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Facts and Fiction in Spectral Analysis
P. M. T. Broersen

Abstract—This analysis is limited to the spectral analysis of sta-
tionary stochastic processes with unknown spectral density. The
main spectral estimation methods are: parametric with time series
models, or nonparametric with a windowed periodogram. A single
time series model will be chosen with a statistical criterion from
three previously estimated and selected models: the best autore-
gressive (AR) model, the best moving average (MA) model, and
the best combined ARMA model. The accuracy of the spectrum,
computed from this single selected time series model, is compared
with the accuracy of some windowed periodogram estimates. The
time series model generally gives a spectrum that is better than the
best possible windowed periodogram. It is a fact that a single good
time series model can be selected automatically for statistical data
with unknown spectral density. It is fiction that objective choices
between windowed periodograms can be made.

Index Terms—ARMA models, identification, order selection,
parametric spectrum, spectral accuracy, spectral estimation, time
series.

I. INTRODUCTION

T HE main methods for spectral analysis are parametric with
time series models and nonparametric with tapered and

windowed periodograms [1]. Generally, time series models are
to be preferred if the true model type and order of the process
under investigation are known [2]. However, application of the
wrong model type or the wrong order can produce completely
erroneous spectral estimates [2]–[4]. The variance of
spectral estimates and of Fourier transforms of the firstvalues
of the correlation function is comparable [5], [6]. However, an
alternative interpretation shows that the equivalent of an infin-
itely long measured correlation is transformed with correctly
chosen models [7]. Order selection can be interpreted as
looking for the lowest order where the extrapolated autoregres-
sive (AR) correlation function is not significantly different from
the measured correlation; this is verified up to the highest order
that is considered for AR order selection. Order selection for
AR models has been studied with asymptotic criteria [8]–[10]
and with finite sample equivalents [11]–[14] that are necessary
if higher model orders are considered. Also for moving average
(MA) and ARMA models, reliable algorithms have been devel-
oped that perform well for all sample sizes [15]–[18]. This is
a new development in time series analysis. In text books ([19],
[20] p. 103) no preferences have been formulated for specific
MA and ARMA algorithms. But after the discovery of the op-
timal length of the long autoregressive intermediate model [15],
[16], preference can be given to Durbin’s methods [17], [18].

This paper deals with stationary stochastic processes with un-
known spectra, not with deterministic or periodical signals for
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which Fourier transform will be the obvious method to compute
the spectrum. Moreover, the results of spectral estimation will
only be accurate if the length where the correlation has values
that are significantly different from white noise is less than half
the length of the observations. Also, the inverse length in recon-
structing the innovations from the data should be less than half
the observation length. Otherwise, the number of observations is
not sufficient to obtain good information about the structure of
the data with time series analysis. For all stationary stochastic
processes, at least one of the three model types gives a good
spectral description of the data. The problem is to know which
type is appropriate. So far, no automatic method for the selection
of the model type, AR, MA, or ARMA, yielded good results on
statistical data with unknown spectra.

Requirements for AR, MA, and ARMA algorithms are de-
scribed. They are necessary to allow the selection of model order
and type. The algorithms have to produce useful models of any
order, independent of the sample size and the true process order
and type. Only in this way, the best model, the best

, and the best model can be selected
for given data. Afterwards, an automatic choice among the three
previously estimated and selected models can be made with a
statistical concept. A new criterion with the squared error of pre-
diction is given that can be used for the selection of the single
final model. Afterwards, the data spectrum is computed from
the model parameters. In simulations, an objective quality mea-
sure [21] is used to compare the spectrum of this single model to
a variety of tapered and windowed periodograms. This measure
represents the squared error of prediction in the time domain;
at the same time it represents a relative accuracy measure inte-
grated over the frequency domain [22].

II. TIME SERIESMODELS

Time series have three different models types: 1) autoregres-
sive or AR, 2) moving average or MA, and 3) combined ARMA.
An process can be written as [1]

(1)

where is a purely random process, so a sequence of indepen-
dent identically distributed stochastic variables with zero mean
and variance . This process is purely AR for and MA
for . Any stationary stochastic process with a continuous
spectral density can be written as an unique or
process [1]. This is independent of the origin of the process; it
may be the sum of a true AR process and several colored noise
signals or an process. Several parametrizations
for AR processes are known [4]. Parameters, poles, reflection
coefficients, and correlation coefficients are a few of the ways
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to characterize an AR process completely with a finite number
of parameters. The roots of

(2)

are denoted the poles of the process; the roots of

are the zeros. Processes are called stationary if all poles are
strictly within the unit circle and invertible if all zeros are within
the unit circle.

In estimation, observations of a process with unknown
characteristics are given. If the mean of the observed signal
is not zero, the average of the given data is subtracted before
parameters are estimated. An estimated model is
given by

(3)

where and may be arbitrary and is some colored noise
signal that is not purely random in general. Models are AR if

and purely MA for . Parameters for different
model orders can be estimated in principle by minimization of
the residual variance. That is the variance ofif the parameters
are estimated from the data . The theory shows that the min-
imum of the residual variance gives at the same time the max-
imal flatness for the spectral density of. Afterwards, orders

and/or are selected. A selection criterion adds a penalty for
each estimated parameter to the logarithm of the residual vari-
ance of each estimated model. It selects the model order with the
minimum of the criterion. Finite order models are often quite
well in describing true processes with infinite orders, because
the true parameters are decreasing rapidly for many processes.

A recursive algorithm gives a relation between AR parame-
ters and reflection coefficients [4]. The parameters
of the order are related to the parameters of order

by the Levinson-Durbin recursion

(4)

By definition, the last parameter of a stationary AR model of
order is called a reflection coefficient. Reflection coefficients
of stationary processes are always between1 and 1. Vice
versa, AR models are stationary if all reflection coefficients are
less than 1 in magnitude.

The residual variance is the variance of in (3) for
models. It is given by

(5)

where is the variance of the observations.

The covariance function and the power spectral density of
the data can be computed from the parameters of the estimated
model. The estimated power spectrum of the
model is given by [1]

(6)

The covariance can be found as the inverse Fourier transform
of (6). Also direct methods to derive the covariance from the
parameters are given in the time series literature [1], [4].

III. FICTION

It is fiction that looking at figures of periodograms obtained
with different types or lengths of windows and tapers can yield a
statistically reliable choice between the alternatives. Many ex-
amples show the contrary. It seems that the human eye or the
human mind prefers to select a limited amount of details in the
spectra but not too much; the choice is hardly influenced by the
amount of details in the true spectrum. The theory about the
choice of window type and size can only be developed on deter-
ministic grounds and it requires the exact knowledge of the true
spectrum [1].

Theoretically, AR or MA roots and their image, mirrored with
respect to the unit circle, produce the same covariance structure
and the same spectral densities ([1] p. 146). In practice, model
type and order are not known and selection is necessary. This is
based on the decrease of the residual variance caused by intro-
ducing extra parameters in the model. Mirroring has influence
on the residual variance. Hence, to favor order selection there is
a preference for algorithms that give exclusively invertible and
stationary roots of estimated models. If mirrored images of the
roots are used, whenever noninvertible or nonstationary roots
are estimated, order selection becomes dubious. A comparison
between models of increasing orders with all roots inside the
unit circle and a model with one or more roots outside the unit
circle involves not only the number of parameters. Therefore,
a statistical selection of the model order becomes impossible.
Moreover, mirrored images of estimated roots that fall outside
the invertible or stationary region will not concentrate around
the location of the true roots. Many algorithms cannot guarantee
that all estimated poles and zeros are certainly invertible or sta-
tionary. For AR, MA, and ARMA algorithms, the most impor-
tant members of this unfavorable class are the least squares al-
gorithms. For those algorithms, estimated roots can be outside
the stationary or invertible region. This is sometimes prevented
by using constrained least squares optimization, but in those al-
gorithms the choice of the constraint determines the solution
and not the data. Only if an algorithm is guaranteed to estimate
stationary or invertible roots, the roots remain completely de-
termined by the data. If algorithms produce undesirable roots,
they can simply be outside the unit circle due to the estimation
variance; their mirrored image is no useful estimate.

Algorithms that may produce wrong roots in small samples
improve their behavior for an increasing number of observations
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from the same process. But it is always possible to create exam-
ples where estimated roots can be wrong due to estimation vari-
ance. Examples can be given where the asymptotical approx-
imation of the variance of reflection coefficients can become
greater than 1. In those examples, the estimation variance is the
reason that an unconstrained least squares algorithm can esti-
mate roots on both sides of the unit circle, or even exactly on
it. Take an or process with an arbitrary true re-
flection coefficient and . The variance of the
first reflection coefficient is [23], independent of

. This means that estimated ‘reflection coefficients’ can be-
come greater than 1 due to the variance and that is equivalent
with non- stationary or noninvertible roots.

Algorithms that can produce poles outside the unit circle will
sometimes do so. However, all types of models, AR, MA, and
ARMA, must be estimated for different model orders, before a
choice can be made for data with unknown spectral density. Not
only models of the, afterwards selected, best order must be com-
puted, butalso models of higher orders. Only then it is possible
to conclude that lower orders are the best and should be selected.
For every model that gives a good fit, there are in-
finitely many models with the same fit:
those are all models where an additional pole and zero cancel.
Therefore, the variance of the least squares parameters of those
overcomplete models is in the asymptotic theory. Hence, es-
timated poles may be nonstationary and estimated zeros nonin-
vertible and the residual variance cannot be used as a basis for
order selection.

Especially for the overcomplete models, that are necessary
for a good selection of the model order, convergence problems
and roots outside the unit circle can be expected for least
squares ARMA algorithms. It is fiction that least squares
ARMA algorithms are capable of routinely estimating higher
order models that can be compared in
a statistical reliable way with models with order
selection criteria. At least order selection is seriously hampered
by mirroring roots or by constraining them; so many existing
ARMA algorithms are not suitable for automatic use. That
might be a reason why AR, MA, or ARMA has not been used
before as an alternative to windowed periodograms for spectral
analysis.

IV. FACTS

The Fourier transform of a stationary stochastic process does
not exist [1, p.15] as an ordinary function. More specifically,
the Fourier transform is not approximated any better by taking
more observations. The quotient of two Fourier transforms is
generally considered to be an estimate of the transfer function.
However, for stationary stochastic processes the estimate based
on the Fourier transform of the output signal divided by that of
the input has an infinite variance [24]. This paper describes the
consequences of this problem in estimating the periodogram,
the square of the absolute value of a Fourier transform.

Any stationary stochastic process with a continuous spectral
density can be written as an unique or process
[1]. This does not depend on the origin of the process, e.g., it
may be the sum of two or more ARMA processes or an AR

process with additive noise. Finite order MA or AR models give
often an accurate description for those infinite order processes,
because the true parameters decrease rapidly for most processes.

It is a fact thatcombinationsof time series algorithms and
order selection criteria are available that compute under all
circumstancesusefulmodels for statistical data with unknown
spectral density. Examples of combinations for AR, MA,
and for ARMA modeling have been presented recently [11],
[15], [16]. Algorithms for time series are useful for data with
unknown spectral density if theycannotproduce zeros that are
not invertible and poles that are nonstationary. The best AR
model of a true MA or ARMA process may still be a model of
a poor quality; this AR model is nevertheless useful if it can
be compared objectively to MA and to ARMA models. Those
will fit better in that case.

Four different AR model orders can be considered as theoret-
ically optimal for the representation of a known process,
depending on the intended use or interpretation. The orders are

• for the exacttheoretical equivalence between
and ;

• 0 (or ) for or more steps ahead prediction if the
exact process is known;

• defined in [15] for one step ahead prediction with an
estimated model or for computing the spectral
density with an AR approximation;

• the higher order as intermediate order of anestimated
model for calculation of the MA parameters with

Durbin’s method [15].
The Yule–Walker method of AR estimation can have a severe

bias, that is not present in the Burg method [25]. The bias is
caused by the use of the biased estimate for the covariance of the
data in the Yule–Walker method for AR estimation. Estimated
reflection coefficients for orders higher thanare a factor 2 too
small for models of processes where a true reflection coefficient
of order has the absolute value [26]. Precisely the
same covariance bias is present in periodogram estimates for
the spectrum; the influence of this bias on periodograms will be
shown in Section VI.

Asymptotical AR order selection criteria can give wrong or-
ders if the candidate orders are higher than 0.1 N [13]. Using
higher penalties in selection criteria or consistent criteria cannot
cure this problem [12]. Taking the actualexpectationof the log-
arithm of the residual variance into account helps according to
the finite sample theory. A good criterion also depends on the
sampling varianceof the logarithm of the residual variance, as
a function of the model order [11].

Any windowed periodogram can also be written as the spec-
trum of a finite order invertible MA model, with the finite length
of the windowed correlation function as the MA model order
[4]. The unique MA parameters of this invertible representation
can be computed with an iterative algorithm [27]. Therefore,
a periodogram can be represented as a MA model. This gives
the opportunity to perform objective comparisons between pe-
riodograms and time series spectra with an accuracy measure
that has been developed for time series [21].

The squared error of prediction PE is defined as the model
fit to new and independent data or also as the square of the one
step ahead error of prediction. It is also defined as the variance
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of in (3), under the condition that the parameters in (3) are
not estimated from the data in (3) but from independent data.
In other words, the variance of in (3) represents the residual
variance if the parameters are estimated from the same data and
the squared error of prediction if parameters and data are inde-
pendent.

If the number of estimated parametersand are equal to or
greater than the true orders of the generating process, the asymp-
totic expectation of the residual variance equals

, where is the innovation variance of in (1). The
asymptotic expectation of PE equals . PE has
also an interpretation in the frequency domain as a measure for
the spectral flatness: the model with minimum PE maximizes
the spectral flatness of autoregressive models. A third interpreta-
tion is in terms of differences between the true and the estimated
probability density function of the data, the Kullback-Leibler
discrepancy. Some order selection criteria have been derived as
approximations for this difference [14]. The best model is the
model with the smallest estimate of the discrepancy.

An expression for PE in the frequency domain is the inte-
gral of S [28]; an approximation is given by the integral of

S [9]; is the true spectrum andS the estimate
with an ARMA model. The relative spectral measures have an
equivalent that is often used in speech coding: the spectral dis-
tortion . That is defined as the integral of S
and it equals for small variations in AR processes [5].
The model error ME is a scaled version of the squared error of
prediction [11], [21]. ME can easily be computed in the time
domain and its asymptotical expectation for complete unbiased
models is , independent of the sample size.

V. SELECTION OFMODEL ORDER AND TYPE

The choice between the three previously selected best AR,
MA, and ARMA models can only be made with an objective sta-
tistical criterion if the best model of each individual type is com-
puted and selected with an algorithm that depends exclusively
on the data, not on subjective choices of the experimenter. Order
selection is for each model type only possible if the differences
in the residual variance between successive model orders are
purely determined by statistics. This means that all models must
be obtained without constraints on the roots, without mirroring
of roots, without elimination of undesirable model choices and
without influence of the maximum candidate model order, pro-
vided that this order is taken high enough. Examples of algo-
rithms and order selection criteria that fulfill the requirements
are given here. They can be replaced by other methods, as long
as only statistics is involved in parameter estimation and order
selection.

AR models can be computed with Burg’s method [25], with
a finite sample order selection criterion , defined as [11]

(7)

is the variance of the residuals of the AR model of
order is an empirical finite sample formula to
approximate the variance of the reflection coefficient of order
estimated from observations with the Burg algorithm [13].

is a compromise between the optimal asymptotical
penalty factor 3 [12] and the finite sample estimator for the
Kullback-Leibler information [14] that gives a correction for
the increasing variance of as a function of the
model order . The order is selected if has its
minimum at .

models can be computed with Durbin’s method [17]
that uses a long AR model as intermediate. The order of that AR
model, which should be estimated with Burg’s method, is es-
sential for a good result [15]. It is chosen with a sliding window
algorithm [15] as twice the selected AR order plus the number
of MA parameters that is to be estimated, so . The MA
order is selected as the minimum of the asymptotical selection
criterion defined as

(8)

models can be computed with Durbin’s
second method [18]. This method has a poor reputation in the
literature, but it’s performance is much improved by taking a
proper order for the intermediate AR model. A sliding window
choice has been described for the AR order to
estimate models [16]. The same penalty as for
MA can be used for selection of the parameters of the

model order, so . The restric-
tion of orders to has the computational advantage that
not all combinations of and have to be evaluated.

The residual variance is minimized during AR estimation, but
it is computed afterwards in MA and ARMA estimation. There-
fore, different order selection criteria, and ,
have been recommended. can also be used to choose
between the selected and models, but a
new principle is necessary to include the model. The fi-
nite sample behavior of AR residuals [13] prevents the selection
of the model type with a single selection criterion. The prin-
ciple is found by realizing that in practice a model is desired
with a small prediction error. For a measured and given value of
the residual variance, the conditional expectation of the squared
error of prediction for the selected model is found with
the finite sample theory as [13]

(9)

The conditional expectations of the prediction error for
and models are based on the same asymptotical
theory as the Final Prediction Error. This is Akaike’s first order
selection criterion [29]

(10)

where denotes the number of estimated parameters. From the
three selected models, the type with the smallest estimate of the
prediction error PE with (9) or (10) is chosen. This gives asingle
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Fig. 1. Spectra computed with the true covariance function multiplied with a
triangular bias of lengthN .

time series model, called ARMAsel, that is selected on purely
statistical arguments.

VI. SIMULATIONS

Periodograms can be seen as Fourier transforms of
points of the biased estimated autocovariance function. The
bias is given by a multiplication with the triangular window

[1]. Removing this bias is undesirable, because the
positive semi-definite property would be lost. This property is
guaranteeing positive estimates for the spectral density [1]. The
influence of this bias is investigated by applying the bias to the
true covariance function , without any estimation errors.
The same bias is present in the Yule-Walker algorithm for AR
estimation.

An example is presented here, which has been used before [6]
to study the accuracy of time series models. Its autocovariance
function is a Gaussian bell shape as envelope of a cosine function

(11)

for . For ease of computation and for a conve-
nient generation of simulation data, the correlation is made equal
to zero for values of the shift greater than 20, neglecting only
covariance smaller than 10. In this way, the generating process
for the simulations is .

The spectra in Fig. 1 are computed for different values of
with the true covariance multiplied by the triangular

window . Those spectra are the
expectation of the periodogram and also of the AR spectrum that
would be obtained with the Yule-Walker algorithm. This figure
shows that the influence of the inevitable bias on the spectral
estimate can be serious, even for more than 10 000 observations.
The accuracy of this spectra of points can be expressed in the
model error ME. This is a scaled version of the squared error of
prediction [21]

(12)

TABLE I
MODEL ACCURACY AS A FUNCTION OFN FOR A TRIANGULAR BIAS IN THE

COVARIANCE, FOR A PROCESS WITH ACOSINE WITH A GAUSSIAN BELL

ENVELOPE ASCORRELATION

PE was estimated as a transformation of the residual variance
in (9) and (10). In simulations, the PE can be computed using
estimated model parameters and true process parameters. In the
application here, the true process defined for (11) is
compared with the parameters of the model that gen-
erates . The usual application of ME is
to models estimated from observations in simulations. For
models of the true process type and with orders equal to the true
order or higher, the asymptotical expectation of ME equals the
number of estimated parameters, independent of the number of
observations. ME is particularly suited to describe the model
quality for different sample sizes.

The expectation of ME for estimating the 20 parameters of a
model equals 20. Table I gives much higher values for

ME, without estimation but only with applying the inevitable tri-
angular bias that appears in windowed periodograms. In practice
still a smoothing window would be required to improve the vari-
ance of the estimated periodogram. Table I demonstrates that the
influence of the triangular bias in the theoretical covariance for
the periodogram is much greater than the total expected inac-
curacy due to estimating the time series model. Also the values
for PE are given. The value of the variance of the process in
(11) is , where is the variance of the innovations of the

process. In other words, the PE is 0.08 times the vari-
ance of the process for in Table I and 0.014 times that
variance for .

Simulation experiments have been conducted with a double
intention: first of all to investigate the quality of the single time
series model, chosen with the minimum of (9) and (10) and
secondly to compare this quality with different windowed pe-
riodograms. Those are expressed as invertible MA models [4],
with parameters computed with an iterative algorithm [27]. In
this way, the assessment of the quality is made with the same
measure as used for time series. Many simulations with nu-
merous examples have been carried out. Low order AR, MA,
and ARMA processes give the result that the true model struc-
ture and model order give the best spectrum and that windowed
periodogram transforms perform less. The true spectrum and
some estimates of the process defined in (11) are presented in
Fig. 2, for one simulation run with 128. The ME value
of the selected time series model is 150 in this spec-
trum. To compute periodogram estimates, the data have been
tapered with a cosine bell over the first and the last 10% of the
sample interval, leaving the middle 80% undisturbed [1]. Ta-
pering was used throughout for periodogram estimation because
it improves the quality. A Parzen window over points of
the estimated correlation function had 1260. Both num-
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Fig. 2. Spectral density and its logarithm for the true spectrum, the selected
AR model, the spectrum with triangular bias and a periodogram with Parzen
window, forN = 128.

bers of ME are smaller than in Table I. This means that esti-
mated Burg models are better than AR models obtained with
the Yule–Walker bias. Moreover, using tapers in periodogram
estimation largely reduces the influence of the triangular bias,
at the cost of a slightly increased variance. The estimated log-
arithm of the tapered and windowed periodogram has the same
appearance as in Fig. 1. Fig. 2 clearly demonstrates the problem
of making a choice visually, by looking at measured spectra: it
is very likely that people prefer the periodogram estimate in the
left-hand representation and the AR estimate in the right-hand
picture, although both describe the same data. Therefore, an ob-
jective criterion is necessary to make a proper choice for data
with unknown spectral density. Section IV showed the relation-
ship between PE and the logarithmic spectral distortion.
This explains why an accurate spectral estimate with a small PE
is the same as an estimate with a small error in the logarithmic
spectrum.

The average results of multiple simulation runs are presented
in Table II. The first four rows give the selected AR, MA, and
ARMA model and the true model. Row 5 gives the
ME of the single selected ARMAsel time series model with
smallest estimated PE with (2) and (3). The ME results of pe-
riodograms with Parzen windows [1] with lengths between

and follow; they are indicated as in the
Table, with for the length of the Parzen window. Of course,
all windowed results use the biased estimate of the correlation
function [1], with expectation . This bias effect is
greatly reduced by tapering. No selected periodogram is given,
because no objective global selection criterion for windowed pe-
riodograms exists. Locally, a variable bandwidth selector prin-
ciple has been used for smoothing the raw periodogram with
polynomial models [30]. No specific model for stationary sto-
chastic processes is used in this local smoothing. Therefore, it is
not possible to evaluate local results in terms of statistical model
accuracy.

TABLE II
AVERAGE MODEL ERRORME AS A FUNCTION OF THESAMPLE SIZE FOR

DIFFERENTESTIMATED SPECTRA OF APROCESS WITH ACOSINE WITH A

GAUSSIAN BELL ENVELOPE ASCORRELATION

For is 1024, the ME of the MA model approaches the the-
oretical minimum obtainable value 20: the true MA order. It is
remarkable that estimated covariances in the periodograms of
Table II produce a lower ME than the biased true covariances in
Table I; this is caused by the application of a taper.

The ME of the selected ARMAsel model in Table II is often
smaller than the average of the three separate types: AR, MA, or
ARMA. Therefore, the choice of the type based on the PE of (9)
and (10) hardly introduces an additional error. In other words, it
is not necessary to know the type of the time series in advance
because the choice can be made with the method of this paper.

The ME in Table II for MA estimates for and
has some high values because the computed residual vari-

ance was quite distorted in some simulation runs, which caused
the selection of the wrong MA order. However, in those runs al-
ways the best AR or ARMA was selected as the preferred time
series model and that turned out to be a good alternative. This
shows that a useful method must at least give a good indication
of the accuracy of each estimated model.

The length of the true correlation function is only 20. Never-
theless, the best window length with the smallest ME in Table II
was always the greatest length, so 256 for and .
This indicates that the deformation of the correlation function
by the window shape has a strong influence. ME was still much
greater if a Bartlett or triangular window was applied instead of
the Parzen window. The ME of all periodogram based spectra in
this example is worse than the ME of the single selected time se-
ries model. This has always been found. Tapers have been used
throughout in the periodogram analysis, because that was an im-
provement, with lower values for ME than without a taper. An
application shows that the ARMAsel model also gives the best
estimate for the autocovariance function [31], especially for the
summation of all covariances.

The best time series model type depends on the number of
observations, as is shown in Table III. In this MA example, the
best ARMAsel choice was the AR type for small samples. Only
for greater than 250, a preference for MA models is found.
This shows that it is good or even necessary to have the three
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TABLE III
THE PERCENTAGE OFSELECTION OFAR, MA, AND ARMA M ODEL AS A

FUNCTION OFN

types of time series models available for data with unknown
spectral density.

VII. CONCLUDING REMARKS

A single ARMAsel time series model can be selected from
the three previously computed and selected and

models. The quality of that ARMAsel model is
excellent if the models of the three different types have been esti-
mated and selected with suitable algorithms. For statistical data
with unknown spectral density, the quality of this single model
cannot be reached by even the best windowed periodogram, in
all examples. Moreover, the time series model is selected with
an objective statistical criterion. Such criteria are not available
for windowed periodograms. Even without estimation, the bias
in the true covariance function of periodogram estimates can
cause inadmissible distortion in the spectral density.

FACT: use time series analysis for the spectral analysis of
statistical data with unknown spectral density to obtain the best
accuracy.
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