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INTRODUCTION
Grammar formalisms for design come in a large vari-
ety (e.g., Stiny, 1980; Stiny, 1981; Carlson et al., 1991; 
Heisserman and Woodbury, 1994; Duarte and Cor-
reia, 2006), requiring different representations of the 
entities being generated, and different interpretative 
mechanisms for this generation. Shape grammars 
also come in a variety of forms, even if less broadly. 
Most examples of shape grammars rely on labeled 
shapes, a combination of line segments and labeled 
points (in two dimensions) (Stiny 1981). However, 
even in the original conception of shape grammars 
(Stiny and Gips, 1972), an iconic shape (made up of 
curved lines) serves the role of non-terminal marker 
rather than labeled points, and a colored infill of the 

resulting shapes is considered part of the generative 
specification, though not of the shape grammar.

Next to labels, other non-geometric attributes 
have been considered for shapes. Stiny (1992) pro-
poses numeric weights as attributes to denote line 
thicknesses or surface tones. Knight (1989; 1993) 
considers an extension to the shape grammar for-
malism that allows for a variety of qualitative as-
pects of design, such as color, to be integrated in 
the rules of a shape grammar. Though not specific to 
colors, the resulting grammar is called a color gram-
mar and notions of transparency, opacity and rank-
ing are introduced to regulate the behavior of inter-
acting quality-defined areas or volumes.
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In all of these examples, the augmented shapes have 
been derived from shapes of spatial elements by as-
sociating symbols, labels or other qualitative aspects 
to the elements, under a shape-attribute relation-
ship. In sortal grammars (Stouffs and Krishnamurti, 
2001), shapes may be either the object or the attrib-
ute in the relationship, or both (or neither, though 
such examples do not constitute spatial grammars 
as such). Sortal grammars utilize sortal structures as 
representational structures, where sortal structures 
are defined as formal compositions of other, primi-
tive, sortal structures, termed sorts.

In this paper, we revisit and explore an exemplar 
shape grammar from literature to illustrate the use 
of different grammar formalisms from among shape 
grammars, color grammars and sortal grammars and 
consider the implementation of rule application 
within a sortal grammar interpreter.

AN ALGEBRAIC COMPARISON OF SHAPE 
AUGMENTATION FORMALISMS
Stiny (1991) defines shapes as finite arrangements 
of n-dimensional hyperplane segments of limited 
but non-zero measure in a k-dimensional space, k ≥ 
n. The notation U

n,k
 denotes the algebraic set of all 

such shapes; U
1,2

, also written as U
1
 if k=2 is unam-

biguously understood, refers to an algebra of shapes 
made up of line segments in two-dimensional space. 
In three dimensions, a shape grammar could include 
points, line segments, plane segments or even vol-
umes. If a shape consists of more than one type of 
spatial element, it belongs to the algebra given by 
the Cartesian product of the algebras of its spatial 
element types (Stiny, 1991), e.g., U

0
 × U

1
 refers to an 

algebra of points and line segments. The same is said 
to apply for the specification of labeled points or la-
beled shapes; given a set L of symbols, which may be 
empty, we can define an algebra V

0
 = U

0
 × ℘(L) of 

labeled points, where ℘(L) denotes the power set of 
L, and an algebra V = U

1
 × V

0
 of labeled shapes.

While it is attractive to consider each of these 
examples, formally, as a Cartesian product of alge-
bras, whether composed of two shape algebras or 
of a shape algebra with a non-spatial algebra, the 

latter as suggested for labeled points, there is a fun-
damental difference between how these Cartesian 
products behave in both cases. An algebra of points 
and line segments, U

0
 × U

1
, is not significantly dif-

ferent from an algebra of line segments and points, 
U

1
 × U

0
, that is, the Cartesian product over shape al-

gebras could be considered commutative, U
0
 × U

1
 ≡ 

U
1
 × U

0
. However, an algebra of labeled points, U

0
 × 

℘(L), cannot be considered equivalent to an algebra 
of “pointed labels,” ℘(L) × U

0
. Firstly, the association 

of labels, or other qualitative aspects of design, to 
shapes under a shape-attribute relationship is not of 
a symmetric kind. Secondly, the operations of shape 
computation do not necessarily distribute over both 
algebras in the way they do over a Cartesian prod-
uct of spatial algebras only. In the latter case, given 
two shapes each consisting of a line segment and a 
plane segment, the sum of both shapes is the Car-
tesian product of the sum of both line segments 
with the sum of both plane segments. In the case of 
colored shapes, the sum of two line segments with 
different colors that spatially overlap cannot be con-
sidered to be the sum of both line segments with a 
color that is the sum of both individual colors. This 
only applies to the common segment; any other 
segment that belongs to only one of both shapes 
has to retain its original color under a proper alge-
braic model.

Stouffs (1994), instead, suggests a different 
mathematical formalism for shapes augmented 
with qualitative aspects, considering a character-
istic function to a shape, similar to the definition 
of half-spaces in constructive solid geometry. The 
range of the characteristic function is then depend-
ent on the aspect considered to augment the shape. 
For example, in the case of weights, the range may 
constitute the set of positive real numbers, R+, in the 
case of colors this may be a 3-dimensional additive 
color space and, in the case of labeled shapes, for a 
given set of labels L, the range of the characteristic 
function is ℘(L), the power set of L. Summing quali-
tative aspects then reduces to adding characteristic 
functions over the same range together and shape 
computation distributes once again over the Carte-
sian product.
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Sortal structures (Stouffs, 2008), as underlying sortal 
grammars, are defined as formal compositions of 
other, primitive, sortal structures, termed sorts. Each 
sort defines an algebra over its elements. Similarly to 
shapes and shape attributes in the context of shape 

problem, a sortal structure can be composed and, 
where necessary, component sorts developed, the 
corresponding grammar formalism explored for the 
given problem, and the sortal structure and gram-
mar adapted to fit the specifics of the problem.

REVISITING AN EXEMPLAR SHAPE 
GRAMMAR
To illustrate this process, let us consider an exam-
ple of a shape grammar that is reminiscent of Stiny 
and Gips’ (1972) original generative specification 
of including a material specification in the form of 
painting rules. The example is taken from Stiny’s 
“Computing with Form and Meaning in Architecture” 
(Stiny, 1985) and concerns a grammar composed of 
three rules: the first rule creates a square from an ini-
tial marker, the second creates a rotated square in-
scribed within the original square, and the third rule 
removes the marker (Figure 1). The marker, a point, 
moves from one square to the next to guide the gen-
eration. The painting rules, though not explicated, 
consider an alternating infill of the squares in black 
and white.

Considering a grammar formalism that allows 
for colored plane segments, next to (labeled) points 
and line segments, a grammar can be constructed 
that incorporates the painting rules in the genera-
tion of the overall shape. Let us start by considering 
a color grammar for this purpose. Each square in the 
rule set is specified as a plane segment (also denot-
ed region (Knight, 1993) or field (Knight, 1989)) rath-
er than a collection of four line segments. A color 
is associated to each plane segment; the possible 
color values are limited to black and white. In color 

Figure 1 

A grammar composed of three 

rules, generating recursively 

inscribed squares (redrawn 

from Stiny, 1985).

grammars, the algebra of a sorts is specified through 
a part relationship on the elements of this sort, with 
the algebraic operations of addition, subtraction, 
and product defined in accordance to this part re-
lationship. The part relationship also explicates the 
match relation (or interpretative mechanism) under-
lying a sortal algebra and grammar. Composite sortal 
structures derive their part relationship from their 
component sorts through the formal compositional 
operators defined over sorts. These formal composi-
tional operators constitute a co-ordinate, disjunctive 
relationship, as in the Cartesian product of two spa-
tial algebras, and a subordinate, semi-conjunctive 
relationship, as in the Cartesian product of a spatial 
algebra and a qualitative aspect algebra.

The central problem in implementing gram-
mars is the matching problem, that of determining 
the transformation under which the left-hand-side 
of the rule forms a part of the shape/entity under 
consideration. Since the part relationship of a sortal 
structure is derived from its component sorts, most 
technical difficulties of implementing the matching 
problem only apply once for each (simple) sort. As 
the part relationship can be applied to various kinds 
of data types, recognition algorithms can be extend-
ed to deal with quite arbitrary data representations, 
on condition that what constitutes a transformation 
can be properly defined. Considering the applica-
tion of a grammar-based approach to a generative 
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grammars, overlapping colored plane segments 
are handled formally with rankings (Knight, 1993); 
here, an “opaque” ranking is suggested where any 
colored plane segment that is added in a rule appli-
cation covers any part of a colored plane segment 
already in the design (Figure 2). The first rule creates 
an initial black square. The second rule, inscribing 
a rotated square into an existing square, is distin-
guished into two different rules: the first applies to 
a black square, inscribing a white rotated square, the 
second applies to a white square, inscribing a black 
rotated square. The last rule, removing the marker, 
is also modified: the square is removed from both 
the left-hand-side and right-hand-side of the rule, in 
order to avoid having to specify two separate rules, 
one for a black square and one for a white square. 
However, this modifies the grammar (and its result-
ing language of designs) in that the last rule now di-
rectly applies to the initial shape, without the need 
for Rule 1 to apply first. Instead, splitting the last 
rule into two as mentioned above, will ensure that 
Rule 1 must always apply before the marker can be 
removed (when considering an initial shape consist-
ing only of one or more markers). 

Instead of using a color grammar, the same lan-
guage of designs can be achieved using a shape 
grammar of weighted plane segments, next to (la-
beled) points and line segments, where the (numeri-
cal) weight is interpreted to denote a surface tone 
(Stiny, 1992). However, the rules as specified in Fig-
ure 2 cannot be considered to apply without modi-
fication. Overlapping weighted plane segments 

are handled formally by considering a partial-order 
relationship on weights, corresponding to the less-
than-or-equal relation on numeric values: assuming 
higher numeric values for darker surface tones, coin-
cident plane segments with different tones combine 
into a plane segment with the darkest tone, even 
though it assumes the same plane segment with 
other, lighter tones. As such, only Rule 3 (from Fig-
ure 2) would apply to a white square but both Rule 2 
and Rule 3 would apply to a black square, as a black 
square assumes the same square with a lighter, e.g., 
white, tone. This problem may be resolved by also 
considering a tone for the marker point, more spe-
cifically, the opposite tone of the respective square 
(Figure 3). While a black square assumes the same 
square with a white tone, a white point will not as-
sume the same point with a black tone, and vice 
versa. As a consequence, the last rule, removing the 
marker, necessarily, also needs to be split into two 
rules, one considering a white maker point, the oth-
er a black marker point. Adding a black, respectively, 
white square, to both the left-hand-side and the 
right-hand-side of the rule ensures once again that 
Rule 1 must be applied to an initial shape consisting 
of one or more marker points before any marker can 
be removed.

Sortal grammars, as a grammar formalism, 
encompasses both shape grammars (including 
weights) and color grammars and, thus, both ver-
sions (Figures 2 and 3) of the grammar generating 
recursively inscribed squares with alternating infill 
can be defined as a sortal grammar. However, any 

Figure 2 

A color grammar generating 

recursively inscribed squares 

with alternating infill. A white 

segment is indicated by a 

lightly drawn outline in order 

to distinguish it from the 

background.
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implementation of a grammar interpreter neces-
sarily introduces additional constraints with respect 
to rule application, requiring further modifications 
of the rules constituting the grammar. For exam-
ple, the first rule (creating an initial square) may 
apply over and over again in a single derivation as 
the same marker (with the exception of the possi-
ble differentiation in tone) moves from one square 
to the next, inscribing, square. In addition, the first 
rule is non-deterministic as a single point maps with 
another point in an infinite number of ways, con-
sidering both variations in rotation and scaling. An 
implementation must allow for indeterminate rule 
applications in order to allow Rule 1 to apply. The 
same may be said about Rule 2 (in both versions); 
the combination of a point and a co-planar plane 
segment is also an indeterminate case for subshape 
recognition (Krishnamurti and Stouffs, 1997). Spe-
cifically, if a match is found for the left-hand-side 
of Rule 2, any reduction in scaling (considering the 
same rotation and the same translation with respect 
to the marker point) yields a potential match. In two 
dimensions, a determinate case requires either two 
distinct points, a point and a non-collinear line, or 
three distinct lines not all concurrent in one point. 
Therefore, in order to make the rules considered 
above deterministic, either an extra (marker) point, 
or an extra non-collinear (marker) line segment 
should be added to each rule. Alternatively, the ex-
isting marker point may be replaced by three (or 
four) marker line segments. However, in this case, 
symmetry should be avoided in order to ensure that 

the derivation always proceeds in the same direc-
tion (angle of rotation).

A SORTAL GRAMMAR INTERPRETER
In order to test these ideas, an implementation of a 
sortal grammar interpreter is being developed for 
use within the Processing programming environ-
ment [1]. While various shape grammar interpreters 
have been developed over the years, most are lim-
ited to labeled shapes and/or do not fully support 
subshape recognition. The SortalGI sortal grammar 
interpreter library [2] developed for the Processing 
environment currently allows for points and line 
segments (with associated stroke tone and stroke/
line thickness), plane segments (with associated fill 
tone), labeled points (the label can have an associat-
ed stroke tone), and labeled line and plane segments 
(similar to line or plane segments but with additional 
associated label). Fill tones can either be specified as 
a numeric weight or as an enumerative value with 
ranking (conform the specification of a color gram-
mar). Only determinate cases of rule application are 
considered so far.

Figure 4 illustrates the specification and applica-
tion of a sortal grammar generating recursively insc-
ribed squares with alternating infill. It uses a square 
outline of four marker line segments to ensure de-
terminate rule application. Except for the first rule’s 
left-hand-side, which matches the initial square sha-
pe, one of the marker line segments is shortened to 
inhibit symmetry so as to ensure that rule applica-
tion always proceeds in the same way (always rota-

Figure 3 

A (weighted) shape gram-

mar generating recursively 

inscribed squares with alter-

nating infill. A white segment, 

or point, is indicated by a 

lightly drawn outline in order 

to distinguish it from the 

background.
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ting the inscribed square in the same direction). The 
final rule (to remove the marker lines) still applies 
to the initial shape, though if applied would leave a 
small line segment. Table 1 (top) presents the sortal 
structure underlying this grammar, consisting of line 
segments with associated stroke thicknesses and 
stroke tones (“strokedLines”), and plane segments 
with associated enumerative colors “black” and “whi-
te” with “opaque” ranking (“filledShapes”).

Table 2 (left) provides an extract from the Pro-
cessing code, illustrating the initialization of the 
SortalGI engine (with the specification of the enu-

merative color values) and the specification of Rule 
2. The left-hand-side of the rule specifies the four 
marker line segments as well as the corresponding 
black plane segment. The right-hand-side of the rule 
replaces the four marker line segments and adds the 
inscribed and rotated, white plane segment. Stroke 
values are specified conform to the Processing envi-
ronment: 0 represents black and 255 represents whi-
te. Within the SortalGI library these are converted 
to 255 and 1, respectively, in order to adhere to the 
expected partial-order relationship on tones (darker 
tones containing lighter tones). Note that the ran-
king of enumerative colors, or other qualitative de-

Figure 4 

A sortal grammar using 

marker line segments and 

enumerative tones, generating 

recursively inscribed squares 

with alternating infill. Line 

segments are drawn dashed 

where they coincide with the 

boundary of a plane segment. 

A white plane segment is 

distinguished by a lightly 

drawn outline.

Table 1 

Definition of the sortal struc-

tures for the sortal grammars 

illustrated in Figure 4 (top) and 

Figure 5 (bottom).  Sorts are 

specified by a characteristic in-

dividual (enclosed within squ-

are brackets) with zero, one 

or more arguments (enclosed 

within parentheses). Sorts are 

composed with the ‘+’ opera-

tor (specifying a co-ordinate, 

disjunctive relationship) and 

the ‘^’ operator (specifying a 

subordinate, semi-conjunctive 

relationship).

sort strokeWeights : [Weight](10); 
sort strokes : [Weight](255); 
sort lines : [LineSegment]; 
sort strokedLines : lines ^ strokeWeights ^ strokes; 
sort fills : [Enumerative]({“black”, “white”}); 
sort shapes : [PlaneSegment]; 
sort filledShapes : shapes ^ fills; 
sort processingShapes : strokedLines + filledShapes; 
sort strokeWeights : [Weight](10); 
sort strokes : [Weight](255); 
sort points : [Points]; 
sort strokedPoints : points ^ strokeWeights ^ strokes; 
sort lines : [LineSegment]; 
sort strokedLines : lines ^ strokeWeights ^ strokes; 
sort fills : [Weight](255); 
sort filledShapes : shapes ^ fills; 
sort processingShapes : strokedPoints + strokedLines + filledShapes; 
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sign aspects (in color grammars), on the other hand, 
does not adhere to a partial-order relationship. Simi-
larly, the requirement for any sort to define an algeb-
ra does not strictly apply to enumerative sorts; while 
it is a sufficient condition for the composition of sor-
tal structures, it is not a necessary condition. 

Figure 5 illustrates an alternative specification 
of a sortal grammar generating recursively inscribed 

Table 2 

Examples of rule specification 

using the SortalGI library 

in the Processing environ-

ment: (left): using marker line 

segments and enumerative 

tones; (right) using marker 

points and numeric weights 

for tones. The declaration of 

SortalGI functions mimics as 

much as possible the declara-

tion of similar Processing 

functions.

  final String BLACK = "black"; 
  final String WHITE = "white"; 
  final String[] names = {BLACK, WHITE}; 
  final float[] values = {0, 255}; 
  // initialize the SortalGI engine 
  sgi = SortalGI.initialize(this, names, values); 
 

  // initialize the SortalGI engine 
  sgi = SortalGI.initialize(this); 
 

  // specify Rule 2 
  SortalRule r2 = new SortalRule("r2", "Black 
rule"); 
  r2.beginLHS(); 
  sgi.stroke(0); 
  sgi.strokeWeight(1); 
  sgi.line(0, 0, 75, 0); 
  sgi.line(0, 0, 0, 100); 
  sgi.line(0, 100, 100, 100); 
  sgi.line(100, 100, 100, 0); 
  sgi.noStroke(); 
  sgi.fill(BLACK); 
  sgi.quad(0, 0, 100, 0, 100, 100, 0, 100); 
  r2.endLHS(); 
  r2.beginRHS(); 
  sgi.stroke(255); 
  sgi.strokeWeight(1); 
  sgi.line(0, 25, 56.25, 6.25); 
  sgi.line(0, 25, 25, 100); 
  sgi.line(25, 100, 100, 75); 
  sgi.line(100, 75, 75, 0); 
  sgi.noStroke(); 
  sgi.fill(BLACK); 
  sgi.quad(0, 0, 100, 0, 100, 100, 0, 100); 
  sgi.fill(WHITE); 
  sgi.quad(75, 0, 100, 75, 25, 100, 0, 25); 
  r2.endRHS(); 

  // specify Rule 2 
  SortalRule r2 = new SortalRule("r2", "Black 
rule"); 
  r2.beginLHS(); 
  sgi.stroke(255); 
  sgi.strokeWeight(3); 
  sgi.point(75, 0); 
  sgi.point(100, 0); 
  sgi.noStroke(); 
  sgi.fill(0); 
  sgi.quad(75, 0, 100, 75, 25, 100, 0, 25); 
  r2.endLHS(); 
  r2.beginRHS(); 
  sgi.stroke(0); 
  sgi.strokeWeight(3); 
  sgi.point(56.25, 6.25); 
  sgi.point(75, 0); 
  sgi.noStroke(); 
  sgi.fill(255); 
  sgi.quad(75, 0, 100, 75, 25, 100, 0, 25); 
  r2.endRHS(); 

 

squares with alternating infill. It uses two marker po-
ints to ensure determinate rule application. Only the 
initial shape (and the left-hand-side of Rule 1) rema-
ins composed of four line segments.

Table 1 (bottom) presents the sortal structure 
underlying this grammar, consisting of both points 
and line segments with associated stroke thicknes-
ses and stroke tones (“strokedPoints” and “stroked-
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Lines”), and plane segments with associated (nu-
meric) surface tones (“filledShapes”). Table 2 (right) 
shows the corresponding initialization of the Sortal-
GI engine and the specification of Rule 2 within the 
Processing environment. The left-hand-side of the 
rule specifies the two marker points as well as the 
(inscribed, rotated) part of the black plane segment 
that will be replaced with a white segment. The ri-
ght-hand-side of the rule replaces the two marker 
points and adds the inscribed and rotated, white 
plane segment. The stroke tone of the marker points 
is always opposite to the fill tone of the plane seg-
ment, in order to ensure that rules only match as ex-
pected, notwithstanding the fact that a black point, 
or plane segment, assumes a white point, or plane 
segment, respectively.

Implementation issues
Developing a sortal grammar interpreter requires the 
matching problem to be solved independently of 
the specific sortal structure over which the grammar 
is specified. Different sorts may allow for different 
transformations, such as similarity transformations 
for spatial information and case transformations 
for text-based information. In order to avoid an ex-
haustive search over all sorts for potential matches, 
both transformations and sorts are ranked by perti-
nence. Transformations can be ranked according to 
their degrees of freedom (e.g., seven for a similarity 
transformation: three translational, three rotational 
and one (uniform) scaling; zero or one for case trans-
formations as only a discrete number of case trans-

formations can be distinguished). At the same time, 
sorts can be ranked according to their dimensional-
ity, as either discrete, linear, planar or spatial. As such, 
a greedy algorithm can be developed that will focus 
its attention first to sorts with the lowest combina-
tion of dimensionality and transformational degrees 
of freedom and on adjacent component sorts under 
the (subordinate, semi-conjunctive) attribute rela-
tionship. For example, in the sortal equivalent to the 
algebra V = U

1
 × V

0
 of labeled shapes, labels will be 

considered first, followed by the points they are as-
sociated to. The matching of these points will natu-
rally be restricted by this association. Only if (labels 
and) points are insufficient to determine the match-
ing transformations, then line segments will also be 
considered.

CONCLUSION
Sortal grammars support varying grammar for-
malisms, allowing the user to explore alternative 
formulations of the same grammar, yielding the 
same design language. The SortalGI sortal gram-
mar interpreter supports such exploration within 
the Processing environment, though requires some 
programming (or scripting) experience from the 
user. Additional support for ellipses, arcs, volume 
segments, textures for plane segments and various 
other compositions, such as labeled line and plane 
segments may still be added to expand the explo-
ration space. The SortalGI library can also be used 
outside of the Processing environment, allowing for 
the development of graphical user interfaces to sup-

Figure 5 

A sortal grammar using 

marker points and numeric 

weight tones, generating 

recursively inscribed squares 

with alternating infill. A white 

plane segment, or point, is 

indicated by a lightly drawn 

outline.



487Shape Studies - Volume 1 - eCAADe 30 | 

port grammar development and exploration using 
the sortal grammar formalism schema. The ability to 
explore different grammar formalisms to achieve the 
same design language may yield new research ques-
tions about advantages and disadvantages thereof 
and the appropriateness of a particular grammar 
formalism for a design problem or, even, a family of 
design problems.
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