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Analytical Field and Torque Analysis of a Reaction Sphere
Linyu Zhu , Jian Guo , and Eberhard Gill

Faculty of Aerospace Engineering, Delft University of Technology, 2629HS Delft, The Netherlands

In recent years, the increasing need in small satellite solutions triggers the miniaturization of attitude control systems. Reaction
spheres were proposed as promising replacements of conventional reaction wheels for their 4π rotations. Since the generated control
torques could be about any desired axes, a single reaction sphere is sufficient for three-axis stabilizations of spacecraft. This paper
presents an innovative design of reaction spheres. Its driving unit is a combination of permanent magnets (PMs) and electromagnetic
induction. This enables the generation of torques about three principle axes simultaneously. Meanwhile, a contactless bearing is
integrated into the actuator design. Detailed designs and working principles of the reaction sphere are described. To investigate
performance characteristics of the actuator, field modeling is of great importance and provides the basis for dynamics modeling.
In this paper, an improved analytical model for dynamic fields excited by slotless distributed windings is presented for the first time.
To study the cross coupling between PMs and electromagnetic induction, the static field generated by PMs is also modeled analytically.
These developed models are validated through comparisons with numerical simulations. Electromagnetic torques generated by the
actuator are calculated through the approaches of the Maxwell stress tensor and the Lorentz force law. Torque calculations based
on the analytical field models deviate from those based on the numerical model slightly, with the maximum error within 4%. This
means the presented analytical models allow to predict the electromagnetic field distribution and torques precisely.

Index Terms— Analytical model, electromagnetic induction, magnetic field, reaction sphere.

I. INTRODUCTION

REACTION wheels are commonly used actuators in
spacecraft attitude control systems (ACS). Compared to

magnetorquers and thrusters, they typically provide a higher
control accuracy [1]. In general, to achieve three-axis sta-
bilizations of spacecraft, at least three wheels are required.
Nevertheless, for small spacecraft where volume resources
are limited, it is challenging to mount three wheels on-board.
In addition to volume conflicts, low power requirements trig-
ger various innovations. A majority of the innovations offer
the advantage of multi-degree of freedom (DOF). Actually,
reaction spheres are special three-DOF reaction wheels which
can rotate about any desired axes and generate torques about
three principle axes simultaneously. Therefore, a single reac-
tion sphere is sufficient for three-axis stabilizations without
redundancy.

Although reaction spheres have been proposed a half cen-
tury ago [2], there is none ready for space applications yet. The
difficulty of designing a reaction sphere mainly stems from
integration, miniaturization, and control aspects. For instance,
some designs integrate multi-DOF into a single actuator by
distributed poles [3]–[5]. Due to the strong coupling between
each other, all the poles will be controlled independently
and cooperatively to perform the desired rotations. Besides,
the transient state of the rotor is a necessity in the control algo-
rithm and it is normally estimated through measurements of
the magnetic flux density distribution. For time delays caused
by processing of noisy measurements, estimations, and control
algorithms, the achievable maximum speed of the actuator
is restricted [6]. Within spherical actuators which are capa-
ble of continuous rotations about at least three independent
axes, the maximum speed of arbitrary axis rotations hardly
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exceeds 1000 r/min [7]. In addition, the rotation requires
a proper bearing which may introduce interferences to the
driving unit. For example, reaction spheres proposed in [8]
and [9] achieved magnetic levitation and single-axis rotation
simultaneously. However, the 3-D rotations were implemented
with air bearings [10], since the suspension flux introduces
disturbance torques. The drawback of air bearings is that
the continuous air supply complicates its implementation for
space missions. Even though the multi-DOF could be rela-
tively decoupled from each other and from the bearing in
special cases [10], [11], retaining a decent power efficiency
and dimensional ratio between the rotor and the stator is
challenging. If the input stator current density keeps constant
in the scaling down of an electromagnetic machine, the torque
generation capability decreases faster than the copper loss.
The resultant efficiency deteriorates. Besides, the installation
of sensors requires space and presents another limit in the
miniaturization of reaction spheres.

To avoid the low effectiveness of 3-D induction motors
and the complicated control brought by distributed permanent
magnet (PM) poles, an innovative design of reaction spheres
is proposed in this paper. Different from existing designs,
it combines PMs and electromagnetic induction together
(see Fig. 1). Meanwhile, contactless support is integrated in
the driving unit. In Section II, the structure and working
mechanism of the actuator is described in detail. To facilitate
dynamics modeling, analytical models for the involved elec-
tromagnetic fields are developed and validated through com-
parisons with numerical models. An important contribution
of this paper is the improved analytical model for dynamic
fields excited by slotless distributed windings. Compared to
models presented in [12]–[14], the component of Bθ is main-
tained here, which provides a further insight about the field
distribution and flux leakage in spherical actuators. Based
on the obtained field information, electromagnetic forces
and torques acting on the rotor can be calculated fast and
accurately.

0018-9464 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE I

DESIGN REQUIREMENTS OF THE REACTION SPHERE

Although cross couplings exist between PMs and the elec-
tromagnetic induction, they can be handled properly by the
control of bearing coils. Therefore, rotations excited by the
electromagnetic induction are relatively decoupled from other
DOF and can be modeled like those of conventional asyn-
chronous machines. Dynamics modeling of the reaction sphere
goes beyond the scope of this paper and will be presented in
a subsequent paper.

II. PRELIMINARY DESIGN OF THE REACTION SPHERE

The spherical actuator is designed for ACS of microsatellites
(mass ≤ 100 kg). Considering the general working environ-
ments of microsatellites, attitude control requirements, mass,
and power budgets etc. requirements listed in Table I will
be used to guide the design. Please note that the angular
momentum storage capability is not included in the table for
two reasons. First, with the same mass or the same volume,
a cylinder could provide a larger moment inertia than a sphere,
due to the mass distribution. Therefore, if the maximum
spinning speeds are the same, reaction spheres do not show
advantages over reaction wheels regarding the momentum
storage capability. The main benefit of a reaction sphere is its
reconfigurable rotation axis (or the direction of output torques).
Analysis on the functionality is the primary objective of the
study. Second, to simplify the prototyping and mitigate the
risk of rotor unbalance, the rotor is designed to be a solid
sphere. Optimization of moment inertia with a hollow sphere
is planned for the later study phase.

To enable 4π rotations, a majority of existing reaction
spheres utilize PM poles or electromagnetic induction to
generate driving torques [7]. Compared with other electro-
magnetic machines, induction motors have no fixed poles
on the rotor. The motion of the rotor mainly depends on
the energized windings. When multiple revolving magnetic
fields are excited, rotations about a composite axis will be
generated. However, in such cases, cross couplings exist in
the flux distribution and the generation of torques about
different axes, and result in unwanted eddy currents. These
unwanted eddy currents cause heating, decrease the efficiency,
and may introduce vibrations [15]. By contrast, PM machines
have fixed poles on the rotor. Torques are generated by the
interaction between PM poles and energized electromagnets.
It means that the generated torque depends on the rotor’s tran-
sient orientation, which complicates the motion control [16].

Fig. 1. Working principle of the proposed reaction sphere.

Fig. 2. Assembled stator back iron where driving coils and bearing coils are
wound around.

In addition, 4π rotations require a special topology of the
multiple PM poles and electromagnets [7].

To avoid problems mentioned earlier, the proposed reaction
sphere combines both PMs and electromagnetic induction
within the driving unit. Normally, the rotation is about the
axis of symmetry of the PMs and is driven by induced
eddy currents. The actuator provides control torques through
accelerations and decelerations. A benefit of the design is that
the axis of symmetry is configurable. This is realized through
interactions between the two surface-mounted PMs on the
rotor and energized bearing coils on the stator. To mitigate the
coupling between electromagnetic induction and PMs, the PMs
are mounted such that like-poles are pointing outwards. Mean-
while, interactions between PMs and activated bearing coils
provide a contactless support to the rotor.

Fig. 1 illustrates the basic working principle of the proposed
reaction sphere. To ensures the rotor orientation, speed, and
position are always under control, three sets of windings are
placed on the stator orthogonally (not all involved coils are
illustrated in Fig. 1). Each set is arranged about a principle
axis, consisting of three pairs of driving coils and six pairs
of bearing coils. To reduce the axial length, stator windings
are wound toroidally around the stator back iron. One set of
driving windings placed about the z-axis is illustrated in Fig. 5
in Section V-A. Arrangement of the driving windings is similar
to that of a three-phase ac machine. Bearing coils are placed
coaxially with the driving coils, and they are controlled in pairs
to drive tilts or translational displacements. Fig. 2 shows how
windings about three principle axes are wound and assembled
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Fig. 3. Position and orientation control of the rotor.

together. For clarity, one piece of stator segment is removed
in Fig. 2. Please note that slots on the inner surface of the stator
back iron do not really exist. They are drawn here to illustrate
the way wires are wound (i.e., flowing directions of carried
stator currents). At the joint of two winding sets, winding
would be wound around the same stator iron segment. It is
important to note that the dimensional ratio between driving
coils and bearing coils in Fig. 2 does not mean the real ratio.
Although the employed toroidal coils [17], [18] shortens the
axial length of stator windings, the electrical conductor length
is not reduced. Consequently, the stator resistance and copper
loss on the windings are not decreased.

Fig. 3 shows loops for the magnetic suspension and ori-
entation control when the symmetry axis is along the z-axis.
Energizing one pair of bearing coils (oppositely placed) with
opposite dc inputs results in a translational force. Therefore,
with at least three pairs of bearing coils interacting with the
PMs, translational displacements of the rotor can be controlled.
When the pair of bearing coils are provided with the same
dc input current, electromagnetic torques are generated. For
orientation controls, several bearing coils will be activated sub-
sequently. Actually, detailed control of bearing coils depends
on the rotor orientation and torque/force calculations are
complicated. Although tilt through the 4 π range is allowed
by the design, the bearing control efficiency is not isotropic.
It depends on the relative orientation of the rotor with respect
to energized bearing coils. In operations, the transient rotor ori-
entation will be estimated through mounted 2-D Hall sensors.
The sensors are inserted to the reaction sphere through the gaps
between stator segments (see Fig. 2). Dynamics modeling and
bearing control of the proposed reaction sphere are expected
in a future paper.

When the symmetry axis is along the principle axes (x-, y-,
and z-axes), rotations excited by the electromagnetic induction
are as with the conventional asynchronous machines. If the
symmetry axis deviates from the principle axes through the
orientation control, rotations about the symmetry axis can be
realized by energizing more than one set of ac windings [11].

III. MAGNETIC FIELD MODELING

In contrast to numerical analysis, analytical analysis offers a
deep insight into the mechanism. Especially for 3-D problems,
a numerical simulation may take hours, while the analytical
model will give a result within minutes. The essence of analyt-
ical magnetic field modeling is solving Maxwell’s equations.
Generally, the quasi-static approximation can be applied to the
electromagnetic fields of electric machines [19]. It assumes
that capacitive effects in the machine are negligible, which in
turn simplifies Maxwell’s equations.

To model magnetic fields, a basic way is to calculate and
integrate the magnetic flux density produced by each charge or
small segment of currents. However, boundary conditions are
not considered in this method [20]. In real machines, bound-
aries exist and the magnetic field is the result of PMs, changing
electric fields and magnetized ferrimagnets. In some cases,
the boundaries can be removed via the image method [21].
Nevertheless, that is not always feasible. A more general
approach is introducing variables, e.g., magnetic potentials,
transforming Maxwell’s equations to Laplace’s or Poisson’s
equations for separated regions. Unknowns in the general
solutions can be solved by boundary conditions. Alternatively,
mapping methods such as the Schwarz–Christoffel transfor-
mation and magnetic equivalent circuit [22] can be useful but
are limited to special cases [20].

Since the proposed actuator will be excited to perform
4π rotations, the magnetic field modeling is a 3-D problem.
Besides, the spherical geometry facilitates the analysis in
a spherical frame, where the general solution to Laplace’s
equations is known. Therefore, the approach of transform-
ing Maxwell’s equations to Laplace’s/Poisson’s equations is
adopted in this paper.

A. Assumptions

The analytical model of the spherical actuator is based on
the following assumptions.

1) The stator is slotless.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON MAGNETICS

Fig. 4. Geometry of the reaction sphere.

2) No eddy currents in the stator back iron.
3) No high-order time or space harmonics.
4) The relative permeability of iron is infinite.
5) Only one set of driving windings is excited at a certain

time.
6) No saturation of iron.
7) End effects are neglected.
8) PMs have a linear demagnetization characteristic and are

fully magnetized in the direction of magnetization.
9) The actuator is in mechanical and electrical steady states.

10) Electromagnetic couplings between stator windings are
negligible.

B. Parameters

The simplified geometry of the reaction sphere is shown
in Fig. 4. The whole actuator is axial symmetric. For con-
venience, a spherical coordinate system is employed with its
origin at the rotor core. On the rotor, PMs (in gray with slash)
and the copper domain (in gray) form region II. Region III
is the steel core, while region I refers to air surrounding
the rotor. Stator windings are modeled as surface currents
�J f = J0 cos(ωt −φ)/ sin θ · �eθ distributed on the inner surface

of the stator shell within the region of θ ∈ [ψ/2, π − ψ/2].
Design of the reaction sphere starts with a dimensional ratio
of 1:9 between the rotor and the whole actuator [7]. As per
the size requirement listed in Table I, the external radius of the
rotor Rr is determined. Table II lists the dimensional parame-
ters and basic inputs of the reaction sphere. Many parameters
in Table II are results of conflicting preferences. For instance,
a large space between the stator and the rotor accommodates
more windings and higher input currents. However, space
occupied by the stator windings extends the effective air gap
width and weakens the coupling between the rotor and the
stator. Therefore, the geometrical parameters listed here are
only for the preliminary design and will be optimized later.

The spherical actuator is designed with a maximum rota-
tional speed of 8000 r/min. For a two-pole induction machine,
the speed of 8000 r/min requires an input frequency of no less
than 140 Hz. However, with the nominal phase voltage, if the
input frequency is high, the stator and rotor reactance will be
high. Consequently, the achievable maximum torque will be
low. Besides, an adjustable rotational speed is required for the
actuator. Therefore, the reaction sphere will be inverter-fed

TABLE II

BASIC PARAMETERS OF THE ACTUATOR

operated with variable frequencies. Another benefit of the
inverter-fed machine is that the rotor always runs at a small
slip, which means the high starting currents can be avoided.
Here, it is assumed that the actuator will start with an input
frequency of 10 Hz.

IV. ANALYTICAL FIELD MODELS

As mentioned earlier, both PMs and excited driving wind-
ings are involved in this actuator. PMs generate a static field,
while the ac driving windings generate a time-harmonic field.
To simplify the analysis, the composite field is separated into
three time harmonics: e0∗t , e jωt , and e− jωt .

A. Static Field Generated by the PM Poles

The constitutive equations for regions I, II, and III are given
in the following.

1) For region I, the magnetic property of air (or vacuum in
space) is described as

�BI = μ0 �HI. (1)

2) For region II, the PM is modeled as [23]

�BII = μ0μm �HII + μ0 �M (2)

where μm is the relative recoil permeability and
�M = �Br/μ0 is the residual magnetization. For hard

ferrites, the typical value of μm is 1.03–1.3 [24]. In this
paper, the value is set to 1.05. On the rotor, there are
two-pole pairs. Each pair is composed of one PM pole
and one consequent pole. The copper space between
PMs is assumed to be occupied by unmagnetized PM
material ( �M = �0) [25]. Indeed, pure copper is dia-
magnetic and its relative permeability is 0.999994 [26].
Nevertheless, compared to the relative recoil permeabil-
ity of 1.05 for PMs, influence of the approximation is
negligible.

3) For region III, the magnetic property of steel is
described by

�BIII = μ0μr �HIII. (3)

The relative permeability μr is set to 30 in this case.

Since the magnetic field generated by PMs is constant,
no eddy currents are induced in the conductive domain.
To minimize the number of variables and simplify calculations,
the scalar magnetic potential � is introduced. Transforming
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Maxwell’s equations to Laplace’s and Poisson’s equations,
we obtain the governing equations for each domain

∇2�I = 0 (4a)

∇2�II = ∇ · �M
μm

(4b)

∇2�III = 0. (4c)

The governing equations are solved in spherical coordi-
nates. For regions I and III (i = I, III), the general solu-
tion to Laplace’s equation is obtained through separation of
variables [27]

�i (r, θ, φ) =
∞∑

n=0

∞∑

m=−n

[
κm

ni · rn + ξm
ni · r−(n+1)]Y m

n (θ, φ)

(5)

where Y m
n (θ, φ) is the spherical harmonic function and κm

ni
and ξm

ni are unknown constants.
Since the actuator geometry is axial symmetric, the mag-

netic scalar potential is independent on φ, which means m = 0
in (5). Hence, the general solution to Laplace’s equation can
be simplified

�i (r, θ) =
∞∑

n=0

[κni · rn + ξni · r−(n+1)]Pn(cos θ). (6)

For region II, the general solution to Poisson’s equation is
obtained by adding a particular solution which satisfying the
excitation item in (4b) to (6).

It is assumed that PMs are radially magnetized. Therefore,
Mθ = Mφ = 0 and

Mr =

⎧
⎪⎪⎨

⎪⎪⎩

M if θ ∈
[

0,
β

2

]
or

[
π − β

2
, π

]

0 if θ ∈
[
β

2
, π − β

2

]
.

(7)

Mr is a piecewise function of θ and sectionally continuous
in [0, π]. It can be expanded in Fourier–Legendre series [28]

Mr (θ) = Fr (cos θ) =
∞∑

n=0

Crn Pn(cos θ) (8)

with the coefficients

Crn =

⎧
⎪⎨

⎪⎩
(2n + 1)

∫ β
2

0
M Pn(cos θ) sin θ dθ if n = even;

0 if n = odd.
(9)

Assume that a particular solution for region II can be written as

�
p
II =

∞∑

n=0,2,4···
C1r Pn(cos θ)+

∞∑

n=1,3,5···
C2r Pn(cos θ) (10)

to meet Poisson’s equation

∇2�
p
II = ∇ · �M

μm
.

Comparing the respective items on the both sides results in
C1 = 2Crn/[μm(2 − n2 − n)] and C2 = 0.

To solve unknowns in the general solution, following bound-
ary conditions [29] are applied:

1) finite-field condition at r = 0;
2) continuous radial component of �B at r = Rb and Rr ;
3) continuous tangential components of �H at r = Rb and

Rr ;
4) �H = �0 inside the stator shell.

B. Time-Harmonic Field Excited by Stator Currents

Here, we focus on the dynamic field with components
of e jωt and e− jωt . Contrary to the static field, the residual
magnetization of region II plays little role in the dynamic field.
However, eddy currents are induced. In fact, the conductivity
of PMs is much lower than that of copper. Since stator
currents are concentrated in the low latitude area, no much
difference will be caused by assuming that PMs has the same
conductivity with copper.

The constitutive relation for the three domains is the same
with those listed for the static field except that the residual
magnetization is absent. Due to the currents, the magnetic
vector potential �A is introduced rather than a scalar potential.
Using �A, Maxwell’s equations are transformed to Laplace’s
equations for regions I and III, and the diffusion equation for
region II

∇2 �AI = 0 (11a)

∇2 �AII = μ0μmσ
∂ �AII

∂ t
(11b)

∇2 �AIII = 0. (11c)

Considering �A is a vector function of r , θ , φ, and t , two
approaches can be used to solve the governing equations.
The first one is to solve the three scalar components of �A
separately and connect them by ∇ · �A = 0. Another alternative
is to introduce a second-order potential �W and change ∇2 �A
to ∇2 �W [30].

To minimize the number of variables, the second approach is
adopted. The definition of the second-order magnetic potential
is provided in the following [30]:

�A = ∇ × �W
�W = W1�r + �r × ∇W2. (12)

It is demonstrated in [31] that W2 ≡ 0 for eddy current
problems. Therefore, W2 will be omitted in the following. The
second-order potential will be written as �W = W �r . Based on
the derivation in [30] [equation 7.04(3) and (4)], governing
equations with �A can be converted to

∇2 �A = ∇ × (�r∇2W ) (13a)

∂ �A
∂ t

= ∂

∂ t
[∇ × (�rW )] = ∇ ×

(
�r ∂W

∂ t

)
. (13b)

To distinguish the second-order potentials for the three
domains, subscripts are added

∇2 �AI = 0 ⇒ ∇2 WI = 0

∇2 �AII = μ0μmσ
∂ �AII

∂ t
⇒ ∇2 WII = μ0μmσ

∂WII

∂ t
∇2 �AIII = 0 ⇒ ∇2 WIII = 0.
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The magnetic flux density is formulated as

�B = ∇ × �A = −�r∇2W + ∇W + ∇(�r · ∇W ). (14)

In this paper, a revolving magnetic field is generated.
If the input currents and the winding distribution are perfectly
sinusoidal, the magnetic flux density distribution shall just
contain the fundamental component. This means both �B and
W can be expressed as functions of r , θ , and cos(ωt − φ),
where ω is the angular frequency of input currents. To facilitate
the analysis, the electric and magnetic fields are written in
complex form, e.g., e jωt . In fact, these fields only have the
real part. Hence, the e− jωt element is additionally introduced
to remove the imaginary part through Euler’s formula. In the
following, the subscript + and − indicates the e jωt and e− jωt

elements, respectively.

1) Region I

WI = WI+ + WI− With

{
∇2WI+ = 0

∇2WI− = 0.
(15)

2) Region II

WII = WII+ + WII− With

⎧
⎪⎨

⎪⎩

∇2 WII+ = μ0μmσ
∂WII+
∂ t

∇2 WII− = μ0μmσ
∂WII+
∂ t

.

(16)

3) Region III

WIII = WIII+ + WIII− With

{
∇2 WIII+ = 0

∇2 WIII− = 0.
(17)

General solutions to Laplace’s equations in spherical coor-
dinates have been provided in (5). For regions I and III (i = I,
III)

WI+ =
∞∑

n=0

n∑

m=−n

[
Am

nir
n + Bm

nir
−(n+1)]Y m

n (θ, φ)e
jωt

WI− =
∞∑

n=0

n∑

m=−n

[
Cm

nir
n + Dm

nir
−(n+1)]Y m

n (θ, φ)e
− jωt .

(18)

For region II, the diffusion equations will be changed
to modified Helmholtz equations by defining the complex
coefficients a2 = jωμ0μmσ and b2 = − jωμ0μmσ

∇2 WII+ = jωμ0μmσWII+ = a2WII+
∇2 WII− = − jωμ0μmσWII− = b2WII−

The general solutions to modified Helmholtz equations in
a spherical frame are [32] (in(ar) and kn(ar) are modified
spherical Bessel functions)

WII+ =
∞∑

n=0

n∑

m=−n

[
Am

n2in(ar)+ Bm
n2kn(ar)

]
Y m

n (θ, φ)e
jωt

WII− =
∞∑

n=0

n∑

m=−n

[
Cm

n2in(br)+ Dm
n2kn(br)

]
Y m

n (θ, φ)e
− jωt .

(19)

Unknowns in the general solution are solved through bound-
ary conditions listed in Section IV-A. Please note that at
r = Rs , the tangential component of �H is discontinuous due
to the surface currents within θ ∈ [ψ/2, π − ψ/2]

HIφ|r=Rs = J0

sin θ
cos(ωt − φ).

With high-order time and space harmonics neglected, �B and
W are functions of r , θ , and cos(ωt −φ). Therefore, the item
e jωt only has the component of m = −1, while the item e− jωt

only has the component of m = 1. Through further derivations,
the boundary condition at r = Rs results in

∞∑

n=0

[
(n + 1)A−1

n1 Rn−1
s − nB−1

n1 R−(n+2)
s

]Y 1
n (θ, φ)

μ0
= e jφ J0

2 j

(20a)
∞∑

n=0

[
(n + 1)C1

n1 Rn−1
s − nD1

n1 R−(n+2)
s

]Y 1
n (θ, φ)

μ0
= e jφ J0

2 j
.

(20b)

To help solve unknowns, the right sides of (20a) and (20b)
are expanded through spherical harmonics. For (20a) within
the range of θ ∈ [ψ/2, π − ψ/2], we set

f (θ, φ) = μ0 J0e jφ

2 j
=

∞∑

n=0

N−1
n Y 1

n (θ, φ) (21)

where

N−1
n =

∫ π

0

∫ 2π

0
f (θ, φ)Y 1∗

n (θ, φ) sin θ dφdθ

= μ0 J0

2 j

√
(2n + 1)π

n(n + 1)

·
[
sin θ Pn(cos θ)|π−ψ/2

ψ/2 −
∫ π−ψ/2

ψ/2
Pn(cos θ) cos θ dθ

]
.

(22)

For each order n, the right sides of (23a) and (23b) are
known

(n + 1)A−1
n1 Rn−1

s − nB−1
n1 R−n−2

s = N−1
n (23a)

(n + 1)C1
n1 Rn−1

s − nD1
n1 R−n−2

s = N1
n . (23b)

Combining (23a) and (23b), with boundary conditions of finite
field at r = 0, continuous Br and continuous Hφ at r = Rb

and Rr , all unknowns in the general solutions are solved.

V. VALIDATION AND COMPARISON

A. Numerical Simulations for the Static Field

To validate the analytical solutions, numerical models are
built in COMSOL. Corresponding to Fig. 4, geometry of
the numerical model is presented in Fig. 5. The objective
of the study is the comparison of numerical and analytical
results for the magnetic flux density distribution in the air
gap. To enable the comparison, several half-circular curves
are selected randomly to check the magnetic flux density
distribution on the curves. Since the analytical solution is axial
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Fig. 5. Numerical model developed in COMSOL (with one driving coil
highlighted).

Fig. 6. Comparison of Br on curves with various φ angles
(r = 25.2 mm and θ ∈ [0, π ]).

symmetric, curves with different azimuth angles φ shall have
the same magnetic flux density distribution.

The comparison of Br is shown in Fig. 6 and Bθ in Fig. 7.
The analytical result indicates Bφ = 0, while the numerical
results on the selected curves show an average standard
deviation of 3.7×10−4 T, which is two orders smaller than the
magnitudes of Br and Bθ . In the finite element method based
simulations, the accuracy of results depends on the element
order, size, and the truncation error. Since PMs have a different
remanence with the adjacent domains, the first derivative of
the magnetic flux density is discontinuous and causes glitches
in the graphs. For this reason, the comparison is conducted
on the curve with r = 25.2 mm. On the rotor surface of
r = 25 mm, the glitches are more notable. In the analytical
simulations, the accuracy of this paper depends on the number
of orders (n) employed in the Fourier–Legendre expansion for
Mr . Given the above differences, the comparison validates that
the static field generated by the PMs is axial symmetrical.

Fig. 7. Comparison of Bθ on curves with various φ angles
(r = 25.2 mm and θ ∈ [0, π ]).

TABLE III

PARAMETERS FOR THE NUMERICAL SIMULATION

B. Numerical Simulations for the Dynamic Field

Parameters used in the numerical simulation are listed
in Table III. To activate the electromagnetic induction,
ac windings (placed on the xy plane in Fig. 1) are ener-
gized. As mentioned earlier, the energized stator windings are
approximated by surface current density �J f = J0 cos(ωt −φ)/
sin θ · �eθ within the region of θ ∈ [ψ/2, π − ψ/2]. The
magnitude J0 is derived from

�J f = (IA NA + IB NB + IC NC ) · �eθ
where IA = I0 cos(ωt), IB = I0 cos(ωt − 2π/3), and
IC = I0 cos(ωt − 4π/3) are input currents for the three-phase
windings. With high-order space harmonics neglected, NA ,
NB , and NC are fundamental elements in the Fourier expan-
sion of each phase winding distribution.

For example, the winding distribution of phase A within
the region of θ ∈ [ψ/2, π − ψ/2] is described in the stator
frame as

N ′
a(φ) =

{
−N ′/ sin θ if φ ∈ [−ζ/2, ζ/2]
N ′/ sin θ if φ ∈ [π − ζ/2, π + ζ/2]

where N ′ = N/(ζ Rs ). The minus sign means when the wind-
ing is energized with I0, the carried currents flow along the
negative �eθ direction within Region I. N ′

a(φ) is approximated



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON MAGNETICS

Fig. 8. Comparison of Br on the first curve (r = 25 mm, θ = π/2, and
φ ∈ [0, 2π ]).

by Fourier series

N ′
a(φ) =

∞∑

n=1

an cos(nφ)/ sin θ

where

an = 1

π

∫ π

−π
N ′

a(φ) cos(nφ)dφ

= −2 N ′

nπ
sin(ζ/2)− 2 N ′

nπ
sin(π − ζ/2).

Therefore, the fundamental element is NA = a1 cos(φ)/ sin θ .
In the same way, NB = a1 cos(φ − 2π/3)/ sin θ and
NC = a1 cos(φ − 4π/3)/ sin θ . With the balance three-phase
input currents, the magnitude of �J f is derived to be
J0 = 1.5 I0 a1 ≈ −16 513 A/m.

Similar to Section V-A, several curves are picked up to study
the magnetic flux density distribution in the air gap. Since
the remanence of PMs is set to zero in this simulation case,
glitches caused by the discontinuous first derivative of the flux
density disappear. The results comparison is conducted on the
rotor surface r = 25 mm for the finner mesh there. Compar-
isons for Br and Bφ on the first curve (r = 25 mm, θ =
π/2, and φ ∈ [0, 2π]) are shown in Figs. 8 and 9. The
analytical result indicates Bθ = 0 on the selected curve,
while the numerical result gives a standard deviation of
1.98 × 10−4 T (two orders smaller than the magnitudes of
Br and Bφ). Comparisons for �B on the second curve (r =
25 mm, φ = π/4, and θ ∈ [0, π]) are presented in Figs. 10–
12. Since the electromagnetic field is revolving, the magnetic
flux density distribution at the time instant of t = 0.1 s is
analyzed.

C. Discussions on the Dynamic Field

Through comparisons of the analytical and numerical
results, it is validated that modeling the stator currents as ac
surface current is principally reasonable. However, there are
slight differences between the analytical and numerical results.

Fig. 9. Comparison of Bφ on the first curve (r = 25 mm, θ = π/2, and
φ ∈ [0, 2π ]).

Fig. 10. Comparison of Br on the second curve (r = 25 mm, φ = π/4, and
θ ∈ [0, π ]).

Fig. 11. Comparison of Bθ on the second curve (r = 25 mm, φ = π/4, and
θ ∈ [0, π ]).

In Fig. 8, the numerical results for Br do not exactly follow a
sinusoidal function. Instead, deformations are observed around
the maximum and the minimum. To explain this phenomenon,
Br distribution in the static field generated by dc inputs
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Fig. 12. Comparison of Bφ on the second curve (r = 25 mm,
φ = π/4, and θ ∈ [0, π ]).

Fig. 13. Superposition of the primary and secondary fields due to eddy
currents.

(IB = IC = −IA/2 = −1 A, equivalent to the inputs of
ac windings at t = 0.1 s) is presented in Fig. 8 too. It is
notable that Br in the dynamic field is ahead of the static field
in phase. Besides, its distribution is out of shape at the top
parts. Actually, both deviations are caused by eddy currents.

At t = 0.1 s, the direction of the primary magnetic
field (excited by stator currents) is along the negative y-axis
(see Fig. 13). As per Lentz’s law, eddy currents will be induced
in the copper with the axis broadly opposite to that of stator
currents. The angular displacement θr is determined by the
rotor time constant. As a result, the secondary field generated
by eddy currents changes the primary field. It makes the max.
Br direction ahead of that in the primary field.

To explain deformations of the Br distribution, a semicircle
contour is used (see Fig. 13). As per Ampere’s law,

∮
C

�H ·
�ηdC = iinc. Since �H is zero inside the stator back iron,
the integration of Hr along the straight line is determined
by the inclosed currents. However, when the straight line of

the contour sweeps through the area where eddy currents and
stator currents have opposite directions, the increase /decrease
of inclosed stator currents is partially cancelled out by eddy
currents. Therefore, in such areas (for instance 0.9−π/2 rad),
the magnitude of Br in the dynamic field is smaller than that
in the static field. In the analytical model, both stator currents
and eddy currents are sinusoidally distributed. However, in the
numerical model, space harmonics exist in the winding distrib-
ution. Therefore, when the straight line of the contour sweeps,
the change of inclosed currents is not sinusoidal. This reason
contributes to the deformation around the maximum and the
minimum.

For the Bφ distribution in Fig. 9, the numerical
result exhibits an imperfect sinusoidal curve due to the
non-sinusoidally distributed windings. A small contour above
the positive x-axis is drawn in Fig. 13 for illustration. The
angle of the contour is so small that we assume the integration
of �H along the two straight sides cancels each other out and
Hφ in the air gap depends on the inclosed stator currents
solely. Therefore, step changes of the Bφ distribution occur
at the interfaces of different winding phases. Sparks in Fig. 9
are due to different mesh sizes used for winding domains and
gaps between winding domains. In addition, both the analytical
and numerical results in Fig. 9 show a slight phase lag from
a negative cosine wave. Actually, although the angle of the
contour is very small, the integrations of �H along the two
straight sides do no counteract each other completely. For
instance, at φ = π/2, Hr is negative and its magnitude at
the right side (in Fig. 13) is larger than the left side due to
the shafted Br distribution in the superimposed field (It is
better illustrated by the analytical results in Fig. 8). Hence,
the integration of �H along the two sides results in a positive
value and Hφ in the air gap is negative. Similarly, Hφ in the
air gap is positive at φ = −π/2. Hence, a slight phase shift
is generated.

Bθ components in Fig. 11 are mainly caused by stator
leakages. In the numerical model, the stator back iron is not a
complete shell. Gaps exist between the top/bottom shells and
the iron wound with windings (see Fig. 5). At the axial ends of
the stator windings, the magnetic flux path to the top/bottom
shells is shorter than that to the rotor core, which leads to stator
leakages between stator windings and the top/bottom shells.
However, in the analytical model, the gaps are not taken into
account. Therefore, the analytical result gives a larger peak
value of Bθ than the numerical result.

With respect to the Bφ distribution in the polar areas of
Fig. 12, deviations from the numerical results are due to the
assumption that PMs have the same conductivity with copper.
Eddy currents flowthrough there in the analytical model and
generate Bφ in the polar area. This explanation is validated
by the Bφ distribution got from the numerical simulation
without PMs on the rotor (where the copper layer is a complete
spherical shell).

In above, the dynamic field model is developed for the
case where only one set of driving windings is energized and
orientation of the energized winding set is specific (about the
z-axis). However, the field model is also applicable to cases
where more than one set of windings are energized wherever
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their orientations. Due to the linearity of Laplace equations
and heat diffusion equations, as well as the principle of vector
superimposition, flux density distribution, or eddy currents
distribution excited by two or more windings can be obtained
by summing up solutions of cases where each set of windings
is energized, respectively. In the case where the energized
winding set is not about the z-axis, flux density distribution
in the field can be obtained through coordinate conversion of
results presented earlier. Furthermore, if only a few coils are
energized rather than the whole winding set, the developed
field model is still applicable. In that case, only the formula
of the approximated surface current needs to be changed.

VI. ELECTROMAGNETIC TORQUES AND FORCES

Once ac windings are activated, driving torques will be
generated. They can be calculated through Maxwell stress
tensor (MST) or Lorentz forces acting on the eddy currents.

1) The rotor core (Region III) is made of laminated steel.
Although some eddy currents are induced there, the arm
length of the generated Lorentz force is short. Conse-
quently, the electromagnetic torque arising from these
eddy currents is negligible. In the numerical model,
the driving torque provided by the steel domain is only
3.5% of that generated in the copper area. Therefore,
eddy currents are assumed to be induced only in the
copper area

TeL = −
∫ 2π

0

∫ Rr

Rb

∫ π−β/2

β/2
Jθ Brr3 sin2 θ dθdrdφ.

(24)

2) The MST method starts from the idea of calculating
electromagnetic forces on charges in a certain vol-
ume. Through tensor arithmetic, the volume integral is
converted to surface integral of local tangential stress
on the boundary surface. This approach is usually
used in finite element solutions, since it only requires
knowledge of the local flux density distribution at the
boundaries [12], [13]

TeM =
∫ 2π

0

∫ π

0
HφBrr3 sin2 θ dθdφ. (25)

When the rotor is blocked and driving windings on the
equatorial plane are energized, the generated electromagnetic
torque is calculated through different ways. Torque calcula-
tions based on the analytical field model and those based on the
numerical field distribution are compared in Table IV, with the
errors never exceeding 4%. Since the existence of PMs within
the region II is not taken into account for the dynamic field
modeling, the driving torques got from the analytical model
are quite close to those obtained from the numerical model
without PMs (where the copper layer is a complete spherical
shell). The very limited deviation (<2%) is caused by the
neglected stator eddy currents, which weaken the flux density
in the air gap. Compared to the driving torques got from the
numerical model where PMs exist (whether the remanence is
set to zero or 0.23 T listed in Table II), the difference with
the analytical results increases. This deviation is contributed

TABLE IV

COMPARISON OF GENERATED ELECTROMAGNETIC TORQUES

by the existence of PMs which disturbs the circulation of eddy
currents on the rotor.

As analyzed in Section V, the static field of PMs displaces
the revolving magnetic field excited by ac currents. For
instance, on the equatorial plane, the magnetic flux density
on one side is stronger than that on the other side. Since eddy
currents in the copper region are induced by the revolving
magnetic field, the resultant Lorentz force on one side is
larger than that of the opposite side. Consequently, except
for driving torques, a resulting force is generated. Besides,
since the flux density in one gap side is larger than the other
side, a non-linear sticking force will be generated between
the ferromagnetic rotor core and the stator back iron. The
two factors form a radial force which is revolving at the
frequency same to the input frequency of driving windings.
If this disturbance force is not handle properly, it could con-
tribute to the pointing error and be transferred to the payload,
causing imaging distortion for observation missions. If the
disturbance force cause resonance with on-board elements
such as telescope mirrors, it could cause damages. To mitigate
this disturbance force, the approach of bearing-less induction
machine [33] can be adopted. Bearing coils placed coaxially
with the driving coils are changed to ac fed and work as two-
pol-pair three-phase windings (the frequency is double that of
the driving windings). Phase angle of bearing input currents
will be adjusted to make the bearing windings electrically
orthogonal to the driving windings. By adjusting the ac input
currents of the bearing windings, the unbalanced flux density
in the opposite gap sides can be compensated.

VII. CONCLUSION

This paper presents the design of a reaction sphere which
could perform 4π rotations. The innovative combination of
PMs and electromagnetic induction enables the generation
of control torques about any desired axes for spacecraft
attitude control. To facilitate dynamics modeling of the actu-
ator, analytical models have been developed to predict the
magnetic flux density distribution in the superimposed field,
where both PMs and alternating stator currents are involved.
Especially, the improved analytical model for fields generated
by stator windings provides an insight about Bθ distribution
for the first time, which reveals non-negligible flux leakage in
spherical actuators. Based on the obtained field information,
models of the resultant torques were built up subsequently.
Comparisons with the numerical results validated that the
developed analytical models allow to predict the magnetic flux
density distribution and driving torques precisely. Except for
the analysis of the proposed reaction sphere, the analytical
models are generally applicable to static and dynamic fields
in spherical machines.

In the presented actuator, rotations excited by electro-
magnetic induction are decoupled from PMs. In principle,
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its dynamics modeling can follow that of a conventional
ac machine. However, due to the spherical geometry and
the toroidal winding, significant leakages are expected in
the actuator and require further investigations. The complete
dynamics modeling of the proposed reaction sphere, as well
as optimizations of involved parameters will be discussed in
a future paper.
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