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Abstract

The design of multi-robot systems has gained increasing attention in recent years. The field

of cooperative Multi-Agent Robot Systems (MARS) has shown the potential to provide

reliable and cost-e↵ective solutions to a wide range of automated applications. Communi-

cation and coordination between autonomous agents require robust and intelligent control

systems in order to achieve high-quality performance. This paper presents Collaborative

Gym, an open-source, physics-based simulation framework for multi-robot interaction.

This simulation environment di↵ers from existing robotic simulation environments in that

it is designed to model the interaction between multiple robots. Despite the presence

of a large number of single robotic environments, multi-robotic simulation environments

for reinforcement learning are rare. Collaborative Gym contains four simulated tasks in

which di↵erent commercial robots work in collaboration: poking, lifting, balancing, and

passing. For each of the four tasks, baseline policies are presented for various combina-

tions of commercial robots which have been trained using reinforcement learning. The

study demonstrated that Collaborative Gym is a promising open-source framework for

the development of multi-robotic collaborative robotic tasks.



Introduction

Modern robotics involves robot-robot cooperation in unstructured environments. For in-

stance, in automated logistics and manufacturing scenarios, such as warehouses, distri-

bution centers, and automotive companies, repetitive and sequential operations can be

performed more e�ciently by transferring objects between robots equipped with object

handover abilities (Costanzo, De Maria, and Natale 2021). Recent years have seen a surge

in research in the field of cooperative Multi-Agent Robot Systems (MARS). Having ef-

ficient coordination among autonomous agents in order to complete tasks is of primary

concern in order to achieve high quality performance (Ismail, Sari↵, and Hurtado 2018).

Among the most challenging aspects of achieving proper coordination is the design of

control architectures that command the robots. It is true that robust and intelligent

control systems are required to e�ciently and e↵ectively communicate and coordinate

among agents in order to accomplish a variety of tasks. Therefore, developing the control

architecture has been identified as one of the most relevant aspects. Recent developments

in Artificial Intelligence (AI) and Reinforcement Learning (RL) may make it possible to

develop robust and e�cient intelligent control systems capable of enabling robust and

e�cient coordination and collaboration between robots in unstructured environments.

RL is a machine learning technique that allows agents to learn from their actions and

experiences in an interactive environment by trial and error. The RL process requires

a tremendous amount of ”trial and error” episodes, or interactions with an environment

before a good policy can be learned. For this reason, the use of simulations is essential

to achieve results in a cost-e↵ective and timely manner. Many simulation environments

are currently available for RL research. Some of the most common and popular envi-

ronments are OpenAI Gym, Meta-World, and DeepMind Control Suite. Despite mostly

being focused on single-agent environments, these benchmarks are excellent for training

RL policies in di↵erent scenarios. However, multi-robot environments are yet to be fully

explored and could be of great assistance for the development of multi-agent robotic sys-

tems, as well as the testing of new multi-agent reinforcement learning techniques.

This project primarily focuses on robotic arms, specifically cobots. In contrast to tra-

ditional industrial robot applications, collaborative robots, or cobots, come into direct

contact with humans. A cobot’s safety can be assured by lightweight construction mate-

rials, rounded edges, the inherent limits of speed and force, or via sensors and software

that ensure safe behavior.

(a) (b) (c)

Figure 1: Example of Collaborative Robots (a) KUKA LBR iiwa (b) Sawyer Robot (c) ABB Yumi

1



Research Assignment Outline

This study contributes to the development of the current RL environment library by

introducing a simulation benchmark for MARS. In this paper, Collaborative Gym1, an

open-source, physics-based simulation framework for multi-robot interaction, is presented.

Specifically, this project attempts to design various multi-robotic tasks that require collab-

oration and coordination among robots. Collaborative Gym di↵ers from existing robotic

simulation environments in that it focuses on modeling the interaction between multiple

robots.

This project is divided into four parts as shown in Figure 2. Part I, the Conceptual &

Technical Research Design, provides a clear picture of how the research is designed and

carried out. A problem formulation is presented, followed by the objective of the research

project. Consequently, research questions alongside methods of research are presented.

Part II provides a clear overview of the literature related to the project. The state of

the art on MARS, Multi-Agent Reinforcement Learning (MARL), and RL simulation

environments is presented. Part III presents Collaborative Gym. Finally, Part IV is the

Results & Discussion stage, in which Collaborative Gym tasks are trained and their results

are discussed.

Research Structure

Part I

Conceptual & Technical Research Design

Review of Related Literature

Collaborative Gym

Discussion & Results

Part II

Part III

Part IV

• Problem Analysis 
• Research Objective & Contribution 
• Research Questions 
• Research Methodology

• Multi-Agent Robot Systems 
• RL Simulation Environments 
• Multi-Agent Reinforcement Learning

Figure 2: Research Structure and Project Division

1https://github.com/gabriansa/collaborative-gym
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Design
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Research Assignment Outline

1 Problem Analysis & Motivation

Achieving high quality performance requires e�cient coordination and collaboration among

autonomous agents. Recent advances in artificial intelligence and, specifically, in reinforce-

ment learning o↵er new opportunities to enhance robot collaboration and coordination.

Currently, the majority of robotic simulation environments are developed using OpenAI

Gym. The OpenAI Gym architecture forms the basis of many of the standard environ-

ments for evaluating continuous control reinforcement learning algorithms. The OpenAI

Gym framework contains a collection of benchmark problems, a common interface, and

a set of comparison tools for learning control policies for simulated agents. Some of the

benchmark environments include Atari games and physics-based locomotion agents. Gym

is a standard API for reinforcement learning that has been used to develop a variety of

reinforcement learning environments. Figure 3below provides an overview of some of the

relevant RL environments in robotics and multi-agent systems.

Assistive-Gym

DoorGym

Gym Gazebo 2

Gym Ignition

IKEA Furniture Assembly

Meta-World

Playroom

RL Bench

Robosuite

Roboschool

Rex-Gym

Robotics Environments Multi-Agent Environments

Massive Multi-Agent 
Game Environment

Multi-Agent Particle 
Environment

OpenAI Multi-Agent 
Competition 
Environments

OpenAI Multi-Agent 
Hide and Seek

RoboSumo

PettingZoo

Stratcraft

Figure 3: Overview of Relevant RL Environments

Aside from a large number of single robotic environments, multi-robotic simulation envi-

ronments for RL are scarce. The Assistive Gym and the Robosuite are two environments

that provide a taste of robotic multi-agent tasks. On the one hand, Assistive Gym has

the ability of training policies for robots collaborating with an active human. On the

other hand, Robosuite provides some tasks that require collaborative e↵orts between two

robots. Nevertheless, no RL environment is currently available that is solely dedicated to

studying multi-agent robotic tasks.
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Problem Statement

Recent advances in robots and RL methods have made it possible to resolve the con-

trol challenges faced by cooperative and collaborative Multi-Agent Robotic Systems.

Reinforcement Learning simulation environments are capable of e�ciently training

RL policies for a wide range of robotic tasks, however, they are often limited to

training RL policies for single-agent tasks rather than for multi-agent scenarios.

2 Research Objective & Contribution

This research project has a practice-oriented nature. Specifically, this study focuses on

the design of a reinforcement learning simulation environment for collaborative robotic

tasks. A secondary objective is to solve the various tasks within the designed environment

using multi-agent reinforcement learning techniques. Further, a concise goal statement is

presented that encapsulates the objective of this study.

Goal Statement

This project aims to contribute to the current library of reinforcement learning en-

vironments by developing a Multi-Agent Robotic System environment where robotic

arms can coordinate and collaborate to reach a common goal in a variety of tasks.

Collaborative Gym o↵ers several applications for the research community. Firstly, Collab-

orative Gym can be used as a benchmark for comparing reinforcement learning algorithms

for multi-robotic systems. Furthermore, as Collaborative Gym is also based on a similar

framework as Assistive Gym, it provides the basis for researchers to create environments

and control systems for their own collaborative tasks. Explicitly, through this work the

following contributions are made:

• A simulation framework, Collaborative Gym, is developed for multi-robot interac-

tion.

• The various multi-robotic designed tasks can be used as a benchmark to compare

control algorithms for multi-agent interaction.

5
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3 Research Questions

For the purpose of achieving the research objective, the following research questions have

been formulated:

Research Questions

1. How can the design of a multi-agent robotic collaboration environment be

realized?

(a) What are the characteristics of the multi-agent robotic environment that

is to be designed?

(b) What are the limitations and assumptions related to the design of the

multi-agent robotic environment?

(c) What are the characteristics of the Observation Space, Action Space,

and Reward of the environments to be designed?

(d) What Multi-Agent Reinforcement Learning methods can be used to solve

the various tasks within the designed environment?

4 Research Methodology

A compatible research strategy and a set of tools must be selected to answer the research

questions. The research is focused on designing a Multi-Agent Robotic simulation en-

vironment. For this purpose, the computer programming language Python will be used

alongside multiple relevant packages and frameworks. Research questions are answered

with the help of literature, experimentation, and programming. Figure 4 below shows an

overview of the research methods and tools that are used to carry out this project.

Hardware Specs 

• Dell XPS 8930 
• Intel i7-9700K 4.90 GHz 
• 64GB RAM 
• NVIDIA GeForce RTX 

2080 8GB GDDR6 

Software Specs 

• Ubuntu 20.04.3 LTS

OpenAI Gym

Designing Environment 

Training Environment 

Methods and Tools

Figure 4: Methods and Tools

To train the multiple robots performing collaborative tasks, deep reinforcement learn-
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ing techniques are utilized. The reason for this is that multi-agent learning deals with

problem domains involving multiple agents, which means the search space involved can

be extremely large. Small changes in learned behaviors can often result in unpredictable

changes in the macro-level properties (”emergent”) of the multi-agent group (Panait and

Luke 2005). Indeed, for large and unstructured search spaces, deep reinforcement learning

is an optimal technique. The programming language Python is used to develop Collab-

orative Gym. In particular, the OpenAI Gym framework is adopted. Gym integrates

directly with Collaborative Gym, enabling the use of control policy learning algorithms,

including deep reinforcement learning. Specifically, for training Collaborative Gym tasks

the Python library RAY is utilized (Liang et al. 2018). RAY is an open-source project

which allows to flexibly run any compute-intensive Python workload — from distributed

training or hyperparameter tuning to deep reinforcement learning and production model

serving. Moreover, the open source physics engine PyBullet is at the core of Collabora-

tive Gym (Coumans and Bai 2016). In addition to its ability to run multiple real-time

simulations on both CPUs and GPUs, PyBullet is able to simulate cloth and soft bodies,

and programmatically create robot models of varying shapes, sizes, weights, and joint

limits. With regards to hardware specifications, a Dell XPS 8930 is utilized for running

and training Collaborative Gym tasks.

7
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Research Assignment Outline

1 RL Simulation Environments

1.1 OpenAI Gym Framework

In reinforcement learning, an agent learns through interaction with its environment. As

a result, testbed environments are necessary in order to test and compare the results of

di↵erent reinforcement learning algorithms. The OpenAI Gym framework provides a col-

lection of reinforcement learning environments for developing and testing reinforcement

learning algorithms. Open AI Gym is an open-source toolkit which provides a range

of environments for games, control problems, constructing algorithms, performing control

tasks, robotics, text games, and more (Brockman et al. 2016). Among its benchmark envi-

ronments are Atari games and physics-based locomotion agents. The Open AI framework

forms the foundation for Collaborative Gym.

1.2 OpenAI Physics Engines

PyBullet, DART, and MuJoCo are three physics engines commonly used in OpenAI Gym

for simulating robotic environments (Coumans and Bai 2016; Lee et al. 2018; Todorov,

Erez, and Tassa 2012).

1.2.1 PyBullet

PyBullet is a simulation environment based on Bullet physics-based simulation, which

simulates collision detection along with the dynamics of rigid and soft bodies. In ad-

dition to machine learning applications, this physics engine has been used for training

and validating real robots utilizing physics simulations (Tan et al. 2018; Zeng et al. 2020;

Sadeghi et al. 2017; Bousmalis et al. 2018). PyBullet supports loading articulated bodies

from URDF, SDF, and other files. This library provides forward dynamics simulation,

inverse dynamics computation, forward and inverse kinematics, as well as collision detec-

tion and ray intersection queries. Along with physics simulations, PyBullet also supports

rendering, including CPU renderers and OpenGL visualizations as well as virtual reality

headset support. As an open-source project, PyBullet has attracted a large community

of contributors who continue to develop the simulation environment and provide support

for beginners (PyBullet Community 2013).

1.2.2 DART

The Dynamic Animation and Robotics Toolkit (DART) is an open source library that is

collaborative and cross-platform. As part of the library, data structures and algorithms

are provided for kinematic and dynamic applications in robotics and computer animation.

Featuring a multibody dynamic simulator as well as multiple kinematic tools for motion

planning and control, DART has applications in robotics and computer animation. A

variety of locomotive environments have been implemented using DART in conjunction

with the OpenAI framework (GymDart 2018; DartEnv 2016).

9
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1.2.3 MuJoCo

Multi-joint dynamics with contact (MuJoCo) is a simulation environment and physics

engine dedicated to robotics, biomechanics, animation, and machine learning. MuJoCo is

known for its deep learning applications that enable virtual animals and humanoid models

to walk and perform other complex movements (Joe Booth and Jackson Booth 2019). In

MuJoCo, models are described in a native, XML-based format which can be easily edited

by users. It is not possible to install this simulation environment without a license, as

opposed to the other simulation environments described in this work.

2 Multi-Agent Robot Systems

There are situations in which Multi-Agent Robot Systems (MARSs) or Multi-Robot Sys-

tems (MRSs) may be used to accomplish tasks that would otherwise be di�cult for an

individual robot to perform, such as when there are uncertainties, incomplete information,

asynchronous computations, and distributed control (E. Yang and Gu 2005). There has

been considerable interest in MRSs and MARSs over the last decades (Cao, Kahng, and

Fukunaga 1997; Matarić 1997; Michaud and Matarić 1998; Balch and Arkin 1998; Asada,

Uchibe, and Hosoda 1999; Wiering, Sa lustowicz, and Schmidhuber 1999; Van Der Zwaan,

Moreira, and Lima 2000; Touzet 2000; Fernandez and Parker 2001; J. Liu and Wu 2018;

Matarić 2001; Bowling and Veloso 2003; Elhajj et al. 2003; Iocchi et al. 2003; Matarić,

Sukhatme, and Østergaard 2003; Touzet 2004). Several examples of cooperative multi-

agent robot applications include soccer robots (Candea et al. 2001; Brandão et al. 2022),

unmanned guided vehicles (UGV’s) and unmanned aerial vehicles (UAV’s) (Rosa et al.

2015). The research in cooperative multi-agent robot systems has focused on three main

elements, according to Ismail, Sari↵, and Hurtado 2018: (1) the types of agents, homoge-

neous and heterogeneous, (2) the control architectures, reactive, deliberative, and hybrid,

and (3) the type of communication, explicit and implicit. Nevertheless, developing the

control architecture has been identified as one of the most relevant aspects for achieving

e�cient coordination among multi-agent robots. Developing MRSs can be challenging

due to the fact that it is not possible to predict all possible situations that robots might

encounter as well as to specify their behavior in advance. It is crucial that robots in

MRSs learn from their operating environment and adapt to their counterparts. MRSs are

therefore faced with the challenge of addressing learning as a key issue. It has become

increasingly popular in recent years to extend individual reinforcement learning (RL) to

multiagent systems, especially multi-robot systems (MRSs) (Fan et al. 2020; L. Zhang

et al. 2020; Hu et al. 2020; Y. Yang, Juntao, and Lingling 2020; G. Ding et al. 2020).

Through the use of multi-agent reinforcement learning, participating robots are able to

learn the mapping between their states and the actions they take in response to rewards or

payo↵s obtained by interacting with their environment (E. Yang and Gu 2004). In many

ways, MRSs can benefit from RL, where robots are expected to coordinate their behavior

in order to achieve their objectives.

10
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3 Multi-Agent Reinforcement Learning Overview

3.1 Multi-Agent Reinforcement Learning Environments

In recent years, a number of studies have investigated Multi-Agent Reinforcement Learn-

ing (MARL) (Vinyals, Babuschkin, et al. 2019; Iqbal and Sha 2019; Chu et al. 2019; Cui,

Y. Liu, and Nallanathan 2019). As a result, it is necessary to create simulation environ-

ments that can be utilized as benchmarks in order to test and evaluate MARL algorithms

and techniques. Table 1 below gives a concise overview of the most relevant multi-agent

environments that have been developed.

Environment Name Description Related Literature

Robosuite

Simulation framework powered by the MuJoCo physics engine for robot

learning. It also o↵ers a suite of benchmark environments for

reproducible research.

Zhu et al. 2020

Assistive Gym
Physics-based simulation framework for physical human-robot

interaction and robotic assistance.
Erickson et al. 2020

Massive Multi-Agent Game

Environment

It considers MMORPGs (Massive Multiplayer Online Role Playing

Games) the best proxy for the real world among human games: they are

complete macrocosms featuring thousands of agents per persistent world,

diverse skilling systems, global economies, complex emergent social

structures, and ad-hoc high stakes single and team based conflict.

Suarez et al. 2019

PettingZoo
Python library for conducting research in multi-agent reinforcement

learning, akin to a multi-agent version of Gym.
Terry et al. 2021

RoboSumo Sumo-wrestling between two ants using continuous control. Al-Shedivat et al. 2017

Stratcraft StarCraft is a 1998 military science fiction real-time strategy game.
Usunier et al. 2016

Vinyals, Ewalds, et al. 2017

OpenAI Multi-Agent Hide

and Seek

In our environment, agents play a team-based hide-and-seek game.

Hiders (blue) are tasked with avoiding line-of-sight from the seekers

(red), and seekers are tasked with keeping vision of the hiders. There are

objects scattered throughout the environment that hiders and seekers

can grab and lock in place, as well as randomly generated immovable

rooms and walls that agents must learn to navigate.

Baker et al. 2019

OpenAI Multi-Agent

Competition Environments
A collection of various continuous control, multi-agent tasks. Bansal et al. 2017

Table 1: Overview of the most relevant Multi-Agent Reinforcement Learning Environments

Comparatively to existing multi-agent simulation environments, Collaborative Gym solely

focuses on multi-robot systems, thus enabling multiple robots to collaborate on a variety

of tasks to achieve a common goal.

3.1 MARL Techniques

In terms of task type, it is possible to classify Multi-Agent Reinforcement Learning into

three categories, namely fully cooperative, fully competitive, and hybrid (K. Zhang, Z.

Yang, and Başar 2021; Buşoniu, Babuška, and Schutter 2010; Du and S. Ding 2021).

For instance, an agent’s reward function is the same in a fully cooperative random game.

Therefore, the objective of agents is to maximize their mutual returns. It is however

possible to have a complete competition scenario when the objectives of two agents are

opposite.

11
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• Fully cooperative learning : A fully cooperative random game has the same reward

function and learning objective for each agent. In the same manner as single agents

environments, in a multi-agent setting agents are likely to pursue greedy strategies

in order to maximize their returns. However, the agents cannot make their decisions

independently, since they share the same objective, they must consider the other

agents and cooperate as a group.

• Fully competitive learning : In contrast with complete cooperation, a complete com-

petition environment has many similar characteristics, with the exception that the

reward function is the opposite for each agent. It is also possible for competition to

arise when there are more than two agents involved. However, most of the literature

concerning RL in fully competitive games pertains only to two-agent games.

• Hybrid learning : In contrast to fully cooperative and competitive agents, hybrid

agents tend to be selfish since their reward function is not restricted. A large number

of algorithms in this category are devoted exclusively to static problems and are

based on the concept of game theory equilibrium.

As part of a Multi-Agent System (MAS), multiple agents coexist in the same environment

and all learn simultaneously. It is not uncommon for one agent’s behavior to be a↵ected by

the behavior of other agents in the same environment. As a result, Multi-Agent Reinforce-

ment Learning (MARL) methods are typically utilized to the solution of such problems.

In general, there are three types of MARL methods: distributed independent learning,

centralized learning, and distributed collaborative learning.

• Distributed independent learning methods : MARL research can be e↵ectively ap-

proached through distributed independent learning methods (Wang, Xie, and Atanasov

2022; Wang, Xie, and Atanasov 2021). Distributed independent learning involves

each agent taking other agents into account as part of their environment and learn-

ing strategies independently (Weiß 1995). Due to the forced decomposition of the

decision process into multiple Markov decision processes, this method significantly

reduces the representation of the state-action space (Lauer and Riedmiller 2000).

However, there are two disadvantages to this type of learning:

1. There is an absence of a coordination mechanism between agents

2. A relatively poor and suboptimal strategy is obtained

As a way to mitigate the absence of coordination mechanisms, the limited informa-

tion of other environmental agents can be used as input to the learning process (Yu,

Dong, et al. 2020).

• Centralized learning methods: As opposed to the distributed independent learning

method, the centralized learning method requires each agent to communicate with a

central controller and to choose actions in accordance with the controller’s instruc-

tions (Khan et al. 2018). To control the learning process synchronously, the central

controller must also be able to perceive the global environment (Sharma et al. 2021).
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There are several advantages and disadvantages to this method (Yu, Dong, et al.

2020):

Advantages:

1. As a Markov decision-making process, the global decision-making process

is regarded as a static and closed environment where all agents learn in the

same manner

2. It is possible to develop a globally optimal strategy with su�cient learning

time

Disadvantages:

1. A slow convergence rate

2. Dimensional disaster

3. Scalability and robustness issues

In relation to the three disadvantages, the centralized learning method usually faces

the issue of slow convergence since the agent must explore all joint state-action

spaces when the problem scale is large. With regards to dimensional disaster, the

joint state-action space increases exponentially as the scale of the problem increases,

which leads to an exponential increase in the number of agents. As a final point,

centralized learning methods typically face scalability and robustness issues (Lyu et

al. 2021). Since the agent is limited in its observation ability, it is able to perceive the

environment only locally, and it cannot obtain information about the surrounding

environment at a global level. Considering the limited communication capabilities of

agents, centralized learning depends on e↵ective communication between the central

controller and all agents.

• Distributed collaborative learning methods: Collaborative distributed learning meth-

ods combine the benefits of distributed and centralized methods of learning. As

part of the method, a collaborative relationship is maintained between the agents

and collaborative learning is introduced between the agents based on distributed

independent learning (Pawar and Leshem 2021; Kar, Moura, and Poor 2013). As a

result, this method improves the performance of the Multi-Agent Learning System

(MALS) at the same time as alleviating the dimensional disaster, robustness, and

scalability issues associated with centralized learning techniques.

Collaborative Gym provides a variety of tasks that utilize distributed collaborative learning

methods, where agents learn independently while sharing information with other agents

and/or sharing reward functions. Nevertheless, Collaborative Gym allows users to design

cooperative, competitive, and hybrid tasks that can be trained using either distributed,

centralized, or distributed collaborative learning methods.
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1 Collaborative Gym Comprehensive Overview

The Collaborative Gym simulation framework provides high-level interfaces for creating

and customizing simulation environments for multirobot systems. In addition to integrat-

ing directly into the open source PyBullet physics engine, Collaborative Gym environments

are built upon the OpenAI Gym interface which allows the use of existing control policy

learning algorithms including deep reinforcement learning. A comprehensive analysis of

Collaborative Gym is further provided in terms of its control mechanisms, action and

observation spaces, and policy learning.

1.1 Actions & Observations

A position control system is provided by Collaborative Gym for controlling the various

robots. Actions for each robot’s n � DoF arm are represented as changes in joint posi-

tions, �J 2 Rn depending on the robotic arm. Additionally, a binary variable that selects

between gripping and ungripping simplifies the gripping action. Physical limits of an arm

a↵ect the ability of a robot to perform actions at any given location. Indeed, each joint

of a robot is able to rotate till a certain limit. Actions for the robots’ arm are defined

as a = (�J0,�J1,�J2, ...,�Jn, g) 2 A, where J0, J1, J2, ..., Jn are the robot’s joint angles

and �J0,�J1,�J2, ...,�Jn are delta joint angles that are added to the robot’s current

joint angles in order to move the robot’s arm. Additionally, g is a binary decision variable

that allows a robot to choose between grasping and ungrabbing objects in the environment.

An object is grasped by the robot when it is close enough to it, and the binary variable g

assumes value of 1. For the various robots in the environment, gripping has been simpli-

fied to facilitate a simpler and faster learning process. In other words, robot gripping is

a complex task that falls within a separate research field, therefore, it was simplified for

use in the Collaborative Gym project. Additionally, the process by which gripping occurs

plays little role in this study. It is important to note that not all Collaborative Gym tasks

require gripping, and therefore the g action may sometimes be neglected depending on the

nature of the task.

Robots record observations from the state of the system at each time step, perform ac-

tions according to the control policy, and receive rewards at the end of the time step.

Observations given to the robots are comparable to those obtained in a real-world sce-

nario involving multiple robots. As an example, these include the position and orientation

of the robot’s end e↵ector in 3D, the position of the robotic arm’s joints in 7D, and the

position of the task relevant objects in 3D. Positions are defined in terms of a global co-

ordinate system. It is important to note that observations are task-dependent and may

vary according to the study’s objectives.

1.2 Collaborative Tasks

A set of four tasks are readily available on Collaborative Gym. These multi-robotic tasks,

ranging from simple to more complex, which require collaboration and coordination among
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robots are further described in details.

• 1. Poking Task : In this task one robot holds a stick object while the other holds

a ”donut” shaped object. The goal is for the two robots to coordinate and insert

the stick inside the donut hole. Figure 5 below shows a visual representation of this

task.

(a) Panda and Sawyer Robots (b) Sawyer Robots

Figure 5: Poking Task Environment

The action space for this task is defined as changes in joint positions �J . Since

grasping does not occur in this task, the action binary variable g is not utilized. The

observation space for each robot includes the position of the robotic arm’s joints in

7D and the position and orientation of the stick and donut objects. Table 2 and

Table 3 below gives a detailed overview of the action and observation spaces for each

robot.

Robot 1 Robot 2

Action Description Action Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Table 2: Action Space for the Poking Task
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Robot 1 Robot 2

Observation Description Observation Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Stick Object

Position and

Orientation

pos x

Stick Object

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Donut Object

Position and

Orientation

pos x

Donut Object

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Table 3: Observation Space for the Poking Task

• 2. Lifting Task : This task consists of two robots that need to coordinate to lift a

heavy pot object. Two robots are required to lift the object since it is too heavy to be

lifted by one robot. Indeed, the goal is for the two robots to coordinate and lift the

pot object to a specific target position. Figure 6 below shows a visual representation

of this task.

(a) Jacos Robots (b) Sawyer Robots

Figure 6: Lifting Task Environment

The action space for this task is defined as changes in joint positions �J . Since

grasping occurs in this task, the action binary variable g is required. The observation

space for each robot includes the positions of both robotic arm’s joints in 7D, the

position and orientation of the robot’s end e↵ectors in 3D, the status of each gripper

(gripping or ungripping), the position and orientation of the pot object and its

handles, and the target position. Table 4 and Table 5 below gives a detailed overview

of the action and observation spaces for each robot.
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Robot 1 Robot 2

Action Description Action Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Grasping g Grasping g

Table 4: Action Space for the Lifting Task
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Robot 1 Robot 2

Observation Description Observation Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 1)

J0

J1 J1

. . . . . .

Jn Jn

Joint Angles

(Robot 2)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Gripper Status

(Robot 1)
binary {0,1}

Gripper Status

(Robot 1)
binary {0,1}

Gripper Status

(Robot 2)
binary {0,1}

Gripper Status

(Robot 2)
binary {0,1}

End E↵ector

Position and

Orientation

(Robot 2)

pos x

End E↵ector

Position and

Orientation

(Robot 2)

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Handle 1

Position and

Orientation

pos x

Handle 1

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Handle 2

Position and

Orientation

pos x

Handle 2

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Pot

Position and

Orientation

pos x

Pot

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Target

Position

pos x
Target

Position

pos x

pos y pos y

pos z pos z

Table 5: Observation Space for the Lifting Task

• 3. Balancing Task : In this task, two robots must coordinate in order to balance

a moving sphere on a flat surface. The goal is for the two robots to coordinate and

keep the sphere at the center of the board as long as possible. Figure 7 below shows

a visual representation of this task.
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(a) Sawyers Robots (b) Jaco and Sawyer Robots

Figure 7: Balancing Task Environment

The action space for this task is defined as changes in joint positions �J . Considering

that grasping does not occur in this task, the action binary variable g is not taken into

account. The observation space for each robot includes the position of both robotic

arm’s joints in 7D, the position and orientation of the center of the balancing board

in 3D, the position orientation of the sphere object, and the linear and angular

velocities of the sphere object. Table 6 and Table 7 below gives a detailed overview

of the action and observation spaces for each robot.

Robot 1 Robot 2

Action Description Action Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Table 6: Action Space for the Balancing Task
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Robot 1 Robot 2

Observation Description Observation Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 1)

J0

J1 J1

. . . . . .

Jn Jn

Joint Angles

(Robot 2)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Sphere

Position and

Orientation

pos x

Sphere

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Sphere

Linear and

Angular

Velocity

velocity x

Sphere

Linear and

Angular

Velocity

velocity x

velocity y velocity y

velocity x velocity x

velocity wx velocity wx

velocity wy velocity wy

velocity wz velocity wz

Balancing

Board Center

Position and

Orientation

pos x

Balancing

Board Center

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Table 7: Observation Space for the Balancing Task

• 4. Passing Task : This task consists of two robots that need to coordinate to pass

a cube object. Specifically, one robot picks up a cube then hands it over to the

second robot which consequently needs to move it to a specific target. Indeed, the

goal is for the two robots to coordinate and pass the cube object. Figure 8 below

shows a visual representation of this task.

(a) Sawyers Robots (b) Jaco and Sawyer Robots

Figure 8: Passing Task Environment
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The action space for this task is defined as changes in joint positions �J . As grasping

occurs in this task, the action binary variable g must be used. The observation

space for each robot includes the positions of the robotic arm’s joints in 7D, the

position and orientation of both robot’s end e↵ectors in 3D, the status of each gripper

(gripping or ungripping), the position and orientation of the cube object, and the

target position. Table 8 and Table 9 below gives a detailed overview of the action

and observation spaces for each robot.

Robot 1 Robot 2

Action Description Action Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Grasping g Grasping g

Table 8: Action Space for the Passing Task
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Robot 1 Robot 2

Observation Description Observation Description

Joint Angles

(Robot 1)

J0

Joint Angles

(Robot 2)

J0

J1 J1

. . . . . .

Jn Jn

Gripper Status

(Robot 1)
binary {0,1}

Gripper Status

(Robot 1)
binary {0,1}

Gripper Status

(Robot 2)
binary {0,1}

Gripper Status

(Robot 2)
binary {0,1}

End E↵ector

Position and

Orientation

(Robot 1)

pos x

End E↵ector

Position and

Orientation

(Robot 1)

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

End E↵ector

Position and

Orientation

(Robot 2)

pos x

End E↵ector

Position and

Orientation

(Robot 2)

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Cube

Position and

Orientation

pos x

Cube

Position and

Orientation

pos x

pos y pos y

pos z pos z

orient x orient x

orient y orient y

orient z orient z

orient w orient w

Target

Position

pos x
Target

Position

pos x

pos y pos y

pos z pos z

Table 9: Observation Space for the Passing Task

1.3 Policy Learning

A variety of deep reinforcement learning techniques can be used to train Collaborative

Gym tasks. As this environment is built on the OpenAI Gym framework, any deep

reinforcement learning technique can be utilized. It is noteworthy that Collaborative Gym

is already connected with RLlib, a freely available open source library that o↵ers support

for production-level, highly distributed reinforcement learning workloads with simple and

unified APIs that can be used for a variety of industry applications. Due to recent research,

PPO-based multi-agent algorithms have shown surprisingly high performance in multiple

popular multi-agent testbeds (Yu, Velu, et al. 2021). Collaborative Gym utilizes proximal

policy optimization (PPO) as the base algorithm for training robots. However, di↵erent

RL techniques can be utilized, depending on the type of task. In most Collaborative

Gym tasks, a fully-connected neural network is employed with two hidden layers and 256
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nodes. Instead of using the original activation function tanh for PPO, the relu function

was utilized. This was done since tanh often performs better with smaller networks while

relu gives higher performance with bigger networks. Hyperparameters for PPO have been

left to default setting as provided by RLlib (RAY 2022).

On a general note is possible to train the multi-agent RL task in any of the following

ways, depending on the nature of the task:

• Cooperative with shared or separate policies and/or value functions.

• Adversarial scenarios using self-play and league-based training.

• Independent learning of neutral/co-existing agents.

For the designed tasks described above, cooperative learning with shared policies and value

is utilized.

2 Collaborative Gym GitHub Overview

Collaborative Gym is an open-source simulation framework publicly available on GitHub.

For developers, GitHub is one of the most popular resources for sharing code and col-

laborating on projects. Due to its free and easy-to-use nature, it has become a leading

platform for the development of open-source software. In essence, GitHub, Inc. provides

an Internet hosting service for software development and version control using Git. In

addition to distributed version control, it provides access control, bug tracking, software

feature requests, task management, continuous integration, and wikis for each project.

This project is being published on GitHub with the purpose of enabling users to easily

install and use Collaborative Gym while providing detailed tutorials on how to use the

existing designed environments and also allowing for customization. A comprehensive

tutorial is available that guides users through the process of creating custom environ-

ments. Collaborative Gym o↵ers this benefit as users can customize the application to

suit their individual needs.Appendix A shows the wiki page available on the Collaborative

Gym GitHub which includes a high-level overview of the capabilities, step-by-step instal-

lation tutorials, integration with RL libraries, and a detailed guide for designing custom

environments.
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1 Policy Training Results

As part of the following sections, baseline control policies are presented and analyzed for

various robots performing the four collaborative tasks. Table 10 shows the combination of

robots used for each task. PPO is used to train robot controllers. It was necessary for the

algorithm to run for fifty million timesteps in order to generate the policies. As a practical

matter, this number proved to be su�cient for the robots to devise a useful policy. Each

episode of each task was 200 timesteps long, which means that the robots could observe

200 observations and take 200 actions in order to complete the task. Each episode ended

with the robots and environment being reset to their original positions. It is through a

series of training episodes that the robot is able to learn which actions are appropriate

for completing the task and which are not until an e↵ective policy is established. An

NVIDIA GeForce RTX 2080 with 8GB GDDR6 GPU and an Intel i7-9700K processor was

used to train the policies. Depending on the task, training times ranged between 10 hours

and 30 hours. Co-optimization is used to accomplish collaboration, where all robots are

trained simultaneously with independent control policies. The following subsections give

a detailed description of the training results.

Task Name Robot 1 Robot 2

Poke Task
Variant 1 Sawyer Sawyer

Variant 2 Panda Sawyer

Lift Task
Variant 1 Sawyer Sawyer

Variant 2 Jaco Jaco

Balance Task
Variant 1 Sawyer Sawyer

Variant 2 Jaco Sawyer

Pass Task
Variant 1 Sawyer Sawyer

Variant 2 Jaco Sawyer

Table 10: Combination of Robot Types for each Task

1.1 Poking Task Results

To calculate the reward value used to train policies for the poking task, a reward function

R(rn) for each robot rn with n = 1, 2 has been formulated and is defined as follows:

R(rn) = �dist stick to donut � 0.8 ⇤ orient stick donut
� 0.01 ⇤moving penalty(rn) + stick is inside

where:

• dist stick to donut : is the euclidean distance between the center of the donut and

the middle of the stick.

• orient stick donut : is the absolute value of the cosine of the angle between the stick

and donut. This makes sure that the stick and the donut are perpendicular to each

other.

• moving penalty(rn): is the norm of the vector of joint actions for each robot rn. This

makes sure that each robot doesn’t make unnecessary movements.
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• stick is inside: is a sparse positive reward of value +1 given to each robot when-

ever both the dist stick to donut and orient stick donut are smaller than some given

thresholds.

Figure 9 and Figure 10 below show the learning curves over the fifty million timesteps

used to obtain the policy.

Learning Curve - Poke Task, Sawyer-Sawyer
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Figure 9: Learning Curve for the Poking Task with Sawyers using PPO

Learning Curve - Poke Task, Panda-Sawyer
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Figure 10: Learning Curve for the Poking Task with Panda and Sawyer using PPO

It can be noted from the two graphs above that an e↵ective policy is learned for both

combination of robots within the first 7500000 time-steps. Indeed, the learning curve
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follows a logarithmic growth pattern, in that improvements come quickly at the beginning

but the gains decrease over time. Since positive sparse reward is present in such task, the

reward for all robots becomes positive.

1.2 Lift Task Results

To calculate the reward value used to train policies for the lifting task, a reward function

R(rn) for each robot rn with n = 1, 2 has been formulated and is defined as follows:

R(rn) = �dist to handle(rn)� 2 ⇤ dist pot to target � 0.2
⇤ pot tilt �moving penalty(rn) + gripping incentive(rn)

where:

• dist to handle(rn): is the euclidean distance between the end e↵ector of robot (rn)

and one of the handles of the pot object to be lifted.

• dist pot to target : is the euclidean distance between the center of the pot object and

the target.

• pot tilt : is the sum of the pot’s orientation around the x and y axes. This makes

sure that the pot is lifted maintaining a horizontal position.

• moving penalty(rn): is the norm of the vector of joint actions for each robot rn. This

makes sure that each robot doesn’t make unnecessary movements.

• gripping incentive(rn): is a positive reward which is a function of the gripping action

g, and is defined as follows: +0.1 ⇤ g. This reward is given to each robot whenever

the dist to handle(rn) is smaller than a given threshold.

Figure 11 and Figure 12 below show the learning curves over the fifty million timesteps

used to obtain the policy.

Learning Curve - Lift Task, Sawyer-Sawyer
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Figure 11: Learning Curve for the Lifting Task with Sawyers using PPO
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Learning Curve - Lift Task, Jaco-Jaco
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Figure 12: Learning Curve for the Lifting Task with Jacos using PPO

It can be noted from the two graphs above that an e↵ective policy is learned for both

combination of robots within the first 2000000 time-steps. Once again, the learning curve

follows a logarithmic growth pattern. In this case, the robots learn primarily two actions:

(1) reach (2) and pick and place. Based on the learning curve, it can be observed that the

robots learn to reach the handles of the pot within the first 2 million time-steps, and then

gradually learn to coordinate to grab and place the heavy pot at the desired location.

1.3 Balance Task Results

To calculate the reward value used to train policies for the lifting task, a reward function

R(rn) for each robot rn with n = 1, 2 has been formulated and is defined as follows:

R(rn) = �dist sphere to balancing board center + penalty ball fell

where:

• dist sphere to balancing board center : is the euclidean distance between the center

of the sphere and the center of the balancing board.

• penalty ball fell : is a sparse negative reward of value �1 given to each robot whenever

both the ball falls to the ground

Figure 13 and Figure 14 below show the learning curves over the fifty million timesteps

used to obtain the policy.
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Learning Curve - Balance Task, Sawyer-Sawyer
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Figure 13: Learning Curve for the Balancing Task with Sawyers using PPO

Learning Curve - Balance Task, Jaco-Sawyer
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Figure 14: Learning Curve for the Balancing Task with Jaco and Sawyer using PPO

It can be noted from the two graphs above that an e↵ective policy is learned for both

combination of robots within the first 1800000 time-steps. Similarly to the poking task,

the learning curve follows a logarithmic growth pattern, with gains occurring quickly at

the beginning but decreasing over time.

1.4 Pass Task Results

To calculate the reward value used to train policies for the passing task, a reward function

R(rn) for each robot rn with n = 1, 2 has been formulated and is defined as follows:
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R(r1) = �dist to cube(r1)� dist to cube(r2) +moving penalty(r1)
+ gripping incentive(r1) + task completion incentive

R(r2) = �dist to cube(r2)� dist cube to target +moving penalty(r2)
+ gripping incentive(r2) + task completion incentive

where:

• dist to cube(rn): is the euclidean distance between the end e↵ector of robot (rn) and

the cube object.

• dist cube to target : is the euclidean distance between the center of the cube object

and the target.

• moving penalty(rn): is the norm of the vector of joint actions for each robot rn. This

makes sure that each robot doesn’t make unnecessary movements.

• gripping incentive(r1): is a dynamic reward which assumes two di↵erent values de-

pending on the state of the robot. This reward is a function of the gripping action g.

Firstly, it is defined as follows whenever the dist to cube(r1) is smaller than a give

threshold: +0.1 ⇤ g. Secondly, it is defined as �0.1 ⇤ g whenever the dist to cube(r2)

is smaller than a give threshold. This incentives the first robot to pick the cube and

then drop it whenever it is close enough for the second robot to catch it.

• gripping incentive(r2): is a positive reward which is a function of the gripping action

g, and is defined as follows: +0.1 ⇤ g. This reward is given to the second robot

whenever the dist to cube(r2) is smaller than a given threshold.

• task completion incentive: is a positive sparse reward of value +1 given to each

robot whenever the cube reaches the target position. It is found that adding a

sparse reward improves learning.

Figure 15 and Figure 16 below show the learning curves over the fifty million timesteps

used to obtain the policy.
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Learning Curve - Pass Task, Sawyer-Sawyer
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Figure 15: Learning Curve for the Passing Task with Sawyers using PPO

Learning Curve - Pass Task, Jaco-Sawyer
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Figure 16: Learning Curve for the Passing Task with Jaco and Sawyer using PPO

As seen from the two learning curves above, an e↵ective policy is learned for both combi-

nation of robots within the first 30000000 time-steps.

2 Policy Evaluation Results

Due to the fact that Collaborative Gym uses a variety of robots, it o↵ers the opportunity

to study and compare the collaboration between homogeneous and heterogeneous robots in

solving various collaborative tasks. A comparison between a variety of tasks with di↵erent
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combinations of robots was conducted by holding all parameters and settings for PPO

and the simulation environments constant. It was possible to evaluate the control policies

over 200 simulations based on the trained control policies for the specific robots and

collaborative task. Based on the 200 simulation rollouts, Table 11 displays the average

reward achieved for each task. In addition, Collaborative Gym defines task completion

and task performance for each collaborative task. While task completion is defined as the

ability to complete the desired task by achieving the desired goal, task performance is

defined for each collaborative task as follows:

• Task Performance Poke Task : The success of the poking task is determined by the

ratio between the number of time-steps the stick stays inside the donut and the

number of time-steps starting when the stick first enters the donut. As such, this

metric does not focus on how long it takes the robots to complete the task, but

rather on how well the task has been completed.

• Task Performance Lift Task : Similar to the poking task, the success of the lifting

task is determined by the ratio of the number of time steps the pot stays within a

certain distance to the target position and the number of time steps starting when

the pot first reaches the target position. Once again, this metric does not take into

consideration how long it takes the robots to complete the task, but instead focuses

on the quality at which the task is successfully completed.

• Task Performance Balance Task : The success of the balancing task is determined

by the ratio between the number of time-steps the ball stays on the balancing board

and the total number of time-steps of an episode.

• Task Performance Pass Task : Similar to the lifting task, the success of the passing

task is determined by the ratio of the number of time steps the cube object stays

within a certain distance to the target position and the number of time steps starting

when the cube first reaches the target position. Again, the metric does not account

for the amount of time required for the robots to complete the task, but instead is

concerned with the quality at which the task is successfully completed.

Task Name Robot 1 Robot 2
Mean

Reward

Task

Completion

Task

Performance

Poke Task
Variant 1 Sawyer Sawyer 254.23 98.5% 98.49%

Variant 2 Panda Sawyer 215.94 100% 99.98%

Lift Task
Variant 1 Sawyer Sawyer -356.88 98% 29.01%

Variant 2 Jaco Jaco -144.53 98.5% 69.40%

Balance Task
Variant 1 Sawyer Sawyer -341.90 92% 72.00%

Variant 2 Jaco Sawyer -404.53 73.50% 64.97%

Pass Task
Variant 1 Sawyer Sawyer -95.22 72.30% 59.93%

Variant 2 Jaco Sawyer 198.16 96.00% 95.46%

Table 11: Average Reward and Success Rate on 200 Trials

As can be seen in Table 11, task completion is close to 100% for most of the trained tasks.

There is no doubt that task completion is lower for the second variant of the balancing
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task as well as the first variant of the passing task. It is possible that a lower completion

rate is due to both the robots used as well as the di�culty of the task. Indeed, it could

be argued that a specific combination of robots might perform better for a certain task

than others. As a matter of fact, a relatively high task completion rate indicates that the

robots were able to learn an e↵ective policy to complete the designed tasks. It appears,

however, that task performance varies significantly between tasks. As before, the di�culty

of the task has a direct relationship with this. In fact, poking is considered to be a trivial

task for robots, as a result of the high performance rate. However, when it comes to tasks

such as lifting, balancing, and passing, success rates decrease because of task complexity.

Interestingly, while most variants of tasks appear to have similar task performance rates,

the lift task does not. According to the results, the combination of Jaco robots outperforms

the Sawyers by almost 50%. A similar scenario is present for the passing task, whereas the

Jaco-Sawyer combination outperforms the Sawyer-Sawyer one. As a result, it is evident

that while all robots are capable of achieving the predetermined goal, the performance

could be strongly dependent on the type of robot and the combination of robots available

for the particular task.
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Conclusion & Future Research

As part of this research, a Multi-Agent Robotic System (MARS) environment was devel-

oped where robotic arms are capable of coordinating and collaborating to meet a common

goal across a wide range of tasks. In this paper, a framework for multi-robot interaction

has been presented, called Collaborative Gym, which is an open-source, physics-based

simulation framework. An overview of the action and observation spaces has been pro-

vided. Particularly, assumptions related to the grasping of objects have been addressed,

which simplifies the learning complexity for the tasks that have been designed. In terms of

the learning process, PPO was utilized as the base algorithm for training robots. Results

indicate that robots can learn e↵ective collaborative control policies. The purpose of Col-

laborative Gym is to encourage robots to interact cooperatively in a variety of di↵erent

tasks. A significant di↵erence between Collaborative Gym and existing robotic simula-

tion environments is that it emphasizes the modeling of the interaction between multiple

robots. In addition, Collaborative Gym has been shown to be a valuable tool for bench-

marking and developing multiple collaborative environments. The results of the study

show that Collaborative Gym is a promising open-source framework for the development

of collaborative robots that are capable of solving complex tasks.

Ultimately, this study can be extended to explore the performance of heterogeneous and

homogeneous robots in various collaborative tasks. In particular, it would be interesting

to assess the learning rate and performance of di↵erent robots in di↵erent scenarios. It

would also be beneficial to examine aspects of simulation-to-reality. As a matter of fact,

implementing and transferring learned control policies to a real-world task could provide

interesting results. A further consideration would be the design of di↵erent collaborative

tasks pertaining to industrial applications such as order picking, manufacturing, and logis-

tics. Moreover, it would be interesting to examine which alternative reinforcement learning

algorithms are most suitable for multi robotic collaboration. Furthermore, a possible ex-

tension of this work could include aspects of human teaming by incorporating simulated

humans into the simulation. Using computer vision, real motion data from humans could

be used in Collaborative Gym to explore aspects of human-robot collaboration.
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python3 -m pip install --user virtualenv 
python3 -m venv venv 
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source venv/bin/activate 
pip3 install --upgrade pip 
git clone https://github.com/gabriansa/collaborative-gym 
cd collaborative-gym 
pip3 install -e . 

python3 -m collaborative_gym --env "PokeTaskSawyers-v0" 

python3 -m collaborative_gym --env "PokeTaskPandaSawyer-v0" 

46



Research Assignment Outline

readme.md 11/9/2022

7 / 18

47



Research Assignment Outline

readme.md 11/9/2022

8 / 18

PokeTaskSawyers-v0

PokeTaskPandaSawyer-v0
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LiftTaskSawyers-v0

LiftTaskJacos-v0
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BalanceTaskSawyers-v0

BalanceTaskJacoSawyer-
v0
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PassTaskSawyers-v0

PassTaskJacoSawyer-v0

import collaborative_gym 
import gym 
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# Function to sample actions for each robot 
def sample_action(env): 
    action = {} 
    for robot_name, robot in env.my_robots.items(): 
        action[robot_name] = env.action_space_robot[robot_name].sample() 
    return action 
 
env = gym.make('BalanceTaskSawyers-v0') 
 
# Reset the environment 
done = False 
env.render() 
observation = env.reset() 
while not done: 
    # Step the simulation forward. Have the robots take random actions 
    observation, reward, done, info = env.step(sample_action(env)) 
    if type(done) is dict: 
        done = done['__all__'] 
env.disconnect() 

ray_util.py

ray_util.py ray_training_config.py

python3 -m collaborative_gym.ray_util --env "LiftTaskSawyers-v0" --algo 
ppo --train --train-timesteps 100000 --save-dir ./ray_trained_models/ 

ray_trained_models

python3 -m collaborative_gym.ray_util --env "LiftTaskSawyers-v0" --algo 
ppo --train --train-timesteps 100000 --save-dir ./ray_trained_models/ --
load-policy-path ./ray_trained_models/ 
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python3 -m collaborative_gym.ray_util --env "LiftTaskSawyers-v0" --algo 
ppo --render --seed 0 --load-policy-path ./ray_trained_models/ --render-
episodes 10 

python3 -m collaborative_gym.ray_util --env "LiftTaskSawyers-v0" --algo 
ppo --evaluate --eval-episodes 100 --seed 0 --load-policy-path 
./ray_trained_models/ 

collaborative-gym/collaborative_gym/envs/new_task.py

from .base_env import BaseEnv 
from ray.rllib.env.multi_agent_env import MultiAgentEnv 
 
# Import all robots 
from .agents.jaco import Jaco 
from .agents.sawyer import Sawyer 
from .agents.panda import Panda 
 
class NewTaskEnv(BaseEnv, MultiAgentEnv): 
    def __init__(self): 
        ... 
    def step(self, action): 
        ... 
    def _get_obs(self, agent=None): 
        ... 
    def reset(self): 
        ... 

collaborative-
gym/collaborative_gym/envs/__init__.py

from collaborative_gym.envs.new_task import NewTaskEnv 

collaborative-gym/collaborative_gym/__init__.py

from collaborative_gym.envs.new_task import NewTaskEnv 
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collaborative-gym/collaborative_gym/__init__.py tasks tasksEnv
NewTask NewTaskEnv

collaborative-gym/collaborative_gym/envs/simple_picking.py

import numpy as np 
import random 
import pybullet as p 
from .base_env import BaseEnv 
from .agents.objects import Object  
from ray.rllib.env.multi_agent_env import MultiAgentEnv 
 
# Import all robots 
from .agents.jaco import Jaco 
from .agents.sawyer import Sawyer 
from .agents.panda import Panda 
 
class SimplePickTaskEnv(BaseEnv, MultiAgentEnv): 
    def __init__(self): 
        self.my_robots = {} 
        self.obs_len_robots = {} 
        self.gripper_enabled_robots = {} 
 
        # NOTE: Choose the number and type of robots to use in the 
simulation 
        self.my_robots['robot_1'] = Sawyer() 
        self.my_robots['robot_2'] = Sawyer() 
 
        # NOTE: Define observation lengths for each robot 
        self.obs_len_robots['robot_1'] = 25 
        self.obs_len_robots['robot_2'] = 25 
 
        # NOTE: Enable or disable gripping for each robot 
        self.gripper_enabled_robots['robot_1'] = True 
        self.gripper_enabled_robots['robot_2'] = True 
 
        super(SimplePickTaskEnv, self).__init__() 
 
    def step(self, action): 
        self.take_step(action) 
 
        # Get observations 
        all_observations = self._get_obs() 
 
        # Get rewards 
        all_rewards, all_info = self.compute_rewards(action) 
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        # Get dones 
        all_dones = {} 
        for robot_name, robot in self.my_robots.items(): 
            all_dones[robot_name] = self.iteration >= 200 
        all_dones['__all__'] = self.iteration >= 200 
         
        return all_observations, all_rewards, all_dones, all_info 
             
    def compute_rewards(self, action): 
        all_rewards = {} 
        info = {} 
 
        # Usefull variables 
        finger_COM_pos_rob_1, _ = 
self.my_robots['robot_1'].get_finger_COM() 
        finger_COM_pos_rob_2, _ = 
self.my_robots['robot_2'].get_finger_COM() 
         
        cube_pos_rob_1, _ = self.cubes['robot_1'].get_base_pos_orient() 
        cube_pos_rob_2, _ = self.cubes['robot_2'].get_base_pos_orient() 
 
        target_pos_rob_1 = self.targets_pos['robot_1'] 
        target_pos_rob_2 = self.targets_pos['robot_2'] 
 
        # Reward robot 1 and robot 2 
        dist_to_cube_rob_1 = -np.linalg.norm(finger_COM_pos_rob_1 - 
cube_pos_rob_1) 
        dist_to_cube_rob_2 = -np.linalg.norm(finger_COM_pos_rob_2 - 
cube_pos_rob_2) 
 
        dist_cube_to_target_rob_1 = -np.linalg.norm(target_pos_rob_1 - 
cube_pos_rob_1) 
        dist_cube_to_target_rob_2 = -np.linalg.norm(target_pos_rob_2 - 
cube_pos_rob_2) 
 
        moving_penalty_robot_1 = - 0.01*np.linalg.norm(action['robot_1']
[:len(self.my_robots['robot_1'].arm_joint_indices)]) 
        moving_penalty_robot_2 = - 0.01*np.linalg.norm(action['robot_2']
[:len(self.my_robots['robot_2'].arm_joint_indices)]) 
 
 
        all_rewards['robot_1'] = dist_to_cube_rob_1 + 
dist_cube_to_target_rob_1 + moving_penalty_robot_1 
        all_rewards['robot_2'] = dist_to_cube_rob_2 + 
dist_cube_to_target_rob_2 + moving_penalty_robot_2 
 
        # Incentive to grip the cube 
        if self.my_robots['robot_1'].its_gripping: 
            all_rewards['robot_1'] += 0.1 
        if self.my_robots['robot_2'].its_gripping: 
            all_rewards['robot_2'] += 0.1 
         
        # Get all info 

55



Research Assignment Outline

readme.md 11/9/2022

16 / 18

        info['robot_1'] = {"dist_cube_to_target": 
dist_cube_to_target_rob_1} 
        info['robot_2'] = {"dist_cube_to_target": 
dist_cube_to_target_rob_2} 
        all_info = self.get_all_info(info) 
         
        return all_rewards, all_info 
 
 
    def _get_obs(self, agent=None): 
        # NOTE: Make sure the observation lenghts reflect what is defined 
at the top --> self.obs_len_robots[<robot_name>] 
        all_observations = {} 
 
        # Useful variables 
        cube_pos_rob_1, cube_orient_rob_1 = 
self.cubes['robot_1'].get_base_pos_orient() 
        cube_pos_rob_2, cube_orient_rob_2 = 
self.cubes['robot_2'].get_base_pos_orient() 
 
        joint_angles_rob_1 = 
self.my_robots['robot_1'].get_joint_angles(self.my_robots['robot_1'].contr
ollable_joint_indices) 
        joint_angles_rob_2 = 
self.my_robots['robot_2'].get_joint_angles(self.my_robots['robot_2'].contr
ollable_joint_indices) 
 
        finger_COM_pos_rob_1, finger_COM_orient_rob_1 = 
self.my_robots['robot_1'].get_finger_COM() 
        finger_COM_pos_rob_2, finger_COM_orient_rob_2 = 
self.my_robots['robot_2'].get_finger_COM() 
 
        gripper_status_rob_1 = 
np.array([int(self.my_robots['robot_1'].ready_to_grip)]) 
        gripper_status_rob_2 = 
np.array([int(self.my_robots['robot_2'].ready_to_grip)]) 
 
        target_pos_rob_1 = self.targets_pos['robot_1'] 
        target_pos_rob_2 = self.targets_pos['robot_2'] 
 
        # Robot 1 observations 
        obs_robot_1 = np.concatenate([joint_angles_rob_1, 
finger_COM_pos_rob_1, finger_COM_orient_rob_1, gripper_status_rob_1, 
cube_pos_rob_1, cube_orient_rob_1, target_pos_rob_1]).ravel() 
        all_observations['robot_1'] = obs_robot_1 
 
        # Robot 2 observations 
        obs_robot_2 = np.concatenate([joint_angles_rob_2, 
finger_COM_pos_rob_2, finger_COM_orient_rob_2, gripper_status_rob_2, 
cube_pos_rob_2, cube_orient_rob_2, target_pos_rob_2]).ravel() 
        all_observations['robot_2'] = obs_robot_2 
 
        if agent is not None: 
            return all_observations[agent] 
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        return all_observations 
 
    def reset(self): 
        super(SimplePickTaskEnv, self).reset() 
        self.create_world() 
 
        self.tables = {} 
        self.cubes = {} 
        self.targets_pos = {} 
 
        # Position robot 1 and create table, cube, and target 
        self.my_robots['robot_1'].set_base_pos_orient([0,-0.7,1], [0,0,0]) 
        self.tables['robot_1'] = Object() 
        self.tables['robot_1'].init('table', self.directory, self.id, 
self.np_random) 
        self.tables['robot_1'].set_base_pos_orient([0.8,-0.7,0], [0,0,0]) 
        self.cubes['robot_1'] = Object() 
        self.cubes['robot_1'].init('cube', self.directory, self.id, 
self.np_random, enable_gripping=True) 
        self.cubes['robot_1'].set_base_pos_orient([0.8,-0.6,0.7], [0,0,0]) 
        self.targets_pos['robot_1'] = np.array([1, -1, 1.2]) 
        self.create_sphere(radius=0.02, mass=0.0, 
pos=self.targets_pos['robot_1'], collision=False, rgba=[0, 1, 0, 1]) 
 
        # Position robot 2 and create table, cube, and target 
        self.my_robots['robot_2'].set_base_pos_orient([0,0.7,1], [0,0,0]) 
        self.tables['robot_2'] = Object() 
        self.tables['robot_2'].init('table', self.directory, self.id, 
self.np_random) 
        self.tables['robot_2'].set_base_pos_orient([0.8,0.7,0], [0,0,0]) 
        self.cubes['robot_2'] = Object() 
        self.cubes['robot_2'].init('cube', self.directory, self.id, 
self.np_random, enable_gripping=True) 
        self.cubes['robot_2'].set_base_pos_orient([0.8,0.6,0.7], [0,0,0]) 
        self.targets_pos['robot_2'] = np.array([1, 1, 1.2]) 
        self.create_sphere(radius=0.02, mass=0.0, 
pos=self.targets_pos['robot_2'], collision=False, rgba=[0, 1, 0, 1]) 
 
 
        p.resetDebugVisualizerCamera(cameraDistance=2.45, cameraYaw=90, 
cameraPitch=-10, cameraTargetPosition=[0, 0, 1], physicsClientId=self.id) 
 
        # Enable rendering 
        p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1, 
physicsClientId=self.id) 
 
        #Initialize variables 
        self.init_env_variables() 
        return self._get_obs() 
 
    def get_all_info(self, info): 
        self.reward_threshold = 0.05 
        for robot_name, robot in self.my_robots.items(): 
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            # Check if sucessful task completion 
            self.task_success[robot_name] += int(abs(info[robot_name]
["dist_cube_to_target"]) < self.reward_threshold) 
            info[robot_name]['task_success'] = 
self.task_success[robot_name] 
             
        return info 

collaborative-gym/collaborative_gym/envs/__init__.py

from collaborative_gym.envs.simple_picking import SimplePickTaskEnv 

collaborative-gym/collaborative_gym/envs/__init__.py

from collaborative_gym.envs.simple_picking import SimplePickTaskEnv 
 
... 
 
tasks.append('SimplePickTask') 
tasksEnv.append(SimplePickTaskEnv) 

python3 -m collaborative_gym --env "SimplePickTask-v0" 

58



Collaborative Gym:
A Simulation Benchmark for Multi-Robotic Tasks

Gabriele Ansaldo

Department of Mechanical and Industrial Engineering,
Northeastern University, Boston, MA 02115

Abstract

The design of multi-robot systems has gained

increasing attention in recent years. The field of

cooperative Multi-Agent Robot Systems (MARS)

has shown the potential to provide reliable and

cost-effective solutions to a wide range of auto-

mated applications. Communication and coordi-

nation between autonomous agents require robust

and intelligent control systems in order to achieve

high-quality performance. This paper presents

Collaborative Gym, an open-source, physics-based

simulation framework for multi-robot interaction.

This simulation environment differs from existing

robotic simulation environments in that it is de-

signed to model the interaction between multiple

robots. Despite the presence of a large number

of single robotic environments, multi-robotic sim-

ulation environments for reinforcement learning

are rare. Collaborative Gym contains four sim-

ulated tasks in which different commercial robots

work in collaboration: poking, lifting, balancing,

and passing. For each of the four tasks, baseline

policies are presented for various combinations of

commercial robots which have been trained using

reinforcement learning. The study demonstrated

that Collaborative Gym is a promising open-source

framework for the development of multi-robotic

collaborative robotic tasks and policies.

1. Introduction

Modern robotics involves robot-robot cooperation in
unstructured environments. For instance, in automated
logistics and manufacturing scenarios, such as ware-
houses, distribution centers, and automotive compa-
nies, repetitive and sequential operations can be per-
formed more efficiently by transferring objects between
robots equipped with object handover abilities [1]. Re-
cent years have seen a surge in research in the field of
cooperative Multi-Agent Robot Systems (MARS). Hav-
ing efficient coordination among autonomous agents in

order to complete tasks is of primary concern in order
to achieve high quality performance [2].

Among the most challenging aspects of achieving
proper coordination is the design of control architec-
tures that command the robots. It is true that ro-
bust and intelligent control systems are required to ef-
ficiently and effectively communicate and coordinate
among agents in order to accomplish a variety of tasks.
Therefore, developing the control architecture has been
identified as one of the most relevant aspects. Recent
developments in Artificial Intelligence (AI) and Rein-
forcement Learning (RL) may make it possible to de-
velop robust and efficient intelligent control systems ca-
pable of enabling robust and efficient coordination and
collaboration between robots in unstructured environ-
ments.

Figure 1: Four collaborative tasks in Collaborative Gym:

lifting, poking, passing, and balancing
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This study contributes to the development of the cur-
rent RL environment library by introducing a simu-
lation benchmark for MARS. In this paper, Collab-
orative Gym 1, an open-source, physics-based simu-
lation framework for multi-robot interaction, is pre-
sented. Specifically, this study attempts to design var-
ious multi-robotic tasks that require collaboration and
coordination among robots. Collaborative Gym differs
from existing robotic simulation environments in that
it focuses on modeling the interaction between multiple
robots rather than focusing on a single robot. Collabo-
rative Gym contains four simulated tasks in which dif-
ferent commercial robots such as Sawyer, Panda, and
Jaco work in collaboration: poking, lifting, balancing,
and passing.
The OpenAI Gym framework integrates directly with
Collaborative Gym, enabling the use of control pol-
icy learning algorithms, including deep reinforcement
learning. This paper provides and evaluates baseline
control policies for the four tasks with different combi-
nations of robots.
Collaborative Gym offers several applications for the re-
search community. Firstly, Collaborative Gym can be
used as a benchmark for comparing reinforcement learn-
ing algorithms for multi-robotic systems. Furthermore,
it provides the basis for researchers to create environ-
ments and control systems for their own collaborative
tasks. Explicitly, through this work the following con-
tributions are made:

• A simulation framework, Collaborative Gym, is de-
veloped for multi-robot interaction.

• The various multi-robotic designed tasks can be
used as a benchmark to compare control algorithms
for multi-agent interaction.

2. Literature Review

2.1. RL Simulation Environments

2.1.1 OpenAI Gym Framework

In reinforcement learning, an agent learns through in-
teraction with its environment. As a result, testbed
environments are necessary in order to test and com-
pare the results of different reinforcement learning al-
gorithms. The OpenAI Gym framework provides a
collection of reinforcement learning environments for

1https://github.com/gabriansa/collaborative-gym

developing and testing reinforcement learning algo-
rithms. Open AI Gym is an open-source toolkit which
provides a range of environments for games, control
problems, constructing algorithms, performing control
tasks, robotics, text games, and more [3]. Among its
benchmark environments are Atari games and physics-
based locomotion agents. The Open AI framework
forms the foundation for Collaborative Gym.

2.1.2 OpenAI Gym Physics Engines

PyBullet, DART, and MuJoCo are three physics en-
gines commonly used in OpenAI Gym for simulating
robotic environments [4, 5, 6]. PyBullet is a simulation
environment established on Bullet physics-based sim-
ulation, which simulates collision detection along with
the dynamics of rigid and soft bodies. In addition to
reinforcement learning applications, this physics engine
has been used for training and validating real robots uti-
lizing physics simulations [7, 8, 9, 10]. This library pro-
vides forward dynamics simulation, inverse dynamics
computation, forward and inverse kinematics, as well
as collision detection and ray intersection queries. As
an open-source project, PyBullet has attracted a large
community of contributors who continue to develop the
simulation environment and provide support for be-
ginners [11]. The Dynamic Animation and Robotics
Toolkit (DART) is an open source library that is collab-
orative and cross-platform. As part of the library, data
structures and algorithms are provided for kinematic
and dynamic applications in robotics and computer an-
imation. A variety of locomotive environments have
been implemented using DART in conjunction with the
OpenAI framework [12, 13]. Multi-Joint Dynamics with
Contact (MuJoCo) is a simulation environment and
physics engine dedicated to robotics, biomechanics, an-
imation, and machine learning. MuJoCo is known for
its deep learning applications that enable virtual ani-
mals and humanoid models to walk and perform other
complex movements [14]. It is not possible to install
this simulation environment without a license, as op-
posed to the other simulation environments described
in this work.

2.2. Multi-Agent Robot Systems

There are situations in which Multi-Agent Robot Sys-
tems (MARSs) or Multi-Robot Systems (MRSs) may
be used to accomplish tasks that would otherwise be
difficult for an individual robot to perform, such as
when there are uncertainties, incomplete information,

2
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asynchronous computations, and distributed control
[15]. There has been considerable interest in MRSs and
MARSs over the last decades [16, 24, 25, 26, 27, 28, 29,
30, 31, 17, 18, 19, 20, 21, 22, 23]. Several examples of
cooperative multi-agent robot applications include soc-
cer robots [32, 33], unmanned guided vehicles (UGV’s)
and unmanned aerial vehicles (UAV’s) [34]. The re-
search in cooperative multi-agent robot systems has fo-
cused on three main elements, according to [2]: (1) the
types of agents, homogeneous and heterogeneous, (2)
the control architectures, reactive, deliberative, and hy-
brid, and (3) the type of communication, explicit and
implicit. Nevertheless, developing the control architec-
ture has been identified as one of the most relevant as-
pects for achieving efficient coordination among multi-
agent robots. Developing MRSs can be challenging due
to the fact that it is not possible to predict all possi-
ble situations that robots might encounter as well as
to specify their behavior in advance. Therefore, it is
crucial that robots in MRSs learn from their operating
environment and adapt to their counterparts. MRSs
are faced with the challenge of addressing learning as a
key issue. It has become increasingly popular in recent
years to extend individual reinforcement learning (RL)
to multiagent systems, especially multi-robot systems
(MRSs) [35, 36, 37, 38, 39]. Through the use of multi-
agent reinforcement learning, participating robots are
able to learn the mapping between their states and the
actions they take in response to rewards or payoffs ob-
tained by interacting with their environment [40]. In
many ways, MRSs can benefit from RL, where robots
are expected to coordinate their behavior in order to
achieve their objectives.

2.3. Multi-Agent Reinforcement Learn-

ing Overview

2.3.1 Multi-Agent Reinforcement Learning

Environments

In recent years, a number of studies have investigated
Multi-Agent Reinforcement Learning (MARL) [41, 42,
43, 44]. As a result, it is necessary to create simulation
environments that can be utilized as benchmarks in or-
der to test and evaluate MARL algorithms and tech-
niques. Table 1 gives a concise overview of the most
relevant multi-agent environments that have been de-
veloped.
Aside from a large number of single robotic environ-
ments, multi-robotic simulation environments for RL
are scarce. Assistive Gym and Robosuite are the only

two environments that provide a taste of robotic multi-
agent tasks. On the one hand, Assistive Gym has the
ability of training policies for robots collaborating with
an active human. On the other hand, Robosuite pro-
vides some tasks that require collaborative efforts be-
tween two robots. Nevertheless, no RL environment
is currently available that is fully dedicated to study-
ing multi-agent robotic tasks. Comparatively to ex-
isting multi-agent simulation environments, Collabora-
tive Gym solely focuses on multi-robot systems, thus
enabling multiple robots to collaborate on a variety of
tasks to achieve a common goal.

2.3.2 MARL Techniques

In terms of task type, it is possible to classify Multi-
Agent Reinforcement Learning into three categories,
namely fully cooperative, fully competitive, and hybrid
[54, 55, 56]. For instance, an agent’s reward function is
the same in a fully cooperative random game. There-
fore, the objective of agents is to maximize their mutual
returns. It is however possible to have a complete com-
petition scenario when the objectives of two agents are
opposite.

• Fully cooperative learning : A fully cooperative ran-
dom game has the same reward function and learn-
ing objective for each agent. In the same manner
as single agents environments, in a multi-agent set-
ting agents are likely to pursue greedy strategies
in order to maximize their returns. However, the
agents cannot make their decisions independently,
since they share the same objective, they must con-
sider the other agents and cooperate as a group.

• Fully competitive learning : In contrast with com-
plete cooperation, a complete competition environ-
ment has many similar characteristics, with the ex-
ception that the reward function is the opposite
for each agent. It is also possible for competition
to arise when there are more than two agents in-
volved. However, most of the literature concern-
ing RL in fully competitive games pertains only to
two-agent games.

• Hybrid learning : In contrast to fully cooperative
and competitive agents, hybrid agents tend to be
selfish since their reward function is not restricted.
A large number of algorithms in this category
are devoted exclusively to static problems and are
based on the concept of game theory equilibrium.
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Environment Name Description

Robosuite [45]
Simulation framework powered by the MuJoCo physics engine for robot
learning. It also offers a suite of benchmark environments for
reproducible research.

Assistive Gym [46] Physics-based simulation framework for physical human-robot
interaction and robotic assistance.

Massive Multi-Agent Game
Environment [47]

It considers MMORPGs (Massive Multiplayer Online Role Playing
Games) the best proxy for the real world among human games: they are
complete macrocosms featuring thousands of agents per persistent world,
diverse skilling systems, global economies, complex emergent social
structures, and ad-hoc high stakes single and team based conflict.

PettingZoo [48] Python library for conducting research in multi-agent reinforcement
learning, akin to a multi-agent version of Gym.

RoboSumo [49] Sumo-wrestling between two ants using continuous control.
Stratcraft [50]
[51] StarCraft is a 1998 military science fiction real-time strategy game.

OpenAI Multi-Agent Hide
and Seek [52]

In our environment, agents play a team-based hide-and-seek game.
Hiders (blue) are tasked with avoiding line-of-sight from the seekers
(red), and seekers are tasked with keeping vision of the hiders. There are
objects scattered throughout the environment that hiders and seekers
can grab and lock in place, as well as randomly generated immovable
rooms and walls that agents must learn to navigate.

OpenAI Multi-Agent
Competition Environments [53] A collection of various continuous control, multi-agent tasks.

Table 1: Overview of some of the most relevant Multi-Agent Reinforcement Learning Environments

As part of a Multi-Agent System (MAS), multiple
agents coexist in the same environment and all learn
simultaneously. It is not uncommon for one agent’s be-
havior to be affected by the behavior of other agents in
the same environment. As a result, Multi-Agent Rein-
forcement Learning (MARL) methods are typically uti-
lized to the solution of such problems. In general, there
are three types of MARL methods: distributed inde-
pendent learning, centralized learning, and distributed
collaborative learning.

• Distributed independent learning methods: MARL
research can be effectively approached through dis-
tributed independent learning methods [57, 58].
Distributed independent learning involves each
agent taking other agents into account as part of
their environment and learning strategies indepen-
dently [59]. Due to the forced decomposition of the
decision process into multiple Markov decision pro-
cesses, this method significantly reduces the repre-
sentation of the state-action space [60]. However,
there are two disadvantages to this type of learn-
ing:

1. There is an absence of a coordination mecha-
nism between agents

2. A relatively poor and suboptimal strategy is
obtained

As a way to mitigate the absence of coordination
mechanisms, the limited information of other en-
vironmental agents can be used as input to the
learning process [61].

• Centralized learning methods: As opposed to the
distributed independent learning method, the cen-
tralized learning method requires each agent to
communicate with a central controller and to
choose actions in accordance with the controller’s
instructions [62]. To control the learning process
synchronously, the central controller must also be
able to perceive the global environment [63]. There
are several advantages and disadvantages to this
method [61]:

Advantages:
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1. As a Markov decision-making process,
the global decision-making process is re-
garded as a static and closed environment
where all agents learn in the same manner

2. It is possible to develop a globally optimal
strategy with sufficient learning time

Disadvantages:
1. A slow convergence rate
2. Dimensional disaster
3. Scalability and robustness issues

In relation to the three disadvantages, the cen-
tralized learning method usually faces the issue of
slow convergence since the agent must explore all
joint state-action spaces when the problem scale is
large. With regards to dimensional disaster, the
joint state-action space increases exponentially as
the scale of the problem increases, which leads to
an exponential increase in the number of agents.
As a final point, centralized learning methods typ-
ically face scalability and robustness issues [64].
Since the agent is limited in its observation abil-
ity, it is able to perceive the environment only lo-
cally, and it cannot obtain information about the
surrounding environment at a global level. Con-
sidering the limited communication capabilities of
agents, centralized learning depends on effective
communication between the central controller and
all agents.

• Distributed collaborative learning methods: Collab-
orative distributed learning methods combine the
benefits of distributed and centralized methods of
learning. As part of the method, a collaborative
relationship is maintained between the agents and
collaborative learning is introduced between the
agents based on distributed independent learning
[65, 66]. As a result, this method improves the
performance of the Multi-Agent Learning System
(MALS) at the same time as alleviating the dimen-
sional disaster, robustness, and scalability issues
associated with centralized learning techniques.

Collaborative Gym provides a variety of tasks that uti-
lize distributed collaborative learning methods, where
agents learn independently while sharing information
with other agents and/or sharing reward functions.
Nevertheless, Collaborative Gym allows users to de-
sign cooperative, competitive, and hybrid tasks that
can be trained using either distributed, centralized, or
distributed collaborative learning methods.

3. Collaborative Gym

The Collaborative Gym simulation framework provides
high-level interfaces for creating and customizing sim-
ulation environments for multirobot systems. In ad-
dition to integrating directly into the open source Py-
Bullet physics engine, Collaborative Gym environments
are built upon the OpenAI Gym interface which allows
the use of existing control policy learning algorithms
including deep reinforcement learning. A comprehen-
sive analysis of Collaborative Gym is further provided
in terms of its control mechanisms, action and observa-
tion spaces, and policy learning.

3.1. Actions & Observations

A position control system is provided by Collaborative
Gym for controlling the various robots. Actions
for each robot’s n � DoF arm are represented as
changes in joint positions, �J 2 Rn depending on
the robotic arm. Additionally, a binary variable that
selects between gripping and ungripping simplifies
the gripping action. Physical limits of an arm affect
the ability of a robot to perform actions at any given
location. Indeed, each joint of a robot is able to
rotate till a certain limit. Actions for the robots’ arm
are defined as a = (�J0,�J1,�J2, ...,�Jn, g) 2 A,
where J0, J1, J2, ..., Jn are the robot’s joint angles and
�J0,�J1,�J2, ...,�Jn are delta joint angles that are
added to the robot’s current joint angles in order to
move the robot’s arm. Additionally, g is a binary
decision variable that allows a robot to choose between
grasping and ungrabbing objects in the environment.
An object is grasped by the robot when it is close
enough to it, and the binary variable g assumes value of
1. For the various robots in the environment, gripping
has been simplified to facilitate a simpler and faster
learning process. In other words, robot gripping is a
complex task that falls within a separate research field,
therefore, it was simplified for use in the Collaborative
Gym project. Additionally, the process by which
gripping occurs plays little role in this study. It is
important to note that not all Collaborative Gym tasks
require gripping, and therefore the g action may some-
times be neglected depending on the nature of the task.

Robots record observations from the state of the system
at each time step, perform actions according to the con-
trol policy, and receive rewards at the end of the time
step. Observations given to the robots are compara-
ble to those obtained in a real-world scenario involving

5



multiple robots. As an example, these include the po-
sition and orientation of the robot’s end effector in 3D,
the position of the robotic arm’s joints in 7D, and the
position of the task relevant objects in 3D. Positions
are defined in terms of a global coordinate system. It is
important to note that observations are task-dependent
and may vary according to the study’s objectives.

3.2. Collaborative Tasks

A set of four tasks are readily available on Collaborative
Gym. These multi-robotic tasks, ranging from simple
to more complex, which require collaboration and coor-
dination among robots are further described in details.

• 1. Poking Task : In this task one robot holds a
stick object while the other holds a "donut" shaped
object. The goal is for the two robots to coordinate
and insert the stick inside the donut hole.

(a) Panda and Sawyer Robots (b) Sawyer Robots

Figure 2: Poking Task Environment

The action space for this task is defined as changes
in joint positions �J . Since grasping does not oc-
cur in this task, the action binary variable g is not
utilized. The observation space for each robot in-
cludes the position of the robotic arm’s joints in
7D and the position and orientation of the stick
and donut objects.

• 2. Lifting Task : This task consists of two robots
that need to coordinate to lift a heavy pot object.
Two robots are required to lift the object since it
is too heavy to be lifted by one robot. Indeed, the
goal is for the two robots to coordinate and lift the
pot object to a specific target position.
The action space for this task is defined as changes
in joint positions �J . Since grasping occurs in this
task, the action binary variable g is required. The
observation space for each robot includes the po-
sitions of both robotic arm’s joints in 7D, the po-
sition and orientation of the robot’s end effectors

(a) Jaco Robots (b) Sawyer Robots

Figure 3: Lifting Task Environment

in 3D, the status of each gripper (gripping or un-
gripping), the position and orientation of the pot
object and its handles, and the target position.

• 3. Balancing Task : In this task, two robots
must coordinate in order to balance a moving
sphere on a flat surface. The goal is for the two
robots to coordinate and keep the sphere at the
center of the board as long as possible.

(a) Sawyer Robots (b) Jaco and Sawyer Robots

Figure 4: Balancing Task Environment

The action space for this task is defined as changes
in joint positions �J . Considering that grasping
does not occur in this task, the action binary vari-
able g is not taken into account. The observation
space for each robot includes the position of both
robotic arm’s joints in 7D, the position and orien-
tation of the center of the balancing board in 3D,
the position orientation of the sphere object, and
the linear and angular velocities of the sphere ob-
ject.

• 4. Passing Task : This task consists of two
robots that need to coordinate to pass a cube ob-
ject. Specifically, one robot picks up a cube then
hands it over to the second robot which conse-
quently needs to move it to a specific target. In-
deed, the goal is for the two robots to coordinate
and pass the cube object.

6



(a) Sawyer Robots (b) Jaco and Sawyer Robots

Figure 5: Passing Task Environment

The action space for this task is defined as changes
in joint positions �J . As grasping occurs in this
task, the action binary variable g must be used.
The observation space for each robot includes the
positions of the robotic arm’s joints in 7D, the po-
sition and orientation of both robot’s end effectors
in 3D, the status of each gripper (gripping or un-
gripping), the position and orientation of the cube
object, and the target position.

4. Policy Training

A variety of deep reinforcement learning techniques can
be used to train Collaborative Gym tasks. As this en-
vironment is built on the OpenAI Gym framework, any
deep reinforcement learning technique can be utilized.
It is noteworthy that Collaborative Gym is already con-
nected with RLlib, a freely available open source li-
brary that offers support for production-level, highly
distributed reinforcement learning workloads with sim-
ple and unified APIs that can be used for a variety
of industry applications [67]. Due to recent research,
PPO-based multi-agent algorithms have shown surpris-
ingly high performance in multiple popular multi-agent
testbeds [68]. Collaborative Gym utilizes proximal pol-
icy optimization (PPO) as the base algorithm for train-
ing robots. However, different RL techniques can be
utilized, depending on the type of task. In most Col-
laborative Gym tasks, a fully-connected neural network
is employed with two hidden layers of 256 nodes with
relu activations. It is possible to train the multi-agent
RL task using (1) cooperative learning with shared or
separate policies and/or value functions, (2) adversarial
learning using self-play and league-based training, and
(3) independent learning of neutral/co-existing agents.
Due to the collaborative nature of the designed tasks
cooperative learning is utilized.

5. Evaluation

As part of this section, baseline control policies are pre-
sented and analyzed for various robots performing the
four collaborative tasks. Table 2 shows the combina-
tion of robots used for each task. PPO is used to train
robot controllers. It was necessary for the algorithm
to run for fifty million timesteps in order to generate
the policies. As a practical matter, this number proved
to be sufficient for the robots to devise a useful pol-
icy. Each episode of each task was 200 timesteps long,
which means that the robots could observe 200 observa-
tions and take 200 actions in order to complete the task.
Each episode ended with the robots and environment
being reset to their original positions. It is through
a series of training episodes that the robot is able to
learn which actions are appropriate for completing the
task and which are not until an effective policy is estab-
lished. Depending on the task, training times ranged
between 30 and 60 hours. Co-optimization is used to
accomplish collaboration, where all robots are trained
simultaneously with independent control policies and
shared value functions.

Task Name Robot 1 Robot 2

Poke Task Variant 1 Sawyer Sawyer
Variant 2 Panda Sawyer

Lift Task Variant 1 Sawyer Sawyer
Variant 2 Jaco Jaco

Balance Task Variant 1 Sawyer Sawyer
Variant 2 Jaco Sawyer

Pass Task Variant 1 Sawyer Sawyer
Variant 2 Jaco Sawyer

Table 2: Combination of Robot Types for each Task

Due to the fact that Collaborative Gym uses a variety
of robots, it offers the opportunity to study and com-
pare the collaboration between homogeneous and het-
erogeneous robots in solving various collaborative tasks.
A comparison between a variety of tasks with differ-
ent combinations of robots was conducted by holding
all parameters and settings for PPO and the simula-
tion environments constant. It was possible to evalu-
ate the control policies over 200 simulations based on
the trained control policies for the specific robots and
collaborative task. Based on the 200 simulation roll-
outs, Table 3 displays the average reward achieved for
each task. In addition, Collaborative Gym defines task
completion and task performance for each collaborative
task. While task completion is defined as the ability to
complete the desired task by reaching the desired goal,
task performance is defined for each collaborative task
as follows:
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Task Name Robot 1 Robot 2
Mean

Reward

Task

Completion

Task

Performance

Poke Task Variant 1 Sawyer Sawyer 254.23 98.5% 98.49%
Variant 2 Panda Sawyer 215.94 100% 99.98%

Lift Task Variant 1 Sawyer Sawyer -356.88 98% 29.01%
Variant 2 Jaco Jaco -144.53 98.5% 69.40%

Balance Task Variant 1 Sawyer Sawyer -341.90 92% 72.00%
Variant 2 Jaco Sawyer -404.53 73.50% 64.97%

Pass Task Variant 1 Sawyer Sawyer -95.22 72.30% 59.93%
Variant 2 Jaco Sawyer 198.16 96.00% 95.46%

Table 3: Average Reward and Success Rate on 200 Trials

• Task Performance Poke Task : The success of the
poking task is determined by the ratio between
the number of time-steps the stick stays inside the
donut and the number of time-steps starting when
the stick first enters the donut. As such, this met-
ric does not focus on how long it takes the robots
to complete the task, but rather on how well the
task has been completed.

• Task Performance Lift Task : Similar to the poking
task, the success of the lifting task is determined by
the ratio of the number of time steps the pot stays
within a certain distance to the target position and
the number of time steps starting when the pot
first reaches the target position. Once again, this
metric does not take into consideration how long
it takes the robots to complete the task, but in-
stead focuses on the quality at which the task is
successfully completed.

• Task Performance Balance Task : The success of
the balancing task is determined by the ratio be-
tween the number of time-steps the ball stays on
the balancing board and the total number of time-
steps of an episode.

• Task Performance Pass Task : Similar to the lift-
ing task, the success of the passing task is deter-
mined by the ratio of the number of time steps
the cube object stays within a certain distance to
the target position and the number of time steps
starting when the cube first reaches the target po-
sition. Again, the metric does not account for the
amount of time required for the robots to complete
the task, but instead is concerned with the quality
at which the task is successfully completed.

As can be seen in Table 3, task completion is close to
100% for most of the trained tasks. There is no doubt

that task completion is lower for the second variant of
the balancing task as well as the first variant of the
passing task. It is possible that a lower completion
rate is due to both the robots used as well as the dif-
ficulty of the task. Indeed, it could be argued that
a specific combination of robots might perform better
for a certain task than others. As a matter of fact, a
relatively high task completion rate indicates that the
robots were able to learn an effective policy to com-
plete the designed tasks. It appears, however, that task
performance varies significantly between tasks. As be-
fore, the difficulty of the task has a direct relationship
with this. In fact, poking is considered to be a trivial
task for robots, as a result of the high performance rate.
However, when it comes to tasks such as lifting, balanc-
ing, and passing, success rates decrease because of task
complexity. Interestingly, while most variants of tasks
appear to have similar task performance rates, the lift
task does not. According to the results, the combina-
tion of Jaco robots outperforms the Sawyers by almost
50%. A similar scenario is present for the passing task,
whereas the Jaco-Sawyer combination outperforms the
Sawyer-Sawyer one. As a result, it is evident that while
all robots are capable of achieving the predetermined
goal, the performance could be strongly dependent on
the type of robot and the combination of robots avail-
able for the particular task.

6. Conclusion

As part of this research, a Multi-Agent Robotic Sys-
tem (MARS) environment was developed where robotic
arms are capable of coordinating and collaborating to
meet a common goal across a wide range of tasks.
In this paper, a framework for multi-robot interaction
has been presented, called Collaborative Gym, which
is an open-source, physics-based simulation framework.
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An overview of the action and observation spaces has
been provided. Particularly, assumptions related to the
grasping of objects have been addressed, which sim-
plifies the learning complexity for the tasks that have
been designed. In terms of the learning process, PPO
was utilized as the base algorithm for training robots.
Results indicate that robots can learn effective collab-
orative control policies. The purpose of Collaborative
Gym is to encourage robots to interact cooperatively
in a variety of different tasks. A significant difference
between Collaborative Gym and existing robotic simu-
lation environments is that it emphasizes the modeling
of the interaction between multiple robots. In addition,
Collaborative Gym has been shown to be a valuable tool
for benchmarking and developing multiple collaborative
environments. The results of the study show that Col-
laborative Gym is a promising open-source framework
for the development of collaborative robots that are ca-
pable of solving complex tasks.
Ultimately, this study can be extended to explore the
performance of heterogeneous and homogeneous robots
in various collaborative tasks. In particular, it would
be interesting to assess the learning rate and perfor-
mance of different robots in different scenarios. It would
also be beneficial to examine aspects of simulation-to-
reality. As a matter of fact, implementing and transfer-
ring learned control policies to a real-world task could
provide interesting results. A further consideration
would be the design of different collaborative tasks per-
taining to industrial applications such as order picking,
manufacturing, and logistics. Moreover, it would be
interesting to examine which alternative reinforcement
learning algorithms are most suitable for multi robotic
collaboration. Furthermore, a possible extension of this
work could include aspects of human teaming by incor-
porating simulated humans into the simulation. Using
computer vision, real motion data from humans could
be used in Collaborative Gym to explore aspects of
human-robot collaboration.
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