
Bachelor
EndProject
Real-time anomaly detection in
critical Rabobank processes
A. R. Breurkes
R. Jongerius
M. M. H. A. Kerkhof
T. D. Westerborg

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

Bachelor End
Project

Real-time anomaly detection in critical
Rabobank processes

by

A. R. Breurkes
R. Jongerius

M. M. H. A. Kerkhof
T. D. Westerborg
to obtain the degree of Bachelor of Science

at the Delft University of Technology.

Project duration: April 23, 2019 – July 5, 2019
Supervisors: Mevr. M. Brooijmans, Rabobank

Dhr. E. Troostheiden, Rabobank
Dr. ir. S. E. Verwer, TU Delft

This report is confidential and cannot be made public until July 5, 2019.

Abstract

Real-time processing of log data can give valuable insights in the behaviour of systems and processes. The
Rabobank is a large bank and has several of these systems and processes, one of such is the QR device regis-
tration process. In order to monitor this process, an application was built which detects abnormal behaviour.
The application reads in log data, parses it and then analyses it. Analysing is done by fitting distributions of
the duration of each step in the process, and checking for anomalies in new incoming data. Finally, a dash-
board was made in which the analysis and the distributions are visualised. More information is also available
in the dashboard, like a Markov chain of the process and several key performance indicators.

iii

Preface

This report describes the process and results of our Bachelor End Project, the final project for the Bachelor
of Computer Science and Engineering at the Technical University of Delft. Over the course of ten weeks, we
designed, implemented and delivered an application for the Online Department of the Rabobank. The main
goal of this application is to detect and visualise anomalies in the different steps of Rabobank processes and
explore the possibilities that data analysis and learning systems could offer.

We would like to thank all the Rabobank employees that helped us in gathering the right data, guided
us trough internal processes and introduced us to the right people for their time and efforts. Our particular
appreciation goes to Erik Troostheiden, Mireille Brooijmans and Danielle de Graaf, our clients and coaches
from the Rabobank.

Additionally, we would like to express our special gratitude towards our supervisor, dr.ir. Sicco Verwer, for
his valuable feedback and guidance during the project.

A. R. Breurkes
R. Jongerius

M. M. H. A. Kerkhof
T. D. Westerborg
Delft, July 2019

v

Contents

1 Introduction 1
1.1 QR Device Registration . 2
1.2 Problem Analysis . 3
1.3 Data Format . 4

2 Use Cases & Requirements 7
2.1 Use Cases . 7
2.2 MoSCoW . 8

3 Background 11
3.1 Detecting anomalies . 11

3.1.1 Distributions. 11
3.1.2 Markov models . 15

4 Software Design 17
4.1 Back end . 17

4.1.1 Parser . 17
4.1.2 Analysis . 17

4.2 Front end . 18
4.2.1 Data Visualisation . 18
4.2.2 Warnings. 19

5 Implementation 21
5.1 Back end . 21

5.1.1 StateController. 21
5.1.2 Analysis . 22
5.1.3 API . 23

5.2 Front end . 24
5.2.1 Design Language. 24
5.2.2 Front-end Timeline . 24

6 Testing 31
6.1 Technical Testing . 31

6.1.1 JUnit . 32
6.1.2 Mockito . 32

6.2 User Testing. 32

7 Process 33
7.1 Development Paradigm . 33
7.2 Planning . 33
7.3 Project Tools . 33

7.3.1 Version Control . 33
7.3.2 Project Management . 34

8 Evaluation 37
8.1 SIG Code Evaluation . 37

8.1.1 First Review . 37
8.1.2 Second Review . 38

8.2 Performance Evaluation . 38
8.3 Project Evaluation. 38
8.4 Evaluation by the Rabobank . 39

vii

viii Contents

9 Ethics 41
9.1 Working at a Bank . 41
9.2 Handling Data . 41

10 Conclusion 43
10.1 Reflection on Product Requirements . 43
10.2 Final Remarks. 44

11 Recommendations 45
Bibliography 47
A Original Project Description 49
B Infosheet 51
C SIG Feedback 53

C.1 First Review . 53
C.2 Second Review . 54

1
Introduction

The Rabobank is one of the largest banks in the Netherlands with a market share of approximately 35% [12].
Every day, thousands and thousands of its customers use their applications to keep track of their finances or
manage their mortgages and investments. All of them rely on the applications to be available, making their
continued operation of the utmost importance for the Rabobank.

Keeping all these systems and applications up and running is not an easy feat. Some processes require
multiple applications to be online and sometimes there is a dependency from one application or system
to another. If one of these applications fails or malfunctions, or there is an outage caused by a third-party,
quickly getting an insight as to what happened is essential. Ideally, engineers are alerted the moment there is
an indication that something is going wrong in order to deal with the problem swiftly.

To keep track of what all these systems are doing at all times, applications generate logs. Log files are
records of what exactly happened at any moment and can store, for example, information on the state of
the program, actions the user or system performed, and which errors and exceptions are thrown. Keeping
detailed logs for every application means one should be able to tell what happened at all times. An example of
a part of a log file can be seen in 1.1. However, the amount of collected log data that is generated is enormous
and most of the log data is from applications functioning nominally, which is not the priority when looking
for anomalies.

Figure 1.1: An example of a log file from the QR device registration process. Each new line represents the occurrence of a single event.
Some fields are redacted due to their sensitivity.

Sifting through all this data to find the events that can signal an anomaly is unfeasible. Storing it would require
huge amounts of storage and would make searching through it all slow. Ideally, the analysis of this data
happens automatically in real-time, so that situations that could indicate a disturbance in the functioning of
applications are spotted as early as possible. This will help to minimise unavailability of systems and along
with that, minimise the impact on customers.

1

2 1. Introduction

1.1. QR Device Registration
One of many processes in which users engage with the Rabobank online environment is the QR-device regis-
tration process. In this process, a user is able to register a new device using an already registered device. Reg-
istered devices are devices, like phones or tablets, known by the Rabobank which are authorised to perform
transactions without the need for the banks dedicated authorisation device, the "Rabo Scanner." Previously,
the Rabo Scanner was always necessary to register a device for the first time. As it is one of the main goals of
the Rabobank to minimise the dependence on the Rabo Reader, the QR registration process was created.

A visual representation of the process can be seen in 1.2. In short, the QR device registration process
is as follows. On a new device, the Rabobank app is installed. On opening it for the first time, the user is
asked whether or not the user currently has a device registered for Rabobank online banking (Step 1). If the
user chooses yes, the process is started (Step 2 & 3). On the already registered the device, the user chooses
the option to generate a QR code (Step 4). Finally, the QR code is scanned with the new device (Step 5) and
an access code for the new device is chosen (Step 6), after which the QR registration process is completed
successfully (Step 7).

Figure 1.2: Each step of the QR device registration process and the device on which it needs to be performed.

As this process is an important part of Rabobank’s effort to decrease dependency on the Rabo Scanner, its
availability and performance are of high importance. Therefore, the goal of this project is to develop a tool
which analyses this process and its performance. At the moment, the process is initiated approximately 2500
times a day. For each of these processes, the time between each sequential step of the process, i.e. the du-

1.2. Problem Analysis 3

Process ID Duration between
step 1 & step 2 (ms)

1 430
2 410
3 450
4 500
5 435
6 510
7 350
8 375
9 360

10 480

Table 1.1: Durations between step 1 and step 2 for ten processes in
milliseconds.

Figure 1.3: Distribution of the durations between step 1 and step 2
from table 1.1.

ration of the step, might differ. For every pair of steps of the process, a distribution can be made of these
durations. An example of this can be seen in 1.1 and 1.3.

Over time, new sessions of the process are started and finished, causing these distributions to change as
new data is added. When a distribution for one step suddenly changes too much, this could indicate that
there is something wrong with the systems responsible for that step, i.e. there is an anomaly. The main task
of the application is to detect these anomalies in the QR registration process and show users a warning when
one is detected.

1.2. Problem Analysis
The problem is defined as follows: Given real-time streams of log data, detect anomalies in the data signalling
outages or erroneous behaviour.

To get a better understanding of what this means, there should be a formal definition of the word "anomaly"
and a more clear view of what erroneous behaviour they cause. An anomaly is a situation that deviates from
the expected or normal situation. Where the latter mentioned is crucial for this project, because deviations
from what is "normal" will trigger warnings. More on that subject will follow in chapter 3 and 4.

Because anomalies differ from the expected situation, they can cause and indicate all kinds of problems.
Take, for example, a situation where the (QR) device registration process is interrupted at the same step many
more times than usual in a small amount of time. This could indicate that a service the registration process
depends on has stalled. If the development team has a clear indication of this anomaly, they’re more likely to
be able to identify the cause and solve the problem more quickly.

Another example of an anomaly is a situation where a certain step in the process repeats itself too often.
In this case, the Rabobank application will make many more requests than usual to the same end point on
the server, which could have serious consequences for the availability of the Rabobank services due to server
overloading. However, if the development team knows where this anomaly has occurred, they can narrow
their scope in search for the cause of the anomaly. Resulting in quicker repair time for the error.

As a final example, an anomaly could take the form of very long durations between requests. Say the time
between step four and five in figure 1.2 normally takes little time, but suddenly it takes twice as much time
as usual per request. The newly formed distribution of duration between requests, such as one depicted in
figure 1.3, differs from the normally observed distribution. This could indicate stalling services or (newly)
introduced bugs in the code. Again, identifying the anomaly can help the development team find the cause
of the anomaly more quickly.

In order to detect the anomalies, the software has to adhere to a few requirements. The developed software
should be able to visualise distributions of the duration between events as well as other key performance
indicators (KPI) generated by the Rabobank QR device registration process. Examples of KPIs are, given a
certain time frame, the percentage of successful requests, the total amount of requests, the total amount of
occurred errors, etc. . . The program should learn which distributions and KPI values are normal for specific
events, and, using these distributions and KPIs, detect anomalies. The (graphical) user interface should throw
a warning indicating anomalies have been detected and of which kind and severity. The focus will initially

4 1. Introduction

lay on the QR device registration process, but expandability and scalability of the software to other processes
has to be kept in mind. This means that it should also not matter whether data of the QR registration process
or any other process is fed to the software, as long as the format of the logging remains the same.

Process details
A successful QR Device Registration Process consists of multiple consecutive events that happen in the back-
ground, other than the steps shown in figure 1.2 which shows the process on the graphical user interface side.
Ideally, such a process is composed of 6 distinct events, shown in Table 1.2.

New Device Old Device

Create_device Device_authenticate
User_key_authenticate OR Access_code _authenticate

create_registration_token
validate_registration_token

apply_registration_token

Table 1.2: All required events for the QR registration process. After the new device has triggered the create_device event, it requires
the QR code from the old device to continue. The old device has to trigger the events shown in the right column in order to get to the QR

code. After scanning the QR code on the new device, the new device can continue with the last events in the left column.

Table 1.3 shows an ideal registrations process of a new device with the data used for linking. The events of
two devices can be linked in step 5 or 6, using the orig_device_id. Since every step in the described process
has a timestamp, the duration of consecutive events can be calculated.

Step Event Session_id token_id1 orig_device_id

1 Create_device X A -
2 Device_authenticate Y B -
3 User_key_authenticate Y B -
4 create_registration_token Y - -
5 validate_registration_token X A B
6 apply_registration_token X A B

Table 1.3: The events and IDs of a single faultless registration process in order of their occurrence. X and Y are the different unique IDs
of the new and old device sessions respectively. A and B represent the unique IDs of the tokens corresponding to the requests of the

new and the old device respectively.

1.3. Data Format
The log files provided by the Rabobank have a semi-structured format; A single event typically has a times-
tamp and a field reqId, followed by a JSON object. The timestamp on each log lines can be used to calculate
the time between every subsequent event. This information gives the software the possibility of determining
the normal situation of durations for every request.

The JSON object contains multiple fields that are of interest. For one, it contains the session_id field,
used to link the events of one device to one process. This is of particular importance, because it is required
to determine the sequence of requests made by a device. It is not always the case that the order of events is
the same as depicted in the ideal situation in table 1.3. Furthermore, it is also possible —and inevitable—
that other devices start the same process simultaneously. Therefore, the software cannot depend solely on
timestamps to determine the sequence of events in the process, and uses the session_id to match events in
a process.

Second, it contains the fields token_id1 and —in the case of certain events— orig_device_id. These
field are used to link events of two seperate devices together. For the QR device registration process, this
is of great importance, because the user relies on two separate devices at all times. One of the devices on
which they had already registered their account, and another on which they would now like to register their
account. In order to extract the same information from subsequent events on two different devices, as for one
device, the events must be linked together using the two mentioned IDs. Briefly put, they make information
extraction such as described in the last paragraph possible for subsequent events that happened on different

1.3. Data Format 5

devices.
Listing 1.1 shows an example of a log line with most data redacted.

2019−05−13 04:15:37.999 reqId="5djucFavAtXXXXXXX"
{

" session_id " : " redacted " ,
" token_type " : "DEV" ,
" t i c k e t " : " redacted " ,
" service_id " : " access_code_authenticate " ,
" s s l _ c l i e n t _ i d " : "sam−prod . rabobank . nl " ,
" distribution_channel_id " : "MBK" ,
" auth_user_id " : " redacted " ,
" siebel_customer_id " : " redacted " ,
" siebel_user_id " : " redacted " ,
" token_id1 " : " redacted " ,
" token_id2 " : " redacted " ,
" token_received " : " redacted " ,
" token_last_used " : " redacted " ,
" token_last_issued " : " redacted " ,
" br i t_sess i on_id " : " redacted " ,
" user_key_authentication " : " f a l s e " ,
" user_key_signing " : " f a l s e " ,
" ext_user_id " : " redacted "

}

Listing 1.1: An example of a log line of the QR-Registration process, expanded over multiple lines to improve readability. As can be seen,
most of the fields of the log lines were redacted for this project. This was done because they contained sensitive information that

cannot be made public, on which ground Rabobank ordered the redaction.

In the JSON object, fields likeerror_code anddevice_propertiesmay exist. In case of a presenterror_code,
it is interesting to provide the end user of the software, the software developer, with as much additional infor-
mation as possible. For example with device_properties, the developer could find out that a certain error
only happens on one type of device or one operating system. This information helps the developer in aiming
more efficiently at the cause of the problem.

The service_id field can be used by the software to identify each different event in the sequence. If an
anomaly is found in the event with a specific service_id, rather than in a sequence, this could, for example,
indicate that this specific event is causing erroneous behaviour. Another example of its use is determining
whether a specific event causes users to end the QR registration process prematurely more often than others,
in which case the registration step corresponding to this event might not be user friendly enough.

2
Use Cases & Requirements

To build an application that complies with the customer’s wishes, it is important to list what the end product
will be used for. This can be done by using so-called ’use cases’ which can be further divided into product
requirements.

2.1. Use Cases
The use cases listed here give a general overview of what the application will be useful for. Its usefulness is
described by scenarios with a description of the solution. Note that, in this report, the application will focus
on detecting anomalies in the QR device registration process. However, the application can also be applied
to log data of other processes. For the use cases below, the application will be applied to several processes,
other than and including the QR device registration process. Also note that below the ’client’ is the user of the
Rabobank mobile banking app, and the ’developer’ is the user of this project’s application.

1. Scenario: The Rabobank developers have just updated the QR device registration process. They dis-
cover that less clients register a new device on a daily basis than before. The developers thought they
had eased the process, and thus want to find out why less clients register their new devices.
Solution: The Rabobank developers can use this project’s application to figure out whether there is a
smaller number of clients initiating the process or a smaller number of clients finishing the process. For
the former case, it could be argued that there is less demand. While for the latter case, the developers
can use this project’s application to figure out exactly where clients decide to quit registering their de-
vice. This information could be used to check whether there is a bug in their app or the process became
less user-friendly.

2. Scenario: An outage in the Rabobank mobile banking app was reported to the developers. It is known
that the app can still communicate with the server. However, after entering the login code, the applica-
tion shows an empty screen and finally returns a time-out message.
Solution: The developers use this project’s application to quickly identify which HTTP request to the
server are taking much longer than expected. They can do so by looking at the distributions in the appli-
cation. If one distribution starts to deviate from what is normal, the application will display a warning
message, pinpointing the step in the process which takes longer. The developers can then fix the issue
without having to go through all the log data themselves. Instead, the application has done it for them.

3. Scenario: It is noon and everything seems to be operating normally. However, for the last hour, calls
have been coming in that Rabobank’s clients are unable to use the mobile banking app. Log data shows
no errors.
Solution: As soon as the developers look at the project’s application, they see a number of warnings,
indicating that the total amount of calls to the server had dropped to zero. This indicates that the
mobile banking app has been unable to contact the server. The developers now have an indication on
where to start repairing the server.

4. Scenario: The developers wonder if the QR device registration process is working smoothly for all users,
and use the application to look for strange or abnormal behaviour. Specifically, they want to see how

7

8 2. Use Cases & Requirements

users are progressing through the steps in the process.
Solution: The developers use the Markov chain visualised in the application to see which transitions
happen extremely infrequent. This information gives them a starting point to determine how and why
these transition could have taken place.

2.2. MoSCoW
The requirements of the application can be described using the MoSCoW(Must haves, Should haves, Could
haves and Won’t haves) method. More specific use cases are listed per requirement. After analysing the
problem, the following MoSCoW list was made, with the client’s desires kept in mind. In this list, the following
definitions are used:

Event: An individual request/call which expects a single response. Consists of a single log line. Identi-
fied using a service ID which links it to a certain step in the process.
Process: A sequence of events with a clear goal, e.g. registering a device using QR-registration.
Session: A sequence of events belonging to a single user with two session IDs, one for each device. I.e.
an instance of a process.
User: An engineer at the Rabobank who will be using the application.

Must Haves
1. Learn individual distributions

User Story: As a user, I want to be able to view a distribution of durations for each distinct event in the
process.
Analysis: To meet this requirement, for each event in a process, a distribution of the event’s duration
has to be fitted.

2. Anomaly detection in event distribution
User Story: As a user, I want to be able to know whether there are anomalies in the distributions.
Analysis: To meet this requirement, anomalies that diverge from the learned distribution of normal
behaviour have to be detected, and shown in some form.

3. Warnings
User Story: As a user, I want to be warned in some way if an anomaly has been detected.
Analysis: To meet this requirement, warnings have to be implemented, which are subsequently shown
to the user when anomalies are detected.

4. Static GUI
User Story: As a user, I want to be able to see a visual representation of the data and information.
Analysis: To meet this requirement, a static GUI which visualises the distributions of durations of
events has to be implemented.

Should haves
1. Customisable warnings

User Story: As a user, I want to be able to customise the threshold for divergence from the norm before
I am notified.
Analysis: To meet this requirement, there has to be a place where the user can modify the threshold,
and connect this to the back end.

2. Interactive GUI
User Story: As a user, I want to be able to interact with the GUI.
Analysis: To meet this requirement, the content displayed has to be dynamic, and based on user input.
This could be done by using filters, for example.

3. Interactive graphs
User Story: As a user, I want to be able to interact with the graphs.
Analysis: To meet this requirement, interactions with the graphs which make interpreting the data
easier have to be possible. E.g. zooming in and selecting certain areas of the graph are features which
have to be implemented.

2.2. MoSCoW 9

4. Combining data
User Story: As a user, I want to be able to compare two distributions.
Analysis: To meet this requirement, the option to compare two distributions in order to visualise the
difference between them has to be implemented.

5. Visualise session
User Story: As a user, I want to track a specific end-user through the process.
Analysis: To meet this requirement, the option to visualise a single user’s steps (through a single ses-
sion) has to be implemented.

6. Process agnosticism
User Story: As a user, I want to use this application for different processes in the Rabobank.
Analysis: To meet this requirement, the tool has to be developed with scalability in mind.

7. Real-time processing of logs
User Story: As a user, I want to be able to process data in real-time
Analysis: To meet this requirement, the application has to be able to handle a real-time stream of data.

Could haves
1. Data agnosticism

User Story: As a user, I want to detect anomalies in other characteristics than durations.
Analysis: To meet this requirement, the whole program has to be made data agnostic.

2. Detection of session patterns User Story: As a user, I want to be able to detect patterns in session time-
lines.
Analysis: To meet this requirement, the application has to learn normal behaviour of individual ses-
sions, and recognise any abnormalities in these sessions.

3. Export to Excel
User Story: As a user, I want to be able to save what I am seeing for later.
Analysis: To meet this requirement, the ability to export the (currently viewed) data to Excel has to be
added.

4. Common factor session
User Story: As a user, I want to find a link between abnormalities.
Analysis: To meet this requirement, the common factor between two different sessions with abnormal
durations has to be detected and shown.

Won’t haves
1. Prediction of future anomalies.

User Story: As a user, I want to be able to predict when future possible anomalies will take place.
Analysis: To meet this requirement, the application has to use machine learning to predict the next
period of time.

3
Background

The previous chapters introduced the problem and clarified the wishes of the client. To find out how to
implement the desired requirements for the product, a dive into literature was required. This chapter only
describes the highlights of the research that has been applied in the final product. Some preliminary research
was also conducted, where many of the topics were found to be inapplicable. This chapter also serves as
background information necessary to understand how the application works.

3.1. Detecting anomalies
Several methods exist to detect anomalies in data. The focus of the project will lie on two main methods
of anomaly detection; through the comparison of distributions, and with the help of Markov models. Ad-
ditionally, some other key interesting factors can be compared, like the total number of errors for each day.
Comparing distributions enables the detection of abnormal behaviour in specific transitions from one step in
the QR device registration process to another. Whereas the Markov model sheds some light on abnormalities
in the entire process, and transitions between states which should not really happen in the first place.

3.1.1. Distributions
This project mainly focuses on the durations of events in a certain process. Incoming data can be used to
construct a distribution over a certain quantity of interest, in this case the aforementioned durations. As
more and more data comes in, it is possible that the distribution changes. Therefore it is necessary to fit an
initial distribution, and to have a model that is capable of adjusting the distribution if need be.

There are several methods to fit a distribution, but it is especially important that the distribution can be
calculated in real time for scalability purposes. The question for this chapter is "What method is most feasible
to learn the distribution over a quantity of interest given a stream of log data?", while taking into account that
the distribution might change over time.

Learning and adapting distributions using windows
Approaches to dealing with change can be divided in two categories[13]. One of which does not take into
account whether changes in concept have really occurred, and simply adjusts the distribution at regular in-
tervals. The other of which aims to first detect the changes in concept, and then adjusts the distribution.

Approaches in the first category take weighted examples and use time windows of a predefined size. In
this category it is especially important to specify proper window sizes. Small windows could yield good results
when concept changes have occurred, while bigger windows are more suitable in stable situations in order
to not influence performance significantly. In approaches belonging to the second category, the window
sizes are adaptive. Some properties of the data are monitored in order to detect concept change. When a
concept change is detected, the window’s size decreases in order to adapt better. Otherwise, the window’s
size is increased in order to improve stability of performance. As this project deals with a relatively simple
process, where a concept change is unlikely to happen, the first approach works best and will therefore be
utilised. Even if a concept change were to occur, new distributions of the duration of a transition from one

11

12 3. Background

step to another would be created. Meaning instead of the existing ones having to adapt to change, brand new
distributions would be created.

Comparing the distributions
In order to calculate the difference between the distributions, a way of testing the distance of two distribu-
tions is necessary. There are multiple different methods for measuring distance between distributions. The
tests which are relevant for this project are described below.

Bhattacharyya distance
One way to compare two distributions is using the Bhattacharyya distance. The Bhattacharyya distance uses
the similarly named Bhattacharyya coefficient. This is a measure of the overlap of two statistical distributions
[2]. The overlap can indicate the relative closeness of the distributions. To calculate the Bhattacharyya coef-
ficient, integration of the overlap of the two distribution is applied. The Bhattacharyya distance is defined as
follows:

DB (p, q) =− ln(BC (p, q)) (3.1)

where

• BC (p, q) =∑
x∈X

√
p(x)q(x) for discrete probability functions, and

• BC (p, q) = ∫ √
p(x)q(x)d x for continuous probability functions.

In either case, 0 ≤ BC ≤ 1 and 0 ≤ DB ≤∞. What this means, is that every point in the domain is compared
by taking the root squared error, sum these, and finally take the negative of the natural log of this sum. An
example of two identical distributions is given in Figure 3.1, and two completely different distributions in
Figure 3.2. The result of Figure 3.1 is 0, which makes sense as the distance between two identical distributions
doesn’t exist. Meanwhile, the result of Figure 3.2 is undefined, but tends towards infinity because:

lim
x→0

−l n(x) =∞

This also makes sense, as the distance between any two distributions which have nothing in common is
infinite; they are as dissimilar as possible.

Figure 3.1: Bhattacharyya distance of two similar
distributions, calculated as follows: DB (p1, p2) =

−l n(0.25+0.5+0.25) =−ln(1) = 0.

Figure 3.2: Bhattacharyya distance of two different
distributions, calculated as follows: DB (p1, p2) =

−l n(0) = unde f i ned .

As mentioned before, 0 ≤ DB ≤∞. As 0 ≤ BC ≤ 1, the domain of DB is (0,1). Even though the distance
can go up to ∞, even low distance measures can be quite significant, as illustrated in Figure 3.3. This is the
result of the logarithmic function in the distance measure. Whether a distribution is actually significantly
different depends on the specific situation; when this measure is applied, one still has to decide on their
own thresholds from what distance the distributions are significantly different. However as can be seen in
Figure 3.3, a distance of 2 already indicated a very different distribution.

The Hellinger distance is closely related to the Bhattacharyya distance, and can also be used to quantify
the similarity in two distributions. Furthermore, it can also be derived from the Bhattacharyyan coefficient
by using the following formula:

H(p, q) =√
1−BC (p, q) (3.2)

3.1. Detecting anomalies 13

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

BC

B
h

at
ta

ch
ar

ya
D

is
ta

n
ce

Figure 3.3: The Bhattacharyya distance from extremely dissimilar (left, BC = 0) to exactly the same (right, BC = 1).

It gives similar results to the Bhattacharyya distance, so implementing only one of these distance measures is
enough. The Hellinger distance is formally defined in terms of the Hellinger integral, which in turn is a spe-
cial case of the Kolmogorov integral. The name Kolmogorov is famous in statistics, as there is another widely
used test to test the equality of two probability distributions: the Kolmogorov-Smirnov test.

Kolmogorov–Smirnov test
A third way of checking the distance between two sets of data and the corresponding distributions is the
Kolmogorov-Smirnov test (KS-test). The KS-test uses the empirical distribution function of two samples to
test their equality. The KS-statistic is given by the following equation:

Dn1,n2 = sup
x

∣∣F1,n1 (x)−F2,n2 (x)
∣∣ (3.3)

where Fi ,ni (x) are the empirical distribution functions of the tested sets[17]. The resulting statistic Dn1,n2 is
then used to calculate

Dn1,n2

s(n)
(3.4)

where s(n) =p
(n1 +n2)/n1n2. The resulting value is then checked against the following table to check if the

difference found is significant.

α
Dcr i t
s(n)

0.10 1.22
0.05 1.36
0.01 1.63

0.005 1.73
0.001 1.95

If for example Dn1,n2 = 0.2384 is found and n1 = n2 = 5000 and we check for a confidence level of 99.9%, we
see that Dcr i t = s(n)∗1.95 = 0.04. Because Dn1,n2 > Dcr i t with α = 0.001, we can reject the hypotheses that
the data sets are the same at the 99.9% confidence level [17].

In our application, the KS-test can be used to compare two distributions from the same event but a dif-
ferent time of day. For example, the durations of the last 1000 occurrences from a specific step of the process
can be used to create a distribution, and another distribution could be made in the same way one hour later.
Then using the KS-test, the difference between these two samples can be calculated, Dn1,n2 in the above ex-
ample. A certain confidence level can be chosen to calculate a Dcr i t value. If this critical value is smaller
than Dn1,n2 , so Dn1,n2 > Dcr i t , we can say with the chosen confidence level that the two samples are likely
drawn from different underlying distributions. By taking a higher confidence level, Dcr i t will become larger
so Dn1,n2 > Dcr i t will only be true if the distance is larger. This allows the distribution to vary over time, as it is

14 3. Background

Figure 3.4: A visual example of the KS distance between two empirical cumulative distribution functions. The underlying distributions
are from the same step in the QR device registration process, but from different moments. The KS distance between the two functions is

equal to Dn1 ,n2 .

Figure 3.5: Two distributions that are quite similar, there are
only small changes visible which is expected. The Dn1 ,n2

value resulting from the KS-test will be low.

Figure 3.6: Two distributions that are significantly different.
The Dn1 ,n2 value resulting from the KS-test will be higher

than the Dcr i t , indicating a potential anomaly.

expected to do, but larger, more significant changes in the distribution will be detected. These sudden, signif-
icant changes signal an increase or decrease in the amount of events with a certain duration. As we compare
two distributions from one specific step of the process, such a sudden change can be a sign of an anomaly
that has something to do with that step, e.g. a failing system or application that that step is depending on.

Justification of Choice
While there are other ways of comparing or measuring a distance between two distributions, we decided to
go with the Bhattacharyya distance and Kolmogorov-Smirnov test for several reasons.

First of all, both statistics do not need assumptions about the kind of the distributions that are tested, e.g.
if they are normal or gamma distributed. We cannot assume that every distribution we are going to encounter
has a specific form, so having tests that are suitable in every situation is necessary.

Secondly, the results of both tests are relatively straightforward. The Bhattacharyya distance is a single
number for which a threshold can be set. If the distance is larger than the chosen threshold, we find the
distance significant and should show a warning. Multiple significance levels can be used to indicate the
severity of the dissimilarity. The same holds for the KS-test. The result of the test can be yes or no for certain
confidence levels, e.g. these distributions are similar with 99% confidence.

While implementing more statistical tests is possible, we think that having two different tests to compare

3.1. Detecting anomalies 15

distributions is sufficient for our application. There are other ways of finding anomalies in data however, and
one of them is through the usage of Markov models.

3.1.2. Markov models
A Markov model is a model used to describe randomly changing systems. The key assumption of these mod-
els is that future states solely depend on the current state, and not on previously occurred events. It doesn’t
have a "memory" of how it was before. One can think of a Markov chain as evolving through discrete "steps"
in time.

For example, if a Markov chain model was constructed of a child’s behaviour, one might include "play-
ing," "eating," and "sleeping" as states, which together with other behaviours could form a ’state space.’ This
state space is a list of all possible states the child can reside in. Additionally, a Markov chain also defines the
probability of transitioning from one state to any other state, e.g. the chance that a child currently playing
will fall asleep in the next five minutes without crying first.

Generally, a Markov chain is used to find the equilibrium in states after a high number of iterations. Using
this, one can find the chance of eventually ending up in each of the Markov chain’s states. For this project,
this application does not make sense as it deals with a process which has a predefined order of steps. Other
applications of Markov Models are clustering of data [11] [6], or finding anomalies in a data set [8]. Clustering
utilising Markov Models is also not relevant for this project, however finding anomalies using Markov models
definitely is.

Finding anomalies using Markov models is achieved by first learning a model of normal behaviour. Once
a probabilistic model of said normal behaviour has been learned, it can subsequently be compared to newly
observed data in order to detect abnormal behaviour. In essence, a learned model enables the estimation
of the probability of each observed event, given the previously observed sequence of events. So, when an
event with a low estimated probability does occur, an anomaly warning should be triggered. Likewise, if a
never seen before transition happens, this should also trigger a warning. Furthermore, simply showing all
transitions which happen with a probability lower than a certain threshold is already valuable information.
This project will be dealing with a certain process that has a logical path through which end-user should
travel, meaning there are transitions between states which should not happen at all.

Comparing two Markov chains
Just like with distributions, the question of how to detect the differences between two Markov chains arises.
As Markov chains are essentially nothing more than axis-labelled matrices, a method to compare the distance
between two matrices should suffice to compare two Markov chains.

There are several methods to compare matrices [14]. The first group to be mentioned are the classical
cell-by-cell distance measures. This is probably the most intuitive way to compare two matrices, and can be
measured in both the absolute and the squared distance. These equations are defined as:

D AD (P,Q) =
n∑

i=1

n∑
j=1

∣∣pi j −qi j
∣∣ , (3.5)

and

DSD (P,Q) =
√√√√ n∑

i=1

n∑
j=1

(
pi j −qi j

)2 (3.6)

For example, take two transition matrices M1 and M2:

M1 =

A B C
A 0.7 0.2 0.1
B 0.3 0.5 0.2
C 0 0 0

M2 =

A B C
A 0.65 0.25 0.1
B 0.3 0.55 0.25
C 0 0 0

Simply looking at these transition matrices, one can see they are quite similar. This is confirmed by the two
distance tests, as D AD (M1, M2) = 0.2, meaning there is only a 0.2 absolute difference in probability in the
whole system. Also DSD (M1, M2) = 0.1, meaning once you square all the individual cell distances and take

16 3. Background

the root the distance is only 0.1. Now, take transition matrix M3:

M3 =

A B C
A 0.1 0.2 0.7
B 1 0 0
C 0 0.6 0.4

After looking at M3, it is obvious it is a completely different transition matrix to M1, almost none of the cells
are the same. And indeed, the tests confirm this. D AD (M1, M2) = 3.6, and DSD (M1, M2) = 1.643. These are
much higher values, indicating a much more significant difference between the two.

As shown, these equations work fairly well in measuring the distance between two matrices. However,
they do not measure differences in cells relatively. They see 0.95 and 0.93 equally different as 0.04 and 0.02,
even though the relative difference is much bigger in the second example. To circumvent this issue, nor-
malised distance measure can be used. The normalised versions of Equation 3.5 and Equation 3.6 are defined
as follows:

DN AD (P,Q) =
n∑

i=1

n∑
j=1

∣∣pi j −qi j
∣∣

pi j
; (3.7)

and

DN SD (P,Q) =
√√√√ n∑

i=1

n∑
j=1

(
pi j −qi j

)2

pi j
(3.8)

where the elements pi j cannot be zero. However, this makes a straightforward application to transition
matrices rather difficult, since it is quite likely that some transition probabilities can be zero. Also, since
DN AD (P,Q) 6= DN AD (Q,P), the difference is no longer symmetric which might lead to inconsistent results,
and make it more difficult to set proper thresholds. Luckily, and easy fix for the symmetry is using a combina-
tion of both directions of the comparison: DN AD s ymm = 0.5 ·(DN AD (P,Q)+DN AD (Q,P)). Still, if the chance for
the transition is extremely small, the distance will tend towards infinity. However this might not be a prob-
lem, as we can use this property to detect paths which should never happen in the first place. This is possible
because we are not dealing with a random process, but with a process with a known sequence of steps when
correctly ran through.

In conclusion, two main ways to detect anomalies were explored. Firstly, one can compare two distribu-
tions of the durations of events using different statistical tests or measures. Examples of such measures are
the Kolmogorov–Smirnov test and the Bhattacharyya distance. Secondly, a Markov model of the process can
be constructed, which can subsequently be compared with Markov models generated with newer data.

4
Software Design

This chapter goes into more detail about the design choices made during the project. First the design of the
back-end will be discussed, how the actual logic of the application works. After that, the choices made in the
front-end will be explained.

4.1. Back end
The back end of the application needs to perform a series of tasks. First of all, data has to be read from a set
of text files and parsed to meaningful objects for further processing. After this initial step, analysis has to be
performed on the data to determine if there are indicators of an anomaly present. Finally, the data has to be
send to the front end and, if an anomaly was found, the results of the analysis should be wrapped in a warning
and send to the front end as well.

When designing the back end of an application that will be written in an object oriented language like
Java, it is important to keep certain design principles in mind. The best known software design principles
are represented by the acronym SOLID: the Single responsibility principle, the Open-closed principle, the
Liskov-substitution principle, the Interface segregation principle and the Dependency inversion principle.
These principles are fairly straightforward and were followed where possible during the process of designing
the application.

4.1.1. Parser
As stated in section 1.3, the data to be parsed will be semi-structured and partially in JSON format. New data
will be handled line by line and split into a timestamp, reqId and a JSON-structured part. After the JSON-
structured part is parsed using a JSON-parser, the timestamp will be added. To ensure a scalable program,
the Apache Flink framework will be used.

4.1.2. Analysis
Markov chains
As explained in chapter 3, we can use Markov chains to detect anomalies. In essence, a Markov chain is noth-
ing more than a transition matrix. For example, a Markov chain M for a system with 3 states, A, B and C, could
look as follows:

M =

A B C
A 0.7 0.2 0.1
B 0.3 0.5 0.2
C 0 0 0

One major characteristic from conventional Markov chains is the fact that for each state, all outgoing transi-
tions have to add up to a total chance of 1, i.e. each row should total 1. As can be seen in the example above,
this does not hold up for a typical Markov chains used in this project. This decision was made because tra-
ditionally Markov chains are used to find an equilibrium of a system, giving a chance for each state to ’finish’

17

18 4. Software Design

there after a large number of steps. However, in this project they are used differently. They are applied to a
process with a set correct path through the transitions, including one final state where the user ends. This
state does not have any outgoing transitions, as users in this state have succussfully registrated their device.
Instead, this project uses Markov chains to detect anomalies, i.e. checking whether two Markov chains from
different time periods differ a lot, and contain transitions which should not happen. To achieve this, the rule
that each row should total 1 does not need to hold up, they can also be full of zeros.

As Markov chains are essentially transition matrices, they will be stored as a two-dimensional array of
doubles. In order to keep track of states, they will be tracked separately in a simple ArrayList. Linking the
correct state to its corresponding row or column in the transition matrix can be done using the index of the
state in the ArrayList.

Statistical distance measures
The in subsection 3.1.1 described tests and distance measures like the Kolmogorov-Smirnov test and Bhat-
tacharyya distance will be implemented based on their mathematical definition. Because they have to be
performed with a high frequency, it is important that their implementation is done efficiently.

4.2. Front end
The front-end will be a web-based dashboard. The choice for a web application is largely based on the
enormous amount of JavaScript visualisation libraries available. Native user interface design is quite time-
consuming, especially in Java. Web development makes things much easier, where the addition of new com-
ponents or tabs is trivial. Given the limited time frame of the project, a web-based front end is the ideal
option. It also means that any device with a somewhat modern web browser will be capable of displaying the
application.

Figure 4.1: First sketch of the dashboard

4.2.1. Data Visualisation
There are three main categories of data which will be visualised in the dashboard. These are described below.

Distributions
First of all, the main focus of the application will be the distributions of durations. This will be the main page

4.2. Front end 19

which users are initially presented with. Here, all distributions of durations, one for each pair of steps, will be
listed. A JavaScript library will be used to generate the actual visualisation of the distributions, most likely in
the form of histograms.

Markov Chains
While a Markov chain in mathematics is usually depicted as a set of states and their transition matrix, this
is not something which makes sense to the average laymen, especially when they don’t even know exactly
what a Markov chain is or represents. Therefore, a much more useful approach would be to represent it as a
network graph. Such a visual representation of the Markov chain described in subsection 4.1.2 would look as
follows:

A

B C

0.1
0.2

0.7

0.3

0.2
0.5

Implementing such visualisation is quite a task in and of itself, which is why a library will be used to aid with
the visualisation. As graphing frameworks based on JavaScript are plentiful, finding one pleasant to work with
did not result in any problem. vis.js [15] was chosen .

Key performance indicators
In addition to the distributions of durations and the Markov chain of the process, other useful information
can be extracted from the data. An obvious example might be the number of processes which do not result
in a successful device registration, i.e. unfinished processes. In order to identify more key performance in-
dicators, extensive discussion with Rabobank will have to be arranged, but the following key performance
indicators will be implemented as a start.

• Percentages like the successfully finished processes

• Pie charts that display ratios like the ratio in which error codes occur

• Graphs that display information like the number of errors that occurred per time unit.

Figure 4.2: First sketches of the different kinds of key performance indicators

Figure 4.2 shows an initial sketch of these KPIs, but future discussion with the Rabobank may lead to
adjustments. More on the actually implemented KPIs in subsection 5.1.2.

4.2.2. Warnings
In addition to the visualisation of the data, the user has to be notified if an anomaly is detected. This will be
done through warnings. These warnings have to be clear, concise, and be visible at any point in the applica-
tion. Not all warnings are equal, some might be more severe than others. For this reason, different colours will
be used to indicate the significance of a warning. Furthermore, the latest warning has to appear at the top of

20 4. Software Design

the warning list, because more recent warnings are more interesting. Lastly, warnings should be dismissible
once they have been dealt with, or the Rabobank engineers have been notified.

5
Implementation

After doing research and making an initial design, the actual implementation of the application has to be
done. The application consists largely of two parts, the back end and front end. The details on how these
parts are implemented will be discussed in section 5.1 and section 5.2.

5.1. Back end
The back-end of the application is built in Java and consists of several key components for it to work properly.
In order to make the back-end as future proof and maintainable as possible, the code is well documented
and implemented according to renowned techniques such as design patterns. In the following subsections,
the implementation of the back-end has been dissected into its key components with explanations on the
choices made for the implementation.

5.1.1. StateController
To control and update the known distributions, KPIs and other data, a class named StateController is in
place. This controller calls the parser and is responsible for ’feeding’ new data to and updating the State. The
described process is of high importance, and thus carries a responsibility with it. Because the coordination
of these tasks bears a lot of responsibility and should only be done by one entity, the StateController
is implemented using a Singleton Pattern; there can only be one StateController. This ensures that the
coordination done by the StateController across the system cannot be interfered by another entity.

State
The State class contains all relevant data of the current state of the application for a process. Since only
one process is tracked at this time—namely, the QR device registration—, only one instance of State is in-
stantiated. The QR registration process involves, as described in section 1.2, multiple consecutive events of
which the duration can be calculated. For each subsequent pair of steps, a distribution of durations is stored
in a Distribution. Besides keeping track of the Distributions, the State updates and keeps track of the
Key Performance Indicators (KPIs) and Markov chains. More about distributions will be discussed in subsec-
tion 5.1.2.

Parser
The Parser is responsible for parsing text files to a stream of JSON Objects and is implemented using the
Apache Flink framework and the Java JSONObject JSON parser. Since data is delivered in batches of a fixed
time-window, a FileFinder is implemented. The FileFinder finds all files in a pre-defined folder and
returns files in chronological order. Parser also uses a Singleton design pattern, as only one parser should
be active at all times.

StreamHandler
To extract information from the parsed data, a class StreamHandler is used. As described in section 1.2,
a process consists of multiple events on two devices. Since both devices use a different session ID, the du-
ration of successive events cannot be calculated without extra information. Instead, the StreamHandler

21

22 5. Implementation

keeps track of events per session ID, and combines events of the two devices when possible. Moreover, the
StreamHandler creates new data for the KPIs to update from. More information on the data processed by
StreamHandler can be found in section 1.3.

If the Rabobank decides to replace the current system of reading files of log data with a stream of log data,
StreamHandler will not require any modification as long as the data stream comes in the same format as
deliverred by the Parser class.

5.1.2. Analysis
Anomalies are detected in multiple ways, through differences in distributions, differences in Markov chains
and analysis of the KPIs. An anomaly is detected when a result of one of several tests is deemed significant.
All of these factors are elaborated on below. When an anomaly is detected, a warning will be presented to the
user via the front-end.

Distributions
The Distribution class represents the distribution of duration between events. A distribution contains the
following fields:

• Name : The name of this transition

• Data : The most recent data

• old Distribution : A Java Emperical Distribution representing the data from a previous time window

• new Distribution : A Java Emperical Distribution representing the most recent data

Besides the previously defined fields, all distance measures and other tests to detect anomalies in the distri-
bution are implemented within this class. These include the Kolmogorov-Smirnov test and Bhattacharyya
distance as described in subsection 3.1.1 The class also contains update methods that, given new data, up-
dates the most recent data and Emperical Distributions accordingly.

Test Results
For the best result, it could be argued that all tests performed on distributions should be combined to form
a concluding report on whether or not a anomaly has been detected, different tests on the same distribution
yield different, incomparable results. Therefore, results of the performed tests are handled separately, but in
a standarized way. An interface Result has been implemented for setting the standard for classes that will
handle the test results. This interface implements 3 main methods:

• getSignificance: returns a by the test determined significance of the result

• getDescription: returns an explanation of the result

• getName: returns the name of the test that resulted in the result

To determine a significant result, a class ResultHandler is implemented. Based on the weighted average of
the significance, a warning is created.

Markov Chains
The Markov chains are built using a MarkovChain class. This class is essentially a data wrapper. It contains
the transition matrix, based on a 2D array of doubles; a List of the states in order to give the nodes in the
visual representation their name, and a size to know the dimensions. It has two constructors, one with the
aforementioned fields, and also one with a transitionCount matrix which is a 2D array of integers. This
is used initially because the data doesn’t inherently know the probabilities for all transitions, only the num-
ber of times they happen. Using these counts a transition matrix is easily constructed using by dividing the
number of transitions from the current state to each other state divided by the total outgoing transitions for
the current state. Additionally, some methods which can be used to compare two MarkovChain objects have
been implemented, returning the distance (absolute or squared) between them. Finally, 2 methods have been
implemented which are used to export the MarkovChains in a JSON format; one for the states and one for
the transitions.

5.1. Back end 23

Key performance indicators
Key performance indicators can be created based on the information in the provided log files. Different KPIs
require different data to be tracked, but all KPIs have some similarity. Hence an abstract class KPI was created
with the following fields:

• Name: The name of this KPI

• Type: The type of this KPI

• Date: The date of which the Data of this KPI is

• Info: Contains some information on the KPI if available

In order to be able to handle all KPIs equally, KPIs should implement a predefined set of methods. These
methods are defined as follows:

• updateData: A method that, given a list of new data, updates this KPI

• checkAnomalies: A method that executes all tests implemented within the specific type of KPI and
returns the results of those tests

There are four types of KPIs implemented: Pie Charts, Stacked Bar Chart, Percentages and simple Graphs.
Examples of KPIs are, given a certain time frame, the percentage of successful requests, the total amount of
requests and the total amount of occurred errors.

The GraphKPI has its own methods to determine whether an anomaly has occurred. The process of
checking for anomalies goes by the following concept. Days are cut into 96 time spots of fifteen minutes. For
each time spot, the mean value of the KPI is tracked. After each time spot has passed on a day, the methods
check how much the observed value deviates from the mean. If the difference surpasses a certain threshold,
the back-end will signal the front-end to display a warning. The threshold is surpassed if, for a particular time
spot i , the observed value is:

1. Greater than µi +0.75 ·µ{0≤ j≤4,28< j≤95}, and

2. Greater than 1+µ−0.125
i , with a minimum of 1.33 maximum of 2.

Furthermore, if the observed total amount of requests in a time spot is less than 0.75 ·µ{0≤ j≤4,28< j≤95} a warn-
ing is also fired.

Whereµ is the daily mean, µi is the mean value for a time spot i , and 0 ≤ i ≤ 95 (a time spot for every quar-
ter of an hour in a day). Note that the for threshold condition 1, and for the threshold condition on the total
amount of requests, the daily mean is calculated excluding observed values between 1:00AM and 7:00AM.
The reason for this is that on this time interval the network traffic is the lowest observed daily. Including this
interval would have drastic influence on the value of the daily mean and, with that, on the threshold.

This threshold was established after trying out multiple functions with boundaries. From the beginning it
was clear that a function was necessary that converges to ∞ for very small numbers and converges to 0.5 for
very large numbers. It establishes a steady threshold for events with a lot of occurrences, and a large enough
threshold for events with (very) little occurrences. If, for instance, a fixed threshold would have been used,
events with little occurrences would fire warnings after measured differences as little as 1. While events with
many occurrences would possibly fire warnings after very high measured differences, which is too late or not
at all.

5.1.3. API
In order for the front-end to acquire the data necessary for its visualisation, the back-end has a RESTful appli-
cation program interface (API) in place. RESTful APIs use HTTP requests for data handling (GET, POST, PUT,
DELETE, etc. . . 1). It connects the information the back end processed from the initial data to certain spec-
ified end points. The end points are simply uniform resource identifiers (URI) that process HTTP requests
and return proper specified responses.

1For documentation on HTTP, see https://httpwg.org/specs/.

https://httpwg.org/specs/

24 5. Implementation

APIs can easily be implemented in Java using the Spring framework2. It allows for easy implementation of
a stand alone application with specified API end points. It can also be built on top of an already existing Java
application.

This was particularly useful in the beginning of the project, when there was only a simple Java application
that read data, calculated processing times and then wrote this to a text file. The application terminated after
processing all available data and the front-end would simply read these files. In this stage of the project
— before the application might be too complex to handle this easily — it was important to immediately
start working on data agnosticism of the app. In other words, neither frond or back-end should require any
knowledge of the data prior to processing it.

The back end required minor modifications; Processed data is now kept in lists instead of written to files,
and the application is now run through the Spring framework. Keeping the data in lists allowed for data ac-
cess with little to no overhead, and the API was able to access it at all times.

Some API specific implementation choices were made:

• Because the API was in place only to serve data to the front end, only GET requests were allowed on the
specified URIs.

• Before the front end can acquire data, it should first request all unique keys belonging to the data. This
can be done in one GET request.

• Because the keys are unique, every set of data has its own URI on one end point. This is done using
the base of the URI for getting data, extended by a variable (/getDurations/{key}). Requesting data
from an unknown key returns the proper HTTP response.

5.2. Front end
This section shows the progress throughout the project and discusses the visual aspect of the application.
Firstly, the choices made in design language and principles are explained. After that, a timeline of the visual
evolution the application is shown, elaborating on the progression and changes throughout the different
versions.

5.2.1. Design Language
The choice has been made to follow the material design principles3 for the implementation of the front-
end. Material Design is a visual language that incorporates the classic principles of good design with the
innovation of technology and science. As one of its core designer said: "Unlike real paper, our digital material
can expand and reform intelligently. Material has physical surfaces and edges. Seams and shadows provide
meaning about what you can touch." [7]. Since its inception by Google in 2014, material design has quickly
become one of the most prevalent design languages used, especially in android and web development [5].
Material design inherits its intuitiveness from the fact that it is based on real paper and ink, which can be
layered like real physical material, while maintaining all the added benefits of being a digital design language.
For these reasons, and its relative ease of implementation, the choice for material design was an obvious one.

5.2.2. Front-end Timeline
The application has undergone various changes which have been labelled as different version. Here, each
version will chronologically be explained shortly with screenshots of the relevant components.

Version 0.1
The first version of the front end can be seen in Figure 5.1. A simple menu has been implemented, but has
no functionality as of now. Figure 5.2 is the first visual representation of a distribution. Every graph has a title
that states the transition the distribution is about. The x-axis is the duration of the transition from one event
to another, the y-axis represent the number of occurrences.

2For documentation on the Spring framework, see https://spring.io/.
3For documentation and demos, see http://material.io

https://spring.io/

5.2. Front end 25

Figure 5.1: Dashboard version 0.1: All the elements like
distributions and the Markov chain are in a single column.

Figure 5.2: Dashboard Version 0.1: Distribution

Figure 5.3: The sidebare menu with placeholders for the filters.

Version 0.2
In version 0.2, multiple changes to the front end have been made. As can be seen in figure 5.4, the distribu-
tions have a fixed location on the left, while the Markov chain, Warnings and other graphs like ’Unfinished
Processes’ are placed on the right.

The filters seen in Figure 5.1 are now working and the distributions and KPI-graphs now automatically
retrieve new data from the back end at a fixed interval. Version 0.2 also is the first version with Warnings
implemented in the front end. Figure 5.5a(a) shows an example of a warning. Warnings have a ’Dismiss’
button, which removes the warning from the page.

Also new in Version 0.2 are the ’key performance indicators’ (KPIs). Figure 5.5b(b) shows a plot with
the number of unfinished processes per time unit which is an important KPI for this process. Distributions
now also display the previous data as well as the current data, as cans be seen in Figure 5.4 so that a visual
comparison can be easily made.

Besides the addition of new content, improvements have been made to the layout and styling of the dash-
board. The layout is now based on cards, giving users a more clear overview of all the content. Furthermore,
colours and fonts have been changed to be more in line with the Rabobank’s own design language.

26 5. Implementation

Figure 5.4: Dashboard Version 0.2

(a) Dashboard Version 0.2 : A warning with the results of
the tests that were performed

(b) Dashboard Version 0.2 : A KPI plot of the numbers of
failures per 15 minutes.

Figure 5.5: A warning and a KPI graph in version 0.2 of the application.

5.2. Front end 27

Version 0.3
In the third version of the front end, the layout has been changed to use tabs. For now, it has three tabs: ’Dis-
tributions’ (Figure 5.6), ’Markov Chain’ (Figure 5.7) and ’KPIS’ (Figure 5.8). Every page also has the warnings
listed on the right side of the page. Warnings can be dismissed using the dismiss button on the bottom right.

Figure 5.6: Dashboard Version 0.3: Distribution Tab

Figure 5.7: Dashboard Version 0.3 : Markov chain Tab

28 5. Implementation

Figure 5.8: Dashboard Version 0.3 : KPI Tab

Version 1.0
The final version of the application, version 1.0, features some significant changes to the front end. Most of
the changes have been to the KPIs tab. This tab now contains pie charts, stacked bar charts and other useful
information like the percentage of successful finished processes, as can be seen in Figure 5.9 and Figure 5.10.
Each KPI has an infobox with some explanation about the specific KPI which pops up when a user hovers
over the information icon.

Figure 5.9: The KPI tab of version 1.0. New types of charts are added along with extra information on each chart. Warning cards are now
expandable by clicking on them.

5.2. Front end 29

More warnings have also been implemented based on the newly added KPIs and the width of the warning
column has been reduced to allow for more content. By default, warning cards only show the time and subject
of the warning. They can be expanded by clicking on the arrow in the top-right corner of the card.

Figure 5.10: Dashboard Version 0.4: KPI Stacked bar chart

Some small changes have also been made to the distribution tab as can be seen in Figure 5.11. The re-
duced width of the warning column allows for two distributions to be shown alongside each other. An infor-
mation icon with hover text has also been added to explain what the graph is about.

Figure 5.11: Dashboard Version 0.4: The distribution tab

30 5. Implementation

Finally, the Markov chain tab has also been updated. The cards of the Markov chains can now be collapsed
to give users a more clear overview of which Markov chains are available. Selecting an element in the Markov
chain also highlights all the paths to and from it, as shown in Figure 5.12.

Figure 5.12: A Markov chain with one state selected. Figure 5.13: The Markov chain tab with all elements collapsed.

Responsiveness
During the development of the application, responsiveness in relation to different screen sizes and ratios has
been kept in mind. This allows for users to also view and use the dashboard on different devices and screens,
like smartphones, tablets and screens with a 21:9 ratio. Some examples of this can be seen in

(a) Dashboard on screens with a ratio of 21:9 (top) and 16:9 (bottom). (b) Dashboard on a smartphone.

Figure 5.14: The dashboard shown on screens with different ratios. All the elements scale accordingly to the screen’s size.

6
Testing

Testing software is important in order to deliver a viable product and consists of two phases. The first phase
is usually executed by developers and happens on the software environment’s level. In the second phase,
(simulated) users use the software in order to test the user readiness of the software. Some key aspects of the
testing phase as a whole are:

• Is the written code of high quality?

• How does the software perform?

• Is the software user friendly?

• Does the user run into any glitches using the software?

6.1. Technical Testing
In this phase, components of the code are tested individually, ignoring the rest of the software’s components,
in a process called Unit Testing[16]. For this project, the goal is to attain at least 80% code coverage with these
tests, which means that at least 80% of all lines of code have to be executed while running tests. Only public,
protected and package private methods, excluding constructor methods, are tested directly. Private and con-
structor methods are indirectly covered as part of other components in the software. The APIApplication
class seems inappropriate for testing for the same reasons stated in [16]. Therefore, it is not tested.

Another special case is the StateController class, which has a synchronised method run. The test
coverage for this class is low (64%) because there was no feasible way to unit test the run method.

JUnit will be used as a framework to write and execute unit tests. In order to ignore or manipulate be-
haviour of other components, so-called Mocks are made of dependencies using Mockito.

Figure 6.1: The measured test coverage report, as performed by Intellij IDEA. The highlighted package is the only package in the project
with less than 100% line coverage.

31

32 6. Testing

6.1.1. JUnit
A common framework to write and execute unit tests for Java is JUnit. It stimulates continuous implementa-
tion of tests during software development[3]. This does, however, not mean that writing unit tests suddenly
requires little effort. Especially with complex software components, writing unit tests still requires a lot of
effort. Even after writing the initial test suite, test components need to be adapted to code change, which re-
quires synchronous implementation of regular code and tests. The overhead of writing tests increases quickly
when code changes happen on a regular basis. Therefore, during development of software, testing is done less
extensively than arguably optimal[3]. The test coverage on the anomaly detection software is 98%, and has
been 98% throughout the entire project, which is well above the 80% goal set for this project.

6.1.2. Mockito
While writing unit tests, it is possible to run into dependencies that have an influence on the behaviour of
the component you are testing. In order to ignore or manipulate the behaviour of a dependency, Mockito, a
testing framework for Java, can make a so-called mock of the dependency. Mockito helps to make sure you are
testing an individual component and that component only. It enables you to, for example, determine what
certain method calls on a mocked object return while keeping the tested component fully functional.

Mocked objects also enable you to test whether these objects have been processed by a specified method
or how many times a specified method has been called on an object. This can be particularly useful when, for
example, randomness is involved in the output of a software component.

6.2. User Testing
The user base of this software are programmers themselves. Therefore, we can argue that these users are more
knowledgeable than those of a piece of software designed for all possible users. Nevertheless, the software
should be easy to use and may cause no confusion among the user base. The users must be able to easily
pinpoint anomalies after all.

The first phase of user testing, in this case, was showing demonstrations of the software to the project’s
supervisors at Rabobank. Demonstrations were given to our supervisors on a weekly basis, which resulted
in various amounts of feedback. This feedback was particularly useful, because it gave insight on whether
the displayed information was easily accessible and complied with the users’ wishes. These sessions were, of
course, nothing more than the weekly scrum meetings with the project customer, but were very useful in user
testing.

The second phase of user testing consists of letting a group of end users ask all their questions on the
application after seeing it. This phase was less useful for the project, because of the simplicity of the software
in terms of features, and because of the amount of data made available by the bank. The small amount of
data available made it difficult to realistically simulate a stream. In the later weeks of the project, however,
the project supervisors realised the importance of data availability and strove to provide as much data in an
as real time manner as possible.

The graphical user interface (GUI) was made in compliance with the Material Design1 guidelines. These
guidelines make it easy to create a user friendly GUI. The findings of the second phase of user testing were,
as expected, that the GUI looked good and everything was clear. However, the project customer would like
to see some changes in layout so that they would have a better overview of everything going on. Again, the
GUI is as simple as it is, because the hard work is done in the back-end, but it does exactly what it should do
according to the feedback given by users after user testing.

1As can be found at https://material.io.

https://material.io

7
Process

This chapter reflects on the development process of this project. The used software development paradigm
will be discussed in 7.1 as well as the tools and resources used during development in 7.3.

7.1. Development Paradigm
There are different ways of developing software, each with its own specific up and down sides. During the
Bachelor Computer Science, multiple project development paradigms like the waterfall method and the agile
way of working are discussed. Based on experiences during other courses, the limited time available and the
small size of the group, a partially adapted form of Scrum was employed.

In this adapted version, it was decided to disregard the roles that normally are a part of Scrum, like scrum
master and product owner. Instead, each team member had an equal responsibility to keep the backlog up-
to-date and make sure their task was done appropriately. Sprint cycles consisted of one week, with a new
working version at the end of each week of programming. To reduce the amount of overhead, there were no
daily stand-up meetings. The group worked at the same location every day, which meant communication
was not a problem because updating the others on progress or asking questions could be done straightaway.

To maintain a clear overview of each team member’s assigned tasks and progress during the project, Trello
was used, as explained in 7.3.

7.2. Planning
The Bachelor End Project is a short project with a duration of only ten weeks, two of which are meant for
research. Due to this limited working time, a well defined planning was essential. As part of the Bachelor End
Project, a project plan was made, which outlines our approach to the project and our global planning. This
project plan can be found in [Appendix Project Plan

However, due to the nature of banks, adhering to this planning was sometimes difficult. Flexibility in
planning was necessary as the group relied on different Rabobank employees, each of them with their own
busy schedule. Finding the right person to answer our question and arranging a meeting sometimes was a
challenge, as is the case with every large company. However, all of the Rabobank employees were very helpful
and tried to make processes as smooth as possible for us, which certainly helped with keeping to our overall
planning.

7.3. Project Tools
As is common in software development, we used a set of different tools to help us with the process. The main
goals of these tools were version control and project management.

7.3.1. Version Control
In every large software development project that is done by a team of programmers, keeping track of all the
changes to your code base and who is doing what is essential. Version control software can help with keeping

33

34 7. Process

everything structured and makes cooperation between software developers easier.

Git
All of the team members had experience with using Git as version control software. Because of the fact that
all of the team members would be programming, the familiarity with Git and the ease of use of Git, it was
decided to also use it for this project.

The Rabobank already had version control software in place, but different departments used different
web-based solutions like GitHub and Bitbucket. Bitbucket however, seemed to be preferred so we decided
to also use Bitbucket. It was decided to setup the Bitbucket accounts independant of the Rabobank infras-
tructure. The main reason for this was the time it would take to get access to the environment, and the fact
that the internal environment could only be accessed through a VDI, which would significantly reduce the
workflow efficiency.

To take full advantage of Git and to avoid overhead, some rules were set up beforehand. First of all: all
development should be done in separate branches. This is a common practice when working with Git and
ensures that the master branch always contains a stable, working version. Besides that, after work on a feature
is done, all conflicts with the master should be resolved before a pull request is opened. Pull requests should
then be reviewed by at least two other team members before they can be merged with the master, after which
the branch is archived.

By following these rules, it was ensured that the code base stayed clean and that all team members could
work in parallel on their own features without introducing overhead. An example of the Bitbucket usage can
be seen in 7.1.

Figure 7.1: Overview of commits

Continuous Integration
Another helpful tool was Pipelines, an add-on for Bitbucket. Pipelines are a continuous integration tool which
integrates with the git repository. The idea behind continuous integration is that when new code is added to
the code base, this code is verified by compiling the code and running tests. This ensures that integration of
the new code in the code base is done correctly or shows a warning when there is something wrong.

In the project, Pipelines was used to run a Maven script on every commit done to an open pull request, or
to the master, i.e. a merge from a feature branch to the master. This decision was made because the resources
on the Pipelines platform were limited by the free plan which was used. By always verifying the feature branch
before, and the master after a merge, a stable master branch is guaranteed. An overview of the Pipelines usage
can be seen in 7.2.

7.3.2. Project Management
When doing a project with a team, an overview of tasks and progress is important. To make sure such an
overview was available at all times, different tools were used.

Trello
With larger software projects, keeping track of the backlog and the division of tasks can get complicated. To
keep the project manageable and structured, Trello was used. Trello is a simple online tool, in which cards
with tasks or issues are divided in different columns representing the state of the task.

An overview of how Trello was used can be seen in 7.3. A card was created for every issue or feature that
was to be mplemented. Each of these cards was tagged with a colour code representing the section of the

7.3. Project Tools 35

Figure 7.2: Continuous integration with Bitbucket Pipelines

project it belongs to, e.g. back-end, user-interface or report; and the team member that is currently working
on it. Each of these cards started in backlog and was moved to the next column according to the development
phase that it was in.

Using Trello this way ensured that it was clear what was done and still had to be done, and who was
working on what task at each moment.

Figure 7.3: Project management with Trello

Google Drive
Besides lots of code, other resources and files had to be shared among team members. Therefore Google
Drive was used to efficiently share media, meeting notes and reference material with each other.

8
Evaluation

In the following section the project will be evaluated. Firstly the feedback from SIG will be discussed. After
that, a short general evaluation of the project will be given, followed by an evaluation by the Rabobank of the
project and product.

8.1. SIG Code Evaluation
There were two moments the code quality was checked by SIG, at the end of week 6, and at the end of week 9.
The original feedback, received in Dutch, can be found in Appendix C. Below, the results of these two reports
are summarised.

8.1.1. First Review
Our first submission received a score of 3.9 on a scale of 1 to 5, meaning that the maintainability of the code
is on par with industry standards. Reasons for not scoring the full 5 out of 5 score are the presence of code
duplication and unit size of some methods.

Code duplication complicates the maintenance of the code: when updating a section of code, all of its
copies have to be updated as well, resulting in more work. It also increases the risk of forgetting one of those
copies.
Code duplication was found in the following classes:

• backend/src/main/java/Main.java en backend/src/main/java/api/APIApplication.java

• backend/src/main/java/warning/MediumPriorityWarning.java en
backend/src/main/java/warning/HighPriorityWarning.java en
backend/src/main/java/warning/LowPriorityWarning.java

• backend/src/main/java/analysis/BhattacharyyaResult.java en
backend/src/main/java/analysis/MarkovResult.java

The unit size score represents the percentage of code that has an above average length. Reducing the meth-
ods to have a single responsibility removes the need to have comments in between the code and implicitly
documents the functionality through the method’s name.
The following methods with a too large unit size were found:

• StreamHandler.handleFinalEvent(JSONObject,Hashtable)

• MarkovChain.combineWith(MarkovChain,int)

SIG found the presence and amount of tests promising, stating that they hoped that new tests will be added
along new production code. Their overall conclusion is that there is still room for improvement, with the
hope that this improvement can be realised during the rest of the project.

37

38 8. Evaluation

8.1.2. Second Review
On our second review, no actual score was given. However, the feedback indicates that while the amount of
code has grown, the maintainability still improved.
It is noted that the feedback from the first evaluation has been used to improve the code, which resulted in
higher scores, especially in the code duplication category. Besides that, SIG indicates that it is good to see
that the amount of test code has grown along with the amount of production code.
SIG concludes that the feedback from the first evaluation has been taken into account in the development
process.

8.2. Performance Evaluation
The QR device registration process is relatively small scaled. Every Rabobank costumer only has to go through
the process once for each device they want to register, but modern consumers having more devices, people
resetting their device or people accidentally starting the process results in around 2500 processes started
every day. This in turn, results in around 27000 log lines for each day. While this is still a relatively low
amount, the developed tool is process-agnostic and should also be able to analyse a much higher throughput
of log lines. In order to test what the tool is capable of, 30 days of historical data (827447 lines) was parsed,
processed and analysed as fast as possible. The program ran on a laptop with a Intel Core i7 processor and
16GB of RAM, the results are in the table below.

Run time, average of 5 runs Events per second
Back end 179.4 seconds ≈4612

Back end + front end 197 seconds ≈4200

Table 8.1: Results of performance tests with the back end and front end of the application.

As can be seen, the application is able to parse, process and run analysis on 30 days of data in just under
three minutes, with the front end only having a small impact on the performance when ran on the same
device. The average performance requirement for the QR device registration process is about 0.3 events per
second (eps), calculated by dividing the average amount of events per day by the amount of seconds per day.
Looking at the performance test results, the application can handle around 4200 eps (total events divided by
the run time). This shows that the application, in its current form, is more than capable of handling the data
for the QR device registration process in real-time and could even be used for the analysis of processes with a
higher throughput.

8.3. Project Evaluation
We started discussing our project at Rabobank a few weeks before starting the actual project. Erik Troos-
theijden and Mireille Brooijmans welcomed us in the headquarters of the Rabobank in Utrecht, where we
discussed the terms and scope of the project. The first topic we agreed on was ’Using AI in creating self heal-
ing IT systems’. All of us were very excited to work on such a challenging subject.

While discussing this topic with our soon to be supervisor from Delft University of Technology, Sicco Ver-
wer, we quickly came to the conclusion that this subject’s scope was too broad and complex for us to achieve
a good result in the limited time we were given. After some discussion, we came to the conclusion that this
project would focus on detecting anomalies in QR device registration process of the Rabobank mobile appli-
cation.

On the first day of our project, we were invited to a seminar on development in the cloud, hosted by Rabobank.
This was a big event where two speakers came on stage to give informational and motivational lectures on
cloud development. The event made us even more enthusiastic for the project.

Finding and reviewing literature went well after Sicco pointed us in the right direction, and we quickly
had a basic understanding of what had to be done for the project. However, not everything moved as quickly
as we did and the continue with our assignment, we needed data to work with. The Rabobank processes a lot
of data that should be handled with care. Therefore, it took us some time to acquire data from the Rabobank
that was suited to work with on our own laptops. After receiving the first batch of data, we stayed in close
contact with Rabobank’s software architect who provided us with more data and helpful feedback along the

8.4. Evaluation by the Rabobank 39

road.
We, the project group, worked together well on achieving a fast and good looking application for the

Rabobank employees, pushing out new and improved features every week. Every time we had meetings at
Rabobank and with our supervisor at Delft University of Technology, we could show something new and im-
proved. The reactions were always very positive and we received constructive feedback on which we strove
to improve our release for the next week.

Looking back at the project, our dedication and collaboration as a group helped us in delivering the final
product successfully. There was never any bad blood among us. We can say that we are all proud of the final
product and our progress throughout the project.

8.4. Evaluation by the Rabobank
Throughout the entire project we have kept in close contact with our project supervisor and other colleagues
at Rabobank. We have asked our supervisor, Erik Troostheiden, to write a short evaluation of the project from
his perspective.

Dear Arthur, Maikel, Ties and Ricardo,

Since I am not a subject matter expert, I will focus on how you handled the assignment.

We started with defining the detailed scope together to find the optimal combination of business
value for Rabobank and small enough to finish within the given time frame.

During the execution of the assignment you initiated update meetings with me and asked for
contact persons within the Rabobank organisation where you could get information or further
assistance.

In this way you worked very independently without losing side of the Rabobank stakeholders.
Within no-time you built a network within Rabobank with the people you needed.

I am honestly very impressed on how independently you worked and how you all really took
ownership of everything needed to finish the job.

Thanks for the good job and we will certainly use it!

Kind Regard,

Erik Troostheiden

Deliverymanager Online Access
Rabobank Nederland
erik.troostheiden@raboank.nl

mailto:erik.troostheiden@raboank.nl

9
Ethics

Any project, in software development or not, has to keep its ethical impact in mind. However, anticipating
these ethical implications is often difficult, especially because human psychology and culture is very complex
and nuanced. Still, general trends can be predicted. There are two main ethical aspects which this project
touched upon. Firstly, it was commissioned by a bank, which has some inherent ethical implications in and
of itself. Secondly, the developed application handles data, part of which is privacy-sensitive data. In this
section, both of these aspects will be explored more in-depth.

9.1. Working at a Bank
On a daily basis, employees of financial institutions and particularly banks make decisions that potentially
impact the lives of lots of people. They directly work with large sums of money and, as banks are still com-
panies, they are focused on making profit. In this goal of maximising profit, difficult ethical dilemmas often
arise.

Since the global financial crisis and the eurozone crisis earlier this decade, the behaviour of banks, their
management and employees have been getting more and more attention by the public. Banks and their
directors were heavily criticised for their roles in the crisis. They were often blamed for their excessive risk-
taking to increase their short-term profits, while their ’too big to fail’ status meant they needed to be saved
with public money, also sparking anger [4], [9]. This place in the spotlight of the public results in every misstep
again provoking a negative reaction by the public and government [10].

In an effort to improve the situation at banks and avert a crisis like this or similar ethical dilemmas, mea-
sures were taken by the government and banks themselves. Banks were nationalised, salaries and bonuses
were capped and oversight on banks was improved [10]. One of these measures we encountered during our
time at the Rabobank was the banker’s oath. The banker’s oath is a moral/ethical declaration with the goal
of improving bank employees’ awareness about possible ethical dilemma’s. Everyone employed at a bank is
obligated to take the oath, which consists of eight statements about how an employee should handle during
their employment, followed by the statement ’so help me god’ or ’this I declare/pledge and promise’ [1].

Although we all took the banker’s oath as required by law, it was somewhat less relevant in our situation.
As temporary interns, we did not have any direct responsibilities towards customers. Other, more generic
statements from the oath did apply, like keeping confidentiality and the abuse of knowledge were somewhat
relevant and, as we took the oath, certainly kept them in our minds during the project.

9.2. Handling Data
Another aspect of software development that could lead to ethical dilemmas is the usage of user data. In
recent years, the mass collection and analysis of sensitive personal data has often been the topic of discussion,
with countless scandals topping the headlines. While most of them concern massive companies storing even
more massive amounts of data, keeping user privacy in mind is important in every software project.

Software development at a bank holds some challenges on its own. The data that a bank needs to prop-
erly perform its job, like citizen service numbers (BSN) and personal financial information like balance and

41

42 9. Ethics

account numbers, are often deemed very sensitive. Handling this data with care is therefore of great impor-
tance, and applications should only be able to access the data they need and make sure that users can only
access their own data.

The data we used for our project consisted of log files collected in Splunk. Every line in these files repre-
sented an event generated by an application or step in the QR device registration process. Besides essential
information like a time stamp, session id and the type of event, other more sensitive information was present.
The unredacted version of the data set contained, for example, the account numbers of the user, identifying
information like an IP-address, whether or not it was a personal or business user and the model of the used
device.

A part of these fields were redacted before we received the data, like account numbers and IP-addresses,
as they were in no way necessary or useful for our application. After identifying the useful data for our appli-
cation later in the development phase, we redacted all the fields that weren’t used by our application, before
feeding the data to our application. These included the personal or business identifier and some fields from
the device properties like MAC-address. By removing those fields and only show results of analysing the data
in the application, the risk of personal data leaking out is minimised without the loss of functionality.

10
Conclusion

The goal of the project was to create a tool which could, in real-time, detect anomalies in the log data of the
QR device registration at the Rabobank. This section will first reflect on the goals which were set, on the basis
of the MoSCoW principle, and after that reflect on the project in general.

10.1. Reflection on Product Requirements
After talking with the client, the Rabobank, a MoSCoW list of product requirements was made. In the table
below an overview is given of which points have and have not been implemented in the final product. One of

MoSCoW requirement Implemented?
M: Learn individual distributions X
M: Anomaly detection in event distribution X
M: Warnings X
M: Static GUI X
S: Customisable warnings X
S: Interactive GUI X
S: Interactive graphs X
S: Combining data X
S: Visualise session
S: Process agnosticism X
S: Real-time processing of logs X
C: Data agnosticism X
C: Detection of session patterns
C: Export to Excel
C: Common factor session
W: Prediction of future anomalies.

Table 10.1: MoSCoW list of requirements, as described in chapter 2

the should haves, Visualising a session, has not been implemented. This was a conscious decision, as the goal
of the application was to handle data in real time. When handling data in real-time, data is often discarded as
soon as it has been analysed. By doing this, visualising a single session becomes very difficult, which is why
the decision was made to discard this point.

The last Should have, Real-time processing of logs, has not been implemented fully. This is because it
would take far too long to get the proper permissions inside the Rabobank to be connected to the live stream
of log data. However, the application pretends the data from files that are read is a stream, meaning it would
take minimal effort to connect it to an actual real-time stream.

Because the client requested a more polished GUI, this is what was focused on in the later weeks. The
GUI has subsequently progressed a lot during this period, as can be seen in subsection 5.2.2. Because of the
progress made in the GUI, there was less focus on the remaining Could haves. Regardless, most of the goals
set have been reached.

43

44 10. Conclusion

10.2. Final Remarks
All in all, the project can be considered a success. The original goal was to create a tool which could, in real-
time, detect anomalies in the log data of the QR device registration at the Rabobank, which is exactly what
was made. Not all product requirements and features were implemented to the same degree, but overall the
product is satisfactory and works as intended. Per chapter 8, all the parties involved are happy with the final
product, and the code quality is also up to par.

11
Recommendations

Now that the project has been concluded, it is time to look at the future. In this chapter, some recommen-
dations will be made to the Rabobank on how to further improve the developed application. Each section in
this chapter describes a part of the program which can be extended.

Connecting to a live data stream
Due to the nature of banks, and the limited time allocated for the project, it was not possible to connect the
application to the actual live feed of log data. Instead, historical data was used to mimic such a live feed.
Engineers at the Rabobank will not face these kinds of problems, so a connection to the live feed of data
should be relatively easy to implement. In fact, they could also use the Splunk API to routinely create an
export of historical data and saving it in a certain folder, which would render the implementation of a live
connection trivial.

Further extension on KPI anomaly detection
Methods to detect anomalies on distributions, Markov chains and simple graph KPIs have been implemented.
However, as time was limited, anomaly detection on more complex KPI structures like stackedbar charts were
not implemented. Since useful information is extracted from the provided log data and this data lives well
formatted within the KPI classes described in subsection 5.1.2, the implemented methods to detect anomalies
can easily be extended.

Moreover, Neural Networks could be used to detect and predict anomalies on the extracted data. Recall
that the data of Graph KPIs, as earlier defined, consist of merely two arrays of equal size, with one axis be-
ing time, and is therefor actually time series data. This 2-dimensional data could be used to train a Neural
Network. Fabio Lattario Fonseca, an employee at the Rabobank, together with a small group of colleagues, is
exploring the possibilities of using a Long Short Term Mermory Neural Network (LSTM NN). We’ve had the
pleasure of attending a meeting where problems like the lack of erroneous data arose. Their idea was to train
a LSTM NN on normal behaviour of a system and assume that when the network was unable to recognise the
current behaviour, abnormal behaviour i.e. anomalies were detected. During this meeting, a crash course
on Neural Networks, LSTM in particular, was given and a start on the actual network was made. A proof of
concept was implemented and seemed very promising.

While the meeting focused on training a model on different data, implementing such a network could
improve the performance and accuracy of the currently implemented program significantly. Also, Neural
Networks aim to predict anomalies and potential outages. We therefor strongly recommend the Rabobank to
explore these opportunities.

45

Bibliography

[1] The banker’s oath, Apr 2016. URL https://www.tuchtrechtbanken.nl/en/the-bankers-oath.

[2] A. Bhattacharya. On a measure of divergence between two statistical populations defined by their prob-
ability distributions. Bulletin of the Calcutta Mathematical Society., 35:99–109, 1943.

[3] Yoonsik Cheon and Gary T Leavens. A simple and practical approach to unit testing: The jml and junit
way. In European Conference on Object-Oriented Programming, pages 231–255. Springer, 2002.

[4] Rutger Claassen. Financial crisis and the ethics of moral hazard. Social Theory and Practice, 41(3):527–
551, 2015. ISSN 0037802X, 2154123X. URL http://www.jstor.org/stable/24575743.

[5] Ian G Clifton. Android user interface design: implementing material design for developers. Addison-
Wesley Professional, 2015.

[6] Stijn Dongen. A cluster algorithm for graphs. Technical report, CWI, Amsterdam, The Netherlands, The
Netherlands, 2000.

[7] Jenna Erickson. 2015 was the year of material design, Jun 2018. URL https://usabilitygeek.com/
2015-was-the-year-of-material-design/.

[8] Abida Haque, Alexandra DeLucia, and Elisabeth Baseman. Markov chain modeling for anomaly detec-
tion in high performance computing system logs. In Proceedings of the Fourth International Workshop
on HPC User Support Tools, page 3. ACM, 2017.

[9] Øyvind Kvalnes and Salvör Nordal. Normalization of questionable behavior: An ethical root of the
financial crisis in iceland. Journal of Business Ethics, Feb 2018. ISSN 1573-0697. doi: 10.1007/
s10551-018-3803-8. URL https://doi.org/10.1007/s10551-018-3803-8.

[10] Bart Meijer. Dutch government launches new bid to curb bankers’ pay,
2018. URL https://uk.reuters.com/article/netherlands-government-banks/
dutch-government-launches-new-bid-to-curb-bankers-pay-idUKL8N1YN2FM.

[11] Tim Oates, Laura Firoiu, and Paul R Cohen. Clustering time series with hidden markov models and
dynamic time warping. In Proceedings of the IJCAI-99 workshop on neural, symbolic and reinforcement
learning methods for sequence learning, pages 17–21. Citeseer, 1999.

[12] Rabobank. Rabobank group interim report 2015, 2015. URL https://www.rabobank.com/en/
images/rabobank-group-interim-report-2015.pdf.

[13] Raquel Sebastião, João Gama, Pedro Pereira Rodrigues, and João Bernardes. Monitoring incremental
histogram distribution for change detection in data streams. In International Workshop on Knowledge
Discovery from Sensor Data, pages 25–42. Springer, 2008.

[14] Stefan Trueck and Teodosii Rachev. Measures for Comparison of Transition Matrices, pages 129–143. 12
2009. ISBN 9780123736833. doi: 10.1016/B978-0-12-373683-3.00008-7.

[15] vis.js. vis.js - a dynamic, browser based visualization library., 2019. URL https://visjs.org/.

[16] James A Whittaker. What is software testing? and why is it so hard? IEEE software, 17(1):70–79, 2000.

[17] Ian T. Young. Proof without prejudice: Use of the kolmogorov-smirnov test for the analysis of histograms
from flow systems and other sources. The Journal of Histochemistry and Cytochemistry, 25:935–941, 01
1977.

47

https://www.tuchtrechtbanken.nl/en/the-bankers-oath
http://www.jstor.org/stable/24575743
https://usabilitygeek.com/2015-was-the-year-of-material-design/
https://usabilitygeek.com/2015-was-the-year-of-material-design/
https://doi.org/10.1007/s10551-018-3803-8
https://uk.reuters.com/article/netherlands-government-banks/dutch-government-launches-new-bid-to-curb-bankers-pay-idUKL8N1YN2FM
https://uk.reuters.com/article/netherlands-government-banks/dutch-government-launches-new-bid-to-curb-bankers-pay-idUKL8N1YN2FM
https://www.rabobank.com/en/images/rabobank-group-interim-report-2015.pdf
https://www.rabobank.com/en/images/rabobank-group-interim-report-2015.pdf
https://visjs.org/

A
Original Project Description

Using AI in creating self healing IT systems

Organisation background
The Rabobank Online department is responsible for the IT for www.rabobank.nl, Online banking (web and
app).

Goal
As department we want to improve the availability of our systems by applying Artificial Intelligence. Some-
times also referred to as AIOPS. The aim for the students assignment is to make the first steps here, where the
end ambition is that 90% over are outages should be prevented by AI.
If you look at logical stages in applying AI in an IT OPS environment you can think of:

1. Collect data;

2. Use Algorithms to analyse data;

3. Give an automated advice on action to be taken;

4. Executing the action advised.

After the 2 weeks literature study at the start of the assignment, it is to be determined what a realistic end goal
could be.

Technical
We are using tools like Splunk and Zabbix which should be usable as a environment in creating these kind of
AI solutions. Or at least a view of the necessary steps.

49

www.rabobank.nl

B
Infosheet

General Information
Project Title: Real-time Anomaly Detection in Critical Rabobank Processes.

Organization: Rabobank, Online Department

Date of Final Presentation: 05-07-2019, 11:00 AM

Project Description
Real-time processing of log data can give valuable insights in the behaviour of systems. The Rabobank is a
large bank with several critical systems. One of such systems is the QR device registration process. In order to
monitor this process, an application was built which detect abnormal behaviour. The application reads the
log data, parses it to interpret it better, and then analyses it. Analysing is done by fitting distributions of the
duration of each step in the process, and checking for anomalies in new incoming data. Finally, a dashboard
was made in which the analysis and the distributions are visualised. More information is also available in the
dashboard, like a Markov chain of the process and several Key Points of Interest.

Team Members
• Arthur Breurkes - A.R.Breurkes@student.tudelft.nl

• Ricardo Jongerius - R.Jongerius@student.tudelft.nl

• Maikel Kerkhof - M.M.H.A.Kerkhof@student.tudelft.nl

• Ties Westerborg - T.D.Westerborg@student.tudelft.nl

Coach
Dr.ir. Sicco Verwer, TU Delft - S.E.Verwer@tudelft.nl

Clients
Erik Troostheiden, Rabobank - Erik.Troostheiden@rabobank.nl
Mireille Brooijmans, Rabobank - Mireille.Brooijmans@rabobank.nl

The final report for this project can be found at https://repository.tudelft.nl

51

https://repository.tudelft.nl

C
SIG Feedback

C.1. First Review
The original feedback received in Dutch from the Software Improvement Group on our code submitted in week
6 of the project.

De code van het systeem scoort 3.9 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
marktgemiddeld onderhoudbaar is. We zien Duplication en Unit Size vanwege de lagere deelscores als mo-
gelijke verbeterpunten.

Bij Duplication wordt gekeken naar de hoeveelheid gedupliceerde code. We kijken hierbij ook naar de
hoeveelheid redundantie, dus een duplicaat met tien kopieën zal voor de score sterker meetellen dan een
duplicaat met twee kopieën. Vanuit het oogpunt van onderhoudbaarheid is het wenselijk om de hoeveel-
heid gedupliceerde code zo laag mogelijk te houden. Na verloop van tijd zal de gedupliceerde code moeten
worden aangepast. Dit leidt niet alleen tot extra werk, aangezien op dat moment alle kopieën tegelijk moeten
worden veranderd, maar is ook foutgevoelig omdat de kans bestaat dat één van de kopieën per ongeluk wordt
vergeten.
Voorbeelden in jullie project:

• backend/src/main/java/Main.java en backend/src/main/java/api/APIApplication.java

• backend/src/main/java/warning/MediumPriorityWarning.java en
backend/src/main/java/warning/HighPriorityWarning.java en
backend/src/main/java/warning/LowPriorityWarning.java

• backend/src/main/java/analysis/BhattacharyyaResult.java en
backend/src/main/java/analysis/MarkovResult.java

Bij Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Dit kan verschillende
redenen hebben, maar de meest voorkomende is dat een methode te veel functionaliteit bevat. Vaak was de
methode oorspronkelijk kleiner, maar is deze in de loop van tijd steeds verder uitgebreid. De aanwezigheid
van commentaar die stukken code van elkaar scheiden is meestal een indicator dat de methode meerdere
verantwoordelijkheden bevat. Het opsplitsen van dit soort methodes zorgt er voor dat elke methode een
duidelijke en specifieke functionele scope heeft. Daarnaast wordt de functionaliteit op deze manier vanzelf
gedocumenteerd via methodenamen.
Voorbeelden in jullie project:

• StreamHandler.handleFinalEvent(JSONObject,Hashtable)

• MarkovChain.combineWith(MarkovChain,int)

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid testcode ziet er ook goed uit,
hopelijk lukt het om naast toevoegen van nieuwe productiecode ook nieuwe tests te blijven schrijven.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van de
ontwikkelfase te realiseren.

53

54 C. SIG Feedback

C.2. Second Review
The original feedback received in Dutch from the Software Improvement Group on our code submitted in week
9 of the project.

In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoudbaarheid is
gestegen.
We zien dat de verbeterpunten uit de feedback op de eerste upload zijn aangepast, en op deze gebieden is
dan ook een verbetering in de deelscores te zien. Zeker bij Duplication is het jullie gelukt om een grote ver-
betering te realiseren. Ook is het goed om te zien dat er naast nieuwe productiecode ook nieuwe testcode is
geschreven.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn meegenomen
in het ontwikkeltraject.

	Introduction
	QR Device Registration
	Problem Analysis
	Data Format

	Use Cases & Requirements
	Use Cases
	MoSCoW

	Background
	Detecting anomalies
	Distributions
	Markov models

	Software Design
	Back end
	Parser
	Analysis

	Front end
	Data Visualisation
	Warnings

	Implementation
	Back end
	StateController
	Analysis
	API

	Front end
	Design Language
	Front-end Timeline

	Testing
	Technical Testing
	JUnit
	Mockito

	User Testing

	Process
	Development Paradigm
	Planning
	Project Tools
	Version Control
	Project Management

	Evaluation
	SIG Code Evaluation
	First Review
	Second Review

	Performance Evaluation
	Project Evaluation
	Evaluation by the Rabobank

	Ethics
	Working at a Bank
	Handling Data

	Conclusion
	Reflection on Product Requirements
	Final Remarks

	Recommendations
	Bibliography
	Original Project Description
	Infosheet
	SIG Feedback
	First Review
	Second Review

