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Abstract

Wind energy becomes more and more popular since it is environmentally friendly. Wind farm
control is one of the most popular topics and it works on steering the wind farm to extract
energy from wind as much as possible. Generally, the model capturing wake effects between
turbines in the wind farm plays a role in wind farm control. The existing FLORIS model is
considered suitable for wind farm control due to the fact that it has the ability or potential
to capture wake features with reasonably computational costs. A drawback of the FLORIS
model is the lack of dynamics, which is improved by developing the FLORIDyn model.

This thesis focuses on a Gaussian FLORIDyn model. The objective is to explore the
possibility of improving the model accuracy by quantifying the associated uncertainty in the
model parameters. Uncertainty quantification consisting of sensitivity analysis and Bayesian
calibration is conducted based on a 3-Turbine case simulation using the UQLab software.
Since a MCMC algorithm associated with Bayesian calibration requires to evaluate the
FLORIDyn model multiple times, it can result in massive computational expenses when
directly applying the computational model to the simulation. To deal with this, a surrogate
model is first constructed to replace the original model. This thesis assesses two types of
approaches for surrogate model construction which are the Kriging-based approach and the
PCE-based approach. One approach is chosen after the comprehensive comparison in terms
of accuracy and efficiency. The constructed surrogate model is then applied to the sensitivity
analysis using Sobol’ indices to investigate how each model parameter of interest affects
the model output. Last, the high-fidelity SOWFA data are used as experimental data for
Bayesian calibration. Compared to non-calibrated model outputs, calibrated model outputs
are closer to the SOWFA data, which means that the accuracy of the FLORIDyn model is
improved.

Keywords FLORIS, FLORIDyn, surrogate model, sensitivity analysis, Bayesian calibration

Master of Science Thesis D.Shi



Table of Contents

Acknowledgements vii

1 Introduction 1
1-1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Wind farm control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-2-1 Open-loop model-free control . . . . . . . . . . . . . . . . . . . . . . . . 3
1-2-2 Open-loop model-based control . . . . . . . . . . . . . . . . . . . . . . . 3
1-2-3 Closed-loop model-free control . . . . . . . . . . . . . . . . . . . . . . . 4
1-2-4 Closed-loop model-based control . . . . . . . . . . . . . . . . . . . . . . 5

1-3 Wind farm modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1-3-1 High-fidelity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1-3-2 Medium-fidelity model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1-3-3 Low-fidelity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1-4-1 Existing research and corresponding scientific gaps . . . . . . . . . . . . 8
1-4-2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1-4-3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 FLORIDyn Model 10
2-1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2-1-1 Wind direction effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-1-2 Estimation of reduction factors . . . . . . . . . . . . . . . . . . . . . . . 11
2-1-3 Potential core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-1-4 Wake expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2-1-5 Wake deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-1-6 Power calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-1-7 Temporal dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Master of Science Thesis D.Shi



Table of Contents iii

3 Uncertainty Quantification 18
3-1 Surrogate modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3-1-1 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3-1-2 Polynomial chaos expansion (PCE) . . . . . . . . . . . . . . . . . . . . . 24

3-2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3-2-1 Sensitivity analysis using Sobol’ indices . . . . . . . . . . . . . . . . . . . 30

3-3 Bayesian calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3-3-1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3-3-2 Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3-3-3 Inverse solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3-3-4 Model predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3-3-5 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . . . . 35

3-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 3-Turbine Case Study 39
4-1 Simulation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4-2 Results and interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-2-1 Surrogate models for the 3-Turbine case of FLORIDyn . . . . . . . . . . 40
4-2-2 Sensitivity analysis using Sobol’ Indices . . . . . . . . . . . . . . . . . . 43
4-2-3 Bayesian calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Summary and conclusion 50
5-1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5-2 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5-3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

Glossary 60

Master of Science Thesis D.Shi



List of Figures

1-1 Gross electricity production in the EU-28 by energy sources from 2000 forecasted
to 2050 [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-2 The structure of locally greedy wind farm control [33] . . . . . . . . . . . . . . . 4
1-3 The structure of open-loop model-based wind farm control [33] . . . . . . . . . . 4
1-4 The structure of closed-loop model-free wind farm control [33] . . . . . . . . . . 5
1-5 The structure of closed-loop model-based wind farm control [33] . . . . . . . . . 5
1-6 FLORIS model by Gebraad et al. [46] . . . . . . . . . . . . . . . . . . . . . . . 7

2-1 The transformation depicted in Equation 2-3: The first pane depicts that there is
a turbine and a wind vector u in the world coordinate system. The second pane
depicts there is a wake in the wake coordinate system required to be transformed
into the world coordinate system. The third pane depicts all of the variables in the
wake coordinate system are rotated by the wind angle φ. The fourth pane depicts
the transformation is finished [17]. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-2 Wake shape depicted by wake zones and relevant parameters [17] . . . . . . . . 12
2-3 The processes that OPs transport state changes of the turbine through the wake:

In the first pane, OPs store the information on the wake at the rotor plane. Their
positions in the wake are determined according to the wake width. The dotted lines
denote the paths determined by the wake width. A chain consists of OPs on the
same dotted line. In the second pane, the new OPs (storing the same information
as the original OPs at the rotor plane) and the original OPs have travelled further
downstream at the wind speed. In the third pane, there is a variation of the
wake shape resulting from the yaw angle of the turbine. As a consequence, OPs
store different information and the color of these new OPs and the corresponding
(background) wake are also different. In the fourth pane, new OPs storing the
information after yawing the turbine follow the new paths [17]. . . . . . . . . . . 15

2-4 OP distribution across the wake cross section: The blue dots denote the OPs initial-
ized across the rotor plane depicted by the black circle. The orange arrows depict
during one time step OPs move to their new positions which can be determined
by Equation 2-22 [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3-1 Equation 3-5 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57]. . . 20

Master of Science Thesis D.Shi



List of Figures v

3-2 Equation 3-6 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57]. . . 21

3-3 Equation 3-7 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57]. . . 21

3-4 Equation 3-9 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57]. . . 22

3-5 Equation 3-10 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57]. . . 22

3-6 The typical behaviour of ϵLOO as the number of iterations increases in most prac-
tical cases [62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3-7 Flowchart for the procedures of uncertainty quantification. . . . . . . . . . . . . 38

4-1 The scenario in terms of the 3-Turbine layout. Different cell refinement areas
are marked with different colors. Three symbols for the upstream wind turbine
represent 0◦, 10◦ and 20◦ yaw orientations respectively. The arrow on the left
denoting the direction of wind is defined as 90◦. . . . . . . . . . . . . . . . . . . 40

4-2 The Kriging-based surrogate results for the 402nd output of the original FLORIDyn
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-3 Comparison of the Kriging-based surrogate model and the PCE-based surrogate
model in terms of outputs and LOO errors. . . . . . . . . . . . . . . . . . . . . 42

4-4 LOO errors during the entire simulation. Green indicates the LOO error is smaller
than 0.01, while red indicates the opposite. The darker the color is, the larger the
LOO error is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4-5 The sensitivity of the time-dependent power output of the upstream wind turbine
with respect to 11 model parameters depicted by total Sobol’ indices . . . . . . . 44

4-6 The sensitivity of the time-dependent power output of the middle wind turbine
with respect to 11 model parameters depicted by total Sobol’ indices . . . . . . . 45

4-7 The sensitivity of the time-dependent power output of the downstream wind turbine
with respect to 11 model parameters depicted by total Sobol’ indices . . . . . . . 45

4-8 Trace plots and corresponding KDEs of all 11 model parameters of interest. . . . 47
4-9 The prior and posterior distributions of 11 model parameters. The orange dots

represent the mean values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4-10 Comparison of the SOWFA data, the original FLORIDyn model outputs, the cali-

brated FLORIDyn model outputs and the variance for the FLORIDyn model outputs
estimated with double standard deviation. The green, yellow dashed and red curves
represent SOWFA, original FLORIDyn and calibrated FLORIDyn respectively. Be-
sides, the transparent pink area indicates the variance for FLORIDyn. . . . . . . 49

Master of Science Thesis D.Shi



List of Tables

2-1 Objective model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2-2 Mean values for the model parameters . . . . . . . . . . . . . . . . . . . . . . . 17

3-1 Procedures of the LAR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3-2 The advantages and disadvantages of Kriging and PCE . . . . . . . . . . . . . . 28

4-1 Lower and upper bounds of the proposed prior uniform distributions for the model
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4-2 Mean values and standard deviations of the obtained posterior distributions for the
model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Master of Science Thesis D.Shi



Acknowledgements

I would like to thank my supervisor J. W. van Wingerden and my daily supervisor Vinit V.
Dighe for their assistance during the writing of this thesis. I really appreciate it.

Delft, University of Technology D.Shi
June 22, 2023

Master of Science Thesis D.Shi



“Solar power, wind power, the way forward is to collaborate with nature, it is the
only way we are going to get to the other end of the 21st century.”
— Björk



Chapter 1

Introduction

The context for the research conducted in this thesis is shown in this chapter. Section 1-1
describes the motivation for conducting this research by introducing the relevant background
in the field of electricity generation and by investigating an offshore wind energy subject.
Section 1-2 elaborates wind farm control in terms of control goals, methods and structures.
Section 1-3 introduces several wind farm models related to this thesis. Section 1-4 first
discusses existing studies and corresponding scientific gaps in Section 1-4-1. The objectives
of the research are then summarized in Section 1-4-2 and the structure of this thesis is last
shown in Section 1-4-3.

1-1 Motivation

The earth is being threatened by the increased emissions of greenhouse gases resulting from
the excessive use of fossil fuels. Despite the fact that global CO2 emissions reduced by 5.8%
in 2020, global energy-related CO2 emissions still remained 31.5GT , which is approximately
50% higher than that in 1800 [2]. To deal with this situation, 2030 Climate Target Plan [1],
one of proposals was put forward by European Commission. This plan is comprised of three
main parts: cut greenhouse gas emissions by at least 55% by 2030 to make Europe be able
to take the responsibility of achieving climate neutrality by 2050; create green jobs to reduce
the conflict between cutting greenhouse gas emissions and developing the economy; inspire
international partners to contribute to keeping the rise in global temperature to 1.5◦C.

Replacing thermal power generation with renewable energy produced from wind, solar, hydro,
tidal, geothermal and biomass is one of the most significant approaches to reduce CO2 emis-
sions. Figure 1-1 shows gross electricity production in 28 European Union member countries
by energy sources [27]. Wind energy is expected to become the largest source of electricity
for the European Union by 2050 [27]. In order to reduce the costs of installation and mainte-
nance, a number of wind turbines are generally connected to the power system for producing
electricity to form a cluster called as a wind farm (wind park). However, one issue that needs

Master of Science Thesis D.Shi



1-2 Wind farm control 2

Figure 1-1: Gross electricity production in the EU-28 by energy sources from 2000 forecasted to
2050 [27]

to be addressed is the loss of efficiency for power generation due to wake interaction effects1

between the wind turbines in the wind farm. Compared to the upstream wind turbines in the
wind farm, the wake interaction effects are mainly exerted on the downstream wind turbines
to result in the reduction in wind speeds and the increase in turbulence intensity2 [58]. The
turbulence leads to continuous changes not only in wind speeds, but also in wind directions
over time and positions. Therefore, wake interaction effects cause the reduction in the power
production of the wind farm. In turn, the operation states of wind turbines also have an
influence on the wake. As a consequence, a proper wind farm controller with a better under-
standing of wake interaction effects can be expected to potentially improve the performance
of a wind farm [33].

1-2 Wind farm control

Compared to conventional greedy control3, wind farm control, a family of methods essentially
operates the individual wind turbine within a wind farm in a coordinated way to achieve a
common goal, which is basically to minimize the levelized costs of energy (LCOE) which can
be computed by the sum of costs over lifetime divided by the sum of electricity production over
lifetime [10]. There are three parts for achieving the goal which are minimizing the wear on
the turbine structure, integrating with the electricity grid and maximizing the annual energy
production [33]. Distributing the structure loads between wind turbines in a wind farm with
the concept of wind farm control can decrease the wear experienced by wind turbines to make
their structures degrade at a constant rate. The maintenance costs can be therefore reduced

1The aggregated influence on the energy production of the wind farm, which results from the changes in
wind speeds caused by the impact of the different wind turbines [8].

2The turbulence intensity is a measure of abrupt fluctuations in wind speeds and can be computed by the
standard deviation of the wind speed changes divided by the average wind speed.

3A control strategy of optimizing the power output of each turbine without considering other turbines.
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1-2 Wind farm control 3

in this way [69] and it also offers the possibility of achieving lighter designs which have more
reasonable prices and longer lifetime [55]. The consumption of electricity in the grid and the
generation of electricity to the grid mostly need to match each other. If the errors between
two of them are not small enough, the power might be cut off and grid-connected machines
can not work properly. The conventional power suppliers like hydraulic and thermal power
plants are able to quickly adjust the supplied power to maintain the stability of the grid.
However, power generated from wind or solar energy is free from such functionality [29].
These renewable technologies are therefore required to be able to regulate grid frequencies
due to the increase of the proportion of wind and solar power production in total electricity
yields [12]. Based on [35], such ancillary grid service can be also offered by the wind farm
with the concept of wind farm control. Last, power maximization is the most intuitive goal
of wind farm control and it has been smoothly conducted in high-fidelity simulations [44],
wind tunnel experiments [26] and field experiments [31] [37] [38] [52]. The commercialization
of the concept is also being researched in the industry field [5].

The wind farm control mainly uses two strategies which are axial induction control and
wake steering. The former one focuses on affecting the axial induction factor defined as the
reduction4 from the freestream speed to the wind speed at the rotor divided by the freestream
speed. The axial induction factor is relative to the thrust coefficient CT which depends on the
tip speed ratio5 and the blade pitch angle6 [67]. The latter one focuses on redirecting wind
turbines’ wakes away from downstream wind turbines by steering upstream wind turbines to
be misaligned with the wind direction [80].

Wind farm control methods can be roughly divided into two types which are the model-based
method and the model-free method. The former one makes predictions based on the mathe-
matical model of the wind farm in the time domain. The latter one generally considers the
wind farm as a black box and focuses on the measurements of system responses to approach
the most reasonable control operation in the future. Besides, structures of wind farm con-
trollers can be classified as closed-loop (feedback) and open-loop (feedforward). The former
one takes into account the measurements of system responses to determine control settings,
while the latter one only considers the prior information. More details are described next.

1-2-1 Open-loop model-free control

Figure 1-2 shows the industry-standard greedy wind farm control which is model-free and
open-loop. Each wind turbine in the wind farm is individually controlled to maximize its
own power generation without considering the other turbines. In addition, the interactions
between turbines in the wind farm are also not taken into account [33].

1-2-2 Open-loop model-based control

Figure 1-3 presents the structure of open-loop model-based control, which mostly uses yaw-
based wake steering algorithms [26] [37] [38] [44] [52]. A mathematical model is used to obtain

4The air passes through the rotor plane with a smaller speed than the freestream speed due to the fact that
some air is deflected away when approaching the rotor.

5The ratio of the blade tip linear speed to the freestream speed.
6The angle between the chord line and the plane of rotation.
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1-2 Wind farm control 4

Figure 1-2: The structure of locally greedy wind farm control [33]

the wind field data for determining control settings. Additionally, this model can also capture
the influence of control settings on the system performance. It is important to note that using
the mathematical model directly in the algorithm can result in massive computational costs.
Generally, a surrogate model7 is first constructed to replace the original model, which can
significantly improve computational efficiency by sacrificing the model accuracy. Since the
control settings and the system responses will not be returned as feedback, it has high sensi-
tivity to external conditions and the model accuracy, which means that it is easily disturbed
[13] [32].

Figure 1-3: The structure of open-loop model-based wind farm control [33]

1-2-3 Closed-loop model-free control

The structure of closed-loop model-free control is shown in Figure 1-4 where the wind farm
is considered as a black box system with inputs and outputs. In such methods, the system
outputs are directly optimized without capturing temporal and spatial dynamics of the wind

7Surrogate modelling is an engineering method to replace the difficultly measured or computed outcomes
of interest with outputs of an approximate model constructed by modelling the response to a limited number
of intelligently chosen data points in the simulation.
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1-2 Wind farm control 5

farm. Campagnolo et al [26]. have achieved maximizing the power production by yaw-
based wake steering closed-loop model-free control. However, due to neglecting the wake
interactions, there is time delay for wake propagation, which results in that the effect of
changing the yaw angle on the downstream wind turbine can be delayed a lot [24].

Figure 1-4: The structure of closed-loop model-free wind farm control [33]

1-2-4 Closed-loop model-based control

Figure 1-5 presents closed-loop model-based control, which is similar to open-loop model-
based control in terms of low computational expenses and quick convergence and to closed-loop
model-free control in terms of automatic corrections to process disturbances and resilience
to model uncertainties [33]. The control settings and system responses will be returned as
feedback to calibrate the mathematical model. Such closed-loop model-based methods have
been applied to mitigate loads [25] [82], to regulate electricity grid frequencies [16] [25] [82]
[56] [79] and to maximize power production [43] [70].

Figure 1-5: The structure of closed-loop model-based wind farm control [33]

Master of Science Thesis D.Shi



1-3 Wind farm modelling 6

1-3 Wind farm modelling

It is intuitive that the performance of model-based wind farm control depends on the accuracy
and computational expenses of the mathematical model applied to the system. Basically,
models can be divided into three categories which are high-fidelity models, medium-fidelity
models and low-fidelity models. The offline applications like simulating wind farm flows and
turbines require high-fidelity models to gain higher accuracy, while low-fidelity models are
suitable for building controllers and analysing wind farms since low computational expenses
make it feasible to optimize or calculate values in the real-time domain, even though the
accuracy is sacrificed. Except Goit and Meyers [50] and Munters and Meyers [66], there are
very few other research groups having directly used high-fidelity models in model-based wind
farm control [33]. Some selected models are introduced next.

1-3-1 High-fidelity model

Computational Fluid Dynamics (CFD) simulations are high-fidelity methods which use fun-
damental nature laws to simulate liquids and gases in terms of the flow and interactions.
Additionally, physical effects such as ground effects, turbulence effects and wind turbbine
structure dynamics are also taken into account. The Simulator for Offshore Wind Farm Ap-
plications (SOWFA) is an open source tool for CFD simulations, which is developed with the
OpenFOAM [4] software [3] by the National Renewable Energy Laboratory (NREL). It can
capture most wind field features accurately and be applied to the validation for lower-fidelity
models [89] [39] [45]. However, the computational expenses of the simulation with SOWFA
are much higher than with lower-fidelity models.

1-3-2 Medium-fidelity model

Compared to high-fidelity simulations, the complexity of medium-fidelity simulations are re-
duced by making simplifications and assumptions to only reserve the necessary features of
high-fidelity simulations. One example is a two-dimensional dynamic wind farm model, Wind
Farm Simulator (WFSim), which is derived from the two-dimensional Navier-Stokes equa-
tions by Boersma et al [23]. The continuity equation in the standard Navier-Stokes model
is altered to imitate wake depletion in the vertical dimension which is not modelled. This
model is validated using PALM8 and SOWFA data and it is fast enough to work as a part of a
closed-loop control framework [41]. Its benefits are similar to high-fidelity models’. Moreover,
the computational expenses and the number of states are approximately linearly related.

1-3-3 Low-fidelity model

In low-fidelity models, parametric equations are utilized to depict wake effects instead of
differential equations applied to CFD models. It can significantly decrease computational ex-
penses by using a set of adjustable parameters to capture wake features. Two examples related

8PArallelized LES Model (PALM): a reimplementation of an Large Eddy Simulation (LES) model. The
LES model is a mathematical model for turbulence applied to CFD simulations. PALM is optimized to run
on massively parallel computers [71].
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1-3 Wind farm modelling 7

to each other are introduced next and the second one is the main research object in this thesis.

FLORIS: FLOw Redirection and Induction in Steady-state (FLORIS) is a simplified
control-oriented low-fidelity parametric model to predict the steady-state wake features in a
wind farm in terms of the axial induction factor, turbulence intensity and the yaw angle. In
FLORIS, due to lack of dynamics, a new wake shape directly results from changes at the rotor
plane and there is no propagation related to the changes. The first FLORIS model named
Zone FLORIS model was developed by Pieter Gebraad et al in 2014. The model utilized the
Actuator Disc Model (ADM)9 and the Jensen-Park model10. As shown in Figure 1-6, there
are three divided zones in the Zone FLORIS model which are the near wake zone, the far
wake zone and the mixing zone respectively and the wind speeds at outer zones recover faster
than the wind speeds at inner zones. The Zone FLORIS model captures the wake features by
considering the wind direction and speed, the yaw angle and the axial induction factor and
without considering the turbulence intensity. Gebraad and van Wingerden [46] afterwards
used it as a basis to develop the FLORIDyn model in the same year. Two years later, the
Gaussian FLORIS model fitting Gaussian curves to the wake shape based on the experimental
data was presented by Bastankhah and Porté-Agel [15]. The Gaussian FLORIS model is
a part of the FLORIDyn model used in this thesis and more details are described in Chapter 2.

Figure 1-6: FLORIS model by Gebraad et al. [46]

FLORIDyn: FLOw Redirection and Induction Dynamics (FLORIDyn) is a novel control-
oriented dynamic model to capture the wake interaction effects between wind turbines in a
wind farm. Unlike there is lack of dynamic wake features in FLORIS, FLORIDyn captures
not only wake effects at each wind turbine, but also the time delay between control-setting
adjustments and responses of downstream wind turbines in the wind farm [43]. As men-
tioned above, the FLORIDyn model was initially presented by Gebraad and van Wingerden
[46] based on the Zone FLORIS model in 2014. Afterwards, Becker worked on a Gaussian
FLORIDyn model based on the Gaussian FLORIS model in 2020 [17]. More details of the

9It considers the rotor of the wind turbine as a uniform disc extracting energy from wind [19].
10It assumes that the wind speed recovers to the freestream speed in a constantly expanding cone formed

by the wake which trails the wind turbine [53].
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Gaussian FLORIDyn model are elaborated in Chapter 2.

1-4 Contributions

The research on maximizing power production using wind farm control is extremely popular
in both academic and industrial fields [33]. However, there are still many related scientific
gaps requiring to be bridged, which are discussed in Section 1-4-1. Next, the objectives of
this thesis are described in Section 1-4-2 and the outline of this thesis is presented in Section
1-4-3.

1-4-1 Existing research and corresponding scientific gaps

Since the low-fidelity model is the research object in this thesis, several existing studies on
Low-fidelity models are first reviewed to gain a better understanding and summarized as fol-
lows. The research conducted by Pieter Gebraad et al. [45] refers to the two-dimensional
Zone FLORIS model whose wake shape depends on the wind speed and direction, the yaw
angle and the axial induction factor. However, there are discontinuities in the wind field and
this model does not consider ambient turbulence intensity, heterogeneous wind conditions or
dynamics. Bastankhah and Porté-Agel [15] presented a three-dimensional Gaussian FLORIS
model depicting the wake without structures of eddy or turbulence. Unlike the Zone FLORIS
model, the influence of ambient turbulence on wake recovery is considered. However, het-
erogeneous wind conditions and dynamics are also missing. Afterwards, the FLORIS model
including the heterogeneous conditions was proposed based on the Gaussian FLORIS model
by Farrell et al. in 2020. It can present spatially heterogeneous wakes. It holds all of the
benefits mentioned in the previous two papers but still lacks the dynamics [36]. To include
dynamics, the first FLORIDyn model was developed based on the Zone FLORIS model by
Gebraad and van Wingerden in 2014. Compared to the Zone FLORIS model, no benefits
and drawbacks are changed but dynamics [46]. To combine heterogeneous wind conditions
and dynamics, Becker [17] worked on a Gaussian FLORIDyn model based on the Gaussian
FLORIS model in 2020. The developed FLORIDyn model keeps all of the benefits mentioned
in previous FLORIS models. However, there is still room for improvement in model accuracy
to approximate high-fidelity simulation data better.

To improve model accuracy, the intuitive approach is to calibrate the model. Basically, con-
ventional calibration consists of expert-based calibration and optimization-based calibration.
The former one focuses on minimizing the difference between the measurement data and
model outputs by tuning model parameters [74]. The latter one has the same aim as expert-
based calibration and achieves it using the optimization algorithms [42]. Conventional cali-
bration assumes that there are no uncertainties in the measurement data, which means that
all uncertainties in model outputs will be reduced in the calibration process [65]. However,
uncertainties in model parameters do result in the existence of uncertainties in model outputs.
As a consequence, the bias is introduced into the calibrated model inherently. Moreover, the
modelling errors can not be dealt with in conventional calibration. In fact, the uncertainties
in model outputs can be amplified by ignoring modelling errors and uncertainties in biased
data. Since uncertainties can not be quantified or reduced, conventional calibration can not
compare the calibrated parameter combinations that yield similar minimal errors.
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To deal with the disadvantages mentioned above, the calibration problem is considered in a
probabilistic way in this thesis. Several studies on quantifying wind farm model uncertainties
are then reviewed also for a better understanding. Jincheng Zhang and Xiaowei Zhao [95]
conducted the LES with the FLORIS model using different yaw angles and calibrated the
FLORIS model based on SOWFA data in 2019. They concluded that considering model pa-
rameter uncertainties can improve the prediction of wind field and power production. More
specifically, the posterior FLORIS model can predict proper uncertainty features in the mix-
ing zone and can minimize the the power fluctuation. However, the dynamic features were not
involved. In 2020, Pascal Richter et al. [75] found that the quasi-Monte Carlo method is suit-
able for propagating uncertainties in a wind farm simulation because of its ideal convergence
rates, low implementation loads and acceptable errors. However, only sensitivity analysis of
the wind farm model was conducted and model calibration was not involved. Next, M.T. van
Beek et al. [88] worked on optimizing the annual energy production for the Lillgrund wind
farm based on the yaw-based wake steering strategy by calibrating a FLORIS model with
Supervisory Control Data Acquisition (SCADA) data [9] in 2021. Both sensitivity analysis
and model calibration were involved. However, there was still lack of dynamic features. Addi-
tionally, the Lillgrund wind farm is denser than other general wind farms, which means that
there was room for exploring more under the larger wind turbine spacing conditions.

1-4-2 Objectives

The Gaussian FLORIDyn model referred from the work of Becker [17] takes into account
spatially and time-wise heterogeneous field conditions besides the wake interaction effects in
a wind farm. However, there is still room for improvement in accuracy of this model. The
objectives of this thesis are investigating the influence of model parameter uncertainties on
the prediction of the Gaussian FLORIDyn model and calibrating model parameters based on
high-fidelity simulation data. Both of them are expected to be conducted in a computationally
reasonable way.

1-4-3 Outline

The structure of this thesis is described as follows. Chapter 2 elaborates the necessary in-
formation about the Gaussian FLORIDyn model referred from Becker’s work [17] in terms
of 10 model parameters on which this research focuses and a novelty parameter to regulate
the temporal dynamics of the model. Next, the uncertainty quantification framework setup
for the research objectives is described with regard to the methods of sensitivity analysis
and model calibration using Bayesian inference in Chapter 3. Chapter 4 presents a specific
simulation case where the 3-Turbine case of the model elaborated in Chapter 2 is applied to
the framework described in Chapter 3. Finally, the summary and potential of this research
are discussed in Chapter 5.
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Chapter 2

FLORIDyn Model

This chapter elaborates the necessary information about a Gaussian FLORIDyn model re-
ferred from the work of Becker [17] in 2020 which is the presupposition of this thesis. Section
2-1 elaborates how the model parameters of interest affect the wind farm model which cap-
tures the wake effects and corresponding dynamic features. The summary of model parameters
elaborated in the previous section is then presented in Section 2-2.

2-1 Model parameters

It is important to note that the steady-state model parameters are simply an adaptation
from the Gaussian FLORIS model presented by Bastankhah and Porté-Agel [15]. On the
other hand, a model parameter included to capture the temporal dynamics is the novelty of
the dynamic FLORIDyn model. The information about maturing the FLORIS model to the
FLORIDyn model in terms of relevant equations is hereinafter elaborated according to [17].

2-1-1 Wind direction effects

The reduced wind speed ured at the downstream turbine in a wind farm, per say, can be
derived from Equation 2-1 in the FLORIS model:

ured = u (1 − r) , (2-1)

where u is the free wind speed1 and r is the reduction factor2. To make the wake model
depend on the wind direction, a vector u = [ux0 uy0 ]T is substituted for the scalar u in
Equation 2-1. As a consequence, the reduced wind speed vector ured can be calculated by
Equation 2-2:

1The wind speed without the influence of wakes.
2The wake property of upstream turbines causing a velocity reduction.
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ured = u (1 − r) . (2-2)

Assume that r0 = [x0 y0 z0]T denotes the position in the world coordinate system3 and
r1 = [x1 y1 z1]T indicates the position in the wake coordinate system4. As shown in Figure
2-1, the transformation from the wake coordinate system to the world coordinate system can
be written as Equation 2-3:

r0 = t0 + R01r1 = t0 +

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 r1, (2-3)

where t0 denotes the position of the respective turbine in the world coordinate system, R01
indicates the rotational matrix and φ is the wind angle.

Figure 2-1: The transformation depicted in Equation 2-3: The first pane depicts that there is a
turbine and a wind vector u in the world coordinate system. The second pane depicts there is a
wake in the wake coordinate system required to be transformed into the world coordinate system.
The third pane depicts all of the variables in the wake coordinate system are rotated by the wind
angle φ. The fourth pane depicts the transformation is finished [17].

2-1-2 Estimation of reduction factors

The reduction factor r in Equation 2-2 can be estimated from the Gaussian FLORIS wake
model consisting of the potential core zone, the near wake zone and the far wake zone [17].

3The grid is straight and the wake is bent [17].
4The wake is straight and the grid is bent [17].
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As shown in Figure 2-2 [17], these three reduction zones blend into each other. Additionally,
according to [15], the three reduction factors corresponding to the three reduction zones can
be indicated by Equation 2-4, Equation 2-5 and Equation 2-6:

rc =
(
1 −

√
1 − CT

)
, (2-4)

rnw =
(
1 −

√
1 − CT

)
exp

−1
2

(
|y1 − δ| − rpcy1

σy,nw

)2
 exp

−1
2

(
|z1 − zh| − rpcz1

σz,nw

)2
, (2-5)

rfw =
(

1 −
√

1 − CT
cos γ

8σyσz/D2

)
exp

−1
2

(
y1 − δ

σy,fw

)2
 exp

−1
2

(
z1 − zh

σz,fw

)2
. (2-6)

In Equation 2-4, rc denotes the potential core reduction factor and CT is the thrust coefficient.
In Equation 2-5, rnw denotes the reduction factor acting on the transition from the potential
core to the free stream in cross wind direction, δ is the deflection, zh is the nacelle height,
rpcy1

is the potential core radius in y1 direction and rpcz1
is the potential core radius in z1

direction. Additionally, σy,nw and σz,nw denote the standard deviations of the near wake in
y1 and z1 directions. In Equation 2-6, rfw denotes the far wake reduction factor and γ is the
yaw angle5. Besides, σy,fw and σz,fw denote the standard deviations of the far wake in y1
and z1 directions.

Note that both of rc and rnw depict the near field characteristics and they are effective from
the turbine position at x1 = 0 to the end of the potential core at x1 = xc.

Figure 2-2: Wake shape depicted by wake zones and relevant parameters [17]

2-1-3 Potential core

The potential core is a cone shaped area with constant speed decrease [15]. The cone starts
at the rotor plane with the y1 width of D

√
uR/uc cos γ and the z1 width of D

√
uR/uc where

D is the rotor diameter, uR determined by Equation 2-7 denotes the wind speed at the rotor
plane and uc determined by Equation 2-8 denotes the wind speed in the potential core:

5Based on the definition of γ in the context of SOWFA simulations [17], the yaw angle is defined clockwise
in contrast to all other angles which are defined counter-clockwise.
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uR = u
CT cos γ

2
(
1 −

√
1 − CT cos γ

) , (2-7)

uc = u
√

1 − CT . (2-8)

The potential core radius constantly reduces from the turbine position at x1 = 0 to the end
of the potential core at x1 = xc. The radii in y1 and z1 direction of the cone shaped area can
be deduced from Equation 2-9 and Equation 2-10:

rpcy1
= D

√
CT cos γ

2
(
1 −

√
1 − CT cos γ

)√
1 − CT

(
1 − x1

xc

)
cos γ, (2-9)

rpcz1
= D

√
CT cos γ

2
(
1 −

√
1 − CT cos γ

)√
1 − CT

(
1 − x1

xc

)
. (2-10)

Note that the constraint for these two equations is 0 ≤ x1 ≤ xc and xc can be indicated in
Equation 2-11:

xc = cos γ
(
1 +

√
1 − CT

)
√

2
[
α∗I + β∗ (1 −

√
1 − CT

)]D. (2-11)

2-1-4 Wake expansion

The standard deviation of Gaussian function is used to depict the wake expansion. Based on
[15], the standard deviations of the near and far wake can be written as Equation 2-12 and
Equation 2-13:

σy,nw = x1
xc

D√
8 cos γ

σz,nw = x1
xc

D√
8

}
x1 < xc, (2-12)

σy,fw = (x1 − xc) ky + D√
8 cos γ

σz,fw = (x1 − xc) kz + D√
8

}
x1 ≥ xc, (2-13)

where ky and kz indicate the expansion factors in y1 and z1 directions.

Equation 2-12 and Equation 2-13 can be represented in a simplified way as follows:

σy = max (x1 − xc, 0) ky + min
(
x1
xc
, 1
)
D√

8
cos γ, (2-14)

σz = max (x1 − xc, 0) kz + min
(
x1
xc
, 1
)
D√

8
. (2-15)

According to [36], the expansion factors ky and kz can be shown in Equation 2-16:
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ky = kz = kaI + kb, (2-16)

where I denotes the turbulence intensity given by Equation 2-17:

I =

√√√√ nT∑
i=1

I2
f,i + I2

amb. (2-17)

Here Iamb denotes the ambient turbulence and If indicates the added turbulence by the nT

upstream turbines.

Consequently, If,i can be written as Equation 2-18:

If,i = Aoverlap

Arotor,i

[
kf,aa

kf,bI
kf,c

amb

(
x1
D

)kf,d
]
, (2-18)

where Aoverlap denotes the area of the rotor plane where a foreign wake overlaps, Arotor

indicates the area of the rotor plane and kf,a, kf,b, kf,c and kf,d are the weight factors of the
foreign turbulence influence.

2-1-5 Wake deflection

According to [15], the total deflection for the near and far wake can be shown in Equation
2-19:

δ = θpc max(x1, xc) + 1
2 [sign (x1 − xc) + 1] θpc

14.7

√
cos γ
kykzCT

(
2.9 + 1.3

√
1 − CT − CT

)

× ln


(
1.6 +

√
CT

) (
1.6
√

8σyσz

D2 cos γ
−

√
CT

)
(
1.6 −

√
CT

) (
1.6
√

8σyσz

D2 cos γ
+

√
CT

)
D,

(2-19)

where θpc denotes the deflection angle in the potential core.

Then, the deflection angle at the rotor θ can be estimated by Equation 2-20:

θ ≈ 0.3γ
cos γ

(
1 −

√
1 − CT cos γ

)
. (2-20)

It is important to note that θpc is equal to θ according to [15].
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2-1-6 Power calculation

The power production can be estimated by Equation 2-21:

P = η
1
2ρu

3
effπ

(
D

2

)2
CP cos γpp . (2-21)

The efficiency factor η was added in [45]. ρ is the air density and ueff denotes the effective
wind speed at the rotor plane. The power coefficient CP

6 has been extended by [64] to also
consider the yaw angle of the turbine. Besides, pp denotes the factor for correcting the power
coefficient under yawed operating conditions.

2-1-7 Temporal dynamics

To simulate the propagation of variations at the turbine through the wake over time, Obser-
vation Points (OPs) are introduced. A yaw angle variation of the turbine and its propagation
through the wake with OPs are indicated in Figure 2-3 [17].

Figure 2-3: The processes that OPs transport state changes of the turbine through the wake: In
the first pane, OPs store the information on the wake at the rotor plane. Their positions in the
wake are determined according to the wake width. The dotted lines denote the paths determined
by the wake width. A chain consists of OPs on the same dotted line. In the second pane, the new
OPs (storing the same information as the original OPs at the rotor plane) and the original OPs
have travelled further downstream at the wind speed. In the third pane, there is a variation of the
wake shape resulting from the yaw angle of the turbine. As a consequence, OPs store different
information and the color of these new OPs and the corresponding (background) wake are also
different. In the fourth pane, new OPs storing the information after yawing the turbine follow the
new paths [17].

Chain consisting of OPs Specifically, there are totally nOP OPs introduced at the rotor
plane at time step k and they travel downstream. Each OP has a relative cross wind position
νy and νz which depends on the wake width to cover the wake plane regularly. According to

6The power coefficient CP depends on the rotor axial induction factor a and the yaw angle of the rotor γ.
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[17], to cover the majority of the reduced wind speed area, the wake widths are assumed as
6σy and 6σz. The crosswind position is indicated in Equation 2-22:

y1 = νy [6σy + max (rpcy1 , 0)]
z1 = νz [6σz + max (rpcz1 , 0)]

}
νy, νz ∈ [−0.5, 0.5] . (2-22)

(a) (y1, z1) plane (b) (x1, z1) plane

Figure 2-4: OP distribution across the wake cross section: The blue dots denote the OPs
initialized across the rotor plane depicted by the black circle. The orange arrows depict during
one time step OPs move to their new positions which can be determined by Equation 2-22 [17].

The OP distribution across the wake cross section from the sunflower algorithm [90] is shown
in Figure 2-4 [17]. The Voronoi method in Matlab [7] which can return polygons surrounding
the OPs is used to obtain the approximation of the area indicated by an OP. The areas of the
polygons are calculated, normalized and stored as weights in the vector w. Meanwhile, an
outer circle is added for the calculation to limit the outer areas. Based on [17], the effective
wind speed at the rotor plane is derived from the product of the vector w and the speed of
the OPs at the rotor plane. Next, ueff is determined by adding the products together. To
be able to do this, Equation 2-23 is used to initialize the OPs at the rotor plane by regarding
the rotor area as the wake width. After calculating the downstream wind step, Equation 2-22
is used to estimate their new cross wind position:

y1 = νyD cos γ,
z1 = νzD.

(2-23)

Under constant conditions, a chain consists of OPs created at the same relative position in
the wake which have the same path. The computational load from the information on a chain
is less than that from the information on each OP [17].

It was observed that the speed of an OP that affects the state change of the turbine arrive
slower at the downstream turbine in the FLORIDyn model simulations [17]. Meanwhile,
when a turbine state varies, the early recovering parts of the wake down field (the outer
parts) response faster than the inner parts, which can result in the overlap parts in the wake.
To deal with these two issues, Taylor’s frozen turbulence hypothesis [85] is used by considering
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that the OPs travel at the freestream wind speed rather than the speed they represent. The
assumption describes large eddies can be regarded frozen as a whole and travel at the average
wind speed. According to [78], a research conducted by Schlipf et al. in 2010 shows there is a
good agreement between the hypothesis and measured data for eddies at a scale relevant to
wind turbines.
There are two alternate ways for representing the speed of an OP. One is Equation 2-24 to
denote the travelling speed of the OP is the same as the speed it represents in the wake, the
other is Equation 2-25 to denote the travelling speed of the OP is uOP while the speed it
represents in the wake is uOP,eff [17].

uOP = d ∗ |u| , (2-24)

uOP = d ∗ |u| (1 − r) , (2-25)

where d is a factor added to regulate the temporal dynamics by scaling the advection speed.

2-2 Summary

As elaborated above, in this Gaussian FLORIDyn model, the wake effects are captured by
the Gaussian FLORIS model and temporal dynamics are captured using OPs. As a conse-
quence, eight wake model parameters adapted from the Gaussian FLORIS model presented
by Bastankhah and Porté-Agel [15] are taken into account. Besides, the efficiency parame-
ter η scaling the power outputs of the wind turbine and the power coefficient parameter pp

scaling the yaw angle γ are also included for uncertainty quantification. The mean values
for both of them are tuned in [17]. Last, the temporal dynamics parameter d scaling the
advection speed is also considered. Table 2-1 presents all model parameters for uncertainty
quantification in this research and Table 2-2 shows the mean values for the model parameters
and corresponding sources.

Parameter Description
α∗, β∗ Weight constraints in the potential core length calculation
ka, kb Weight constraints in the wake expansion calculation

kf,a, ..., kf,d Parameters in the foreign turbulence effect calculation
η Efficiency parameter scaling power outputs
pp Power coefficient parameter scaling the yaw angle
d Temporal dynamics parameter scaling the advection speed

Table 2-1: Objective model parameters

α∗ β∗ ka kb kf,a kf,b kf,c kf,d d η pp

Mean value 2.32 0.154 0.38371 0.003678 0.73 0.8325 0.0325 -0.32 1 0.8572 2.2
Source [15] [15] [15] [15] [87] [87] [87] [87] [30] [17] [17]

Table 2-2: Mean values for the model parameters
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Chapter 3

Uncertainty Quantification

The Gaussian FLORIDyn model elaborated in Chapter 2 will be applied to uncertainty quan-
tification by taking into account the model parameters summarized in Table 2-1. A major
drawback of uncertainty quantification, further explained in the later sections, is high compu-
tational costs mainly caused by the associated Markov Chain Monte Carlo (MCMC) sampling
algorithm. To deal with it, a surrogate model will be trained to replace the original FLORI-
Dyn model before conducting the related uncertainty quantification research. Compared to
a full MCMC simulation with the FLORIDyn model, the surrogate model lacks accuracy,
which is a trade-off for simplicity and faster convergence. Besides, sensitivity analysis of the
FLORIDyn model will be performed using the trained surrogate model to investigate how
sensitive the model outputs are to each parameter of interest.

In this chapter, Section 3-1 first describes the basic information about surrogate modelling
and then elaborates two types of approaches for constructing surrogate models assessed in the
simulation conducted in Chapter 4. Section 3-2 first introduces the basic information about
sensitivity analysis and next elaborates the method using Sobol’ indices which is a global
method used in the simulation conducted in Chapter 4. Section 3-3 first describes Bayesian
inference and then elaborates the method used in the simulation conducted in Chapter 4 for
calibrating the FLORIDyn model. Finally, the procedures to conduct uncertainty quantifica-
tion of the FLORIDyn model are summarized in Section 3-4.

3-1 Surrogate modelling

Surrogate modelling is an engineering method to replace the outcomes of interest difficultly
measured or computed with outcomes of an approximate model constructed by modelling the
response to a limited number of intelligently chosen data in the simulation. Generally, experi-
ments or simulations are necessary in most engineering problems. However, in many practical
cases, even a single simulation is computationally expensive. Some kind of studies like de-
sign exploration, sensitivity analysis, and model calibration can be too time consuming to
conduct since they may require hundreds or millions of simulation evaluations. Constructing
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3-1 Surrogate modelling 19

models which behave similarly to the original model in the simulation is an option to decrease
computational expenses. Such models which can be computationally cheaper to evaluate are
known as surrogate models [6].

In the current research, two types of approaches for constructing surrogate models which are
Kriging and Polynomial Chaos Expansion (PCE) will be assessed and one of them will be
selected to construct the surrogate model for the following sensitivity analysis and Bayesian
calibration.

3-1-1 Kriging

Kriging, also known as Gaussian process regression, is a stochastic algorithm to construct new
data points based on the Gaussian process governed by prior covariance [57]. To elaborate the
principle of Kriging, some mathematical notations are introduced in the following content.

The model output M (x) is assumed as a realization of a Gaussian process indexed by the
model inputs x ∈ DX ⊂ RM . Based on [77], the Kriging-based surrogate model can be
presented as Equation 3-1:

MK (x) = λT f (x) + σ2Z (x, ζ) , (3-1)

where MK (x) represents the Kriging surrogate model evaluation. λT f (x) is named as the
trend which is the mean value of the Gaussian process. It is comprised of P arbitrary functions
f = {f1f2...fP }T and corresponding coefficients λT = {λ1λ2...λP }. σ2 is the variance of the
Gaussian process. Z (x, ζ) stands for a stationary Gaussian process whose mean value is 0
and variance is the unit-variance. ζ indicates the underlying probability space in terms of a
correlation function R which will be elaborated later.

Trends

As described before, the trend represents the mean value of the Kriging-based surrogate
model. In 2011, Dubourg [34] summed up 3 types of Kriging according to different trend
formulas, which are simple Kriging, ordinary Kriging and universal Kriging respectively.

The trend of simple Kriging is described as Equation 3-2:

λT f (x) = f1 (x) + f2 (x) + ...+ fP (x) , (3-2)

where f (x) are arbitrary but fully specified functions and λ is the vector whose elements are
all 1.

The trend of ordinary is indicated as Equation 3-3:

λT f (x) = λ0f0 (x) = λ0, (3-3)

where f0 (x) is conventionally assumed as 1.
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The trend of universal Kriging is assumed as a linear combination of prescribed arbitrary
functions and is presented as Equation 3-4:

λT f (x) = λ0f0 (x) + λ1f1 (x) + ...+ λP fP (x) . (3-4)

From [57], besides the trends mentioned above, there are also other types of trends can be
obtained using polynomial basis such as the linear trend indicated as λ0 +

∑M
i=1 λixi and the

quadratic trend indicated as λ0 +
∑M

i=1 λixi +
∑M

i=1
∑M

j=1 λijxixj . The current research will
use the linear trend.

Correlation functions

The correlation function multiplied by σ2 in Equation 3-1 is to the covariance function [93].
The correlation function is used to depict how similar the new model outputs are to the
original model outputs.

According to [57], the correlation function can be indicated as R (x,x′; θ) where θ has the
same dimensions as the model input and one element of θ is for one model input dimension.
There are 4 correlation families which are the linear correlation family, the exponential corre-
lation family, the Gaussian correlation family and the Matérn correlation family respectively.
To visualize how the new model outputs are parameterized by θ, all of 4 correlation families
will be introduced in the one-dimensional space next.

The linear correlation family can be denoted as Equation 3-5[57]:

R
(
x, x′; θ

)
= max

(
0, 1 − |x− x′|

θ

)
. (3-5)

Figure 3-1: Equation 3-5 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57].

The exponential correlation family can be described as Equation 3-6[57]:

R
(
x, x′; θ

)
= exp

[
−|x− x′|

θ

]
. (3-6)

Master of Science Thesis D.Shi



3-1 Surrogate modelling 21

Figure 3-2: Equation 3-6 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57].

The Gaussian correlation family can be presented as Equation 3-7[57]:

R
(
x, x′; θ

)
= exp

[
−1

2

( |x− x′|
θ

)2]
. (3-7)

Figure 3-3: Equation 3-7 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57].

The Matérn correlation family can be generally indicated as Equation 3-8[57]:

R
(
x, x′; θ, v

)
= 1

2v−1Γ (v)

(
2
√
v

|x− x′|
θ

)v

Kv

(
2
√
v

|x− x′|
θ

)
, (3-8)

where v ≥ 1
2 represents the shape parameter, Γ (v) =

∫∞
0 tv−1e−tdt and Kv denotes the

modified Bessel function of the second kind [11].
According to [57], the Matérn correlation families with v = 3

2 and v = 5
2 are the most widely

used and can be described as Equation 3-9 and Equation 3-10:

R

(
x, x′; θ, v = 3

2

)
=
(

1 +
√

3 |x− x′|
θ

)
exp

[
−

√
3x− x′

θ

]
. (3-9)
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Figure 3-4: Equation 3-9 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57].

R

(
x, x′; θ, v5

2

)
=
(

1 +
√

5 |x− x′|
θ

+ 5
3

( |x− x′|
θ

)2)
exp

[
−

√
5x− x′

θ

]
. (3-10)

Figure 3-5: Equation 3-10 and sample paths obtained from the corresponding Gaussian process
whose mean value is 0 and variance is the unit-variance with different θ [57].

When dealing with a multi-dimensional system, it is necessary to build the multi-dimensional
correlation function using one of 4 one-dimensional correlation families introduced above
[57]. The current research will use the exponential correlation family to build the eleven-
dimensional ellipsoidal correlation function indicated as Equation 3-11[73]. To do so, the
term |x−x′|

θ shown in Equation 3-6 needs to be substituted by h (same for the other correlation
families when building the corresponding multi-dimensional ellipsoidal correlation function)
according to [57].

R
(
x,x′; θ

)
= R (h) , h =

√√√√ M∑
i=1

(
xi − x′

i

θi

)2
. (3-11)
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Estimation

The unknown θ parametrizing the correlation function is necessary for training the Kriging
surrogate model. To estimate θ, the maximum-likelihood method will be used in the current
research. The related elaboration is shown next.

Maximum-likelihood (ML) estimation maximizes the likelihood of the model observa-
tions Y by tuning the Kriging parameters λ, σ2 and θ. Based on [57], the likelihood function
can be described as Equation 3-12:

LK

(
λ, σ2,θ; Y

)
= (detR)− 1

2

(2πσ2)
N
2

exp
[
− 1

2σ2 (Y − F λ)T R−1 (Y − F λ)
]
. (3-12)

N represents the number of input points which can be used to describe the experimental design
X =

[
x(1), ...,x(N)

]T
. Therefore, the corresponding model observations can be denoted as

Y =
[
y(1) = M

(
x(1)

)
, ..., y(N) = M

(
x(N)

)]T
. F indicates the design matrix of the trend

whose elements can be denoted as Fij = fj

(
x(i)

)
, i = 1, ..., N ; j = 0, ..., P . R is the

correlation matrix whose elements can be denoted as Rij = R
(
x(i),x(j); θ

)
, i, j = 1, ..., N .

Based on [77] and [34], the estimates of λ and σ2 described as Equation 3-13 and Equation
3-14 can provide the maximum value of LK .

λ̂ =
(
F T R−1F

)−1
F T R−1Y , (3-13)

σ̂2 = 1
N

(Y − F λ)T R−1 (Y − F λ) . (3-14)

Next, θ can be determined by solving the optimization problem presented as follows[57]:

θ̂ = arg min
θ∈Dθ

[−logLK (θ; Y)] . (3-15)

Given Equation 3-12, Equation 3-13 and Equation 3-14, Equation 3-15 can be rewritten as
following[57]:

θ̂ = arg min
θ∈Dθ

1
2
[
log (detR) +N log

(
2πσ2

)
+N

]
. (3-16)

Posteriori error estimation

Based on [57], the leave-one-out (LOO) cross-validation (CV) error or the validation error
will be used for investigating the accuracy of the Kriging-based surrogate model prediction.
The former one can be determined according to the initial experimental design X and the
corresponding model output Y = M (X ) and described as[57]:
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ϵLOO = 1
N


∑N

i=1

(
M
(
x(i)

)
− µŷ,\x(i)

(
x(i)

))2

Var [Y ]

 , (3-17)

where µŷ,\x(i)

(
x(i)

)
indicates the mean of prediction at x(i) produced by the surrogate model

trained with the other points of X except x(i).

The latter one requires an independent set of observations Oval ={(
x

(1)
val, y

(1)
val

)
, ...,

(
x

(Nval)
val , y

(Nval)
val

)}
to be computed as[57]:

ϵval = Nval − 1
Nval


∑Nval

i=1

(
M
(
x

(i)
val

)
− MK

(
x

(i)
val

))2

∑Nval
i=1

(
M
(
x

(i)
val

)
− µyval

)2

 , (3-18)

where y(i)
val = M

(
x

(i)
val

)
is the original model output and the sample mean of the independent

validation output set µyval can be denoted as follows[57]:

µyval = 1
N

N∑
i=1

M
(
x

(i)
val

)
. (3-19)

3-1-2 Polynomial chaos expansion (PCE)

The polynomial chaos expansion (PCE) method is used to obtain the approximation according
to the computational model’s spectral representation on a properly constructed polynomial
basis [62]. To do so, the variance of the computational model output needs to be finite:

Var(y) = E
[
(y − E(y))2

]
= E

(
y2
)

− [E(y)]2 < +∞,
(3-20)

where y = M (x) , y ∈ R, x ∈ RM is the computational model output and x is a random
model input vector described by the joint probability density function fx.

Therefore, the condition shown in Equation 3-20 can be rewritten as:

E
(
y2
)

=
∫

Dx

M (x)2fx (x) dx < +∞. (3-21)

Next, based on [62], the polynomial chaos expansion of the computational model can be
defined as:

y = M (x) =
∑

κ∈NM

qκΨκ (x) , (3-22)
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where Ψκ (x) denotes multivariate polynomials orthonormal w.r.t. fx, κ ∈ NM indicates
the multi-index identifying the component of Ψκ and qκ ∈ R represents the corresponding
coefficient.
In practice, the truncated polynomial chaos expansion is introduced to truncate the sum in
Equation 3-22 into a finite sum corresponding to all polynomials in M input variables of total
degree not more than p as follows[62]:

M (x) ≈ MP C (x) =
∑

κ∈AM,p

qκΨκ (x) , (3-23)

where AM,p =
{

κ ∈ NM : |κ| ≤ p
}

indicates the set of chosen multi-indices of Ψκ and its
cardinality is indicated as follows:

card
(
AM,p

)
≡ P =

(
M + p
p

)

= (M + p)!
M !p!

(3-24)

Polynomial basis

Based on [62], to establish the polynomial basis Ψκ (x), a set of univariate orthonormal
polynomials ψ(i)

k (xi) are introduced and defined by an inner product as follows:

〈
ψ

(i)
j (xi) , ψ(i)

k (xi)
〉 def=

∫
Dxi

ψ
(i)
j (xi)ψ(i)

k (xi) fxi (xi) dxi = δjk, (3-25)

where xi represents one element of the input vector x of the computational model and xi is
orthogonal w.r.t. ψ(i)

j (xi) , ψ(i)
k (xi) , ..., which belong to the corresponding polynomial family,

j and k indicate the corresponding polynomial degree, fxi (xi) denotes the probability density
function describing xi and the Kronecker delta δjk can be written as follows:

δjk =
{

0 j ̸= k
1 j = k

. (3-26)

Next, the tensor product of the univariate polynomials can be used to obtain the multivariate
polynomial Ψκ (x) as follows:

Ψκ (x) def=
M∏

i=1
ψ(i)

κi
(xi) . (3-27)

The UQLab software[63] used to conduct the simulation in the current research will by default
select the mathematical expression for ψ(i)

κi (xi) based on the type of fxi (xi) using the pairing
table from [83]. For example, the random input variables used in the simulation in Chapter 4
are subject to the Uniform distribution, the corresponding univariate orthonormal polynomial
family is then selected by default as Legendre whose details can be found in [94].
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Coefficients estimation

In the current research, the experimental design set comprised of samples of random model
inputs and the corresponding model outputs is post-processed to estimate qκ given the rel-
ative Ψκ. Based on [62], there are two types of methods to do so which are the projection
method and the regression method respectively. The former one calculates the numerical
integration according to the basis functions’ orthogonality and the latter one uses the stan-
dard linear regression approaches to work out the system of linear equations which is derived
by formulating Equation 3-22. The current research uses the Least Angle Regression (LAR)
algorithm which is a kind of sparse regression approach belonging to the second type. The
LAR algorithm also involves the Ordinary Least-Squares (OLS) regression approach. More
details about the regression method used in Chapter 4 are elaborated in the following.
Least-squares regression first establishes a least-square problem by transforming Equation
3-22 into the sum of Equation 3-23 and a residual as indicated in Equation 3-28 according to
[18]. Next, the vector q consisting of coefficients can be estimated by solving the least-square
problem as shown in Equation 3-29[18].

y = M (x) = MP C (x) + εP

=
∑

κ∈AM,p

qκΨκ (x) + εP

= qT Ψ (x) + εP ,

(3-28)

q̂ = arg min
q∈RP

E
[(

qT Ψ (x) − M (x)
)2
]
, (3-29)

where q = [qκ, ...]T︸ ︷︷ ︸
P coefficients

, Ψ (x) = [Ψκ (x) , ...]T︸ ︷︷ ︸
P multivariate polynomials

and εP represents the truncation error.

To work out the least-square problem shown in Equation 3-29, the Ordinary Least
Squares (OLS) approach is next introduced. Based on [62], the OLS solution can be
obtained using a vector consisting of samples of the experimental design inputs X =[
x(1)...x(N)

]T
and a vector consisting of the corresponding experimental design outputs

Y =
[
y(1) = M

(
x(1)

)
...y(N) = M

(
x(N)

)]T
, which is written as follows:

q̂ =
(
AT A

)−1
AT Y , (3-30)

where the element of the regression matrix A can be denoted as[62]:

Aij = Ψj

(
x(i)

)
, i = 1, ..., N ; j = 0, ..., P − 1. (3-31)

It is important to note that the OLS approach can be only applied to the overdetermined
system of linear equations, which means P can not be larger than N .
Sparse PCE: Least angle regression adds a penalty term ∥q∥1 =

∑P −1
j=0 |qj | to the solution

of the least-square problem shown in Equation 3-29 to work out the underdetermined system
of linear equations [62]. The new solution is rewritten as follows:
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q̂ = arg min
q∈RP

{
E
[(

qT Ψ (x) − M (x)
)2
]

+ ∥q∥1

}
. (3-32)

Based on [22], the penalty term can restrict the solution to be low-rank and the sparse PCE-
based surrogate model can be trained using a small experimental design without sacrificing
the accuracy. To achieve that, the LAR algorithm is widely used.

Based on [22], the main principle of the LAR algorithm is to iteratively move regressors from a
candidate set to an active set. The next regressor is selected by considering its correlation with
the current residual. For every iteration, every active regressor is imposed to be equicorrelated
with the current residual to obtain the optimal set of regression coefficients for the current
active set. The detailed procedures of the LAR algorithm are shown in Table 3-1.

Initialization

Coefficient: q = 0;
Candidate set: Ψκ;
Active set: ∅;
Residual: r0 = y(i).

Iterative
Algorithm

Step 1: Search the regressor Ψκ which is the most correlated with the
current residual;
Step 2: Adjust all coefficients corresponding to the regressors in the
current active set and the regressor at the first step towards their least-
square values until their regressors have the same correlation with the
residual as some other regressor in the candidate set has (This regressor
in the candidate set will be the most correlated with the residual for the
first step of the next iteration.);
Step 3: Compute and store ϵLOO for the current iteration;
Step 4: Update all active coefficients and move Ψκ at the first step from
the candidate set to the active set;
Step 5: Repeat the previous steps until the size of the active set equals
min (P, N − 1);

Table 3-1: Procedures of the LAR algorithm

Due to the fact that the number of iterations plays a role in the LAR algorithm and the
regressors defined in the LAR algorithm are not constant because of the first step, it is more
difficult to compute LOO errors than the OLS approach in which N surrogate models are
not necessary based on Equation 3-37. To deal with it, the hybrid-LAR step is introduced
at the end of every LAR iteration. The hybrid-LAR step adds a constant regressor to the
chosen basis and uses the OLS approach to compute the corresponding coefficients and ϵLOO.
Overall, a series of sets of multivariate polynomials are obtained by the LAR iterations, while
the associated surrogate models are trained by the OLS approach. Finally, the surrogate
model with the lowest ϵLOO is selected.

Additionally, an early stop criterion is introduced to deal with the situation with many re-
gressors in practice. As shown in Figure 3-6, mostly, ϵ(j)

LOO evolves smoothly and convexly
as the number of LAR iterations increases. Therefore, the early stop criterion can be set up
to stop adding regressors when ϵLOO exceeds its minimum. According to [62], the number
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of iterations with the suitable early stop criterion is at least 10% of the potential maximum
number of iterations.

Figure 3-6: The typical behaviour of ϵLOO as the number of iterations increases in most practical
cases [62].

Table 3-2 summarizes the advantages and disadvantages of the Kriging-based approach and
the PCE-based approach.

Pros Cons

Kriging
1. The sampling errors have little in-
fluence on it;

1. It is computationally expensive;

2. The results can be unbiased when
the sample size is large enough;

2. It is possible that some optimal
properties are not available when the
sample size is too small;

3. It can offer useful results for statis-
tical inference;

3. Strong assumptions related to the
data structure are usually necessary;

PCE 1. It is computationally efficient; 1. It may have limitations when deal-
ing with high dimensional data;

2. It is available to solve the underde-
termined problem;

2. It is easy to be influenced by the
effects of noise;

Table 3-2: The advantages and disadvantages of Kriging and PCE

Posteriori error estimation

Based on [62], the accuracy of the PCE-based surrogate model prediction can be investigated
using the related generalization error indicated as follows:
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ϵgen =
E
[(

M (x) − MP C (x)
)2
]

Var [Y ] . (3-33)

Similarly, if there is an independent set of observations Oval ={(
x

(1)
val, y

(1)
val

)
, ...,

(
x

(Nval)
val , y

(Nval)
val

)}
, the validation error for investigating the quality of

the PCE surrogate model can be obtained as follows[62]:

ϵval = Nval − 1
Nval


∑Nval

i=1

(
M
(
x

(i)
val

)
− MP C

(
x

(i)
val

))2

∑Nval
i=1

(
M
(
x

(i)
val

)
− µyval

)2

 , (3-34)

where y
(i)
val = M

(
x

(i)
val

)
is the computational model output and the sample mean of the

independent validation output set µYval can be denoted as Equation 3-19.
However, it is expensive to obtain another set of independent input and output data for a
computational model. As a consequence, the normalized empirical error and the leave-one-out
(LOO) cross validation (CV) error are used to estimate the generalization error.
Normalized empirical error reuses the experimental design data and can be indicated as
follows[62]:

ϵemp =
∑N

i=1

(
M
(
x(i)

)
− MP C

(
x(i)

))2

∑N
i=1

(
M
(
x(i))− µy

)2 , (3-35)

where µy represents the sample mean of the experimental design outputs.
Based on [62], the disadvantage of the normalized empirical error is that the over-fitting can
be caused no matter what size the experimental design has. To deal with this, the LOO CV
error is introduced.
Leave-one-out cross-validation error involves two parts according to [21]. First, there
are N PCE-based surrogate models MP C\i trained and every one of them is trained using a
reduced experimental design X \x(i) =

{
x(j), j = 1, ..., N, j ̸= i

}
. Next, the i-th surrogate

model prediction at the corresponding excluded point x(i) is compared with the corresponding
output of the original model. The LOO CV error is described as follows:

ϵLOO =
∑N

i=1

(
M
(
x(i)

)
− MP C\i

(
x(i)

))2

∑N
i=1

(
M
(
x(i))− µy

)2 . (3-36)

Furthermore, according to [20], if the least-square minimization problem for estimating qκ is
solved, N PCE-based surrogate models will not be necessary and ϵLOO can be computed in
another way shown as follows:

ϵLOO =

∑N
i=1

(
M(x(i))−MP C(x(i))

1−hi

)2

∑N
i=1

(
M
(
x(i))− µy

)2 , (3-37)
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where hi represents the i-th element of the vector h = diag
(

A
(
AT A

)−1
AT

)
and A can be

obtained from Equation 3-31.

3-2 Sensitivity analysis

The computational model M basically depends on the input variables, model parameters and
scenarios. The current research focuses on investigating how sensitive model outputs are to
each model parameter of interest, which can be worked out using the sensitivity analysis. Not
only can the theoretical sense be provided, but it is also possible to explore spotting minor
model parameters and reducing the dimensions of the relative problem. There are different
kinds of methods for conducting the sensitivity analysis such as the sample-based methods,
linearization methods and global methods. In the current research, Sobol’ indices, one of
the global methods, will be used to investigate the sensitivity of each model parameter of
interest by decomposing the variance of the model outputs in terms of each model parameter’s
contribution and the combinations of these contributions.

3-2-1 Sensitivity analysis using Sobol’ indices

Based on [81], sensitivity analysis using Sobol’ indices is a form of global methods conducted
on the probabilistic framework. It decomposes the variance of the model output into fractions
attributed to model parameters of interest and the sets thereof. To elaborate its principle,
the expansion of the computational model y = M (θM ) is defined as the sum with increasing
dimensions under the condition of independent model parameters. For the simplification of
notations in the following elaboration, the components of the vector θM =

(
θM 1, ..., θM Nθ

)
consisting of uncertain model parameters are assumed uniformly distributed within [0, 1]. It
is important to note that this assumption has nothing to do with the sensitivity analysis
conducted in Chapter 4. The assumption is only for making it convenient to introduce the
theory and will not lead to lose the generality. The definition of the Sobol’ decomposition is
indicated as follows[61]:

y = M (θM ) = M0+
Nθ∑
i=1

Mi (θM i)+
Nθ∑

1≤i<j≤Nθ

Mij
(
θM i, θM j

)
+...+M1,2,...,Nθ

(
θM 1, ..., θM Nθ

)
,

(3-38)

where M0 = E [y], Mij denotes the contribution made by θM i and θM j and other higher
order terms are defined as Mij analogously.

Meanwhile, all terms in the decomposition are orthogonal, which can be mathematically
described as follows[61]:

∫ 1

0
Mi1,...,is (θM 1, ..., θM s) dθM ik = 0, 1 ≤ k ≤ s. (3-39)

As a consequence, all terms in the decomposition can be defined in terms of conditional
expected values[61]:
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M0 = E (y)

=
∫

DθM

M (θM ) dθM ,

Mi (θM i) = E (y|θM i) − M0

=
∫ 1

0
...

∫ 1

0
M (θM ) dθM ∼i − M0,

Mij
(
θM i, θM j

)
= E

(
y|θM i, θM j

)
− M0 − Mi (θM i) − Mj

(
θM j

)
=
∫ 1

0
...

∫ 1

0
M (θM ) dθM ∼i,j − M0 − Mi (θM i) − Mj

(
θM j

)
,

(3-40)

where E(·) denotes the expected value operator and θM ∼i represents the vector consisting of
all model parameters except θM i.

The higher-order terms are analogously built. Therefore, the total variance of the model
output V can be denoted as follows[61]:

V = Var(y)

= E
[
(y − E(y))2

]
= E

(
y2
)

− [E (y)]2

=
∫

DθM

M2 (θM ) dθM − M0
2

=
Nθ∑
s=1

Nθ∑
1≤i1<...<is≤Nθ

∫ 1

0
...

∫ 1

0
M2

i1,...,is
(θM i1 , ..., θM is

) dθM i1 ...dθM is

=
Nθ∑
i=1

Vi +
Nθ∑

1≤i<j≤Nθ

Vij + ...+ V1,...,Nθ
,

(3-41)

where Vi = Var [E (y|θM i)], Vij = Var
[
E
(
y|θM i, θM j

)]
− Vi − Vj and higher-order terms are

analogously determined.

Next, a nature definition for quantifying the sensitivity results from the variance decomposi-
tion shown as follows[61]:

Si1,...,is = Vi1,...,is

V
. (3-42)

Si1,...,is indicates how the set consisting of θM i1 , ..., θM is
contributes to the total variance.

It is named as the first order Sobol’ index Si when only single one model parameter θM i is
involved. The second order Sobol’ index Sij indicates the interactive contribution made by
two model parameter θM i and θM j . The analogous definitions can apply to the higher-order
indices. It is important to note that the property shown in Equation 3-43 can hold [49]:
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Nθ∑
i=1

Si +
Nθ∑

1≤i<j≤Nθ

Sij + ...+ S1,...,Nθ
= 1. (3-43)

Furthermore, the sum of all Sobol’ indices involving the model parameter θM i is named as
the total Sobol’ index ST otal

i and can be practically calculated as follows[61]:

ST otal
i = 1 − S∼i

= 1 − Var [E (y|θM ∼i)]
V

.
(3-44)

The property about the total Sobol’ index is
∑Nθ

i=1 S
T otal
i ≥ 1 [49].

3-3 Bayesian calibration

Most of calibration methods use all kinds of optimization algorithms to estimate the model
parameters based on the inputs and outputs. Some of them also involve weighted least-square
estimation [86] and best linear unbiased estimation [72]. These deterministic methods focus
on minimizing the difference between the computed model outputs and the measured data,
which can generate systematic bias and amplify uncertainty in the calibrated model output
due to lack of prior information of model parameters. To deal with this, the idea of considering
calibration from the probabilistic aspect is come up with.

In the current research, The FLORIDyn model is calibrated using Bayesian methods[48] which
deal with so-called inverse problems[84][54]: estimate model parameters which can not be
measured directly given the computational model providing the experimental data which are
not directly related to model parameters. The inverse problems aim to obtain the insights on
the model parameters based on the backward propagation of the observed information rather
than the forward propagation of the model parameters’ information through a computational
model [91].

3-3-1 Bayesian inference

A computational model M is considered as follows:

y = M (θM ) , θM ∈ DθM
⊂ RNθ , y ∈ R, (3-45)

where θM denotes the vector consisting of Nθ random model parameters θM 1, ..., θM Nθ
and

y represents the one-dimensional output of M.

Under the condition that Nθ model parameters θM 1, ..., θM Nθ
can not be directly measured

and only the quantities of interest modelled by M are available to measure, a random vector Θ
associated with θM is introduced and the corresponding probability density function (PDF)
π(·) is selected initially as the prior distribution:
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ΘM ∼ π (θM ) . (3-46)

Next, N independent measurements {yi ∈ R, i = 1, ..., N} of the model output Y are collected
in a data set Y def= {y1, ..., yN }. Based on the classical Bayes’ theorem [47], the posterior
distribution conditional on the measured data Y can be indicated as follows:

π (θM |Y) = L (θM ; Y)π (θM )
Ze

. (3-47)

The term L (θM ; Y) in Equation 3-47 denotes the likelihood function returning the related
likelihood of observing the measured data Y for the given θM and is defined as follows:

L : θM 7→ L (θM ; Y) def=
N∏

i=1
π (yi|θM ) . (3-48)

The term Ze represents the evidence, which is a factor normalizing that the integration in
Equation 3-49 equals 1:

Ze
def=

∫
Θ

L (θM ; Y)π (θM ) dθM . (3-49)

3-3-2 Discrepancy

To depict the difference between the computational model output and the corresponding
measurement, the discrepancy term ε ∈ R is introduced as follows:

y = M(θM ) + ε. (3-50)

The current research assumes ε as an additive Gaussian discrepancy:

ε ∼ N
(
ε|0, σ2

)
, (3-51)

where the mean of the discrepancy is assumed as 0 and σ2 ∈ R is the unknown variance.

Based on Equation 3-50 and Equation 3-51, a measurement point yi ∈ Y indicates a realization
of a Gaussian distribution whose mean is M (θM ) and variance is σ2 described as follows:

π (y|θM ) = N
(
y|M (θM ) , σ2

)
, (3-52)

where the vector consisting of model parameters is considered as a random vector Θ ∼ π (θM ).

Based on [91], given N independent measurements y1, ..., yN collected in the data set Y, the
likelihood function can be derived as follows:
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L
(
θM , σ2; Y

)
=

N∏
i=1

N
(
yi|M (θM ) , σ2

)

=
Nθ∏
i=1

1√
(2πσ2)Nθ

exp
(

− 1
2σ2 (yi − M (θM ))2

)
.

(3-53)

Given the prior distribution and the likelihood function, the posterior distribution can be
then derived from Equation 3-47.

However, the above inference requires a specific value for the variance σ2. When σ2 is un-
known, the strategy is to consider the discrepancy term as an additional parameter and to
jointly infer it with model parameters. The new built parameter vector is defined as:

θ
def=

(
θM

θε

)
, (3-54)

where the discrepancy parameter θε is priorly independent and assumed as θε ≡ σ2. The new
prior distribution can be indicated as:

π (θ) = π (θM )π (θε)

= π (θM )π
(
σ2
). (3-55)

Again, given the new prior distribution and the likelihood function with unknown σ2, the
corresponding posterior distribution can be derived as follows[91]:

π
(
θM , σ2|Y

)
= π (θM )π

(
σ2)L

(
θM , σ2; Y

)
Ze

. (3-56)

Next, the distribution π (θM i|Y) for the individual computational model parameter and the
distribution π

(
σ2|Y

)
for the variance can be extracted.

3-3-3 Inverse solution

According to [91], after the posterior distribution is obtained, a point estimate indicated by
the posterior mean vector can be computed as:

E (Θ|Y) =
∫

DΘ

θMπ (θM |Y) dθM . (3-57)

To quantify the uncertainty of the estimation, the posterior covariance matrix is computed
as:

Cov (Θ|Y) =
∫

DΘ

[θM − E (Θ|Y)] [θM − E (Θ|Y)]T π (θM |Y) dθM . (3-58)
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Additionally, the posterior distribution π (θM i|Y) for the individual computational model
parameter can be computed as:

π (θM i|Y) =
∫

DΘ∼i

π (θM |Y) dθM ∼i, (3-59)

where θM ∼i represents the vector consisting of all model parameters except θM i.

In practice, π (θM |Y) is usually used to compute the conditional expectation of the model
output described as:

E [M (Θ|Y)] =
∫

DΘ

M (θM )π (θM |Y) dθM . (3-60)

3-3-4 Model predictions

Bayesian inference can be also used to work on the predictive distributions resulting from the
prior and posterior estimations for Y and Y |Y respectively with considering the uncertainty
in θM . According to [91], the prior predictive distribution is computed as:

π (y) =
∫

DΘ

π (y|θM )π (θM ) dθM . (3-61)

Meanwhile, the posterior predictive distribution is computed as:

π (y|Y) =
∫

DΘ

π (y|θM )π (θM |Y) dθM . (3-62)

In practice, π (y|Y) can be proposed by selecting a specific value θ̂M from π (θM |Y) as follows:

π (y|Y) def= π
(
y|θ̂M

)
. (3-63)

The specific value for θ̂M is mostly selected as the posterior mean [91].

3-3-5 Markov Chain Monte Carlo (MCMC)

According to [76] and [59], Markov Chain Monte Carlo (MCMC) methods, also known as
samplers, comprise plenty of algorithms to work on inverse solutions by building a Markov
chain

(
Θ(1), ...,Θ(Nθ)

)
over the prior information DΘ and setting a constant distribution

of the Markov chain equal to the posterior distribution of Θ. The transition probability
K
(
θM

(t+1)|θM
(t)
)

from the chain position θM
(t) at the step t to the chain position θM

(t+1)

at the next step t + 1 can be used to uniquely define the Markov chain with a constant
distribution equal to π (θM |Y) by satisfying the detailed balance requirement[91] indicated
as follows:

π
(
θM

(t)|Y
)

K
(
θM

(t+1)|θM
(t)
)

= π
(
θM

(t+1)|Y
)

K
(
θM

(t)|θM
(t+1)

)
. (3-64)
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Based on [91], the detailed balance requirement states that the probability of the move from
θM

(t) to θM
(t+1) equals the probability of the move from θM

(t+1) to θM
(t).

The Markov chain’s invariant distribution is truly the posterior distribution of Θ, which can
be seen from the integral of the detail balance requirement over dθM

(t) shown as follows:

π
(
θM

(t+1)|Y
)

=
∫

DΘ

π
(
θM

(t)|Y
)

K
(
θM

(t+1)|θ(t)
M

)
dθM

(t). (3-65)

Most of MCMC algorithms require plenty of tuning to improve their performance if there is
strong correlation between model parameters. To deal with this problem, the affine-invariant
ensemble sampler (AIES) researched by [51] in 2010 is used in the current research. The AIES
algorithm can perform equally well when sampling from the poorly-scaled, highly-anisotropic
or well-scaled distributions which can be affine-transformed to each other [51]. The related
working principles are explained next.

Affine-invariant ensemble sampler (AIES)

Based on [51], the AIES algorithm simultaneously evolves Nw MCMC chains named as Nw

walkers by firstly generating Nw samples θM
(1)
1 , ...,θM

(1)
Nw

from the given prior as the first
position of each chain at once. After that, Nw walkers are sequentially updated at each step
t. Each walker can be updated by generating a candidate and computing the a probability
as the standard of accepting or rejecting the candidate to replace the original walker. In
mathematical notation, θM

∗
k represents the candidate for the k-th walker at the step t + 1,

which can be indicated as follows:

θM
∗
k = τθM

(t)
k + (1 − τ) θ̃M , (3-66)

where θ̃M represents a complementary walker randomly picked from the set{
θM

(t+1)
1 , ...,θM

(t+1)
k−1 ,θM

(t)
k+1, ...,θM

(t)
Nw

}
and τ denotes a real-valued proposal stretch fac-

tor which can be defined as a stochastic variable subject to a proposal probability density
function g (τ) written as[60]:

g (τ) =


1

2×
(√

ν− 1√
ν

) × 1√
τ

τ ∈
[

1
ν , ν

]
0 otherwise

, (3-67)

where ν is the step size of the AIES algorithm which can be set by the user and ν = 2 is
chosen in most of cases based on [40].

Next, the candidate θM
∗
k is accepted to replace θM

(t+1)
k with the acceptance probability Pk

written as[51]:

Pk = min

1, τNθ−1 × π (θM
∗
k|Y)

π
(
θM

(t)
k |Y

)
 . (3-68)
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Generate a sample from the uniform distribution u ∼ U [0, 1], if Pk > u, the candidate is
accepted by setting θM

(t+1)
k = θM

∗
k, otherwise, the candidate is rejected by setting θM

(t+1)
k =

θM
(t)
k instead.

Convergence assessment in MCMC methods

The chains consisting of samples constructed by MCMC methods will be subject to the
posterior distribution in the end. However, the convergence quality of the chains can only be
assessed from a finite number of samples in practice. In the current research, the trace plots
will be used to assess the MCMC chains’ convergence.

The trace plots can offer the visual insights about convergence for each dimension of the
sample individually. To do so, the kernel density estimation (KDE) method is used to shape
the posterior marginal. The kernel density estimator is indicated as follows[92]:

f̂h (θM i) = 1
T

T∑
t=1

Kh

(
θM i − θM i,t

)
= 1
Th

T∑
t=1

K

(
θM i − θM i,t

h

), (3-69)

where θM i, i = 1, ...Nθ represents the i-th dimension of the sample, θM i,t represents the
sample of θM i at the step t, h is a positive scalar named as the bandwidth, K(·) denotes the
kernel function which is an even, non-negative function and whose integral over the range
(−∞,+∞) equals 1, Kh(·) is named as the scaled kernel and defined as Kh(·) = 1

hK
( ·

h

)
.

The KDE of the posterior marginal will not have noticeable changes as the increase of the
number of steps after the chain reaches its steady state [91].

3-4 Summary

The procedures of using the UQLab software [63] to conduct the uncertainty quantification of
the FLORIDyn model are shown in Figure 3-7. First, the target model parameters summa-
rized in Table 2-1 will be converted into probabilistic variables as their prior information. In
the current research, each target model parameter will be subject to a uniform distribution
by perturbing their mean value to obtain lower and upper bounds. Next, a surrogate model
will be trained to replace the original FLORIDyn model by using the Kriging module [57]
or the PCE module [62]. The trained surrogate model for the next procedure will be chosen
based on the comprehensive comparison of the FLORIDyn model’s Kriging-based surrogate
model and the FLORIDyn model’s PCE-based surrogate model in terms of accuracy and
efficiency. The chosen surrogate model will be then applied to conduct sensitivity analysis
with the sensitivity analysis module [61] and Bayesian calibration with the Bayesian inversion
module [91]. The Sobol’ indices will be used to depict each target parameter’s sensitivity to
the model output. The AIES algorithm will be used to sample from each target parameter’s
posterior distribution.
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Figure 3-7: Flowchart for the procedures of uncertainty quantification.
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Chapter 4

3-Turbine Case Study

The uncertainty quantification comprising of the surrogate model construction, sensitivity
analysis and Bayesian calibration will be applied for the 3-Turbine case of the FLORIDyn
model. SOWFA data will be used as the measurements for Bayesian calibration. The sim-
ulation conditions of the case are described in Section 4-1. Section 4-2 discusses the results
of the case: Model parameters’ prior distributions converted from their mean values and the
comparison of the Kriging-based surrogate model and the PCE-based surrogate model are
presented in Section 4-2-1. Section 4-2-2 analyses the sensitivity of the model output to each
model parameter of interest. Last, the results of Bayesian calibration and the comparison
with SOWFA data are shown in Section 4-2-3.

4-1 Simulation conditions

The simulation of the current research uses the DTU 10-MW reference wind turbine [14]. In
FLORIDyn, the turbines are modelled using the Actuator Disc Model (ADM) [28]. There are
50 chains for each turbine with 200 OPs per chain, which can offer the enough OP density
in the wake [17]. The time step is set to 4s. The simulation scenario S comprised of 3 wind
turbines is modified from [17]. The layout is shown in Figure 4-1. The three wind turbines
are placed exactly along the downwind direction and the distance between two adjacent
wind turbines equals 892m, which is five times larger than the rotor diameter. The position
coordinates of the three wind turbines are (608m, 500m), (1500m, 500m) and (2392m, 500m)
respectively. In SOWFA, the turbines are modelled using the Actuator Line Method (ALM)
[68]. The time step is set to 0.04s. The full SOWFA flow field domain consisting of the base
cells of 10 × 10 × 10 m is set to span 3000 × 1000 × 1000 m. There are also two SOWFA
flow field refinement areas without offset from the ground which are located at the center of
the domain. The first one spans 2400 × 800 × 500 m with the base cells of 5 × 5 × 5 m and
the second one spans 2200 × 600 × 350 m with the base cells of 2.5 × 2.5 × 2.5 m. In both
FLORIDyn and SOWFA, the mean upstream wind speed is set to 8.2m/s at the hub height
with the ambient turbulence intensity of around 6% and the time interval of the simulation
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is set to 1200s. The yaw angle γ of the upstream wind turbine is set to change with the rate
of 0.3◦/s from 0◦ to 10◦ at 200s and from 10◦ to 20◦ at 800s. The positive value for the
angle stands for clock-wise rotation. The other two wind turbines stay still during the entire
simulation.

Figure 4-1: The scenario in terms of the 3-Turbine layout. Different cell refinement areas are
marked with different colors. Three symbols for the upstream wind turbine represent 0◦, 10◦ and
20◦ yaw orientations respectively. The arrow on the left denoting the direction of wind is defined
as 90◦.

4-2 Results and interpretation

Section 4-2-1 presents the model parameters’ prior distributions converted from their mean
values and two types of surrogate models trained for the 3-Turbine case of the FLORIDyn
model. The results and the related interpretation of the sensitivity analysis are shown in
Section 4-2-2. The model parameters’ posterior distributions calibrated using SOWFA data
as measurements and the comparison of the uncalibrated model, the calibrated model and
SOWFA are presented in Section 4-2-3.

4-2-1 Surrogate models for the 3-Turbine case of FLORIDyn

To decrease the computational cost, the FLORIDyn model elaborated in Chapter 2 is replaced
by the trained surrogate model described in Section 3-2. In mathematical notation, the vector
comprised of model parameters is denoted as θM = (θM 1, ..., θM 11). An evaluation of the
FLORIDyn model denoted as M at the discrete time step t returns wind turbine power
outputs y(t)

i , i = 1, 2, 3 forming a vector Y (t) =
(
y

(t)
1 , y

(t)
2 , y

(t)
3

)
. The FLORIDyn model

evaluation M depends on the model parameters θM and the simulation scenario S described
in Section 4-1:

y
(t)
i = M (θM ,S) . (4-1)
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In the current research, the model parameters’ prior distributions are defined as the uniform
distribution U (θmin, θmax) by perturbing their mean values summarized in Table 2-2 in Sec-
tion 2-2 with ±70% to set lower and upper bounds. The specific values are indicated in Table
4-1.

α∗ β∗ ka kb kf,a kf,b kf,c kf,d d η pp

θmin 0.696 0.0462 0.115 0.0011 0.219 0.250 0.0098 -0.544 0.3 0.257 0.66
θmax 3.944 0.2618 0.652 0.0063 1.241 1.415 0.0553 -0.096 1.7 1.457 3.74

Table 4-1: Lower and upper bounds of the proposed prior uniform distributions for the model
parameters

For the Kriging-based surrogate model elaborated in Section 3-1-1, the experimental design
is obtained by sampling from the model parameters’ prior distributions defined above with
the Latin Hypercube sampling (LHS) method by default by the UQLab software [63]. The
number of samples for the experimental design is set to 250. As described in Section 4-
1, the time step in FLORIDyn is set to 4s and the simulation time is set to 1200s. As a
consequence, the FLORIDyn model evaluation returns a 301 × 3 matrix during the entire
simulation. 903 original model outputs in total then need trained Kriging-based surrogates.
The results for one of those outputs are indicated in Figure 4-2. As can be seen, the values for
the trend, correlation function, estimation and optimization method are assigned by default
by the UQLab software [63] for the 402nd output and the same way for the rest of outputs.

For the PCE-based surrogate model, the experimental design is obtained the same way as
the Kriging-based surrogate model. The LARS sparse regression solver is used and 903 inde-
pendent LARS-based surrogates in total then need to be built for the same reason mentioned
above. To compare the accuracy of two types of obtained surrogate models, Figure 4-3(a)
presents the outputs of the original FLORIDyn model and two types of surrogate models
during the entire simulation. Meanwhile, all LOO errors of two types of surrogate models are
shown in Figure 4-3(b).

As described in Section 4-1, the yaw angle γ of the upstream wind turbine (Turbine1) initially
starts to be yawed with the angular velocity 0.3◦/s at 200s. As shown in Figure 4-3(a), due
to the fact that the influence of the yaw angle change needs time to arrive at the downstream
wind turbine, the second wind turbine (Turbine2) then starts to be affected by it at about
312s and the third wind turbine (Turbine3) then starts to have a reaction at around 420s. In
other words, three wind turbines’ first steady states reached after the first yaw angle change
start at around 236s, 348s and 456s respectively. In the current research, the simulation
period from 456s to the end will be mainly taken into account.

It can be intuitively observed that both the Kriging-based surrogate model outputs and PCE-
based surrogate model outputs almost overlap the FLORIDyn model outputs. However, the
accuracy of these two types of surrogate models still requires to be investigated quantitatively.
The LOO errors of theirs are next computed and 0.01 is used as the reference value for the LOO
error modified from [30]. Even though the Kriging-based approach costs more time than the
PCE-based approach when 250 model evaluations are used, Figure 4-3(b) indicates the PCE-
based approach has better performance than the Kriging-based approach when using the same
number of model evaluations in this case. However, not all LOO errors in these two approaches
are smaller than 0.01. To improve the accuracy of the surrogate model more efficiently, the
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Figure 4-2: The Kriging-based surrogate results for the 402nd output of the original FLORIDyn
model.
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(a) Comparison of outputs of the FLORIDyn model,
the Kriging-based surrogate model and the PCE-
based surrogate model
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Figure 4-3: Comparison of the Kriging-based surrogate model and the PCE-based surrogate
model in terms of outputs and LOO errors.
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PCE-based approach is selected and the number of model evaluations is increased to 2000. As
shown in Figure 4-4, during the simulation period of interest (456s ∼ 1200s), all LOO errors
are smaller than 0.01 except 3 out of 447 data. As a consequence, the PCE-based surrogate
model trained with 2000 model evaluations will be selected to replace the original FLORIDyn
model for the following sensitivity analysis and Bayesian calibration parts.

Figure 4-4: LOO errors during the entire simulation. Green indicates the LOO error is smaller
than 0.01, while red indicates the opposite. The darker the color is, the larger the LOO error is.

4-2-2 Sensitivity analysis using Sobol’ Indices

Total Sobol’ indices elaborated in Section 3-3 are calculated to indicate the sensitivity of the
PCE-based surrogate model to 11 model parameters summarized in Table 2-1. The results
in terms of three wind turbines are time-dependent and presented in Figure 4-5, Figure 4-6
and Figure 4-7 respectively. The top edge line in each figure represents the sum of ST otal

1
to ST otal

11 , which can not be smaller than 1 since there are interaction effects between model
parameters and these effects are counted more than once. The width of each color area
depicts ST otal

i , i = 1, ..., 11 individually. The wider the color area is, the more sensitive the
PCE-based surrogate model is to the corresponding model parameter.

As shown in Figure 4-5, it makes sense that the first eight model parameters describing the
Gaussian FLORIS wake model in FLORIDyn do not have any influence on the upstream wind
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turbine (Turbine1) which is located in the free stream due to the fact that no wake effects
are captured. The advection scaling factor d scales the advection speed for transporting the
FLORIDyn wind field data carried by OPs. Therefore, d can not be perceived in Turbine1
in the free stream either. Based on Equation 2-21 in Chapter 2-1-6, the power production is
scaled by the efficiency factor η and the factor pp is an exponent to correct the yaw angle γ.
As a consequence, during the simulation period of interest (456s ∼ 1200s), η mainly affects
Turbine1 all the time and pp can not be slightly perceived until 800s when the yaw angle γ
starts to change with the angular velocity 0.3◦/s from 10◦ to 20◦.
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Figure 4-5: The sensitivity of the time-dependent power output of the upstream wind turbine
with respect to 11 model parameters depicted by total Sobol’ indices

Figure 4-6 shows that the wake effects resulting from the change of the yaw angle γ arrive at
the second wind turbine (Turbine2), i.e., the first eight wake model parameters are perceived
during the simulation period of interest (456s sim1200s). Since the wake effects are only from
Turbine1 which is not far away from Turbine2, the near wake effects are mainly captured here.
The near wake length xc presented in Equation 2-11 in Section 2-1-3 depending on α∗ and β∗,
the wake expansion factors ky and kz presented in Equation 2-16 in Section 2-1-4 depending
on ka and kb, the added turbulence If presented in Equation 2-18 in Section 2-1-4 depending
on kf,a, kf,b, kf,c and kf,d, jointly affect the reduction factor for computing the wind speed
reduced by wake effects. Even though all eight wake model parameters indeed show up,
except α∗, β∗ and ka are quite obvious to observe, the color areas corresponding to the rest
are pretty small and not easy to find. The advection scaling factor d has an influence on when
the wake information from Turbine1 and carried by OPs arrives at Turbine2. Therefore, d
can be perceived in Turbine2. Additionally, η also has a significant influence here for the
same reason as Turbine1 mentioned above. Last, pp is not perceived because the yaw angle
γ of Turbine2 always stays still with 0◦.
Figure 4-7 presents that all model parameters of interest are perceived in the third wind
turbine (Turbine3) except pp because the yaw angle γ of Turbine3 also stays still with 0◦ all
the time. Even though the color areas corresponding to kb and kf,c are still inconspicuous, the
other wake model parameters can be intuitively observed and especially kf,a, kf,b and kf,d are
much easier to find compared to Turbine2. This is because Turbine3 is affected by the wake
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Figure 4-6: The sensitivity of the time-dependent power output of the middle wind turbine with
respect to 11 model parameters depicted by total Sobol’ indices

effects not only from relatively nearby Turbine2, but also from relatively far Turbine1, which
means that there are more turbulence captured at Turbine3 than Turbine2. As a consequence,
weight factors of the foreign turbulence influence can be perceived more easily. Additionally,
as described above, d can be perceived because it affects the power production by scaling
the speed for transporting the wind field data carried by OPs. Last, η also affects Turbine3
significantly for the same reason as the other two wind turbines.
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Figure 4-7: The sensitivity of the time-dependent power output of the downstream wind turbine
with respect to 11 model parameters depicted by total Sobol’ indices

Finally, based on the results of sensitivity analysis, the changes of all 11 model parameters of
interest at different times contribute to the variations in the time-dependent power outputs
of three wind turbines. Hence, all 11 model parameters summarized in Table 2-1 in Section
2-2 will be taken into account in the following Bayesian calibration part.
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4-2-3 Bayesian calibration

The measurement data for the calibration is obtained from the SOWFA simulation. As
described above, the model outputs are sensitive to all 11 model parameters of interest at
different times. Therefore, all of these 11 model parameters are considered and the PCE-
based surrogate model trained for sensitivity analysis can also be used here. Additionally, in
this case, the variance σ2 of the additive Gaussian discrepancy ε elaborated in Section 3-3-2
is assumed as 0.01. The AIES method is used by default by the UQLab software [63] to
sample from the posterior distributions. The number of steps is set to 100 and the number
of chains is set to 1000. The initial seeds for each chain are automatically sampled from the
prior distributions. The trace plot and corresponding KDE of each model parameter are then
obtained to check if the chain has arrived at its steady state.

Figure 4-8 presents all trace plots and corresponding KDEs of 11 model parameters of interest.
It can be observed that the KDE for each model parameter’s posterior distribution will not
change significantly with increasing the number of steps. Therefore, it can be concluded that
the steady state of each model parameter has been reached [91].

The posterior distributions of all model parameters turn into Gaussian-like based on their
Uniform-like prior distributions. The results of these Gaussian distributions are shown in
Table 4-2 and visualized in Figure 4-9.

α∗ β∗ ka kb kf,a kf,b kf,c kf,d d η pp

µ 3.4 0.19 0.62 0.0043 0.7 0.94 0.035 -0.37 0.97 0.91 2.8
σ 0.22 0.026 0.027 0.00075 0.12 0.13 0.0066 0.061 0.17 0.013 0.38

Table 4-2: Mean values and standard deviations of the obtained posterior distributions for the
model parameters.

The probability of observing the model outputs depending on calibrated model parameters
can be denoted by the posterior predictive distribution described in Section 3-3-4. Based
on Equation 3-62, the posterior predictive distribution can be obtained with the likelihood
estimated from the model evaluations and the samples of 11 model parameters’ posterior
distributions. Figure 4-10 presents the measurement data, the original FLORIDyn model
outputs, the calibrated FLORIDyn model outputs computed with posterior mean values of
11 model parameters, the variance for the FLORIDyn model outputs estimated with 2σ,
during the simulation time interval of interest (456s ∼ 1200s). It can be observed that the
variance almost encloses the SOWFA data and the calibrated FLORIDyn model outputs
overlap the SOWFA data better compared to the original FLORIDyn model outputs, which
means that the accuracy of the FLORIDyn model is indeed improved after being calibrated.
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(a) Trace plot and corresponding
KDE of α∗.

(b) Trace plot and corresponding
KDE of β∗.

(c) Trace plot and corresponding
KDE of ka.

(d) Trace plot and corresponding
KDE of kb.

(e) Trace plot and corresponding
KDE of kf,a.

(f) Trace plot and corresponding
KDE of kf,b.

(g) Trace plot and corresponding
KDE of kf,c.

(h) Trace plot and corresponding
KDE of kf,d.

(i) Trace plot and corresponding
KDE of d.

(j) Trace plot and corresponding
KDE of η.

(k) Trace plot and corresponding
KDE of pp.

Figure 4-8: Trace plots and corresponding KDEs of all 11 model parameters of interest.
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Figure 4-9: The prior and posterior distributions of 11 model parameters. The orange dots
represent the mean values.
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Figure 4-10: Comparison of the SOWFA data, the original FLORIDyn model outputs, the
calibrated FLORIDyn model outputs and the variance for the FLORIDyn model outputs estimated
with double standard deviation. The green, yellow dashed and red curves represent SOWFA,
original FLORIDyn and calibrated FLORIDyn respectively. Besides, the transparent pink area
indicates the variance for FLORIDyn.
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Chapter 5

Summary and conclusion

This chapter first summarizes the achievements of this research. Next, the drawbacks appear-
ing during the study and corresponding possible strategies to deal with them in the future are
described. The overview of uncertainty quantification for the FLORIDyn model is presented
in Section 5-1. The issues still not worked out are then described in Section 5-2. Last, the
future work for dealing with those issues is discussed in Section 5-3.

5-1 Achievements

To improve the accuracy of the FLORIDyn model developed by [17], the uncertainty quan-
tification was conducted using the UQLab software [63] in this research. As described in
Chapter 2, in FLORIDyn, the wake effects are captured by the Gaussian FLORIS model [15]
inherently depending on the first eight wake model parameters summarized in Table 2-1 in
Section 2-2, d regulates the temporal dynamics by scaling the advection speed for transport-
ing the wind field data carried by OPs, η and pp scale the power outputs and the yaw angle
γ respectively. As a consequence, these 11 model parameters were considered for uncertainty
quantification and converted into probabilistic variables subject to uniform distributions by
perturbing their mean values. However, it can result in high computational costs using the
computational model directly in the research. The method to improve the efficiency of sim-
ulations is to construct a surrogate model to replace the original computational model. This
research assessed two types of approaches for constructing the surrogate model which are the
Kriging-based approach and the PCE-based approach respectively. The results show that
the PCE-based approach can provide a more accurate surrogate model with similar efficiency
compared to the Kriging-based approach in this case. The LOO error was used to quantify
the accuracy and a reference value was set to 0.01 modified from [30]. A PCE-based surrogate
model with almost all LOO errors smaller than 0.01 was then obtained to replace the original
computational model for the following uncertainty quantification.

Sensitivity analysis uses Sobol’ indices to indicate how sensitive the power outputs of each
wind turbine are to each of 11 model parameters of interest at different times. Base on the

Master of Science Thesis D.Shi



5-2 Drawbacks 51

results that each of model parameters plays a role in calculating power outputs during the
simulation time interval of interest, all 11 model parameters were considered in the Bayesian
calibration part and the PCE-based surrogate model constructed for sensitivity analysis was
therefore used for Bayesian calibration, too.

The AIES method was used to sample from the posterior distributions. The posterior pre-
dictive distribution was then obtained based on the samples of Gaussian-like posterior dis-
tributions and the likelihood estimated using model evaluations. Last, the improvement of
accuracy can be observed by comparing the SOWFA data, the original FLORIDyn model out-
puts, the calibrated FLORIDyn model outputs and the variance for the FLORIDyn model
outputs in Figure 4-10.

5-2 Drawbacks

As described in Section 4-1, the yaw angle γ of Turbine1 changes twice during the entire simu-
lation. Therefore, there are two dynamic states captured by the FLORIDyn model which are
at the time interval (200s ∼ 456s) and the time interval (800s ∼ 1056s) respectively. Based on
Figure 4-3, for Turbine2 and Turbine3, both Kriging-based and PCE-based approaches with
250 experimental design points have better performance when applied to steady states than
to dynamic states and have the worst performance when applied to the earlier dynamic state
(200s ∼ 456s). This situation keeps the same when applying the PCE-based approach with
2000 experimental design points as shown in Figure 4-4. This research focuses on the time
interval (456s ∼ 1200s) when most LOO errors are smaller than 0.01 to reduce the impact of
surrogate model errors.

The trace plot and corresponding KDE of each model parameter of interest are used to
approximate its posterior distribution and to check if its chain produce by the MCMC sampler
has reached the steady state. Based on Figure 4-8 in Section 4-2-3, all chains of model
parameters have reached their steady states, except the chain of α∗ has not completely reached
its steady state. Additionally, the lower and upper bounds of the prior distributions of α∗

and ka are not set properly.

5-3 Future work

Even though the accuracy of the FLORIDyn model has been improved after being calibrated,
there is still room for further improvement in the future. The following items might be able
to help further improve the model accuracy.

As described before, it can result in massive computational costs when applying the FLORI-
Dyn model directly to uncertainty quantification. It is necessary to replace the FLORIDyn
model with a surrogate model to reduce the computing costs, even though the errors between
the surrogate model and the original model will have a negative influence on the follow-up
study. Therefore, it is helpful to reduce the influence of errors as much as possible. In the
current research, the LAR algorithm with default settings in the PCE module of the UQLab
software [63] was used to train the surrogate model. Even though the user manual [62] for
this module says the default settings are suitable for most cases, it is worth trying other
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settings to search smaller LOO errors, or exploring introducing an early stop criterion to find
the minimum LOO error which is similar to that shown in Figure 3-6.

Based on the results of sensitivity analysis, the power outputs are less sensitive to kb and kf,c

than to the other model parameters. Therefore, one possible method that sacrifices relatively
little accuracy to improve efficiency is to reduce the dimension of the model parameter vector
for Bayesian calibration. To do so, kb and kf,c are defined as deterministic variables equal
to their mean values instead of probabilistic variables subject to uniform distributions when
constructing the surrogate model for Bayesian calibration.

Last, the number of steps set for the AIES algorithm can be further increased to ensure that
the chain of each model parameter has completely reached its steady state. Additionally,
another possible strategy to further improve the performance of Bayesian calibration is to
jointly infer the discrepancy term ε with other model parameters by calibrating a new vector
consisting of ε and other model parameters instead of assuming it as an additive Gaussian
discrepancy. To do so, ε can be similarly defined as a probabilistic variable priorly subject to
the uniform distribution. Adjusting lower and upper bounds of parameters’ prior distributions
to ensure that their mean values stay in the middle of the ranges as much as possible or directly
expanding the intervals of their prior distributions might be also useful for the improvement.
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List of Symbols

Abbreviations
ADM Actuator Disc Model
AEP Annual Energy Production
AIES Affine Invariant Ensemble Sampler
ALM Actuator Line Method
BLUP Best Linear Unbiased Prediction
CFD Computational Fluid Dynamics
CV Cross Validation
FLORIDyn Flow Redirection and Induction

Dynamics
FLORIS Flow Redirection and Induction in

Steady-State
KDE Kernel Density Estimator
LAR Least Angle Regression
LCOE Levelized Costs Of Energy
LES Large Eddy Simulation
LHS Latin Hypercube Sampling
LOO Leave One Out
MCMC Markov Chain Monte Carlo
ML Maximum Likelihood
NREL National Renewable Energy Labora-

tory
OLS Ordinary Least Squares
OP Observation Point
PALM PArallelized LES Model
PC Polynomial Chaos

PCE Polynomial Chaos Expansions
PDF Probability Density Function
QoI Quantity of Interest
SCADA Supervisory Control and Data Ac-

quisition
SOWFA Simulator of On/Offshore Wind

Farm Applications
UQ Uncertainty Quantification
WFC Wind Farm Control
WFSim Wind Farm Simulator
Symbols
α∗, β∗ Weight constraints in the potential

core length calculation [−]
λT f(x) Trend in the Kriging-based approach

[−]
X Experimental design vector [−]
Y Model observation vector [−]
Θ Random vector associated with the

model parameter vector θM [−]
θM Model parameter vector [−]
x Model input vector [−]
δ Deflection [m]
δjk Kronecker symbol [−]
η Efficiency factor [−]
γ Yaw angle [rad]
λ Tip speed ratio [−]
E Expectation operator [−]
R01 Rotational matrix [−]
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r0 Position in the world coordinate sys-
tem [m]

r1 Position in the wake coordinate system
[m]

t0 Position of the respective turbine in
the world coordinate system [m]

u Wind speed vector [m/s]
ured Reduced wind speed vector [m/s]
DX Available integration domain [−]
K Transition probability in the MCMC

algorithm [−]
L Likelihood function in the Bayesian in-

ference [−]
LK Likelihood function in the Kriging-

based approach [−]
M Model output [−]
MK Kriging-based surrogate model [−]
MP C PCE-based surrogate model [−]
N Gaussian distribution [−]
O Observation set [−]
Y Measurement data set [−]
νy, νz Relative y1/z1 direction [−]
ρ Air density [kg/m3]
Σ Residual covariance matrix [−]
σ2 Variance [−]
σy,fw Standard deviation of the far wake in

y1 direction [m]
σy,nw Standard deviation of the near wake in

y1 direction [m]
σz,fw Standard deviation of the far wake in

z1 direction [m]
σz,nw Standard deviation of the near wake in

z1 direction [m]
θ Deflection angle at the rotor [rad]
θpc Deflection angle in the potential core

[rad]
ε Scalar discrepancy term [−]
φ Wind angle [◦]
a Axial induction factor [−]
Aoverlap Area of the rotor plane where a for-

eign wake overlaps [m2]
Arotor Area of the rotor plane [m2]

CP Power coefficient [−]
CT Thrust coefficient [−]
Cov Covariance operator [−]
D Rotor diameter [m]
d Factor added to regulate the temporal

dynamics [−]
I Turbulence intensity [−]
Iamb Ambient turbulence [−]
If Added turbulence [−]
k Index counting the time step [−]
K(·) Kernel function [−]
ka, kb Weight constraints in the wake expan-

sion calculation [−]
kf,a, ..., kf,d Weight factors of the foreign tur-

bulence influence [−]
Kh(·) Scaled Kernel function [−]
ky, kz Expansion factors in y1/z1 direction

[−]
Nθ Number of model parameters [−]
nT Number of turbines [−]
Nw Number of walkers (chains) in the

AIES algorithm [−]
P Power production [W ]
Pk Acceptance probability in the AIES al-

gorithm [−]
pp Factor for correcting the power coef-

ficient under yawed operating condi-
tions [−]

R Correlation function in the Kriging-
based approach [−]

r Reduction factor [−]
rc Potential core reduction factor [−]
rfw Far wake reduction factor [−]
rnw Reduction factor acting on the transi-

tion from the potential core to the free
stream in cross wind direction [−]

rpcy1
Potential core radius in y1 direction

[m]
rpcz1

Potential core radius in z1 direction
[m]

Sij Second order Sobol’ index [−]
Si First order Sobol’ index [−]
ST otal

i Total Sobol’ index [−]
T Number of time steps [−]

Master of Science Thesis D.Shi



62

t Time step [−]
u Free wind speed [m/s]
uc Wind speed in the potential core [m/s]
ueff Effective wind speed [m/s]
uOP Speed of an OP [m/s]
ured Reduced wind speed [m/s]
uR Wind speed at the rotor plane [m/s]
x0 x coordinate in the world coordinate

system [m]
x1 x coordinate in the wake coordinate

system (down wind) [m]
xc Potential core length [m]

y Scalar output of M [−]
y0 y coordinate in the world coordinate

system [m]
y1 y coordinate in the wake coordinate

system (cross wind) [m]
z0 z coordinate in the world coordinate

system [m]
z1 z coordinate in the wake coordinate

system (cross wind) [m]
Ze Evidence term [−]
zh Nacelle height [m]
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