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SUMMARY
Unconventional Reservoir simulations involve several challenges not only arising from geological
heterogeneities, but also from strong nonlinear physical coupling terms. All exiting upscaling and
multiscale methods rely on a classical sequential formulation to treat the coupling between the nonlinear
flow-transport equations. Unfortunately, the sequential strategies become severely inefficient when the
flow and transport equations are strongly coupled. Examples of these cases include compositional
displacements, and processes with strong capillarity effects. To extend the applicability of the multiscale
methods for these challenging cases, in this paper, we propose a Constrained Pressure Residual Multiscale
(CPR-MS) method. In the CPR-MS method, the CPR strategy is used to formulate the pressure equation,
the approximate conservative solution of which is obtained by employing a few iterations of the iterative
multiscale procedure. Several local- (ILU(k), BILU(k),  etc.) and global-stage (Multiscale Finite Volume,
MSFV, and Multiscale Finite Element, MSFE) solvers with different localization conditions (Linear BC,
Reduced Problem BC, etc.) are employed in order to find an optimum strategy for the highly nonlinear
compositional displacements. Numerical results for a wide range of test cases are presented, discussed and
future studies are outlined.
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 Introduction

Mathematical formulation of multicomponent multiphase flow in heterogeneous large-scale porous me-

dia entails highly heterogeneous multiscale nonlinear and linear parameters. Development of efficient

numerical methods, therefore, depends on correct treatments of both highly heterogeneous multiscale

parameters and strongly nonlinear coupling terms. The former challenge has been widely addressed

through several studies in the literature, among which the multiscale finite element (MsFEM) and finite

volume Methods (MsFVM) cast a promising next-generation simulation framework (Hou and Wu, 1997;

Jenny et al., 2003, 2006; Efendiev and Hou, 2009).

The MsFVM has been applied to a wide range of applications involving compressible and three-phase

flows (Lunati and Jenny (2008); Zhou and Tchelepi (2007); Lee et al. (2008); Hajibeygi and Jenny

(2009, 2011); Hajibeygi and Tchelepi (2014)), complex well configurations (Wolfsteiner et al. (2006);

Jenny and Lunati (2009)), and fractures (Hajibeygi et al. (2011)). The method has been also applied for

efficient transport solutions (Zhou et al. (2011)) and to reservoir models with unstructured grids (Moyner

and Lie (2014)).

Recent advancements in the multiscale methods for reservoir simulation involve scalable conservative

iterative solvers (namely, i-MSFV, TAMS, and AMS) for nonlinear and linear problems (Hajibeygi et al.,

2008; Lunati et al., 2011; Zhou and Tchelepi, 2012; Hajibeygi and Jenny, 2009; Wang et al., 2014;

Kunze et al., 2013; Cortinovis and Jenny, 2014). Note that only a few iterations are required to achieve

accurate pressure solutions, used to solve transport equations, because conservative velocity fields can

be constructed after any MSFV stage (Hajibeygi et al., 2012).

All multiscale methods listed above treat the coupling between flow and transport equations by adopting

a sequential (IMPES- or sequential implicit- type) strategy (Spillette et al., 1973). Consequently, as with

many similar multiscale and upscaling approaches, they are efficient when the coupling terms are not

strong (Coats et al., 1974). Unfortunately, when the coupling terms between flow and transport equations

grow in importance, sequential strategies are not efficient. Strong coupling terms exist, for example, in

multiphase formulations with strong capillary and compositional effects. For these cases, fully implicit

systems are generally more stable than sequential strategies (Younis, 2009; Cao, 2002). Therefore, there

is an increasing demand in the reservoir simulation community to develop multiscale methods for fully

implicit systems.

In this work, we devise the first multiscale (MS) method for fully implicit simulations of multiphase

flow in highly heterogeneous porous media. Starting from the fully implicit Jacobian, a constrained

pressure residual (CPR) preconditioning method (Wallis et al., 1985; Cao et al., 2005) is used to extract

the pressure system. This pressure system is then coupled with a second-stage solver for the full residual

correction, as is done in the classical CPR-based fully implicit solvers (Wallis et al., 1985; Cao et al.,

2005).The innovative development of this work is that the MsFEM or MsFVM method is employed to

obtain an approximate solution of the CPR-based pressure system. More precisely, the global solver

is based on a multiscale coarse-scale system (either MsFVM or MsFEM), before and after which pres-

moothing and post-smoothing steps are applied on the fine-scale solution to eliminate high-frequency

errors. This multistage multiscale strategy combines the advantages of multiscale methods with the

stability of fully implicit systems for highly coupled problems. As such, being integrated in the fully

implicit iterative procedure, the CPR-MS captures the strong nonlinear coupling terms efficiently.

Numerical results, presented for heterogeneous three-dimensional cases, illustrate the efficiency of the

CPR-based multiscale solver. The CPR-MS is an important development that puts the next-generation

multiscale-based reservoir simulators into the context of strong nonlinear physics.
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 CPR-based Fully Implicit Reservoir Simulation

Mathematical formulation of multicomponent/multiphase fluid flow in hydrocarbons reservoirs leads to

a nonlinear coupled system of partial differential equations (PDEs) (Aziz et al., 2005). To solve the

strongly nonlinear and coupled system of discretized equations arising from the spatial and temporal

discretization of the governing equations, a global linearization Newton-Raphson method is used (Aziz

et al., 2005). This global linearization results in sparse, large, linear systems of equations, i.e.,

JΔX =

[
Jpp Jps

Jsp Jss

][
Δxp

Δxs

]
= r =

[
rp

rs

]
, (1)

where Jpp is the pressure block coefficients, Jss is the nonpressure block (saturations or components’

molar fractions) coefficients, Jps and Jsp represent the respective coupling coefficients. Δxp and Δxs

are the increments of pressure (primary variables) and of the other (secondary) variables (e.g., satura-

tions and components’ molar fractions). In many practical scenarios, the linear solver step represents

a dominant part of the whole computational time. It is a well-known fact that performance of iterative

linear solvers strongly depends on robust and fast preconditioners, amenable for massive parallelization.

Additionally, for realistic-scale problems, the memory requirement to store the sparse Jacobian linear

systems becomes an important issue.

Linear solvers generally used in reservoir simulations consist of preconditioned Krylov subspace meth-

ods such as ORTHOMIN with nested factorization as a preconditioner (Appleyard, 1983). A significant

improvement in preconditioning strategy of linear systems arising from reservoir simulations was made

by introducing the CPR method (Wallis, 1983; Wallis et al., 1985). The CPR preconditioner acknowl-

edges the fact that Eq. 1 is of a mixed parabolic- (or elliptic-) hyperbolic type. By targeting the parabolic

part of the system (or elliptic for incompressible flow) as a separate inner stage, the CPR method im-

proves the convergence rate for the full linear system, based on a pressure predictor-corrector strategy

for each linear step. The pressure equation is constructed by an IMPES-like reduction of Eq. 1 in which

both sides are multiplied by a matrix of the form (i.e., Schur complement with the matrix Jss)

M =

[
I −Q
0 I

]
(2)

to obtain [
J∗pp J∗ps
Jsp Jss

][
Δxp

Δxs

]
=

[
r∗p
rs

]
(3)

where

J∗pp = Jpp −QJsp,

J∗ps = Jps −QJss,

r∗p = rp −Qrs.

To simplify the Schur complement procedure, it is assumed that

Q = JpsJ−1
ss ≈ Q · I with Q = colsum(Jps) · colsum(Jss)

−1 (4)

where matrices Jps and Jss are replaced by vectors whose elements are the sums of each column. This

implies that J∗ps is approximately equal to zero, i.e.,

J∗ppΔxp ≈ r∗p. (5)

or that the pressure matrix can be extracted as follows:

J∗pp = CT MJC, CT =
[
I 0

]
. (6)
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 The effectiveness of CPR methods depends, to a large extent, on the quality of the pressure matrix

J∗pp = CT MJC. Several methods can be used to extract J∗pp, such as quasi-IMPES and true-IMPES. For

the quasi-IMPES scheme, we ignore the off-diagonal Jps terms and eliminate the diagonal part of Jps

using the inverse of the block-diagonal of Jss.

Equation (5) is the pressure equation. It forms an approximation of the parabolic (or elliptic for incom-

pressible flow) part of the discrete operator and is considered separately from the remaining hyperbolic

part.

The linear system (Eq. 1) is solved by GMRES (Saad and Schultz, 1986) preconditioned by the CPR

method. The preconditioner consists of two complementary stages. The first stage is used to approximate

the pressure solution by commonly applying algebraic multigrid (AMG) method to Eq. (5). In the

second stage, another preconditioner (e.g., the ILU(0) method) is applied to the full system of Eq. (1)

whereby the first-stage pressure approximation is used as the initial guess. The entire process for a given

timestep is schematically illustrated in Figure 1.

Formulation

Begin timestep n

Newton-Raphson

ILU(0)

AMG

CPR

FGMRES

Converge?
No

Yes

n=n+1

Figure 1 Reservoir simulator framework: GMRES preconditioned by a two-stage CPR preconditioner.

A linear solver based on CPR-AMG preconditioning is extremely effective in terms of algorithmic ef-

ficiency (Cao et al., 2005; Fung and Dogru, 2007). However, there are still challenges to overcome in

implementing a near-ideal scalable AMG solver. Also, the second stage of CPR preconditioning often

includes a variant of an incomplete LU factorization, which again is nontrivial to parallelize. As a result,

the linear solver is still some way from near-ideal scalability. In the following section, the CPR-MS

solver is described.
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 Multiscale Basis Functions

Analogously to finite element methods, multiscale methods use an approximation space that is spanned

by basis functions in overlapping subdomains forming a dual grid. In the present paper, we use multi-

scale finite element basis functions to create an approximation space for pressure of much lower dimen-

sion than the original simulation grid. The approximation space is constructed using a discretization for

pressure to capture the effect of fine-scale heterogeneity locally.

In the MsFEM and MsFVM methods, the discretization for pressure basis functions is obtained from

sequential formulation. The pressure residual is formed as in the IMPES formulation by eliminating

the unknown saturation from the mass balance equations. The pressure matrix is the Jacobian of the

pressure residual. Although the IMPES pressure discretization differs from CPR, it has been used with

success to precondition the fully implicit system (Watts, 1999).

Let the dual coarse grid (Figure 2) be a partition, D = {D1 . . . ,DM}, of the main grid into M overlapping

subdomains such that the overlap yields a discrete 3D mesh: each grid cell is classified as an inner
cell if it is not part of the overlap between subdomains. The overlapping region between subdomains is

partitioned into a set of face subdomains that form an overlap only between two partitions; the remaining

cells (wirebasket) are partitioned into edge subdomains connected by corner cells (Jenny et al., 2003).

Dual subdomain

Coarse subdomain

Figure 2 For the MsFE basis functions, the simulation grid is partitioned into overlapping subdomains
Di (red) where the cells in the overlap region (gray) form a coarse mesh. The MsFV method uses a
nonoverlapping partition (green).

For each subdomain Dk we compute basis functions φ k
i for each corner cell i ∈ Dk with the properties

that φ k
ij = δij for corner cells j. Each basis function φ k

i is a discrete solution to a homogeneous pressure

equation in the interior of Dk, and solves a reduced pressure equation on the face and edge subdomains

on the boundary of Dk (Hou and Wu, 1997). Alternatively, the basis function can be constructed using

meshless multiscale methods (MS-MMPFA) (Lukyanov, 2010, 2012). The discrete subdomain basis

functions created in this way are continuous across subdomain boundaries and, for a pure incompressible

problem without any source term inside the subdomains, we have by construction

n

∑
i=1

φ k
i = 1 (where n is the number of corners in Dk), (7)

for each subdomain Dk ∈ D . Thus, the coarse-scale approximation space includes constant functions.

In the following, we will use the multiscale basis functions as an interpolation operator. By collection
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 of all basis functions into a matrix P, we obtain a linear operator that interpolates pressures xc
p in the

wirebasket corner cells to the whole grid:

xp = Pxc
p. (8)

We will also need restriction operators R to form a linear system for the pressure in the wirebasket corner

cells. Herein, we consider two different restriction operators. One is to use RFE =PT. The application of

RFE to a vector x yields weighted sum of x for cells near each wirebasket corner cell. Applied to a linear

system, it yields a classical Galerkin-type coarse-scale approximation. The other restriction operator

we consider is a finite-volume type restriction RFV: For a nonoverlapping decomposition {Ω1, . . .ΩN}
(Figure 2) of the simulation grid, dual to D in the sense that each subdomain Ωi contains one (and only

one) wirebasket corner cell, the RFV is defined by

(RFV )ij =

{
1 if cell j ∈ Ωi,

0 otherwise.
(9)

Constrained Pressure Residual Multiscale (CPR-MS) Solver

The CPR-MS algorithm combines both steps of the CPR-AMG method (Cao et al., 2005) and of multi-

scale methods.

In fact, a fully implicit system is solved with a CPR-type two-stage preconditioners where an MS method

is used for solving the pressure system extracted by the CPR decoupling operator.

Starting from the Jacobian matrix J built with a fully implicit formulation, the whole solution strategy

can be summarized in six main steps:

1. Perform CPR preconditioning. The pressure matrix is extracted Acpr = CT MJC and the residual

is restricted to a pressure residual rp = CT r.

2. Construct the coarse pressure system using restriction (R) and prolongation (P) operators built

with the basis functions computed either with a finite element or finite volume multiscale method:

AM
cpr = RAcprP and rM

p = R · rp.

3. Solve the coarse pressure system and prolongate its solution to the fine scale: AM
cpr ·Δxc

p = rM
p and

Δxp = P ·Δxc
p.

4. Correct the full system residual using the fine scale solution: r∗ = r−J · (C ·Δxp).

5. Solve the corrected full system with a second stage preconditioner: Δx∗ = M−1 · r∗.

6. Combine the two solutions to build the full system solution: Δx = Δx∗+C ·Δxp.

Steps 1, 5, and 6 are exactly the same as those shown in the original CPR-type solver already imple-

mented in a modern reservoir simulator. Steps 2 and 3 are typical of multiscale methods. Thus, the

original two-stage preconditioning structure of the solution strategy shown in Cao et al. (2005) has not

been changed, but a different choice has been made for the solution of the pressure system.

Basis functions, needed for the construction of MS restriction (R) and prolongation (P) operators, are

computed at the beginning of each timestep and kept constant throughout the Newton loop. Updating

them at the end of each Newton iteration may be useful when large timestep sizes are used.

The coarse system can be solved (step 3) with different strategies, and various were tried in order to

find the optimal one. The choice of the solver for the coarse pressure system is strictly related to the
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 size of the coarse pressure matrix; this depends both on the size of the model and on the choice of the

coarsening factors. If the size of the coarse system is small enough, a direct solver can be used; for big

cases, to obtain a small, coarse pressure matrix, very large coarsening factors must be used. This may

slow down the computation of basis functions as a direct solver is usually used for this step; to avoid

this slow down, an iterative method should be used for the basis functions computation. The advantage

of doing that is that basis functions calculation is only done once per each timestep whereas a different

coarse system is solved for each Newton iteration. On the other hand, increasing the coarsening factors

too much may affect the accuracy of our pressure solution, and the number of nonlinear iterations may

grow.

Following the structure of a multigrid solver, pre- and post smoothing steps on the fine-scale pressure

solution were introduced. The fine-scale pressure solution is smoothed using either Gauss Seidel (GS)

or ILU(0) before and after step 3.

Examples

Tests were carried out on the test case SPE9; this is a 3-phase (water, gas, and oil) black oil case without

any capillary effect. The fine grid is 144×150×30, for a total of 648 000 cells (Figure 3).

Figure 3 Test case SPE9.

Results and performance were compared with the current version of a modern reservoir simulator which

uses CPR preconditioning with a 1 V-cycle AMG for solving the pressure system and ILU(0) as a

second-stage preconditioner. Thus, the solution obtained with the current version of a modern reservoir

simulator was used as a reference. The same second-stage preconditioner was used so that the only

difference is the solution strategy of the pressure system. Two different values for the minimum timestep

size were used which resulted in two completely different timestep selections throughout the simulation.

The maximum timestep size was always kept the same.

All results presented were obtained in serial runs. The algorithm should be highly parallelizable and its

potential should be even greater for parallel runs.

Results

First set of runs

For the first set of runs a minimum timestep size of 15 days was used. Finite element (FE) basis functions

were used. The coarsening factors for the three directions were (3,5,5), which resulted in a coarse grid

of 48×30×6, for a total of 8640 cells. With coarse pressure matrix of such a size, the direct methods



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 are very slow. For this reason, no results are presented for runs that use a direct solver on the coarse

pressure system.

Table 1 Settings of all runs for a minimum timestep size of 15 days

Runs Presmoothing Post-smoothing Coarse Solver
Run 1 GS GS AMG

Run 2 GS GS GMRES-AMG

Run 3 GS GS AMG

Run 4 none GS AMG

Before proceeding with the analysis of the performance in terms of number of linear iterations and CPU

time of the CPR-MS solver, it is important to make sure that the solution does not change. All results

were identical to the reference solution, as shown in Figure 4.

Figure 4 Field pressure and gas block saturation solutions for CPR-AMG (Case 1) and CPR-MS (Case
2), showing that the two solutions match perfectly.

Table 2 shows the results in terms of performance (number of iterations and CPU time) for the 4 runs

and for the current modern reservoir simulator configuration (CPR-AMG).

Table 2 Results of all runs for a minimum timestep size of 15 days

Number of iterations CPU time (s)
Runs Nonlinear iter. Linear iter. Linear solver Total
Run 1 369 2872 1615 2699

Run 2 369 2845 1119 2203

Run 3 371 3327 1233 2309

Run 4 371 3649 2026 3114

CPR-AMG 369 2187 1571 2537
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 We remark that the number of nonlinear iterations is almost constant. For run 3 and run 4 the heuristic

functionality, which already exists in the simulator, was used; it keeps AMG restriction and prolongation

operators constant for a certain number of iterations allowing a speed-up of the setup phase of the AMG

solver.

The CPR-MS algorithm needs a greater number of linear iterations than the original CPR-AMG; this

was actually expected as MS methods usually require a great number of linear iterations. Pre- and post-

smoothing help limit the growth in the number of linear iterations.

Table 3 summarizes the relative difference in CPU time between each run and the reference CPR-AMG

run.

Table 3 Δ% = Timerun−TimeCPR−AMG

TimeCPR−AMG
·100

Runs ΔΔΔ%

Run 1 + 6.38

Run 2 -13.17
Run 3 -8.99
Run 4 +22.74

Comparing the results of runs 3 and 4, we notice that introducing a presmoothing considerably reduces

the number of linear iterations, and it allows a substantial speedup. Using a three-iteration GMRES

cycle plus AMG is the most effective choice. If the correct settings are chosen, CPR-MS results are

more than 10 % faster than CPR-AMG results.

Second set of runs

For the second set of runs a minimum timestep size of 1 day was used. This was the only difference

between the two sets of runs; in fact, the same coarsening factors and FE restriction and prolongation

operators were used. The heuristic function was used for runs 8 and 9.

Table 4 Settings of all runs for a minimum timestep size of 1 day

Runs presmoothing Post-smoothing Coarse Solver
Run 6 GS GS GMRES-AMG

Run 7 none GS AMG

Run 8 none GS AMG

Run 9 GS GS AMG

Even for this set of runs, the CPR-MS solver solutions are perfectly matching with the ones provided

by the reservoir simulator used as a reference (Table 5). As expected, the number of linear iterations for

CPR-MS is much greater than the number for CPR-AMG.

Table 5 Results of all runs for a minimum timestep size of 1 day

Number of iterations CPU time (s)
Runs Non linear iter. Linear iter. Linear Solver total
Run 6 711 4210 1718 3887

Run 7 709 4804 3301 5576

Run 8 708 5254 1911 4085

Run 9 709 4658 3212 5472

CPR-AMG 706 2868 2718 4666
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 Results for the smaller timestep size (Table 6) seem to confirm what observed for the larger one. Using

presmoothing in this case does not seem to be as effective as in the previous one; in fact, by comparing

runs 8 and 9, in which the only difference is the presence of the presmoother, we observe that using a

presmoother slows down the simulation instead of speeding it up. A GMRES solver preconditioned by

AMG is still the best choice for the coarse pressure system solver.

Table 6 Δ% = Timerun−TimeCPR−AMG

TimeCPR−AMG
·100

Runs ΔΔΔ%

Run 6 - 16.69
Run 7 +19.5

Run 8 -12.45
Run 9 +17.27

Conclusions

Combining the fully implicit system with multiscale seems to present great potential; results obtained

with single processor simulations are encouraging as the CPR-MS solver, in many cases, is faster than

the current CPR-AMG solver. Multiprocessor simulations are expected to give even better results as

computation of basis functions should be highly scalable.
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