
479Shape Studies - Volume 1 - eCAADe 30 |

INTRODUCTION
Grammar formalisms for design come in a large vari-
ety (e.g., Stiny, 1980; Stiny, 1981; Carlson et al., 1991;
Heisserman and Woodbury, 1994; Duarte and Cor-
reia, 2006), requiring different representations of the
entities being generated, and different interpretative
mechanisms for this generation. Shape grammars
also come in a variety of forms, even if less broadly.
Most examples of shape grammars rely on labeled
shapes, a combination of line segments and labeled
points (in two dimensions) (Stiny 1981). However,
even in the original conception of shape grammars
(Stiny and Gips, 1972), an iconic shape (made up of
curved lines) serves the role of non-terminal marker
rather than labeled points, and a colored infill of the

resulting shapes is considered part of the generative
specification, though not of the shape grammar.

Next to labels, other non-geometric attributes
have been considered for shapes. Stiny (1992) pro-
poses numeric weights as attributes to denote line
thicknesses or surface tones. Knight (1989; 1993)
considers an extension to the shape grammar for-
malism that allows for a variety of qualitative as-
pects of design, such as color, to be integrated in
the rules of a shape grammar. Though not specific to
colors, the resulting grammar is called a color gram-
mar and notions of transparency, opacity and rank-
ing are introduced to regulate the behavior of inter-
acting quality-defined areas or volumes.

On Shape Grammars, Color Grammars and Sortal
Grammars

A sortal grammar interpreter for varying shape grammar formalisms

Rudi Stouffs
Delft University of Technology, The Netherlands and National University of Singapore,
Singapore.
http://www.tudelft.nl/rmfstouffs and http://www.arch.nus.edu.sg/people/cv/rudi.htm
r.m.f.stouffs@tudelft.nl and stouffs@nus.edu.sg

Abstract. Grammar formalisms for design come in a large variety, requiring different
representations of the entities being generated, and different interpretative mechanisms
for this generation. Most examples of shape grammars rely on labeled shapes, a
combination of line segments and labeled points. Color grammars extend the shape
grammar formalism to allow for a variety of qualitative aspects of design, such as
color, to be integrated in the rules of a shape grammar. Sortal grammars consider a
compositional approach to the representational structures underlying (augmented) shape
grammars, allowing for a variety of grammar formalism to be defined and explored. In
this paper, we revisit and explore an exemplar shape grammar from literature to illustrate
the use of different grammar formalisms and consider the implementation of rule
application within a sortal grammar interpreter.				
Keywords. Shape grammars; color grammars; sortal grammars; implementation.

480 | eCAADe 30 - Volume 1 - Shape Studies

In all of these examples, the augmented shapes have
been derived from shapes of spatial elements by as-
sociating symbols, labels or other qualitative aspects
to the elements, under a shape-attribute relation-
ship. In sortal grammars (Stouffs and Krishnamurti,
2001), shapes may be either the object or the attrib-
ute in the relationship, or both (or neither, though
such examples do not constitute spatial grammars
as such). Sortal grammars utilize sortal structures as
representational structures, where sortal structures
are defined as formal compositions of other, primi-
tive, sortal structures, termed sorts.

In this paper, we revisit and explore an exemplar
shape grammar from literature to illustrate the use
of different grammar formalisms from among shape
grammars, color grammars and sortal grammars and
consider the implementation of rule application
within a sortal grammar interpreter.

AN ALGEBRAIC COMPARISON OF SHAPE
AUGMENTATION FORMALISMS
Stiny (1991) defines shapes as finite arrangements
of n-dimensional hyperplane segments of limited
but non-zero measure in a k-dimensional space, k ≥
n. The notation U

n,k
 denotes the algebraic set of all

such shapes; U
1,2

, also written as U
1
 if k=2 is unam-

biguously understood, refers to an algebra of shapes
made up of line segments in two-dimensional space.
In three dimensions, a shape grammar could include
points, line segments, plane segments or even vol-
umes. If a shape consists of more than one type of
spatial element, it belongs to the algebra given by
the Cartesian product of the algebras of its spatial
element types (Stiny, 1991), e.g., U

0
 × U

1
 refers to an

algebra of points and line segments. The same is said
to apply for the specification of labeled points or la-
beled shapes; given a set L of symbols, which may be
empty, we can define an algebra V

0
 = U

0
 × ℘(L) of

labeled points, where ℘(L) denotes the power set of
L, and an algebra V = U

1
 × V

0
 of labeled shapes.

While it is attractive to consider each of these
examples, formally, as a Cartesian product of alge-
bras, whether composed of two shape algebras or
of a shape algebra with a non-spatial algebra, the

latter as suggested for labeled points, there is a fun-
damental difference between how these Cartesian
products behave in both cases. An algebra of points
and line segments, U

0
 × U

1
, is not significantly dif-

ferent from an algebra of line segments and points,
U

1
 × U

0
, that is, the Cartesian product over shape al-

gebras could be considered commutative, U
0
 × U

1
 ≡

U
1
 × U

0
. However, an algebra of labeled points, U

0
 ×

℘(L), cannot be considered equivalent to an algebra
of “pointed labels,” ℘(L) × U

0
. Firstly, the association

of labels, or other qualitative aspects of design, to
shapes under a shape-attribute relationship is not of
a symmetric kind. Secondly, the operations of shape
computation do not necessarily distribute over both
algebras in the way they do over a Cartesian prod-
uct of spatial algebras only. In the latter case, given
two shapes each consisting of a line segment and a
plane segment, the sum of both shapes is the Car-
tesian product of the sum of both line segments
with the sum of both plane segments. In the case of
colored shapes, the sum of two line segments with
different colors that spatially overlap cannot be con-
sidered to be the sum of both line segments with a
color that is the sum of both individual colors. This
only applies to the common segment; any other
segment that belongs to only one of both shapes
has to retain its original color under a proper alge-
braic model.

Stouffs (1994), instead, suggests a different
mathematical formalism for shapes augmented
with qualitative aspects, considering a character-
istic function to a shape, similar to the definition
of half-spaces in constructive solid geometry. The
range of the characteristic function is then depend-
ent on the aspect considered to augment the shape.
For example, in the case of weights, the range may
constitute the set of positive real numbers, R+, in the
case of colors this may be a 3-dimensional additive
color space and, in the case of labeled shapes, for a
given set of labels L, the range of the characteristic
function is ℘(L), the power set of L. Summing quali-
tative aspects then reduces to adding characteristic
functions over the same range together and shape
computation distributes once again over the Carte-
sian product.

481Shape Studies - Volume 1 - eCAADe 30 |

Sortal structures (Stouffs, 2008), as underlying sortal
grammars, are defined as formal compositions of
other, primitive, sortal structures, termed sorts. Each
sort defines an algebra over its elements. Similarly to
shapes and shape attributes in the context of shape

problem, a sortal structure can be composed and,
where necessary, component sorts developed, the
corresponding grammar formalism explored for the
given problem, and the sortal structure and gram-
mar adapted to fit the specifics of the problem.

REVISITING AN EXEMPLAR SHAPE
GRAMMAR
To illustrate this process, let us consider an exam-
ple of a shape grammar that is reminiscent of Stiny
and Gips’ (1972) original generative specification
of including a material specification in the form of
painting rules. The example is taken from Stiny’s
“Computing with Form and Meaning in Architecture”
(Stiny, 1985) and concerns a grammar composed of
three rules: the first rule creates a square from an ini-
tial marker, the second creates a rotated square in-
scribed within the original square, and the third rule
removes the marker (Figure 1). The marker, a point,
moves from one square to the next to guide the gen-
eration. The painting rules, though not explicated,
consider an alternating infill of the squares in black
and white.

Considering a grammar formalism that allows
for colored plane segments, next to (labeled) points
and line segments, a grammar can be constructed
that incorporates the painting rules in the genera-
tion of the overall shape. Let us start by considering
a color grammar for this purpose. Each square in the
rule set is specified as a plane segment (also denot-
ed region (Knight, 1993) or field (Knight, 1989)) rath-
er than a collection of four line segments. A color
is associated to each plane segment; the possible
color values are limited to black and white. In color

Figure 1

A grammar composed of three

rules, generating recursively

inscribed squares (redrawn

from Stiny, 1985).

grammars, the algebra of a sorts is specified through
a part relationship on the elements of this sort, with
the algebraic operations of addition, subtraction,
and product defined in accordance to this part re-
lationship. The part relationship also explicates the
match relation (or interpretative mechanism) under-
lying a sortal algebra and grammar. Composite sortal
structures derive their part relationship from their
component sorts through the formal compositional
operators defined over sorts. These formal composi-
tional operators constitute a co-ordinate, disjunctive
relationship, as in the Cartesian product of two spa-
tial algebras, and a subordinate, semi-conjunctive
relationship, as in the Cartesian product of a spatial
algebra and a qualitative aspect algebra.

The central problem in implementing gram-
mars is the matching problem, that of determining
the transformation under which the left-hand-side
of the rule forms a part of the shape/entity under
consideration. Since the part relationship of a sortal
structure is derived from its component sorts, most
technical difficulties of implementing the matching
problem only apply once for each (simple) sort. As
the part relationship can be applied to various kinds
of data types, recognition algorithms can be extend-
ed to deal with quite arbitrary data representations,
on condition that what constitutes a transformation
can be properly defined. Considering the applica-
tion of a grammar-based approach to a generative

482 | eCAADe 30 - Volume 1 - Shape Studies

grammars, overlapping colored plane segments
are handled formally with rankings (Knight, 1993);
here, an “opaque” ranking is suggested where any
colored plane segment that is added in a rule appli-
cation covers any part of a colored plane segment
already in the design (Figure 2). The first rule creates
an initial black square. The second rule, inscribing
a rotated square into an existing square, is distin-
guished into two different rules: the first applies to
a black square, inscribing a white rotated square, the
second applies to a white square, inscribing a black
rotated square. The last rule, removing the marker,
is also modified: the square is removed from both
the left-hand-side and right-hand-side of the rule, in
order to avoid having to specify two separate rules,
one for a black square and one for a white square.
However, this modifies the grammar (and its result-
ing language of designs) in that the last rule now di-
rectly applies to the initial shape, without the need
for Rule 1 to apply first. Instead, splitting the last
rule into two as mentioned above, will ensure that
Rule 1 must always apply before the marker can be
removed (when considering an initial shape consist-
ing only of one or more markers).

Instead of using a color grammar, the same lan-
guage of designs can be achieved using a shape
grammar of weighted plane segments, next to (la-
beled) points and line segments, where the (numeri-
cal) weight is interpreted to denote a surface tone
(Stiny, 1992). However, the rules as specified in Fig-
ure 2 cannot be considered to apply without modi-
fication. Overlapping weighted plane segments

are handled formally by considering a partial-order
relationship on weights, corresponding to the less-
than-or-equal relation on numeric values: assuming
higher numeric values for darker surface tones, coin-
cident plane segments with different tones combine
into a plane segment with the darkest tone, even
though it assumes the same plane segment with
other, lighter tones. As such, only Rule 3 (from Fig-
ure 2) would apply to a white square but both Rule 2
and Rule 3 would apply to a black square, as a black
square assumes the same square with a lighter, e.g.,
white, tone. This problem may be resolved by also
considering a tone for the marker point, more spe-
cifically, the opposite tone of the respective square
(Figure 3). While a black square assumes the same
square with a white tone, a white point will not as-
sume the same point with a black tone, and vice
versa. As a consequence, the last rule, removing the
marker, necessarily, also needs to be split into two
rules, one considering a white maker point, the oth-
er a black marker point. Adding a black, respectively,
white square, to both the left-hand-side and the
right-hand-side of the rule ensures once again that
Rule 1 must be applied to an initial shape consisting
of one or more marker points before any marker can
be removed.

Sortal grammars, as a grammar formalism,
encompasses both shape grammars (including
weights) and color grammars and, thus, both ver-
sions (Figures 2 and 3) of the grammar generating
recursively inscribed squares with alternating infill
can be defined as a sortal grammar. However, any

Figure 2

A color grammar generating

recursively inscribed squares

with alternating infill. A white

segment is indicated by a

lightly drawn outline in order

to distinguish it from the

background.

483Shape Studies - Volume 1 - eCAADe 30 |

implementation of a grammar interpreter neces-
sarily introduces additional constraints with respect
to rule application, requiring further modifications
of the rules constituting the grammar. For exam-
ple, the first rule (creating an initial square) may
apply over and over again in a single derivation as
the same marker (with the exception of the possi-
ble differentiation in tone) moves from one square
to the next, inscribing, square. In addition, the first
rule is non-deterministic as a single point maps with
another point in an infinite number of ways, con-
sidering both variations in rotation and scaling. An
implementation must allow for indeterminate rule
applications in order to allow Rule 1 to apply. The
same may be said about Rule 2 (in both versions);
the combination of a point and a co-planar plane
segment is also an indeterminate case for subshape
recognition (Krishnamurti and Stouffs, 1997). Spe-
cifically, if a match is found for the left-hand-side
of Rule 2, any reduction in scaling (considering the
same rotation and the same translation with respect
to the marker point) yields a potential match. In two
dimensions, a determinate case requires either two
distinct points, a point and a non-collinear line, or
three distinct lines not all concurrent in one point.
Therefore, in order to make the rules considered
above deterministic, either an extra (marker) point,
or an extra non-collinear (marker) line segment
should be added to each rule. Alternatively, the ex-
isting marker point may be replaced by three (or
four) marker line segments. However, in this case,
symmetry should be avoided in order to ensure that

the derivation always proceeds in the same direc-
tion (angle of rotation).

A SORTAL GRAMMAR INTERPRETER
In order to test these ideas, an implementation of a
sortal grammar interpreter is being developed for
use within the Processing programming environ-
ment [1]. While various shape grammar interpreters
have been developed over the years, most are lim-
ited to labeled shapes and/or do not fully support
subshape recognition. The SortalGI sortal grammar
interpreter library [2] developed for the Processing
environment currently allows for points and line
segments (with associated stroke tone and stroke/
line thickness), plane segments (with associated fill
tone), labeled points (the label can have an associat-
ed stroke tone), and labeled line and plane segments
(similar to line or plane segments but with additional
associated label). Fill tones can either be specified as
a numeric weight or as an enumerative value with
ranking (conform the specification of a color gram-
mar). Only determinate cases of rule application are
considered so far.

Figure 4 illustrates the specification and applica-
tion of a sortal grammar generating recursively insc-
ribed squares with alternating infill. It uses a square
outline of four marker line segments to ensure de-
terminate rule application. Except for the first rule’s
left-hand-side, which matches the initial square sha-
pe, one of the marker line segments is shortened to
inhibit symmetry so as to ensure that rule applica-
tion always proceeds in the same way (always rota-

Figure 3

A (weighted) shape gram-

mar generating recursively

inscribed squares with alter-

nating infill. A white segment,

or point, is indicated by a

lightly drawn outline in order

to distinguish it from the

background.

484 | eCAADe 30 - Volume 1 - Shape Studies

ting the inscribed square in the same direction). The
final rule (to remove the marker lines) still applies
to the initial shape, though if applied would leave a
small line segment. Table 1 (top) presents the sortal
structure underlying this grammar, consisting of line
segments with associated stroke thicknesses and
stroke tones (“strokedLines”), and plane segments
with associated enumerative colors “black” and “whi-
te” with “opaque” ranking (“filledShapes”).

Table 2 (left) provides an extract from the Pro-
cessing code, illustrating the initialization of the
SortalGI engine (with the specification of the enu-

merative color values) and the specification of Rule
2. The left-hand-side of the rule specifies the four
marker line segments as well as the corresponding
black plane segment. The right-hand-side of the rule
replaces the four marker line segments and adds the
inscribed and rotated, white plane segment. Stroke
values are specified conform to the Processing envi-
ronment: 0 represents black and 255 represents whi-
te. Within the SortalGI library these are converted
to 255 and 1, respectively, in order to adhere to the
expected partial-order relationship on tones (darker
tones containing lighter tones). Note that the ran-
king of enumerative colors, or other qualitative de-

Figure 4

A sortal grammar using

marker line segments and

enumerative tones, generating

recursively inscribed squares

with alternating infill. Line

segments are drawn dashed

where they coincide with the

boundary of a plane segment.

A white plane segment is

distinguished by a lightly

drawn outline.

Table 1

Definition of the sortal struc-

tures for the sortal grammars

illustrated in Figure 4 (top) and

Figure 5 (bottom). Sorts are

specified by a characteristic in-

dividual (enclosed within squ-

are brackets) with zero, one

or more arguments (enclosed

within parentheses). Sorts are

composed with the ‘+’ opera-

tor (specifying a co-ordinate,

disjunctive relationship) and

the ‘^’ operator (specifying a

subordinate, semi-conjunctive

relationship).

sort strokeWeights : [Weight](10);
sort strokes : [Weight](255);
sort lines : [LineSegment];
sort strokedLines : lines ^ strokeWeights ^ strokes;
sort fills : [Enumerative]({“black”, “white”});
sort shapes : [PlaneSegment];
sort filledShapes : shapes ^ fills;
sort processingShapes : strokedLines + filledShapes;
sort strokeWeights : [Weight](10);
sort strokes : [Weight](255);
sort points : [Points];
sort strokedPoints : points ^ strokeWeights ^ strokes;
sort lines : [LineSegment];
sort strokedLines : lines ^ strokeWeights ^ strokes;
sort fills : [Weight](255);
sort filledShapes : shapes ^ fills;
sort processingShapes : strokedPoints + strokedLines + filledShapes;

485Shape Studies - Volume 1 - eCAADe 30 |

sign aspects (in color grammars), on the other hand,
does not adhere to a partial-order relationship. Simi-
larly, the requirement for any sort to define an algeb-
ra does not strictly apply to enumerative sorts; while
it is a sufficient condition for the composition of sor-
tal structures, it is not a necessary condition.

Figure 5 illustrates an alternative specification
of a sortal grammar generating recursively inscribed

Table 2

Examples of rule specification

using the SortalGI library

in the Processing environ-

ment: (left): using marker line

segments and enumerative

tones; (right) using marker

points and numeric weights

for tones. The declaration of

SortalGI functions mimics as

much as possible the declara-

tion of similar Processing

functions.

 final String BLACK = "black";
 final String WHITE = "white";
 final String[] names = {BLACK, WHITE};
 final float[] values = {0, 255};
 // initialize the SortalGI engine
 sgi = SortalGI.initialize(this, names, values);

 // initialize the SortalGI engine
 sgi = SortalGI.initialize(this);

 // specify Rule 2
 SortalRule r2 = new SortalRule("r2", "Black
rule");
 r2.beginLHS();
 sgi.stroke(0);
 sgi.strokeWeight(1);
 sgi.line(0, 0, 75, 0);
 sgi.line(0, 0, 0, 100);
 sgi.line(0, 100, 100, 100);
 sgi.line(100, 100, 100, 0);
 sgi.noStroke();
 sgi.fill(BLACK);
 sgi.quad(0, 0, 100, 0, 100, 100, 0, 100);
 r2.endLHS();
 r2.beginRHS();
 sgi.stroke(255);
 sgi.strokeWeight(1);
 sgi.line(0, 25, 56.25, 6.25);
 sgi.line(0, 25, 25, 100);
 sgi.line(25, 100, 100, 75);
 sgi.line(100, 75, 75, 0);
 sgi.noStroke();
 sgi.fill(BLACK);
 sgi.quad(0, 0, 100, 0, 100, 100, 0, 100);
 sgi.fill(WHITE);
 sgi.quad(75, 0, 100, 75, 25, 100, 0, 25);
 r2.endRHS();

 // specify Rule 2
 SortalRule r2 = new SortalRule("r2", "Black
rule");
 r2.beginLHS();
 sgi.stroke(255);
 sgi.strokeWeight(3);
 sgi.point(75, 0);
 sgi.point(100, 0);
 sgi.noStroke();
 sgi.fill(0);
 sgi.quad(75, 0, 100, 75, 25, 100, 0, 25);
 r2.endLHS();
 r2.beginRHS();
 sgi.stroke(0);
 sgi.strokeWeight(3);
 sgi.point(56.25, 6.25);
 sgi.point(75, 0);
 sgi.noStroke();
 sgi.fill(255);
 sgi.quad(75, 0, 100, 75, 25, 100, 0, 25);
 r2.endRHS();

squares with alternating infill. It uses two marker po-
ints to ensure determinate rule application. Only the
initial shape (and the left-hand-side of Rule 1) rema-
ins composed of four line segments.

Table 1 (bottom) presents the sortal structure
underlying this grammar, consisting of both points
and line segments with associated stroke thicknes-
ses and stroke tones (“strokedPoints” and “stroked-

486 | eCAADe 30 - Volume 1 - Shape Studies

Lines”), and plane segments with associated (nu-
meric) surface tones (“filledShapes”). Table 2 (right)
shows the corresponding initialization of the Sortal-
GI engine and the specification of Rule 2 within the
Processing environment. The left-hand-side of the
rule specifies the two marker points as well as the
(inscribed, rotated) part of the black plane segment
that will be replaced with a white segment. The ri-
ght-hand-side of the rule replaces the two marker
points and adds the inscribed and rotated, white
plane segment. The stroke tone of the marker points
is always opposite to the fill tone of the plane seg-
ment, in order to ensure that rules only match as ex-
pected, notwithstanding the fact that a black point,
or plane segment, assumes a white point, or plane
segment, respectively.

Implementation issues
Developing a sortal grammar interpreter requires the
matching problem to be solved independently of
the specific sortal structure over which the grammar
is specified. Different sorts may allow for different
transformations, such as similarity transformations
for spatial information and case transformations
for text-based information. In order to avoid an ex-
haustive search over all sorts for potential matches,
both transformations and sorts are ranked by perti-
nence. Transformations can be ranked according to
their degrees of freedom (e.g., seven for a similarity
transformation: three translational, three rotational
and one (uniform) scaling; zero or one for case trans-
formations as only a discrete number of case trans-

formations can be distinguished). At the same time,
sorts can be ranked according to their dimensional-
ity, as either discrete, linear, planar or spatial. As such,
a greedy algorithm can be developed that will focus
its attention first to sorts with the lowest combina-
tion of dimensionality and transformational degrees
of freedom and on adjacent component sorts under
the (subordinate, semi-conjunctive) attribute rela-
tionship. For example, in the sortal equivalent to the
algebra V = U

1
 × V

0
 of labeled shapes, labels will be

considered first, followed by the points they are as-
sociated to. The matching of these points will natu-
rally be restricted by this association. Only if (labels
and) points are insufficient to determine the match-
ing transformations, then line segments will also be
considered.

CONCLUSION
Sortal grammars support varying grammar for-
malisms, allowing the user to explore alternative
formulations of the same grammar, yielding the
same design language. The SortalGI sortal gram-
mar interpreter supports such exploration within
the Processing environment, though requires some
programming (or scripting) experience from the
user. Additional support for ellipses, arcs, volume
segments, textures for plane segments and various
other compositions, such as labeled line and plane
segments may still be added to expand the explo-
ration space. The SortalGI library can also be used
outside of the Processing environment, allowing for
the development of graphical user interfaces to sup-

Figure 5

A sortal grammar using

marker points and numeric

weight tones, generating

recursively inscribed squares

with alternating infill. A white

plane segment, or point, is

indicated by a lightly drawn

outline.

487Shape Studies - Volume 1 - eCAADe 30 |

port grammar development and exploration using
the sortal grammar formalism schema. The ability to
explore different grammar formalisms to achieve the
same design language may yield new research ques-
tions about advantages and disadvantages thereof
and the appropriateness of a particular grammar
formalism for a design problem or, even, a family of
design problems.

REFERENCES
Carlson, C, McKelvey, R and Woodbury, RF 1991, ‘An intro-

duction to structure and structure grammars’, Environ-
ment and Planning B: Planning and Design, 18(4), pp.
417–426.

Duarte, JP 2005, ‘A discursive grammar for customizing
mass housing: the case of Siza’s houses at Malagueira’,
Automation in Construction, 14(2), pp. 265–275.

Heisserman, J and Woodbury, R 1994, ‘Geometric design
with boundary solid grammars’ in JS Gero and E Tyugu
(eds), Formal Design Methods for CAD: Proceedings of the
IFIP TC5/WG5.2 Workshop on Formal Design Methods for
CAD, Tallinn, Estonia, pp. 85–105.

Knight, TW 1989, ‘Color grammars: designing with lines and
colors’, Environment and Planning B: Planning and De-
sign, 16(4), pp. 417–449.

Knight, TW 1993, ‘Color grammars: the representation of
form and color in design’, Leonardo 26(2), pp. 117–124.

Krishnamurti, R and Stouffs, R 1997, ‘Spatial change: conti-
nuity, reversibility and emergent shapes’, Environment
and Planning B: Planning and Design, 24(3), pp. 359–384.

Stiny, G 1980, ‘Introduction to shape and shape grammars’,
Environment and Planning B: Planning and Design, 7(3),
pp. 343–351.

Stiny, G 1981, ‘A note on the description of designs’, Envi-
ronment and Planning B: Planning and Design, 8(3), pp.
257–267.

Stiny, G 1985, ‘Computing with form and meaning in archi-
tecture’, Journal of Architectural Education, 39(1), pp.
7–19.

Stiny, G 1991, ‘The algebras of design,’ Research in Engineer-
ing Design, 2(3), pp. 171–181.

Stiny, G 1992, ‘Weights’, Environment and Planning B: Plan-
ning and Design, 19(4), pp. 413–430.

Stiny, G and Gips J 1972, ‘Shape grammars and the gen-

erative specification of painting and sculpture’ in CV
Freiman (ed), Proceedings of IFIP Congress71, North-Hol-
land, Amsterdam, pp. 1460–1465. Republished in OR
Petrocelli (ed), The Best Computer Papers of 1971, Auer-
bach, Philadelphia, pp. 125–135.

Stouffs, R 1994, The Algebra of Shapes, PhD dissertation,
Dept. of Architecture, Carnegie Mellon University, Pitts-
burgh, Pa.

Stouffs, R 2008, ‘Constructing design representations using
a sortal approach’, Advanced Engineering Informatics,
22(1), pp. 71–89.

Stouffs, R and Krishnamurti R 2001, ‘Sortal grammars as a
framework for exploring grammar formalisms’ in M
Burry, S Datta, A Dawson and J Rollo (eds), Mathematics
and Design 2001, Geelong, Australia, pp. 261–269.

[1] www.processing.org
[2] www.sortal.org

488 | eCAADe 30 - Volume 1 - Shape Studies

