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Abstract

Model selection starts with a dataset and a number of candidate models that can explain that data. The AIC
and BIC criteria prevents choosing the best fitting model by penalizing for the number of parameters in a
model and instead selects the model that performs best when assessed to unseen data. Their performance
depends on the sample size and the noise in the data.

In portfolio management, it is common to find a combination of financial products such that an objective
is optimized. A common risk measure criterion that gets maximized is the Sharpe ratio. Since portfolio man-
agement is also done based on historic data, but wanted to be optimized for unseen data, model selection
can be applied to portfolio management as well.

Finding the optimal weights in a portfolio is done by solving a linear system of equations. Applying this
to subsets of stocks which are contained in the AEX index, leads to higher in-sample Sharpe ratios than using
equal weights or just following the AEX index. The out-of-sample Sharpe ratio gets overestimated by noise
fit and estimation error. The Sharpe Ratio Information Criterion (SRIC) corrects for this. This criterion gives
an unbiased estimate for the out-of-sample Sharpe ratio and can be used for model selection in portfolio
management. Using a trend following strategy, investing proportionally to the returns, also increases you
expected out-of-sample Sharpe ratio.
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Introduction

Model selection starts with a dataset and a number of candidate models that can explain that data. Different
selection criteria prevents choosing the best fitting model by penalizing for the number of parameters in a
model and instead selects the model that performs best when assessed to unseen data. Two common model
selection criteria, the AIC and BIC, will be analyzed and we will have a look at their performance by means of
simulation.

In portfolio management, a combination of financial products gets chosen in such a way that an objective
is optimized. A common criterion that gets maximized is the Sharpe ratio, which is a risk measure of return.
Since portfolio management is also done based on historic data, but wanted to be optimized for unseen data,
model selection can be applied to portfolio management as well.

The aim of this bachelor thesis is to apply an unbiased closed form estimator for the out-of-sample Sharpe
ratio when the in-sample Sharpe ratio is obtained by optimizing over k parameters in a portfolio. This esti-
mator is called the Sharpe Ratio Information Criterion (SRIC). We test two different perspectives of portfolio
management on the set of stocks that are currently used to compile the AEX index. To efficiently calculate all
the maximum Sharpe ratios and SRIC values, we will be programming a script in R. This script will load all
the necessary data and contain the functions we use.






Introduction to Model Selection

1.1 Overfitting

True models do not exists, since full reality cannot be captured in a model. There are however often good
approximating models. Actually, there may be multiple models that have the ability to give possible expla-
nations of observed data. Thus we seek a good model to approximate the effects or factors supported by
empirical data. When choosing such a model out a set of candidate models, it is easy to declare the best fit-
ting model as the best model for prediction. Nevertheless the best fitting model in general does not behave
the best on yet unknown data. Model selection techniques are needed to not select the best fitting model, but
select the model that performs best when assessed to unseen data.

In general, a complex model fits the data better than a simple model as it has a greater ability to adapt to
the data. By adding more and more parameters to a model, therefore making it more complex, a fit can even
reach 100% - the model contains all data points in the outcome. The opposite of course also occurs. If the
model is too simple, it is not flexible enough to take all changes in the data into account; underfitting arises.
See figure 1.1 for displaying both phenomena‘V.
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Figure 1.1: Data is created by a 3 degree polynomial with added noise. A linear model can’'t adapt to the decrease and quick increase in
the data which ensures a poor model;underfitting has occured (1.1a) . Trying to fit a spline interpolation with a degree of 50 leads to a
non realistic view of the data. The function reacts to heavily on small changes (noise) in the data and causes overfitting (1.1b). It may
have a good fit on this data, but generalizes poorly.

(M spline (or polynomial) interpolation is used to show overfitting. By doing this, local changes do not behave the global behaviour of
the function. Otherwise, local changes would have an effect on the whole function which is not really desirable.
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1.2 Akaike Information Criterion

The Kullback-Leibler information is a measure of how one probability distribution f diverges from another
probability distribution g. First, let f and g be two known simple probability distributions. The K-L informa-
tion I(f, g) can be interpreted in two different ways: the distance from f to g or the information lost when g
is used to approximate f. If f and g are continuous distributions:

JiC) )dx
g(x10)

1.9)= [ o log(

If f and g are discrete distributions:

1(f,8) =Zpilog(ﬂ),
i qi

where p; and g; are corresponding to respectively f and g [1]. The K-L information can also be considered as
the expected value of the logarithm of the ratio of two distributions. Keep in mind that we can interpret the
K-L information as a distance. This is however a tricky designation, since in general the K-L distance from f
to g is not the same as from g to f. It is therefore called a oriented or directed distance.

We first assumed that both f and g are known functions. In our case however, we don’t know the true function
f orif it even exist - in general there is no true model that fully explains the data. There is only a set of data
that we wish to approximiate by a good predicting model. Now let’s have a look at relative distance. I(f, g)
can also be written as:

I(f, 8 =ff(x)log(f(x))dx—ff(x)log(g(xle))dx
=E¢llog(f(x))] - Ef[log(g(x|0))].

The first expectation, E ¢[log(f(x))], only depends on the unknown distribution f. Although we can not know
the outcome of this expectation, we can consider it as a constant and therefore a measure of relative oriented
distance is possible. Define C = E rllog( f)]. Then (I(f, g) — C) is the relative oriented distance between f
and g and leaves Ef [log(g(x|0)] as the only quantity of interest. [2, p. 58]

The statistician Hirotugu Akaike proposed the use of the Kullback-Leibler information as a fundamental ba-
sis for model selection criteria. However since we have no full knowledge of f, we can not compute the K-L
distance. Akaike found a way to estimate this distance based on the empirical log-likelihood function at its
maximum point. He showed that the critical issue for getting an applied K-L model selection criteria was to
estimate

E,Ex[log(g(xI0 ()],

where x and y are independent random samples from the same distribution and expectations taken with
respect to the true f [2, p. 60]. Rather than having a measure for minimizing the distance between two models,
one has instead an expected estimated distance over the set of considered models. This estimate is called the
Akaike Information Criterion (AIC). The criterion deals with the trade-off between the goodness of fit of the
model and the simplicity of the model. By simplicity, we mean the numbers of parameters of a particular
model. The AIC of amodel is defined as:

AIC =2k—-2log(%),

at which k is the number of parameters of the model and £ the maximum value of the likelihood function
for the model [2, p. 61]. The lower the AIC value, the better the model is expected to perform on unseen data
compared to the other candidate models.

It is not the individual value of the AIC that is important, since this cannot be interpreted due to the un-
known constant. AIC is only relative, therefore also only comparative, to other AIC values in the model set.
The differences

A; = AIC; — AICpin

are useful and important values. It allows a quick comparison and as a result a ranking of the models.
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1.3 Bayesian Information Criterion

The derivation of AIC denies the existence of a true model. There are also criteria developed based on the
assumptions that a true model does exist. One of the candidate models is considered the truth and the goal
is to identify the model with the highest probability of being the true model based on the data. This means to
select the model with the highest value of P(M;|X).

For identification of the true model, consistency is key. This means that the probability of selecting the true
model in a set of candidates approaches 1 if sample size increases. Criteria satisfying this are also called
‘dimension-consistent’ since the true parameter value remains fixed. In general, such criteria can only be
consistent if its penalty term for the number of parameters is a fast enough increasing function of n. AIC for
example is not consistent, as it always has some probability of selecting models that are too large.

The best known dimension consistent selection criterion is the Bayesion Information Criterion (BIC) devel-
oped by Gideon E. Schwarz. He used the Bayes’ theorem to estimate the highest probability of being the true
model. BIC is thus not an estimator of relative K-L information.

Theorem 1 (Bayes’ Theorem). Let A and B events and P(B) # 0. Then

P(AP(B|A
P(AIB):%;)'),

where P(A|B) is the conditional probability of event A occurring given that B is true, P(B|A) the conditional
probability of event B occurring given that A is true and P(A) and P(B) the probabilities of observing A and B
independently of each other; also known as the marginal probabilities.

Using Bayes’ theorem for our situation results in:
P(M)P(X|M;)

P(X)
o P(Mj)P(X|M;)

P(M;|X) =

x P(Mj)fP(X|6,~,M,~)P(9j|M,~)d9j 3] (1.1)

Schwarz found a model selection criterion by approximating log(P(M;| X)) using (1.1):
BIC =log(n)k —2log(%¥),

with 7 the size of the data sample and again k the number of parameters in the model and £ the maximum
value of the likelihood function for the model.

1.4 The Performance of AIC and BIC

To get a feeling of the performances of both selection criteria, we run an example. Data is generated from a 10
degree polynomial with added noise originating from a Gaussian distribution. Different polynomial models,
models with a degree from 1 to 20, are fitted to the data with maximum likelihood. Both AIC and BIC are
determined for all models. We select the models with the lowest AIC and BIC (this can be 2 different models).
We repeat this process a 1000 times to get a good view of their performances. Figure 1.2 shows the results of
which models got selected for 4 different sample sizes.

Remark 1.1. While testing the performances of both AIC and BIC, we found that that is very dependent on the
added noise and the size of the in-sample data. In this case they are both chosen in such a way that we get a
good view of their selections.

Remark 1.2. One may be noticing that we have a 10 degree polynomial, but the models with 11 parameters
gets selected most often when sample size increases. This is because the variance of a model is also seen as a
parameter. So the model with 11 parameters is considered the true model.

Looking at the 4 histograms in Figure 1.2, many noticeable things arise. When sample size is small, both AIC
and BIC behave poorly in finding the true model (which in this case does exist) as can be seen in Figure 1.2a.
AIC often overfits and BIC often underfits the data. It is commonly known that AIC does not return good
results when sample size is relatively small compared to the complexity of the model. There exists a corrected
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Figure 1.2: Four histograms showing the selection performance of AIC and BIC for different sample sizes of data (#X).

AIC for this case, namely the AICc - indeed AICcorrected. However since this is not interesting for our further
research, we will leave it at this.

Increasing the sample size leads to significantly better results. Both the criteria see the complexity of the true
model and the previous selected underfitting models dissolve from the outcomes.

1.5 AIC and BIC on Portfolio Management

So far we have only looked at model selection for finding the corresponding polynomial model to the data.
Doing model selection in portfolio management would be compiling (selecting) an optimal portfolio to reach
a certain goal. The AIC can be used for finding a portfolio which would satisfy a best fitting of out-of-sample
returns in terms of log-likelihood. The BIC can be used to try and find the underlying portfolio when knowing
the returns (which in practice would be a weird situation).

Something the AIC and BIC do not take into account is the exposure of the compiled portfolio. A portfolio
that the AIC selects may have high estimated out-of-sample returns, but can also come with a lot of risk.
Therefore we are going to introduce a risk measure, called the Sharpe ratio, in the next chapter and use that
for compiling our optimal portfolio.



Sharpe Ratio

Investing can be very rewarding compared to saving, but there is also the possibility that you lose money
by taking a risky position. Economist Harry Markowitz had the idea that owning different kinds of financial
assets is less risky than owning only one type. Rather than assessing an asset’s risk and return by itself, one
must find how it contributes to the portfolio’s overall risk and return. See Figure 2.1 for an illustrative example
of Markowtiz’s idea ).

Two-Asset Portfolio

-t
-----
-

a0l

Predictable
Portfolio

Figure 2.1: Illustrating the idea of Harry Markowitz. The two assets are risky positions on itself, but together they form a perfectly
balanced portfolio with rising value. Such a perfect combination is of course not possible in practice, but can be approached (using
derivatives of the asset for example). Covering or reducing the exposure of a portfolio is called hedging.

When comparing different portfolios, you would like to invest in the one which is the best. You could con-
sider the portfolio with the highest expected return to be the best, but what if that portfolio also comes with
a large(r) risk factor. Is it still the best to choose?

A way to examine the performance of an investment by adjusting for its risk is the Sharpe ratio. This is a
risk adjustment measure of return used to evaluate a portfolios performance. It is based on the idea that
given two portfolios that offer the same expected return, investors will prefer the less risky one. A portfolio’s
future performance is often estimated using probabilistic models which has random variables as outcomes.
Therefore we can use the standard deviation of a portfolio’s return as a proxy for the risk we would take. The

Sharpe ratio of a portfolio P is defined as:
_E[Rp—T]
Pp= op
where Rp is the rate of return of P, r the best available rate of return on a risk-free asset and o p the standard
deviation of Rp[4]. Using this ratio lets you see how much additional return you are getting for the added

(DImage: https://healthandwealthbulletin.com/ collect-safe-income-with-the-only-free-lunch-in-the-market/
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volatility of holding a risky position over a risk-free security. It allows to determine whether a portfolio’s re-
turns are due to smart investment decisions or just a higher level of risk. The investment with the highest
Sharpe ratio is thus considered the best. Because it is a risk measure, it is used for a relative long term invest-
ments. A rule of thumb is that an investment with a Sharpe ratio greater than 1 is seen as a good investment.
See Figure 2.2 for an illustrative example of the Sharpe ratio®.

$175,000

$160,000
/ Investment 1

//\\/ Sharpe Ratio = 1.4
/
/

L

—7

Vs

$100,000
2013 2014 2015

Figure 2.2: Showing the development of the value of two portfolios. When only looking at the return over the past few years, Investment
2 would have been the better investment (higher return). However looking at the big changes in value, investing in this portfolio does
seem very risky as this can probably can happen in the future as well. The Sharpe ratio penalizes this by taking in account the standard
deviation of the (monthly) returns. Therefore Investment 1 gives you more return per risk you take and also considered the better
investment.

2.1 Out-Of-Sample Sharpe Ratio

Notice that up till now we have been discussing Sharpe ratios that are calculated over in-sample data. This
helps to validate are choices afterwards, but what about the out-of-sample Sharpe ratio. If we choose a fixed
strategy in advance, the expected out-of-sample Sharpe ratio will be the same as the in-sample Sharpe ratio.
However, it is not so common to choose a fixed strategy. Often, the in-sample Sharpe ratio of a portfolio
gets optimized over a set of n assets. You want to choose the weights of these assets in such a way that you
maximize the in-sample Sharpe ratio. What can we expect for the out-of-sample Sharpe ratio when the in-
sample Sharpe ratio is optimized over k parameters?

Remark 2.1. When we are talking about n assets and k parameters, it holds n = k+ 1. With k we mean the
number of parameters that influence the Sharpe ratio of a portfolio. This means that the leverage of a portfolio
is not counted - the Sharpe ratio is independent of the invested volume. Therefore we say that k + 1 assets
possesses k parameters in a portfolio.

2.1.1 Decomposition of the Out-Of-Sample Sharpe Ratio

We denote the in-sample Sharpe ratio with p and the out-of-sample Sharpe ratio with 7. There are k param-
eters in a portfolio, but we use 6 to denote the vector that contain the weights for the different stocks. So the
length of 6 is k+1. Since we are talking about combining multiple assets, we also need to take into account the
(possible) correlation among the different stocks. In such a multidimensional setting we use the covariance
matrix X of the returns. Define [ as the vector of the in-sample means of the excess returns for the different
stocks. Then f1 is a noisy observation of the true unkown mean p for in- and out-of-sample data with E[] = u.
Then the in-sample Sharpe ratio is

A~ TQ
p0) = L.
0Tz6
Removing the noise term from I results in the (true and unobserved) out-of-sample Sharpe ratio:
Tg
70)= ——.
vVoTz6

Notice that p can always be calculated for any 6 using in-sample data. The true mean p however isn’t known
and therefore 7 can’t be determined perfectly. The expectation of 7 though, will be equal to p when using a
fixed strategy (as mentioned before).

@1Image: https:/ /www.assetmacro.com/wp-content/uploads/2015/06/Investment-Guide.png
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Remark 2.2. We are talking about [i as a noisy observation of i, but yet nothing is mentioned about the preci-
sion of =. We assume that X is known and therefore there is no difference between 5 and X. In reality however;
X is also not known and needs to be estimated as well. However, it can be estimated much better than p by
estimating it with higher-frequency data. By doing this, X gets more accurate. This does not count for . and is
therefore considered the main estimation error.

We are mainly interested in the 6 that maximizes the Sharpe ratio, so we define:
6 € argmaxp (0
g PISC) P
0" € argmaxt(0)
PISC)

where O is the (k + 1)-dimensional parameter space over which 0 gets optimized. See Table 2.1 for all four
combinations of optimal 6 and in- and out-of-sample Sharpe ratio.

Symbol | Value | Parameter | Description
N A A In-sample Sharpe ratio of
p PO 0 optimal parameter applied to in-sample data
¥ N N In-sample Sharpe ratio of
p pOM 0 optimal parameter applied to out-of-sample data
. A A Out-of-sample Sharpe ratio of
’ *6) 0 optimal parameter applied to in-sample data
N N . Ouf-of-sample Sharpe ratio of
T T(0%) 0 . ;
optimal parameter applied to out-of-sample data

Table 2.1: Defining all four combinations of in- and out-of-sample Sharpe ratio with optimal parameters applied to in- and out-of-sample
data.

Remark 2.3. In Table 2.1 we have defined four different values for the Sharpe ratio, but we can only calculate
0 as we do not know anything about the out-of-sample data.

Remember we said that we are interested in what we can expect for the out-of-sample Sharpe ratio when
the in-sample Sharpe ratio is optimized over k parameters. So we are interested in the value of 7. Using the
notation from Table 2.1, we can decompose 7 into

T=p-(p-p") -G -+ " -p").

This decomposition gives us more insight on how the difference between the in- and out-of-sample Sharpe
ratio arises when the parameters are optimized. It says that the in-sample Sharpe ratio minus 3 terms equals
the out-of-sample Sharpe ratio. These 3 terms are set to be noise fit, estimation error and (general) noise:

* Noise Fit: (p —p™)
The difference between ¢ and p* can be interpreted as the noise fit on the in-sample Sharpe ratio. The
parameter § gets maximized over in-sample data which (in general) contains noise and gets tuned to-
wards this noise. It makes use of the noise to reduce risk or enhance return. Therefore it diverges from
the optimal out-of-sample parameter * and causes a difference.

¢ Estimation Error: (7" — 1)
The difference between 7* and 7 can be interpreted as the estimation error of the out-of-sample Sharpe
ratio. As we have seen, 6 and * are (in general) not equal. So applying these to an out-of-sample data
set leads to an estimation error on the true maximum out-of-sample Sharpe ratio.

¢ Noise: (1" —p*)
The difference between 7* and p* is due to noise. This causes uncertainty in the predictions.

There is that the error for noise fit and estimation error have the same expectation on out-of-sample data,
namely

E[o—0*]=F *—A:_'
(0—-p 1=E[t" -] 2Tp

The expected value of the noise (7* — p*) is 0. [5]
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2.2 Sharpe Ratio Information Criterion

It turns out that the optimized in-sample Sharpe ratio overestimates the Sharpe ratio that can be expected on
out-of-sample data because of tuning a parameter space on a noisy data set. The Sharpe Ratio Information
Criterion (SRIC) corrects for both noise fit and estimation error. Itis an unbiased closed form estimator for the
out-of-sample Sharpe ratio when the in-sample Sharpe ratio is obtained by fitting k parameters in a portfolio.
The SRIC is defined as

ok
SRIC=p-

) 2.1
Th 2.1)

where p is the in-sample Sharpe ratio maximized over a k-dimensional parameter space and T time of in-
sample data [5]. The unit of T is dependent on which kind of returns are used; yearly returns leads to T in
years, monthly returns leads to T in months, etc. This criterion does come with some assumptions:

* We spoke about i as a noisy observation of true p. We assume that

1
f=p+v, wherev~</V(0,?Z).

* Also we assume that the X is of full rank.
Under these assumptions, the SRIC can be used in two ways:

1. When having obtained the optimal parameters for the maximum in-sample Sharpe ratio, SRIC will give
you an estimation for the expected out-of-sample Sharpe ratio. In particular, it even holds:

k
Th

E[4] =E|p—

It is dependent of T over which period you could expect that out-of-sample Sharpe ratio. When T is in
months, it would be for over a month. If T is in years it is for over one year, etc.

2. When comparing different sizes of parameter spaces and data sizes, SRIC will give you the portfolio
with the highest expected return per risk in the future. Therefore it can also be applied as a portfolio
selection criterion.



Portfolio Management on the AEX Index

Thousands of different stocks (and even much more other securities) get traded every day on exchanges all
around the world. If you want to know how the financial market is performing, it would take a lot of time to
track every single security that trades on an exchange. Therefore you can take a look at a portfolio sample of
the market that is representative for the whole market. This sample is called an index. It is a statistical mea-
sure of overall market sentiment. If an index goes up, it means that the price of the stock for (most) companies
went up as well. Therefore indices are often used as a benchmark when evaluating portfolios, industries and
some are even to be considered as benchmarks for the overall economy of a country; like the S& P 500 for the
uU.s.

The AEX index is a stock market index of 25 Dutch companies who are listed on the Euronext Amsterdam
exchange (formerly known as the Amsterdam Stock Exchange). A few times a year, a lot of rules determine
which companies should be taken in the AEX index and which not. Also not every company has equal weight
in the index. The weighting is dependent on the number of shares of the companies, the price of the shares
and a couple of other factors. See Figure 3.1 for the historical price movement of the AEX.

Remark 3.1. Indices are great tools for giving a quick overview of the performance of the market, but we cannot
buy them. After all, they are statistical measures. It is of course possible to buy all the stocks that make up an
index according to the right weightings. In that case the value of your portfolio will follow the index. When
doing so however, you need to pay to much transaction costs for buying all the stocks that it isn’t profitable for
at least a very long time. So instead of buying all those stocks individually, you can also invest in what is called
an index fund. That is fund based on an index and that mirrors its performance and there exists one for nearly
every index out there.

To have a look on how different portfolios perform in terms of Sharpe ratio, that consists of a subset of the
stocks of the AEX, we divide the current 25 AEX stocks in 5 groups with each 5 different stocks"). The reason
why we look at subsets first will become clear in Section 3.3 with remark 3.3. We order these 5 groups in
alphabetical order of the AEX stocks with G1,..., G5. See Table 3.1 for an overview. Therefore we do not have
any influence on the grouping of certain stocks that might give very good results. Group G will contain every
stock of the AEXindex. One of the companies that is listed at the AEX index is "ASR Nederland’. This insurance
company is very new to the financial market as it only went to the exchange in June 2016. To keep equality
between all the groups, we will therefore only look at the data from the 20th of June 2016 to the 20th of June
2018 (this results in T = 24 months for every SRIC calculation).

The Sharpe ratio measures the excess return per risk. So when calculating Sharpe ratios ourselves, we need
to substract the risk free rate from the returns. For this rate, we take the Effective Federal Funds Rate®. This
rate get managed by the Federal Open Market Committee (FOMC) and has influence on the American price
stability and economic growth.

(D All the stock market data used in this research comes from: https://finance.yahoo.com/.
@https:/ /fred.stlouisfed.org/series/ FEDFUNDS

11
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Figure 3.1: Displaying the historical price movemetn of the AEX. The AEX suffered hard from the crisis we had to encounter, but has been
rising (with a lot of volatility though) since the end of 2009.

Portfolio

Included Stocks

Gl

Aalbers (AALB), ABN AMRO (ABN), AEGON (AGN),
Ahold Delhaize (AD), AkzoNobel (AKZA)

G2

Altice (ATC), Arcelor Mittal (MT), ASM Litho (ASML),
ASR Nederland (ASRNL), DSM (DSM)

G3

Galapagos (GLPG), Gemalto (GTO), Heineken (HEIA)
ING (INGA), KPN (KPN)

G4

NN Group (NN), Philips (PHIA), Randstad (RAND)
Royal Dutch Shell-A (RDSA), RELX Group (REN)

G5

Signify (Light), Unibail WFD (UL), Unilever (UNA),
Vopak (VPK), Wolters Kluwer (WKL)

Table 3.1: Overview of which companies are in which groups. The abbreviations behind the name of the company is the abbreviation

used on the Euronext Amsterdam exchange to denote that company. Some are very logical, some can differ a lot from the full name.

3.1 Equal weight in the Portfolio

Before finding the optimal parameters, we shall start with giving each stock equal weight. This gives us a basis
for the in-sample Sharpe ratio from where we need to improve. Remember that this is a fixed strategy, so the
in-sample Sharpe ratio will also be an estimation for the expected out-of-sample Sharpe ratio. The in-sample
Sharpe ratios can be found in Table 3.2 and an overview of the portfolio values in Figure 3.2 to see how the
Sharpe ratios relates to that. The Sharpe ratio of the AEX index is also included in Table 3.2 for comparison.

. In-Sample
Portfolio Sharpe Rl; tio
Gleg 0.036
G204 0.332
G3eq -0.0509
Gleg 0.092
G5eq -0.18
Geg 0.176
AEX 0.058

Table 3.2: The in-sample Sharpe ratio’s of all groups when all stocks have equal weight and the AEX index.
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Figure 3.2: The development of the portfolio values of all groups when all stocks have equal weight.

3.2 Optimal In-Sample Sharpe Ratio

Now we are interested in an optimal combinations of stocks which provides us the highest in-sample Sharpe
ratio. So we are interested in finding §. We want to find this 6 for different k within each group and apply
the SRIC as model selection criterion afterwards. Finding 6 is maximizing p(0) over the parameter space ©.
For finding a maximum in a function, we need find the 6 where the derivative of p(0) is zero. Since the log()
function is an increasing function, there is that maximizing over log(p(0)) gives us the same 6 as when we
would maximize over p(0) itself. Doing this gets us:

AT
H AT /
log(p(G))zlog( ):log(,u 0) —log(VOTz0)
VOTZo
Taking the derivative of this leads to:
dlog(p(6)) 1 1 1 7. _1
el - —(0°26) 220
a6 @t Jgrmga'
_h 36
-~ aTe 07Tz

Plugging in fi = 20 sets this equation to 0. We get {1 and X from the in-sample data, so we can solve this system
of linear equations to find . Notice from the later results that this gives indeed a maximum for the Sharpe
ratio and not a minimum. See Table 3.3 for all the results on the in-sample data. The R script that is used to
get these values can be found in Appendix A.1.

Remark 3.2. In some optimal cases, stocks get assigned a negative weight. This can be interpreted as going
short on that stock. ‘Going short’ is a way of getting a positive return if the price of a stock goes down. You sell
the stock at the beginning and buy it back in a later stadium. The difference is your profit. At a stock exchange,
you can sell stocks without first owning them and even have negative amount of securities in your portfolio.
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G1 - In-Sample Sharpe Ratios

Optimal Weights (0)
k p(0) AALB ABN AGN AD AKZA
0 | 0.13455171 1 0 0 0 0
1 | 0.167841097 | 2.071833911 0 0 -1.071833911 0
2 | 0.174470152 | 6.506259117 0 0 -3.46953388  -2.036725237
3 | 0.178022907 | 3.400532904 0 0.475829152  -1.850822179  -1.025539876
4 | 0.178517803 | 3.366749318 0.316817143  0.377564607  -1.98004053  -1.081090537
G2 - In-Sample Sharpe Ratios
Optimal Weights (6)
k o () ATC MT ASML ASRNL DSM
0 | 0.369909313 0 0 1 0 0
1 | 0.468548896 0 0 0.566734178  0.433265822 0
2 | 0.543903769 | 0.050819711 0 0.477410178  0.471770111 0
3 | 0.667629 0.044206896 0 0.283381204  0.290701096  0.381710804
4 | 0.669250297 | 0.043841703 -0.019392212  0.290342332  0.299760115 0.385448062
G3 - In-Sample Sharpe Ratios
Optimal Weights (6)
k p(0) GLPG GTO HEIA INGA KPN
0 | 0512046762 0 0 0 0 -1
1 | 0.574176339 | 0.263305222 0 0 0 -1.263305222
2 | 0.605019474 | 0.323310054 0 0 0.479827104 -1.803137158
3 | 0.605027886 | 0.320692525 0 -0.011213983  0.476798969  -1.786277512
4 | 0.605035055 | 0.320541864 0.002741901 -0.015077207 0.476663847 -1.784870404
G4 - In-Sample Sharpe Ratios
Optimal Weights (6)
k p(0) NN PHIA RAND RDA REN
0 | 0.22001969 0 1 0 0 0
1 | 0.243404435 0 1960984794 0 0 -0.960984794
2 | 0.277212307 0 22.66108533  -8.654072248 0 -15.00701309
3 | 0.280275801 | 5.435233212  40.71024234 -17.73747154 0 -27.40800401
4 | 0.280346194 | 6.384163959 50.40039526 -22.09861782 0.974146498  -34.6600879
G5 - In-Sample Sharpe Ratios
Optimal Weights (6)
k p(0) Light UL UNA VPK WKL
0 | 0.454937917 0 -1 0 0 0
1 | 0.685492604 0 -2.918596614 0 0 1918596614
2 | 0.771895704 0 -1.550897668 0 -0.508931975  1.059829644
3| 0.839969511 | 0.38311979  -2.291611761 0 -0.564810125  1.473302096
4 | 0.841951576 | 0.379215872 -2.398392062 0.133763186 -0.576221966  1.46163497

Table 3.3: The optimal weights for different portfolio sizes to achieve maximum Sharpe ratio in all 5 groups.

Looking at Table 3.3 gets us that there is quite some difference between the performance of the groups. An

optimal combination of stocks in group G1 only gets you a maximum Sharpe ratio of 0.179 while in group G5
it even passes the 0.8. G1 also does not improve that much when we add stocks to the portfolio while the in-

sample Sharpe ratio of G5 almost doubles when increasing the portfolio size. By looking back at the Sharpe
ratios we would just get with equal weight, see Table 3.2, we find that there is quite a lot of improvement. This
definitely tells us that using equal weight in a portfolio is not a good idea and there should always be looked
at the correlation among all the stocks.
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3.3 Applying SRIC

Now that we have obtained the maximum in-sample Sharpe ratios with optimal parameters applied to in-
sample data, we can apply the SRIC criterion to estimate the out-of-sample Sharpe ratio with (2.1). This
criterion gives the portfolio for each group which is expected to perform best on out-of-sample data (while
keeping the same weights). The results of the SRIC selection can be found in Table 3.4.

G1 / G5 - Estimated Out-Of-Sample Sharpe Ratios

SRIC Values
k Gl G2 G3 G4 G5
0 | 0.13455171  0.369909313 0.512046762  0.22001969  0.454937917
1 | -0.080409583 0.379621855 0.501608621  0.072221578  0.624709065
2 | -0.303166466 0.390690392  0.467282861 -0.023399648 0.663936386
3 | -0.524133922 0.480399266 0.398425839 -0.165713469 0.691154586
4 | -0.755095897 0.420215418 0.329568922  -0.314156853  0.643998783

Table 3.4: The SRIC values that are obtained by using the optimal in-sample Sharpe ratio’s from Table 3.1.

The bold numbers are the highest SRIC value’s per group. When doing portfolio selection one a single group,
the portfolio represented by the bold number is thus the one we should choose. In 3 of the 5 groups (G1, G3
and G4), this would just be one single stock. The other stocks in the group can not contribute enough to be
worth the risk of an extra risky position in a portfolio.

We have done portfolio selection to obtain the highest estimated out-of-sample Sharpe ratio within the groups,
but can we improve this by combining the selected portfolios of the different groups. So we take the stocks
that are selected by the SRIC within the groups, the stocks corresponding to the bold numbers, into consider-
ation. The optimal weights for all portfolio sizes can be found in Table 3.5 and the corresponding SRIC values
in Table 3.6.

Remark 3.3. By combining the best stocks of the different groups based on SRIC values, does not mean that this
gives the overall best combination for all the stocks in the AEX index. Some stocks that are not included may
have high (negative) correlation with other stocks that can possibly increase the in- or estimated out-of-sample
Sharpe ratio. The reason for not looking for the overall best combination of all the stocks in the AEX index is due
to a lack of computational power. Although, the outcome is for a relative long term strategy, for this research
it is not really feasible. For example, for finding the best combination of 5 out of 25 stocks, you would need to
compare over 50.000 combinations and for 12 stocks even more than 5 million which all need to be calculated
by carrying out several functions.

By looking at subsets first and combining the selected portfolios, we found a portfolio of 8 different stocks
which, with optimal weights, has an in-sample Sharpe ratio of 1.55 and an estimated out-of-sample Sharpe
ratio of 1.37. For comparison, the AEX itself had an in-sample Sharpe ratio of just 0.058 over the same period.
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Best of G1 / G5 Combined - Optimal In-Sample Sharpe Ratios

Optimal Weights ()
k 6) AALB ATC ASML ASRNL DSM
0 | 0.512046762 0 0 0 0 0
1 | 0.958319886 0 0 0 3.261986964 0
2 | 1164272616 0 0 0 2.189504192  1.602521465
3 | 1.272954599 0 0 0.414238656 1.219321086  0.89507334
4 | 1329803434 0 -0.28921403 0 1.923489811  1.153541285
5 | 1.439500026 0 -0.2891288 0 1375566105  0.677150729
6 | 1.489641556 0 -0.32943976 0 1.462235443  1.014107797
7 | 1553898783 0 -0.315274 0 1.38089776  0.624485255
8 | 1.559464102 | -0.19800032 -0.33747164 0 1.460123195  0.615831304
9 | 1.566209101 | -0.24606672 -0.29387707 0.118887578 1.338923461  0.606205575
10 | 1.566279032 | -0.26074785 -0.29708547 0.119933261 1.363326027 0.621106359
Optimal Weights (6)

k KPN PHIA Light UL VPK WKL

0 -1 0 0 0 0 0

1 | -4.261986964 0 0 0 0 0

2 | -2.792025657 0 0 0 0 0

3 | -1.528633081 0 0 0 0 0

4 | -2.275409654 0 0.487592592 0 0 0

5 | -1.669983852 0.546471686 0.359924129 0 0 0

6 | -1.647621387 0.664712012  0.51177327  -0.675767373 0 0

7 | -1.451390479  0.556440323 0.532149288 -0.979789177 0 0.652481031

8 | -1.496265634  0.65031881  0.565394165 -0.974146472 0 0.714216589

9 | -1.38484434  0.578737962 0.494879044 -0.757095242 0 0.544249748

10 | -1.407168264 0.593516842 0.502807907  -0.7764342  -0.01771412  0.558459509

Table 3.5: The optimal weights for different portfolio sizes when combining the selected portfolios of group G1 to G5.

SRIC Values
0.512046762
0.914841015
1.092697169
1.174757852
1.204471627
1.294773851
1.321815948
1.36619887
1.34571546
1.326777469
1.300255764
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Table 3.6: The SRIC values that are obtained by using the optimal in-sample Sharpe ratio’s from the combined selected groups.



Portfolio Management with a Trend
Following Strategy

So far we have only looked at combining the price movement of stocks to find higher Sharpe ratio’s, but have
not made use of the combined returns yet. Now we are going to introduce a trend following strategy that does
this. This strategy says that we are going to invest proportional to the returns of the underlying stocks. We
develop the strategies per group for groups G1 to G5. The strategy is fixed in the following way:

1. Set the a number of days for the lookback (/b) you want to take.

2. Determine the returns of all the stocks in the strategy over the past period as long as the lookback.
Define the weights by dividing these returns by the sum of it.

3. Invest in the stocks of the strategy proportionally to the weights that are set.

4. Determine the return made by the strategy at the end of the period. Repeat step 1 to 3 to create a list of
returns of the strategy.

We perform this strategy on the same groups as we have done so far. So we call S1 to S5 the stragies of group
G1 to G5 respectively. Such a strategy can be considered as a new financial product. Since we looked at the
monthly returns in chapter 3, we are starting with taking a lookback of 30 days. After this we also view the
results when the lookback is set to 60 days. The choices of length for this lookback can of be taken differently
by everyone, but we will stick to this. A reason for not taking a longer lookback is due to the little number
of datapoints you get, which gives unreliable outcomes. The returns of strategies S1 to S5 for two different
lookback periods, Ib =30 and [b = 60, are showed in Figure 4.1.
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Figure 4.1: Two plots showing the returns of the different strategies with different lookbacks; /b = 30 and /b = 60.
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In the same way we have done before for the single stocks within a group, we are going to find an optimal
combination of strategies to maximize our in-sample Sharpe ratio for two different lookbacks; b = 30 and
Ib = 60. Also we use the same time frame as we have always done so far, so the data from the 20th of June
2016 till the 20th of June 2018. The results for the optimal in-sample Sharpe ratio can be found in Table 4.1
and the corresponding SRIC values in Table 4.2.

Ib = 30 - Optimal In-Sample Sharpe Ratios

Optimal Weights (6)
k 6) S1 S2 S3 S4 S5
0 | 0.4576939 0 1 0 0 0
1 | 0.516732018 -0.4019656 1.4019656 0 0 0
2 | 0.564925869 | -0.268729378 1.114544939 0.154184438 0 0
3 | 0.583306559 | -0.246687519 1.021963741 0.140903751 0 0.083820027
4 | 0.587975330 | -0.211837024 0.901888507 0.146964396 0.100761464 0.062222656
Ib = 60 - Optimal In-Sample Sharpe Ratios
Optimal Weights (6)
k () S1 S2 S3 S4 S5
0 | 0.6757611 0 1 0 0 0
1 | 0.808377746 | -0.456948301 1.456948301 0 0 0
2 | 0.929134522 | -0.304583541 0.911509822 0 0.39307372 0
3 | 0.993587634 | -0.448680957 1.612160448 0 0.733412989 -0.89689248
4 | 1.009531141 | -0.482964891 1.716189345 -0.076465332 0.732538078  -0.8892972

Table 4.1: Optimal combinations of five different strategies to obtain a maximum in-sample Sharpe ratio for two different lookbacks.

Estimated Out-Of-Sample Sharpe Ratios

SRIC Values
k| Ib=30 Ib=60
0 | 0.457694 0.6757611
1| 0.432591 0.69591907
2 0.411 0.73344899
3 | 0.359694 0.719100248
4 1 0.292192 0.649327924

Table 4.2: The SRIC values that are obtained by using the optimal in-sample Sharpe ratio’s from Table 4.1 of the trend following strategy.

When updating your portfolio every 30 days proportionally to the returns over that period will give you an
estimated out-of-sample Sharpe ratio of 0.46. Using a strategy with a 60 day lookback gives you an estimated
Sharpe ratio of 0.73 when applying it to out-of-sample data. These two values are lower than we would com-
bine the optimum of groups G1 to G5.

There is also the possibility to combine the two strategies, but this comes with a disadvantage. The covari-
ance matrix between the returns is tricky to determine. Because with a 30 lookback we have twice as much
as returndates than with a 60 day lookback. Therefore we only take into account the dates on which both
strategies are at the end of their period.

So we are going to combine S2 with a 30 day lookback with S1, S2 and S4 with a 60 day lookback. De de-
note the strategies as follows: Slgg, S239, S260 and S4gp to make the difference clear. The optimal in-sample
Sharpe ratios can be found in Table 4.3 and the corresponding SRIC values in Table 4.4. The R script that is
used to get these values can be found in Appendix A.2.
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Best of Ib = 30 and 60 Combined - Optimal In-Sample Sharpe Ratio

Optimal Weights (0)
k 6) S1eo S239 S260 S4o
0 | 0.6757611 0 0 1 0
1| 0.82415746 0 0.451868 0 0.548132
2 1 0.929134522 | -0.30458 0 0.91151 0.393074
3 | 1.081323458 | -0.21187 0.324073 0.492774 0.395023

Table 4.3: The optimal weights for different portfolio sizes when combining the selected portfolios of strategy S1 to S5.

k | SRIC values
0 0.6757611

1 | 0.713851972
2 | 0.733448992
3 | 0.829107278

Table 4.4: The SRIC values that are obtained by using the optimal in-sample Sharpe ratio’s from the combined selected strategies.

With a SRIC value of 0.83 it has a higher estimated out-of-sample Sharpe ratio than not combining strategies
with different lookbacks. However is it also lower when finding an optimal combinations of stocks like we did
in the previous chapter. A trend following strategy returns good (out-of-sample) Sharpe ratios, but it looks
like combining the values of stocks performs better than the trend following strategy.






Conclusion & Discussion

Conclusion

We started with analyzing the AIC and BIC model selection criteria. Although these two criteria come from to-
tally different perspectives on model selection, their formulas look very similar with only a difference on how
much complexity gets penalized. The Kullback-Leibler distance, the oriented distance between two proba-
bility functions, is the basis for deriving the AIC criterion. The BIC criterion is build on Bayes’ theorem which
assumes a true model. When looking at the performance of both models, we find that this is very dependent
on the ratio between the size of the data sample and the complexity of the model. The sample size must be
big enough compared to the complexity of the considered models to give good results.

A maximum Sharpe ratio is a common objective in portfolio management. There is however a difference
between the in- and out-of-sample Sharpe ratio when you optimize your portfolio over k parameters. The
out-of-sample Sharpe ratio gets overestimated by noise fit and estimation error. The Sharpe Ratio Informa-
tion Criterion (SRIC) corrects for this and is unbiased closed form estimator for the out-of-sample Sharpe
ratio when the in-sample Sharpe ratio is obtained by optimizing over k parameters. Since it is dependent on
k and T (time period of data), it can be used as a portfolio selection criterion as well.

We applied the SRIC to sets of stocks which are currently used to compile the AEX index. We optimize over
5 groups of stocks, G1 to G5, first. The Sharpe ratios of all these portfolios with different k for all groups are
calculated by writing a script in R. The SRIC then selects per group among the portfolios of different sizes the
one with the highest estimated out-of-sample Sharpe ratio. These selected portfolios already have a much
improved (estimated out-of-sample) Sharpe ratio than when we give all stocks just equal weight (which we
did first). Combining the stocks from the selected portfolios to find an overall optimal portfolio results in a
big improvement over the performance over the AEX.

Instead of combining the value of the stocks, you can also look at combining the returns. This is called a
trend following strategy. You update the weights in your portfolio at the end of every certain period propor-
tionally to the returns of the stocks over that same period. Such a period is called a lookback. We look at 5
strategies S1 to S5 respectively to group G1 to G5 with 2 different lookbacks. Finding the optimal combina-
tions between those strategies lead to a bit better results than when only looking at the groups. Combining the
2 selected strategies with different lookbacks is a bit tricky, but can lead to a higher estimated out-of-sample
Sharpe ratio than with a fixed lookback.

Discussion

There are a couple of things in this research for where there is room for improvement of extension. One thing
that would be an improvement for this research is have a look at datasets with a longer timeframe. The stock
market data of ASRNL goes only back to June 2016 and to keep equality among the groups, we had this at the
starting date of our data. Although it is believed that it is a long enough timeframe when looking at monthly
returns, it would be interesting to see what happens when we take a longer timeframe. Does there arise a
significant difference in terms of (out-of-sample) Sharpe ratio or not? This bigger dataset can then also be
used for evaluating the performance of the SRIC. This is something that is not been done in this research
(also because of a lack on time).

Due to a lack of high computational power, it was not feasible to find the best overall combinations of stocks
for all portfolio sizes. By first looking at subsets, the total computing time is much and much less and also
gives good results. For personal use this if more than satisfying, but for professional use it might be worth to
upgrade. It would be interesting so see what the difference is in terms of Sharpe ratio to evaluate the method
of working with subsets first. We sorted the groups on alphabetical order so we did not have any influence,
but maybe there is a better procedure to sort the groups differently which can improve the results.
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Something we have just mentioned once before is transaction costs; when you want a position that follows
the price of the AEX, you buy all the stocks that are contained in the index with a lot transaction costs or the
corresponding index fund with less transaction costs. These costs do not make a comeback in the research
that followed. However for both ways of compiling a portfolio, optimal combination of stocks or trend follow-
ing strategy, also come transactions costs. These are not taken into account when selecting a portfolio with
the SRIC. This could be an extra penalty which may lead to different results.

The Sharpe ratio uses the standard deviation (or covariance matrix) as its proxy for risk, which assumes that
returns are normally distributed. It has been shown before that the distribution of returns for financial assets
tend to deviate from a normal distribution. This causes the results to be misleading. The difference in distri-
bution is in the tails. The distribution of returns tends to have bigger tails. Because of this, in-sample Sharpe
ratios can be overestimated.



R Scripts

A.1 Optimal In-Sample Sharpe Ratio

File <- function(name){

filename = paste(c(name, '.AS'), collapse = '')
filename = paste(c(filename, '.csv'), collapse = '')
file <- read.table(filename, sep = ',', header = TRUE)

file$Date = as.Date(strptime(file$Date, "/Y-%m-%d"))
file$Close = as.numeric(as.character(file$Close))
file = na.omit(file)

file = subset(file, select = c(Date, Close))
return(file)

AEXnames = c('AALB', 'ABN', 'AGN', 'AD', 'AKZA', 'ATC', 'MT', 'ASML',
'"ASRNL', 'DSM', 'GLPG', 'GTO', 'HEIA', 'INGA', 'KPN', 'NN',
'PHIA', 'RAND', 'RDSA', 'REN', 'Light', 'UL', 'UNA', 'VPK',
"WKL')

FED <- File('FEDFUNDS')

dates_m = seq(as.Date('2016-06-20'), as.Date('2018-06-20'), 'month')
dates_d = seq(as.Date('2016-06-20'), as.Date('2018-06-20'), 'day')

B FUNCETONS - - - oo s s oo oo oo
StockReturns <- function(name){
assign(name, File(name))

Closeprices <- NULL
Returns <- NULL

returndates = dates_m

for(i in 1:length(returndates)){
location = which.min(abs(returndates[i] -get (name)$Date))
Closeprices = rbind(Closeprices, get(name)$Close[location])
}
for(i in 2:length(returndates)){
Returns = rbind(Returns,

23



A.1. Optimal In-Sample Sharpe Ratio 24

(Closeprices[i] - Closeprices[i-1])/Closeprices[i-1])
}
return(Returns)

}

SharpeTheta <- function(names, ratio = rep(l,length(names))){
Date = dates_m[2:length(dates_m)]
returns <- NULL
for(i in 1:length(names)){
returns = rbind(returns, t(StockReturns(names[i])))
}
returns = t(returns)
for(i in 1:length(names)){
returns[,i] = returns[,i] - FED[(nrow(FED)-(nrow(returns)-1)):(nrow(FED)),2]/100
}

mu <- NULL
for(i in 1:length(names)){
mu = rbind(mu, mean(returns([,i]))

}

if (length(names)>1){
CovarianceReturn = cov(returns)
theta = solve(CovarianceReturn, mu)
theta = theta / abs(sum(theta))
sharpe = (t(theta)’*’mu)/(sqrt(t(theta)’*/,CovarianceReturny*J,theta))
return(c(sharpe, theta))

}

}

OptimalSharpe <- function(names, k = length(names)){
max <- rep(-1,(2xk+1))
comb = combn(names, k, simplify = TRUE)
for(j in 1:ncol(comb)){
res = SharpeTheta(comb[,j])
if (max[1] < res[11){
max[1:(k+1)] = res
max [ (k+2) : (2¥k+1)] = comb[,j]
}
}
return(max)

}

for(k in 2:5){print(OptimalSharpe (AEXnames[1:5], k))}

for(k in 2:5){print(OptimalSharpe (AEXnames[6:10], k))}
for(k in 2:5){print(OptimalSharpe (AEXnames[11:15], k))}
for(k in 2:5){print(OptimalSharpe (AEXnames[16:20], k))}
for(k in 2:5){print(OptimalSharpe (AEXnames[21:25], k))}
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A.2 Optimal In-Sample Sharpe Ratio - Trend Following Strategy

File <- function(name){

filename = paste(c(name, '.AS'), collapse = '')
filename = paste(c(filename, '.csv'), collapse = '')
file <- read.table(filename, sep = ',', header = TRUE)

file$Date = as.Date(strptime(file$Date, "%Y-%m-%d"))
file$Close = as.numeric(as.character(file$Close))
file = na.omit(file)

file = subset(file, select = c(Date, Close))
return(file)

AEXnames = c('AALB', 'ABN', 'AGN', 'AD', 'AKZA', 'ATC', 'MT', 'ASML',
"ASRNL', 'DSM', 'GLPG', 'GTO', 'HEIA', 'INGA', 'KPN', 'NN',
'PHIA', 'RAND', 'RDSA', 'REN', 'Light', 'UL', 'UNA', 'VPK',
"WKL')

FED <- File('FEDFUNDS')
1b = 30

dates_m = seq(as.Date('2016-06-20'), as.Date('2018-06-20'), 'month')
dates_d seq(as.Date('2016-06-20'), as.Date('2018-06-20'), 'day')

Trend <- function(name){
assign(name, File(name))

returndates = dates_d
Closeprices <- NULL

for(i in 1:length(returndates)){
location = which.min(abs(returndates[i]-get (name)$Date))
Closeprices = rbind(Closeprices, get(name)$Close[location])

}

R <- NULL
for(i in (1b+1):length(returndates)){
R = rbind(R, (Closeprices[i] - Closeprices[i-1b])/
Closeprices[i-1b])
}

return(R)

Strategie <- function(names){
s <- dates_d[(1b+1): (length(dates_d))]

for(i in 1:length(names)){
s = cbind(s, Trend(names[i]))
}
sum <- NULL
for(i in 1:nrow(s)){
sum = rbind(sum, sum(s[i,2:(length(names)+1)]1))

3
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s = cbind(s,sum)

ratio <- NULL
for(j in 2:(length(names)+1)){
weight <- NULL
dates <- NULL
for(i in O:round(nrow(s)/1b)){
weight = rbind(weight, s[(i*1lb + 1),j]1/s[(i*1b + 1), (length(names)+2)])
dates = rbind(dates, s[(i*lb + 1),1])
}
ratio = cbind(ratio, weight)
}
return(data.frame(dates,ratio))

}

PortfolioValue <- function(names, ratio = rep(l,length(names))){
timeline = dates_d[(1b+1):length(dates_d)]
value = data.frame(timeline, rep(0, length(timeline)))
colnames(value) <- c('Date', 'Total')
for(i in 1:length(names)){
assign(names[i], File(names[i]))
value = merge(value, get(names[i]), by = 'Date')
}
for(i in 1:length(names)){
value[,2] = valuel,2] + ratiol[,il*valuel, (2+i)]
}

return(valuel[,1:2])

PortfolioReturn <- function(names)q{
strategie = Strategie(names)
timeline = strategie[2: (nrow(strategie)),1]
frame = data.frame(as.Date(timeline), rep(0, length(timeline)))
colnames(frame) <- c('Date', 'Return')

for(i in 1:length(timeline))q{
value = PortfolioValue(names, strategiel[i,2:6])

date_n = as.Date(dates_m[1]) + (i+1)*1b
date_o as.Date(dates_m[1]) + ix*1lb
location_n = which.min(abs(date_n - valuel[,1]))

location_o = which.min(abs(date_o - valuel[,1]))

value_n = value[location_n,2]
value_o = value[location_o,2]
return = (value_n - value_o) / value_o
frame[i,2] = frame[i,2] + return
}

return(frame)

}

SharpeRatioTrend <- function(returns, ratio = rep(l,length(returns))){
ExpectedReturn = 0
for(i in 1:length(names)){
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ExpectedReturn = ExpectedReturn + ratio[i]*mean(returns)
}
SdExpectedReturn = sd(returns - ExpectedReturn)
return(ExpectedReturn / SdExpectedReturn)
}

SharpeThetaTrend <- function(returnframe){
Date = dates_m[3:length(dates_m)]
returns = returnframe
for(i in 1:length(names)){
returns[,i] = returns[,i] - FED[(nrow(FED) - (nrow(returns)-1)) : (nrow(FED)),2]/100
}
mu <- NULL
for(i in 1:ncol(returns)){
mu = rbind(mu, mean(returns([,i]))

3

if (ncol(returns)>1){
CovarianceReturn = cov(returns)
theta = solve(CovarianceReturn, mu)
theta = theta / abs(sum(theta))
sharpe = (t(theta)*/mu)/(sqrt(t(theta)’*/CovarianceReturny*/,theta))
return(c(sharpe, theta))

}

}

OptimalSharpeTrend <- function(names, k){
max <- rep(0, (2xk+1))
comb = combn(names, k, simplify = TRUE)
for(j in 1:ncol(comb)){
frame <- NULL
for(i in 1:length(comb[,jl1)){
frame = cbind(frame, get(combl[i,jl)[,2])
}
res = SharpeThetaTrend(frame)
if (max[1] < res[11){
max[1:(k+1)] = res
max [ (k+2) : (2¥k+1)] = comb[,j]
}
}
return(max)

}

S1 = PortfolioReturn(AEXnames[1:5])

S2 = PortfolioReturn(AEXnames[6:10])
S3 = PortfolioReturn(AEXnames[11:15])
S4 = PortfolioReturn(AEXnames[16:20])
S5 = PortfolioReturn(AEXnames[21:25])

returnnames = c('S1','S2','S3','S4', 'S5')

for(k in 2:5){print(OptimalSharpeTrend(returnnames, k))}
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