M.Sc. THESIS

Ant Dispersion Routing for Traffic
Optimization

Diogo Alves

June 25th 2009

o=l
{
A

A g o /
[,5\\ \\\f AN - \ (

NN - [\.\l. \ S . ‘k_‘, o \ g ‘
\\\\\{w\\\\\\ R A “WH"U\“\” =

N
A

-~ — - { { /
I SN ([
e \} Q(x \

%
TUDelft

Delft University of Technology







Ant Dispersion Routing for Traffic
Optimization

MASTER OF SCIENCE THESIS

For obtaining the degree of Master of Science in Mechanical Engineering
at Delft University of Technology

Diogo Garcia Almeida Alves

June 25, 2009

Board of examiners:

Prof.dr. R. Babuska (Chair)
Prof.dr.ir. B. De Schutter

ir. J. van Ast

Dr. L.J.M. Rothkrantz, Faculty EWI

Faculty of Mechanical Engineering . Delft University of Technology

iii



v



Preface

The motivations and objectives of this thesis stem from the findings of my literature survey (Alves,
2008), where I had the objective of finding new possible applications of Swarm Intelligence (SI)
theory in traffic control related problems. A problem that is partially addressed in (Bedi et al.,
2007), and in which I was particularly interested is the Network Equilibrium problem (Chudak
and Eleuterio, 2006; Dong and Wu, 2003). As a student of systems and control engineering,
the stability of a system is a major point of interest, and in the network equilibrium problem
that is our main concern. Not only that, we also are looking into improving the characteristics
of the system. Since we wanted to use SI to solve this problem, the focus of this thesis is the
Ant Colony Optimization (ACO) class of algorithms, which is the basis of the framework to the
new algorithm to be designed: the Ant Dispersion Routing (ADR). When used for routing, ACO
algorithms can find the shortest or more generally the least costly routes with low computational
effort. However, like all other routing algorithms, they are optimizing the solution of a driver
(agent) in a traffic network (global system), with many other drivers. Assuming that all drivers
have access to a routing solution, this can be used to increase the efficiency of the network,
instead of finding the shortest for each driver in a “selfish” way. The ADR algorithm output
suggests a cooperative behaviour among drivers, which if followed, decreases average density on
all roads, and improves traffic flows, benefiting all drivers in the network. The appendices at the
end of this paper contain extra information about the network used for the case study, and also
the results of trials used to tune the parameters present in the ADR algorithm.

Diogo Alves
June 2009
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Ant Dispersion Routing for Traffic Optimization

Diogo Alves, Jelmer van Ast, and Robert Babuska

Abstract

Ant Colony Optimization (ACO) algorithms are inspired by the social interaction between
ants that work together to find the best possible path between their nest and food. In the
past decade they have been successfully used as routing algorithms, with their main advantage
being their computational efficiency. This paper introduces a new type of ACO algorithm,
that will be used as a network optimizer as opposed to a single route optimizer. Contrary to
traditional routing algorithms, the Ant Dispersion Routing (ADR) algorithm has the objective
of creating routes for every driver in the network, to increase network efficiency, by limiting
density on roads through the dispersion of flows. The framework for the new ADR algorithm
is presented, as is the design of a new cost function that translates the motivations and
objectives of the algorithm. Parameters of the algorithm are tuned in several different traffic
networks to ensure the robustness of the results. The ADR algorithm is also used in a case
study of the Singapore Expressway network, to control traffic going from the airport towards
the central business district, area prone to heavy density of vehicles and traffic jams.

Keywords: Ant Colony Optimization, network equilibrium, traffic routing

1 Introduction

The concept of Traffic Network Equilibrium was introduced by economist Frank Knight in his
dissertation about social costs (Knight, 1924) as a response to Arthur Pigou’s work, in which
he created a distinction between private and overall costs (Pigou, 1920). Knight stated that,
from an economics’ points of view, individual freedom of choice results in bad distributions of
investments.

Wardrop (1952) formalized Knight’s statements in a traffic context, which are today known as
Wardrop’s first and second principle of equilibrium. Wardrop’s first principle is the equilibrium
we see every day on the traffic network where each driver chooses the route that at that moment
benefits him most, based on the information he has. This is defined in the literature as the
User Equilibrium (UE) state. Wardrop’s second principle assumes that users of the road network
demonstrate a cooperative behaviour possibly via a centralized controller, and their routes are
chosen for them, with the objective of maximizing the traffic network efficiency. This state of
the road network is defined in the literature as the System Optimum (SO) state. A summary of
the traffic network equilibrium problem can be found in (Chudak and Eleuterio, 2006).

During the last decades, this subject has gained a lot of attention, and has been studied more
extensively in the areas of traffic modelling and traffic control. Several traffic models of these
two states were created, in order to try and simulate these behaviours for traffic optimization
(Dong and Wu, 2003; D’Acierno et al., 2006; Zhang et al., 2007). Also traffic control laws and
optimization algorithms have been created in order to reach these two states (Hong et al., 2007;
Rodriguez-Perez et al., 2008; Xu et al., 2008).

In this paper we acknowledge these two states and define that in a traffic network an optimum
can be defined by combining and balancing these two states, which benefits both the network
and its users. For this purpose, and in order to find this optimum a new routing algorithm will
be introduced, derived from the existing class of Ant Colony Optimization (ACO) algorithms.



Inflow .
nflow = a— R Inflow = T - &

- - L L L] - = Outflow L] - - = - - = __ Outflow
—_— K -

Cs e e Ve o
$ e - Py
(a) In this first scenario all drivers head for the up- (b) This is our objective scenario: traffic is dis-
per road, which while shorter, has a bottleneck. A tributed so that both roads have short travel times,
traffic jam will originate, resulting in the rest of the and more importantly, no traffic jam occurs, result-
drivers to use the other road (being informed by ing in near optimal flow conditions for both roads.

radio or variable message signs).

Figure 1: Difference between a normal case scenario, which is seen everyday in traffic networks,
and the main goal scenario of the paper. In both cases the inflow is equal.

Being a combinatorial optimization algorithm, ACO has more widespread applications for
traffic, such as traffic simulation (Hoar et al., 2002), routing and jam avoidance algorithms
(Tatomir and Rothkrantz, 2006; Bedi et al., 2007), or traffic assignment, where several types of
costs are considered, such as fuel, travel time, and allocation of resources (Xu et al., 2008).

However, routing algorithms found throughout the literature pursue the UE, as they are
“selfish” and do not consider the impact their actions will have in the traffic network (see Figure
1). This limitation is the main motivation for the development of the algorithm presented in this
paper, the Ant Dispersion Routing (ADR). Algorithms such as the one presented in (Hong et al.,
2007) already include in their cost function predicted states of the network, to avoid this “selfish”
behaviour and ensure a more efficient routing policy. However this algorithm disregards the fact
that drivers want to optimize their own route, and a safeguard has to be implemented to avoid
penalizing some drivers for the benefit of others, even if this improves network efficiency. Also it
does not use a traffic model, but solely a constant capacity constraint on each road, disregarding
the location of the drivers on that road.

The novelty in our algorithm is the use of a macroscopic traffic model to analyse the impact
of its decisions in future states of the network, and the use of a more complete cost function,
which includes the states described above so that it can pro-actively act against traffic jams and
even under low density traffic conditions optimize the distribution of flows to improve network
efficiency and overall travel time.

Section 2 presents the problem statement, defines the objectives, and states the benefits the
algorithm can bring to a real traffic network. Section 3 introduces traffic models and simulators,
namely the fundamental diagram of traffic which will be the traffic model used in the ADR
algorithm. In Section 4 the ACO class of algorithms is presented, followed by the presentation of
the modifications done to the basic Ant System (AS) algorithm in order to design the framework
of the ADR algorithm. Section 5 shows the potential of the ADR algorithm by applying it to a
real traffic network in a case study of the Singapore Expressway network. A short discussion on
possible ways to implement the ADR algorithm into a real traffic network is done in Section 6.
Conclusions, as well as suggestions for future work are presented in Section 7.

2 Problem Statement

In an age where traffic congestions are frequent, and the capacities of road networks are saturated,
the optimization of these networks is imperative for progress. In this section, the traffic states
explained in Section 1 are formally defined. Also the motivations behind this paper and the
different objectives that will be solved are stated in this section.

The UE state was defined by Wardrop as the state where all drivers choose, at each moment,



the route that minimizes his own travel time cost. Let ; be the travel time cost of route i
between a fixed origin and destination, and each driver’s decision process is represented as:

Jog = min ;. (1)

Using the definition of Wardrop, the SO state can be reached if the average travel time cost
of the drivers using the network is minimized. Let n.; be the number of cars using route ¢, and
the SO is defined as:

Fo= min 2iz1PMei ®)
W N DI

Now that we have defined the travel time cost, UE and SO states, we can also define the
problem to be solved during the course of this paper, and the motivations behind it.

Throughout the last decades, urban and population growth have exceeded the road capacity
growth. This unbalance has originated a lack of infrastructures to accomodate the heavy traffic
big cities are subject to, originating bottlenecks in the traffic network. These bottlenecks are the
points in the network where traffic jams occur during rush hour. If from an origin to a destination
only two possible routes exists, and if all drivers select the best route available to them they will
provoke congestion, in which case, only then will they pursue the other available route, until
both routes have a similar travel time cost. If a good model of these bottlenecks is available, this
opens up the possibility of pro actively acting against traffic jams and through routing define a
distribution of flows that generates such equilibrium before a congestion occurs.

To improve the traffic network efficiency, flows have to be redistributed, as opposed to the
UE state where all drivers go for the best available road. However, odds are that the SO state
will consist of a distribution of flows that severely increases the travel times of some drivers to
benefit the entire system, which is undesirable as well, since the routing suggestions are likely to
not be accepted by the drivers.

The objective of our algorithm is to, given a certain origin and destination pair, redistribute
flows such that the traffic network efficiency is improved, and in extreme cases of density in the
network, traffic jams are prevented at all cost. This is done while considering the independent
wishes of each driver that at all times want to use the best individual solution available to them.
These are conflicting objectives, so we have to establish priorities.

The objective is translated into a dynamic balance between the UE and SO states that will
be quantified by a cost function. This balance must satisfy the following conditions:

A - Avoid congestion by keeping the flows below the known bottleneck capacities;

B - The difference in travel times between the fastest and the slowest routes must be below
a certain threshold;

C - The fastest route must have as many cars as possible under the constraints imposed by
Conditions A and B.

There will be cases where all three Conditions cannot be met, and in those cases Condition
A takes precedence over Condition B, and Condition B takes precedence over Condition C.

It is fairly safe to assume that most of the drivers whose suggested routes are slower, then
those of their UE, will not accept the routing choices defined for them, jeopardizing the potential
benefits of the outcome of ADR. This is due to the fact that if a driver knows a certain zone, he will
disregard the route suggested to him if he has knowledge of a faster one. Though the conditions of



the algorithm already take this into consideration (by minimizing the time differences as stated
in Condition B), this can be further aided by using existing technology and laws. If in the
future GPS devices become standard in cars, and even mandatory by law, it is possible to first
improve the results of the routing algorithms, and secondly observe users that are not following
the suggested route, and adapt the control measures to the new situation. This scenario, while
being futuristic, is also a realistic prediction, especially in a country as modern and small as
The Netherlands, or the country used in the case study of this paper: Singapore. Also, this
will enable to keep historical data on which drivers use which suggestion, so that in the medium
run everyone benefits from the system. An example and more detailed discussion on a possible
implementation of this system is done in Section 6. The benefits can even go outside the scope of
this paper, since the better distribution of flows improves driving conditions, reducing the stress
drivers experience, as well as accidents.

3 METANET Simulator

3.1 Introduction

When studying traffic related problems, it is of the utmost importance to use an adequate sim-
ulator. Traffic simulators can either be based on macroscopic models which deal with averages
of traffic states; or they can be based on microscopic models which model every single car in the
traffic network. In this paper a macroscopic model is used for two important reasons. There is
no need to distinguish between cars, since our algorithm will disperse flows and not individual
vehicles, and thus, the microscopic model would give us an excess of information that is not
required. Secondly, the computational times of both types of simulators are very different. A
microscopic simulator is on average about 100 times slower than a macroscopic model, and this
is not helpful for investigation purposes. In this section the fundamental diagram of traffic is
introduced, and the METANET model, used as the simulator, explained.

3.2 Fundamental Diagram of Traffic

The fundamental diagram of traffic flow is the basis of macroscopic traffic study. It gives us the
relations between the 3 macroscopic traffic variables: density (p), speed (V'), and flow (¢ = p- V).
These relationships are extremely useful to calculate maximum capacities of roads, mean speeds,
and other variables in each segment of our macroscopic traffic model. Several diagrams have
been proposed throughout the years, varying in complexity, and accuracy. Others consider multi
regimes, and even discontinuities.

The fundamental diagram of traffic is usually divided in 3 functions that define the relation-
ships between the variables:

e speed-density: V = fy,(p);
e flow-density: ¢ = f;,(p);
e speed-flow: V = fy,(q).

The simplest fundamental diagrams have usually two regions, a stable region where there
exists free flow, and a region where traffic is unstable, which means that under these conditions,
if there is a disturbance, such as a car braking suddenly, the system will collapse and a jam will
occur. This can be seen in Figure 2.

These models are usually derived either through curve fitting, with data extracted from real
traffic conditions, or by using microscopic models to obtain data. Also the parameters of these
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Figure 2: Simple Fundamental Diagram of Traffic of ¢ = f4,(p) showing stable and unstable
regions

models are varying under different road conditions, weather conditions, type of driving style
of drivers in that road, and under different control methods, such as speed limits and variable
message signs. In this paper an exponential model will be used, which is commonly associated
with the METANET simulator. Besides being used in the METANET simulator, this will also
be our model for traffic conditions in the ADR algorithm. Let ay,, Vfee and perig be constant
parameters that reflect the particular characteristics of a chosen network and the theoretical
speed V is given as:
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Figure 3: Exponential Model.

3.3 Simulator

For the highway traffic model, the METANET model (Messmer and Papageorgiou, 1990) was
chosen. This was done due to its proven computational efficiency and accurate simulation results.
The basis of the model is to divide each highway into several segments of length [ (usually 500
m in size), as can be seen in Figure 4. At every time step k = 1,..., K (with ¢ = kT being the
real time in seconds and usually 7' = 10) the state of each segment of the highway is calculated.



Let r = 1,...,n, be the index of the highway, s = 1, ..., N, be the index of the segment, and A,
be the number of lanes on highway r. Then the flow at segment s of highway r at time step k is
calculated through the fundamental relationship:

Gr,s(k) = pr.s(k)vr,s(k)Ar . (4)

The flow is the product of the density of cars per segment and lane by the speed of that
segment.

e e e e e e e e o ——

Figure 4: Partition of the highway into segments.

Since both density and speed are given states, the only missing initial condition was the flow.
The boundary conditions such as the number of vehicles entering the network are also known.
The METANET model recalculates at each time step these conditions, and the first one to be
calculated is the density, which is done by using the conservation of vehicles law (derived from
the conservation of mass law in fluid/thermo dynamics). Let T be the size of the time step in
seconds, and the conservation of vehicles law gives us the new densities:

T

pr,s(k + 1) = pr,s(k) + W(qr,sfl(k) - QT,s(k)) . (5)

The density at the new time step is the density at the previous time step, plus the difference
between cars entering the segment and leaving the segment during that time step.

The speed is a function of the density, since the the speed of vehicles is limited by the vehicles
around them, and by speed limits. Let v, be the real speed in road r, segment s, V = fy,(p)
be the velocity as a function of the density taken from the fundamental diagram of traffic (3),
and let 7,7, kK be model parameters, and the velocity update function is given as:

T prs+1(k) — pr.s(k)
vl prs(k) + 5

. (6)

vrs(k+1) = vm—l—%(‘/},s(k) —vys(k))+ %7)7«73(]4?)<1)r75_1 (k) —vrs(k))

The above equation is derived from the Payne model (Payne, 1971), and is a more complex
calculation since it takes into consideration aspects of driving and shock wave behaviours, and
thus is divided in three parts. The first term is a smoothing function taken from the comparison
of the theoretical speed in the fundamental diagram, and the real speed; the second term is a
concave term, and the third term is an anticipation term, to model the behaviour that drivers
adjust their speed according to what they see in front of them, that is, the density state of the
next segment.

Traffic is fed into the highway, or network of highways, using origin nodes, that use a queue
model. They are defined by their flow capacity, and number of vehicles in their buffer (queue),
and they react to the demand on the first segment adjacent to it. This is defined by the user
depending on what simulation study is required. Assume node o is only initializing traffic in road
r. Let w, be the number of vehicles waiting at node o, D, the demand on road r from node o,
and ¢in , the flow from node o to road r. The number of cars waiting at node o at each time step
is:



wolk + 1) = wo(k) + T(Do(k) = ano(k) ) (7)

The number of vehicles waiting at a queue is calculated similarly to the density, where the
number of vehicles waiting at the entrance of a highway is the difference between the flow entering
segment 1 and exiting the origin node, plus the number of vehicles already at the queue. The
demand D, is defined by the user according to the simulations to be run. The demand is
usually extracted from historical data of the real traffic network to be simulated. Let @Q, be
the maximum flow possible exiting node o and gmax,» be the maximum flow entering highway r,
where the outflow is given by:

wo (k)
T

@o(k) = min | Do(k) + 7 g (k) ®)

with:

if < Peri
e (1) = { Qe ad'"" ©

The outflow of node o is then the demand on road r, plus the number of vehicles that are in
the buffer and can enter the highway at that time step.

For the problem at hand, a network of highways has to be built, and for that reason the
density update (5) function becomes destination oriented. Let 7’ be the destination of the next
highway the fraction of traffic is heading for, with the destination being decided at each node
through the flow splitting matrix p. The density in the destination oriented model is calculated
as follows:

T
pr,s,r’(k + 1) = pr,s,r’(k) + K(qr,sfl,r’(k‘) - Qr‘,s,r’(k)) . (10)

The METANET algorithm is presented in Algorithm 1.

Algorithm 1 METANET Simulator

1: Initialize K, T, k, n, v

2: Load Network Information

3: for k=1,..,K do

4: Calculate inflows from origin nodes with (7, 8, and 9)

5 Update flows in all segments with (4)
6 Use conversation of vehicles law to calculate density (10)
7: Calculate theoretical speed in each segment (3)
8
9

Calculate real speed in each segment (6)
: end for

4 Ant Dispersion Routing

Ant Dispersion Routing (ADR) is a new algorithm that belongs to the broader class of Ant
Colony Optimization (ACO) algorithms, and was created with the objective of solving the traffic
network equilibrium problem stated in Section 2.

ACO algorithms are used in combinatorial problems to find an optimal solution by mimicking
the social process through which ants find the best paths between their nest and food sources. In
ACO algorithms each ant informs the other ants about the quality of the path they just travelled



by depositing a proportional amount of pheromone on that path. The main difference in ADR
is that the pheromone deposited on the paths is a function of how well the distribution of the
population of ants through the available paths benefits the colony, by not having an excess of
ants on a single path.

This draws a parallel with traffic networks, in which traffic jams may occur when all vehicles
use the best route available to them, resulting in reduced network efficiency.

In Section 4.1 an introduction of ACO algorithms is presented and the benefits it provides
stated. In Section 4.2 the most basic ACO algorithm is explained. Section 4.3 introduces the new
cost function designed for the ADR algorithm and Section 4.4 introduces the ADR algorithm.
Section 4.5 shows the results of the algorithm for a simple one way traffic network.

4.1 Introduction

ACO is based on the ants’ ability to find the best path leading to food sources and transmit this
information to the rest of the colony. The objective of an ACO algorithm is to find the least
costly path between an origin and destination nodes in a graph consisting of a set of edges. Edges
have associated cost functions and are connected by nodes, which is similar to a routing problem.
There are a few reasons why ACO was chosen above other routing algorithms that exist:

e Excellent traffic assignment and routing results, with faster than average processing time
(Bullnheimer et al., 1999; Matos and Oliveira, 2004; Tatomir and Rothkrantz, 2006);

e Framework gives several different possible options to tackle the problem:;

e Can be made into a distributed problem, which is a vital component, since if centralized
approach were to be used, routing choices in place A would affect traffic in place B 500 km
away, making computation requirements impossible to meet. This approach will have also
to take into consideration where to draw the boundaries of each region;

e Does not need to be reinitialized since between optimization runs it saves the pheromone
states. Unless conditions in the real network have changed drastically, the algorithm will
converge faster, due to already being near the optimum.

Figure 5 shows the control diagram of the problem. Let p, be the density in road 7, nc, the
number of cars heading for road r, p,,s be the distribution of flows at each intersection, pacor be
the densities resultant from the distribution of flows according to the traffic model (3) used by
ADR, and ¢in, be the flow of cars entering through origin of the traffic network o.

In the next section the most simple ACO algorithm will be presented: the Ant System (AS).

4.2 Ant System

Let us state the general problem that the AS algorithm will solve. The problem consists in finding
the shortest path between two nodes, of which an example is shown in Figure 6 where we want
to go from node 1 to 4.

We then have the problem of minimizing the cost of paths between pairs of nodes along
G = (V, E), where V is the set of vertices and FE is the matrix of the edges between nodes. The
graph has n, = |V| nodes. Let path length L® be defined as the distance length travelled by
ant a = 1,...,m, from the origin until the destination. Each edge (i,7) will have a pheromone
concentration value 7;;.

The algorithm starts with the initialization of n, ants at the origin node where they start
their journey to the destination. At each iteration ¢, each ant will have to decide their next action
through the following probability function
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Figure 5: Diagram of the control loop consisting of the traffic network simulator, the ADR
algorithm, the ADR traffic model (3), and the information exchanged between them.

Figure 6: Network where 1 is the origin node and 4 is the destination node, and each edge has
an associated pheromone value and distance cost.

pz’j(t)z{ 2 jren; Tiy () it e N ; (11)

0 otherwise

where N; is the set of possible node choice for an ant at node 7. The parameter « is used to
determine pheromone impact: set « to zero and all possible nodes have the same probability of
being chosen. An increase in the parameter « gives a higher bias to high pheromone edges.

After an ant reaches its destination, its path is analysed for possible loops by checking if the
same node was visited twice. If that is the case, the sequence of edges between the repeated
nodes is removed from the ant’s memory. The ant then retraces its steps depositing pheromone
on the edges chosen. Obviously the pheromones deposited should be proportional to the inverse
of the travelled length of the path, which is our cost function to be minimized. Let AT%(t) be
the pheromone deposit by ant a at time step ¢, and the pheromone deposit equation is:

1
ATE(L) = ——. 12
Tl]( ) La(t) ( )
As we can see in Figure 6, we can expect to see the higher values of pheromone to be 72 and
To4, which is the shortest path. Ants that used a certain edge deposit the pheromone calculated
in (12) in that edge. The new level of pheromone is then calculated:



Tij(t + 1) =(1- pev)TZ‘j(t) + Pev ZdATZ(t) (13)
a=1

where pe, € (0, 1], is the evaporation rate. The evaporation rate component is introduced so
that the ants do not converge too rapidly, and spend some time exploring the graph. Only the
edges that receive new pheromone deposits evaporate, so that the algorithm does not converge to
sub-optimal results. If pe, is near 0 almost no evaporation occurs and the ants cannot influence
each other, since also no deposit occurs. If pey is near 1 at each iteration almost all pheromone
evaporates turning the choosing of the next node based solely on the last iteration step.

The AS algorithm (used as a shortest-path finder) can be summarized as follows, where S°(¢)
is the sequence of edges used by ant a.

Algorithm 2 AS Algorithm
1: Given graph G
2: Initialize 7;; and ¢
3: Place n, ants on the starting node

4: repeat

5 for each ant a = 1,...,n, do

6 Se(t)y =10

7: Construct a path S*(t)

8 repeat

9: Select next node based on the probability defined in equation (11)
10: Add edge (i, 7) to path S(t);

11: until destination node has been reached;

12: Remove all loops from S%(t);

13: Calculate the path length S(t);

14: Update pheromone values 7;;, using equation (13)
15: end for

16: t=t+1;

17: until stopping condition is true
18: Return the path S%(¢) with smallest f(S%(¢)) as the solution;

The Ant Dispersion Routing (ADR) algorithm will be based on the routing components of
the above algorithm, however, the social components of the AS algorithm will be taken a step
further. New features are added to the basic AS, since the problem to be solved is quite different
from the ones where AS has been applied to in the past. The main modification to AS originates
from the fact that it finds an optimal path, and that means a single path. In our case we want to
distribute ants (traffic) into several near optimal paths. A mechanism will have to be created in
order to avoid all ants converging to a single path, by creating a cost function that successfully
represents the goals of this paper.

4.3 Travel Time Cost

First the travel time cost function will be discussed, since it formalizes Condition A specified in
Section 2. Since the main objective of the algorithm is to minimize the origination of traffic jams,
it should not allow densities to pass the critical level peit of the fundamental diagram of traffic.
The travel time cost ~, is the time it costs to travel a stretch of highway, and this is calculated
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by integrating the highway’s length over its speed (t = x/v). In our case, since we are using
the same density for each segment in the ADR algorithm, the travel time cost becomes the total
length of the highway over the theoretical speed as a function of the density:

(14)

N 2 T T T T — T T
ol : | —rree o] - [—Feero]

14F pcrité

¥ (hour)
+ (hour)
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Density [vec/km/lane] Density [vec/km/lane]
(a) Personal Cost Function ~, (b) Zoom in on perit

Figure 7: Function ~,, calculated using (14), as a function of the density in a highway of length
10 km.

Figure 7 shows the travel time cost function, and it is noticeable that passing the critical
point has little impact in terms of cost. While (14) does accurately measure the cost impact of
different densities, it should be made so that passing the critical level of density peit is severely
penalized. For that reason a new component must be added to the v, function that does just
that, where for levels of density below peit is a bell function with its maximum peak M being
achieved at critical density, and for levels of density above pcit is the constant M:

(pr—pcrit)

b ()

Yo = Fylpr) = Taton +Me it por < periv (15)
ﬁgﬂ + M if pr > perit

where the parameter € is the steepness of the bell function, and lower values of € result in
higher steepness of the function. The effects of the parameters e and M can be seen in Figure 8,
and the differences they cause in 7, shows that careful tuning will be needed, specially for high
vehicle density problems. Based on experimental results of simple networks (Appendix C), the
parameters M and e were tuned.

The above travel time cost function will enable Condition A to be met, since the costs on
roads that exceed the critical value of density pcrix Will be unattractive for ants, thus preventing
that the new distribution of flows to be computed by the ADR algorithm results in traffic jams.
Looking at Figure 8 an analogy can be made, where the function’s steepness is a hill for an ant
to climb, and the ant would rather circle around it and find a best route. Conditions B, and C
will be discussed in Section 4.4.2.
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Figure 8: ~,, calculated using (15), as a function of the density in a highway of length 10 km.

4.4 Ant Dispersion Routing

The Ant System is the basis of a new algorithm in the class of the Ant Colony Optimization
algorithms: the Ant Dispersion Routing. In the literature, ACO algorithms, which have proved
to provide fast results, are used extensively in distributed optimization problems, and are partic-
ularly practical for network problems, since the optimization is done in a graph framework.

AS is used as the starting point for ADR, due to other more complex ACO algorithm having
certain features that are not helpful or even prejudicial for the problem we want to solve. For
example in (Dorigo et al., 1996) the algorithm uses an heuristic component used to help ants
converge faster by having them biased to certain paths. Since we do not want our algorithm
to converge to specific routes, it is a feature that will not yield good results. However, under a
different framework, the heuristic component can also be benefitial to the ADR convergence time
if it can bias the algorithm towards better distribution of flows. This is however not the focus of
the current research.

Another example is the Ant Colony System (Dorigo and Gambardella, 1997) which introduced
the elitist ants feature, where only the ants that found better solutions were allowed to deposit
pheromone. This again is not a good feature for our problem, since we are evaluating a network
solution, and the solutions of each ant are required. Therefore the AS is used as the basis for the
ADR algorithm, since it includes the fundamentals of the ACO, while being relatively simple,
and a good platform to build upon.

AS is designed so that it converges to the best solution, which in a routing problem, corre-
sponds to the least costly route. The algorithm converges to a certain solution due to the fact
that as more ants use it, the value of the pheromone on that solution increases until every ant
uses it.

Ideally, in our case the algorithm should converge to a certain value of probability for each
solution (route) smaller than 1, so that network efficiency is optimized (though in low density
cases routing all vehicles to the same route is the network optimum). In this section we present
the modifications that lead to the ADR algorithm, and the optimization of a network.

ADR is composed of two separate algorithms: a normal ant-based routing algorithm that finds
the multiple shortest paths based on present traffic conditions, and the optimization algorithm
which finds the correct distribution of flows on these paths that optimizes the network conditions.
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4.4.1 Initialization

The AS has been successfully applied to online traffic routing in the literature (Tatomir and
Rothkrantz, 2006), and thus the task at hand is to adapt it into our ADR framework. The
routing algorithm is initialized like a normal AS algorithm, with the network being loaded, and
the pheromone levels in all roads being set to the same small value. The probability function
changes slightly from (11), to account for the fact that in ADR a different notation is used, with
road indexes instead as opposed to node indexes, for simplification purposes. The probability of
choosing each road is:

Tt . /

= ifr' e N,

Drr = Er; N TT;' . (16)
0 otherwise

All ants pick their routes using the probability function (16), and then all routes are evaluated
to decide on the fastest routes that will be used in the optimization process. This is done by
calculating the travel time cost of each route ¢; based on the highest densities of each road r
given by the METANET simulator ppeta. In order to do this the travel time cost 7, of each
road is computed using the cost function derived in Section 4.3. In this case the density value
used iS Pmeta,r Since we are evaluating the current state of the traffic network, which in this case
is provided by the METANET simulator:

Yr = f'y(pmeta,r) . (17)

The travel time cost ¢; of the whole route i is then just the addition of the individual travel
time costs of the roads that compose that route:

Pi = Z Yr - (18)
reER;

Finally the routing algorithm adds pheromone to the routes identified as the fastest i = 1, ..., n;
(proportionally just as in the ACO algorithm), and also removes all pheromone from roads that
are not part of any route. This is done in order to reduce both the network size, and also
immediately remove all bad solutions that can hinder the algorithm performance and severely
increase the computational time. If pheromones on routes are set to zero then those roads become
invisible to ants, thus reducing the network size, while also reducing the unnecessary exploration
by ants of routes that are of no interest. The pheromone deposit on each route is the inverse of
the cost of that route:

1
Pi
Let pev be the evaporation rate, and let 7 be the set of roads that compose the routes R;,
and the new pheromone levels are:

Tr — (1 = pev)7r + Z PevAT V1 L EL;r €R;. (20)
1€T;
reR;

The new pheromone level is the previous pheromone level discounted by the evaporation rate
plus the new pheromone deposit by ants using that route.

This routing algorithm while simple, has the advantage, that it can find the best routes. It
also transforms the traffic network of the traffic simulator into a reduced network, composed only
of the routes of interest that will be used in the optimization part of the ADR algorithm. The
pseudo-code of the initialization component of the ADR can be seen in Algorithm 3.
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Algorithm 3 ADR Initialization
1: Given traffic network
2: Initialize 7,
3: for each destination d =1, ...,nq do

4: Place n, ants on the origin node

5 for each ant a = 1,...,n, do

6 R¢ =0

7 Construct a route R

8 repeat

9: Select next road based on the probability defined in equation (16)
10: Add road r to route RY

11: until destination node has been reached;

12: Remove all loops from R

13: Calculate road costs 7, of roads in R{ using equation (17)
14: Calculate the route cost ¢; of R

15: Update pheromone values 7,, using equation (20)

16: end for

17: end for

18: Return the n; routes in R; with smallest cost ;;

4.4.2 Flow Optimization

Now that the fastest routes have been identified, ADR can proceed to optimize the distribution
of traffic flows in this reduced network. As was stated earlier a clear departure must be made
from the AS algorithm when it comes to the optimization since the AS always converges to only
one solution. We want to optimize the distribution of flows that leads a better usage of the
network as opposed to finding the optimal route which will benefit the first drivers to use it, but
in time and for many drivers, may cause severe congestion. This happens due to the fact that
the more ants use a route, the more attractive that route becomes, due to more ants depositing
pheromone on it. Thus the pheromone deposit function in ADR cannot be based on the number
of ants using it, and instead the pheromone deposits are based on the aggregated solution of all
ants. Also the function should be a function of the costs that represent the conditions stated in
Section 2, the cost of a route ¢;, and the network cost (2.

Similarly to the initialization presented above, the ants have the objective of finding the best
solution according to the probability function defined in (16). The number of ants must then
be converted into number of cars so that densities can be correctly calculated according to the
traffic model used by ADR. Let n.; be the number of cars using route ¢, and n,; be the number
of ants using route 7, and the number of cars using each road is:

Ne

;= i—. 21
Nei = Nayi T ( )

Now that we have this information, the traffic model of the ADR, which in this case is simply
the fundamental diagram of traffic (3), can calculate the densities on each road of the network.
Using the inflow of the entrance we want to control, the theoretical density paqr, as predicted by
the ADR algorithm is:

na,’r .
1, din,0

adr,r — . 22
Podr, ArV (perit) #2)
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This relation stems from the fact that we know that in macroscopic traffic theory the rela-
tionship between flow, density, and speed is p = ¢/V, so we know that the flow on a certain road
is the fraction of ants using it, times the inflow. The flow is then divided by the number of lanes
since we define density as a function of the number of lanes. The density is directly used in the
travel time cost function for each road that was derived in Section 4.3:

Vr = f'y(padr,r) . (23)

Since the ADR algorithm deals with routes instead of roads, the travel time of each route ;
must be computed by summing the individual road costs of each route, as was already derived in
(18). The final cost component can now be calculated, and that is the network cost €2, which is
the average cost of each driver. Let n.; be the number of cars using each route ¢ and the network
cost is computed as:

0= Ziil Pillei )
Z?;1 Ne,i
The network cost is computed as the average of the cost of every driver using the ADR
algorithm, that is, every driver using one of the n; routes optimized by the ADR. While Condition
A was addressed in the cost function ~,, Conditions B and C have yet to be represented in this
framework. This will be done by creating a new pheromone deposit equation, which is clearly
different from the ones traditionally used in ACO. Instead of the pheromone deposit equation
representing a minimization of costs (12), it will represent a minimization of differences between
costs (network and per route). Intuitively we want to minimize the cost of each route ¢; and
the network cost €2, and the pheromone deposit should be a weighted sum of the minimization of
these components. Let W1 and W be these weights and the new pheromone deposit is defined
as following;:

(24)

W Wy

AT; o + q

This equation still makes the algorithm converge to only one route. That happens because

Q at each iteration of the ADR will always be equal on all routes, and thus the algorithm only

minimizes ¢;. That is why it was stated that we want to minimize differences between costs, and

use to our advantage the fact that €2 is constant for all routes. When distributing flows through

optimal and near-optimal routes, it can be assumed that there is one point where the cost of

all routes can be equal. That equilibrium occurs when ¢1 = ¢y = --- = ¢,, = . This can be

defined in the pheromone deposit equation (25) by defining W; = 1 and Wy = —1, that is, by
minimizing the difference between the constant network cost {2 and the cost of each route:

(25)

min |p; — Q] . (26)
Cl,-,Cn;

It was stated we do not want the cost of all routes to be the same, but rather a bias towards
the shortest route if possible. That is done by making Wy € (—1,0), giving more importance to
the cost of a route.

However a thorough study of how the algorithm reacts for different values of Wy € (—o0, 00)
can be seen in Figure 9 (W; = 1). Increasing Wy will force all routes’ probabilities to be equal
since it removes the personal route cost from the equation and adds the same pheromone to all
routes Wy >> W1 = Ar; = % If we let W5 go to —1 the algorithm will try to minimize the
difference between the inverse of the costs ¢; of all routes. Also the term V;/l fulfills Condition C

i
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Figure 9: Variation of the probabilities for each road as a function of the weight Wy with W7 = 1.
The first figure shows the probabilities for a two route distribution of flows, and the other figure
for a three route distribution of flows.

if Wo > —1, since it gives higher pheromone deposits to less costly edges (% is the same for all

edges at each iteration) making more ants converge to them.

The tuning of the weight W5 depends only on the constraints we want to set between the
difference of the least and most costly routes. For a small difference of around 5 — 10%, the
weight W5 should be close to —1, for larger differences of around 20% the weight should tend to
0. Results of the tuning of weight W5 can be seen in Appendix B.

The last step of the ADR algorithm is again the pheromone update equation (20). The
optimization part of the ADR algorithm can be seen in Algorithm 4, and together with the
initialization algorithm represents the full ADR algorithm. In the next section the working of the
algorithm is illustrated by showing a problem of a simple one way network with only two roads
for the ants to choose from. In the next chapter the algorithm will be tested in a full network
with multiple origins, and multiple destinations.

4.5 Results

To test the algorithm, and tune the new parameters we will use a simple one way network with
two routes to choose from. An extra highway will serve to feed traffic into the network, and to
create a more realistic approach to the intersection of interest where the flow distribution will
be optimized. Figure 10 represents the network, where all traffic starts at point A and heads
toward point B. The first highway has three lanes, the shortest and theoretically fastest highway
has one lane, and the longer highway has two lanes. The maximum flow gnax of each highway is
the maximum point taken from the fundamental diagram of traffic in the ¢(p) curve multiplied
by the number of lanes, which means that these are the parameters that the ADR will extract
from its traffic model.
The parameters of the network and of the METANET simulator are as follows:

e Highway 1: L1 = 5km, A\; = 3lanes, ¢max,1 = 5811 vec/hour;

Highway 2: Ly = 10km, Ag = 1lanes, ¢max,2 = 1937 vec/hour;

Highway 3: L3 = 13km, A3 = 2lanes, ¢max,3 = 3874 vec/hour;

Segment length: [ = 0.5 km;

Time: T = 10sec;
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Algorithm 4 ADR Flow Optimization
1: Given n; best routes, pmeta, and 7,
2: Remove roads not present in the n; best routes from the network
3: fort=1,..., Ny do
4: Set A; =0 v 1=1,...,n;

5 Place n, ants on the origin node

6 for each ant a =1, ...,n, do

7 Rg =0

8: Construct a route R

9: repeat

10: Select next road based on the probability defined in equation (16)
11: Add road r to route Rf;

12: until destination node has been reached;

13: Remove all loops from RY;

14: Register which route ¢ was used by ant a

15: end for

16: Normalize number of ants into number of cars using equation (21)

17: Calculate predicted densities paco, cost of roads +,, cost of routes ¢; and social cost €2
18: Update pheromone values 7,, using equation (20)

19: end for

20: Return node splits p

(2) Guax,2 = 1937 vec/hour

(1) Gmax,1 = 5811 vec/hour B

Figure 10: Simple traffic network with two possible routes to choose from.

e Exponential model: peit = 27 vec/km/lane, vgee = 110 vec/hour, a,, = 2.34;
e Speed equation parameters: = 30 km? /hour, 7 = 10sec, k = 20 vec/km.

Table 1 shows how the algorithm behaves with different inputs (flows entering highway 1).
Condition B is represented by the four last columns with the respective costs for each route and
network cost 2, and relative costs between them. Condition C is analysed via the second and
third columns which show the percentage of cars using each highway. It should also be noted
that route 1 is the route composed of roads 1 and 2, and route 2 of roads 1 and 3.

For big inflows of 5000 and 5500 Condition B (£22x) Joses importance since the algorithm
is trying to avoid jamming both roads. For small inflows the difference between both highway
costs also increases. This happens due to the fact that under low density, the algorithm cannot
minimize the difference between costs of highways 2 and 3 due to not having enough flow of
cars to impact costs. The algorithm can only accommodate Condition B under certain traffic
conditions, since if the inflow into the network is small, it cannot increase density on the shorter
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Table 1: Several Optimization runs using different inflows.

¢in (vec/hour) nc2 (%) nc3 (%) @1 (sec) @2 (sec) Q (sec) /1

1000 100 0 504 - 504 -

2000 72.6 274 520 592 550 1.139
3000 51.5 48.5 541 602 573 1.113
4000 40.6 59.4 555 623 601 1.123
4500 35.9 64.1 961 653 623 1.164
5000 34.1 65.9 o83 690 657 1.184
5500 34.8 65.2 665 739 714 1.111

highway to minimize cost differences, and if the inflow into the network is high, the algorithm will
have to prevent traffic jams and disregard average costs. ADR should not be used under small
inflow conditions, since it has no added benefit under those conditions. However, under medium
inflow conditions and high inflow conditions it has several advantages, by first optimizing the
network usage, and secondly avoiding traffic jams.

Some results of the ADR algorithm working on a simulator are now presented. In Figure 11
a constant inflow near critical levels (gi, = 5500 vec/hour) is used throughout the test trial. The
algorithm converges directly in its routing policy, and keeps the inflow for highway 2 below the
critical level. Since the algorithm is dealing with a near critical inflow, it is pro actively avoiding
traffic jams, and it has to disregard Conditions B and C in order to do that. If the algorithm
routed more cars to the fastest road as stated in Condition C a traffic jam would immediately
originate in highway 2.

In Figure 12 other properties of the algorithm are explored. The inflow at highway 1 is of
5500 vec/hour for the first 15 minutes, 5800 vec/hour (critical) for the next 10 minutes, and then
it is lowered to 2500 vec/hour for the rest of the trial.

The algorithm has a slight problem handling the critical inflow due to the fact that it is now
fighting to keep both the densities of highways 2 and 3 below critical level, and the exploratory
randomness introduced by the ants makes it occasionally slightly tip over the critical level for one
or another. However, this is a problem that is not expected to be seen in a real network scenario,
since the previous node would stop routing that amount of cars into highway 1 to begin with.
Still, as soon as the inflow in highway 1 lessens, the algorithm recovers quickly and here the main
objective of the algorithm as stated in Section 2 is observed, where the algorithm constrains the
difference between the cost of using each highway, and routes the bigger percentage of cars into
the faster highway.

A comparison was also made to measure the benefits that the ADR algorithm has. The same
simulation will be run with all drivers using the ADR algorithm, all drivers using a normal routing
algorithm (routing all the drivers to the shortest route, unless its jammed), and a network where
most drivers use the shorter road, and the rest use the longest one (normal case scenario). The
simulation will last 30 minutes and during the first 15 minutes the inflow at the first highway is
gin = 1500 vec/hour, which is below the critical level of road 2 (where most cars will head for).
During the last 15 minutes the inflow at the first highway is of ¢, = 2300 vec/hour. Recall that
route 1 is composed of roads 1 and 2, and route 2 of roads 1 and 3. During the first 15 minutes
routing every car for the shortest highway is perfectly acceptable since the inflow at highway
1 is well below the critical level of ¢ = 1937 vec/hour. The normal routing algorithm, and
also the ADR algorithm do just this, since even if all cars are routed to the shortest algorithm,
the increase in density will not make this highway slower than the longer one. Normal driver
behaviour without using routing keeps the density in highway 2 lower, but drivers using highway
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Figure 11: Test trial with the ADR algorithm running every 5 minutes, and an inflow at highway
1 of 5500 vec/hour.

3 have a route that is significantly slower than the other drivers.

When the inflow changes to a value above the critical level, the benefits of the ADR algorithm
become immediately clear. First since it knows the inflow at highway 1 has changed, it proceeds
to quickly route a certain percentage of cars to the wider highway, and thus the network cost 2
increases slightly in the first 2 — 3 minutes of the new inflow. After that the pro-active routing
policy is proved to work correctly since the flow and density values stabilize and good performance
is achieved. The normal routing algorithm continues sending more and more cars to the shortest
highway since it is still not jammed, and the density levels while higher, and affecting the flow
of the highway, are still not near congestion levels. Also Condition B is always met, since when
the inflow is gj, = 1500 vec/hour no vehicles are using route 2 making Condition B redundant.
When the inflow is ¢, = 2300 vec/hour the ADR algorithm distributes the flows accordingly and
the costs of routes 1 and 2 become approximately 550 and 590 seconds (% = 1.07).

Also as seen in Figure 11 the ADR algorithm can keep the flows below critical levels until an
inflow of around 5500 vec/hour, while the normal routing algorithm is already prejudicial to the
traffic network with inflows of 2000 vec/hour.

This shows that the objectives of the algorithm are justified, can be accomplished, and are
incorporated into its framework. The question now is, how does ADR scale to a full road network,
with traffic that it does not control. In the next section these questions will be answered, by
having the ADR algorithm negotiate a zone with several highway intersections, and different
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Figure 12: Test trial with the ADR algorithm running every 5 minutes, and a varying inflow at
highway 1.

possibilities of routes.

5 Case Study: Singapore Expressway Network

5.1 Introduction

Singapore is a small island city-state located at the south of the Malay Peninsula. Since its
independence this city-state has had a huge economic, population and overall quality of life
growth, and is now one of the main business centres of Asia. It is also one of the wealthiest
countries in the world, and most multi-national companies have their Asian business based in
Singapore. While small (710km?), Singapore has a population of around 4.9 Million people, and
a big percentage of this population either lives or commutes during the day to the central-south
area of Singapore where the financial and commercial districts are located, near the Singapore
River.

While Singapore is serviced by one of the best public transportation systems in the world,
a high density of traffic is ever present in these central areas, and space is severely limited
to create extra infrastructures. The Singapore government actively finances research in traffic
control areas, and in 2005 was the first country to implement a traffic prediction system in its
Expressway Network (highways in Singapore are referred to as expressways). The need to apply
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Figure 13: Comparison between different types of driver behaviour according to routing algo-
rithms.

a traffic prediction system came from the government wanting to introduce a variable real time
road pricing to fight congestion. Developed together with IBM the system used historical traffic
data of certain places in the expressway and real time traffic states extracted from several sources
such as CCTV cameras. It used that information to predict levels of congestion up to one hour
in advance, and that way, controlling the costs of electronic road pricing (Figure 14) to influence
traffic to use certain expressways. Accuracies of the predictions ranged between 85-90%.

In our case study the ADR algorithm will be used to lead drivers optimally from a certain
area of Singapore towards the central business district. While again the assumption is that all
traffic states are available through floating car data, control of only one zone is available, and all
drivers coming from other areas do not use the ADR, algorithm.

5.2 Singapore Expressway Network

The Singapore expressway network was chosen due to having a high density of highways, with
several intersections, meaning that there are several possible routes from each origin to each
destination without requiring the driver to use urban roads. A simplification of the network will
be done since we are interested in the routing results of the algorithm rather than the precision
of the network. As such, speed limits in tunnels are removed, and transition between highways
is assumed to be limited to just removal or addition of lanes, instead of the more complex
interchanges, on ramps, and off ramps. Only the central and eastern parts of the full Singapore
expressway network (Figure 15) will be used since those are enough to test the ADR algorithm
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(a) Singapore Expressway (Prabhas, 2007). (b) Electronic Road Pricing (ERP) in a Singapore
expressway (Wiki, 2005).

Figure 14: Pictures of Singapore expressways and technology available on them.

and contain the points of the island that are usually subject to traffic jams.
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Figure 15: Expressway Network of Singapore (Yong, 2007).

The network is composed of 18 stretches of highway (36 if we consider both directions), 8
origins and 8 destinations, as seen in Figure 16 and Appendix A. The critical area of the network
is in the business district, the existence of several origins and destinations in that area, and the
fact that the Central Expressway has only two lanes which severely limits capacity. Not only
that, the Central Expressway is the only one that connects the northern residential areas of the
island (including traffic coming from Malaysia) to the centre. In total, the business district area
can be accessed through 4 different destinations, increasing the freedom of the ADR algorithm.

Traffic from and to the airport is exchanged with the network through origin and destination
4. The Kallang-Paya Lebar Expressway is also prone to high density traffic since it is a good
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Figure 16: Network used by simulator and ADR.

alternative to entering the business district, though it has an extra lane, and deals only with a
small fraction of the traffic coming from the northern part of the island.

5.3 Results

In this case study, we will first only open one origin in one of the edges of the network, and
will control all traffic with the ADR algorithm. After that, the real traffic scenario case will
be presented where all origins are open, and traffic enters through every possible origin of the
network. However, only one of these origins is controlled by the ADR algorithm. The algorithm
must be capable of routing cars through several different routes, while also accounting for the
traffic it is not controlling.

5.3.1 Single Origin

In this first example the ADR algorithm will be applied at origin 4 (traffic coming from the airport
and east region of the island), and all traffic is assumed to have as destination the business district
(destinations 5,6,7,8). The ADR has then to first compute the ideal routes to disperse traffic
to, and then optimize flows through them.

Intuitively, and looking at Figure 16, several possible routes exist, but two of them are con-
siderably shorter than all others. These routes are Ry = {29,6,10} and Ro = {29, 8,28,11},
with respectively 15 and 16 kilometres in length. The shorter route’s biggest bottleneck occurs
from road 6 to road 10, due to the decrease of one lane.

According to our fundamental diagram of traffic, which is slightly different due to the fact
that Singapore Expressways have a 90 km/hour limit, the maximum flow per lane below the
critical level of density is of 1585 vec/hour. If the inflow coming from the airport is larger than
4755 vec/hour, a dispersion of flows will be required and ADR will be used. The inflow will also
never be above 6340 vec/hour, since that is the maximum capacity of road 29.

Recalling the Conditions that were stated throughout this paper, the ADR algorithm should
keep densities on all roads below the critical level (pcrit = 27 vec/km/lane), it should keep the
travel time cost of all routes similar (5% — 10%), and the fastest route should have more cars
using it.

If we set the algorithm to use the two best routes (n; = 2), the first part of the ADR algorithm
(Section 4.4.1) will return the routes mentioned above: R; = {29,6,10} and R = {29, 8,28,11}.
This was to be expected since we are starting the traffic network under stable conditions with
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Figure 17: Performance of the algorithm with the option of two different routes R; = {29, 6, 10},
and Ry = {29, 8,28, 11}, for ¢, = 6000 vec/hour.

all roads under free flow conditions, and the next best route has a length of 19.5 km. During
the trial a constant flow of 6000 vec/hour is entering the network from the airport, and every
car wants to arrive at the business district. The algorithm will then disperse flows between the
two available routes as is shown in Figure 17, where we can see clearly that Conditions B and
C have been satisfied by the algorithm. More cars are using route 1 (n.; = 596) than route 2
(nc2 = 572) as seen in Figure 18. It can also be seen that the difference between the travel time
cost of using each route is small, more precisely it is 5.86%.

In Figure 18 it is also noticeable that the final condition, of keeping the density of all roads
below critical level, is met on all roads resulting in free flow conditions across the network. All
relevant states of the network are also present in Figure 18 including the separate travel time
cost of each road, flow, and density. The lines represent the sequence of each route and the traffic
conditions that drivers experience on each road.

Table 2: ADR Performance with three routes.

Route 1 Route 2 Route 3
© [s] 631.4 666.8 805.3
Route Usage [%] 52.33 35.19 12.48

If we select the total number of different routes to be used as three (n; = 3), then the algorithm
will proceed to also use R3 = {28,8,28,17,23}. Table 2 shows how the algorithm performs when
distributing flows between these three routes, and the results in it prove clearly that the optimal
number of routes for this specific case between the airport and the business district is 2 and not
3. That is due to the fact that the third route not only is relatively much longer than the two
others, it is also dependent of route 2. This means that most of route 3 is in fact route 2, that is,
route 2 is part of route 3, and as such when the algorithm tries to route more cars towards the
two shortest routes, it is in fact also routing cars to the longer route, making the minimization
of the difference between travel time costs of each route impossible. The only road in route 2
that does not belong also to route 3 is road 11. However this road is both shorter and has more
lanes than the alternative presented in route 3 so it makes no sense, and the algorithm has little
incentive to use route 3.
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Figure 18: States of the roads that belong to the two different routes, and corresponding split of
flows.

This is a limitation of the network, due to the fact that we are not using urban traffic. It is
possible that route 3 would be useful if we were using an urban network of roads, and the ADR
had to route to a specific point, instead of an area.

Since the algorithm was told to use three routes it will still route some traffic to the third
route, and this results in Condition B not being satisfied since route 3 is over 27% slower than
route 1. In this second example the traffic flow is split in two points of the network: first at the
end of road 29, with 52.33% of traffic going for route 1 and the rest for routes 2 and 3. The
second split occurs at the end of road 28 with 73.82% of the traffic using route 2 and the rest
continuing for route 3. The only scenario where using the third route would become acceptable
would be if a crash would occur in road 11, making the use of route 3 extremely helpful. However,
this would become again a two route problem since then the ADR would only have to balance
the usage of two routes.

In the next section a more realistic trial will be run, where the network has traffic that is not
controlled by the ADR algorithm. It does however, have knowledge of the traffic network states,
since all cars in the network transmit floating car data to a central station.

5.3.2 Multi Origin

For the mixed traffic scenario we will use again the ADR algorithm to control the traffic going
from the airport (origin 4) towards the business district (destinations 5,6,7,8). For simplicity’s
sake, traffic is not flowing from the origins in the business district since this will be traffic in the
opposite direction as the routes being controlled. In this scenario the ADR will check if there are
roads already past the critical level of density, and then find the ideal routes from the airport to
the business district. In Table 3 the state of each origin is defined, with 4 origins feeding traffic
into the network. These drivers are always assumed to be using the shortest routes, which is
realistic since these are low levels of inflows and will not create traffic jams.

Intuitively the algorithm will select the two same routes used in Section 5.3.1 (R = {29, 6,10}
and Ro = {29,8,28,11}), since all roads in those routes are still with low levels of uncontrolled
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Table 3: Normal Traffic Conditions.

Origin Destination Flow|vec/hour] Route

1 5 2000 {31,1,3,10}

1 7 1000 {31,26)

2 6 1000 {33,18,11}

2 8 1000 {33,23}

3 1 1000 {35,21,23,25,32)
3 2 2000 {35,21,34}

3 4 1000 {35,19,15,7,30}
4 5,6,7,8 4000 ADR

traffic. Also we select the number of routes to be used as two, since we have already proved that
in this case, this is the optimal number for the dispersion algorithm.

We should recall that the algorithm has floating car data available and as such can calculate
what the estimated density will be relative to the uncontrolled traffic on every road. Notice that
there are already 2000 vec/hour using road 10 and 1000 vec/hour using road 11. This means
that the one kilometre less that route 1 has, is compensated by route 2 having less cars on it at
the start of the trial, making the difference in travel time cost between the two routes close to
zZero.

This is an important situation since now Condition C will be impossible to be met due to two
reasons: now that the travel time cost of each route is the same, if the algorithm routes more
cars to one road that road will become more costly than the other, and vice-versa. Also as we
can see in Table 4 the algorithm will route more cars into route 2. That is due to the fact that
originally without the ADR, traffic in road 10 (route 1) has higher density then in road 11 (route
2), and thus the ADR cannot route more cars to route 1 due to the penalty introduced in (15).

Table 4: ADR Performance for Mixed Traffic.

Route 1 Route 2

o= 062295 p—47.08%  ©—06655s b= 52.92%
Road 7 Pctr Punctr P [vec/km/lane]  (ctr Qunctr  { [vec/hour]
29 45.1 15.65 0 15.65 5000 O 5000

6 5284 6.65 O 6.65 2354 0 2354

10 49.4 859 11.35 19.94 2354 2000 4354

8 81.7 751 O 7.51 2646 O 2646

28 4495 751 0 7.51 2646 0 2646

11 89.2  5.68 9.37 15.05 2646 1000 3646

Table 4 shows that Conditions A and B (the most important ones) are accomplished by the
algorithm. No traffic jams occur in the network with the maximum density on roads used by the
algorithm is the one in road 10 with density p = 19.94 vec/km/lane. Also the difference between
travel time costs of both routes is kept inside the usual interval of 5 — 10% with ¢2/¢1 = 1.068.
It was clear that the algorithm in this scenario was limited by the uncontrolled traffic, though
it did not even have any origins or destinations close by to influence the densities around the
controlled origin. As such it is important to modify the ADR algorithm so that it can control
the whole network and create a better global efficiency of the network, which will be discussed
in the following section.
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6 Discussion

Though outside of the scope of this paper, it is interesting to discuss possible ways of how this
algorithm could actually be implemented in a real world traffic network. As it is, the algorithm
will always improve the efficiency of the network, and only a smaller fraction of the drivers use
routes that are more costly. The questions now are: how can ADR benefit all drivers, and how
does ADR distribute the control outcome to the drivers. These problems can be solved at the
same time, by logging the routing suggestions of the ADR for each driver.

Let us imagine a scenario with two routes where under ADR route 1 takes 20 minutes, and
is used by 80% drivers, and route 2 takes 35 minutes and is used by the remaining 20% of the
drivers. Without ADR, all drivers will use route 1, causing higher density and making the cost of
travelling there 30 minutes. The selling point of ADR then would be that in 1 week each driver
will be using route 2 once, and route 1 four times, making the travel time of all drivers per week
the same. Secondly the cost per week of using the ADR will be lower than without ADR:

e With ADR: 20 x 4 + 35 = 115 seconds;
o Without ADR: 30 x 5 = 150 seconds.

The logging system can even be expanded further. For example similarly to electronic road
pricing, where usually better and faster highways are paid, it is also possible to envision situations
where drivers can pay to always use faster routes, and vice-versa. The logging system can also
enable drivers to have preference of which day they may use the faster routes, such as in days
with morning meetings, or business travels, where arriving fast to their destination is imperative.

Another possible addition to this logging system would be a reward system. Traffic infractions
usually have monetary, and crime penalties associated with them. ADR can then be used to apply
additional penalties which would incentivate good behaviour. A speeding infraction, besides the
traditional penalties, can carry a penalty of 1 year where ADR would suggest slower routes to
that driver. This way, the driver would have speed restricted (by using the slower route) which
is the action that gave him an infraction in the first place.

This ADR can also helpful for emergency situations, since ambulances, police, and other
public services will always have a fast route available to them, improving overall safety.

7 Conclusions & Future Research

7.1 Conclusions

In this paper, we have introduced a novel online traffic routing algorithm that optimizes the
distribution of traffic flows. The Ant Dispersion Routing algorithm was designed to solve the
traffic network equilibrium problem. This is a complex optimization problem since it has two
conflicting objectives: reduce travel times of drivers, while improving network efficiency. This
algorithm is model-based, scalable and computationally efficient. In ADR ants negotiate several
optimal solutions to decide in the set of solutions that is best for the colony.

During the course of this paper, the results have benefited from the fact that we are using a
simulator with a well known and similar traffic model as the one ADR is using also. However,
the algorithm is more widely applicable and it should work with any simulator, and with real
traffic, as long as the traffic model used in the ADR algorithm can calculate accurately speeds as
a function of density for that particular situation. Theoretically it is even possible to use a simple
traffic model as the one used in this ADR algorithm to control real traffic, if some robustness
constraints are added. These constraints would be needed to account for different driving styles,
and also infrastructures in the traffic network such as toll collection booths.
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The algorithm proved to work accurately for different networks in size and shape, accomplish-
ing the goals defined, and significantly reducing densities on roads while still being acceptable by
the drivers. In the Singapore case study the algorithm was used successfully in a mixed traffic
scenario, where most of the traffic is not controllable by the algorithm. It was also proved that
it can work for any number of routes, if the roads that compose these routes are exclusive to
each route. However an algorithm should be designed that finds the optimal number of routes
the ADR should use.

Throughout this paper, it was stated that the ADR algorithm as it is can only control op-
timally routes going from the same origin (or origins if they are close together) to the same
destinations. The ADR can control traffic from all origins to all destinations, however, this has
to be done sequentially from each single origin to each single destination, which will frequently
result in suboptimal solutions. This can be overcome by optimizing for each possible sequence
of origin/destination pairs, but then the computational times would become infeasible for a real
world application. In the next section future research on multiple origins and destinations, as
well as other relevant topics, will be discussed.

7.2 Future Research

After the design and testing of the ADR algorithm, three important research questions were born.

The first one is how to change the algorithm so that multiple origins and destinations can be
optimized at the same time without getting suboptimal results. A solution that does not guaran-
tee a optimal solution, but can improve results would be to have the origin/destination pair with
more demand be optimized first, and do this sequentially until arriving at the origin/destination
pair with less demand in the network. This would ensure higher stability, since the bigger inflow
that can originate traffic jams, would be dealt with first.

The second question, and the most obvious one, is how ADR can be changed to cope with
urban traffic. In urban traffic there are several dynamics that are disregarded by the algorithm
such as roundabouts, intersections, traffic lights, and smaller and more varied routes. As far as
intersections and roundabouts go, these can always be translated into a travel time cost, and have
even more extreme penalties in case of a jam on those areas, since they will jam multiple routes.
Another problem with urban traffic is that due to the short roads, the number of possible routes
in a small network such as the one in Singapore increases dramatically, making it computationally
infeasible if it is treated as a centralized problem.

Finally, the last question is if ADR can be used in future search for other types of problems.
Theoretically the ADR algorithm can be applied in different application domains, where an
optimum in a multi-agent system needs to be found with respect to system costs and individual
costs, such as game theory.

The most important step however in future research must be to apply and test ADR with
well tuned parameters, on more accurate and realistic microscopic simulators, and add support
for highway features, such as on ramps, off ramps, interchanges. After that step is taken, the
algorithm will be a valuable tool for application in traffic control processes.
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A Singapore Expressway Network

For the Singapore case study 6 different expressways in the east area of the island will be used,
divided in stretches at each interconnection. In Table 5 the parameters of each stretch of express-
way are presented including the respective name, length and number of lanes. Each expressway
has two IDs to account for all expressways having traffic both ways.

Table 5: Parameters of each expressway in Singapore as modelled in the simulator.

no Length Lanes Start End Name
(km) Node Node
1,2 3 3 9 10 AYE - Ayer Rajah Expressway S1
3,4 4.5 4 10 11 ECP - East Coast Parkway S1
5, 6 13 4 11 4 ECP - East Coast Parkway S2
7,8 2 4 3 4 PIE - Pan Island Expressway S4
9,10 1 3 8 11 KPE - Kallang-Paya Lebar Expressway S1
11,12 2 3 6 8 KPE - Kallang-Paya Lebar Expressway S2
13,14 8 3 2 6 KPE - Kallang-Paya Lebar Expressway S3
15,16 6.5 3 2 3 TPE - Tampines Expressway S1
17,18 2 4 6 5 PIE - Pan Island Expressway S2
19,20 7 3 1 2 TPE - Tampines Expressway S2
21,22 7.5 2 1 5 CTE - Central Expressway S3
23,24 3.5 2 5 7 CTE - Central Expressway S2
25,26 4.5 2 7 9 CTE - Central Expressway S1
27,28 11 4 6 3 PIE - Pan Island Expressway S3
29,30 1 4 04 4 ECP - East Coast Parkway S3
31,32 3 3 01 9 AYE - Ayer Rajah Expressway
33,34 3 4 02 ) PIE - Pan Island Expressway
35,36 3 3 03 1 SLE - Seletar Expressway

In Figure 19 the complete network for reference is shown, including road IDs, origins and
destinations. Note that this is a simplified network, and that means that off ramps and on ramps
have been disregarded due to the ADR being applicable to only highways.
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Figure 19: Network used by simulator and ADR.
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B Weight Tuning

Table 6 shows the results of the algorithm for two different works. One is similar to the one
presented in Section 4.5, with two different roads to choose from with different lengths. The
second network is similar to the first one, but it has an extra third optional road. Both networks
are tested with different number of cars requesting routes. W is always fixed at 1. The column C'
represents Condition C, and in case it is checked it means the condition has been accomplished.

The 222x (%) column represents Condition B. Smaller values mean that the travel time cost
of the moéﬂfncostly and least costly routes used are similar.

Table 6: Networks 1 and 2 results for varying weights Wy and number of cars n..

Network 1
ne = 200 n. = 1000
We  ==(%) ¢ (%) C
-0.7 81+0.08 / 06+0.03 /
—-0.8 5.95+0.01 +/ 037+£0.02 /
-0.9 331+£001 / 0294+0.09 +/
Network 2
n. = 200 n. = 1000
W %(%) C %(%) C
—-0.7 1531+£0.09 / 4.64+0.12 /
—-0.8 10.88+0.01 / 321+£0.05 /
\/

-0.9 587+0.02  1.97+0.37
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C Travel Time Cost Parameter Tuning

The parameters of the travel time cost equation M and e where tuned and tested using the
network presented in Section 4.5. These parameters can be tuned depending on the objective of
the user wants to accomplish with the ADR. They can be tuned to make traffic jam avoidance
the most important objective by having a hard constraint. They can also be tuned to have bigger
accuracy at the risk that on more varying inflow conditions the algorithm might pass the critical
level of density in its routing policy. The parameters used in this paper are the ones that ensure
bigger stability, since in Section 2 it was stated that the most important objective it to avoid
creating traffic jams.

e Increasing M provides more accuracy, but also introduces more risk of the system becoming
unstable, that is, the algorithm has more abrupt changes, and though rare, can unstabilize
the system, since it is always close to the critical level. A good range of values for M is
[2,10]: higher than that the changes at each optimization step are too abrupt, lower than
that the effects of the bell function start to be unnoticeable. However the higher the inflow,
the higher M needs to be, so for example, even if M = 2 is a safer value, it might not work
for higher inflows.

e Again, increasing e introduces more risk of the system unstabilizing, but is also more
accurate. That is because a low € represents a steeper ascent near the critical level, which
acts as a barrier, while a high € gives a more gradual increase of the cost. A good range of
values for € is [0.1,0.5].

Table 7 shows the statistics of several test runs with different parameters that reflect the
behaviour that was just described. It does not include parameters where the results made highway
2 enter an unstable regime. In these trials the ADR algorithm is used every 5 minutes, so that
if the critical density is approached the algorithm can counteract after 5 minutes. Let ¥ be the
percentage of times the optimization algorithm gives an inflow of vehicles per hour that is higher
than the maximum capacity of that road, that is, with ¢, = 5500 vec/hr, when the split for

: i Bl Qecap __ 1937 _
highway 2 is higher than 22 = =555 = 35.22%.

Table 7: Algorithm results for g, = 5500 vec/hr.

M € maxp U (%)
[vec/km /lane]
10 0.5 25.69 39.6
10 0.1 25.50 16.7
5 0.5 26.07 37.5
5 0.1 2553 14.6
2 05 26.06 38.3
2 0.1 25.89 25.0
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