≥ 1/

√
2 and max{P ∗A,1, P ∗B,1} ≥ 1/

√
2. In the strong bias of a

coin flipping protocol, all four values are taken into account and thus the bias is bounded from
below by 1/

√
2 − 1/2. However, in the case we want to assess the weak bias of a quantum coin

flipping, we only look at pairs (P ∗A,0, P
∗
B,1) or (P ∗A,1, P

∗
B,0) depending on the preferences. As a

result, Kitaev’s proof does not apply on the weak bias of a protocol.

After Kitaev’s bound, new results on the weak bias of quantum coin flipping protocol were found.
One of these protocols by Mochon [14] in 2004 has a bias of approximately 0.19218 . . . , which is
strictly less than Kitaev’s bound on the strong bias. This clearly indicated a difference between
protocols with a good weak bias and those with a good strong bias. In 2007, the optimal lower
bound for the weak bias of quantum coin flipping was completely resolved by Carlos Mochon.
He showed that any arbitrarily small bias is possible.

Theorem 5.5.1 (C. Mochon, 2007) There exist quantum coin flipping protocols for any weak biasεWCF >
0.

Based on this result, in 2009 Chailloux and Kerenidis were able to prove that Kitaev’s lower bound
on the strong bias is tight by costructing protocols with a good strong bias from imbalanced
protocols with a good weak bias.

Theorem 5.5.2 (Chailloux and Kerenidis, 2009 [17]) For any δ > 0 there exists a coin flipping proto-
col with strong bias

ε <
1√
2
− 1

2
+ δ. (5.5.1)

How both results on the weak and strong bias are connected can be found in Sikora’s lecture
notes [53]. Both optimal results on the weak and strong bias of quantum coin flipping show the
difference between classical and quantum information theory. This observation is analogously
to Bell’s inequality [33].

5.6 Optimization of Secondary Preferences and Expectation

In the previous section, Proposition 5.4.4 finds a feasible cheating strategy that optimizes the
probability of a particular chosen outcome. However, besides optimizing this chosen outcome,
a player might also want to minimize the probability of being caught. We can relatively easy
model this extra requirement.

For a given quantum coin flipping protocol we have four optimal cheating probabilities P ∗A,0,
P ∗A,1, P ∗B,0 and P ∗B,1 as a result of the optimization programs in Proposition 5.4.4. Suppose
Bob is a cheater and wants to enforce the outcome 1. All other scenarios are analogous. Solv-
ing this semidefinite program we get a feasible solution ρA,0, . . . , ρA,N ∈ D(A ⊗ M) with
Tr((ΠA,1 ⊗ IM)ρA,N ) = P ∗A,1. The optimum can be attained as we have seen in the proof of
strong duality (Lemma 5.4.5). This solution may not be a unique solution that attains this opti-
mum.

For all solutions ρA,0, . . . , ρA,N that yield an optimal probability of measuring the outcome 1,
we can search for the optimal solution that also maximizes the probability of measuring the out-
come 0. This is equivalent to minimizing the probability of aborting the protocol. Analogously,
we can look for the solution that maximizes the probability of aborting the protocol and hence
minimizes the probability of finding the outcome 0. This optimization problem is a simple ex-
tension of the primary optimization problem of Proposition 5.4.4 by changing the objective and
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inserting the constraint
Tr((ΠA,1 ⊗ IM)ρA,N ) = P ∗A,1, (5.6.1)

into the semidefinite program. The secondary semidefinite program and its dual formulation
are shown in Proposition 5.6.1.

Proposition 5.6.1 (Cheating strategy for secondary optimization) Consider a quantum
coin flipping protocol as in Definition 5.4.2 and suppose that Alice is honest. Let P ∗B,1 be the
optimum of 5.4.4. The best strategy that minimizes the probability of aborting (or equivalently,
maximizes the probability of measuring 0) whilst attaining optimal probability to enforce outcome
one is given by the following semidefinite program:

Γ∗A,1 = sup Tr((ΠA,0 ⊗ IM)ρA,N )

s. t. TrM(ρA,0) = |0〉 〈0|A
TrM(ρA,1) = TrM(UA,1ρA,0U

†
A,1)

TrM(ρA,2) = TrM(UA,2ρA,1U
†
A,2)

...

TrM(ρA,N ) = TrM(UA,NρA,N−1U
†
A,N )

Tr((ΠA,1 ⊗ IM)ρA,N ) = P ∗A,1

ρA,0, . . . , ρA,N ∈ Herm(A⊗M)

ρA,0, . . . , ρA,N � 0.

(5.6.2)

Its dual is given by the semidefinite program over the operators ZA,0, . . . , ZA,N ∈
Herm(A), y ∈ R

∆∗A,1 = inf 〈0|ZA,0 |0〉+ yP ∗A,1

s. t. ZA,0 ⊗ IM � U †A,1(ZA,1 ⊗ IM)UA,1

ZA,1 ⊗ IM � U †A,2(ZA,2 ⊗ IM)UA,2

...

ZA,N−1 ⊗ IM � U †A,N (ZA,N ⊗ IM)UA,N

ZA,N ⊗ IM + y(ΠA,1 ⊗ IM) � ΠA,0 ⊗ IM
ZA,0, . . . , ZA,N ∈ Herm(A), y ∈ R .

(5.6.3)

Of course, Proposition 5.6.1 can also be applied to situation in which Bob is honest and all pref-
erences of the outcomes 0,1 and ∅. This leads to the optimal values Γ∗A,0,Γ

∗
A,1,Γ

∗
B,0,Γ

∗
B,1. The

maximum of these four values is called the secondary bias.

In this approach, the first preference is the most important, followed by the second and what
is left is the least preferred. There might be situations in which this is a little bit more sophisti-
cated any we do not necessarily value one outcome absolutely more than another. This can best
be explained with an example. Suppose the coin flip leads to the following actions: If the out-
come is 0, Bob has to pay one dollar to Alice. Similarly, if the outcome is 1, Alice has to pay one
dollar to Bob. If a cheater gets caught, he or she has a to pay a fine of five dollar. Suppose that
both players are honest, then their expected win is 0. Suppose that we have a coin flipping pro-
tocol and Bob executes a cheating strategy that leads to a 75% chance of the outcome 1. If this
cheating strategy also has a 20% chance of being caught and 5% chance of finding the outcome
0, the expected amount of money is 75% · 1 + 5% · −1 + 20% · −5 = −0.30 dollar. Although
Bob is cheating and the chance of the favorable outcome increases, the expected win decreases
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and we have to conclude that this is a bad cheating strategy. What we want to optimize is not the
favorable outcome, but the expected amount of money.

This can also be written as a minor variation on the previous semidefinite programs. LetFA(P)
be the feasible set of cheating strategies ρA,0, . . . , ρA,N ∈ Herm(A⊗M), when Alice is honest
in a quantum coin flipping protocol P = (UA,1, UB,1, . . . , UA,N , UB,N ,ΠA,ΠB). Suppose that
a protocol yields Bob the amounts y0, y1, y∅ ∈ R for outcomes 0, 1 and ∅ respectively. Let

PA,a(X) = Tr((ΠA,a ⊗ IM)ρA,N ), for a ∈ {0, 1,∅}. (5.6.4)

The expected yield is therefore

E(Y ) = y0PA,0(X) + y1PA,1(X) + y∅PA,∅(X)

= Tr(((y0ΠA,0 + y1ΠA,1 + y∅ΠA,∅)⊗ IM)ρA,N )
(5.6.5)

The cheating strategy that optimizes the expected yield is therefore given by the semidefinite
optimization program

sup{Tr((Λ⊗ IM)ρA,N : ρA,0, . . . , ρA,N ∈ FA(P)}, (5.6.6)

where Λ = y0ΠA,0 + y1ΠA,1 + y∅ΠA,∅ ∈ Herm(A).

Note that the optimization in which we do only optimize the particular outcome 1 in Proposi-
tion 5.4.4 is equivalent to letting (y0, y1, y∅) = (0, 1, 0) ∈ R3, because then Λ = ΠA,1.

The secondary optimization of Proposition 5.6.1 can also be cast into the form of Program 5.6.6
by letting (y0, y1, y∅) = (1/n, 1, 0) for some n ≥ 1 and solving the program as n → ∞. In
this way the outcome 1 is arbitrarily more important than the outcome 0 and the outcome 0 is
infinitely more important than aborting the protocol. The optimal value will tend to P ∗A,1 and
the optimal value of the secondary optimization program is

Γ∗A,1 = Tr((ΠA,0 ⊗ IM)ρ∗A,N ), (5.6.7)

whereρ∗A,0, . . . , ρ
∗
A,N is optimal for Program 5.6.6 with Λn = 1

nΠA,0+ΠA,1 asn→∞. However,
this does need a more formal description of what convergence means in this setting and a proof
that this approach does indeed yield these solutions.

5.7 Strong Unbalanced Quantum Coin Flipping

When defining quantum coin flipping protocols, we mentioned that we want the coin to be bal-
anced, i.e., both outcomes have to appear with equal probabilities. This lead to Kitaev’s tight
lower bound on the bias. Depending on the application, we may consider a trade-off between
the probability of both outcomes of the coin if both players are fair and the minimum bias that
can be achieved by protocols based on this (un)balanced coin. If a slightly unbalanced coin leads
to protocols that have a substantially lower bias than Kitaev’s bound, we might prefer this situa-
tion over balanced coin flipping. We show that this is not the case and a balanced coin leads to
the lowest possible bias.

Suppose we have an unbalanced strong quantum coin flipping protocol, i.e., Alice and Bob want
to generate the outcome of a coin with probability p for the outcome 1 and 1− p for the outcome
0, for some p ∈ [0, 1]. We have to redefine the bias in terms of the difference with the corre-
sponding outcome. For example, if Alice is a cheater, she can force outcome 0 with probability
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P ∗B,0, then the deviation for this situation isP ∗B,0−(1−p). We can do this similarly for the other
three situations and define the bias by

εp = max{P ∗A,0 − (1− p), P ∗B,0 − (1− p), P ∗A,1 − p, P ∗B,1 − p}
= max{max{P ∗A,0, P ∗B,0} − (1− p),max{P ∗A,1, P ∗B,1} − p}.

(5.7.1)

Note that if p = 1/2, this definition corresponds to Definition 5.4.2.

If we apply Kitaev’s proof to unbalanced coin flipping we get the inequality P ∗A,0P
∗
B,0 ≥ 1 − p

for outcome 0 and thus
max{P ∗A,0, P ∗B,0} ≥

√
1− p. (5.7.2)

Similarly, for outcome 1, we get the inequality P ∗A,1P
∗
B,1 ≥ p and thus

max{P ∗A,1, P ∗B,1} ≥
√
p. (5.7.3)

Combining this the definition of the bias in Eq. 5.7.1 we get

εp ≥ max{
√

1− p− (1− p),√p− p} =: µ(p). (5.7.4)

Note that this lower boundµ(p) has a local minimum at p = 1/2, corresponding to the situation
of fair strong coin flipping.

0

0.25

0.20

0.500.25 10.75
p

µ

0.15

0.10

Figure 5.7: The lower bound for the bias as a result of Kiteav’s proof for unbalanced
coin flipping. The dotted line is the optimal bias for balanced coin flipping, where
µ(1/2) = 1/

√
2− 1/2.

The equationµ(p) = 1/
√

2−1/2 has three solutions: p = 3/2−
√

2, 1/2,
√

2−1/2. This means
that in the regions (0.0858, 1/2) and (1/2, 0.9142) any quantum coin flipping protocol will per-
form worse than the balanced case where p = 1/2. Since the derivative of µ close to p = 1/2 is
±(1 − 1/

√
2) ≈ ±0.2929, we can conclude that the best way to have a low bias is to choose for

balanced coin flipping, i.e., p = 1/2.

The regions outside the interval (0.0858, , 0.9142) do have a lower bound on the bias less than
1/
√

2− 1/2, but in this situation will be less useful in practical applications.

5.8 Quantum Coin Flipping as a Quantum Computing Circuit

Quantum coin flipping protocols such as the one of Ambainis [12] and Berlín et al. [15] are gen-
erally not stated in terms of the standard form of Definition 5.4.2. Protocols may also include
procedures such as flipping private (classical) coins or communicating classical information.
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By Stinespring’s representation 4.3.4 this can be captured by unitary operations on a larger Eu-
clidean space. We will make this explicit by viewing these operations in terms of quantum cir-
cuits. This contribution is new and allows for a flexible modelling of coin flipping protocols.

It is possible to create a private fair coin with a quantum circuit. We can simply do this by start-
ing with a single qubit in the state |0〉 ∈ C2, apply the Hadamard transform to obtain the state
(|0〉 + |1〉)/

√
2 and measure the result in the standard basis {Π0 = |0〉 〈0| ,Π1 = |1〉 〈1|}. The

result will be in one of the states |0〉 or |1〉 with probability 1/2. The circuit is shown in Figure
5.8.

|0〉 H M {0, 1}

Figure 5.8: This circuit creates a fair, private coin flip through quantum random-
ness.

We can use the result of the measurement in the circuit to apply to other operations in the sys-
tem. The trick to postpone this measurement, is to apply an operation that is controlled by the
qubit in superposition and then measure the qubits afterwards. If the private coin collapses, the
rest of the system will collapse to a state that corresponds to the action of the coin flip.

More explicitly, if we have state |ψ〉 and we want to apply an operation U to |ψ〉 based on a ran-
dom coin flip, then a direct way of doing this is represented in Figure 5.9.

|0〉 H M {0, 1}

|ψ〉 U

Figure 5.9: In this circuit we create a fair random coin flip by using quantum ran-
domness as in Figure 5.8 and then use the outcome to decide whether or not we
apply the gateU on the second qubit.

However, the circuit in Figure 5.9 requires us to first measure and then apply the operation U .
Surprisingly, we can interchange the controlled operation and the measurement is we substitute
the classical controlled operation by a quantum controlled operation. This is shown in Figure
5.10.

|0〉 H • M {0, 1}

|ψ〉 U

Figure 5.10: This system has the same outcome as the circuit in Figure 5.9. In this
circuit the controlled gateU is applied before measuring the coin. After measuring
the system, the results are indistinguishable.

To see why this works, we look ad the quantum controlled-U operation, defined by

cU = |0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗ U. (5.8.1)

We show if the outcome of the coin flip is 0, then clearly

(I2 ⊗ I2)(Π0 ⊗ I) = Π0 ⊗ I = (Π0 ⊗ I2)(I2 ⊗ I2). (5.8.2)

If, on the other hand, the outcome of the coin flip is 1, then

(I2 ⊗ U)(Π1 ⊗ I) = Π1 ⊗ U = (Π1 ⊗ I2)(cU). (5.8.3)
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This means we can incorporate a private coin into the protocol postpone the measurement to the
end of the protocol.

We can also share information, such as private coins, by creating an EPR pair from our coin.
This can be done by applying a CNOT operation to the private quantum coin as shown in Figure
5.11.

A 3 |0〉 H •
M 3 |0〉 |0〉
B 3 |0〉

Figure 5.11: The system of Alice creates a private quantum coin and entangles with
Bob. The measurement outcomes will be the same. However, this type of commu-
nication is not allowed because the spacesA andB are not allowed to communicate
directly.

However, as stated in the definition of a quantum coin flipping protocol (Definition 5.4.2), it is
not allowed to interact with the spacesA and B at the same time.

It is possible to share the coin to the message space and let Bob swap the message spaceMwith
an unused qubits in his private space. This is shown in the circuit in Figure 5.12

A 3 |0〉 H •

M 3 |0〉 × |0〉
B 3 |0〉 ×

Figure 5.12: This circuit performs the same operation as the circuit in Figure 5.11 but
only uses operations onA ⊗M andM⊗B and is thus allowed in a coin flipping
protocol.

With these basic tools and knowledge quantum computing we can determine protocols repre-
sented by quantum circuits.

5.9 Ambainis’ protocol: Formulating and Solving the Semidefinite Pro-
gram

We can now reformulate Protocol 5.4.1 by Ambainis with bias 1/4, in terms of quantum opera-
tions and postponed measurements. This circuit is shown in Figure 5.13.
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A |0〉2 H • • Πcoin

|0〉2 × Πcoin

|0〉3
P0 P1P

†
0

× I3

|0〉3 × I3

M |0〉3 × × × × × ×

B |0〉3 ×
Πcheck

|0〉3 ×

|0〉2 H • Πcoin

|0〉2 × Πcoin









Figure 5.13: This circuit represents Ambainis’ protocol (Protocol 5.4.1). It has three
rounds and acts on the spacesA ∼= C36,M ∼= C3 and B ∼= C36. Note thatA,M
andB consist of a mix of qubits an qutrits. Each box corresponds to a single unitary
operation or measurements such as in Definition 5.4.2.

In Figure 5.13, the unitary gate Pi maps the pair of qutrits |0〉3 |0〉3 ∈ C3⊗C3 as

P0 : |0〉3 |0〉3 7→
1√
2

(|i〉3 |i〉3 + |2〉3 |2〉3), for i ∈ {0, 1}. (5.9.1)

If the private coin of Alice is 0, then 1√
2
(|0〉3 |0〉3 + |2〉3 |2〉3) is the state we want, if the private

coin is 1 however, we want the state 1√
2
(|1〉3 |1〉3 + |2〉3 |2〉3), so consequently

P1P
†
0 :

1√
2

(|0〉3 |0〉3 + |2〉3 |2〉3) 7→ 1√
2

(|1〉3 |1〉3 + |2〉3 |2〉3). (5.9.2)

Of course these operators are not uniquely defined on the C3⊗C3. One way to construct an
operator explicitly that performs this action is by the Gram-Schmidt orthogonalisation process.

Lemma 5.9.1 (Gram-Schmidt orthogonalisation) Let |ψ1〉 , . . . , |ψn〉 be a set of linearly independent
quantum states in the Hilbert space Cn. Let γ be the renormalization map, defined by

γ : Cn \{0} → Cn \{0}
z 7→ z/‖z‖. (5.9.3)

and
|ϕ1〉 = |ψ1〉 ,
|ϕ2〉 = γ(|ψ2〉 − 〈ψ2|ϕ1〉 |ϕ1〉),
|ϕ3〉 = γ(|ψ3〉 − 〈ψ3|ϕ1〉 |ϕ1〉 − 〈ψ3|ϕ2〉 |ϕ2〉),

...
|ϕn〉 = γ(|ψn〉 − 〈ψn|ϕ1〉 |ϕ1〉 − · · · − 〈ψn|ϕn−1〉 |ϕn−1〉).

(5.9.4)

then |ϕ1〉 , . . . , |ϕn〉 is a set of orthonormal vectors in Cn.

Given such an orthonormal set, the operator

U =

n∑

i=1

|ϕi〉 〈i| ∈ L(Cn) (5.9.5)
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is unitary. An explicit expression for P0 and P1 is provided in Appendix A.2.

In Appendix A.1 the matrix representation for a pair of n-dimensional systems is given. Also
note that all qubits can be embedded in qutrits, because the space C2 is a subspace of C3. This
makes it possible to use the message space as a ‘qubit’ by simply ignoring one dimension.

Measuring the coin is done in the standard basis

Πcoin = {ΠC,0,ΠC,1} = {|0〉 〈0| , |1〉 〈1|} ⊆ Herm(C2). (5.9.6)

To check the two qutrit-state that Bob finally obtains, he measures with the following states:

Πcheck = {ΠQ,0,ΠQ,1,ΠQ,∅}
= {|ψ0〉 〈ψ0| , |ψ1〉 〈ψ1| , I3 ⊗ I3 −ΠQ,0 −ΠQ,1} ⊆ Herm(C3⊗C3).

(5.9.7)

If Alice’s coin is zero as a result of the protocol, she must have measured the pair (0, 0) or (1, 1).
If her final outcome is 1, she must have measured one of the pairs (0, 1) or (1, 0). The qutrits are
not taken into account and Alice does not have any (formal) possibility to abort. The leads to the
set of measurement operators:

ΠA = {ΠA,0,ΠA,1,ΠA,∅} = {(ΠC,0 ⊗ΠC,0 + ΠC,1 ⊗ΠC,1)⊗ I3 ⊗ I3,

(ΠC,0 ⊗ΠC,1 + ΠC,1 ⊗ΠC,0)⊗ I3 ⊗ I3,

0} ⊆ Herm(A).

(5.9.8)

Bob measures the pair of coins as well as checking the two qutrit state. The two qutrit state has to
agree with Alice’s private coin. Similarly to Alice’s final outcome, coins (0, 0) and (1, 1) will lead
to the outcome 0 and (0, 1), (1, 0) lead to 1. Furthermore, the quantum coin Bob received from
Alice has to agree with the check. If the check leads to abort, then Bob will abort the protocol
independent of the pair of quantum coins. These outcomes are represented in the following
measurement for Bob:

ΠB = {ΠB,0,ΠB,1,ΠB,∅} = {ΠQ,0 ⊗ΠC,0 ⊗ΠC,0 + ΠQ,1 ⊗ΠC,1 ⊗ΠC,1,

ΠQ,1 ⊗ΠC,0 ⊗ΠC,1 + ΠQ,0 ⊗ΠC,1 ⊗ΠC,0,

IB −ΠB,0 −ΠB,1} ⊆ Herm(B).

(5.9.9)

Note that every measurement agrees with the completeness axiom. We have now completely
formulated Protocol 5.4.1 in the standard form of Definition 5.4.2 and we can therefore apply
Proposition 5.4.4 to find the bias and the optimal cheating strategy.

The second protocol we will write as a quantum circuit is based on a two of EPR-pairs that Alice
and Bob shares. We will first state the protocol and then state its bias and determine its repre-
sentation as a quantum circuit.

Protocol 5.9.1 (EPR-based quantum coin flipping, [53]) The following protocol is based on two EPR-
pairs.

1. Alice creates two EPR-pairs, i.e., |ψ〉 ∈ A1 ⊗ B1 and |ψ〉 ∈ A2 ⊗ B2, where

|ψ〉 =
1√
2

(|00〉+ |11〉).

Alice then sends the qubits in the spacesB1 andB2 to Bob.

2. Bob picks a random number i from {1, 2} and sends it to Alice.

3. Alice sends the qubit in the spaceAi to Bob.
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4. Bob measures the state in the spaceAi ⊗ Bi in

ΠEPR = {Πaccept,Πabort} = {|ψ〉 〈ψ| , I2 ⊗ I2 −Πaccept}.

5. If Bob does not measure abort, both he and Alice measure the remaining qubit in the computational
basis {|0〉 , |1〉}.

This protocol shares some similarities with the protocol of Ambainis. In both cases Alice is the
only person to actually prepare quantum states and Bob is the only person who can detect a
cheater in the protocol. Also the strong bias of the protocol is the same.

Lemma 5.9.2 ([53]) Protocol 5.9.1 has optimal cheating probabilities P ∗A,0 = P ∗A,1 = P ∗B,0 = P ∗B,1 =
3/4 and thus the strong bias of this protocol is ε = 1/4.

Using the tools from Section 5.8 we can write this protocol as a quantum circuit too. This is
shown in Figure 5.14.

A |0〉 H • × Πcoin

|0〉 H • × Πcoin

|0〉 × • X • X Πcoin

M |0〉 × × × × × ×
|0〉 × × × ×

B |0〉 × × × ×
ΠEPR

|0〉 × × × ×

|0〉 H • • • X • • • X × Πcoin










Figure 5.14: This protocol has two rounds and the spaces areA ∼= C8,M∼= C4 and
B ∼= C8. In this protocol Alice prepares two EPRs and Bob shares a random bit. Bob
can perform checks.

In this protocol we have the following unitary operations.

UA,1 : Alice creates two EPR pairs and from each pair, she keeps one qubit herself and shares the
other the message spaceM.

UB,1 : Bob swaps both qubits that Alice send him to his own private space and shares a private
coin with Alice through the message space.

UA,2 : Depending on Bob’s coin, Alice swaps either the remaining qubits from the first or the
second EPR pair with the message space.

UB,2 : Depending on Bob’s coin, he has the first or second complete EPR pair.

The measurements in this protocol are described as follows.

ΠA : Alice measures Bob’s private coin to determine from which EPR-qubit is left. The outcome
of this remaining EPR-qubit is her result of the coin flip.

ΠB : Bob checks whether the complete EPR-pair is in the state |ψ〉. If this test is positive, he
measures the remaining qubit from the EPR-pair and this result is his coin flip.
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If both players are honest, they will have the same outcome with 50% each and do not abort the
protocol. The measurement of the coin is the same is in Ambainis protocol,

Πcoin = {ΠC,0,ΠC,1} = {|0〉 〈0| , |1〉 〈1|} . (5.9.10)

We can check whether the EPR-qubit is correct by measuring in the operators

ΠEPR = {Πaccept,Πabort} = {|ψ〉 〈ψ| , I2 ⊗ I2 −Πaccept}. (5.9.11)

Alice’s measurement is determined by the single qubit left from one of the EPR-pairs. This results
in the measurement

ΠA = {ΠA,0,ΠA,1,ΠA,∅} = {I2 ⊗ΠC,0 ⊗ΠC,0 + ΠC,0 ⊗ I2 ⊗ΠC,1,

I2 ⊗ΠC,1 ⊗ΠC,0 + ΠC,1 ⊗ I2 ⊗ΠC,1,

0}.
(5.9.12)

Bob’s measurement consists of a check of the complete EPR-pair he received and the remaining
qubit he has left determines the coin

ΠB = {ΠB,0,ΠB,1,ΠB,∅} = {ΠEPR,accept ⊗ΠC,0,

ΠEPR,accept ⊗ΠC,1,

IB −ΠB,0 −ΠB,1 = ΠEPR,abort ⊗ I2}.
(5.9.13)

This brings the protocol in the unitary form required by Definition 5.4.2.

5.10 Semidefinite Programming Implementation of Ambianis’ Proto-
col

In Section 5.8 we showed how to write a coin flipping protocol as a quantum circuit with post-
poned measurements. This resulted in a list of unitary operations on the spaces A ⊗M and
M⊗ B and a pair of measurements on the spaces A and B. To determine the optimal cheat-
ing probabilities and strategies, we implemented the semidefinite program from Proposition
5.4.4 using MATLAB 2019b together with the CVX package [54]. The CVX package contains four
solvers: SDPT3, SeDuMi, Mosek and Gurobi. The former two packages are free and the latter
two are commercial. All solvers are capable of solving semidefinite programs and we used the
SeDuMi solver with high precision for these problems. The scripts to solve the semidefinite
programs are given in Appendices A.4 and A.5. In this implementation we use a mixed binary-
ternary base system to enumerate states, that is for i1, i2 ∈ {0, 1}, j3, j4, j5 ∈ {0, 1, 2}, we write

|i1〉 |i2〉 |j3〉 |j4〉 |j5〉 =
∣∣2 · 33i1 + 33i2 + 32j3 + 3j4 + j5

〉
∈ C108 (5.10.1)

This allows us to easily define SWAP and CNOT operations between every pair of qubits and/or
qutrits in the spacesA⊗M andM⊗B.

The constraints in the program in Proposition 5.4.4

TrM(ρA,j+1) = TrM(UA,jρA,jU
†
A,j), j = 0, . . . , N − 1, (5.10.2)

can be rewritten by adding a new set of variablesσA,j+1 ∈ Herm(A⊗M) for all j ∈ {0, . . . , N−
1} and split constraint 5.10.2 into two constraints

σA,j+1 = UA,jρA,jU
†
A,j , and TrM(ρA,j+1) = TrM(σA,j+1). (5.10.3)

Of course these formulations are equivalent, but using this pair of constraints does not require
the program to calculateUA,jρA,jU

†
A,j in every term of the sum of the partial trace.
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Solving the four semidefinite programs yields the values shown in Table 5.1.

Table 5.1: Results of solving the semidefinite programs applied to Ambainis’ proto-
col. The status ‘S’ indicates solved within the specified accuracy and ‘I’ means inac-
curate.

Primal value Dual value Solution gap Status
Number of
iterations

Run time
(sec)

P ∗A,0 0.75002403659 0.75001845344 5.5832 · 10−6 I/S 50 597.6

P ∗A,1 0.75002282927 0.75001820590 4.6234 · 10−6 I/S 48 582.3

P ∗B,0 0.75000071914 0.75000071665 2.4899 · 10−9 S 68 750.5

P ∗B,1 0.75000086773 0.75000073959 1.2814 · 10−7 S 68 767.9

Note that formally, all solutions are infeasible, since the optimal (feasible) solution has a primal
objective value less than or equal to 0.75. The solutions are very close to the optimal value of 3/4.
We can calculate the strong bias based of this protocol

ε = max{P ∗A,0, P ∗A,1, P ∗B,0, P ∗B,1} −
1

2
= 0.25002403659. (5.10.4)

This result differs from the theoretical value by 2.40 · 10−5. By using even higher accuracy it is
possible to decrease this value even more. Whether higher accuracy is required depends mainly
on the application.

Using the result optimal cheating strategy of this semidefinite program we can calculate, it is
easy to calculate the probability of the complementary outcome or aborting the protocol. Alice
does not abort to protocol so it is immediate that this probability is zero and the remaining prob-
ability (theoretically 25%) is for measuring the opposite outcome.

If Bob is honest, and we look at the cheating probabilities of Alice we find different results. The
operator of measuring ‘abort’ is not trivial in Bob’s case. We use Equation 5.4.20, which in Bob
case is Tr((IM ⊗ΠB,∅)ρB,N ). These results are shown in Table 5.2.

Table 5.2: This table shows the probabilities when Alice cheats optimally according
to the SDP. Note that in both cases the probability of aborting the protocol is ap-
proximately 23.6% and around 1.4% for the cheater’s opposite outcome.

Probability of
outcome ‘0’

Probability of
outcome ‘1’

Probability of
aborting

P ∗B,0 0.75000 0.013889 0.23611

P ∗B,1 0.013889 0.75000 0.23611

We see that, contrary to Alice’s case, Bob will abort the protocol with a relatively high probability
of 23.6%. Depending on Alice’s preference, this makes the protocol good or bad.

Solving the optimization programs for the protocol on EPR-pairs 5.9.1, we find exactly the same
results, apart from some minor numerical deviations. As stated before both the bias and a lot of
the structure of both protocols are similar and hence this result is no surprise.
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5.11 Secondary Optimization of Ambainis’ Protocol

Using this semidefinite program we confirmed that the optimal cheating strategy leads to a prob-
ability of 3/4 to enforce a chosen outcome. This means that the sum of the probability of mea-
suring the complementary outcome and aborting the protocol is 1/4.

By applying the semidefinite program of Proposition 5.6.1 to Ambainis’ protocol where Bob is
honest2, we have four possible preferences in the outcomes. The optimal solutions are shown in
Tables 5.3 and 5.4.

Table 5.3: In this situation, Bob is honest and Alice wants to enforce the outcome ‘1’.
There are two possible secondary preferences. This situation leads to an asymmetry.

Preference
Probability of
outcome ‘0’

Probability of
outcome ‘∅’

Status
Number of
iterations

Run time
(sec)

1, 0,∅ 0.083723 0.16628 S 73 905.5

1,∅, 0 1.1965 · 10−13 0.25000 S 33 368.8

Table 5.4: The primary outcome Alice wants to enforce is ‘0’ and this can be done
with probability 3/4. With approximately the same probability as in 5.3 she can op-
timize the probabilities of the outcomes of the remaining preferences.

Preference
Probability of
outcome ‘1’

Probability of
outcome ‘∅’

Status
Number of
iterations

Run time
(sec)

0, 1,∅ 0.083722 0.16628 S 74 866.7

0,∅, 1 1.1988 · 10−13 0.25000 S 33 388.0

First of all, we see that these result yield different probabilities compared to the results in Ta-
ble 5.2. If aborting the protocol is the second favorable option, then we find a cheating strategy
that has the remaining 25% chance of Bob aborting the protocol. On the other hand, if aborting
the protocol is Alice’s least favorable option, then the optimal cheating strategy results in 16.6%
chance of aborting and 8.4% of finding the complementary preference. We find that the sec-
ondary bias is around 25%.

Also in the secondary optimization, the protocol based on EPR-pairs has the same results apart
from some small numerical differences.

5.12 The Protocol of Berlín et al.: Formulation and Optimization

The protocol of Berlín et al. (Protocol 5.4.2) can also be formulated as a quantum computing
circuit from which we can determine the unitary operations and measurements explicitly. In
this protocol, both parties start by creating a pair of random coins. Alice will prepare one of the
four basis states based on these two coins. She sends this basis state to Bob. One of Bob’s private
coins is used to measure the qubit he receives (which will be a postponed measurement). The
other coin is shared with Alice. Alice stores Bob’s shared coin and also shares both of her private
coins with Bob. Both parties then measure the states to determine a coin flip. The circuit that
represents these two rounds is shown in Figure 5.15.

2This analysis is trivial in Alice her case, since she cannot abort the protocol.
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A |0〉 H

Uα

• I2

|0〉 H • Πcoin

|0〉 × × Πcoin

M |0〉 × × × ×

|0〉 ×

B |0〉 ×
Πbasis,y

|0〉 H

|0〉 H • Πcoin

|0〉 × Πcoin

|0〉 × Πcoin










Figure 5.15: A quantum circuit representation of the protocol by Berlín et al. (Pro-
tocol 5.4.2) for a parameter α ∈ [0, π/4]. This protocol takes two rounds and has
spacesA ∼= C8,M∼= C4 and B ∼= C32.

The unitary operationUα inUA,1 rotates a qubit in the state |0〉 to a basis state depending on the
private coins, hence this operator is defined by

Uα = |0〉 〈0| ⊗ |0〉 〈0| ⊗ Pα + |0〉 〈0| ⊗ |1〉 〈1| ⊗Q†α ∈ L(C2⊗C2⊗C2)

+ |1〉 〈1| ⊗ |0〉 〈0| ⊗ P †α + |1〉 〈1| ⊗ |1〉 〈1| ⊗Qα,
(5.12.1)

here Pα andQα are the rotation operators

Pα =

(
cosα − sinα
sinα cosα

)
∈ L(C2), and Qα =

(
sinα − cosα
cosα sinα

)
∈ L(C2). (5.12.2)

The measurement in the standard basis for a single qubit is again Πcoin = {|0〉 〈0| , |1〉 〈1|}. The
measurement operators are shown in Appendix A.3.

5.13 Results of the Berlín et al. Protocol

In this protocol we take α = arctan(1/3). For this parameter the protocol is balanced, i.e., Alice
and Bob can cheat equally much. The theoretical optimal values for these programs are

P ∗A,0 = P ∗A,1 = P ∗B,0 = P ∗B,1 = 0.9. (5.13.1)

Hence the bias of the protocol is 0.4. We solve the programs with in the same way as in Sections
5.10 and 5.11. We begin with calculating all the optimal cheating probabilities and strategies.
These results are shown in Table 5.5.

Table 5.5: Results of the numerical solver of the Berlín et al. protocol in the balanced
case. All values primal and dual values are close to the theoretical optimal value 0.9.

Primal value Dual value Solution gap Status
Number of
iterations

Run time
(sec)

P ∗A,0 0.90000000096 0.90000000051 4.5 · 10−10 I/S 13 6.9

P ∗A,1 0.90000000096 0.90000000044 5.2 · 10−10 I/S 13 5.8

P ∗B,0 0.90003520571 0.90002762325 7.5825 · 10−6 I/S 35 243.8

P ∗B,1 0.90002655184 0.90002142529 5.1266 · 10−6 I/S 35 245.8
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Note that the pair of programs to determine P ∗A,0 and P ∗A,1 require significantly less iterations
and run time compared to the programsP ∗B,0 andP ∗B,1. The results are also more accurate. This
happens because dim(A⊗M) = 25 = 32, whereas dim(M⊗B) = 27 = 128. The bias based
on these solutions is

ε = max{P ∗A,0, P ∗A,1, P ∗B,0, P ∗B,1} −
1

2
= 0.40003520571, (5.13.2)

which has an absolute difference of 3.52 · 10−5 compared to the theoretical value.

The secondary optimization is also performed for this protocol. Again, we only have to consider
four situations of Alice’s preference as a cheater, since she herself cannot abort the protocol.

Table 5.6: Results of the secondary optimization of the cheating probabilities when
Alice is a cheater and has as a first preference the outcome 1. The probability to
abort is in both cases approximately 10% and the probability on the complementary
outcome 0.

Preference
Probability of
outcome ‘0’

Probability of
outcome ‘∅’

Status
Number of
iterations

Run time
(sec)

1, 0,∅ 3.2308 · 10−5 0.099968 I/S 35 283.5

1,∅, 0 6.7074 · 10−9 0.10000 I/S 19 159.1

Table 5.7: Results of the secondary optimization of the cheating probabilities when
Alice is a cheater and has as a first preference the outcome 0. Just as in Table 5.6, the
probability to abort is in both cases approximately 10% and the probability on the
complementary outcome 0.

Preference
Probability of
outcome ‘1’

Probability of
outcome ‘∅’

Status
Number of
iterations

Run time
(sec)

0, 1,∅ 1.5048 · 10−5 0.099985 I/S 38 271.6

0,∅, 1 2.1893 · 10−9 0.10000 I/S 20 141.9

All scenarios have an abort probability of approximately 1/10 and the probability to find the com-
plementary outcome is approximately 0. Presumably, these numbers are exact. Based on these
values, the secondary bias is 0.10000.

If we compare the Ambainis’ protocol and the Berlín et al. protocol, we see that bias of Ambainis
protocol is better, whereas the secondary bias of the Berlín et al. protocol is lower. Depending
on the application, both the bias and secondary bias can be taken into account to decide which
protocol fits the best.

5.14 Multiparty Quantum Coin Flipping

So far we considered coin flipping protocol with two parties. We can generalize this by allowing
for an arbitrary number of players that want to establish a single coin and none of the players
trusts another. This means we have to generalize the theory we developed in the previous sec-
tions. For most concepts this follows in a natural way. The upper and lower bounds that have
been proven in the two player also can be applied to the multiparty setting. In this section we
establish upper and lower bounds for the optimal bias of multiparty quantum coin flipping pro-
tocols.
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5.15 Upper Bounds on Multiparty Quantum Coin Flipping

Suppose we have g = 1 honest players in a group of size k players. We will derive that the opti-
mal bias of a strong quantum coin flipping protocol is 1/2− Ω (1/k). We will first show a little
bit weaker bound 1/2− Ω

(
1/k1+δ

)
for any δ > 0. To do this, we give an explicit protocol.

We number players from 1 to k and make consecutive pairs. Player 1 and 2 flip a coin, player
3 and 4 and so on. If the outcome is 0, then the player with the lower id wins, if the outcome is 1,
then the player with the higher id wins. Therefore this requires a coin flipping protocols with a
good weak bias. If there are an odd number of players, the player who is left over automatically
makes it to the next round. All winners then again form pairs and flip coins. This process goes
on until there are two players left. They perform a strong coin flipping protocol and the result
applies to the entire group. This protocol is schematically shown in Figure 5.17.

Player 1

Player 2

Player 3

Player 4

Player 5

Player 6

Player 7

Player 8

Player 1

Player 4

Player 6

Player 8

Player 4

Player 6

{0, 1}

Round 1

Round 3

Round 2

Figure 5.16: The protocol represented here allows to reduce more than two players
to two player coin flipping protocols by introducing rounds. All rounds use quan-
tum coin flipping with a good weak bias, except the last round where quantum coin
flipping with a good strong bias leads to the outcome that holds for all players.

Note that there are dlog2 ke elimination rounds. Suppose the weak bias of quantum coin flip-
ping protocol is εW and of the strong coin flipping protocol in the last round is εS .

Thus the probability that the single good player makes it to the last round is

(
1

2
− εW

)d−1+log2 ke
, (5.15.1)

If the good player is indeed in the last round, the probability this player will win at least 1/2−εS .
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Thus the probability the dishonest players will be able to determine the coin is

1−
(

1

2
− εS

)(
1

2
− εW

)d−1+log2 ke
(5.15.2)

We will use the optimal result of Mochon [18] and lower bound of Kitaev [52], which is equivalent
to 1

2 − εS ≤ 1− 1√
2

. Furthermore

(
1

2
− εW

)d−1+log2(k)e
≥
(

1

2
− εW

)log2(k)

= klog2(1/2−εW ) =
1

k1+δ
, (5.15.3)

where

δ = −
(

1 + log2

(
1

2
− εW

))
. (5.15.4)

Combining Equation 5.15.3 with Kitaevs lower bound gives the upper bound on the probability
of successfully cheating

1−
(

1− 1√
2

)
1

k1+δ
, for any δ > 0. (5.15.5)

We know that for every εW > 0, there exists a protocol with bias ε < εW , and thus δ can be
arbitrarily close to 0. This means that an optimal multiparty protocol has a bias

ε ≤ 1−
(

1− 1√
2

)
1

k1+δ
− 1

2
=

1

2
−
(

1− 1√
2

)
1

k1+δ
=

1

2
− Ω

(
1

k1+δ

)
, (5.15.6)

for every δ > 0.

Remark 5.15.1 The upper bound 1/2 − Ω
(
1/k1+δ

)
for any δ > 0 does not imply the upper bound

1/2 − Ω (1/k). One way to show this is by considering the fact that the function log(x) grows more
slowly than any positive power of x: log(x) = O(xε) for any ε > 0. This is equivalent to the fact that
exp(x) = Ω(xn) for any n > 0, which can easily be seen by its Taylor series.

In the paper by Ambainis et al. [7], they suggest to use the quantum coin flipping protocol Spekkens
and Rudolph [55] with weak bias 1/

√
2− 1/2 and the strong coin flipping protocol by Ambainis

[12], this results the upper bound 1/2−Ω
(
1/k1.78

)
. The best known weak protocol in 2004 was

by Mochon [14] with bias 0.192 that implies the upper bound 1/2− Ω
(
1/k1.7

)
.

To obtain the better upper bound 1
2 − Ω

(
1
k

)
, we have to sophisticate the protocol. This can be

done by considering that the main risk the cheaters have is to get caught by the honest player.
If any cheater is caught, the protocol stops and everyone is a loser. More specifically, this means
that in the earlier rounds, the cheaters have to be more careful. This is when the probability is
relatively high that the good player is still present in the game. Later on, when the probability the
good player is still in the games has decreased, the cheaters can act more risky to achieve their
goal.

This refined protocol can be formalized using quantum coin flipping with penalty. Such a proto-
col works for two players and has three possible scenarios. If the outcome is 0, Alice wins 1 dollar,
if the outcome is 1, Bob wins 1 dollar. However, if a cheater is present and caught, he or she has
to pay a specified amount of money. We will refer to this as the penalty. If we want the cheaters
to be risk averse, we will make the penalty high. On the other hand, if we want the cheaters to
take more risk, the penalty will be lower. Since the probability of the good player being present in
game depends on the specific elimination round, the penalty is solely dependent on the number
of the round.
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We start with k = 2n players, for some integer n ≥ 1, of whom only a single player is hon-
est. The protocol will have the same structure as our previous multiparty coin flipping protocol,
meaning that we form pairs and every winner advances to the next round to form new pairs.
By construction, we will have n rounds that we number by 1, . . . , n. In the first n − 3 rounds,
we apply a quantum coin flipping protocol with penalty for cheating. In particular in round
i ∈ {1, . . . , n− 3}, the penalty is

πi = 2n−i − 1. (5.15.7)

LetQπ be the maximum expected win in a two party quantum coin flipping protocol with penalty
π. In the last three rounds, n − 2, n − 1, n, we apply coin flipping without penalties. In round
n− 2 there are 8 players left and if we use a protocol with weak bias 1/4. Therefore the probabil-
ity of a cheater winning from the honest player in a single round is at most 3/4. Over these three
rounds the maximum probability of cheaters forcing the outcome is 63/64.

Suppose the honest player won the first n − j round and now advances to round n − j + 1,
where there are 2j − 1 dishonest players present. We denote the maximum probability that in
this round the dishonest players can force the outcome by Pj . We have the following relation.

Lemma 5.15.1 For every j ∈ {2, . . . , n}we have

1− Pj ≥ (1− Pj−1)(1−Qπn−j+1). (5.15.8)

Proof: The honest player has three possible outcomes: losing, winning or detecting a cheater
and we denote the corresponding probabilities with pw, p` and pc respectively. Of course pw +
p` + pc = 1. If the cheaters are able to fix the coin, this is the result of either the honest player
losing in the current round, or advancing to the next round and losing in one of the next rounds.
This means

Pj ≤ p` + pwPj−1, (5.15.9)

which we can rewrite to

Pj ≤ p` + (1− p` − pc)Pj−1 = Pj−1 + (1− Pj−1)p` − Pj−1pc

= Pj−1 + (1− Pj−1)

(
p` −

Pj−1

1− Pj−1
pc

)
.

(5.15.10)

Of course the dishonest players have the possibility to play honest as a strategy, this means
Pj−1 ≥ 1 − 1/2j−1, so Pj−1/(1 − Pj−1) ≥ 2j−1 − 1. We can substitute this in the previous
inequality to get

Pj ≤ Pj−1 + (1− Pj−1)(p` − (2j−1 − 1)pc). (5.15.11)

Note that the term p` − (2j−1 − 1)pc can be regarded as the expected win, so

Pj ≤ Pj−1 + (1− Pj−1)Qπn−j+1 , (5.15.12)

which is equivalent to 1− Pj ≥ (1− Pj−1)(1−Qπn−j+1). �

We can now apply Lemma 5.15.1 repeatedly to determine the probability that the dishonest can
not force the chosen outcome

1− Pn ≥ (1− P3)
n∏

j=4

(1−Qπn−j+1). (5.15.13)

In [56], the authors choose a protocol for coin flipping with penalty π, which is a variation of
Ambainis’ protocol (Protocol 5.4.1). In Lemma 3 of this paper, it is shown that the probability of

Page 97



Chapter 5. Quantum Coin Flipping

Bob winning is at most 1/2 + 1/
√
π and in particular the expected win is at most 1/2 + 1/

√
π.

For our choice of penalty, this gives

1− Pn ≥
1

64

n−1∏

j=3

(
1

2
− 1√

2j − 1

)
=

1

8 · 23

1

2n−3

n−1∏

j=3

(
1− 2√

2j − 1

)

≥ 1

8 · 2n
∞∏

j=3

(
1− 2√

2j − 1

)
=
M

2n
,

(5.15.14)

where

M =
1

8

∞∏

j=3

(
1− 2√

2j − 1

)
= 0.0037317 . . . ∈ (0, 1). (5.15.15)

We conclude that Pn ≤ 1−M/2n = 1−M/k and thus

ε ≤ Pn −
1

2
≤ 1

2
− M

k
, (5.15.16)

so ε = 1/2 − Ω(1/k). Asymptotically, this bound is better than the previous bound based on
weak coin flipping without penalty. However, the constant of our first approach is better, which
means that in smaller groups, this bound will be smaller. For example, if we use the protocol by
Rudolph and Spekkens [11] with weak bias εW = 1/

√
2− 1/2, we find that the second bound is

lower than the first when the group size is k ≥ 269. The protocol by Rudolph and Spekkens is
not optimal, by using protocol with even better bias this becomes even more apparent.

Ambainis et al. [56] also describe how to extend this result to more than one honest player. Sup-
pose that a group of size k consists of g honest players. We can reduce this number using a
protocol that creates a group size k/g of whom one player is honest with a probability of at least
1/2. The bounds for a single honest player can now be applied and we find a bias 1/2−Ω(g/k).
By taking this selection protocol into account, an upper bound on an optimal multiparty quan-
tum coin flipping protocol is 1/2− 1/2 ·Ω(g/k) = 1/2−Ω(g/k). In Table 5.8, we find explicit
upper bounds of small groups with variable number of honest parties.

Table 5.8: Explicit upper bounds for the optimal bias of group of size 0 ≤ g ≤ k ≤
10. The asterisks (∗) indicates impossible scenarios.

k, g 1 2 3 4 5 6 7 8 9 10

10 0.4634 0.4634 0.4268 0.4268 0.3536 0.3536 0.3536 0.3536 0.3536 0

9 0.4634 0.4634 0.4268 0.4268 0.3536 0.3536 0.3536 0.3536 0 ∗
8 0.4268 0.4268 0.4268 0.3536 0.3536 0.3536 0.3536 0 ∗ ∗
7 0.4268 0.4268 0.4268 0.3536 0.3536 0.3536 0 ∗ ∗ ∗
6 0.4268 0.4268 0.3536 0.3536 0.3536 0 ∗ ∗ ∗ ∗
5 0.4268 0.4268 0.3536 0.3536 0 ∗ ∗ ∗ ∗ ∗
4 0.3536 0.3536 0.3536 0 ∗ ∗ ∗ ∗ ∗ ∗
3 0.3536 0.3536 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 0.2072 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Due to the selection protocols when there are multiple honest players, we have to round to get a
sufficiently small reduction. The same reduction leads to the same upper bounds and thus a lot
of the same values can be seen in this table.
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5.16 Lower Bounds on Multiparty Quantum Coin Flipping

Lower bounds on multiparty quantum coin flipping can directly be extend from Kitaev’s proof
of the lower bound for two party quantum coin flipping. This requires to redefine a formal defi-
nition of a quantum coin protocol in the multiparty setting.

Definition 5.16.1 (Quantum coin flipping protocol, k parties) A quantum coin flipping protocol with
k parties is defined the following collection of structures and rules

1. k + 1 complex Euclidean spaces A1, . . . ,Ak,M respectively the spaces in which the quantum
information of all players 1, . . . , k exist and the message space that is shared between amongst all
players. We denote the whole space of the system by

X = A1 ⊗ · · · ⊗ Ak ⊗M. (5.16.1)

2. A positive integerN , denoting the number of rounds in the protocol.

3. The initial state of the system, that is a state of the following tensor form

|ψ0〉 = |0〉A1
⊗ · · · ⊗ |0〉Ak

⊗ |0〉M ∈ X . (5.16.2)

4. A set of unitary operations {Uj,r : j ∈ {1, . . . , k}, r ∈ {1, . . . , N}} on the space X such that
Uj,r is the identity onX except for possiblyAj andM, i.e.,Uj can be written as

Uj,r =
∑

a∈Σ

IA1 ⊗ · · · ⊗ IAj−1 ⊗ Vj,r,a ⊗ IAj+1 ⊗ · · · ⊗ IAk
⊗Wj,r,a ∈ L(X ), (5.16.3)

for some unitary operators Vj,r,a onAj andWj,r,a onM and finite index set Σ.

5. A family of k measurements {Πj,0,Πj,1,Πj,∅} onAj for each j ∈ {1, . . . , k}. These measure-
ments satisfy

(a) The probabilty of two players measuring different outcomes is zero, i.e., for anyp, q ∈ {1, . . . , k},
where p 6= q:

IA1 ⊗ · · · ⊗ IAp−1⊗Πp,0 ⊗ IAp+1 ⊗ · · ·
· · · ⊗ IAq−1⊗Πq,1 ⊗ IAq+1 ⊗ · · · ⊗ IAk

|ψN 〉 = 0.
(5.16.4)

(b) If all players are honest, the outcome has an equal probability for 0 and 1

〈ψN |Π1,0 ⊗ · · · ⊗Πk,0 ⊗ IM |ψN 〉 = 〈ψN |Π1,1 ⊗ · · · ⊗Πk,1 ⊗ IM |ψN 〉 =
1

2
.

(5.16.5)

where |ψN 〉 = Uk,N · · ·U1,N · · ·Uk,1 · · ·U1,1 |ψ0〉 ∈ X is the state of the system afterN rounds.

For k = 2 Definition 5.16.1 agrees with Definition 5.4.2. A graphical representation is shown in
Figure 5.17 for four players that execute a protocol with three rounds.
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Figure 5.17: A graphical representation of a quantum coin flipping protocol with five
players. The message space is carried over to each next player. The final measure-
ments are not shown here.

To find lower bounds on this bias for any k player coin flipping protocol, we apply the same
procedure as Kiteav’s lower bound for two players. For every possible player 1, . . . , k we have
an SDP of the optimal strategy to cheat. The optimal value is the probability a cheater is able to
generate a 1 as an outcome, denoted by P ∗r,1, when player r is honest. Let |ψj〉 be the state of the
system after j rounds if every player is honest and Zr,0, . . . , Zr,N be a dual feasible solution if
player r is honest for which P ∗r,1 + δ = 〈0|Zr,0 |0〉, for δ > 0 arbitrary. We then define

Fj = 〈ψj |Z1,j ⊗ · · · ⊗ Zk,j ⊗ IM |ψj〉 ∈ R, for j = 0, . . . , N. (5.16.6)

Similar to the two player case, we can derive the following inequalities by applying strong duality
and using dual constraints:

(P ∗1,1 + δ) · . . . · (P ∗k,1 + δ) = F0,

Fj ≥ Fj+1, for j ∈ {0, . . . , N − 1},

FN ≥
1

2
.

(5.16.7)

Thus we conclude (P ∗1,1 + δ) · . . . · (P ∗k,1 + δ) ≥ 1/2. It follows that max{P ∗1,1, . . . , P ∗k,1} ≥
(1/2)1/k. We can use the Taylor series of (1/2)1/k to show that

max{P ∗1,1, . . . , P ∗k,1} ≥
(

1

2

)1/k

=

∞∑

n=0

(− log(2))n

knn!
= 1− log 2

k
−O

(
1

k2

)
. (5.16.8)

Therefore, the bias of any multiparty quantum coin flipping protocol satisfies

ε ≥
(

1

2

)1/k

− 1

2
. (5.16.9)

Which gives us the asymptotic lower bound. ε = 1/2 − O (1/k). For a single honest player, we
see that this lower bound is asymptotically the same as the upper bound and thus the result is
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asymptotically tight with optimal bias ε = 1/2−Θ(1/k).

For different values of k Table 5.9 shows the lower bound from equation 5.16.9 and upper bound
from Equation 5.15.6.

Table 5.9: This table show the results bounds for quantum coin flipping protocols
for a group of k players of whom 1 is honest and the absolute difference between
these bounds.

k 3 10 30 100 300 1000 3000 10000

Lower bound 0.2937 0.4330 0.4771 0.4930 0.4976 0.4993 0.4997 0.4999

Upper bound 0.3536 0.4634 0.4817 0.4955 0.4989 0.4995 0.4999 0.5000

Difference (10−2) 5.9853 3.0355 0.4534 0.2331 0.1164 0.0121 0.0088 0.0034

Clearly, both bounds converge to 1/2 as k →∞. This is due to the fact that a single honest player
has less influence on the protocol and thus the probability of a cheat being successful increases.

If there are more honest players g in a group of size k, we can form groups and treat these groups
like a single player. This reduces the situation to a single honest player in a group of size k/g.
The bias of this protocol is ε ≥ 1/2−Θ(1/(k/g)) = 1/2−Θ(g/k). In Table 5.10, explicit bounds
for groups with fewer than ten parties are shown.

Table 5.10: Explicit lower bounds for the optimal bias of group of size 0 ≤ g ≤ k ≤
10. The asterisks (∗) indicates impossible scenarios.

k, g 1 2 3 4 5 6 7 8 9 10

10 0.4330 0.3706 0.2937 0.2071 0.2071 0 0 0 0 0

9 0.4259 0.3409 0.2071 0.2071 0 0 0 0 0 ∗
8 0.4170 0.3409 0.2071 0.2071 0 0 0 0 ∗ ∗
7 0.4057 0.2937 0.2071 0 0 0 0 ∗ ∗ ∗
6 0.3909 0.2937 0.2071 0 0 0 ∗ ∗ ∗ ∗
5 0.3706 0.2071 0 0 0 ∗ ∗ ∗ ∗ ∗
4 0.3409 0.2071 0 0 ∗ ∗ ∗ ∗ ∗ ∗
3 0.2937 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 0.2071 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

If we compare Table 5.8 and 5.10, we see that in the situations where g gets relatively big com-
pared to k, the bounds differ a lot. This is due to the fact that we have to round in different ways.
For the situations where g = 1, the bounds are relatively close.
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Conclusions

Quantum coin flipping is an interesting subject that shows the difference between classical and
quantum communication. Quantum coin flipping allows for protocols that are impossible in
the classical setting. However, quantum communication does not have unlimited capabilities
with respect to quantum coin flipping. The combination of quantum information theory and
semidefinite programming leads a semidefinite program that encodes the optimal cheating strat-
egy for a given protocol. By using both the primal and dual semidefinite programs for both po-
tential cheaters, together with strong duality we can elegantly prove Kiteav’s lower bound on the
strong bias of any quantum coin flipping protocol.

Both classical and quantum coin flipping protocols can be built from bit commitment protocols.
There exist bit commitment protocols that are post-quantum safe, and therefore coin flipping
protocols based on a post-quantum bit commitment scheme is secure against cheaters.

Balanced coin flipping, i.e., if both players are honest, then both outcomes have equal probabil-
ity, results in the lowest possible strong bias. This means that there do exist balanced quantum
coin flipping protocols with a bias arbitrarily close to 1/

√
2− 1/2, and every imbalanced quan-

tum coin flipping protocol has a higher strong bias. From a practical and theoretical viewpoint
it is therefor preferable to consider balanced quantum coin flipping.

The semidefinite program that encodes the optimization of the cheating strategy of quantum
coin flipping was solved for a number of protocols and confirmed the theoretical values of the
bias. Some of the theoretical proofs of the bias rely on sophisticated reasoning, use advanced
inequalities in quantum information theory and good guesses of the primal and dual feasible so-
lutions. The advantage of using this semidefinite programming approach is that solving the pro-
gram only requires one to know the standard form description as a list of unitary operations and
measurements to determine the optimal cheating probability strategy. This approach makes it
possible to find the optimal cheating strategy and corresponding cheating probability and fur-
thermore in a flexible way allows for variations, such as the secondary optimization and expected
value optimization by simply changing the objective or adding constraints.

The new bounds on the optimal bias of multiparty quantum coin flipping do not yield the same
asymptotical results as the bound presented in Ambainis et al. [56]. However, by using new re-
sults on two-player coin flipping, it is possible to establish bounds that perform in explicit cases
better for small groups. By using protocols that are not only based on two parties, it is likely that
these bounds can be improved.

However, when a protocol gets big, that is, when the number of roundsN increases or the dimen-
sions of the private and message spacesA,M or B gets big, the program becomes increasingly
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hard to solve. Although semidefinite programs can be solved in polynomial time in the input
size, it is the input size itself that grows exponentially as the number of qubits increases linearly.
Problems with numerical stability of the algorithms might increase the error in the solutions
considerably for protocols with more rounds or larger spaces.

6.1 Recommendations for Future Research

In this thesis we answered some new questions and opened some new problems in the field of
quantum coin flipping. Some questions remain open and are theoretically interesting.

We will pose some of these questions that might be interesting for future research:

1. Suppose that we have a multiplayer setting with at least three players, including honest
players, dishonest players that prefer the outcome 0, and dishonest players that prefer the
outcome 1.

If all players or groups act independently, what will be the possible outcomes of the protocol?

2. For a fixed number of rounds N and dimensions of the spacesA,M and B, we can con-
sider a probability distribution on the set of unitary operators and measurements on the
spacesA⊗M andM⊗B.

What will be the distribution of the bias when considering a random protocol according to the prob-
ability distribution of operators?

3. How does the iterated optimisation apply to quantum dice throwing? Can this distribution be used
to efficiently sample protocols with a good bias?

More formally, suppose (a1, . . . , an,∅) is a preference, i.e., (a1, . . . , an) is a permutation
of {1, . . . , n}, of an n-sided dice. Let P ∗A,a1 be the maximum probability of measuring a1,
given by the semidefinite program

P ∗A,a1 = sup{Tr((ΠA,a1 ⊗ IM)ρA,N ) : (ρA,0, . . . , ρA,N ) ∈ FA(P)}. (6.1.1)

Furthermore, for all i ∈ {2, . . . , n}, let P ∗A,ai be the maximum probability of measuring
ai, given that the probability of measuring aj is P ∗A,aj for all j ∈ {1, . . . , i− 1}, i.e.,

P ∗A,ai = sup{Tr((ΠA,ai ⊗ IM)ρA,N ) : (ρA,0, . . . , ρA,N ) ∈ FA(P),

Tr((ΠA,aj ⊗ IM)ρA,N ) = P ∗A,aj , j ∈ {1, . . . , i− 1}}. (6.1.2)

What can we say about the sequenceP ∗A,a1 , . . . , P
∗
A,aN

?

4. The semidefinite program that encodes the cheating strategy leads to a lower bound on the
strong bias. The semidefinite program that find the optimal secondary cheating strategy
is similar to this first program, apart from its objective and an extra constraint.

Does there exist a lower bound on secondary optimization, similar to Kitaev’s lower bound on the
strong bias?

5. Some protocols, such as Ambianinis’ protocol, do have the same optimal cheating proba-
bility in all situations, but differ in the probablity of aborting the protocol.

Is it possible to make a given protocol symmetric, i.e., a protocol such that both parties have the same
cheating probabilities in all situations?
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6. The protocols we considered had a limited number of rounds and the dimensions of the
spacesA,M and B were relatively small. Optimal protocols such as constructed by Mo-
chon, Chailloux and Kerenidis require increasingly more resources when the bias gets
closer to the optimal value.

Which values for the strong bias of a quantum coin flipping protocol are possible if we add limitations
on the dimensions of the private spaces, message spaces, number of rounds or quantum complexity of
preparing the cheating strategy?

7. The optimal cheating strategies we found all lead to a non-zero probability of aborting the
protocol.

Does there exist a quantum coin flipping protocol that has a non-trivial cheating strategy for any
of the parties that has zero probability of being detected?
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Chapter 8

Distributed Quantum Computing

“In theory, there is no difference between theory and practice.
But, in practice, there is.”

- Attributed to Jan L. A. van de Snepscheut

This second part of this master thesis is the result of a collaboration between J. Mulderij, T. At-
tema, I. Chiscop and F. Phillipson and me. During my graduation period, Jesse Mulderij was also
a gradutation intern at TNO in the department of Cyber Security and Robustness. His master
thesis project focused on minimising the number SWAP-gates in a quantum algorithm whilst
satisfying the nearest neighbour constraint. This constraint allows only for interactions between
neighbouring qubits.

In my previous internship project at TNO, I investigated the effect of noisy connections in a
network of quantum computers that is used to perform an algorithm in a distributed way.

Combining both subjects lead to the a number of interesting questions of which we formalized
some into optimisation programs. These kinds of problems were new in the field of quantum
computing and we therefore decided to publish the results in a the journal Quantum Informa-
tion Processing.
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Abstract

In quantum circuit design, the question arises how to distribute qubits, used in
algorithms, over the various quantum computers, and how to order them within a
quantum computer. In order to evaluate these problems, we define the global and
local reordering problems for distributed quantum computing. We formalise the
mathematical problems and model them as integer linear programming problems,
to minimise the number of SWAP gates or the number of interactions between differ-
ent quantum computers. For global reordering, we analyse the problem for various
geometries of networks: completely connected networks, general networks, linear
arrays and grid-structured networks. For local reordering, in networks of quantum
computers, we also define the mathematical optimisation problem.

Keywords: Nearest neighbour compliant, Quantum computation architectures and
implementations, Distributed quantum computing

1 Introduction

The early quantum computers have a (very) limited number of qubits [32]. This is the
result of the conditions that are required to store quantum information, and means re-
quired to manipulate the information. It is possible to connect multiple quantum com-
puters to form a network and do computations together. This is, analogously to current
methods in ICT, called distributed quantum computing [4, 7]. In such a system we require
the network to be able to share both classical and quantum information. If the network
is set up correctly, the collection of quantum computers will behave as one big computer
[37], and thus greatly increase the possibilities and practical instances that it can be used
for.

To act as one big quantum computer, two quantum computers are connected by an en-
tangled pair of qubits. Depending on the topology of the network, we may have a situa-
tion where two computers are not connected directly, but indirectly, via other computers
in the network. We can apply a method called entanglement swapping [14] to create an en-
tangled pair of qubits between these computers. This procedure requires all consecutive
computers along the path to have the shared entangled state 1√

2
(|00〉+ |11〉). Consider

the computers that are not at the endpoints of the path. Were those computers to measure
in the Bell basis and then communicate their outcome (this requires two bits of informa-
tion) to their neighbours along the path, they can perform Pauli gates on their qubits to
create a shared entangled pair. This pair would again be in the state 1√

2
(|00〉+ |11〉). By

repeating this process for all computers along the path, we end up with a shared entan-
gled state between two computers at the endpoints. This procedure indicates that it is
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preferable to use the shortest path in a network. Computers that perform entanglement
swapping will need two extra qubits to store and measure information.

Next, if we want to perform a calculation on a distributed quantum computer, we have
to partition the calculations into parts and assign those parts to the individual quantum
computers, in such a way that communication between parts of the calculation is possi-
ble and can be done efficiently. This means that we have to design a quantum circuit for
the total network of quantum computers. Already on a single quantum computer quan-
tum circuit design is not trivial. There are a couple of considerations on how to compile
a circuit. The nearest neighbour constraint is one of them. This constraint imposes a
restriction on quantum gates, such that gates can only act on two adjacent qubits. Given
the locations on which the qubits are present, one might need to change the locations of
the qubits before a gate can be applied. Changes to the locations of qubits can be made
using so-called SWAP gates [24]. SWAP gates interchange the position of two qubits, but
since they are also quantum gates, they can only act on two adjacent qubits. The SWAP
gates are considered overhead because they do not directly contribute to the calculation
that is being performed. SWAP gates do not only require resources, but also increase the
running time significantly. Since coherence times are currently very low, information on
qubits can only be held stable for a short amount of time, after which the information
is lost due to interaction with the environment [9]. It is therefore important to minimise
the running time of the circuit and hence the size of the overhead. In quantum algorithm
design, minimising the number of required SWAP gates in order for a circuit to com-
ply with the nearest neighbour constraints has become a research topic of its own. So far
though, the focus has been on architectures that involve only a single quantum computer.

There are two main strategies of coping with the minimisation of the number of SWAP
gates: global reordering and local reordering [36]. In global reordering, one is only con-
cerned with finding an optimal initial qubit placement without focusing on the micro-
management of swapping the qubits into the right positions after every gate, which is
what local reordering entails. Both strategies can be done on a single quantum computer
or on a network of quantum computers, leading to four areas of research and applica-
tions as indicated in Tab. 1.

Table 1: Four areas of research minimising calculation overhead.
Global Local

Single I II
Distributed III IV

For the single quantum computer (Areas I and II) a variety of research is available. Area
I was studied, mostly because of its relative simplicity, in [16, 17, 28, 29, 36]. All kinds of
qubit architectures have been considered in the more popular Area II: qubits are placed
on a linear array in [3, 5, 13, 15, 18, 20, 25, 27, 31, 35, 36], on a 2D grid in [1, 2, 6, 8,
12, 19, 26, 30], on a 3D grid in [11], or, more recently, on the IBM QX architectures in
[10, 33, 38, 39].

Areas III and IV have (as far as the authors are aware of) not been studied before.
The contribution of this paper lies in the definition of this research area and the first
mathematical formulation of the problems of minimising the number of SWAP gates in
the distributed computing areas III and IV.

Area III can be viewed in two ways. If we are interested in the order of all qubits on
all quantum computers, we have Complete distributed global reordering. This can be seen
as global single reordering with two different cost values for the SWAP gates between
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qubits on different computers and SWAP gates between qubits on the same computer.
Next we have, as we will call it, Celestial Reordering. Here one allocates qubits to quantum
computers while trying to minimise the number of interactions between computers. This
addressed because of the high costs that come with setting up the required entanglement
between the computers. The order of the qubits within the computers is not considered.
The problem is related to the well known graph partitioning problem as will be shown
in Sec. 2.

Our contribution comprises of Integer Linear Programming (ILP) models for the pro-
posed problems. The size of the models is reflected by the number of variables and the
number of constraints that they contain. In Table 2, an overview is provided. All the
models provide optimal solutions given that the circuit and the gate decomposition are
both optimal.

Table 2: The orderO(·) of variables and and constraints of each model is shown. Here, n
resembles the number of qubits, m is the number of quantum gates, and M is the number
of quantum computers. The grid dimensions, where applicable, are indicated by m1 and
m2. The dimension of the grid is denoted by p.

ILP model sizes for different problems
Research area Network/qubit architecture Variables Constraints
Area I Linear array [29] n2 n2

Area II
Linear array [22] n2m n2m
2D grid [21] n4m n4m
3D grid [21] n4m n4m

Area III

Complete nM + n2 Mn2

General n2M2 n2M2

Linear array n2 n2 + M
2D grid nM + n2(m1 + m2) n2(m1 + m2)M
General grid nM + n2 pM(p−1)/p M + n2 pM(p−1)/p

Area IV Linear array n2m + nMm n2m + nMm

In this paper we define the ‘Celestial Reordering’ problem (from research area III)
and present the mathematical problem formulation for minimising the number of SWAP
gates in specific topologies of quantum computer networks. We include ILP models that
are suited for exact solution methods. After that, in Sec. 3, the problem of local reordering
in the context of distributed quantum computing (Area IV) is formulated and explored.
Here we minimise, using a weighted objective function, the number of required SWAP
gates within a computer and the number of required SWAP gates between computers.
An integer linear programming model is also provided, such that the problem can be
solved with exact methods. We end in Sec. 4, with concluding remarks and suggestions
for future research.

2 Celestial Reordering of Qubits in a Distributed Quantum Cir-
cuit

In this section we will introduce the problem of Celestial reordering. In Celestial reorder-
ing, given a quantum circuit consisting of qubits, quantum gates acting on the qubits and
a number of quantum computers with given capacities, the task is to assign the qubits
to the computers in such a way that the number of gate operations on pairs of qubits
on different computers is minimised. We assume that the cost of setting up entangle-
ment between two computers is significantly more costly than applying gates within a
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computer. Therefore, we neglect costs related to gates that are applied on qubits that are
located on the same computer.

It is of great importance how the quantum computers are connected in a network. In
this section we consider the most straightforward geometries: the completely connected
network, the general network, the linear array, the two-dimensional grid and the general
grid. For each of the networks, we formalise and visualise the problem, and model it as
an integer linear program (also ILP).

First we introduce some notation that we will use throughout the paper.

i n denotes the total number of qubits in the quantum algorithm. In diagrams, ver-
tices that represent qubits are denoted by circles.

ii M denotes the number of quantum computers. In diagrams, quantum computers
are represented by rounded squares.

iii K is used to denote the effective capacity of each quantum computer. That is, the
maximum number of qubits that an individual quantum computer can use and
store in working memory. This does not include the qubits that are necessary for
communication or entanglement swapping. This adds an extra number of qubits
per computer, depending on the network architecture.

Suppose we have a quantum algorithm acting on n qubits, that is represented by a series
of unitary gates. We allow for unitary operations on single qubits or controlled gates on
two qubits. The unitary operations on single qubits will be ignored. All other operations
are assumed to be decomposed into this set of gates [24]. One way to ensure sufficient
capacity is to take K ≥ dn/Me for every computer. If necessary, this quantity may vary
per computer as long as the total capacity exceeds n.

2.1 Completely connected network

We start out in the setting where we have all-to-all coupling between the different quan-
tum computers.

Consider the complete graph Kn, where the vertices are labelled [n] := {1, . . . , n} and
each vertex corresponds to a qubit in the algorithms. We can count the number of con-
trolled gates that are applied to each pair of qubits. Similar to the model of single quan-
tum computer global reordering [17], we create a cost function c : E(Kn) → Z≥0 by
letting cij = c({i, j}) be the number of controlled gates between qubits i and j. This
graph is called the interaction graph.

Our goal now is to find an assignment of qubits to computers f : {1, . . . , n} → {1, . . . , M}
such that the total number of controlled gates between all different pairs of computers is
minimal.

For a qubit i ∈ [n] and computer k ∈ [M] let

xik =

{
1 if qubit i is assigned to computer k
0 otherwise.

(2.1)

For each computer, we thus want to limit the total number of assigned qubits by the
computer’s total capacity K, so

n

∑
i=1

xik ≤ K, ∀k ∈ [M]. (2.2)
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Furthermore, every qubit can be assigned to only one computer, thus

M

∑
k=1

xik = 1, ∀i ∈ [n]. (2.3)

The objective is

min ∑
i,j∈[n]

i<j

cij ∑
k∈[M]

|xik − xjk|
2

, (2.4)

since for a given i, j ∈ [n], i 6= j. The second summation in the objective is given by

∑
k∈[M]

|xik − xjk|
2

=

{
1 if qubit i and j are assigned to different computers
0 otherwise.

(2.5)

The 2 in the denominator is to compensate for counting twice that a qubit is on a com-
puter where the other qubit is not. This constant can be taken out of the sums.

We can remove the absolute value in the objective by introducing the variable Lijk and
add an extra pair of constraints −Lijk ≤ xik − xjk ≤ Lijk for every i, j ∈ [n], i < j and
k ∈ [M]. Since any optimal solution will have integer values for Lijk, this variable does
not necessarily have to be formulated as integer. This gives us an MILP (mixed integer
linear program) of the form

min
1
2 ∑

i,j∈[n]
i<j

cij ∑
k∈[M]

Lijk

s.t.
n

∑
i=1

xik ≤ K, ∀k ∈ [M]

M

∑
k=1

xik = 1, ∀i ∈ [n]

xik − xjk ≤ Lijk

xik − xjk ≥ −Lijk

}
, ∀i, j ∈ [n], i < j, ∀k ∈ [M]

xik ∈ {0, 1}, ∀i ∈ [n], k ∈ [M]

Lijk ∈ R, ∀i, j ∈ [n], i < j, ∀k ∈ [M].

(2.6)

The total number of integer variables is nM and the total number of continuous vari-
ables is (n

2)m = n(n− 1)m/2. There are M + n + n(n− 1)M = O(Mn2) constraints in
this problem.

It is possible to extend the celestial reordering model by allowing different capacities
of computers. This can easily be done by replacing the capacity constraints by

n

∑
i=1

xik ≤ Kk ∀k ∈ [M], (2.7)

where the capacity Kk is now computer specific.
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2.2 General networks of quantum computers

Suppose the network of quantum computers is represented by a connected graph G =
(V, E), where quantum computers are represented by nodes. A pair of quantum com-
puters can communicate directly if and only if their corresponding nodes are connected
by an edge in the graph. If two quantum computers are not connected directly, we can
indirectly connect them via intermediate connections with other computers. We can do
this by applying entanglement swapping. In this case, we search for the shortest path be-
tween the pair of computers.

We let the vertex set V = [M] be labelled by the computers and define wk` as the length
(i.e. the number of edges) of the shortest path between vertices k and ` in G. We can
therefore consider the problem on the complete graph KM with edge weights wk` for all
k, ` ∈ [M], k 6= `. In Fig. 1, an example is given for clarification.

C1 C2

C3C4

1

1

1 −−−→

C1 C2

C3C4

1

1

1

3

2

2

Figure 1: The conversion of a general graph to a complete graph with edge weights
corresponding to the distance of the shortest path between each pair of nodes. In this
example, the shortest path between C3 and C4 in the left graph is 3, therefore, the weight
on the edge {C3, C4} in the right graph is equal to 3.

Here, we see that for a network of four computers, we can construct a complete graph
where every computer is connected to every other computer. The weights on the edges
now indicate the length of the path from one computer to another. Pairs of qubits which
are placed on different computers contribute to the costs if they interact with each other.
The cost per interaction is equal to the distance between the computers on which the
interacting qubits are located, since that counts the number of times an entangled pair of
ancillary qubits is required.
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q1 q2

q3q4

q5 q6

q7q8

q13 q14

q15q16

q9 q10

q11q12

1

1

3

12
2

C1 C2

C3C4

Figure 2: A complete graph on a network of four quantum computers, indicated by the
C’s. The computers each have a capacity of four qubits.

We consider the same decision variables xik, i ∈ [n], k ∈ [M] as in Sec. 2.1. Our
objective will be

min ∑
i,j∈[n]

i<j

cij ∑
k,`∈[M]

k 6=`

wk`xik · xj`, (2.8)

and since xik and xjl are both binary, their product is

xik · xj` =

{
1 if qubit i is on computer k and qubit j is on computer `
0 otherwise.

(2.9)

The contribution of an assigned pair of qubits depends on two factors: the path length
between the computers in the network and the number of interactions in-between the
qubits in the algorithms. The product of these quantities is the number of EPR-pairs that
is required for this pair of computers.

The constraints are the same as in the original Program 2.6. We thus obtain a quadratic
binary optimisation program. This quadratic problem has nM variables and n + M con-
straints.

To transform the quadratic program into an ILP, we introduce a variable zijk` ∈ {0, 1}
for i, j ∈ [n], i < j and k, ` ∈ [M], k 6= `, that satisfies the inequality

zijk` ≥ xik + xj` − 1, ∀i, j ∈ [n], i < j and k, ` ∈ [M], k 6= `. (2.10)

If xik, xj` or both are equal to 0, then zijk` ≥ 0 and since we are minimising over an
increasing function this yields zijk` = 0. Only if xik = xj` = 1, then zijk` = 1 is required.
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We are left with the equivalent program

min ∑
i,j∈[n]

i<j

cij ∑
k,`∈[M]

k 6=`

wk`zijk`

s.t. zijk` ≥ xik + xj` − 1, ∀i, j ∈ [n], i < j and k, ` ∈ [M], k 6= `

∑
k∈[M]

xik = 1, ∀i ∈ [n]

∑
i∈[n]

xik ≤ K, ∀k ∈ [M]

xik ∈ {0, 1}, ∀i ∈ [n], k ∈ [M]

zijk` ∈ {0, 1}, ∀i, j ∈ [n], i < j and k, ` ∈ [M], k 6= `.

(2.11)

This is an ILP with nM + (n
2)M(M− 1) = O(n2M2) variables and O(n2M2) constraints.

Notice that the number of variables and constraints has increased by turning the quadratic
program into an ILP.

An interesting question is how much the objective can vary as the capacity K of each
computer changes. We can illustrate this with the example of the graphs K6 and K4 that
are connected by one edge, see Fig. 3.

q3

q2 q1

q6

q4 q5

q7

q10

q9

q8

Figure 3: Here we see an interaction graph that consists of two complete graphs that
are connected to each other by one edge. The graph contains ten qubits. Each edge
represents a single interaction between a pair of qubits for some quantum algorithm on
ten qubits.

If we have M = 2 computers, both with capacity K = 5, we are required to make a cut of
at least 5 edges. We partition the interaction graph into {1, . . . , 5} and {6, . . . , 10} form-
ing two computers.

However, if we were somehow able to increase the capacity of both computers to K = 6
qubits, we can partition the graph into {1, . . . , 5} and {6, . . . , 10}. This requires a cut of
only one edge. This example and generalisations to more qubits show that the capacity
of the computers by a small amount can yield a big difference in the number of EPR pairs
required.

2.3 Example of a quantum network and distributed algorithm

We consider an example of a quantum network of four computers between four cities in
The Netherlands: Amsterdam (A), Delft (D), Leiden (L) and The Hague (G). The cities
of Leiden, Delft and The Hague are all mutually connected while Amsterdam is only
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connected to Leiden. The shortest distance between every pair of cities is represented in
Tab. 3.

Table 3: The shortest distances between the cities of Amsterdam (A), Delft (D), Leiden
(L) and The Hague (G).

w A D L G
A - 2 1 2
D 2 - 1 1
L 1 1 - 1
G 2 1 1 -

Each computer has an effective capacity of four qubits to execute the circuit. Each com-
puter also has one extra qubit that is used for communication. This qubit is not assigned
to qubits in the circuit and is not taken into account in the optimal assignment. On this
network of quantum computers, we want to execute a quantum circuit on fifteen qubits
that counts the number of qubits in state |1〉. The circuit is shown in Fig. 4. It is called
the “rd84 143” circuit and was obtained from the reversible circuit library RevLib [34].

q1 • •
q2 • • •
q3 • • • •
q4 • • • • •
q5 • • • • • •
q6 • • • • • •
q7 • • • • • •
q8 • • •
q9 • • • • •

q10 • • • • •
q11 •
q12 •
q13 •
q14 •
q15

Figure 4: The “rd84 143” circuit. The circuit consists of fifteen qubits. After the Toffoli
and Peres gates are decomposed, 98 two-qubit gates remain.

This circuit consists of fifteen CNOT gates and ten Toffoli gates. The Toffoli gate acts
on three qubits and can be decomposed in five controlled gates as shown in Fig. 5.
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• • • • • • • •
• = • • • = • •

V† V† V V† V† V

Figure 5: On the left, the decomposition of the Peres gate. On the right, the Sleator-
Weinfurter decomoposition of the Toffoli gate [23].

The V-gate is the square root of the Pauli X-gate:

V =
√

X =
1
2

(
1 + i 1− i
1− i 1 + i

)
. (2.12)

From the circuit, the cost cij is obtained for every pair of qubits, by counting the number
of gates act on the qubit pair i, j.

q1 q2 q3 q4 q5 q6 q7 q8

q9 q10 q11 q12 q13 q14 q15

Figure 6: The interaction graph of counting circuit of Fig. 4 on fifteen qubits. An edge
represents one or more controlled gates between each pair of qubits. An optimal assign-
ment of qubits to computers in not immediately clear.

The ILP was constructed and solved to optimality using the Python API of CPLEX. The
solver was run on a computer with 2 GB of RAM, and completed its Branch & Bound
search in 0.39 seconds. The optimal qubit assignment is shown in Fig. 7.
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q8 q14

q15∅ q5 q9

q10q11q9 q7

q12q13

q1 q2

q4q3

4

5

21

18

Delft

Leiden Amsterdam

The Hague

Figure 7: The graph shows the optimal qubit configuration, where each qubit is assigned
to a computer. The capacity of the computers is not exceeded. The number of gates
between every pair of computers is shown on the edges between computers.

The costs of communication between every two computers are shown on the edges in
Fig. 7. The sum of these costs, which is the objective function of the optimisation pro-
gram, is 48. There was no communication between computers with a distance of two
between them.

2.4 Linear array

In this section, we consider a different network of quantum computers. In this network
all computers are arranged on a line, and each one of them is connected to its one or
two neighbouring computers. This network is a special case of the general network and
leads to a reduction in the number of variables and constraints in the resulting model
because of the structure in the network.

If we associate the computers with the numbers {1, . . . , M} then quantum computer
k can only communicate with computers k− 1 and k + 1, except at the boundaries. An
example of such a network is given in Fig. 8.

q1 q2

q3q4

q5 q6

q7q8

q9 q10

q11q12

q13 q14

q15q16

1 1 1

C1 C2 C3 C4

Figure 8: A line graph on a network of four quantum computers, indicated by the C’s.
The computers each have a capacity of four qubits, corresponding to the circular nodes.

This means that if two qubits are located on computer k and `, then applying a two
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qubit gate requires us to make |k− `| non-local interactions by using the computers in-
between. This changes the original objective in Eq. 2.4 to an objective that takes the
distance between computers into account. For a given pair of qubits (i, j) this is given by
the equation

∣∣∣∣∣ ∑
k∈[M]

kxik − ∑
k∈[M]

kxjk

∣∣∣∣∣ =
∣∣∣∣∣ ∑
k∈[M]

k(xik − xjk)

∣∣∣∣∣ . (2.13)

Again, we introduce a new variable to encode the absolute value as a linear constraint,
analogous to the completely connected network of Sec. 2.1. The full mixed integer linear
program now reads

min ∑
i,j∈[n]

i<j

cijLij

s.t.
n

∑
i=1

xik ≤ K, ∀k ∈ [M]

M

∑
k=1

xik = 1, ∀i ∈ [n]

∑
k∈[M]

k(xik − xjk) ≤ Lij

∑
k∈[M]

k(xik − xjk) ≥ −Lij





, ∀i, j ∈ [n], i < j

xik ∈ {0, 1} ∀i ∈ [n], k ∈ [M]

Lij ∈ R ∀i, j ∈ [n], i < j.

(2.14)

This MILP consists of nM integer variables and (n
2) = O(n2) continuous variables and

has n + M + 2(n
2) = O(n2 + M) constraints.

2.5 Two-dimensional grid

In this section we consider a two-dimensional grid as network topology. Such a network
allows for more connections between computers and directly extends the linear network
of Sec. 2.4. Nevertheless, this network also leads to a reduction in the complexity in the
assignment of qubits to computers.

We first have to introduce some tools to describe this network. Consider the metric
based on the 1-norm1 defined by

d(x, y) = ‖x− y‖1 =
p

∑
i=1
|xi − yi|, x, y ∈ Zp. (2.15)

We first consider a (square) grid with side length m defined by G2 := [m1]× [m2] ⊆ Z2.
Thus the number of quantum computers equals M = m1m2. We say that two quantum
computers are connected if and only if their distance is 1. A small example of such a
network is shown in Fig. 9.
For qubit i ∈ [n] and computer (u, v) ∈ G2 we let

xi,uv =

{
1 if qubit i is assigned to position (u, v)
0 otherwise.

(2.16)

1This metric is also called the taxicab distance or Manhattan distance for its similarity to travelling along
the shortest route between two points in the streets of Manhattan, New York.
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q1 q2

q3q4

q5 q6

q7q8

q13 q14

q15q16

q9 q10

q11q12

1

1

1

1

C1 C2

C3C4

Figure 9: The graph of a two-dimensional grid on a network of four quantum computers,
indicated by the C’s. The computers each have a capacity of four qubits.

Then, similar to the constraints in Eqs. 2.2 and 2.3, we have the following constraints:

n

∑
i=1

xi,uv ≤ K, ∀(u, v) ∈ G2, (2.17)

and

∑
(u,v)∈G2

xi,uv = 1, ∀i ∈ [n]. (2.18)

Furthermore, the objective is now a weighted sum. The weights are determined by the
number of interactions between a pair of qubits. The weighted sum consists of terms
given by the distance between computers in the network to which the qubits are as-
signed. The objective is

∑
i,j∈[n]

i<j

cij‖ f (i)− f (j)‖1 = ∑
i,j∈[n]

i<j

cij

(
∑

u∈[m1]

∣∣∣∣∣ ∑
v∈[m2]

vxi,uv − ∑
v∈[m2]

vxj,uv

∣∣∣∣∣

+ ∑
v∈[m2]

∣∣∣∣∣ ∑
u∈[m1]

uxi,uv − ∑
u∈[m1]

uxj,uv

∣∣∣∣∣

)
.

(2.19)

Again, we introduce new variables to encode the absolute values, this is done by two
families L(1)

ij,u and L(2)
ij,v. Analogous to the complete linear network described in Sec. 2.4,

these variables can be relaxed to real numbers. The mixed integer linear program then
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reads

min ∑
i,j∈[n]

i<j

cij

(
∑

u∈[m1]

L(1)
ij,u + ∑

v∈[m2]

L(2)
ij,v

)

s.t.
n

∑
i=1

xi,uv ≤ K, ∀u ∈ [m1], v ∈ [m2]

∑
u∈[m1]

∑
v∈[m2]

xi,uv = 1, ∀i ∈ [n]

∑
v∈[m2]

v(xi,uv − xj,uv) ≤ L(1)
ij,u

∑
v∈[m2]

v(xi,uv − xj,uv) ≥ −L(1)
ij,u




∀u ∈ [m1]

∑
u∈[m1]

u(xi,uv − xj,uv) ≤ L(2)
ij,v

∑
u∈[m1]

u(xi,uv − xj,uv) ≥ −L(2)
ij,v




∀u ∈ [m1]





∀i, j ∈ [n], i < j

xi,uv ∈ {0, 1}, ∀i ∈ [n], u ∈ [m1], v ∈ [m2]

L(1)
ij,u, L(2)

ij,v ∈ R, ∀u ∈ [m1], v ∈ [m2], ∀i, j ∈ [n], i < j.

(2.20)

This MILP has nm1m2 = nM integer variables and (n
2)(m1 + m2) = O(n2(m1 + m2))

continuous variables. The program contains m1m2 + n + 2(n
2)(m1 + m2) = O(n2(m1 +

m2) + M) constraints. If the grid sizes are similar up to a constant, then m1 = Θ(m2).
Furthermore, if the capacity of each computer is fixed and the least number of computers
is used, then n = O(M), then the number of constraints is O(M2.5).

2.6 General grid

The two-dimensional network of Sec. 2.5 was a generalisation of the linear network of
Sec. 2.4. Since the 1-norm allows for generalisation to any finite dimensional lattice, this
section describes the most general case for grids.

We assume the dimensions of the p-dimensional grid are the same to provide a clearer
description. However, similar to the two-dimensional grid, it is possible to use grids of
different spatial proportions. Let Gp = [m]× · · · × [m]︸ ︷︷ ︸

p times

, and for u = (u1, . . . , up−1) ∈

Gp−1, r ∈ [d], v ∈ [m] define

u⊕r v = (u1, . . . , ur−1, v, ur, . . . , up−1) ∈ Gp, (2.21)

that is, in the integer string u we insert the number v at place r.

The general objective now becomes

∑
i,j∈[n]

i<j

cij


 ∑

r∈[p]


 ∑

u∈Gp−1

∣∣∣∣∣ ∑
v∈[m]

v(xi,u⊕rv − xj,u⊕rv)

∣∣∣∣∣




 . (2.22)

14



Here, we can again introduce a family of variables L(r)
ij,u for all i, j ∈ [n], i < j, u ∈ Gd−1

and r ∈ [m] to linearise the absolute value. This gives us the MILP

min ∑
i,j∈[n]

i<j

cij


 ∑

r∈[p]


 ∑

u∈Gp−1

L(r)
ij,u






s.t. ∑
i∈[n]

xi,ω ≤ K, ∀ω ∈ Gp

∑
ω∈Gp

xi,ω = 1, ∀i ∈ [n]

∑
v∈[m]

u(xi,u⊕rv − xj,u⊕rv) ≤ L(r)
ij,u

∑
v∈[m]

u(xi,u⊕rv − xj,u⊕rv) ≥ −L(r)
ij,u




∀u ∈ Gp−1, r ∈ [p], i, j ∈ [n], i < j

xi,ω ∈ {0, 1}, ∀i ∈ [n], ω ∈ Gp

L(r)
ij,u ∈ R, ∀u ∈ Gp−1, r ∈ [p], i, j ∈ [n], i < j.

(2.23)

The number of quantum computers in this network is M = mp. This program contains
nM integer variables and (n

2)pmp−1 = O(n2 pM(p−1)/p) continuous variables. Further-
more, there are mp + n + 2(n

2)pmp−1 = O(M + n2 pM(p−1)/p) constraints. For p = 2 we
indeed get the result of the previous section.

3 Local Reordering of Qubits in a Distributed Quantum Circuit

Now we switch our focus to the problem of local reordering in the distributed case. In
local reordering, SWAP gates can be inserted before every quantum gate, such that the
quantum gate acts on adjacent qubits. The goal is to find the minimal number of required
SWAP gates. SWAP gates are considered overhead, costing precious calculation time and
resources.

Suppose we have a quantum circuit, consisting of m unitary 2-qubit gates gil ∈ G,
acting on a total of n qubits {q1, . . . , qn} ≡ Q. The physical locations of the qubits
are distributed between N quantum computers in a linear fashion, i.e., locations L1 =
(1, . . . , k1) belong to computer C1 and locations L2 = (k1 + 2, . . . , k1 + k2 + 1) belong
to computer C2, locations LN = (k1 + . . . + kN−1 + N, . . . , k1 + . . . + kN + N − 1) to
computer CN , where ki is the qubit capacity of computer Ci. Here one qubit location
is skipped between every two consecutive computers, we will see this helps with the
modelling later on. Also suppose we have to comply with nearest neighbour interaction
constraints, where gates can only act on two qubits if the corresponding qubits are phys-
ically adjacent, so their locations are li, li+1 respectively for some i.

The local reordering problem concerns the micromanagement of the qubit location at
the gate level. Before each gate, the qubit order must be adjusted such that the nearest
neighbour constraints are satisfied. However, there are costs involved with the reorgani-
sation of the qubit order. SWAP gates are used to interchange the location of two qubits,
but they also have to comply with the nearest neighbour constraints and can thus only
interchange locations of two adjacent qubits.

Furthermore, interactions between computers are limited to the action of SWAP gates,
where two qubits are exchanged between two quantum computers. The SWAP gates
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between computers will likely be more expensive than the ones within a computer since
entanglement between the computers in needed for this purpose, this assumption is
however not required for the model to provide valid results.

The goal consists of two parts:

1 Minimise the number of SWAP gates between different computers, associated with
a cost of α

2 Minimise the number of SWAP gates within each computer, associated with a cost
of β

An illustration is provided for clarification in Fig. 10.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

C1 C2 C3
cost α cost β

Figure 10: A line graph on a network of three quantum computers, indicated by the C’s.
The computers each have a capacity of four qubits which are also connected

In order to extend the ILP formulation of minimising the number of SWAP gates in the
case of one computer [22] such that it also encapsulates the distributed variant of the lo-
cal reordering problem, no big extension is required. The proposed mathematical model
is presented below.

Let us first introduce variables xt
i , indicating the location l ∈ ∪i∈[N]Li of a qubit qi just

before gate gt is applied. Note that this also specifies the quantum computer on which
the qubit is located. To count the required number of SWAP gates when changing the
qubit order between gates, variables yil,t are introduced which keep track of the pairwise
ordering of two qubits qi, ql before gate gt.

yil,t =

{
1 if xi,t > xl,t

0 otherwise.
(3.1)

Changes in the y’s, when moving from one gate to the next, mean that two qubits have
changed pairwise order. These pairwise changes in order are also known as inversions.
Inversions exactly count the number of SWAP gates that are required to change one qubit
order to the next2.

The nearest neighbour constraints state that a gate can only act on two adjacent qubits,
|xi,t − xl,t| ≤ 1. This constraint is linearised using the inequalities

xi,t − xl,t ≤ 1, ∀gil,t ∈ G, (3.2)
xi,t − xl,t ≥ −1, ∀gil,t ∈ G. (3.3)

To keep track of the qubit order and to make sure the distance between qubits is at least
1, the following big-M type constraints are added.

2The number of required SWAP gates to go from one qubit order to the next is actually a metric on the
corresponding elements of the symmetric group Sn, called the Kendall tau metric.
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xi,t − xl,t ≤ Myil,t − 1, ∀i, l ∈ Q, i < l, t ∈ [m], (3.4)
xl,t − xi,t ≤ M(1− yil,t)− 1, ∀i, l ∈ Q, i < l, t ∈ [m], (3.5)

where the constant M is chosen to be large enough, in this case M = N + ∑i ki will
suffice, to make one constraint trivially satisfied. The binary variable y determines for
which of the two constraints that holds.

Recall the auxiliary locations left between the quantum computers which were supposed
to help us. These borders b are locations indexed by the values

bs = s + ∑
j∈[s]

k j, s ∈ [N − 1], (3.6)

where bs is the location of the border between quantum computers s and s + 1. Next, to
keep track of qubits changing computer, variables yis,t are introduced.

yis,t =

{
1 if xi,t > bs

0 otherwise
, (3.7)

They tell us on which side of the auxiliary location between two computers a qubit is
located before gate gt. If the qubit changes order with the auxiliary location, we can add
a cost to the objective later on. The yi,t are binary and constrained in the following way:

xi,t − bs ≤ Myis,t − 1, ∀i ∈ Q, i < l, t ∈ [m], s ∈ [N − 1], (3.8)
bs − xi,t ≤ M(1− yis,t)− 1, ∀i ∈ Q, i < l, t ∈ [m], s ∈ [N − 1]. (3.9)

Here, the variable yi,t is 0 if the location xi,t of qubit qi is smaller than the location of the
border between computers s and s + 1.
The absolute change (from gate to gate) in the y variables adds a cost to the objective
function. To linearise the absolute values, variables p and r are introduced. The p vari-
ables are used for SWAP gates within a computer:

pil,t =

{
1 if the order of qubits i and l changed from gate gt to gt+1

0 otherwise.
, (3.10)

The r variables keep track of SWAP gates between different quantum computers:

ris,t =

{
1 if qubit i crossed border bs between gates gt and gt+1

0 otherwise.
, (3.11)

The p’s are constrained as

yil,t − yil,t+1 ≤ pil,t, ∀i, l ∈ Q, i < l, t ∈ [m− 1], (3.12)
yil,t − yil,t+1 ≥ −pil,t, ∀i, l ∈ Q, i < l, t ∈ [m− 1], (3.13)

and the r’s are constrained as

yis,t − yis,t+1 ≤ ris,t, ∀i ∈ Q, t ∈ [m− 1], s ∈ [N − 1], (3.14)
yis,t − yis,t+1 ≥ −ris,t, ∀i ∈ Q, t ∈ [m− 1], s ∈ [N − 1]. (3.15)

Next, we formulate the objective function. The objective is of course to minimise the
variables p and r, as they count the changes in qubit order and the qubits swapping to
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another computer, respectively. Note that every time two qubits on different computers
are swapped, both the corresponding r- and p-variables become 1. Swapping two qubits
on different quantum computers should only cost β and not α + β, the objective function
is therefore

min ∑
t∈[m−1]

((
α− β

2 ∑
i∈Q,s∈[N−1]

ris,t

)
+

(
β ∑

i,l∈Q,i<l
pil,t

))
, (3.16)

where the (α − β) term counteracts the extra counting of the SWAP gate with cost α
and the factor of one half prevents us from counting the SWAP over the border between
computers twice (once for both qubits).

The complete integer linear program then reads

min ∑
t∈[m−1]

((
α− β

2 ∑
i∈Q,s∈[N−1]

ris,t

)
+

(
β ∑

i,l∈Q,i<l
pil,t

))

s.t. xi,t − xl,t ≤ 1, ∀gil,t ∈ G
xi,t − xl,t ≥ −1, ∀gil,t ∈ G.
xi,t − xl,t ≤ Myil,t − 1, ∀i, l ∈ Q, i < l, t ∈ [m]

xl,t − xi,t ≤ M(1− yil,t)− 1, ∀i, l ∈ Q, i < l, t ∈ [m]

xi,t − bs ≤ Myis,t − 1, ∀i ∈ Q, t ∈ [m], s ∈ [N − 1]
bs − xi,t ≤ M(1− yis,t)− 1, ∀i ∈ Q, t ∈ [m], s ∈ [N − 1]
yil,t − yil,t+1 ≤ pil,t, ∀i, l ∈ Q, i < l, t ∈ [m− 1]
yil,t − yil,t+1 ≥ −pil,t, ∀i, l ∈ Q, i < l, t ∈ [m− 1]
yis,t − yis,t+1 ≤ ris,t, ∀i ∈ Q, t ∈ [m− 1], s ∈ [N − 1]
yis,t − yis,t+1 ≥ −ris,t, ∀i ∈ Q, t ∈ [m− 1], s ∈ [N − 1]
xi,t ∈ ∪i∈[N]Li, ∀i ∈ Q, t ∈ [m]

yil,t ∈ {0, 1}, ∀i, l ∈ Q, i < l, t ∈ [m]

yis,t ∈ {0, 1}, ∀i ∈ Q, t ∈ [m], s ∈ [N − 1]
ris,t ∈ {0, 1}, ∀i ∈ Q, t ∈ [m− 1], s ∈ [N − 1]
pil,t ∈ {0, 1}, ∀i, l ∈ Q, i < l, t ∈ [m− 1].

(3.17)

The size of the ILP model scales as a polynomial in the number of qubits, quantum gates
and quantum computers in the instance. The number of variables and the number of
constraints are both of the order O(n2m + nMm) = O(n2m).

4 Concluding remarks and future research

In quantum circuit design, the step to distributed quantum networks gives rise to an ex-
tended area of research. How to distribute qubits over the various quantum computers,
and how to order qubits within a quantum computer, are naturally arising problems on
the interface of distributed quantum computing and nearest neighbour compliant quan-
tum circuit design. These problems have not been discussed in literature before and are
formally introduced in this paper. In order to evaluate these problems, we define the
global and local reordering problems for distributed quantum computing. We formalise
the mathematical problems and model them as integer linear programming problems,
to minimise the number of SWAP gates or the number of interactions between differ-
ent quantum computers. For global reordering, the problem we identify and analyse is
called celestial reordering. In celestial reordering, only the initial distribution of qubits
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between the quantum computers is optimised. We analyse the problem for various ge-
ometries of networks: completely connected networks, general networks, linear arrays
and grid-structured networks. We provide an ILP model for each geometry. For local
reordering, in networks of quantum computers, we also define the mathematical optimi-
sation problem and we provide an ILP model. However, as these are NP-hard problems,
the size of the instances that can be analysed, will be restricted by calculation times. Eval-
uation of existing or proposed quantum networks will lead to insights in capabilities of
networks and algorithms. For development of large scale networks, these optimisation
methods will be essential for efficient use. Further research on heuristic approaches for
solving these integer linear programs is recommended by the authors.
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Appendix A

Appendix

A.1 The Generalized SWAP-gate

Suppose we have two quantum mechanical systems with associated complex Euclidean spaces
of dimension n, i.e., X = Cn. Let {|0〉 , . . . , |n− 1〉} be a basis of this Hilbert space. Consider
the following operator onX ⊗ X

U =

n−1∑

i=0

n−1∑

j=0

|i〉 〈j| ⊗ |j〉 〈i| . (A.1.1)

ThenU is the SWAP-operation on the pair of systems, to see this, let |k〉 |`〉 ∈ X ⊗ X , then

U |k〉 |`〉 =

n−1∑

i=0

n−1∑

j=0

(|i〉 〈j| ⊗ |j〉 〈i|)(|k〉 ⊗ |`〉) (A.1.2)

=
n−1∑

i=0

n−1∑

j=0

|i〉 〈j|k〉 ⊗ |j〉 〈i|`〉 (A.1.3)

=
n−1∑

i=0

n−1∑

j=0

|i〉 δjk ⊗ |j〉 δi` = |`〉 |k〉 . (A.1.4)

Note that |i〉 〈j| = (|j〉 〈i|)†. This means that if we want to generate a matrix representation of
the SWAPn operation we can build a n2×n2-matrix by joining together n×n-matrices into an
n× n-matrix, where the element (i, j) is the matrix |j〉 〈i|, for example when n = 2 we have:

SWAP2 =




(
1 0
0 0

) (
0 0
1 0

)

(
0 1
0 0

) (
0 0
0 1

)


 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , (A.1.5)

and similarly when n = 3:

SWAP3 =







1 0 0
0 0 0
0 0 0







0 0 0
1 0 0
0 0 0







0 0 0
0 0 0
1 0 0







0 1 0
0 0 0
0 0 0







0 0 0
0 1 0
0 0 0







0 0 0
0 1 0
0 0 0







0 0 1
0 0 0
0 0 0







0 0 0
0 0 1
0 0 0







0 0 0
0 0 0
0 0 1







=




1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1




.

(A.1.6)
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A.2 The Operators P0 and P1 from Ambainis’ Protocol

We apply the Gram-Schmidt orthogonalisation process to the set of linearly independent states
1√
2

(|00〉+ |22〉), |01〉 , |02〉 , |10〉 , |11〉 , |12〉 , |20〉 , |21〉 and |22〉 . (A.2.1)

This gives us the following operator

P0 =
1√
2




1 0 0 0 0 0 0 0 −1

0
√

2 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0

0 0 0
√

2 0 0 0 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 0
√

2 0 0 0

0 0 0 0 0 0
√

2 0 0

0 0 0 0 0 0 0
√

2 0
1 0 0 0 0 0 0 0 1




∈ L(C3⊗C3). (A.2.2)

Similarly, we apply the process to the set of states
1√
2

(|11〉+ |22〉), |00〉 , |01〉 , |02〉 , |10〉 , |12〉 , |20〉 , |21〉 and |22〉 , (A.2.3)

and get the unitary operator

P1 =
1√
2




0
√

2 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0

0 0 0
√

2 0 0 0 0 0

0 0 0 0
√

2 0 0 0 0
1 0 0 0 0 0 0 0 −1

0 0 0 0 0
√

2 0 0 0

0 0 0 0 0 0
√

2 0 0

0 0 0 0 0 0 0
√

2 0
1 0 0 0 0 0 0 0 1




∈ L(C3⊗C3). (A.2.4)

A.3 Measurement Operators in the Protocol of Berlín et al.

The measurement operators for Alice are relatively easy since she cannot check for abort and just
outputs x+ y mod 2. The operators are

ΠA = {ΠA,0,ΠA,1,ΠA,∅} = {I2 ⊗ΠC,0 ⊗ΠC,0 + I2 ⊗ΠC,1 ⊗ΠC,1,

I2 ⊗ΠC,0 ⊗ΠC,1 + I2 ⊗ΠC,1 ⊗ΠC,0,

0} ⊆ Herm(A).

(A.3.1)

In Bob’s case, he has to measure both Alice her coins and his own coin and depending on this,
he will check the state he received. If Bob does not abort the protocol, his output will be x + y
mod 2. The measurement operators are ΠB = {ΠB,0,ΠB,1,ΠB,∅} ⊆ Herm(B), where

ΠB,0 = |ψ0,0〉 〈ψ0,0| ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,0

+ I2 ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,0

+ I2 ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,0

+ |ψ1,0〉 〈ψ1,0| ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,0

+ |ψ0,1〉 〈ψ0,1| ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,1

+ I2 ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,1

+ I2 ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,1

+ |ψ1,1〉 〈ψ1,1| ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,1,

(A.3.2)

Page 133



Appendix A. Appendix

and
ΠB,1 = |ψ0,0〉 〈ψ0,0| ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,0

+ I2 ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,0

+ I2 ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,0

+ |ψ1,0〉 〈ψ1,0| ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,1 ⊗ΠC,0

+ |ψ0,1〉 〈ψ0,1| ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,1

+ I2 ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,1

+ I2 ⊗ΠC,0 ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,1

|ψ1,1〉 〈ψ1,1| ⊗ΠC,1 ⊗ΠC,0 ⊗ΠC,1 ⊗ΠC,1,

(A.3.3)

the operator that aborts the protocol is

ΠB,∅ = IA⊗M −ΠB,0 −ΠB,1. (A.3.4)

A.4 MATLAB Code for Bob’s Optimal Cheating Strategy in Ambainis’
Protocol

% -------------------------------------------------------------------------
% *** Optimal cheating strategey Semidefinite Program ***
% *** R. van Houte, November 22, 2019 ***
% ----
% *** Alice honest, Bob cheats ***
% -------------------------------------------------------------------------
clear all; close all; clc;

cvx_solver sedumi

% Size of the problem
N = 3; % Number of rounds in the protocol
dimA = 2*2*3*3; % Dimension of Alice's private space (over C)
dimM = 3; % Dimension of the Message space
dimB = 2*2*3*3; % Dimension of Bob's private space (over C)

dimAM = dimA*dimM; % Dimension of the space A(x)M
dimBM = dimB*dimM; % Dimension of the space M(x)B

% Start state of the protocol |0><0| on D(A)
StartStateA = zeros(dimA,dimA);
StartStateA(1,1) = 1;

% -------------------------------------------------------------------------
% *** Measurements in the protocol ***
% -------------------------------------------------------------------------

% Mearsuring a single qubit in the standard basis
PiC0 = [1;0]*[1;0]'; % Measureing the state |0>
PiC1 = [0;1]*[0;1]'; % Measureing the state |1>

% Alice's final coin measurement
PiA0 = superkron((kron(PiC0,PiC0)+kron(PiC1,PiC1)),eye(3),eye(3));
PiA1 = superkron((kron(PiC0,PiC1)+kron(PiC1,PiC0)),eye(3),eye(3));
PiAabort = zeros(dimA,dimA); % Alice does not abort the protocol

% -------------------------------------------------------------------------
% *** Alice's Unitary opererations in the protocol ***
% -------------------------------------------------------------------------

% Hadamard gate
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H = 1/sqrt(2)*[1 1; 1 -1];

% Preparation states
P0 = eye(9);
P0(1,1) = 1/sqrt(2);
P0(1,9) = 1/sqrt(2);
P0(9,1) = 1/sqrt(2);
P0(9,9) = -1/sqrt(2);

P1 = zeros(9,9);
P1(5,1) = 1/sqrt(2);
P1(9,1) = 1/sqrt(2);
P1(5,9) = 1/sqrt(2);
P1(9,9) = -1/sqrt(2);
P1(1:4,2:5) = eye(4);
P1(6:8,6:8) = eye(3);

% Different SWAP gates used in Alice's unitary operations
% Swap qutrits 3 and 5
SWAP_3_and_5 = zeros(dimAM,dimAM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
t = q1*54+q2*27+q5*9+q4*3+q3;
SWAP_3_and_5(t+1,s+1)=1;

end
end

end
end

end

% Swap qubit 2 and qutrit 5
SWAP_2_and_5 = zeros(dimAM,dimAM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
t = q1*54+q5*27+q3*9+q4*3+q2;
% Only consider |0>,|1> of the qutrit state
if q5 == 0 || q5 == 1

SWAP_2_and_5(t+1,s+1)=1;
else

SWAP_2_and_5(s+1,s+1) = 1;
end

end
end

end
end

end

% Swap qutrits 4 and 5
SWAP_4_and_5 = zeros(dimAM,dimAM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
t = q1*54+q2*27+q3*9+q5*3+q4;
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SWAP_4_and_5(t+1,s+1)=1;
end

end
end

end
end

% CNOT with control on qubit 1 and target on qutrit 5 on the states |0>,|1>
CNOT_1_on_5 = zeros(dimAM,dimAM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
% Only consider |0>,|1> of the qutrit state
if (q5 == 0 || q5 == 1)

t = q1*54+q2*27+q3*9+q4*3+q1*(1-q5)+(1-q1)*q5;
CNOT_1_on_5(t+1,s+1)=1;

else
CNOT_1_on_5(s+1,s+1) = 1;

end
end

end
end

end
end

% Alice's list of unitary operations
UA1_1 = superkron(H,eye(2),P0,eye(3));
UA1_2 = superkron(PiC0,eye(2),eye(3),eye(3),eye(3))...

+ superkron(PiC1,eye(2),P1*P0',eye(3));
UA1_3 = SWAP_3_and_5;

UA1 = UA1_3*UA1_2*UA1_1; % First round Alice's unitary operation;
UA2 = CNOT_1_on_5*SWAP_2_and_5; % Second round Alice's unitary
UA3 = SWAP_4_and_5; % Third round Alice's unitary

% -------------------------------------------------------------------------
% *** Optimisation program for finding the optimal cheating strategy ***
% -------------------------------------------------------------------------

cvx_begin sdp

cvx_precision high

% Varbiales: density matrices N+1
variable rhoA0(dimAM,dimAM) hermitian

variable rhoA1full(dimAM,dimAM) hermitian
variable rhoA1(dimAM,dimAM) hermitian

variable rhoA2full(dimAM,dimAM) hermitian
variable rhoA2(dimAM,dimAM) hermitian

variable rhoA3full(dimAM,dimAM) hermitian
variable rhoA3(dimAM,dimAM) hermitian

% Objective
maximize (trace(kron(PiA1,eye(dimM))*rhoA3))

% Partial trace constraints
% The state on Alice's space remains |0><0|
rhoA0(1:3:dimAM,1:3:dimAM)+rhoA0(2:3:dimAM,2:3:dimAM)...
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+rhoA0(3:3:dimAM,3:3:dimAM) == StartStateA;

% Alice applies the operation UA1 to A(x)M
rhoA1full == UA1*rhoA0*UA1';

% Bob cannot access Alice her space
rhoA1(1:3:dimAM,1:3:dimAM)+rhoA1(2:3:dimAM,2:3:dimAM)+...

rhoA1(3:3:dimAM,3:3:dimAM) == rhoA1full(1:3:dimAM,1:3:dimAM)...
+rhoA1full(2:3:dimAM,2:3:dimAM)+rhoA1full(3:3:dimAM,3:3:dimAM);

% Alice applies the operation UA2 to A(x)M
rhoA2full == UA2*rhoA1*UA2';

% Bob cannot access Alice her space
rhoA2(1:3:dimAM,1:3:dimAM)+rhoA2(2:3:dimAM,2:3:dimAM)+...

rhoA2(3:3:dimAM,3:3:dimAM) == rhoA2full(1:3:dimAM,1:3:dimAM)+...
rhoA2full(2:3:dimAM,2:3:dimAM)+rhoA2full(3:3:dimAM,3:3:dimAM);

% Alice applies the operation UA3 to A(x)M
rhoA3full == UA3*rhoA2*UA3';

% Bob cannot access Alice her space
rhoA3(1:3:dimAM,1:3:dimAM)+rhoA3(2:3:dimAM,2:3:dimAM)+...

rhoA3(3:3:dimAM,3:3:dimAM) == rhoA3full(1:3:dimAM,1:3:dimAM)+...
rhoA3full(2:3:dimAM,2:3:dimAM)+rhoA3full(3:3:dimAM,3:3:dimAM);

% All quantum states are positive semidefinite
rhoA0 >= 0;
rhoA1 >= 0;
rhoA2 >= 0;
rhoA3 >= 0;

% Positive semidefiniteness of rhoAifull is automatically the case for
% feasible solutions

cvx_end

% -------------------------------------------------------------------------
% *** End of Script ***
% -------------------------------------------------------------------------

A.5 MATLAB Code for Alice’s Optimal Cheating Strategy in Ambainis’
Protocol

% -------------------------------------------------------------------------
% *** Optimal cheating strategey Semidefinite Program ***
% *** R. van Houte, November 22, 2019 ***
% ----
% *** Bob honest, Alice cheats ***
% -------------------------------------------------------------------------
clear all; close all; clc;

cvx_solver sedumi

% Size of the problem
N = 3; % Number of rounds in the protocol
dimA = 2*2*3*3; % Dimension of Alice's private space (over C)
dimM = 3; % Dimension of the Message space
dimB = 2*2*3*3; % Dimension of Bob's private space (over C)

dimAM = dimA*dimM; % Dimension of the space A(x)M
dimBM = dimB*dimM; % Dimension of the space M(x)B
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% Start state of the protocol |0><0| on D(B)
StartStateB = zeros(dimB,dimB);
StartStateB(1,1) = 1;

% -------------------------------------------------------------------------
% *** Measurements in the protocol ***
% -------------------------------------------------------------------------

% Mearsuring a single qubit in the standard basis
PiC0 = [1;0]*[1;0]'; % Measureing the state |0>
PiC1 = [0;1]*[0;1]'; % Measureing the state |1>

% States Alice prepares in the beginning of the protocol that Bob will
% check
psi0 = 1/sqrt(2)*[1; 0; 0; 0; 0; 0; 0; 0; 1]; % (|00>+|22>)/sqrt(2)
psi1 = 1/sqrt(2)*[0; 0; 0; 0; 1; 0; 0; 0; 1]; % (|11>+|22>)/sqrt(2)

% Corresponding check measurements
PiQ0 = psi0*psi0';
PiQ1 = psi1*psi1';
PiQabort = kron(eye(3),eye(3))-PiQ0-PiQ1;

% Bob's final coin measurements on the space B
PiB0 = superkron(PiC0,PiC0,PiQ0)+superkron(PiC1,PiC1,PiQ1);
PiB1 = superkron(PiC0,PiC1,PiQ0)+superkron(PiC1,PiC0,PiQ1);
PiBabort = eye(dimB)-PiB0-PiB1;

% -------------------------------------------------------------------------
% *** Bob's Unitary opererations in the protocol ***
% -------------------------------------------------------------------------

% Hadamard gate
H = 1/sqrt(2)*[1 1; 1 -1];

% Swap qutrits 4 and 5
SWAP_4_and_5 = zeros(dimBM,dimBM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
t = q1*54+q2*27+q3*9+q5*3+q4;
SWAP_4_and_5(t+1,s+1)=1;

end
end

end
end

end

% CNOT with control on qubit 2 and target on qutrit 5 on the states |0>,|1>
CNOT_2_on_5 = zeros(dimBM,dimBM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
% Only consider |0>,|1> of the qutrit state
if q5 == 0 || q5 == 1

t = q1*54+q2*27+q3*9+q4*3+q2*(1-q5)+(1-q2)*q5;
CNOT_2_on_5(t+1,s+1)=1;

else
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CNOT_2_on_5(s+1,s+1) = 1;
end

end
end

end
end

end

% Swap qubit 1 and qutrit 5
SWAP_1_and_5 = zeros(dimBM,dimBM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
t = q5*54+q2*27+q3*9+q4*3+q1;
% Only consider |0>,|1> of the qutrit state
if q5 == 0 || q5 == 1

SWAP_1_and_5(t+1,s+1)=1;
else

SWAP_1_and_5(s+1,s+1) = 1;
end

end
end

end
end

end

% Swap qutrit 3 and qutrit 5
SWAP_3_and_5 = zeros(dimBM,dimBM);
for q1 = 0:1

for q2 = 0:1
for q3 = 0:2

for q4 = 0:2
for q5 = 0:2

s = q1*54+q2*27+q3*9+q4*3+q5;
t = q1*54+q2*27+q5*9+q4*3+q3;
SWAP_3_and_5(t+1,s+1)=1;

end
end

end
end

end

% Bob's list of unitary opertions
UB1_2 = superkron(eye(2),H,eye(3),eye(3),eye(3));

UB1 = CNOT_2_on_5*UB1_2*SWAP_4_and_5; % First round Bob's unitary
UB2 = SWAP_1_and_5; % Second round Bob's unitary
UB3 = SWAP_3_and_5; % Third round Bob's unitary

% -------------------------------------------------------------------------
% *** Optimisation program for finding the optimal cheating strategy ***
% -------------------------------------------------------------------------

cvx_begin sdp

cvx_precision high

% Varbiales: density matrices N+1
variable rhoB0(dimBM,dimBM) hermitian

variable rhoB1full(dimBM,dimBM) hermitian
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variable rhoB1(dimBM,dimBM) hermitian

variable rhoB2full(dimBM,dimBM) hermitian
variable rhoB2(dimBM,dimBM) hermitian

variable rhoB3full(dimBM,dimBM) hermitian
variable rhoB3(dimBM,dimBM) hermitian

% Objective
maximize (trace(kron(PiB1,eye(dimM))*rhoB3))

% Partial trace constraints
% The state in Bob's space remains |0><0|
rhoB0(1:3:dimBM,1:3:dimBM)+rhoB0(2:3:dimBM,2:3:dimBM)+...

rhoB0(3:3:dimBM,3:3:dimBM) == StartStateB;

% Bob applies the operation UB1 to M(x)B
rhoB1full == UB1*rhoB0*UB1';

% Alice cannot acces Bob's space
rhoB1(1:3:dimBM,1:3:dimBM)+rhoB1(2:3:dimBM,2:3:dimBM)+...

rhoB1(3:3:dimBM,3:3:dimBM) == rhoB1full(1:3:dimBM,1:3:dimBM)+...
rhoB1full(2:3:dimBM,2:3:dimBM)+rhoB1full(3:3:dimBM,3:3:dimBM);

% Bob applies the operation UB2 to M(x)B
rhoB2full == UB2*rhoB1*UB2';

% Alice cannot acces Bob's space
rhoB2(1:3:dimBM,1:3:dimBM)+rhoB2(2:3:dimBM,2:3:dimBM)+...

rhoB2(3:3:dimBM,3:3:dimBM) == rhoB2full(1:3:dimBM,1:3:dimBM)+...
rhoB2full(2:3:dimBM,2:3:dimBM)+rhoB2full(3:3:dimBM,3:3:dimBM);

% Bob applies the operation UB3 to M(x)B
rhoB3full == UB3*rhoB2*UB3';

% Alice cannot acces Bob's space
rhoB3(1:3:dimBM,1:3:dimBM)+rhoB3(2:3:dimBM,2:3:dimBM)+...

rhoB3(3:3:dimBM,3:3:dimBM) == rhoB3full(1:3:dimBM,1:3:dimBM)+...
rhoB3full(2:3:dimBM,2:3:dimBM)+rhoB3full(3:3:dimBM,3:3:dimBM);

% All quantum states are positive semidefinite
rhoB0 >= 0;
rhoB1 >= 0;
rhoB2 >= 0;
rhoB3 >= 0;

% Positive semidefiniteness of rhoAifull is automatically the case for
% feasible solutions

cvx_end

% -------------------------------------------------------------------------
% *** End of Script ***
% -------------------------------------------------------------------------

Page 140


	Introduction
	Quantum Coin Flipping
	Mathematical Problem Statement
	Quantum Coin Flipping Protocols
	Contributions

	I Quantum Coin Flipping
	Mathematical Preliminaries
	Complex Euclidean Spaces and Tensor Products
	Positive Semidefinite Operators on Euclidean Spaces

	Semidefinite Programming
	Linear Programming
	Semidefinite Programming
	Quadratic Programming Relaxations
	Duality Theory of Semidefinite Programming
	Strong Duality

	Applications of Semidefinite Programming to Graph Theory
	The Lovász -number
	Semidefinite Programming Relaxations of the Maximum Edge Biclique Problem
	The Max-Cut Problem and Semidefinite Relaxation

	Grothendieck's Constant
	Solving Semidefinite Programs
	Semidefinite Programming over Complex Operators

	Quantum Mechanics and Quantum Information Theory
	The Postulates of Quantum Mechanics
	Entanglement of Quantum Mechanical States
	The Density Operator Formalism
	Application of Semidefinite Programming: Optimal Measurements
	Quantum Bit Commitment
	More Applications of Semidefinite Programming in Quantum Information Theory
	Calculating the Fidelity of Two Density Operators
	Optimal Quantum Cloning


	Quantum Coin Flipping
	Coin Flipping using Classical Communication
	Complexity Assumptions and Shor's Algorithm
	Coin Flipping Based on Classical or Quantum Bit Commitment
	Quantum Coin Flipping
	Coin Flipping beyond Kitaev's Proof: Optimal Coin Flipping
	Optimization of Secondary Preferences and Expectation
	Strong Unbalanced Quantum Coin Flipping
	Quantum Coin Flipping as a Quantum Computing Circuit
	Ambainis' protocol: Formulating and Solving the Semidefinite Program
	Semidefinite Programming Implementation of Ambianis' Protocol
	Secondary Optimization of Ambainis' Protocol
	The Protocol of Berlín et al.: Formulation and Optimization
	Results of the Berlín et al. Protocol
	Multiparty Quantum Coin Flipping
	Upper Bounds on Multiparty Quantum Coin Flipping
	Lower Bounds on Multiparty Quantum Coin Flipping

	Conclusions
	Recommendations for Future Research

	Bibliography

	II Quantum Circuit Design
	Distributed Quantum Computing
	Appendix
	The Generalized SWAP-gate
	The Operators P0 and P1 from Ambainis' Protocol
	Measurement Operators in the Protocol of Berlín et al.
	MATLAB Code for Bob's Optimal Cheating Strategy in Ambainis' Protocol
	MATLAB Code for Alice's Optimal Cheating Strategy in Ambainis' Protocol



