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Facts and Fiction in Spectral Analysis

P. M. T. Broersen

Abstract—This analysis is limited to the spectral analysis of sta- which Fourier transform will be the obvious method to compute
tionary stochastic processes with unknown spectral density. The the spectrum. Moreover, the results of spectral estimation will
main spectral estimation methods are: parametric with time series only be accurate if the length where the correlation has values
models, or nonparametric with a windowed periodogram. A single S - . L
time series model will be chosen with a statistical criterion from that are significantly dlf‘fer_ent from Whlte_n0|se is less than half
three previously estimated and selected models: the best autore-the length of the observations. Also, the inverse length in recon-
gressive (AR) model, the best moving average (MA) model, and structing the innovations from the data should be less than half
the best combined ARMA model. The accuracy of the spectrum, the observation length. Otherwise, the number of observations is
computed from this single selected time series model, is compared,; g fficient to obtain good information about the structure of

with the accuracy of some windowed periodogram estimates. The the data with ti . vsis. E Il stati tochasti
time series model generally gives a spectrum that is better than the € data with ime series analysis. i-or all stalionary stochastic

best possible windowed periodogram. It is a fact that a single good Processes, at least one of the three model types gives a good
time series model can be selected automatically for statistical data spectral description of the data. The problem is to know which

with unknown spectral density. It is fiction that objective choices type is appropriate. So far, no automatic method for the selection
between windowed periodograms can be made. of the model type, AR, MA, or ARMA, yielded good results on
Index Terms—ARMA models, identification, order selection, statistical data with unknown spectra.
par_ametric spectrum, spectral accuracy, spectral estimation, time Requirements for AR, MA, and ARMA algorithms are de-
series. scribed. They are necessary to allow the selection of model order
and type. The algorithms have to produce useful models of any
I. INTRODUCTION order, independent of the sample size and the true process order

; : . and type. Only in this way, the be#R(p) model, the best
HE hods f lanal
main methods for spectral analysis are parametric Wl&i’w(q), and the besARMA(r,» — 1) model can be selected

time series models and nonparametric with tapered a von data. Aft d ; tic choi the th
windowed periodograms [1]. Generally, time series models arg 9iven data. Aflerwards, an automatic choice among the tnree

to be preferred if the true model type and order of the proce%r viously estimated and selected models can be made with a

under investigation are known [2]. However, application of th;’;tstlcal concept. A new criterion with the squared error of pre-

wrong model type or the wrong order can produce complete ' tIIOI’] 'Z gllveAr]Jtthat an tt)ﬁ uge(t:i for th? selgctlon of t?eds;ngle
erroneous spectral estimates [2]-[4]. The variancé\ 8fp) tlh a mg Ie. erv;/ar SI, e ??spec runl;_ls tqompu (Ia't rom
spectral estimates and of Fourier transforms of theikgtlues € model parameters. in simulations, an objective quallty mea-

of the correlation function is comparable [5], [6]. However, andre _[21] is usedto compare the spectr_um ofthis singl_e modelto
alternative interpretation shows that the equivalent of an infifl.variety of tapered and windowed periodograms. This measure

itely long measured correlation is transformed with correct presents the squared error of prediction in the time domain;

chosem R(p) models [7]. Order selection can be interpreted the same time it represents alrelative accuracy measure inte-
looking for the lowest order where the extrapolated autoregregérf"ted over the frequency domain [22].

sive (AR) correlation function is not significantly different from

the measured correlation; this is verified up to the highest order Il. TIME SERIESMODELS

that is considered for AR order selection. Order selection for Time series have three different models types: 1) autoregres-
AR models has been studied with asymptotic criteria [8]-[1@}ve or AR, 2) moving average or MA, and 3) combined ARMA.

and with finite sample equivalents [11]-[14] that are necessagy ARMA(P, ?) process can be written as [1]
if higher model orders are considered. Also for moving average

(MA) and ARMA models, reliable algorithms have been devel-
oped that perform well for all sample sizes [15]-[18]. This is
a new development in time series analysis. In text books ([19],

[20] p. 103) no preferences have been formulated for speci%%ere is a purelv random process. so a sequence of indepen-
MA and ARMA algorithms. But after the discovery of the op- €en 1S d purely b ! 1 sequen P
ent identically distributed stochastic variables with zero mean

timal length of the long autoregressive intermediate model [1 hd variance>. This process is purely AR fa@ = 0 and MA

[16], preference can be given to Durbin's methods [17], [18]'for P = 0. Any stationary stochastic process with a continuous

K This paper deals W'Fh stat|ona.ry.st'ochast|c.pr(')cess'es with lél,rrﬁ_ectral density can be written as an unidd®cc) or MA (o)
nown spectra, not with deterministic or periodical signals fQ L S .
process [1]. This is independent of the origin of the process; it

may be the sum of a true AR process and several colored noise

Tp +01Xp—1+ - APTp_p
= en+bien1+ - +boen—q )
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to characterize an AR process completely with a finite numberThe covariance function and the power spectral density of
of parameters. The roots of the data can be computed from the parameters of the estimated
model. The estimated power spectriita) of the ARMA (p, q)

model is given by [1]
2/
are the zeros. Processes are called stationary if all poles are . _ _
strictly within the unit circle and invertible if all zeros are withinThe covariance can be found as the inverse Fourier transform

the unit circle. of (6). Also direct methods to derive the covariance from the

In estimation,N observations of a process with unknowrParameters are given in the time series literature [1], [4].
characteristics are given. If the mean of the observed signal
is not zero, the average of the given data is subtracted before 1. FICTION

parameters are estimated. An estimattIMA(p, ¢) modelis |t js fiction that looking at figures of periodograms obtained
given by with different types or lengths of windows and tapers can yield a
statistically reliable choice between the alternatives. Many ex-
amples show the contrary. It seems that the human eye or the
human mind prefers to select a limited amount of details in the
spectra but not too much; the choice is hardly influenced by the
amount of details in the true spectrum. The theory about the
signal that is not purely random in general. Models are AR ?P.O!CG. of window type_ and size can only be developed on deter-

. ministic grounds and it requires the exact knowledge of the true
g = 0 and purely MA forp = 0. Parameters for different

spectrum [1].

model prders can be est|m.ated n p.r|nC|pIe by minimization o Theoretically, AR or MA roots and their image, mirrored with
the residual variance. That is the variancé,off the parameters L .
respect to the unit circle, produce the same covariance structure

are estimated from the datg,. The theory shows that the MN-2nd the same spectral densities ([1] p. 146). In practice, model

imum of the residual variance gives at the same time the max: N o
ype and order are not known and selection is necessary. This is

imal flatness for the spectral density 4. Afterwards, orders based on the decrease of the residual variance caused by intro-

p and/org are selected. A selection criterion adds a penalty f rucing extra parameters in the model. Mirroring has influence

each estimated parameter to the logarithm of the residual Vel the residual variance. Hence, to favor order selection there is

; . an
ance of each estimated model. It selects the model order with fhe ; ; . . .
a preference for algorithms that give exclusively invertible and

minimum of the criterion. Finite order models are often qu'tgtationary roots of estimated models. If mirrored images of the

well in describing true processes with infinite orders, because . . .
roots are used, whenever noninvertible or nonstationary roots

the true parameters are decreasing rapidly for many processes, .. . . .
P g rapicly y P are estimated, order selection becomes dubious. A comparison

A recursive algorithm gives a relation between AR parame- . ) . o
R . - > etween models of increasing orders with all roots inside the
tersd; and reflection coefficients,, [4]. The parameters; ,, o . . :
of the orderm are related to the parametet of order unit circle and a model with one or more roots outside the unit
b th;nLevinson-Durbin recﬂrsion Fm—1 circle involves not only the number of parameters. Therefore,
m y a statistical selection of the model order becomes impossible.
Moreover, mirrored images of estimated roots that fall outside
Wi = Qi1 + EmGm—im-1, t=1,...,m—1 the invertible or stationary region will not concentrate around
4 — the location of the true roots. Many algorithms cannot guarantee
arn,rn knr (4) . . . .
that all estimated poles and zeros are certainly invertible or sta-
By definition, the last parameter of a stationary AR model dfonary. For AR, MA, and ARMA algorithms, the most impor-
orderm is called a reflection coefficient. Reflection coefficient§ant members of this unfavorable class are the least squares al-
of stationary processes are always betweenand 1. Vice 90rithms. For those algorithms, estimated roots can be outside
versa, AR models are stationary if all reflection coefficients atBe stationary or invertible region. This is sometimes prevented

Ax)=1+az "+ +apz " 2

[N

are denoted the poles of tARMA( P, @?) process; the roots of h(w) =

lol
2

q
14 Z b; exp(—jwi)
i=1

2

— -l -Q L
B(z) =14+b2z""+ + bQZ 14 Z i exp(—jwi)

=1

(6)

Tn + 01%Tn—1 + - GpTp—p
= EAn + i)lénfl +---+ i)qénfq (3)

wherep and¢ may be arbitrary and,, is some colored noise

less than 1 in magnitude. by using constrained least squares optimization, but in those al-
The residual variancBES(m) is the variance of,, in (3) for gorithms the choice of the constraint determines the solution
AR(m) models. It is given by and not the data. Only if an algorithm is guaranteed to estimate

stationary or invertible roots, the roots remain completely de-

. termined by the data. If algorithms produce undesirable roots,

RES(m) = RES(0) H (1 _ kf) (5) they can simply be outsi_de the_unit circle due '_[o the estimation
variance; their mirrored image is no useful estimate.

Algorithms that may produce wrong roots in small samples

whereRES(0) is the variance of the observations. improve their behavior for an increasing number of observations

=1
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from the same process. But it is always possible to create exgmaecess with additive noise. Finite order MA or AR models give
ples where estimated roots can be wrong due to estimation vaften an accurate description for those infinite order processes,
ance. Examples can be given where the asymptotical apprbrcause the true parameters decrease rapidly for most processes.
imation of the variance of reflection coefficients can become It is a fact thatcombinationsof time series algorithms and
greater than 1. In those examples, the estimation variance isdnéer selection criteria are available that compute under all
reason that an unconstrained least squares algorithm can estcumstancesisefulmodels for statistical data with unknown
mate roots on both sides of the unit circle, or even exactly @pectral density. Examples of combinations for AR, MA,
it. Take anAR(2) or MA(2) process with an arbitrary true re-and for ARMA modeling have been presented recently [11],
flection coefficientt; andk, = —1+1/N. The variance of the [15], [16]. Algorithms for time series are useful for data with
first reflection coefficientt; is 2(1 — k%) [23], independent of unknown spectral density if thegannotproduce zeros that are
N. This means that estimated ‘reflection coefficients’ can beot invertible and poles that are nonstationary. The best AR
come greater than 1 due to the variance and that is equivalerddel of a true MA or ARMA process may still be a model of
with non- stationary or noninvertible roots. a poor quality; this AR model is nevertheless useful if it can

Algorithms that can produce poles outside the unit circle wile compared objectively to MA and to ARMA models. Those
sometimes do so. However, all types of models, AR, MA, andlill fit better in that case.

ARMA, must be estimated for different model orders, before a Four different AR model orders can be considered as theoret-
choice can be made for data with unknown spectral density. Noally optimal for the representation of a knowhA(¢) process,
only models of the, afterwards selected, best order must be catapending on the intended use or interpretation. The orders are
puted, butalso models of higher order®nly then itis possible « oo for the exacttheoretical equivalence betwedA (g)

to conclude that lower orders are the best and should be selected. gnd AR(0);

For everyARMA(p, ¢) model that gives a good fit, there are in-  « 0 (or o) for ¢ + 1 or more steps ahead prediction if the
finitely many ARMA(p + 1, ¢ + 1) models with the same fit: exactMA(q) process is known;

those are all models where an additional pole and zero cancel. K defined in [15] for one step ahead prediction with an
Therefore, the variance of the least squares parameters of those estimatedAR(K) model or for computing the spectral
overcomplete models is> in the asymptotic theory. Hence, es- density with an AR approximation;

timated poles may be nonstationary and estimated zeros nonin- the higher orde\/ as intermediate order of astimated
vertible and the residual variance cannot be used as a basis for AR(M) model for calculation of the MA parameters with
order selection. Durbin’s method [15].

Especially for the overcomplete models, that are necessaryThe Yule-Walker method of AR estimation can have a severe
for a good selection of the model order, convergence problemsias, that is not present in the Burg method [25]. The bias is
and roots outside the unit circle can be expected for leagfused by the use of the biased estimate for the covariance of the
squares ARMA algorithms. It is fiction that least squaregata in the Yule-Walker method for AR estimation. Estimated
ARMA algorithms are capable of routinely estimating highefeflection coefficients for orders higher tharmre a factor 2 too
order ARMA(p + 1,¢ + 1) models that can be compared insmall for models of processes where a true reflection coefficient
a statistical reliable way witthRMA(p, g) models with order of orderp has the absolute valye — p/N| [26]. Precisely the
selection criteria. At least order selection is seriously hamperegme covariance bias is present in periodogram estimates for
by mirroring roots or by constraining them; so many existinghe spectrum; the influence of this bias on periodograms will be
ARMA algorithms are not suitable for automatic use. Thathown in Section VI.
might be a reason why AR, MA, or ARMA has not been used Asymptotical AR order selection criteria can give wrong or-
before as an alternative to windowed periodograms for spectgi@s if the candidate orders are higher than 0.1 N [13]. Using
analysis. higher penalties in selection criteria or consistent criteria cannot
cure this problem [12]. Taking the actuadpectatiorof the log-
arithm of the residual variance into account helps according to
the finite sample theory. A good criterion also depends on the

The Fourier transform of a stationary stochastic process dazsnpling variancef the logarithm of the residual variance, as
not exist [1, p.15] as an ordinary function. More specificallya function of the model order [11].
the Fourier transform is not approximated any better by taking Any windowed periodogram can also be written as the spec-
more observations. The quotient of two Fourier transforms tisim of a finite order invertible MA model, with the finite length
generally considered to be an estimate of the transfer functiafi.the windowed correlation function as the MA model order
However, for stationary stochastic processes the estimate bggédThe unique MA parameters of this invertible representation
on the Fourier transform of the output signal divided by that @an be computed with an iterative algorithm [27]. Therefore,
the input has an infinite variance [24]. This paper describes tageriodogram can be represented as a MA model. This gives
consequences of this problem in estimating the periodogratime opportunity to perform objective comparisons between pe-
the square of the absolute value of a Fourier transform. riodograms and time series spectra with an accuracy measure

Any stationary stochastic process with a continuous specttat has been developed for time series [21].
density can be written as an unigd®(co) or MA(co) process  The squared error of prediction PE is defined as the model
[1]. This does not depend on the origin of the process, e.g.fittto new and independent data or also as the square of the one
may be the sum of two or more ARMA processes or an ARtep ahead error of prediction. It is also defined as the variance

IV. FACTS
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of £,, in (3), under the condition that the parameters in (3) ai®ES(p) is the variance of the residuals of the AR model of
not estimated from the datg, in (3) but from independent data.orderp; 1/(N + 1 —¢) is an empirical finite sample formula to
In other words, the variance éf, in (3) represents the residualapproximate the variance of the reflection coefficient of order
variance if the parameters are estimated from the same data estimated fromV observations with the Burg algorithm [13].
the squared error of prediction if parameters and data are ind8C(p) is a compromise between the optimal asymptotical
pendent. penalty factor 3 [12] and the finite sample estimator for the

If the number of estimated parametgrandq are equal to or Kullback-Leibler information [14] that gives a correction for
greater than the true orders of the generating process, the asythe-increasing variance dh{RES(p)} as a function of the
totic expectation of the residual variance equad$l — (p + model orderp. The orderK* is selected ifCIC(p) has its
q)/N}, whereo? is the innovation variance aof,, in (1). The minimum atp = K*.
asymptotic expectation of PE equafs{1+(p+q)/N}.PEhas  MA(q) models can be computed with Durbin’s method [17]
also an interpretation in the frequency domain as a measuretftat uses along AR model as intermediate. The order of that AR
the spectral flatness: the model with minimum PE maximizesodel, which should be estimated with Burg’s method, is es-
the spectral flatness of autoregressive models. A third interpresantial for a good result [15]. It is chosen with a sliding window
tion is in terms of differences between the true and the estimatddorithm [15] as twice the selected AR order plus the number
probability density function of the data, the Kullback-Leibleof MA parameters that is to be estimated2¢6* + ¢. The MA
discrepancy. Some order selection criteria have been derivesederq is selected as the minimum of the asymptotical selection
approximations for this difference [14]. The best model is theriterion GIC(q, 3) defined as
model with the smallest estimate of the discrepancy.

An expression for PE in the frequency domain is the inte- GIC(q,3) = In{RES(q)} + 3¢/N. (8)
gral of S/S [28]; an approximation is given by the integral of ] .
(S — é)2/252 [9]; S is the true spectrum arl the estimate ARMA(r,r — 1) mod_els can be computed with D.urb|.n s
with an ARMA model. The relative spectral measures have §AcoNd method [18]. This method has a poor reputation in the

equivalent that is often used in speech coding: the spectral ditgrature, but it's performance is much improved by taking a
tortion SD2. That is defined as the integral @S — hlé]Q proper order for the intermediate AR model. A sliding window
and it equal2p/N for small variations in AR processes [5].ch0|ce3K* + 27 — 1 has been described for the AR order to

The model error ME is a scaled version of the squared error §fiMateARMA(r, 7 —1) models [16]. The same penalty as for
prediction [11], [21]. ME can easily be computed in the timMA can be used for selection of ti — 1 parameters of the
domain and its asymptotical expectation for complete unbias@dtMA(r, 7 — 1) model order, s€GIC(2r — 1,3). The restric-
models isp + ¢, independent of the sample size. tion of orderg to:_’, r — 1 has the computational advantage that
not all combinations o andq have to be evaluated.

The residual variance is minimized during AR estimation, but
itis computed afterwards in MA and ARMA estimation. There-

The choice between the three previously selected best ABre, different order selection criteri&IC(p) and GIC(q, 3),
MA, and ARMA models can only be made with an objective stdrave been recommenddaIC(q, 3) can also be used to choose
tistical criterion if the best model of each individual type is combetween the select&dA(q) andARMA(r, »— 1) models, but a
puted and selected with an algorithm that depends exclusivelsw principle is necessary to include th&(p) model. The fi-
on the data, not on subjective choices of the experimenter. Ordée sample behavior of AR residuals [13] prevents the selection
selection is for each model type only possible if the difference$ the model type with a single selection criterion. The prin-
in the residual variance between successive model orders @ipge is found by realizing that in practice a model is desired
purely determined by statistics. This means that all models musith a small prediction error. For a measured and given value of
be obtained without constraints on the roots, without mirrorinye residual variance, the conditional expectation of the squared
of roots, without elimination of undesirable model choices aretror of prediction for the selectefiR(p) model is found with
without influence of the maximum candidate model order, prake finite sample theory as [13]
vided that this order is taken high enough. Examples of algo-
rithms and order selection criteria that fulfill the requirements
are given here. They can be replaced by other methods, as long
as only statistics is involved in parameter estimation and order
selection. The conditional expectations of the prediction errorN¥bA (¢)

AR models can be computed with Burg’s method [25], witandARMA (r, 7—1) models are based on the same asymptotical
a finite sample order selection criteriGiC(p), defined as [11] theory as the Final Prediction Error. This is Akaike's first order

selection criterion [29]

V. SELECTION OF MODEL ORDER AND TYPE

ey - s [[ LN 0 g

CIC(p) = In{RES(p)} 1+m/N

P 1 1/(N 41 —4) PE(m) = {RES(m)}T (10)
+1nax[<H1_1/(N+1_i)—1> 1 /N

=t wherem denotes the number of estimated parameters. From the

p
3 Z 1 ] (7) three selected models, the type with the smallest estimate of the
~N+1—1 prediction error PE with (9) or (10) is chosen. This giveaale
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. logarithm of true spectra with triangular bias TABLE |

MODEL ACCURACY AS A FUNCTION OF NV FOR A TRIANGULAR BIAS IN THE
COVARIANCE, FOR A PROCESS WITH ACOSINE WITH A GAUSSIAN BELL
ENVELOPE AS CORRELATION

Anns
+

AAA‘:AAAAAMMMMM N 64 256 1024 4096 16384
:***0¢¢§9t*¢+#

PAERuanenanand ME 2071 4819 11934 31158 84905

300000000000

s

g Jttrerrbens PE/c? 33.35  19.82 12.65 8.60 6.18
B — true
§ + N=16384
o o N=4096 . . . .
210" + N=1024 PE was estimated as a transformation of the residual variance
N2 in (9) and (10). In simulations, the PE can be computed using
estimated model parameters and true process parameters. In the
application here, the truBlA(20) process defined for (11) is
compared with the parameters of theA(20) model that gen-
O e es os o o5 os o7 o5 os eratesR(7){1 — 7 /(N + 1)}. The usual application of ME is
normakized frequency to models estimated fronV observations in simulations. For

. . . _ .. models of the true process type and with orders equal to the true
Fig. 1. Spectra computed with the true covariance function multiplied with a . . .
triangular bias of lengthV. order or higher, the asymptotical expectation of ME equals the

number of estimated parameters, independent of the number of
time series modetalled ARMAsel, that is selected on purelyobservations. ME is particularly suited to describe the model

statistical arguments. quality for different sample sizes.
The expectation of ME for estimating the 20 parameters of a
VI. SIMULATIONS MA(20) model equals 20. Table | gives much higher values for

ME, without estimation but only with applying the inevitable tri-
gular bias that appears in windowed periodograms. In practice

bias is given by a multiplication with the triangular window?! ! asmoothmg wmdowvyould be required toimprove the vari-
1 — /N [1]. Removing this bias is undesirable, because tance of the estimated periodogram. Table | demonstrates that the

positive semi-definite property would be lost. This property i|,bnfluen(?e of the tri.angular bias in the theoretical covariancg for
guaranteeing positive estimates for the spectral density [1]. 'I'W@ periodogram IS m_uch gregter thgn the total expected inac-
influence of this bias is investigated by applying the bias to tf/racy due to estimating the time series model. Also the values
true covariance functio®(r), without any estimation errors. for PE are 29|ven. Th2e.value of the variance of the process in
The same bias is present in the Yule-Walker algorithm for ARL) is4430%, wheres is the variance of the innovations of the
estimation. MA(20) process. In other words, the PE is 0.08 times the vari-
An example is presented here, which has been used beforedB§e Of the process fav = 64 in Table | and 0.014 times that
to study the accuracy of time series models. Its autocovariari@iance forV: = 16 334.
function is a Gaussian bell shape as envelope of a cosine functioimulation experiments have been conducted with a double
intention: first of all to investigate the quality of the single time

Periodograms can be seen as Fourier transformgVof
points of the biased estimated autocovariance function.

R(r) = ¢ 950257 cos(0.3877) (11) series model, chosen with the minimum of (9) and (10) and
forr = 0,1,...,20. For ease of computation and for a conve%econdly to compare this quality with different windowed pe-

. . . . L riodograms. Those are expressed as invertible MA models [4],
nient generation of simulation data, the correlation is made equa ) . ) .
with parameters computed with an iterative algorithm [27]. In

to zero for values of the shift greater than 20, neglecting only,, . o :
. i . this way, the assessment of the quality is made with the same
covariance smaller than 1. In this way, the generating process . ) . . .
: o measure as used for time series. Many simulations with nu-
for the simulations i31A(20).

- . [perous examples have been carried out. Low order AR, MA,
The spectra in Fig. 1 are computed for different values %nd ARMA processes give the result that the true model struc-
N with the true covarianc&(r) multiplied by the triangular P 9

window 1 — 7/(N +1), 7 = 0, 1, ... 20. Those spectra are theture and model order give the best spectrum and that windowed

expectation of the periodogram and also of the AR spectrumtr‘\)aetmdogr.am transforms perform Igss. The true spectrum anq
ome estimates of the process defined in (11) are presented in

. . . — S

would be obtained with the Yule-Walker algorithm. This figure_. . . ) -
shows that the influence of the inevitable bias on the Spec%%ﬁhi!g(eg:e%;%m; éatlfgerigrg;ﬁ\;;j;ig' 1-g(])eirl1vltii:aslugc-
estimate can be serious, even for more than 10 000 observaticgpusr.n To compute( pe)rio dogram estimates, the data hav[()e been
The accuracy of thls. spectrab’f pomts_can be expressed in the‘iapered with a cosine bell over the first and the last 10% of the
modgl error ME. This is a scaled version of the squared errorsoample interval, leaving the middle 80% undisturbed [1]. Ta-
prediction [21] pering was used throughout for periodogram estimation because
ME = N PE 1 12 it improves the quality. A Parzen window ovéf/4 points of

- P (12)  the estimated correlation function hatE, = 1260. Both num-

(2
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spectral densities , insimuiations with N= 128 TABLE 11
" ! ' ' j 0 " j " ' AVERAGE MODEL ERRORME AS A FUNCTION OF THE SAMPLE SIZE FOR
DIFFERENT ESTIMATED SPECTRA OF APROCESS WITH ACOSINE WITH A
2l 10° GAUSSIAN BELL ENVELOPE AS CORRELATION
, 0 N 32 64 128 256 512 1024
- AR 241 114 88 80 79 82
- & MA 185 716 2732 215 24 21
§ ol S ARMA 192 375 272 85 28 26
3 3 ot true 131 69 60 45 33 27
g
§ T - o ARMAsel 209 105 80 41 25 22
] o
2
4t o [ tue N P:N/2 1208 875 762 870 1070 XX
T |--- AR Burg 1 P: N/4 2706 1685 1317 1350 1570 1880
Jl 4| | - Retiangle N P:N/8 8689 4886 2962 2470 2570 2960
Wi [ - ParzenN/4 P:N/16 13189 17405 9258 5720 4850 5020
DA N P:N/32 XX 26449 34568 18190 11340 9560
T e s e TR TR P: N/64 XX XX 52856 68890 36270 22540
normalized frequency normalized freguency P:N/128 XX XX XX 105650 137890 72340

Fig. 2. Spectral density and its logarithm for the true spectrum, the selected .
AR model, the spectrum with triangular bias and a periodogram with Parzen For V is 1024, the ME of the MA model approaches the the-

window, for N = 128. oretical minimum obtainable value 20: the true MA order. It is
remarkable that estimated covariances in the periodograms of

bers of ME are smaller than in Table I. This means that es}[}gble Il produce a lower ME than the biased true covariances in
i

mated Burg models are better than AR models obtained wi ﬁble I, this is caused by the application of a taper.

the Yule—Walker bias. Moreover, using tapers in periodogram The ME of the selected ARMAsel model in Table Il is often
estimation largely reduces the influence of the triangular big@haller than the average of the three separate types: AR, MA, or
at the cost of a slightly increased variance. The estimated I®RMA. Therefore, the choice of the type based on the PE of (9)
arithm of the tapered and Windowed periodogram has the Saﬁfgj (10) hal’dly introduces an additional error. In other WOI’dS, it
appearance as in Fig. 1. Fig. 2 clearly demonstrates the probléfiot necessary to know the type of the time series in advance
of making a choice visually, by looking at measured spectra:decause the choice can be made with the method of this paper.
is very likely that people prefer the periodogram estimate in the The ME in Table Il for MA estimates folN = 64,128 and
left-hand representation and the AR estimate in the right-ha2d has some high values because the computed residual vari-
picture, although both describe the same data. Therefore, anahece was quite distorted in some simulation runs, which caused
jective criterion is necessary to make a proper choice for ddke selection of the wrong MA order. However, in those runs al-
with unknown spectral density. Section IV showed the relatiomsays the best AR or ARMA was selected as the preferred time
ship between PE and the logarithmic spectral distorfibi. series model and that turned out to be a good alternative. This
This explains why an accurate spectral estimate with a small BlRows that a useful method must at least give a good indication
is the same as an estimate with a small error in the logarithnaitthe accuracy of each estimated model.

spectrum. The length of the true correlation function is only 20. Never-
The average results of multiple simulation runs are presentibeless, the best window length with the smallest ME in Table I
in Table Il. The first four rows give the selected AR, MA, andvas always the greatest length, so 25640k= 512 and1024.
ARMA model and the trueMA(20) model. Row 5 gives the This indicates that the deformation of the correlation function
ME of the single selected ARMAsel time series model withy the window shape has a strong influence. ME was still much
smallest estimated PE with (2) and (3). The ME results of pgreater if a Bartlett or triangular window was applied instead of
riodograms with Parzen windows [1] with length$ between the Parzen window. The ME of all periodogram based spectrain
N/2 and N/128 follow; they are indicated a® : M in the this example is worse than the ME of the single selected time se-
Table, withM for the length of the Parzen window. Of courseties model. This has always been found. Tapers have been used
all windowed results use the biased estimate of the correlatitmoughout in the periodogram analysis, because that was an im-
function [1], with expectatio(:){1—¢/N}. This bias effectis provement, with lower values for ME than without a taper. An
greatly reduced by tapering. No selected periodogram is givapplication shows that the ARMAsel model also gives the best
because no objective global selection criterion for windowed pestimate for the autocovariance function [31], especially for the
riodograms exists. Locally, a variable bandwidth selector prisummation of all covariances.
ciple has been used for smoothing the raw periodogram withThe best time series model type depends on the number of
polynomial models [30]. No specific model for stationary stoebservations, as is shown in Table Ill. In this MA example, the
chastic processes is used in this local smoothing. Therefore, bast ARMAsel choice was the AR type for small samples. Only
not possible to evaluate local results in terms of statistical modet NV greater than 250, a preference for MA models is found.
accuracy. This shows that it is good or even necessary to have the three
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TABLE 1l [10] R. Shibata, “Selection of the order of an autoregressive model by
THE PERCENTAGE OFSELECTION OFAR, MA, AND ARMA M ODEL AS A Akaike’s information criterion,”Biometrikg vol. 63, pp. 117-126,
FUNCTION OF N 1976.
[11] P. M. T. Broersen, “The ABC of autoregressive order selection criteria,”
N 32 64 128 25 512 1024 in Preprints Sysid '97 ConfKitakyushu, Japan, July 8-11, 1997, pp.
231-236.
AR 77 83 88 16 0 0 [12] P. M. T. Broersen and H. E. Wensink, “On the penalty factor for au-
toregressive order selection in finite sampldEEE Trans. Signal Pro-
MA 13 15 8 57 8 89 cessingvol. 44, pp. 748752, 1996.
[13] , “On finite sample theory for autoregressive model order selec-
ARMA 10 2 4 27 17 1 tion,” IEEE Trans. Signal Processingol. SP-41, pp. 194-204, 1993.
[14] , “Autoregressive model order selection by a finite sample estimator

for the Kullback-Leibler discrepancy]EEE Trans. Signal Processing
_ _ _ . vol. SP-46, pp. 20582061, 1998.
types of time series models available for data with unknowri15] P. M. T. Broersen, “The best order of long autoregressive models for

; moving average estimation,” iignal Processing VIII, Proc. Eusipco
spectral density. Conf, Trieste, Italy, 1996, pp. 799-802.
[16] ——, “On orders of long AR models for ARMA estimation,” iAroc.
VIl. CONCLUDING REMARKS ECSAP’97 ConfPrague, Czech Republic, June 24-27,1997, pp. 83-86.

[17] J. Durbin, “Efficient estimation of parameters in moving average
A single ARMAsel time series model can be selected from  models,"Biometrika vol. 46, pp. 306-316, 1959.

: ——, “The fitting of time series modelsRevue Inst. Int. de Statol.
the three previously computed and selecié{p), MA(g), and 28, pp. 233-243, 1960

ARMA(r, 7—1) models. The quality of that ARMAsel modelis [19] S. M. Kay, Modern Spectral Estimation, Theory and Applica-
excellentif the models of the three different types have been esti-  tion. Englewood Cliffs, NJ: Prentice-Hall, 1988.

: : : ot 0] P. Stoica and R. MoseBjtroduction to Spectral Analysis Englewood
mated and selected with suitable algorithms. For statistical dafd Cliffs, NJ: Prentice Hall, 1997,

with unknown spectral density, the quality of this single modelj21] p. M. T. Broersen, “The quality of models for ARMA processeEEE
cannot be reached by even the best windowed periodogram, in  Trans. Signal Processingol. 46, pp. 1749-1751, 1998.

; ; ; ; ——, “The performance of spectral quality measures,Pmc. IMTC
all examples. Moreover, the time series model is selected wit Conf. Venice, Italy, May 24-26, 1999, pp. 751756,

an objective statistical criterion. Such criteria are not availablgzs] s. kay and J. Makhoul, “On the statistics of the estimated reflection
for windowed periodograms. Even without estimation, the bias  coefficients of an autoregressive proce$SFE Trans. Acoust., Speech,

; : ; : ; Signal Processingvol. SP-31, pp. 1447-1455, 1983.
in the true covariance function of periodogram estimates Ca[}4] P. M. T. Broersen, “A comparison of transfer function estimatdisEE

cause inadmissible distortion in the spectral density. Trans. Instrum. Measvol. 44, pp. 657—-661, 1995.
FACT: use time series analysis for the spectral analysis oR5] J. P. Burg, “Maximum likelihood spectral analysis,” Proc. 37th

statistical data with unknown spectral density to obtain the best gﬂgeee;'ngpsif'sc’f Exploration Geophysicistel. 6, Oklahoma City, OK,

accuracy. [26] J.S. Erkelens and P. M. T. Broersen, “Bias propagation in the autocor-
relation method of linear prediction|EEE Trans. Speech Audio Pro-
cessingvol. 5, pp. 116-119, 1997.
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