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Summary 
 

Achieving difficult goals in the design of powertrains regarding performance and 

reliability are more and more dependent on advanced computational models. 

Innovative frameworks for computational modelling make possible smart 

structural design (also: design of smart structures), to address simultaneously 

seemingly incompatible goals and objectives. 

Computational models in the design of powertrains need to be improved by extra 

methodologies such as non-dimensional analytical formulation and multi scale 

modelling. These methods increase the competence of inverse engineering 
solutions in different aspects of the design. The best way to implement these 

extra needs is to design them smarter. That makes them compact and low-

vibration. 

Compactness in regard with efficiency, dependability and serviceability; leads us 

to reduce the space and increase the strength and load capacity. Design of a 

compact gear drive needs a high-precision modelling of gear meshing. One way 

to achieve the best robustness performances regarding the modelling is to 

minimise the clearance between gear teeth. For this purpose, structurally well-

defined meshing gear needs to be studied. In geometrical point of view, the 

structurally well-defined model means a pair of gear without interference. The 
current analytical formulation for interference presents a design guideline for 

studying interference along the line of action only for standard gears. In the case 

of non-standard gear geometry, a new model has to be investigated. 

Interference for non-standard gears happens because of the penetration of the 

tip of the driven gear at the tooth root of the driving gear. The new interference 

model has to cover this area of penetration that occurs at the corner-to-root 

contact region. 

Design of powertrains involving compact, high-power-density and/or high 

precision gear transmissions need precise computational modelling of dynamics 

and compliance, over numerous calculation-intensive iterations. Another main 
concern, with regard to low-vibration systems in particular, is how to tailor the 

whole stiffness of a gear pair for limiting the amount of vibration in the gear 

system. However, current analytical/empirical methods for calculating gear 

compliance become inaccurate outside of the standard geometries for which 

they have been derived, whereas numerical methods rely on complex finite 

element models, which are very resource intensive in order to be accurate. 

Prediction of the vibration is the main problem for the design of low-vibration 

gear derives. Unpredictability and complexity of the tooth structure is large 

challenging to control the vibration of the gear systems. The variations in 

meshing gears make vibration and eventually create gear noise. This vibration 
could be transmitted structurally into the auto form, and other components as 



 
 

sound waves. Low-vibration gear systems have to be controlled by tailoring the 

stiffness of the meshing gears. Modelling of the gear mesh compliance is the way 

to approach for the gear stiffness. Investigation in this field without considering 

a structurally well-defined model for a gear pair is not possible.  

With regard to the interference and gear mesh compliance in this research, non-

dimensionalisation methodology used to reduce the number of independent 

parameters and quantify the influence of design parameters of gear geometry 

on interference risk and the precision of gear mesh compliance. 

This methodology permits the simultaneous modelling of entire families of gears 
and leads wider generality to the results of the numerical solutions. With the 

combined effect of the cutter radius and the dedendum on the clearance and the 

resulting tooth bending strength, the exact tooth geometry in search of stronger 

tooth forms has been determined. 

A new high-precision generalised analytical model for interference as non-

conjugate corner contact-and-penetration at the tooth root has been presented 

according to the relation between rack-cutter tip radius coefficient and 

dedendum coefficient considering the number of teeth and contact ratio for a 

combination of standard and non-standard gear.  

This model overcame inaccuracies in previous form-circle-based analytical 
models and admitted simpler and faster solutions than competitive numerical 

simulations for interference. A guideline for the tolerance design of a gear pair 

has been proposed with regard to the gear design parameters and centre 

distance deviation for a structurally well-defined gear mesh model. 

Compact tooth meshes and lower tensile bending stresses at the root have been 

produced by minimizing the unused radial clearance, while at the same time 

avoiding detrimental corner contact at the tooth root, thus leading to optimal 

solutions for compact gears and allowing the identification of a global optimum. 

The safety for optimum design of compact gear geometry has been achieved 

with a design tool (chart).  
The analytical formula for the influence of cutter tip radius on maximum root 

bending stress has been used as a design guideline for the next version of 

standards, which is also applicable for non-standard design for involute gears. 

This formula could replace the calculation inside the current standards while 

leaving the rest of the standards unchanged improving the validity of the 

standards without need for excessive revision. 

A generalised non-dimensional multi-parametric model (meta-model) for 

involute spur gear design serves to provide a complete analytical overview of the 

multi-parametric design space and is suitable for the fast assessment of existing 

designs, for implicit or explicit (direct) gear design, for extracting design 
guidelines, and for design optimisation. The meta-model for involute spur gear 

design has been used to identify and explore highly promising under-used 



 
 

subspaces of the parametric design space, which are currently of significant 

interest to, for instance, the automotive and aerospace industries. 

A versatile hybrid analytical-numerical method has been used for accurately 

calculating gear mesh compliance of arbitrary (including non-standard) tooth 

geometries which will be particularly well-suited for complex iterative tasks, such 

as dynamical simulation and gear design. Finite element analysis in conjunction 

with Saint-Venant's Principle have been used for accurate and fast numerical 

calculation of bending & foundational compliance. By means of cubic Hermitian 

interpolation, the results of the hybrid analytical-numerical method have been 
mapped to a multi-parametric compliance function of the instantaneous position 

of two mating gears along the line of action and a large array of design 

parameters.  

The obtained compliance functions can be applied directly to gear dynamical 

simulations, parametric design and optimisation algorithms etc. The same 

functions can also provide powerful inverse solutions, which can be used for 

direct compliance-based gear design, for instance, to obtain optimised low-

vibration powertrains.  

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 



 
 

SAMENVATTING 
 

Het bereiken van moeilijke doelen in het ontwerp van powertrains omtrent de 

prestaties en betrouwbaarheid zijn meer en meer afhankelijk van geavanceerde 

rekenmodellen. Innovatieve kaders voor computationeel modelleren mogelijk 

maken slim constructief ontwerp (ook: ontwerp van slimme constructies), 

schijnbaar onverenigbare doelstellingen tegelijk aan te pakken. 

Computationele modellen in het ontwerp van aandrijflijnen moeten worden 

verbeterd door extra methodieken zoals niet-dimensionale analytische 

formulering en multischaalmodel. Deze methoden verhoging van de 
competentie van inverse technische oplossingen in de verschillende aspecten 

van het ontwerp. De beste manier om deze extra eisen implementeren is om ze 

slimmer ontwerpen. Dat maakt ze compact en trillingsarm. 

Compactheid in verband met efficiëntie, betrouwbaarheid en bruikbaarheid; 

leidt ons naar de ruimte te verminderen en de kracht en de belastbaarheid. 

Ontwerp van een compacte tandwiel drive heeft een hoge precisie-modellering 

van het vistuig meshing. Een manier om de beste prestaties robuustheid 

betreffende het modelleren bereiken is de speling tussen tandwieltanden 

minimaliseren. Daartoe structureel goed gedefinieerde meshing tandwiel moet 

worden bestudeerd. In geometrische oogpunt, de structureel goed 
gedefinieerde model betekent een paar spullen zonder inmenging. De huidige 

analytische formulering voor interferentie presenteert een ontwerp van richtlijn 

voor het bestuderen van interferentie langs de lijn van de actie alleen voor 

standaard versnellingen. Bij afwijkende tandwielgeometrie, een nieuw model 

moet worden onderzocht. Interferentie voor niet-standaard apparatuur gebeurt 

omdat de penetratie van de punt van het tandwiel nummer 2 op de tandwortel 

van het tandwiel nummer 1. De nieuwe storingsmodel moet dit gebied dringen 

die betrekking optreedt bij de hoek-tot-root contact regio. 

Het ontwerp van de aandrijflijnen met compacte, high-power-dichtheid en/of 

hoge precisie tandwieloverbrengingen nodig precieze computationeel 
modelleren van de dynamiek en compliance, over tal van rekenintensieve 

iteraties. Een andere belangrijke zorg met betrekking tot trillingsarme systemen 

in het bijzonder, hoe de gehele stijfheid van een tandwielpaar maat voor het 

beperken van de hoeveelheid trilling in het overbrengingssysteem. Echter, de 

huidige analytische/empirische methoden voor de berekening van versnelling 

naleving onnauwkeurig worden buiten de standaard geometrieën waarvoor ze 

zijn afgeleid, terwijl numerieke methoden rekenen op complexe eindige 

elementen modellen, die heel zijn resource-intensieve, om nauwkeurig te zijn. 

Voorspelling van de trillingen is het grootste probleem voor het ontwerp van 

trillingsarme tandwiel ontleent. Onvoorspelbaarheid en complexiteit van 
tandweefsel grote uitdaging om de trilling van het tandwiel te reguleren. De 



 
 

variaties in meshing versnellingen maken trillingen en uiteindelijk geluiden van 

de transmissie te maken. Deze trilling kan structureel worden overgebracht op 

de automatische vorm, en andere componenten zoals geluidsgolven. 

Trillingsarme overbrengingssystemen moet geregeld door afstemmen van de 

stijfheid van de tandwielen meshing. Modellering van het vistuig maas naleving 

is de manier te benaderen voor de versnelling stijfheid. Onderzoek op dit gebied 

zonder daarbij een structureel goed gedefinieerde model voor een 

tandwielenpaar niet mogelijk. 

Met betrekking tot de interferentie en versnelling mesh naleving in dit 
onderzoek, niet-dimensionalisation methode gebruikt om het aantal 

onafhankelijke parameters te verminderen en de invloed van het ontwerp 

parameters van het vistuig geometrie van interferentie risico en de precisie van 

het vistuig mesh naleving kwantificeren. Deze methode maakt het gelijktijdig 

modelleren van hele families versnellingen en leidt breder algemeenheid de 

resultaten van de numerieke oplossingen. Met het gecombineerde effect van de 

freesradius en dedendum van de klaring en de resulterende tand buigsterkte De 

precieze tandgeometrie op zoek sterkere tandvormen bepaald. Een nieuwe high-

precision gegeneraliseerde analytisch model voor interferentie als niet-

conjugaat hoek contact-en-penetratie in de tandwortel is gepresenteerd op basis 
van de relatie tussen rack-cutter tip radius coëfficiënt en dedendum coëfficiënt 

gezien het aantal tanden en contact ratio voor een combinatie van standaard en 

niet-standaard uitrusting. Dit model overwon onnauwkeurigheden in 

voorgaande form-circle-gebaseerde analytische modellen en toegelaten 

eenvoudiger en sneller dan concurrerende oplossingen numerieke simulaties 

voor interferentie. Een richtlijn voor de tolerantie ontwerp van een versnelling 

pair is voorgesteld met betrekking tot het ontwerp van het vistuig parameters en 

het centrum afstand afwijking voor een structureel goed gedefinieerde tandwiel 

mesh model. Compact tand mazen en onderste buigtrekspanningen de oorzaak 

zijn geproduceerd door het minimaliseren van de ongebruikte radiale speling, 
terwijl het vermijden van nadelige hoek contact aan de tandwortel, hetgeen leidt 

tot een optimale keuze van compact tandwielen en waardoor de identificatie van 

een globale optimum. De veiligheid voor de optimale vormgeving van compacte 

tandwiel geometrie is bereikt met een design tool (grafiek). De analytische 

formule voor de invloed van snijtip radius maximale buigspanning wortel is 

gebruikt als een ontwerp richtlijn voor de volgende versie van standaarden, die 

van toepassing voor niet-standaard ontwerp voor spiraalvormige tandwielen is. 

Deze formule kan worden vervangen door de berekening in de huidige normen 

terwijl de rest van de standaarden onveranderd verbetering van de geldigheid 

van de normen zonder dat overmatige herzien. Een algemene dimensieloze 
multi-parametrisch model (metamodel) voor evolvente tandwiel ontwerp 

gepresenteerd een volledig analytisch overzicht van de multi-parametrisch 

ontwerpruimte te bieden en is geschikt voor het snel beoordelen van bestaande 



 
 

ontwerpen voor impliciete of expliciete (rechtstreekse ) ontwerp van het vistuig, 

voor de extractie van ontwerprichtlijnen, en voor het ontwerp optimalisatie. De 

meta-model voor evolvente tandwiel ontwerp is gebruikt om veelbelovende 

onderbenut deelruimten van het parametrisch ontwerpen ruimte, die op dit 

moment van groot belang zijn dat wil zeggen de automobiel- en 

luchtvaartindustrie te identificeren en te verkennen. Een veelzijdige hybride 

analytische-numerieke methode is gebruikt voor het nauwkeurig berekenen 

tandwielschade naleving van willekeurige (met inbegrip van niet-standaard) tand 

geometrieën die bijzonder goed geschikt voor complexe iteratieve taken, zoals 
dynamische simulatie en ontwerp van het vistuig zal zijn. Eindige elementen 

analyse in combinatie met Saint-Venant het principe zijn gebruikt voor 

nauwkeurige en snelle numerieke berekening van buigen en fundamentele 

compliance. Via hermitische kubieke interpolatie zijn de resultaten van de 

hybride analytische-numerieke methode toegewezen aan een multi-

parametrische compliance functie van de momentane positie van twee paren 

tandwielen langs de werklijn en een groot scala aan ontwerpparameters. De 

verkregen naleving functies kunnen direct naar versnelling dynamische 

simulaties, parametrisch ontwerpen en optimalisatie algoritmes etc. Dezelfde 

functies kunnen ook zorgen voor een krachtige inverse oplossingen, die kunnen 
worden gebruikt voor direct-naleving gebaseerde ontwerp van het vistuig, dat 

wil zeggen te verkrijgen geoptimaliseerd trillingsarme aandrijflijnen worden 

toegepast. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 



 
 

Propositions 

 
1) A new high-precision generalised analytical model for interference as non-

conjugate corner contact-and-penetration at the tooth root can overcome 

inaccuracies in previous form-circle-based analytical models and admit simpler 

and faster solutions than competitive numerical simulations for interference 

(Chapter 4). 

2) A guideline for stronger tooth forms (Chapter 3) and the tolerance design of a 

gear pair (Chapter 5) can be proposed with regard to the gear design parameters 

and centre distance deviation for a structurally well-defined gear mesh model, 

respectively. 

3) A generalised non-dimensional multi-parametric model (meta-model) for 

involute spur gear design can serve to provide a complete analytical overview 

of the multi-parametric design space and will be suitable for the fast assessment 

of existing designs, for implicit or explicit (direct) gear design, for extracting 

design guidelines, and for design optimisation which are currently of significant 

interest to i.e. the automotive and aerospace industries (Chapter 8). 

4) A versatile hybrid analytical-numerical method  in conjunction with cubic 

Hermitian interpolation can be used for accurately fast calculating of direct gear 

mesh compliance of tooth geometries which will be applied directly to gear 

dynamical simulations, parametric design and optimisation algorithms etc. The 

same functions can also provide powerful inverse solutions, which can be used 

for direct compliance-based gear design, i.e. to obtain optimised low-vibration 

powertrains (Chapter 9). 

5) The complexity and unpredictability of gear geometries can be considered a 

‘black art’. 

6) Mechanical gears in nature (i.e. jumping insects) are not designed; they are 

evolved for synchronisation in the animal world.  

7) Non-dimensionalisation methodology which lends wider generality to the 

results of the numerical solutions can be used to reduce the number of 

independent parameters and quantify the influence of design parameters, in 

general. 

8) Pretending to know is much easier than actually knowing. 

9) Only the people who cannot use Mathematics say that it is useless. 

10) Less interference and more compliance lead to an easier but less interesting life. 

 

 
These propositions are considered opposable and defendable and as such have been 

approved by the Promotors: Prof. dr. ir. C. Spitas and Prof. dr. ir. V. Spitas 
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1- Introduction  
 

1.1. BACKGROUND OF COMPACT GEAR 

A normal transmission drivetrain system includes shafts, housings, bearings, and 

gears. Gears in particular are key, complex and dynamically self-exiting elements 

of these systems, with critical influences to vibration, loading, strength and 

efficiency of the system and therefore obvious implications in terms of design. 

Gears are everywhere: in watches, bicycles, domestic appliances, cars, ships, 

airplanes, wind turbines, factories etc. Wherever we need to transmit consistent 
rotational motion and/ or power definitely we need power transmission systems 

including gears, as they remain unparalleled in terms of combined accuracy, 

efficiency and power density. 

Due to increasing requirements for flexible design methodologies able to use 

adaptively different parameters and assumptions, computational models in 

power transmission system design need to be improved by extra methodologies 

such as non-dimensional analytical formulation and multi-scale modelling (local 

meshing geometry/physics versus drivetrain-scale system response). These 

methods increase the capability of innovative non-standard (out-of-the-box) 
solutions in different aspects of the design. For strong, compact, efficient, 

vibration-free gears, they key challenge is to overcome the uncertainties 

imposed by a host of (chaotic and semi-chaotic) errors, external excitations and 

self-excitations. Ultimately, the sensitivity to each of these factors must be 

understood well, modelled, and then beyond-the-state-of-the-art techno-

economically appealing design solutions, guidelines and architectures to 

minimise or eliminate such sensitivities must be formulated.  

For example, compactness is closely coupled in regard with vibration, efficiency, 

reliability and serviceability; it leads us to reduce the space/ backlash and 

increase the strength and load capacity and potentially improve other 
performance aspects, such as dynamics (for example by reduction or elimination 

of chaotic contact reversal/ rattling). For instance in wind turbine the drive train 

as the main component of wind turbine, has a significant influence on these 

aforementioned parameters, with several (system-level) failures traced back to 

these as root causes. A similar case can be made for all high-power transmissions, 

but also for motion transmissions, where vibration, noise and lack of positional 

accuracy are a serious concern even if structural failure is not a risk. Hence the 

aforementioned aspects have to be taken into account specifically in the design 

of smart drive trains.  
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 1.1.1. Interference 

Design of a compact gear drive needs a high-precision modelling of gear meshing. 

Compactness requires to minimise the clearance between gear teeth, while still 

avoiding interference. For this purpose, structurally well-defined meshing 

gear models need to be studied, where ‘well defined’ in this context is used to 

signify the enabling of conjugate tooth action without interference. The 

prevailing analytical formulation for interference has been suggested by Litvin 

[1]. The solution presents a design guideline for studying interference along the 

line of action, but actually fails to address true meshing conditions prevailing in 

a host of geometries besides those of standard gears. Thus in the case of non-

standard and compact gear geometry, a new model has to be developed. 
Interference for non-standard gears happens because of the penetration of the 

tip of the driven gear (gear number 2) at the tooth root of the driving gear (gear 

number 1). The new interference model has to cover this area of penetrating 

that occurs at the corner-to-root contact region. 

1.1.2. Compliance 

Prediction of positional accuracy and vibration is the main problem for the design 

of high-accuracy low-vibration gear drives. The unpredictability of the operating 

loads and the complexity of the tooth structure and resulting dynamic variability 

of the mechanical system properties presents a strong challenge to predicting 

(or even controlling) the instantaneous position and vibration of gear drivetrain 

systems. There are numerous conceivable explanations for gear vibration 

produced from the tooth contact strengths [2]. The transfer of the load from the 

driving gear to the driven gear happens across a varying number of simultaneous 

moving tooth contacts. The resulting changes in stiffness as well as external 

excitations can and do cause the direction and amplitude of the contact forces 
to change rapidly, producing vibration. While little can be done to alter this 

fundamental phenomenon, a host of solutions present themselves: 
• Gear configuration design can be employed to simultaneously consider the 

effects of a host of parameters of the gear and drivetrain topology and geometry 

with the purpose of achieving desired low-vibration responses predictably and 

robustly. Of course, such configuration design requires to obtain a model for the 

prediction of gear vibration and an investigation of gear dynamics is needed. 

• Low-vibration gear systems have to be controlled by tailoring the stiffness of the 

meshing gears. Modelling of the gear mesh compliance is the way to approach 

for the gear stiffness. Investigation in this field without considering a structurally 

well-defined model for a gear pair is not possible. 

Compliance mechanisms are flexible mechanisms that transfer an input force 

or displacement to another point through elastic body deformation [3]. 
Investigations of the magnitudes of elastic tooth deformations and also their 

effects on gear performance have been starting for many years since 1970’s. 

There are some advantages in studying of the elastic deformations on gear tooth 
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such as (1) evaluating the compliance of mating gears in high precision control 

systems, (2) calculating the gear mesh stiffness for dynamic analyses of compact 

gear systems, (3) optimising the profile modification in heavily loaded compact 

gears, for instance wind turbine gearing, and (4) recognising the performance of 

new type of gears as non-metallic gears, which nowadays are being used in 

manufacturing uses [4]. 

Two mating gears are contacting in the direction of the line of action and the 

displacements of the tooth happen along the line of action. The best definition 

of tooth compliance is the elastic deflection characteristics of an individual gear 
tooth. The compliance of one tooth is calculated from deflections due to bending 

(Bending compliance), foundation deflections (Foundation compliance) and 

contact deflection (Hertzian compliance). 

With regard to the optimised compact gear pairs a structurally well-defined gear 

has to be designed and for gear mesh compliance the stiffness tailoring has to be 

assessed.  

 

1.2. OBJECTIVES OF THE RESEARCH 

The principal objective of this research is to provide a parametric solution for 
design of high precision of compliance gear mechanisms which has the ability to 

control the gear system. To obtain this goal we need to investigate the influence 

of design parameters of gear geometry on gear compliance and then finding the 

analytical relations between design parameters and compliance as a design tool. 

The main research question is how the gear compliance can be assessed by 

means of computationally efficient analysis and design of optimally compact 

gear pairs? In order to answer the research question, we performed a versatile 

hybrid analytical-numerical method for accurately calculating gear mesh 

compliance. The objectives of this thesis are as follows: 
 

• To find a methodology which permits the simultaneous modelling of entire 

families of gears and lends wider generality to the results of the numerical 

solutions. 

• To determine the exact tooth geometry in search of stronger tooth forms 

resulting tooth bending strength. 

• To develop a new high-precision generalised analytical model for interference 

to admit simpler and faster solutions than competitive numerical simulations 

for interference.  

• To propose a guideline for the tolerance design of a gear pair with regard to the 

gear design parameters and centre distance deviation for a structurally well-

defined gear mesh model. 

• To produce compact tooth meshes and lower tensile bending stresses at the 

tooth root leading to optimal solutions for compact gears and allowing the 

identification of a global optimum. 
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• To achieve the safety for optimum design of compact gear geometry with a 

design tool. 

• To propose an analytical formula for the influence of cutter tip radius on 

maximum root bending stress as a design guideline for the next version of 

standards, which will be also applicable for non-standard design for involute 

gears.  

• To develop a generalised multi-parametric model (meta-model) for involute 

spur gear design to provide a complete analytical overview of the multi-

parametric design space and will be suitable for the fast assessment of existing 

designs, for implicit or explicit (direct) gear design, for extracting design 

guidelines, and for design optimisation. 

• To find a calculation method for accurately calculating gear mesh compliance of 

arbitrary (including non-standard) tooth geometries which will be particularly 

well-suited for complex iterative tasks, such as dynamical simulation and gear 

design.  

• To develop an accurate and fast numerical calculation of bending & 

foundational compliance. 

• To obtain compliance functions to be applied directly to gear dynamical 

simulations, parametric design and optimisation algorithms etc.  

 

1.3. OUTLINE OF THE THESIS 

To address the computationally efficient analysis & design of optimally compact 

gear pairs and assessment of gear compliance, this thesis has been accomplished 

based on ten analytical and numerical research papers at TU Delft. 

In this research, new formulation for interference limitation was presented 

according to the relation between the gear design parameters. The number of 

teeth and contact ratio for a combination of standard and non-standard gear 

were considered. Interference model was applied for a structurally well-defined 

gear meshing system. Non-dimensional analytical modelling was used to obtain 

results for entire gear families. This methodology increased the ability of the 

power of inverse engineering solutions in different aspects of the powertrain 
design. The results of interference occurrence were compared, according to 

formulations of gear geometry as per Litvin’s known model of the theory of 

gearing. The modelling of tooth compliance with the combinations of analytical 

and numerical (FE) method were introduced. Bending, fillet-foundation and 

Hertzian compliance were studied. The results showed us that the design 

parameters and the position of two mating gears along the line of action both 

had influences on the total gear mesh compliance.  

In particular, a comprehensive literature review with regard to the interference 

phenomena and gear mesh compliance was presented in Chapter 2. Different 

methodologies for interference and gear mesh compliance calculation with 
different applications were studied.  
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Parametric investigation of the combined effect of whole depth and cutter tip 

radius on tooth strength and compliance for the 20° involute gear system were 

presented in Chapter 3[5]. This chapter performed a parametric investigation of 

the combined effect of the cutter radius and the dedendum on the clearance and 

the resulting tooth bending strength using analytical calculations, computerised 

generation and finite element simulations to determine the exact tooth 

geometry in search of stronger tooth forms.  

Multi-parametric investigation of interference in non-standard spur gear teeth 

were studied in Chapter 4 [6]. This work proposed a general and fast 
mathematical model for calculating corner penetration at the tooth root, which 

is applicable to both analytically expressed and discretised tooth geometries. 

Based thereupon a non-dimensional multi-parametric investigation was carried 

out to quantify the effect of addendum and dedendum length, cuter tip radius, 

number of teeth and contact ratio on the interference risk and on this basis 

generalised guidelines were produced for the design of non-standard large fillet 

short dedendum 20° involute gears, including a method using standard cutters 

with indexing offsets. The present model effectively supplanted prior analytical 

and numerical interference models in the literature, which were proven to be 

limited subcases of this model. 
Influence of centre distance deviation on the interference of a spur gear pair 

were investigated in Chapter 5 [7]. Gear design generally considers global 

geometry like tooth profile shape and centre distance, however it needs also to 

consider the tolerances introduced in the manufacturing and assembly of two 

mating gears. The influence of these tolerances can be predicted better by 

understanding the behaviour of such manufacturing and assembly errors in 

conjunction with the gear geometry design process. To address this, the 

influence of the centre distance deviation and of the design parameters (i.e. 

cutter tip radius, dedendum, and tooth thickness) of the tooth profiles on 

interference were investigated. An analytical modelling framework for 
interference of a gear pair was developed, which was used to characterise a 

structurally well-defined gear meshing system. The tolerance zone was 

evaluated, with regard to cutter tip radius, dedendum, tooth thickness and 

centre distance deviation for a structurally well-defined gear mesh model. 

Different gear transmission ratio, contact ratio and a pressure angle of 20o have 

been considered.  

In Chapter 6 [8], the design of profile-generated involute gears was studied to 

maximise compactness and bending strength using non-standard equivalent rack 

dedendum and tip radius. A methodology was developed to design non-standard 

involute gear geometries generated by cutting tools with standard and non-
standard proportions, such as to produce compact tooth meshes by minimising 

the unused radial clearance, while at the same time avoiding detrimental corner 

contact at the tooth root. It was shown under which parametric combinations of 
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dedendum and tip radius of the equivalent rack (cutter) the feasible design 

solutions for different tooth numbers and transmission ratios produced lower 

tensile bending stresses at the root, thus leading to optimal solutions for 

compact gears and allowing the identification of a global optimum. The analysis 

led to a comprehensive mapping of the four-parametric design space in 

consideration of interference and undercutting and the discovered optima were 

compared to the design solutions found in current ISO, AGMA, GOST and JIS 

standards. 

The effect of cutter tip radius coefficient on the maximum root bending stress of 
spur involute gears considering comparative evaluation of different standards 

was studied in Chapter 7 [9]. This chapter performed a parametric investigation 

of the cutter radius coefficient on the maximum bending stress at the root for 

spur involute gears. The approach of this chapter was to apply unitary force at 

the highest point of single tooth contact (HPSTC) and then calculation the stress 

at the root using finit element analysis (FEA). FEM results were compared with 

stresses calculated based on the ISO 6336-Method B. A comprehensive 

comparison with the popular existing gear standards such as DIN, AGAM, ANSI, 

JIS and GOST was performed. It was shown under which value of the cutter tip 

radius, the feasible design solutions for different tooth numbers and 
transmission ratios produced lower bending stresses at the root, consequently 

leading to design a stronger gear. The analysis led to the analytical relation 

between the cutter tip radius and maximum bending stress at the root as a 

function of the number of teeth (for gear 1) and  gear transmission ratios, which 

can be used non-standard involute gears as well. 

A generalised non-dimensional multi-parametric model for involute spur gear 

design was presented in Chapter 8 [10], considering manufacturability and 

geometrical compatibility, where the latter considered various models of 

interference and accounted for the combined effects of the module, pressure 

angle, tooth addendum, dedendum, cutter tip radius, and the numbers of teeth 
of a pair of mating gears. The effect of the same parameters together with tooth 

thickness on the manufacturability of the individual gear teeth was also modelled 

in terms of pointing and undercutting. The full range of parameter values, 

including non-standard ones, was considered. The resulting combined model 

served to provide a complete analytical overview of the multi-parametric design 

space and was suitable for the fast assessment of existing designs, for implicit or 

explicit (direct) gear design, for extracting design guidelines, and for design 

optimisation. The model can be used to identify and explore highly promising 

under-used subspaces of the parametric design space, which are currently of 

significant interest to i.e. the automotive and aerospace industries 
In Chapter 9 [11-13], we developed a versatile hybrid analytical-numerical 

method and non-dimensional modelling framework for accurately calculating 

gear mesh compliance of arbitrary (including non-standard) tooth geometries 
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[11, 12]. Finite element analysis was used for the calculation of bending & 

foundational compliance in conjunction with Saint-Venant's Principle, which has 

been used to allow accurate and fast numerical calculation whereas Hertzian 

compliance was calculated analytically with high accuracy for curved elastic body 

contact. The influence of different combinations of cutter tip radius, dedendum, 

number of teeth and gear transmission ratio on gear mesh compliance was 

investigated. By means of cubic Hermitian interpolation, the results of the hybrid 

analytical-numerical method have been mapped to a multi-parametric 

compliance function of the instantaneous position of two mating gears along the 
line of action and a large array of design parameters [11, 13]. The obtained 

compliance functions can be applied directly to gear dynamical simulations, 

parametric design and optimisation algorithms etc. The same functions can also 

provide powerful inverse solutions, which can be used for direct compliance-

based gear design, i.e. to obtain optimised low-vibration powertrains. 

Figure 1.1 presents the relation between the contents of this work as the 

relations between interference and compliance of a gear pair in order to the 

design of high-tech powertrains. 

 

 
Figure 1.1: The layout of the thesis 
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2-Literature review 
 

2.1. INTERFERENCE 

The probability of interference occurrence will be decreased when a small gear 

meshes with a large gear. In general, interference is an undesirable and 

unwanted property for gear meshing. Interference may result to reduce the 

length of the action line [1]. Moreover, even if the gears should be compliant 

enough to survive such an interferencing without excessive wear or brakeage for 

a period, it is too difficult to obtain high-precision [2]. 
Interference weakens the gear teeth, and it is detrimental to gear meshing. There 

are some solutions to eliminate interference, for instance, by means of larger 

gear with more teeth (longer addendum for one gear and shorter for another 

one), interference will be resolved. Nevertheless with large gears, other 

problems will be unveiled, for example: increased pitch-line velocity, noise, 

vibration, wear, reduced power transmission. Moreover, the results of using long 

and short addendum for meshed gear are in non-standard and non-

interchangeable gear. Because of the influences of the addendum on 

interference, some researcher investigated the relation between addendum 
modification on gear geometry and effect of the changes on interference [3-7]. 

Another solution is that interference can be eliminated using a generation 

process, but this method is not a satisfactory solution because of the effect of 

tooth weakening [8]. Increasing the number of teeth for small gear can be 

another option to solve this problem. On the other hand this solution causes to 

increase the gear size and pitch line velocity. In this case, designers must consider 

undercutting phenomena to find the optimum number of teeth. Undercutting, 

although not generally desirable, can indeed remove material that would cause 

interference. This is the reason that some researchers investigated the optimum 

number of teeth, to avoid interference and undercutting on gear meshing [9-11]. 
One of the further effects of interference on the gear is vibration. Currently, the 

applied methodology to fabricate gear is cutting by basic working principle in 

industry. This method can be introduced into two parts that are from generating 

and cutting method [12]. The method of generating applies the principle of shape 

tooth profile more than the form cutting. It can be divided into pinion cutter and 

rack cutter [13]. 

In particular, Komori et al. [14] investigated the failures due to contact of side 

edge and tip edge of tooth as trochoidal interference in detail: Plastic flow and 

wear of tooth flank of several micron meters were observe in the interference 

zone in dedendum. The damage was clearer near tooth root of driving gear, 
compared with that of driven one. On the other hand, interfering tip edge was 

not damaged severely. Corner rounding of tip edge softened the failure condition 
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due to trochoidal interference, but the effect was limited. Simulation method for 

contacting state of helical gear teeth with tooth form modification considering 

trochoidal interference was developed. 

Lin et al. [15] studied the effect of extended tooth contact on the modelling of 

spur gear transmissions. This study compared the static transmission error and 

dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of 

tooth flexibility has been considered and when it has been ignored. Neglecting 

the effect yielded an underestimate of resonance speeds and an overestimate of 

the dynamic load. 
Seager [16] studied the separation of gear teeth in approach and recess, with 

particular reference to scoring failure. It was shown that the ideal separation 

might be very small over an appreciable internal beyond tip contact, and, 

therefore, severe corner contact, which was conducive to scoring, might occur, 

unless there was sufficient tip relief. The dependence of ideal separation on 

pressure angle and tooth pitch was investigated. Increasing the pressure angle 

would usually, but not always, reduce the susceptibility to corner contact: a high 

pressure angle was generally recommended because it was consistent also with 

low sliding speed and high tooth strength. Reducing the tooth pitch reduced both 

the tip sliding speed and the ideal separation, and, therefore, a balance should 
be sought in designing against scoring. The results of scoring tests should be 

reviewed to take into account the possible effects of comer contact. Realistic 

rating of gears for scoring resistance must include a measure of the severity of 

corner contact. 

Munro et al. [17] devoted to a phenomenon known as corner contact, or contact 

outside the normal path of contact, which could occur in spur and helical gear 

transmission systems under certain conditions. In this case, a change in position 

of the driven gear with respect to its theoretical position took place, thus 

inducing a transmission error referred to here as the transmission error outside 

the normal path of contact. The research dealt with spur gears only, but the 
results were directly applicable to helical gears. It systematized previous 

knowledge on this subject, suggested some further developments of the theory 

and introduces the novel phenomenon of top contact. The theoretical results 

were compared with experimental measurements using a single flank tester and 

a back-to-back dynamic test rig for spur and helical gears, and they were in good 

agreement. Convenient approximate equations for calculation of transmission 

error suggested here were important for analysis of experimental data. This 

would make possible the calculation of tooth stiffness values needed for use in 

theoretical models for spur and helical gear transmission systems. 

Eritenel et al. [18] presented an evaluation of tooth deflections and the effect of 
load on the backlash of these gears using a finite element program that had an 

accurate contact deflection analysis embedded within it. In addition to deflection 

analysis, the effect of tip modification on the contact regime and loads along the 
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edges of the plastic gears was presented. An example spur gear pair and an 

example helical gear pair were used to demonstrate the analysis methodology. 

The results of the analysis showed that backside tooth contact did not occur as 

tooth deflections in plastic gears increase with increasing load. In fact, the 

backside gap actually increased with increasing load. 

It has been shown in this research that backside contact due to tooth deflections 

would not occur in meshing involute gear pairs. In fact, the backside gap actually 

increased as load was increased. The addition of tip relief also increased this 

backside gap. It has been also shown for these examples other derivatives of the 
analysis, namely, the significance of corner contact and the application of tip 

relief to minimize this contact. 

Chen et al. [19] presented the simulation on gear backlash and interference 

check of harmonic drive with circular-arc teeth profile. To ensure uniqueness, 

geometry invariability and continuity of tooth profile expression, a 

representation for circular-arc tooth profile based on arc length coordinate was 

proposed, and Heaviside function was used to present common tangent double 

circular-arc tooth profile. Assembly models of harmonic drive with circular-arc 

tooth profile were built under different wave generators. In these models, flex 

spline tooth could reflect the real working state of deformed flex spline. Using 
coordinate transformation, meshing simulation was executed by determining 

the relative position of engaged teeth profile. Then, gear backlash distribution of 

engaged teeth profile during assembly was obtained. And interference check was 

carried out according to the backlash. Experimental results showed that 

harmonic drive with double circular-arc tooth profile had wider meshing range 

and uniform backlash distribution. The change of maximum radial displacement 

of flex spline would lead to larger influence on backlash distribution, even cause 

teeth profile interference. 

Zhou and Chen [20] presented new modelling and calculation of impact friction 

caused by corner contact in gear transmission. Based on the mechanism of 
corner contact, the process of corner contact was divided into two stages of 

impact and scratch, and the calculation model including gear equivalent error-

combined deformation was established along the line of action. According to the 

distributive law, gear equivalent error was synthesized by base pitch error, 

normal backlash and tooth profile modification on the line of action. The 

combined tooth compliance of the first point lying in corner contact before the 

normal path was inversed along the line of action, on basis of the theory of 

engagement and the curve of tooth synthetic compliance & load-history. Then 

the impact positions and forces, from the beginning to the end during corner 

contact before the normal path, were calculated accurately. Due to the 
aforementioned results, the baklash model during corner contact was founded, 

and the impact force and frictional coefficient were quantified. A numerical 

example was performed and the averaged impact friction coefficient based on 
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the presented calculation method was validated. This research obtained the 

results which could be referenced to understand the complex mechanism of 

teeth impact friction and quantitative calculation of the friction force and 

coefficient, and to gear exact design for tribology. 

Tang et al. [21] established precise three-dimensional model of spur gear based 

on hob-shaving process with virtual manufacturing approach. Carried out 

dynamic simulation analysis based on corner contact. Obtained the dynamic 

stress variation rule for the gear under impact loads. The simulation results 

shown that the position of maximum dynamic stress at root of tooth under 
different conditions appeared on both sides symmetrically. The dynamic stress 

was bigger than the theoretic static strength under impact loads in ISO standard, 

and the position of maximum dynamic stress was on the higher side of the 

dangerous section determined according to ISO standard. The dynamic stress 

caused by the engaging-in impact was the maximum under different conditions, 

and the shorter the impact time was, the larger the dynamic stress was. 

It can be concluded that each solution in interference on gear geometry has its 

own consequence. Sometimes giving rise to a new problem such as noise, 

vibration and wear is related to the other parameters in gear geometry. A new 

solution in gear geometry must be found, according to parametric design with 
some limitations. It will be able to use the new restrictions to remove 

interference occurrence and further problems which are related to it. 

 

2.2. GEAR MESH COMPLIANCE 

There are a very large number of studies which include only the tooth stiffness 

as the potential energy storing element in the system. The flexibility (torsional 

and/or transverse) of shafts, bearings, etc., are all neglected in these works. The 

basic characteristic of the models in this group is that the only compliance 
considered is due to the gear tooth and that all other elements are assumed to 

be perfectly rigid. The resulting models are either translational or torsional. 

Many researches have been investigated about finding the accurate compliance 

coefficient. One of the reasons of using compliance instead of stiffness is to 

simplify the calculations and modelling of gear dynamic behaviours regarding 

series or parallel spring in mathematical modelling of spring-mass system. Some 

different techniques have been investigated in the stiffness of spur gear teeth. 

These approaches might be categorized in three main groups such as analytical 

method, finite element method and experimental method [24]. 

Early experimental investigations on gear tooth deflection were conducted by 
Walker [25-26], who described an apparatus featuring a pivoted lever capable of 

carrying weights at one end and having at its opposite end a flat, ground and 

polished surface bearing against the gear tooth under investigation. Load was 

applied at different points along the tooth profile and the actual deflection at the 
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point of load application was measured with a dial indicator reading up to 0.0001 

in. 

A large amount of both experimental and theoretical work has been published 

on spur gear compliance. Weber and Banaschek [27] obtained 2D analytical 

expressions for the tooth compliance and have provided a basis for much of the 

subsequent experimental and theoretical research. The existing European gear 

design standards (BS, ISO, DIN) use 2D tooth compliance data based on research 

carried out by Winter and Podlesnik [28]. This work provides an industrial datum 

for gear tooth compliance.  
In 1949, Weber [29] presented a theoretical investigation on spur gear tooth 

deformation, in which the mesh deflection of various gears mating with a rack 

was calculated. The tooth deformations due to bending moment, transverse 

shear and normal force were obtained by calculating the corresponding elastic 

strain energies and equating  them to the work done, whereas the tooth local 

deflection was calculated by applying the Hertzian elastic contact theory. Weber 

has carried out a complete analysis about the occurrence of deflection due to 

bending-, direct compression-, direct shearing- of tooth and bending, shearing 

and direct compression of the rim material considered as an elastic deformation. 

Energy methods, the two-dimensional theory of elasticity for simple shape, and 
simple beam theory were employed to compute the various component 

deflections due to load. 

Richardson [30] introduced compliance model for single and multiple tooth pair 

regarding the model of gear action to predict the contact load and significant 

stress that exist between mating gear teeth under operational condition to 

initiate careful investigation of dynamic loads. 

Aida [31] presented other examples of studies in this area. He modelled the 

vibration characteristics of gears by considering tooth profile errors and pitch 

errors, and by including the variation of teeth mesh stiffness. 

Chabert et al. [32] used FE method for spur gears of different ratios with 20-deg 
pressure angle and standard addendum proportions to evaluate stresses and 

strains in spur gear teeth subjected to a static load that was applied at three 

different points along the tooth profile. 

Premilhat et al. [33] applied a complex analytic transformation method to 

evaluate the combined mesh stiffness characteristics of spur gears acted upon 

by a concentrated load. The contribution of tooth local contact deformation to 

overall tooth deflection was separately obtained from the Hertzian elastic 

contact theory. 

Cornell and Westervelt [34] obtained a relationship between compliance and 

stress sensitivity of spur gear teeth. The variation of tooth pair compliance with 
position along the line of action is defined quite adequately by five term power 

series. The magnitude and variation of the tooth pair compliance with load 

position affects the dynamics and loading significantly. The tooth root stresses 
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along with their evaluation using tests, finite element analysis, and analytic 

transformation results, which indicated good agreement.  

Terauchi and Nagamura [35] presented an evaluation of the deflection of spur 

gear teeth subjected to a distributed load based on the Hertzian contact pressure 

distribution resulting from contact between the tooth profiles and a straight 

edge. 

Cornell [36] applied the materials properties in the behaviour of root stresses 

and tooth deformation considering the effects of bending, shear, Hertzian 

contact deformation and foundation flexibility. He developed analytical model 
for the total deflection of gear tooth at the point of load application and in the 

direction of load into the effects of three main components as basic, foundation 

and Hertzian deflection. 

Coy and Chao [37] introduced the mesh size selection method for the FE analysis 

of gear tooth deflection based on a finite element study of two cylinders in 

contact including the effect of Hertzian deformations. The method has been used 

to calculate spur gear tooth deflection. 

Vedmar [38] determined 3D gear tooth influence coefficients for use in a similar 

elastic model. No published work has been found reporting experimental results 

for a complete spur gear. 
Savage et al. [39] constructed a computer model to simulate the compliance and 

load sharing in a spur gear mesh.  The effects of deflections on mesh compliance 

and load sharing are investigated. The model includes deflection contributions 

from the bending and shears in the teeth, the Hertzian contact deformations. 

The model shows that rimmed gears increase mesh compliance and, in some 

cases, improve load sharing. 

Tavakoli and Houser [40] used compliance calculation in order to find optimum 

profile modifications to minimize the static transmission errors of spur gears for 

dynamic behaviour. It has been assumed that the compliance will be aimed in 

three parts as:  
1. Cantilever beam deflection due to both bending and shear;  

2. Rigid body tooth rotation at its base; and 

3. Contactor Hertzian deflection. 

Choy [41] defined the variation of tooth pair compliance with position along the 

line of action by analytical modelling of a five-term power series for dynamic 

analysis of a 2240-kW (3000-hp) helicopter planetary system. The results of 

analytical approach compared with some experimental studies which have 

showed a good correlation in gear-tooth loads. 

Steward [42] found the tooth contact compliance can contribute up to 30 

percent towards the total contact line compliance. For a non-uniform load 
distribution and near the tip/root/ends of the tooth flank there is a complicated 

3D contact stress field that cannot be readily modelled. The accuracy of the 

deflection (and root bending stress) results has been verified by applying point 
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loads to a spur gear. The test gear was chosen to be as large as practicable (18 

mm module, 18 teeth) to give the biggest possible deflection.  

Choi and David [43] studied the combined mesh stiffness characteristics of 

involute spur and helical gears and their transmission errors due to tooth 

deflections under load were evaluated. The bending and shear deflections on the 

contact line of a gear tooth were obtained by the finite element method (using 

isoparametric plate elements), and the contact deflections were obtained using 

Hertzian contact theory and the equation of Weber & Banaschek [27]. With these 

deflections, under the assumption of mathematically exact geometry, the mesh 
stiffness and compliance of a tooth pair were found using the so called flexibility 

method. Then using the mesh contact ratio and load sharing ratio, the combined 

mesh stiffness characteristics of a gear pair and their transmission errors due to 

the tooth deflections along the line of action were evaluated. 

Lee et al. [44] presented a computer simulation for the dynamic response of 

high-contact ratio spur gear transmission. He implemented analytical approach 

of gear mesh stiffness with tooth profit modification for gear dynamic motion to 

investigate the influence of linear profile modification and loading conditions on 

the dynamic tooth load and stress of high-contact-ratio spur gears. 

Costopoulos and Spyropoulou [45] introduced three kinds of compliance such as 
bending, foundational and Hertzian compliance and also developed an algorithm 

for the calculation of compliance of the teeth of spur gears and also for the 

evaluation of the load Distribution among the teeth as the gears are in mesh.  

Lin and Liou [46] investigated the elastic deflection -base on Webers’s 

investigation- in five categories as: A) bending deflection, B) shear deformation, 

C) axial compression, D) flexibility of the fillet and foundation, E) local contact 

deflection, to introduce an analytical model to measure the tooth stiffness for 

gear dynamics. 

Vinayak and Singh [47] extended the multi-body dynamics modelling strategy for 

rigid gears to include compliant gear bodies in multi-mesh transmissions. Only 
external, fixed centre, helical or spur gears were considered. This formulation 

combined distributed gear mesh stiffness and gear blank compliance models in 

a multi-body dynamics framework resulting in a set of non-linear differential 

equations with time-varying coefficients. Linearization and other simplifications 

were applied to yield the resulting linear time-invariant equations of motion. 

Several solution techniques were used to determine eigensolutions and forced 

harmonic responses. The resulting normal mode solutions were compared to 

those obtained by the finite element analysis for several examples of 

transmission containing flexible gears. A parametric study has been performed 

to assess the effect of gear orientation on the dynamics of transmissions. Finally 
analytical predictions were compared to the results of a laboratory experiment. 

Arafa and Megahed [24] used finite element modelling technique to evaluate the 

mesh compliance of spur gears and also load sharing between the meshing gear 
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teeth Contact between the engaging teeth is simulated through the use of 

contact elements. Results are compared with earlier predictions based on 

analytical, numerical and experimental methods.  

Pimsarn and Kazerounian [48] introduced pseudo-interference stiffness 

estimation (PISE) method which is as accurate as finite element contact analysis 

for determination of the contact force and the equivalent mesh stiffness for 

geared system. This method is based on the approximation of local contact 

deformation to be equal to geometric interference of assumedly rigid bodies and 

combines the finite element analysis to analyse the singular stiffness at the 
contact region. The difference between the corresponding results of PISE and 

finite element contact model is within 8%. 

Sainsot et al. [49] presented a new analytical bidimensional formula for 

fillet/foundation compliance analysis based on Muskhelishvili’s theory applied to 

elastic rings. The results of this new approach shown that they are in very good 

agreement with the results of finite element models and can directly account 

integrated into gear computer codes for tooth and body-induced deflections. 

Fonseca et al. [50] used mesh compliance analysis of the gear pair to develop an 

objective function for optimization for prediction of gear vibration. Based on a 

mathematical formulation for computing static transmission error and load 
sharing for low-contact-ratio external spur gears The GA algorithm was designed 

to minimize the weighted sum of the magnitudes of gear mesh frequency 

components.   

Chaari et al. [51] presented an analytical formulation of gear compliance for 

modelling of pitting and crack. Their influence on the gear mesh stiffness is 

analysed. A planetary gear set is presented as a case study to implement the 

tooth fault modelling. 

Zouari et al. [52] studied the effect of crack dimension and the direction of crack 

propagation, in the teeth foot, on the mesh stiffness using a finite element 

method with a three-dimensional survey. For spur gears, the mesh stiffness was 
affected in a meaningful manner by the presence of a foot crack of one or more 

teeth. This study was an attempt to estimate the effect of crack size, position, 

and direction on the spectrum of the gear mesh stiffness. 

He et al. [53] studied gear dynamic models with time-varying mesh stiffness, 

viscous mesh damping, and sliding friction forces and moments. Semi-analytical 

single-and multi term harmonic balance methods were developed for an efficient 

construction of the frequency responses. First, an analytical single-degree-of-

freedom, linear time-varying system model was developed for a spur gear pair in 

terms of the dynamic transmission error. Harmonic solutions were then derived 

and validated by comparing with numerical integration results. Harmonic 
solutions were extended to a six-degree-of-freedom system model for the 

prediction of (normal) mesh loads, friction forces, and pinion/gear displacements 

(in both line-of-action and off-line-of-action directions). Semi-analytical 
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predictions compared well with numerical simulations under non-resonant 

conditions and provided insights into the interaction between sliding friction and 

mesh stiffness. 

Chaari el al. [54] reported how the stiffness of one tooth can be calculated from 

deflections by bending, fillet-foundation deflections and contact deflection and 

how tooth crack is effecting on this stiffness. This was important to know how 

these factors effect on the stiffness of one tooth. A comparison with finite 

element model was presented in order to validate the analytical formulation. 

Wu et al. [55] presented the results of a detailed three-dimensional analysis of 
the torsional mesh stiffness of spur gears, through applying finite element 

methods were presented. In this research, tooth contact of a pair of spur gears 

system was analysed as body contact in a three-dimensional coordinate. The 

gears torsional deformation including three main components which were the 

body torsional deformation, tooth bending deformation and tooth surface 

contact deformation, the three components determined the torsional mesh 

stiffness of gears. The torsional mesh deformation and stiffness under different 

torque case were analysed in mesh. FEM were used to conduct the difference of 

one pair teeth and two pairs teeth torsional mesh stiffness, and the different 

gear torsional mesh deformation and stiffness in different contact position were 
analysed, it was found that the stiffness compensation exist when contrasting 

the two different mesh case. 

Li and Kahraman [56] incorporated a gear load distribution model that considers 

the total gear mesh compliance caused by the Hertzian contact, tooth bending, 

base rotation, and shear deformation into a transient elasto-hydrodynamic 

lubrication model. 

Meagher et al. [57] used compliance for numerical modelling of gear dynamic 

based on lumped parameter model. Lumped method used for quick calculation 

of gear stiffness. This model created based upon the modifications for torsion of 

the gear body and Hertzian contact.  The numerical method compared with finite 
element modelling and rigid multi-body kinematic modelling.  

Thirumurugan and Muthuveerappan [58] did a great job regarding normalised 

mesh compliance. They used finite element analysis to find the influence of 

finite-element modelling, boundary conditions, gear ratio, teeth number, 

module, pressure angle at pitch circle, backup ratio, generating rack cutter tip 

radius, and addendum modification factor on the load-sharing ratio and in turn 

in the maximum fillet stress on gear compliance. Through an approach based on 

the load-sharing ratio, that calculates the tooth load, an optimum design can be 

achieved. But this research couldn’t be able to find the relation between all these 

parameters with compliance. And it means we need individual investigation for 
the influence of parameter design on optimised gear geometry. 

Bouchaala et al. [59] applied an analytical model for gear mesh stiffness to find 

the equation of motion for investigation of non-linear dynamic behaviour of a 
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single stage spur gear. Also the influence of the Hertzian stiffness on the dynamic 

behaviour of the system especially in the transient regime has been investigated. 

Liu and Parker [60] studied the nonlinear, parametrically excited dynamics of two 

spur gear pairs in a two-stage counter-shaft configuration. The dynamic model 

included parametric excitations and contact loss of both tooth meshes with two 

different mesh frequencies. The time-varying mesh stiffness and nonlinear tooth 

separation functions were reformulated into forms suitable for perturbation 

analysis. The periodic steady-state solutions were obtained by the method of 

multiple scales and compared against a semi-analytical harmonic balance 
method as well as numerical integration for fundamental and subharmonic 

resonances for ranges of system parameters. The interaction of the two meshes 

was found to depend strongly on the relation of the two mesh periods. The 

dynamic influences of design parameters, such as shaft stiffness, mesh stiffness 

variations, contact ratios, and mesh phasing, were discussed. The closed-form 

solutions provided design guidelines in terms of the system parameters.  

Liu et al. [61] presented the spur gear lubrication analysis with dynamic loads. 

The influence of speed on lubrication performance was investigated through its 

direct influence on lubrication and indirect influence by affecting dynamic loads 

of the gear pair. The effect of dynamic loads on film thickness, pressure 
distribution, and temperature field were studied. In this work, the potential 

energy-based method is applied to model the effective mesh stiffness 

analytically. The effects of Hertzian energy, bending energy, axial compressive 

energy, as well as shear energy are taken into account for dynamic model. 

Pandya and Parey [62] revisited the technique of conventional photoelasticity to 

explore the possibility of using it as a supplementary technique to experimentally 

measure the variation of gear mesh stiffness. An attempt has been made to 

calculate the variation of mesh stiffness for a pinion having a cracked tooth and 

a gear tooth with no crack of a spur gear pair. An analytical methodology based 

on elastic strain energy method in conjunction with total potential energy model 
has been adopted and implemented within the mesh stiffness calculations. To 

visualize the state of stress in a structure using finite element and other currently 

available methods, photoelasticity was considered to be one of the oldest and 

most developed experimental technique. An experimental methodology based 

on conventional photo-elasticity technique for computing stress intensity factor 

for cracked spur gear tooth was presented for different single tooth contact 

position and crack length. The relation between contact position, crack length, 

crack configuration, stress intensity factor (SIF) and the variation of total 

effective mesh stiffness have been quantified. Finally, a comparison has been 

made and the results obtained from finite element method based on linear 
elastic fracture mechanics, analytical method and proposed experimental 

method has been outlined. 
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Chen and Shao [63] proposed a general analytical mesh stiffness model to 

include the effect of the gear tooth errors. This proposed model established the 

relationship between the gear tooth errors and the total mesh stiffness, load 

sharing among different tooth pairs in mesh and loaded static transmission 

errors (LSTE). It was suitable for not only the gear pairs with low contact ratio 

(LCR), but also the gear pairs with high contact ratio (HCR). Two spur gear pair 

models, namely one with LCR between 1 and 2 and the other one with HCR 

between 2 and 3, were used to demonstrate the effectiveness of the proposed 

mesh stiffness model. Influences of the tooth profile modification, applied 
torque and gear tooth root crack on the mesh stiffness, load sharing and loaded 

static transmission errors were also investigated.  

Pandya and Parey [64] used linear elastic fracture mechanics based finite 

element method to perform the crack propagation path studies of high contact 

ratio spur gear having tooth root crack for two gear parameters namely backup 

ratio and pressure angle. A total potential energy model has been adopted to 

analytically estimate the mesh stiffness variation. The percentage change in 

mesh stiffness with increasing crack length was an important parameter in fault 

diagnosis of geared transmission. Two gear parameters as back-up ratio and 

pressure angle have been studied and the effect of crack length on mesh stiffness 
have been outlined. With the increase of deterioration level gears having lower 

back-up ratio fault could be detected at an early stage, similarly, chances for early 

fault detection was more for gears having higher pressure angle 

Li et al. [65] constructed a solution for the calculation of mesh stiffness 

considering the sliding friction effect, and the influence of the sliding friction on 

mesh stiffness was analysed. Further, the analytical results indicate mesh 

stiffness was sensitive to the sliding friction in poorly lubricating conditions 

specially. These contributions would not only simplify the calculation of mesh 

stiffness associated with the sliding friction but also be good for assessing the 

dynamic behaviours of spur gear drives in some special operating conditions. 
Ma et al. [66] proposed the misalignment consideration of gear root circle and 

base circle and accurate transition curve, an improved mesh stiffness model for 

a healthy gear pair and validated by the finite element method (FEM). Based on 

the improved method, three mesh stiffness calculation methods for cracked gear 

pair were presented and compared with FEM. These methods are; 

1. Straight lines for crack path and limiting line; 

2. Straight line for crack path and parabolic curve for limiting line; and 

3. Parabolic curves for crack path and limiting line. 

The results shown that there was a significant difference between method 1 and 

FEM under large crack condition and the results of methods 2 and 3 were quite 
close to FEM result, which has also showed that the parabolic curve as a limiting 

line was appropriate. Mesh stiffness of method 2 was very close to that of 
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method 3 and showed that it was acceptable to assume the crack path to be a 

straight line. 

Raghuwanshi and Parey [67] applied photoelasticity technique for measuring the 

stress intensity factor (SIF) for cracked gear tooth. Subsequently SIF has been 

used to calculate the gear mesh stiffness. The variations in the SIF and mesh 

stiffness have been quantified with angular displacements of the gears. 

Photoelasticity experiments have been performed for different crack lengths at 

the tooth root of the spur gear pair. Experimental results of mesh stiffness 

variation were compared with one of the analytical methods for example 
potential energy method, which was widely used by researchers to calculate gear 

mesh stiffness. 

Ma et al. [68] presented an improved analytical model (IAM) for the time-varying 

mesh stiffness (TVMS) calculation of cracked spur gears. In the improved 

analytical model, the calculation error of TVMS under double-tooth engagement 

due to repeatedly considering the stiffness of the fillet-foundation was revised, 

and the effects of reduction of fillet-foundation stiffness of cracked gears and 

extended tooth contact (ETC) were also considered, which had a great influence 

on TVMS, especially under the condition of large torques and crack levels. 

Moreover, the comparisons among the IAM, traditional analytical model (TAM) 
and finite element model were also carried out under different torques and crack 

depths. IAM was also verified by comparing TVMS and vibration responses 

obtained by FE model, which could be considered as a gauge to evaluate the 

calculation error. The results shown that the maximum error of IAM was about 

12.04%, however, that of TAM could be up to 32.73%.  

Li et al. [69] constructed a calculation solution of mesh stiffness of face gear 

drives with a spur gear, which was based on the proposed equivalent face gear 

teeth and Ishikawa model, and the influence of contact effects on mesh stiffness 

of face gear drives was investigated. The results indicated the mesh stiffness of 

face gear drives was sensitive to contact effects under heavy loaded operating 
conditions, specially.  

The most powerful method for determining accurate stress and deflection 

information is the finite element method [70]. Although the FE method may be 

rather expensive to use in an everyday gear design situation, considerable 

research employing this technique is being performed, with research results 

being used to supply application factors and stress modifying factors in gear 

rating standards. With modern development in high speed computing, finite 

element analysis has been utilized to accurately and efficiently determine the 

gear teeth deformation and stresses. It is generally accepted by research 

community that in estimating the stiffness of gear teeth in mesh, finite element 
analysis of the contact model is more accurate than other methods. However, 

finite element contact modelling is computationally expensive and very difficult 

to model. Table 2.1 presents the summery of literature review as follow: 
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1938 Walker   * *     

1940 Walker   * *     

1949 Weber *   *     

1955 Richardson *    * *   

1969 Aida *     *   

1974 Chabert  *   *    

1974 Premilhat *   *     

1981 Cornell *    *    

1981 Terauchi *   * *    

1982 Coy  *  *     

1985 Vedmar *   *     

1986 Savage *   *     

1986 Tavakoli *     *   

1989 Choy *     *   

1990 Steward *  * *     

1990 Choi * *  *     

1991 Lee *    * *   

1994 Costopoulos *   *     

1998 Lin *     *   

1998 Vinayak * * *   *   

1999 Arafa  *  *     

2002 Pimsarn  *  *     

2004 Sainsot *   *     

2005 Fonseca *     *   

2006 Chaari *     *   

2007 Zouari  *      * 

2008 He *     *   

2009 Chaari *     *   

2009 Wu  *  *     

2010 Li  *     *  

2010 Meagher *     *   

2010 Thirumurugan *    *    

2011 Bouchaala *     *   

2012 Liu & Parker *     *   

2013 Liu *      *  

2013 Pandya  *  *     * 

2013 Chen & Shao *     *  * 

2013 Pandya   *      * 

2014 Li  *     *  

2014 Ma  *      * 

2015 Raghuwanshi *  *     * 

2015 Ma * *      * 

2015 Li *     *   
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Table 2.1 indicates that most researchers use analytical method for gear mesh 

compliance calculation and the dynamic/vibration is the most common 

application. Recently the crack propagation is going to be an interesting topic for 

gear researchers. 

 

REFERENCES 
1.   Litvin, F. L., 1994, Gear geometry and applied theory, Prentice Hall 

2.   Spiegelberg, C., Christie, M., 2003, Torque loss in spur gears with 

interference, Proceedings of the Institution of Mechanical Engineers, Part J: 

Journal of Engineering Tribology, 217:385-395 

3.   Baglioni, S., Cianetti, F., Landi, L., 2012, Influence of the addendum 

modification on spur gear efficiency, Mechanism and Machine Theory, 

49:216-233 

4.   Chen, T., Sun, W., Zhang, X., 2011, An analytical method to determine the 

addendum modification parameters of involute helical gears, Proceedings of 

the Institution of Mechanical Engineers, Part C: Journal of  Mechanical 

Engineering Science, 225(11):2516-2524 

5.   Atanasiu, V., Iacob, M. R., 2010, Tooth wear effects on dynamic transmission 

error of spur gears with addendum modifications, International Review of 

Mechanical Engineering, 4(6):638-644 

6.   Li, S., 2008, Effect of addendum on contact strength, bending strength and 

basic performance parameters of a pair of spur gears, Mechanism and 

Machine Theory, 43(12):1557-1584 

7.   Spitas, C., Spitas, V., 2006, Non-linear dynamical simulation of spur gears with 

indexing errors and profile modifications, Proceedings of the 25th IASTED 

International Conference on Modelling, Identification, and Control, Lanzarote, 

Canary Islands, 354-359 

8.   Maitra, G. M., 2001, Handbook of gear design,Tata McGraw-Hill Education 

9.   Chen, C. F., Tsay, C. B., 2005,  Tooth profile design for the manufacture of 

helical gear sets with small numbers of teeth, International Journal of 

Machine Tools and Manufacture, 45(12-13):531-1541 

10.   Guilbault, R., 2011, Tooth influence on flexural and torsional flexibility, and 

model tooth number prediction for optimum dynamic simulation of wide-

faced spur gears, ASME Journal of Mechanical Design, 128(3):626-633 

11.   Vantsevich, V. V., 2000, Spur bevel gear differentials: Designing involute tooth 

numbers for the pinion and side gear, Proc. of the Institution of Mechanical 

Engineers, Part D: Journal of Automobile Engineering, 214(7), 719-730 

12.   Spitas, C., Spitas, V. 2006, Can non-standard involute gears of different 

modules mesh?, Journal of Mechanical Engineering Science, 220(8):1305-

1313 

13.   Spitas, V., Costopoulos, T., Spitas C., 2007, Fast modelling of conjugate gear 

tooth profiles using discrete presentation by involute segments, Mechanism 

and Machine Theory, 42(6):751-762 



23 
 

14.   Komori, M.  , Kubo, A., Takahashi, T., Tanaka, T., Ichihara, Y., Takeda, K., 

2004, Failures of involute gears due to contact of side edge and tip edge of 

tooth (4th report, failure caused by trochoidal interference due to elastic 

deformation of tooth) , Journal of the Japan society of mechanical engineers, 

(Chapter C), 700(70):219-225  

15.   Lin, H. H., Wang, J., Oswald, F. B., Coy, J. J., 1994,  Effect of extended tooth 

contact on the modeling of spur gear transmissions, Gear Technology, 

11(4):18-25 

16.   Seager, D. L., 1976, Separation of gear teeth in approach and recess, and the 

likelihood of corner contact, ASLE Transactions, 19(2):164-170 

17.   Munro, R. G., Morrish, L., Palmer, D., 1999, Gear transmission error outside 

the normal path of contact due to corner and top contact, Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical 

Engineering, 213(4):319-400 

18.   Eritenel, T., Vijayakar, S. M., Houser, D. R., Casella, J. M., 2003, Effect of tooth 

deflection and corner contact on backside separation (backlash) 

of gear pairs, ASME International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference, DETC2003/PTG-

48014:103-110 

19.   Chen, X.-X.  , Lin, S.-Z., Xing, J.-Z., Liu, Y.-S., 2011, Simulation on gear backlash 

and interference check of harmonic drive with circular-arc teeth profile, 

Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, 

17(3):643-648 

20.   Zhou, C., Chen, S., 2014, Modeling and calculation of impact friction caused 

by corner contact in gear transmission, Chinese Journal of Mechanical 

Engineering (English Edition), 27(5):958-964 

21.   Tang, J.-Y., Peng, F.-J., Huang, Y.-F., 2009, Numerical analysis of dynamic 

stress variation in spur gear under impact loads , Zhendong yu 

Chongji/Journal of Vibration and Shock, 28(8):138-143 

22.   Nevzat Özgüven, H., Houser, D. R., 1988, Mathematical models used in gear 

dynamics-A review, Journal of Sound and Vibration, 121(3):383-411 

23.   http://en.wikipedia.org/wiki/Compliant_mechanism 

24.   Arafa, M. H., Megahed, M. M., 1999, Evaluation of spur gear mesh 

compliance using the finite element method, Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering, 213(6):569-

579 

25.   Walker, H., 1938, Gear tooth deflection and profile modification, Part I., The 

Engineer, 166:409-412 

26.   Walker, H., 1938, Gear tooth deflection and profile modification, Part II., The 

Engineer, 166:434-436 

27.   Weber, C., Banascheck, K., 1950, The deformation of loaded gears and the 

effect on their load carrying capacity, Part5, Sponsored Research (Germany), 

British Scientific and Industrial Research, London, Report No.6. 

28.   Winter, H., Podlesnik, B., 1980, Quoted as reference for stiffness work for ISO 

6336/DP design standard 



24 
 

29.   Weber, C., 1949, The deformation of loaded gears and the effect on their load 

carrying capacity, PartI I, Sponsored Research (Germany), British Scientific and 

Industrial Research,  London, Report No. 3 

30.   Richardson, H. H., 1955, Static and dynamic load, stress and deflection cycles 

in spur gears system, PhD thesis, MIT 

31.   Aida, T., 1969, Fundamental research on gear noise and vibration, 

Transaction of the Japanese Society of Mechanical Engineering, 35:2113-2119 

32.   Chabert, G., Tran, T. D., Mathis, R., 1974, An evaluation of stresses and 

deflection of spur gear teeth under strain, Journal of Engineering for Industry, 

96(1):85-93 

33.   Premilhat, A., Tordion, G. V., Baronet, C. N., 1974, An improved 

determination of the elastic compliance of a spur gear tooth acted on by a 

concentrated load, Journal of Engineering for Industry, 96(2):382-384  

34.   Cornell, R. W., Westervelt, W. W., 1978, Dynamic tooth loads and stressing 

for high contact ratio spur gears, ASME Journal of Mechanical Design, 

100(1):69-76 

35.   Terauchi, Y., Nagamura, K., 1981, On tooth deflection calculation and profile 

modification of spur gear teeth, Proceedings of International Symposium on 

Gearing and Power Transmission, 2(C-27):159-164 

36.   Cornell, R. W., 1981, Compliance and stress sensitivity of spur gear teeth, 

ASME Journal of Mechanical Design, 103(2):447-459  

37.   Coy, J. J., Chao, C. H., 1982, A method of selecting grid size to account for 

Hertz deformation in finite element analysis of spur gears, ASME Journal of 

Mechanical Design, 104(4):759-764  

38.   Vedmar, L., 1985, On the Design of External Involute Helical Gears, PhD thesis, 

Transactions of Machine Elements Division/Lund Technical University, Lund, 

Sweden 

39.   Savage, M., Caldwell, R. J., Wisor, J. W., Lewicki, D. G, 1986, Gear mesh 

compliance modelling, NASA technical report TM-88843, Presented at the 

Rotary Wing Propulsion System Specialist's Meeting of the American 

Helicopter Society, Williamsburg, VA, USA. 

40.   Tavakoli, M. S., Houser, D. R., 1986, Optimum profile modifications for the 

minimization of static transmission errors of spur gears, Journal of 

Mechanisms, Transmissions and Automation in Design, 108(1):86-94  

41.   Choy, F. K., 1989, Experimental and analytical evaluation of dynamic load and 

vibration of a 2240-kw (3000-hp) rotorcraft transmission, Journal of the 

Franklin Institute, 326(5):721-735 

42.   Steward, J. H., 1990, The compliance of solid, wide-faced spur gears, ASME 

Journal of Mechanical Design, 112(4):590-595 

43.   Choi, M., David, J. W., 1990, Mesh stiffness and transmission error of spur and 

helical gears, SAE Technical Papers, ID: 901764 

44.   Lee, C., Oswald, F. B., Townsend, D. P., Lin, H. H., 1991, Influence of linear 

profile modification and loading conditions on the dynamic tooth load and 

stress of high-contact-ratio spur gears, ASME Journal of Mechanical Design, 

113(4):473-480 



25 
 

45.   Costopoulos, Th., Spyropoulou, M., 1994, Tooth compliance and load 

distribution of spur gears, Modelling, Simulation & Control. B, 54(3-4):23-30 

46.   Lin, H. H., Liou, C. H., 1998, A parametric study of spur gear dynamics, NASA 

Technical Reports, NASA/CR-1998-206598:1-90 

47.   Vinayak, H., Singh, R., 1998, Multi-body dynamics and modal analysis of 

compliant gear bodies, Journal of Sound and Vibration, 210(2):171-212 

48.   Pimsarn, M., Kazerounian, K., 2002, Efficient evaluation of spur gear tooth 

mesh load using pseudo-interference stiffness estimation method, 

Mechanism and Machine Theory, 37(8):769-786 

49.   Sainsot, P., Duverger, O., Velex, P., 2004, Contribution of gear body to tooth 

deflections-a new bidimensional analytical formula, ASME Journal of 

Mechanical Design, 126(4):748-752 

50.   Fonseca, D. J., Shishoo, S., Lim, T. C., Chen, D. S., 2005, A genetic algorithm 

approach to minimize transmission error of automotive spur gear sets, 

Applied Artificial Intelligence: An International Journal, 19(2):153-179  

51.   Chaari, F., Fakhfakh, T., Haddar, M., 2006,  Analytical investigation on the 

effect of gear teeth faults on the dynamic response of a planetary gear set, 

Noise & Vibration Worldwide, 37(8):9-15  

52.   Zouari, S., Maatar, M., Fakhfakh, T.,Haddar, M., 2007, Three-dimensional 

analyses by finite element method of a spur gear: Effect of cracks in the teeth 

foot on the mesh stiffness, Journal of Failure Analysis and Prevention, 

7(6):475-481 

53.   He, S., Rook, T., Singh, R., 2008, Construction of semianalytical solutions to 

spur gear dynamics given periodic mesh stiffness and sliding friction 

functions, ASME Journal of Mechanical Design, 130(12):1226011-1226019 

54.   Chaari, F., Fakhfakh, T., Had, M., 2009, Analytical modelling of spur gear tooth 

crack and influence on gear mesh stiffness, European Journal of Mechanics- 

A/Solids, 28(3):461-468 

55.   Wu, Z., Wang, T., Zhang, R., 2009, A study of spur gear torsional mesh 

stiffness, Proceedings of International Technology and Innovation 

Conference, October 2009, 4 pages  

56.    Li, S., Kahraman, A., 2010, A transient mixed elastohydrodynamic lubrication 

model for spur gear pairs, Journal of Tribology, 132(1):1-9 

57.   Meagher, J., Wu, X.,   Kong, D., Lee, C. H., 2010, A comparison of gear mesh 

stiffness modelling strategies, Conference Proceedings of the Society for 

Experimental Mechanics Series, Structural Dynamics, 3(PART1):255-263 

58.   Thirumurugan, R., Muthuveerappan, G., 2010, Maximum fillet stress analysis 

based on load sharing in normal contact ratio spur gear drives, Mechanics 

Based Design of Structures and Machines: An International Journal, 

38(2):204-226 

59.   Bouchaala, N., Chaari, F., Khabou, M. T. , Fakhfakh, T., Haddar, M., 2011, 

Influence of the non-linear Hertzian stiffness on the dynamics of a spur gear 

system under transient regime and tooth defects, International Journal of 

Vehicle Noise and Vibration,7(2):149-177 

60.   Liu, G., Parker, R. G., 2012, Nonlinear, parametrically excited dynamics of 

two-stage spur gear trains with mesh stiffness fluctuation, Proceedings of the 



26 
 

Institution of Mechanical Engineers, Part C: Journal of Mechanical 

Engineering Science,226(8):1939-1957 

61.   Liu, H., Mao, K., Zhu, C., Chen, S., Xu, X., Liu, M., 2013, Spur gear lubrication 

analysis with dynamic loads, Tribology Transactions, 56(1):41-48 

62.   Pandya, Y., Parey, A., 2013, Experimental investigation of spur gear tooth 

mesh stiffness in the presence of crack using photoelasticity technique, 

Engineering Failure Analysis, 34:488-500 

63.   Chen, Z., Shao, Y., 2013, Mesh stiffness calculation of a spur gear pair with 

tooth profile modification and tooth root crack, Mechanism and Machine 

Theory, 62:63-74 

64.   Pandya, Y., Parey, A., 2013, Crack behavior in a high contact ratio spur gear 

tooth and its effect on mesh stiffness, Engineering Failure Analysis,34:69-78 

65.   Li, Z., Chen, H., Chen, J., Zhu, R., 2014, Analytical impact of the sliding friction 

on mesh stiffness of spur gear drives based on Ishikawa model, 

Vibroengineering Procedia, 4:29-33 

66.   Ma, H., Song, R., Pang, X., Wen, B., 2014, Time-varying mesh stiffness 

calculation of cracked spur gears, Engineering Failure Analysis, 44:179-194 

67.   Raghuwanshi, N. K., Parey, A., 2015, Mesh stiffness measurement of cracked 

spur gear by photoelasticity technique,  Measurement: Journal of the 

International Measurement Confederation,73:439-45 

68.   Ma, H., Pang, X., Feng, R., Zeng, J., Wen, B., 2015, Improved time-varying 

mesh stiffness model of cracked spur gears, Engineering Failure Analysis, 

55:271-287 

69.   Li, Z., Wang, J., Zhu, R., 2015, Influence predictions of contact effects on mesh 

stiffness of face gear drives with spur gear, Transactions of Nanjing University 

of Aeronautics and Astronautics, 32(5):566-570 

70.   Rothbart, H. A.,1996,  Mechanical design handbook, McGraw-Hill  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 



27 
 

3- Parametric investigation of gear 

teeth bending strength  
 

 

Summary  

Standard 20° spur gears are typically generated with a whole depth of 2.2 to 2.25 
times the module. At the nominal centre distance, this leaves a radial clearance, 

which is in itself redundant from a functional point of view. However the intrinsic 

geometry of the cutting process always results in a non-involute root profile (the 

trochoid), which is even more pronounced in the case of using a rounded cutter 

tip in order to increase the strength of the cutting edge. Larger tip radii produce 

stronger tooth fillets, potentially increasing the bending strength, but reducing 

the involute part of the tooth. Thereby they increase the risk of interference with 

mating gears. This chapter performs a parametric investigation of the combined 

effect of the cutter radius and the dedendum on the clearance and the resulting 

tooth bending strength using analytical calculations, computerised generation 
and finite element simulations to determine the exact tooth geometry in search 

of stronger tooth forms. Non-dimensional modelling is used to obtain results 

applicable to entire gear families. 

 

3.1. INTRODUCTION 

High-power mechanical transmissions are dominated by gears and involute spur 

gears are widely used to transmit motion and power between parallel shafts. The 

main reason for the popularity of involute spur gears is their simplicity in design, 

ease of manufacture and maintenance, and relatively low sensitivity to errors [1]. 

Their design should be balanced between the required performance 

characteristics and their failure resistance. 
The most common causes of failure in spur gears are: 

a) pitting, which occurs under repeated loading in all rolling contacts [2], and can 

be related to the contact pressure, b) scoring, which occurs on the tooth surface 

due to  high speeds, high tooth loading and high sliding velocities under 

insufficient lubrication conditions, also subject to the influence of geometrical 

errors [3], and c) tooth breakage, which is mainly because of excessive bending 

stress and it occurs either during repeated loading or due to an overload, which 

exceeds the gear material strength. Cracks initiate on the tensile side of the root 

fillet, consequently tooth breakage can be traced to the maximum tensile 

bending stress at the tooth fillet [4]. 
All of the aforementioned factors depend on tooth geometry. However, the 

additional typical operational requirements to reduce noise, transmission error, 
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wear, and backlash make more complex the selection of optimal tooth geometry. 

For instance, increasing the tooth whole depth to achieve higher contact ratio 

can reduce the load carrying capacity of individual teeth. On the other hand, for 

high contact ratio spur gears (above two), where one expects the load-sharing 

between mating teeth to compensate for this reduction [5], a small pitch error 

or other error could neutralise this effect, making high contact ratio designs 

applicable only under precise accuracy (and cost) conditions. Gear errors can in 

fact throw many of the known optimal solutions off-balance [4]. To overcome 

these problems, there are still some options available, mainly the profile 
modification (relief) of gear teeth. In the case of tip relief, the removal of a small 

amount of material near the gear tooth tip can be useful and for producing a 

more gradual engagement of the tooth profile, although the success of this 

intervention also depends on the operating conditions [6].  

Due to importance of geometry in gear design, many researchers investigated its 

influence, especially with respect to deflection [7], bending strength [8-12], 

vibration [13-15] transmission error [16-19], and noise [19-20] and also a number 

of researchers presented the effects of some parameters in  gear geometry such 

as pressure angle [11, 13 ,21-22], addendum [18, 23-24] and module [25-26]. 

Tooth profiles generated with the usual cutting methods and tools contain an 
involute part and, near their root, a trochoidal part. The involute part of the tooth 

is intended for meshing with the teeth of the mating wheel whereas the 

trochoidal part is a by-product of the generation (cutting) process, which is 

neither designed nor intended for meshing. Therefore, it is essential that the 

trochoidal root of one tooth does not interfere with the involute tip of its mating 

tooth as it comes into and goes out of mesh [27]. 

The literature covers the geometry of the involute and trochoid quite extensively 

[11, 24, 28-31], while at the same time alternatives have been suggested and 

studied for the trochoidal form of the tooth root [31-34]. In addition, on the topic 

of gear geometry there are several gear standards such as ISO, DIN, AGMA, JIS 
[35-43], which are used widely for gear design, as production tooling is made 

more easily available. Among these standards similar parameters are used, but 

there are differences in coefficients that define the basic design. For instance, for 

the rack cutter proportions, each standard has its own coefficients and there are 

different values suggested for the same parameters, for example DIN 867.1 

recommends cuter tip radius coefficient (��) =0.3 and dedendum coefficient 

(��)=1.25, whereas DIN 867.4 recommends ��=0.16 and ��=0.16 and ISO 53.A 

recommends ��=0.38 and ��=1.25 and etc. This alone seems to suggest that 

there is no identified standard. 

In this chapter, the combined effect of the cutter radius and the dedendum on 

the clearance on the geometry of meshing and resulting tooth clearance is 
investigated for the 20° system. The results presented here were obtained for 

pinions with 20 teeth, which is a fairly representative number for many power 
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transmissions. The same method can be used to extract results for other pinion 

tooth numbers. 

The gear forms under consideration were numerically generated and simulated 

to find the combinations of cutter tip radius coefficients and dedendum 

coefficients that do not produce interference. Then, for these valid choices of 

parameters, finite element analysis (FEA) was used to qualify the designs and find 

the strongest solutions. A map was produced of this two-parametric design 

space, where also the standards-compliant solutions were plotted for 

comparison. In order to reduce the independent geometrical parameters and 
make the results more generally applicable, non-dimensional modelling was 

used. 

 

3.2. MODELLING 
Figure 3.1 presents on a gear tooth profile two clearly identifiable regions AC and 

CD, which are produced by a generating method using a rack cutter (or 

equivalent hob cutter). Region AC is an involute produced by the straight face of 

the cutter, whereas region CD is a trochoid produced by the rounded tip of the 

cutter. Point C defines the form radius and is a function of the cutter geometry 

and its relative position to the workpiece. If the specific gear is made to mesh 

with another gear at a given centre distance, then point B is defined as the point 

of the profile that contacts with the tooth tip of the corresponding gear. 
Obviously, point B delimits the active part of the tooth profile AB, with no contact 

whatsoever being possible below B. The radius thus defined is termed the limit 

radius. The location of point B is by definition a function of the geometries of 

both mating gears as well as of their centre distance, in contrast to point C, which 

characterises each gear separately. 

Functional considerations relating to involute contact demand that point B lie at 

or above the form radius, hence point C, so that �� ≥ ��, or otherwise, depending 

also on the presence or not of undercutting, interference may occur resulting in 

impact, vibration and wear. Apparently, the limiting case where B and C are 

coincident presents the fullest possible use of the available involute, though in 
actual practice allowances must be made for manufacturing and assembly errors 

and tolerances, as well as dynamic deflections during operation. 
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Figure 3.1: Tooth geometry and identification of different functional regions 

 

Point D, lying at the inside diameter, is determined by the cutter geometry alone. 

The locations of points C and D, being functions of the same parameters, are 

therefore, interrelated. Clearly, the tooth shape, as dictated by the locations of 

points C and D, has a definitive influence on the maximum developed tensile 

stress, and therefore, on the bending strength. The following observations are 

relevant here as: 
     1) Increasing the cutter tip radius increases the root cross section and reduces 

stress concentration, therefore enhancing bending strength. 

     2) Decreasing the whole depth reduces the leverage of the forces acting on 

the teeth, thereby reducing the bending moments and again enhancing bending 

strength. 

     3) It is logical to expect that different combinations of the cutter tip radius and 

of the whole depth will result in different values for bending strength and 

stiffness, some being more advantageous than others. 

     4) Considering the limitation imposed by point B on the form radius (point C) 

that	�	 ≥ ��, the cutter tip radius and the whole depth cannot be modified in 
complete independence of each other, as they tend to act antagonistically; in 

simple terms, there is no room to fit a large fillet in a small whole depth without 

(unacceptably) sacrificing part of the useful involute. 

The analysis steps will be therefore, i) to identify acceptable combinations of the 

cutter tip radius and the whole depth, and ii) to evaluate and compare the 

bending strength of the resulting gears. 

Additional methodologies employed within the above framework include a) non-

dimensional modelling to increase the generality and applicability of results, b) 

FEA for calculating the bending stresses and hence the strength, and c) two-
parametric mapping of the design space. These are examined in the following 
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sections. 

 

3.2.1. Gear tooth modelling 

3.2.1.1. Non-dimensionalisation 

Every geometrical feature 
 on the transverse section of a full-scale gear tooth 

is connected with the corresponding feature 
∗ of the transverse section of the 

non-dimensional gear tooth through the equation: 

 
 = 
∗ (3.1) 

 

Which  is the module. Since the whole depth is simply expressed in a non-

dimensional form as addendum	coefficient	(��) + dedendum	coefficient	(��), 
this formulation concludes the undertaken geometrical analysis. This allows the 
simultaneous modelling of all module families, lending wide generality to the 

results. Non-dimensional modelling is also expanded to stress analysis. Tooth 

bending stress can be calculated in non-dimensional teeth �∗ by assuming 

unitary tooth width � = 1  and unitary normal load  !∗ = 1. The non-

dimensional stress is related to the actual bending stress σ# using the following 

equation: 

 �# = �#∗  !� 
(3.2) 

 

3.2.1.2. Establishing an analytical relationship between the cutter tip radius 

and the form circle radius 

The generation of point $%  on the tooth profile by the corresponding point on the 
cutter is illustrated in Figure 3.2. In those cases where both primary and 

secondary cuts are made (undercutting), this analysis holds for the primary 

cutting action; the secondary cutting action that produces the final gear tooth 

profile will then be studied numerically in a next step. 
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Figure 3.2: Analysis of gear cutting at the tooth fillet (gear not shown, only rack cutter 

tooth shown for clarity)  
 

By exploiting the symmetry of the rack cutter tooth as shown in Figure 3.2 the 

following relationship is deduced: 

 & = '4 + )*2  (3.3) 

Also: 

 tan& = ��,  �� - �. = , cos)* 

(3.4) 

 

And therefore: 

 �� - �. = �� cos)*tan 0'4 + )*2 1 (3.5) 
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Having defined point $%  as the intersection of the line of action GP and the ξ-axis 

offset by	�., it is possible to calculate the form radius as: 
 

��∗ = 23 �.tan)*45 + (�6∗ - �.)5 

(3.6) 

 

Equation (3.6) is implicit in terms of �. and is therefore of limited usefulness if ��∗ 
is known and �. 	must be calculated. Then, observing that $% = 7 - 7$%  , the 
following alternative may be derived from the geometry and used instead: 

 �.sin )* = �6∗ sin)* -8(��∗)5 - (�6∗ cos)*)5 (3.7) 

 

The system of equations (3.5), (3.6) and (3.7) defines in a non-dimensional form 

the interrelation between the dedendum	��, the cutter tip radius �� and the form 

radius ��∗.  
 

3.2.2. Calculation of cutter tip radius limitations 

A cross-section of the tooth of a generating rack cutter for various cases of tip 

radius is represented in Figure 3.3. Zero radius has been known to cause localised 

tool wear, causing in turn poor surface quality and dimensional inaccuracy of the 

manufactured gear. The AGMA standard recommendation for 20° involute gears 

is �� = 0.30 [35], while other radii are also possible. 
For a given whole depth, there is a practical limitation on the maximum radius 

that is obtainable; the larger radii will be incompatible with the designated whole 

depth for the 20° gear system, i.e. they cannot be realised unless the whole 

depth is reduced. 

Figure 3.3 describes the case of maximum cutter tip radius, where it can be 

observed that the tip thickness  <́> of a sharp tooth of the non-dimensional rack 

cutter relates to the pitch thickness '(1 - ��), the dedendum �� and the 

pressure angle according to the formula: 

 <́∗ = '(1 - ��) - 2�� tan)* (3.8) 

 

Obviously, the centre of any fillet must lay on the bisecant δ-axis, therefore the 

intersection of the bisecant and of the rack tooth centre-line should define the 

centre of the maximum possible fillet. The radius must be, therefore: 

 ?,@��A = 12 <́∗ tan& 
(3.9) 
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Substituting with equations (3.3), (3.4) and (3.8) we obtain finally: 

 ?,@��A = B12'(1 - ��) - �� tan)*C tan 0'4 + )*2 1 
(3.10) 

 

For standard addendum gears of the 20° system with	�� = 1.25	and �� = 0.5, 

equation (3.10) evaluates to	?,@��A = 0.47. Equation (3.10) poses an 
additional restriction that must be evaluated together with equations (3.5), (3.6), 

(3.7). 

 

 
Figure 3.3: Calculation of the maximum cutter tip radius for a given dedendum 

 

For a known value of ��∗ and therefore of �. and assuming that the maximum 
cutter tip radius is used, the corresponding dedendum is calculated by combining 

equations (3.5) and (3.10) as follows: 

 

�� = FGH(IJ�K) LMNOPQ�RIQNSTOP   ,	�� = ?,@��A (3.11) 
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3.3. RESULTS AND DISCUSSION 
Firstly the design space was defined by bounding the parameters for the pinion 

as follows: 

 1 ≤ �� ≤ 1.25 0 ≤ �� ≤ ?,@��A = 0.47 
 

(3.12) 

The main reason for selection of these boundaries, is that the maximum 

possibility of dedendum coefficient, that most of the standards have been 

suggested, is 1.25 and with using this number in equation (3.10), the maximum 

value of cutter tip radius coefficient will be 0.47. 

The numbers of pinion and wheel teeth were fixed at VI = V5 = 20, the 

pressure angle at 20°, the addendum coefficient at �� = 1. 

Next the gear profiles were generated using an in house computer programme 
in C++, TFdraw [10]. 

Using appropriate definitions for the cutter proportions, two-dimensional 

parametric plots of the tooth profiles have been calculated for the pinion and are 

shown in Figure 3.4 in non-dimensional coordinates, the coordinate origin being 

the pinion centre. 

 

 
Figure 3.4: Calculated tooth profiles of a 20-tooth pinion for some of the dedendum-

cutter tip radius combinations, including maximum tip radius, as calculated by equation 

(3.10). Notice the shift of the form radius 

 

Two different trends are identified: 
• 1) For combinations of relatively large values of dedendum and small values of 

cutter tip radius, the form radius increases (therefore, the involute part shrinks), 

suggesting the presence of a secondary cutting action (undercutting). 

• 2) For combinations of relatively small values of dedendum and large values of 

cutter tip radius, the form radius increases also (thus the involute part shrinks), 
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which, depending on the mating gear geometry and the centre distance, 

presents an increasing risk of interference. As this is the region that produces 

the shallowest teeth with the stronger fillets, it is expected that this is the region 

where strength-wise optimal designs are to be required between these contrary 

trends. 

 

3.3.1. Interference 

The produced gear geometries were checked for interference by means of 

detailed meshing simulation. Some characteristic control positions for two 

combinations of gear geometries are plotted in Figure 3.5. The detected 

interference mode involves a two-point simultaneous contact phenomenon. This 

is a similar mechanism to undercutting, only there is no cutting action involved 

here; instead, there is secondary contact action. 
 

 
Figure 3.5: Interference simulations a pinion defined by equations (3.4) and (3.11) in 

mesh with AGMA standard gears  
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Figure 3.6 presents a map of the considered design space, where regions of 

interference and non-interference were identified. In this figure the “S” numbers 

stand for different standards. In the same figure, the tooth geometries produced 

by various standards are also mapped. 

Table 3.1 presents a convenient analytical expression of the boundaries of the 

locus of non-interference, which corresponds to feasible design solutions. The 

regression produced from the simulations shows the diagonal boundary segment 

to be linear. 
 

                     Table 3.1: The boundaries of non-interference area 

Zone cW cL 
1 1.000 0.00 ~ 0.15 

2 1.00 ~ 1.25 0.00 

3 1.25 0.00 ~ 0.47 

4 1.12 ~ 1.25 0.47 

5 1.00~1.12 -9.8402cW2 + 23.372cW - 13.37 
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Figure 3.6: Two parametric cL vs. cW map of gear tooth proportions into the interference 

space. The “S” numbers stand for different standards. 

 

3.3.2. Stress modelling using FEA  

For the purposes of this investigation ANSYS was used to simulate the loading of 

different gear pairs with consistent boundary and loading conditions, namely 

point loading at the Highest Point of Single Tooth Contact considering one-tooth 

models fixed at their boundary (Figure 3.7), consistent with standard practice 
[33, 46-48]. 

The iso-parametric element PLANE82 is used for modelling the gear tooth. This 

element provides accurate results for mixed (quadrilateral-triangular) automatic 

meshes and can tolerate shapes well suited to model curved boundaries. 
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(a)                                                                                                       (b) 

Figure 3.7: Single-tooth finite element model for cW=1.25, cL=0.30 as per AGMA 201.02, 

a) Non-dimensional bending stress, b) Detail: Maximum non-dimensional bending stress 

at the critical section 

 

The FEA results were superposed on the map of Figure 3.7, producing the 

maximum stress map and iso-stress contours in Figure 3.8. Based on these results 
the following observations are made: 

a) With increasing dedendum coefficient the leverage of the applied load 

increases therefore leading to higher fillet stress values. 

b) Increasing the cutter tip radius results in larger generated root fillet 

therefore reducing stress concentration. 

c) It is obvious that existing standard designs S1 – S9 do not lead to 

minimum root stress tooth forms. 

d) The optimum solution choice S10 (��=1.12 and ��=0.47) lies at the top 

left corner of the non-interference region, verifying the original 

hypothesis that the optimum would compromise the trends of minimum 
dedendum, maximum cutter tip radius and the requirement for non-

interference.  

 

 

F=1 N 



40 
 

 
 

 

 

Figure 3.8: Topological graph of finite element analysis results for maximum tensile stress 

at tooth root with different combination of cutter tip radius and dedendum coefficient. 

The “S” numbers (S1-S9) stand for different standards. 

 

To illustrate the difference between the standards and the optimal design, a 

comparison is presented in Table 3.2.  

 

 

 

 

 

 

 

S1: GOST 13755-68   S2: ISO 53-A, NF E 23-011 1972, ISO TR 4467 

S3: JIS B 1702-72    S4: ISO 53-B, DIN 867-1, AGMA 201.02-68, ANSI B6.1 

S5: ISO 53-C, DIN 867-2   S6: DIN 3972 II    S7: DIN 867-3   S8: DIN 3972 I   S9: DIN 867-4 
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Table 3.2: Comparison of different standards and optimal design for rack cutter 

proportions. Stress related to the non-dimensional maximum tensile stress at tooth root 
Standard 

 

�� �� Stress (MPa) Stress Reduction (%) 

ISO 53 Profile A 0.38 1.25 2.51374 12.07 

Profile B 0.30 1.25 2.65102 18.19 

Profile C 0.25 1.25 2.72502 21.49 

DIN 867 

 

1 0.30 1.25 2.65102 18.19 

2 0.25 1.25 2.72502 21.49 

3 0.20 1.20 2.82474 25.94 

4 0.16 1.16 2.88391 28.58 

DIN 3972  

 

I 0.20 1.167 2.79332 24.54 

II 0.20 1.25 2.85356 27.22 

JIS B 1702-72  0.375 1.25 2.52328 12.50 

NF E 23-011 1972 0.38 1.25 2.51374 12.07 

AGMA 201.02-68  0.30 1.25 2.65102 18.19 

ISO TR 4467 0.38 1.25 2.51374 12.07 

GOST 13755-68 0.40 1.25 2.47561 10.37 

ANSI B6.1 0.30 1.25 2.65102 18.19 

Optimum 0.47 1.12 2.24289 n/a 

 

3.4. CONCLUSION  
In this chapter a two-parametric investigation of the effect of the dedendum 

coefficient and the tip radius coefficient on the interference and strength of spur 

gears was carried out using non-dimensional geometrical modelling and Finite 

Element Analysis. 

Increasing the dedendum and the tip radius of the cutter were found to produce 
adverse effects on the generated gear tooth and an optimal solution was sought 

by scanning the available design space to produce a stronger tooth form without 

interference. 

As expected, the optimum was located at the boundary of the permissible area 

of non-interference, where the trends for lower dedendum and larger tip radius 

were compromised. A thorough comparison with the majority of the existing 

gear standards was performed and the optimum solution was found to 

outperform all of them in terms of strength by a factor of 10.37% to 28.58%.  
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4- Multi-parametric investigation of 

interference  
 

 

Summary  
Tooth interference, normally avoided altogether by adhering to standard design 

guidelines, becomes a concern when non-standard tooth forms with reduced 

radial clearance are employed, such as large-fillet short-dedendum gears. These 
tooth forms have shorter involute working flanks and excess material at the root, 

which can lead to non-conjugate corner contact and penetration at the tooth 

root. Existing models for interference are unable to predict this, or rely on 

calculation-intensive simulations, which make them impractical for design. 

This work proposes a general and fast mathematical model for calculating corner 

penetration at the tooth root, which is applicable to both analytically expressed 

and discretised tooth geometries. Based thereupon a non-dimensional multi-

parametric investigation is carried out to quantify the effect of addendum and 

dedendum length, cuter tip radius, number of teeth and contact ratio on the 

interference risk and on this basis generalised guidelines are produced for the 
design of non-standard large fillet short dedendum 20° involute gears, including 

a method using standard cutters with indexing offsets. The present model 

effectively supplants prior analytical and numerical interference models in the 

literature, which are proven to be limited subcases of this model. 

 

4.1. INTRODUCTION 
The design of high performance gears must constantly seek to overcome 

manufacturing and logistical limitations. I.e. one of the challenges is to make gear 

sets as compact as possible, with the aim to reduce space, increase strength and 

potentially improve other performance aspects, such as dynamics. 

Correspondingly, compact gears may be obtained either by optimising the 
macro-geometry to minimise the total volume of a gear pair [1], or by minimising 

specifically part of the clearance between gear teeth, when that is possible [2]. 

In compact gear tooth forms of the latter type, a number of established design 

solutions have been categorised in dedicated books [3], standards [4] and gear 

design software [5-8]. The state-of-the-art, as reflected through these, includes 

a number of solutions for free-formed as well as generated tooth geometries, 

which however present a number of limitations: 
• Free-form geometries, as i.e. obtainable in injection-moulded plastic gears, use 

the familiar enveloping principles established already since Reuleaux [9]. The 

fundamental concept is that it is generally beneficial to use the entire tooth 
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depth for meshing and therefore eliminate radial clearance and non-meshing 

parts of the tooth profile [10]. Such compact meshes are at the same time 

sensitive to geometrical errors and interference under loaded static and 

dynamic conditions. Due to their relatively high compliance, plastic gears can be 

forgiving to such errors (to some degree), but the same is not true for the large 

array of high-torque high-power applications, where steel gears that have 

significantly higher strength, stiffness and accuracy, must be used. 

• Generated geometries, as i.e. produced by material removal, are still the 

dominant solution. Compared to free-form geometries, they obviously allow 

less freedom of form, as they must be generated by simple tool geometries 

reducible to the basic rack cutter model. A number of standards have explored 

possibilities to reduce the unused part of the whole depth by recommending 

dedendum coefficients lower than the traditional 1.25 [11, 12] and as low as 

1.16 [11]. Moreover, in Chapter 2, it has been demonstrated in a two-parametric 

study of a gear stage involving two same-size pinions that significant bending 

strength increase can be obtained by manipulating simultaneously the 

dedendum and the rack cutter tip radius, whereas Nguyen and Lin [2] attempted 

the same by modifying the gear dedendum only, in conjunction with the mating 

addendum. At the same time, in the high torque high power applications special 

hardened gear steels and other metal alloys are the material of choice, their 

high stiffness and sensitivity to errors means that too tight meshes can result in 

high vibration, wear and even seizure. Therefore clearance should be minimised 

but not eliminated, to compensate for these effects. Furthermore, because not 

all parts of the meshing teeth are conjugate to one-another, specifically at the 

tooth fillet regions, minimising clearance at one location requires the risk of 

inducing interference at another. Such an occurrence typically results in large 

impacts and vibration, local breakdown of the lubricant oil film and rapid failure 

[13]. Therefore, predicting interference emerges as the critical challenge in this 

context. 

In the context of detecting interference, a few different methods are in use. For 

involute profiles, Litvin [14] considers the limiting condition of contact at the 

form diameter as the condition for interference. Although analytically elegant 

and fast, this condition is only valid for a subcase of the real phenomenon and 
generally leads to underestimation of interference risk, producing false 

negatives, as has been noted in later work [15] and will be demonstrated in the 

following section. 

On the other hand, simulation of tooth contact [5-8, 13, 15] can produce more 

accurate predictions of interference, but at significant calculation, especially in 

case of three dimensional models, depending on starting ‘guess values’ to assure 

numerical convergence, as has been demonstrated in similar tooth contact 

analysis studies [16]. In one implementation, Polder and Broekhuisen [15] 

proposed a distance-based condition for root-tip proximity, which they used to 

infer interference risk and discuss tooth form tolerance limits. As will be shown 
in the following section, present implementations of such simulations, if not 
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supervised closely, can also produce unclear results and false negatives in terms 

of detecting interference. 

In addition, iterations of contact simulations over different points in the design 

space are generally time-intensive to set up and interpret: Simulations generally 

lack the analytical insight about the type and cause for interference that they 

detect and require further human supervision to provide such insight. For these 

reasons, simulations become especially impractical when tackling multi-

parametric design problems, where each parameter adds one additional 

dimension to the search matrix. Particularly in the context of large fillet short 
dedendum spur gears, at least eight parameters stand out as potentially 

significant: the cutter tip radius (radii), the dedendum length(s), the addendum 

length(s) and the numbers of teeth of the mating gears. A mapping of the design 

space using conventional tooth contact simulations in this context is obviously 

unfeasible. Therefore a new model for interference, both accurate and suitable 

for fast and large parametric sweeps must be sought. 

Starting from basic geometrical principles, this chapter proposes a new 

generalised analytical model for interference as non-conjugate corner contact-

and-penetration at the tooth root. From this, a geometrical condition is extracted 

that admits a simple and explicit mathematical solution for either analytically 
expressed or discretised tooth profiles. 

With the purpose to investigate interference in compact tooth forms, this model 

is furthermore adapted to the involute geometry and applied to a multi-

parametrically defined family of non-standard large-fillet short-dedendum 20° 

involute gears. The generality of the study is extended by non-dimensionalising 

all geometrical features in terms of the module. From this study design 

envelopes are defined to outline interference regions in the multi-parametric 

space and, based on the results, the order of the problem is reduced to three 

parameters only, as opposed to the original eight. 

Previous theory [14] is shown to introduce significant errors and false negatives 
in the prediction of interference for the small cutter tip radius and small 

dedendum configurations, while converging to the predictions of the present 

model for large cutter tip radius large dedendum configurations. The reasons for 

this discrepancy are traced back to basic principles. Numerical interference 

simulations in state of the art software are also inaccurate and shown to produce 

false negatives in certain cases. The present model for interference can 

effectively supplant the prior models, both analytical and numerical, which are 

reduced to limited subcases of this model. 

 

4.2. STATE OF THE ART MODELS FOR INTERFERENCE 

4.2.1. Analytical model: Form circle interference (Litvin) 

The basic assumption behind this class of models is that two involute teeth in 

mesh will interfere if and only if the tip of one tooth will mesh with a part of the 
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mating tooth lying below its form circle, as shown in Figure 4.1b, where Figure 

4.1a shows an assumedly non-interfering case. This item can in fact be stated in 

different but equivalent ways in terms of involute angles [14], lengthwise 

positions on the line of action (this chapter), radii and potentially any other 

variable used to describe meshing position. The form circle itself is calculated 

from the meshing of each tooth with its rack cutter, also shown in Figures 4.1a 

and 4.1b. Effectively, this model fundamentally assumes as such that 

interference will occur along the path of contact. 

 

 
 

(a) (b) 

Figure 4.1: Gear tooth (bottom gear) in mesh with generating rack and mating tooth 

(top gear), showing (a) an assumed noninterfering configuration and (b) an assumed 

interfering configuration 

 

Using the definitions and notation in Figures 4.1a and 4.1b, the necessary and 
sufficient condition for non-interference at the root of the reference gear (gear 

1) proposed by Litvin [13] is as follows: 

 7IXYZ ≤ 7IX[Z  (4.1) 

 

Given the basic property of the involute that 7IY = ��I7IXYZ  and 7I[ =��I7IX[Z , this condition is equivalent to: 
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7IY ≤ 7I[ (4.2) 

 

And by subtracting both sides of equation (4.2) from 7I$ be brought to the 

simplest form: 

 $[ ≤ $Y (4.3) 

 

An analytical expression of either condition in terms of gear design parameters 

is not provided in the primary source [14] or subsequently the gear design 
literature that cites it [17-23]. Starting from equation (4.3), we elaborate such an 

analytical expression hereunder as follows: 

 $[ = 75[ - 75$= 8��55 - ��55 - ��5<?\)6 
(4.4) 

$Y = �.sin)6 (4.5) 

 

Where the length �. is the projection of CS on the centre line of the gear pair and 

is a property of the generating rack defining the start point of its round tip (point 

S in Figure 4.1a, 4.1b). For simplicity we omit all the subscripts related to the 

reference gear (gear 1) and understand instead that any magnitude not 

designated by the subscript ‘2’ refers to gear 1 or is common to both gears. 
Next, substituting equations (4.4) and (4.5) into equation (4.3) we obtain: 

 8��55 - ��55 - ��5<?\)6 ≤ �.]^\)6�. ≥ 08��55 - ��55 - ��5<?\)61 ]^\)6 

(4.6) 

 
Substituting equation (3.5) into equation (4.6) we obtain: 

 �� - �� �_])6<?\ 0'4 + )2̀ 1 ≥
1 08��55 - ��55 - ��5<?\)61 ]^\)6 

(4.7) 

 
Considering the manufacturing parameters of gear 2 (which need not be the 

same as the reference gear 1), we alternatively express its outside radius as: 

 ��5 = �65 + ��5= 12V5 + ��5  
(4.8) 

 
Furthermore, we observe that: 
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��5 = 12 <�V5 
(4.9) 

 

Where the base pitch <� will be common to both gears as is requisite for basic 

meshing compatibility [24] and is thus not given a subscript. <a being the circular pitch, we know that: 

 <a = '<��_])6 = '<� = '�_])6 

(4.10) 

 

From equations (4.9) and (4.10) we deduce that: 

 ��5 = 12V5'cos)6 
(4.11) 

 

Substituting equations (4.8) and (4.11) into equation (4.7) we obtain: 

 �� - �� �_])6<?\ 0'4 + )2̀ 1
≥ b2312V5 + ��545 - 14V55'5�_]5)6
- 12V5']^\)6c]^\)6 

(4.12) 

 

This condition defines a mapping from the non-dimensional gear design 

parameter space �� - �� -V5 - ��5 - α6 (recall that no subscript implies 

subscript ‘1’, or a magnitude common to both gears) to the interference 

existence space, segregating two half planes in the cW - cL plane, as follows: 

 �� ≤ ��<?\ 0'4 + )2̀ 1 ]e�)6
-b2312V5 + ��545 - 14V55'5�_]5)6 - 12V5']^\)6c<?\ 0'4
+ )2̀ 1 <?\)6 

(4.13) 

 

And is the analytical equivalent to Litvin’s necessary and sufficient geometrical 

condition for non-interference. We shall be discussing the applicability and 
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accuracy of this model and its further implications and utility to gear design in 

section 3.6. 

 

4.2.2. Numerical models: Interference simulation 

This simple class of models works by discretising the mating gear surfaces and 

rotating them stepwise to simulate a number of finite anticipated meshing 

positions. If penetration of one discretised surface to the other is detected, then 

an interference warning is issued. Unlike analytical models, as in section 4.2.1, 

these models are obviously limited to checking one specific parametric 

configuration at a time and do not provide analytical insights in the form of a 

mapping from the design parameter space to the interference existence space. 
Implementations of this class of models can be found in a number of scientific 

studies [13, 15] and most commercial gear design and analysis software [5-8]. 

Remarkably, the large-fillet short-dedendum geometries form Chapter 3, when 

reproduced with KISSsoft v03-2011 [5] produced inconsistent warnings with 

regard to interference that were verified by simulation to be incorrect (Table 

3.1). These false negatives were shown to be dependent on backlash and were 

eliminated in the particular software by setting backlash to zero; however, it can 

easily be understood that backlash can only affect the occurrence of seizure, 

which is a particular type of interference, but has no effect by itself on corner 

contact and penetration on the driving side. In fact, seizure will always unveil in 
a geometrical simulation at some point as penetration, but the opposite is not 

true. Clearly, an accurate model for corner penetration -and hence generalised 

interference- that may be used even with non-standard geometries in the 

examined simulation software is missing. 
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Table 4.1: Interference calculations by KISSsoft v03-2011 [5] vs. simulation results for 

two pinions in mesh (NI = N5 = 20, cgI = cg5 = 1.0,  cNI = cN5 as per DIN3967 cd25 

[12]) cL cW KISSsoft [5] Chapter 3 

 

0.40 1.03 

 
No interference warning if 

backlash (Interference warning if 

zero backlash) 

 
Interference 

0.40 1.20 

 
No interference warning 

 
No interference 

0.45 1.03 

 
No interference warning if 

backlash (Interference warning if 

zero backlash) 

 
Interference 

0.45 1.20 

 
No interference warning 

 
No interference 
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4.3. GENERALISED CORNER CONTACT-AND-PENETRATION MODEL OF 

INTERFERENCE 

4.3.1. Corner contact and penetration 

Consider two parametric curves <hI(�I), <h5(�5) describing respectively two mating 
tooth flanks, where �I, �5 can be any suitable parameters, for each of which a 

continuous bijective mapping j → ℝ5 :� → <h exists and j are continuous 
intervals in ℝ (i.e. � can be the distance of each profile point from the centres of 

the respective gears or the length of each curve up to said point). The same 

definition can be extended to tooth surfaces, if at least one of �I, �5 ∈ ℝ5, in 

which case the mapping will be of the form j → ℝn :� → <h, where j must be a 

continuous segment in ℝ5.  

During a mesh cycle, these flanks will engage in conjugate action around the 

pitch point, and will each rotate according to a known law of the form: 

 ^I5op5 - opI = 0 (4.14) 

 
Where both angular velocities must be of the same sign for compatible rotation. 

For the sake of simplicity and without loss of generality, we demand that the 

following condition be true when two teeth mate with their leading sides at the 

pitch point: 

 p5 = pI = 0 (4.15) 

 

Considering equations (4.14) and (4.15) in the case of constant transmission ratio 

integrates over time for the leading side to: 

 ^I5p5 - pI = 0 (4.16) 

 

And for the coast side to: 

 ^I5(p5 - q�5) - (pI - q�I) = 0 (3.17) 

 

Where q� is the angle corresponding to the tooth pitch thickness of each gear, 

such that: 

 q� = �� 2'V  
(4.18) 
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Figure 4.2: Model of gear meshing and corner contact and penetration. Right: Detail 

showing contact discretisation around point r 

 

Depending on their shape the tip of each tooth may (or not) penetrate the other 

near the vicinity of its root. Such corner penetration is shown in Figure 4.2. It is 

clearly non-conjugate and must therefore be classified as interference. This 

model is consistent with all known accounts of interference, including tooth 

seizure (in which case the corner penetration will occur on the coast side of the 

teeth) and is different than conjugate-type ‘penetrations’ in compliant teeth 

models, which are resolved by means of deflection [25]. At this point we make 

two modelling choices: 
1) Without harm to generality, hereafter we shall check for corner penetration 

between the root of gear 1, modelled by tooth flank <hI(�I), and the tip of gear 2, 

modelled by tooth flank <h5(�5). To check for the opposite effect it is sufficient to 
switch the indices 1 and 2 in all subsequent calculations. 

2) The concept of corner penetration affords one more substantial reduction to 

the complexity of the model: instead of considering the entire flank of gear 2, it 

is only necessary to concentrate at a single reference point, the corner [5. The 

position parameter �5Jst� of this point is typically known, so the location of the 

point is easily found as: 
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 <h5Jst� = <h5u�5Jst�v (4.19) 

 

This reference point can be located at the outside radius, if the tooth is assumed 

to have a knife edge, or a more relevant point somewhat lower, where the 
chamfer or tooth rounding may begin, as is customary in gear design [26] or as a 

result of mild wear. Generally, placing the reference point at the outside radius 

can be expected to lead to more conservative, safer predictions. 

With regard to the tooth flank of gear 1, it is possible to similarly limit the area 

of interest if it is known beforehand (i.e. through analytical considerations) that 

certain segments may be excluded: Most especially, the conjugately operating 

segment of a tooth will by its definition only engage in conjugate action- this 

excludes the former corner penetration mode that is examined here and thus 

the corresponding segment can be safely excluded from further analysis. 
Turning to Figure 3.2, corner interference can be modelled as follows:  

 

4.3.1.1. Continuous model 

Consider for a kinematically compatible gear position	(θI, θ5). There will be 

corner interference if and only if an intersection point x exists between the curve <5 and the line X5[5. 

Considering the vector descriptions for the curve <5 and the line X5[5, in 

mathematical terms this translates to the requirement that two real numbers �I 

and y5 exist such that the following conditions are simultaneously true: 

 XXIzzzzzzzzh + <hI(�I) = XX5zzzzzzzzh + y5X5[5zzzzzzzzzzh<hI(�I) = XIX5zzzzzzzzzzh + y5<h5u�5Jst�v  
(4.20) 

�I ∈ jI (4.21) 0 ≤ y5 ≤ 1 (4.22) 

 

Where O is the centre of any arbitrary reference coordinate system. 

In general equation (4.20) can be expected to yield a set of non-linear equations, 

depending on the tooth form, which may be solved analytically or numerically 

for �I and y5 and the latter solutions can then be checked against equations 

(4.21), (4.22). 

 

4.3.1.2. Discrete models of first and higher orders 

In the case that the tooth profiles are described as discretised point clouds, the 

continuous model in section 4.3.1.1 may still be used by creating an interpolating 

function from the point cloud, i.e. using polynomial interpolation. However, it 
can be more practical to directly use a discrete model with such discrete data 

sets. We first develop a first order model of this kind as follows: 
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Consider for a kinematically compatible gear position (pI, p5) two neighbouring 

points {I(|)and {I(|QI) on the profile of gear 1 and the reference point [5 at 

the corner of gear 2, as shown in the detail of Figure 4.2. There is corner contact 

or penetration in the vicinity of {I(|) if and only if the vectors {I(|){I(|QI)and X5[5 intersect. In mathematical terms, this translates to the requirement that 
two real numbers yI and y5 exist such that the following conditions are 

simultaneously true: 

 X{I(|)zzzzzzzzzzzzzh + yI{I(|){I(|QI)zzzzzzzzzzzzzzzzzzzzzzzzzzh = XX5zzzzzzzzh + y5X5[5zzzzzzzzzzh (4.23) 0 ≤ yI ≤ 1 (4.24) 0 ≤ y5 ≤ 1 (4.25) 

 

Where O is the centre of any arbitrary reference coordinate system. 

This expression is particularly suitable for working with discretised expressions 

of the tooth profiles, as the index n can be set to follow the sequence of points 

making up the discrete representation of (a subset of) the profile of gear 1. 

Considering the distance between points {I(|) and {I(|QI) as infinitesimally 
small, it is possible to obtain an elegant analytical expression of the intersection 

clause of equations (4.23), (4.24) and (4.25): 

 X{Izzzzzzzzh(�I) + }yI oo�IX{Izzzzzzzzh(�I) = XX5zzzzzzzzh + y5X5[5zzzzzzzzzzh
XXIzzzzzzzzh + <hI(�I) + }yI oo�I <hI(�I) = XX5zzzzzzzzh + y5X5[5zzzzzzzzzzh
<hI(�I) + }yI oo�I <hI(�I) = XIX5zzzzzzzzzzh + y5X5[5zzzzzzzzzzh

 

(4.26) 

�I ∈ jI (4.27) |yI| ≤ <_� (4.28) 0 ≤ y5 ≤ 1 (4.29) 

 
Where }yI can be any very small (positive or negative) real number within a 

predefined tolerance, which characterises the solution accuracy. This is basically 

a local linearisation of the continuous model described under equations (4.20), 

(4.21) and (4.22). To allow for larger tolerances, but at the cost of solution 

simplicity, equation (4.26) can be further extended as a Taylor series to produce 

higher order discrete models for corner interference: 

 

<hI(�I) +�}yI|\! o|o�I| <hI(�I)| = XIX5zzzzzzzzzzh + y5X5[5zzzzzzzzzzh (4.30) 
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Equation (4.26), or in general equation (4.30), are especially suitable when a 

parametric analytical expression is known for <hI(�I) but it is also usable with an 

interpolated function derived from a discrete point cloud; furthermore the 

nature of the vector derivative allows to neglect the chosen origin O, if the same 
derivative is known under another coordinate system. 

In addition to the above expressions, corner contact and penetration 

distinguishes itself from conjugate corner contact in that at the point of 

intersection the tangent vectors of the two tooth profiles are not parallel. This 

translates into the following necessary condition for corner interference: 

 oo�I <hI(�I) × oo�5 <h5u�5Jst�v ≠ 0 
(4.31) 

 

If the entire tooth profile for gear 1 is used for checking interference, equations 
(4.23), (4.26) and (4.30) can be expected to yield also conjugate contact solutions 

along the path of contact, which equation (4.31) will identify and filter out. Using 

equation (4.31) is for the same reason redundant when the conjugate segment 

of tooth 1 has been excluded in advance, as only interference contact can be 

expected between non-conjugate profiles. 

 

4.3.1.3. Implementation over the entire mesh cycle 

To obtain usable expressions for the points considered in equations (4.23), (4.26) 

and (4.30), we link the instantaneous positions of the profiles to their known 

reference positions established in equation (4.15) by introducing the matrix�p�, 
which affects a planar rotation by an angle �p�: 
 �p� = ��_]p -]^\p]^\p �_]p � (4.32) 

 

The simplest model can be obtained by considering that a) the flank equations <hI(�I) and <h5(�5) refer to their respective local gear-bound coordinate system, 
such that the x-axis is made to pass through the pitch point, and that b) at the 

reference position defined in equation (4.15) the leading flank pitch points 

coincide. The models developed in sections 4.1.1 and 4.1.2 will then be valid for 

the position pI = p5 = 0. At any other kinematically compatible gear position pI, p5 any vector <hI fixed on gear 1 must be remapped to: 
 <hI → �±pI�<hI (4.33) 

 

where the top sign case corresponds to a global coordinate system orientation 

in which gear 1 rotates clockwise when oθI > 0 and the bottom sign case 



58 
 

corresponds to the opposite coordinate system orientation. Both modelling 

choices are equivalent. 

For any vector <h5 fixed on gear 2 the corresponding transformation is: 

 <h5 → �∓p5�<h5 (4.34) 

 
In practical terms, implementation of the different meshing positions means that 

the fixed position interference models developed in sections 4.1.1 and 4.1.2 are 

transformed using equations (4.33) and (4.34) as follows: 

Continuous model: 

 �±pI�<hI(�I) = XIX5zzzzzzzzzzh + y5�∓p5�<h5u�5Jst�v (4.35) �I ∈ jI (4.36) 0 ≤ y5 ≤ 1 (4.37) 

 

Discrete model, first order: 

 �±pI� BXI{I(|)zzzzzzzzzzzzzzzh + yI{I(|){I(|QI)zzzzzzzzzzzzzzzzzzzzzzzzzzhC = XIX5zzzzzzzzzzh + y5�∓p5�X5[5zzzzzzzzzzh (4.38) 

0 ≤ yI ≤ 1 (4.39) 0 ≤ y5 ≤ 1 (4.40) 

 

Approximated continuous model, first order: 
 �±pI� B<hI(�I) + }yI oo�I <hI(�I)C = XIX5zzzzzzzzzzh + y5�∓p5�X5[5zzzzzzzzzzh (4.41) 

�I ∈ jI (4.42) |yI| ≤ <_� (4.43) 0 ≤ y5 ≤ 1 (4.44) 

 

Approximated continuous model, higher order: 

 

�±pI� �<hI(�I) +�}yI|\! o|o�I| <hI(�I)| � = XIX5zzzzzzzzzzh + y5�∓p5�X5[5zzzzzzzzzzh (4.45) 

�I ∈ jI (4.46) |yI| ≤ <_� (4.47) 0 ≤ y5 ≤ 1 (4.48) 

 

The condition for non-conjugate contact from equation (4.31) also transforms 

across different mesh positions and is as follows: 
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�±θI� oo�I <hI(�I) × �∓θ5� oo�5 <h5u�5Jst�v ≠ 0 
(4.49) 

 

The algorithm used in this work for implementing the first order discrete model, 

as per equations (4.38), (4.39) and (4.40), is shown in Figure 4.3. The 

implementation of numerical solutions for the continuous and n-order 

approximated continuous models is similar, except that equation (4.38) and its 

corresponding parameters used in the iterative solution loops in Figure 4.3 are 

replaced by the appropriate formulation as per equations [(4.35), (4.36), (4.37)], 

[(4.41), (4.42), (4.43), (4.44)] or [(4.45), (4.46), (4.47), (4.48)] respectively. 
 

 
Figure 4.3: Algorithm for the discrete first order model for detecting corner interference 

 

4.3.2. Negative backlash and tooth seizure 

Negative backlash, i.e. due to errors in tooth thickness or centre distance, also 

leads to interference but is essentially different than the phenomenon studied in 

section 4.3.1. It can be detected by observing only the conjugate parts of the 

profiles and no corner-to-root contact need take place. Nonetheless, if the 

leading profiles are positioned in a compatible meshing position, seizure will 

unveil as corner penetration at the coast sides. Thus, tooth seizure manifests as 
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a specific case of corner penetration; to test for it, equation (4.17) should be used 

together with the appropriate expressions for the coast profiles and one of the 

models in section 4.3.1.3. Note that, unlike corner-to-root contact, equation 

(4.49) need not be true at the same time. 

In the usual case of symmetrical teeth, the symmetry can be used to advantage 

by inverting the direction of observation of the gear plane. This simple 

coordinate system transformation allows to use the known lead profile 

expressions, whereas equation (4.17) remains valid, on the condition that the 

signs for q�I and q�5 are reversed. 
Special case: 

Note that for a special case of zero backlash teeth, where ��I = ��5 = 0.5, 

equation (4.18) shows that: 

 -^I5q�5 + q�I = -^I5��5 2'V5 + ��I 2'VI= (-��5 + ��I) 2'VI= 0
 

(4.50)  

By applying equation (4.50) to equation (4.17), the latter is reduced to equation 

(4.16). Therefore for this particular case and provided that the gear teeth are 

symmetrical, a single-sided interference check using equation (4.17) will be 

sufficient to detect also tooth seizure. Note that it is otherwise not necessarily 

the case that tooth seizure can be predicted by single lead-side checks; normally 
a double-sided check will be required. 

 

4.4. GEOMETRICAL CONSTRAINTS OF THE MODEL RACK CUTTER 
The model rack cutter is generally defined as a trapezium with radius applied to 

its tip, as shown in Figure 3.3. The trapezoidal dimensions impose a limit to the 

maximum obtainable radius, which can be calculated from the geometrical 

model of a symmetrical cutter as per equations (3.8) (3.9), (3.10) and (3.11). 

Another limiting condition can be obtained by considering the maximum possible 

dedendum, at which the maximum cutter tip radius is zero. This is the case of a 

triangular rack ending with a knife edge. The corresponding mathematical 

condition is simply: 
 max�� = 12'(1 - ��)cot)* 

(4.51) 

 

4.5. MULTI-PARAMETRIC TOOTH MODELLING 
For the purposes of this study a set of 13 relevant independent design 

parameters was considered (dependent ones are shown in parentheses), as 

shown in Table 4.2. This multi-parametric study focuses on actively varying 6 of 
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these: the numbers of teeth, dedendum and cutter tip radius coefficients for 

each gear. The pressure angle, profile shift, addendum and thickness coefficients 

form another interesting cluster of parameters that will be researched in their 

own right in a subsequent work and for this study have been assigned constant 

nominal or customary values. Having decomposed the interference check into 

two partial checks for each tooth root, as per section 4.3.1, it is furthermore only 

necessary to consider the root geometry of the reference gear, and therefore 

reduce the number of parameters from 6 to 4, without loss of generality. These 

are marked in italics in Table 4.2. 
These choices practically allow for a sweep of a significant segment of the design 

space, which contains the recommendations by many standards for cylindrical 

gears produced by means of material removal, such as DIN 867 [11], DIN 3972 

[12], ISO 53 [27], GOST 13755-81 [28], JIS B 1702-72 [29], AGMA 201.02 and 

201.02A [30] etc. 

 
Table 4.2: Design parameters and ranges explored in the study 

 
 

For each combination of design parameters VI, ��I, ��I a discrete model was 

produced for the reference gear (gear 1), in the form of a sequence of points <hI(|) on the gear’s reference coordinate system. The in-house programme 

TFDraw [31, 32] was used for this purpose. To allow for highly accurate solutions, 

a high point cloud density was used with 300 points per profile. A numerical 

sensitivity analysis showed that further increasing the density (to up to 1000 

points per profile) only results in differences below the 4th significant digit, or 

less than 0.01%. The reference point <h5Jst� of gear 2 was selected to coincide 

with the theoretical tooth tip corner and was calculated analytically within 

TFDraw. 

The meshing gear macro-geometries from Table 3.2, omitting the root shape 

variations due to �� , ��, are visualised in Table 4.3 
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Table 4.3: Gear pair macro-geometries computed in the parametric study, scanning the NI - iI5 space. For clarity the root shape variations due to cL, cW are not shown here and 

nominal values are used (cL = 0.30,cW = 1.25) 

 
 

4.6. RESULTS AND DISCUSSION 

4.6.1. Analytical results 

4.6.1.1. Parametric mapping of the design space: Interference limit curves 

The parametric space defined in section 3.5 was input to the interference 

detection model developed in section 4.3.1.3 using discretised generated 
profiles in conjunction with equations (4.38), (4.39) and (4.40), as per the 

implementation shown in Figure 4.3. The limits between interference and non-

interference regions in the design space were computed and are plotted in Table 

3.4. The results concern interference at the root of the reference gear (gear 1). 
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Table 4.4: Interference limit curves in the four-parametric design space cWI, cLI, NI, iI5. 

Boundaries on the iso-N5 combinations are identical. The results in this table correspond 

1-1 to the configurations in Table 4.3 

 
 

The results in Table 4.4 clearly show that the interference limit is not dependent 

on the number of teeth of the reference gear (gear 1) or the contact ratio, but 

only on the number of teeth of the mating gear (gear 2). Thus any combination 

of VI, ^I5, where VI^I5 = V5 is constant, produces an identical interference limit 

curve. This has been further confirmed in additional ‘what-if’ simulations with 

more random parameter values. This insight allows to reduce by one the 
dimensions of the parametric space, without loss of generality, and report the 

results in a simpler diagram in terms of ��I, ��I, V5, as shown in Figure 4.4. 
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Figure 4.4: Interference limit curves in the three-parametric design space ��I, ��I, V5 

after elimination of parameters VI, ^I5 

 

Interestingly, the �� - �� curves produced are non-linear, especially near the 

lower values of �� , ��, unlike the linear relationship suggested by equation (4.13), 

which in turn is based on equation (4.1) and the form circle interference model 

[14]. We explore this apparent discrepancy in the next subsection. 
Next we proceed to plot the predictions of equation (4.13) next to the 

predictions of the generalised corner penetration model, as per section 4.6.1.1. 

This is shown in Figure 4.5 for a subset of the results. 

For different numbers of teeth equation (4.13) yields a family of parallel straight 

lines with inclination that is solely the function of the pressure angle, as follows: 

 o��o�� = <?\ 0'4 + )2̀ 1 ]e�)6 
(4.58) 

 

In this case, where α6 = 20°, the inclination is 
������ = 1.5198. 
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At this point the following observations can be made: 
• The form-circle interference model, as per equation (4.13), predicts 

interference limit lines on the �� - �� plane, which are tangent to the exact 

interference limit curves produced with the generalised corner penetration 

model. 

• At sufficiently high values of �� , ��  the limit curves coincide with the limit 

tangents. However, as �� , ��  decrease the tangents deviate from the exact 

solutions and thereby predict erroneous interference-safe zones, hence false 

negatives. 

• The error in the case of these false negatives is for 20° involutes of the order of 
100% for very shallow dedendum (near �� = 1) irrespective of the number of 

teeth; in terms of absolute magnitude it is larger at the lower tooth number 

ranges. 

• Conclusively, the form circle interference hypothesis predicts a tangent to the 

true interference limit curve and is generally not valid, yielding false negatives, 

except at sufficiently high �� , ��  values. Nonetheless, it provides a useful limit-

tangent to the true interference limit curves calculated by the corner 

penetration model developed in this chapter. 
 

 
Figure 4.5: Interference limit curves as predicted by equation (4.13) (thin straight lines) 

versus the corner penetration model (thick lines) on the �� - ��  plane 
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4.6.1.2. Speed, accuracy and solution stability 

Hereunder we summarise main observations with regard to the speed, accuracy 

and numerical stability of the solution presented in this chapter: 
• The corner contact-and-penetration condition employed in this chapter 

simplifies the general contact analysis problem by eliminating the profile 

function of the mating gear <h5(�5) from the contact calculation and substituting 

it with a single reference point <h5u�5Jst�v, typically the tooth corner. This 

provides a faster and, because of the form of equations (4.35), (4.38), (4.41) and 

(4.45), which lends itself to explicit calculations, always stable solution. The 

calculation of the results presented in this chapter over the entire parameter 

range described in section 4.5 lasted a few seconds in total, not requiring human 

supervision. 

• The presented model for interference, in any of its four variants presented in 

section 4.3.1.3 (from equation (4.35) to equation (4.49)), is unique in that it 

introduces directional parameters admitting algebraic values, i.e. ξI, ξ5, thus 

allowing exact and explicit solutions, whether analytical or numerical. This is not 

the case when distance metrics and the corresponding non-linear Euclidean 

norms are used, as in Polder’s approach [15], which by nature increase the 

calculation overhead. 

• The same use of algebraic values allows an immediate assessment not only of 

the distance from the intersection, which in the direction of the radius of the 

mating gear is directly calculated as (ξ5 - 1)�5Jst�, but also of the penetration 

versus non-penetration of the two mating profiles. In contrast, considering that 

a calculation of profile proximity using a Euclidean norm gives no such indication 

as to the spatial configuration, it is not technically possible for a distance-based 

solution algorithm to detect penetration without either human supervision, 

additional assumptions, or additional calculation-intensive algorithms. 

• The fast solution times and convergence allow stricter tolerances to be used in 

the calculation, affording higher accuracy for the same use of computational 

resources. Furthermore, the clear differentiation between corner contact-and-

penetration and negative backlash (seizure) allows for accurate detection of the 

former mode of interference, which can otherwise be missed by some modern 

numerical simulation algorithms, as shown in section 4.2.2. 

 

4.6.2. Contact simulation 

To verify the results and explain the observed trends, the discretised profile 

models corresponding to some interesting test cases (at or beyond the limit of 

interference) were imported into SolidWorks [33] to produce fully detailed 

models for the reference gear. Mating gear models were also constructed in the 

same way, where the root geometry was set to a standard definition using �� =1.25 and �� = 0.3. The meshing was simulated in SolidWorks by rotating the 
gears in short increments around those positions identified by the corner 

penetration solution algorithm as having the closest proximity. These contact 
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simulations confirmed the analytically obtained results predicting marginal 

interference and non-interference. 

Furthermore, these simulations shed some first insight into the accuracy and 

physical significance of the observation made previously, that the occurrence of 

corner penetration is not dependent on the number of teeth of the reference 

gear. Indeed, overlapping simulations of tooth contact were conducted, where 

reference gears having different numbers of teeth, but with otherwise identical 

parameters, were placed in mesh with the same mating gear, as shown in Table 

4.5. Although each gear has a distinctly different root shape, it has been observed 
consistently that, as the reference point of the mating gear approaches the roots 

of the reference gears, the root profiles locally coincide, apparently also in terms 

of their higher-order derivatives and curvature. To the best knowledge of the 

authors, this local coincidence has not been previously observed or predicted. 

This is shown in Figures 4.6 and 4.7 for one case of marginal interference and one 

case of marginal non-interference respectively and explains sufficiently the 

simultaneous occurrence (or not) of interference across the different reference 

gears. Further investigation of this effect must trace the causes to the theoretical 

geometry of the trochoid and should be addressed in future research. 

 
Table 4.5: Simulated overlays of reference gears (gear 1, bottom) with different 

numbers of teeth, producing identical interference patterns when meshing with the 

same gear (gear 2, top) 
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Figure 4.6: Contact simulation showing corner penetration at the tooth root of three 

reference gears having different numbers of teeth, but otherwise being identical, 

meshing with the same gear. V5=20, VI=10, 20, 40 

 

 
Figure 4.7: Contact simulation showing marginal non-interference at the tooth root of 

three reference gears having different numbers of teeth, but otherwise being identical, 

meshing with the same gear. V5=20, VI=10, 20, 40 

 

4.6.3. Design guidelines 

4.6.3.1. General insights 

The model presented in this chapter was demonstrated for involute gears, but 

by virtue of the generic form of equations (4.35), (4.38), (4.41) and (4.45), it is 

applicable to any tooth form, even non-conjugate ones, as in tip-relieved or 

otherwise modified gears. If the considered profiles are expressed analytically, 

then also analytical and even potentially explicit solutions can be found to the 
interference condition. 
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Focusing now on the involute case study presented, the following design insights 

emerge: 
• The occurrence of interference at the root of a reference gear depends on its 

dedendum and cutter tip radius and on the number of teeth of the mating gear, 

on the condition that the latter has a standard addendum. It is independent of 

the gear module and of the number of teeth of the reference gear, thus allowing 

entire gear size ranges to be analysed by a single computation. 

• The position for interference and non-interference can be determined in the �� - �� - V5 design subspace by means of design limit curves, which are bound 

at high ��,�� values by limit tangents. 

• The mentioned limit curves represent designs of zero clearance between the 

root of the reference gear and the tip of its mating gear in at least one position 

in the mesh cycle. Within the employed parameterisation, no further reduction 

of clearance is possible. As such, the limit curves represent the gear designs 

having the most compact tooth forms. 

• The farther a design point is from an interference limit curve in the �� - �� - V5 

non-interference subspace, the larger the root clearance is. Conversely, the 

farther this point is from an interference limit curve in the �� - �� - V5 

interference subspace, the more severe the interference if otherwise. Thus, the �� - �� - V5 interference mapping may conceivably be used for tolerancing. 

• Smaller numbers of teeth in the mating gear make possible the use of larger 

cutter tip radii and smaller dedendum on the reference gear, irrespective or its 

own number of teeth). This potentially makes large module-low tooth number 

gear pairs more viable, if both gears (and especially the more vulnerable pinion) 

may be strengthened by being made more compact. 

 

4.6.3.2. Generating compact gears with standard cutters 

It is typically the case in production facilities that the available cutters (i.e. hobs) 

comply to a single standard, in which case �� , �� are practically fixed for the entire 

size range. Nonetheless, compact gears are obtainable by positive shifting while 

keeping the outside diameter of the blank the same as in the non-shifted 

configuration. This will emulate a rack cutter of smaller ��, while �� will remain 

unchanged. The procedure will tend to produce thicker teeth, in which case a 

second pass with an index offset will be required to obtain the appropriate tooth 

thickness (and the corresponding clearance) at the pitch circle. In the case of such 

a procedure, where �� is fixed in advance, the �� - �� plot (Figure 4.6) is not a 

particularly appropriate chart for selecting the geometry and process 

parameters. The same results can be plotted instead on the �� -V5 plane, as 

shown in Figure 4.8, where the interference limit curves are plotted for tooling-

dependent fixed values of ��. 

Lastly, the V5 - �� plot, of less technical significance but nonetheless insightful, 

is shown in Figure 4.9 for completeness. 
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Figure 4.8: Cubic spline approximations of interference limit curves on the �� - V5 plane 

 
Figure 4.9: Cubic spline approximations of interference limit curves on the V5 - ��  plane 
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4.7. CONCLUSION 
Starting from basic geometrical principles, this work proposed a new generalised 

analytical model for interference as non-conjugate corner contact-and-

penetration at the tooth root. From this a geometrical condition was extracted 

that admits a simple and explicit mathematical solution for either analytically 

expressed or discretised tooth profiles. This condition overcomes inaccuracies in 

previous form-circle-based analytical models and admits simpler and faster 

solutions than competitive numerical simulations for interference. 

The model was applied to compact involute teeth and was used for the 

extraction of design guidelines in the form of interference limit curves, which, for 

a given gear irrespective of its number of teeth, were shown to depend only on 
its dedendum and cutter tip radius and the number of teeth of the mating gear.  
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5- Influence of centre distance 

deviation on the interference 
 

 

Summary 
Gear design generally considers global geometry like tooth profile shape and 

centre distance, however it needs also to consider the tolerances introduced in 

the manufacturing and assembly of two mating gears. The influence of these 

tolerances can be predicted better by understanding the behaviour of such 

manufacturing and assembly errors in conjunction with the gear geometry 
design process. To address this, in the present study the influence of the centre 

distance deviation and of the design parameters (i.e. cutter tip radius, 

dedendum, and tooth thickness) of the tooth profiles on interference will be 

investigated. An analytical modelling framework for interference of a gear pair is 

developed, which is used to characterise a structurally well-defined gear meshing 

system. The tolerance zone is evaluated, with regard to cutter tip radius, 

dedendum, tooth thickness and centre distance deviation for a structurally well-

defined gear mesh model. Different gear transmission ratio, contact ratio and a 

pressure angle of 20o have been considered. The results of the present work can 
be used as a guideline for the tolerance design of a gear pair. 

 

5.1. INTRODUCTION 

A nominal (or perfect) geometry (i.e. one that is following the law of gearing [1-
3] is most typically assumed in the design of gears, as any deviations are expected 

automatically to be of little significance, as long as good adherence to 

manufacturing and design standards [4-10] is maintained. In reality, gears are 

not as perfect as desirable and this matter cannot be ignored in the precision 

design of (non-standard) gears. 

Gears are designed based on global geometry like tooth geometry and centre 

distance, but it is necessary to consider also the tolerances introduced in 

assembly [11-17] and manufacturing [17-20] of a gear pair. Knowing the 

tolerance to such deviation is essential for designers to control manufacturing, 
assembly and the design process of gears itself. 

In particular, the errors in gear transmission systems can be categorised in three 

parts: I) manufacturing errors like pitch, indexing, profile and distortion errors 

[16,21-22], II) assembly errors like eccentricity, misalignment and centre distance 

deviation [16,21] and III) errors in the design of gear geometry with regard to the 

design parameters [23-24]. 
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With regard to assembly errors, while crowning can be used partly to alleviate 

the ill-effects of misalignments, errors in the centre distance may not be 

counteracted in such direct manner: While a larger centre distance will have little 

effect on an involute transmission, a shorter one may cause seizure if zero-

clearance, zero backlash and/or radially compact gears are concerned, and in 

either case there are well-documented dynamical influences as well [25-29].  

In fact, the larger the errors, the larger the risk of interference and vibration, 

which can result in system-wide catastrophic failure [15]. Operation loads in 

general, combined with the flexibility of shafts and bearings cause rapid 
oscillation of the centre distance about its constant as-assembled value, thus 

increasing the error. 

The analytical formulation for tooth interference has been suggested by Litvin 

[1]. However the solution is valid for studying interference occurring along the 

line of action only, which is a false premise in most non-standard and compact 

gear design configurations. Figure 5.1 presents the relations between different 

parameters of the present study.  

The main focus of this work is to investigate the influence of centre distance 

deviation on the interference of mating gears, in conjunction with other coupled 

design parameters defining the tooth form (cutter tip radius, dedendum, tooth 
thickness and number of teeth). Since Litvin’s model [1] is generally not 

applicable in the case of non-standard gear geometry, a new model has to be 

investigated: Interference for non-standard gears occurs due to the penetration 

of the tip one gear into the tooth root of the mating gear as has been explained 

in Chapter 3. The new interference model has to cover this penetration 

mechanism that takes place at the corner-to-root contact region.  

In addition new analytical relations for interference occurrence are presented in 

terms of rack-cutter tip radius, dedendum and tooth thickness. The number of 

teeth and contact ratio for a combination of standard and non-standard gears 

has been considered. Non-dimensional analytical modelling is used to obtain 
results for entire gear families. The results of interference occurrence are 

compared, according to formulations of gear geometry as per Litvin’s known 

model [1]. The tolerance zone is evaluated with regard to all considered 

parameters for a pressure angle of 20 degrees. 

The results show that the design parameters of the geometry as well as the 

centre distance deviation have an important role in the occurrence of 

interference. The “safe design zone” for the different tolerances is thus 

extracted. The results of the present study yield a better understanding of the 

influence of the design parameters and centre distance deviation on interference 

of two mating gears and the charts can be used directly as design guidelines. 
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Figure 5.1: Qualitative relations between different parameters on the design of tolerance 

5.2. GEOMETRICAL CONSTRAINTS IMPOSED BY MANUFACTURING 

PROCESS 
A cross-section of the tooth of a generating rack cutter for various cases of tip 

radius is defined as a trapezium with a radius applied to its tip, i.e. as shown in 

Figure 3.3 [23-39]. There is a practical limitation on the maximum radius for a 

given whole depth, which can be calculated from the geometrical model of a 

symmetrical cutter as shown in Figure 3.3 

 

5.3. ASSEMBLY AND CENTRE DISTANCE 

The nominal centre distance is determined as follows: 
 ?I5 = 3VI +V52 + ��I + ��54 

(5.1) 
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Where m is module,	VI and V5 are the number of teeth for gear number 1 and 

2, respectively, ��I and ��5	 are the addendum modification of gear number 1 

and 2, respectively; that in this work the value for both ��I and ��5 are zero. 

Because of the assembly errors, it is difficult to mount a gear pair in the exact 

position dictated by the centre distance. In addition, instantaneous local contact 

geometry deviation due to system dynamics cause deviations in centre distance 

[27-29]. In fact, a bit larger centre distance is used to improve the operation 

pressure angle. For instance, if the actual centre distance is made 1.7116% larger, 

gears cut with 20° hobs or shaper-cutters will run at 22.5° pressure angle [2]. 
According to the same source, because of the mentioned occurrences, it is 

possible to have another centre distance, which is called as operating centre 

distance. The deviations of centre distance can cause further problems such as 

interference between two mating teeth. The consequence of interference will 

affect wear, pitting, scoring and tooth breakage.  

For this study, the influence of centre distance deviation for non-standard tooth 

geometry is evaluated. The tooth shape profile is changed by changing the design 

parameters. With the given amount of centre distance deviation, the effects of 

the design parameters on the interference between a pair of gears are 

investigated. Non-dimensional centre distance deviations }=0, 0.01, 0.02, 0.03, 

0.05, 0.07 are considered. Gears 1 and 2 are a non-standard and a standard gear, 

respectively. Different gear transmission ratios ̂ I5=0.25, 0.5, 1, 2 are considered. 

 

5.4. MODELLING OF INTERFERENCE  

Generally, interference is an undesirable occurrence during meshing. 

Interference destroys the gear teeth, and it is generally detrimental to gear 

meshing. There are several methods to avoid interference i.e. by using shorter 

addendum for one or both meshing gears. Nevertheless, other problems will be 

unveiled, such as: increased vibration, wear and reduced power transmission 

[40].  
Due to the influences of addendum on interference, some researchers 

investigated the influence of addendum modification on interference [41-44].  

Another solution is that to eliminate interference by means of one of the 

generation processes i.e. using the cutting tool which removes the interfering 

portion of the flank. This method is not a satisfactory solution because of the 

effect of tooth weakening that interference is replaced by undercutting [40] and 

the apparent shortening of the meshing involute portion leading to reduced 

contact ratio. 

Increasing the number of teeth for small gears can be an alternative option to 

solve this problem. On the other hand this solution causes increase of the gear 
size and pitch line velocity and an optimum module – number of teeth solution 

has to be sought for.   



77 
 

Using larger pressure angle is also as a solution which increases sliding velocity 

and reduces tip thickness, while increasing bearing loads and frictional forces at 

the same time [40]. 

Each solution in interference on gear geometry has its own consequence. 

Sometimes giving rise to a new problem such as noise, vibration and wear which 

is related to the other parameters in gear geometry. A new solution must be 

found, according to the parametric design with some limitations. It has to be able 

to use the new restrictions to remove interference and further problems which 

are related to it. 
In this analysis, the corner contact-and- penetration model of section 4.3 is 

applied. The occurrence of interference on the path of contact considers two 

mating tooth flanks, as shown in Figure 4.2. During a mesh cycle, these flanks will 

engage in conjugate action around the pitch point. 

The points of the gear profile were generated using an in house computer 

programme in C++, using the algorithm presented in Figure 4.3. 

In the corner contact instant illustrated in Figure 4.2,	XI is the original point of 

the gear number 1 and X5 is the original point of the gear number 2. The 

algorithm has been used in this study for implementing the corner contact’s 

model, is in accordance with equations (from (4.35) to (4.49)) which have been 
introduced in section 4.3.1.3.  

 

5.5. RESULTS AND DISCUSSION 

5.5.1. Multi-parametric tooth modelling 

A non-dimensionalisation scheme is applied, which permits the simultaneous 

modelling of entire families of gears and lends wider generality to the results of 

the numerical solutions of this study. This methodology has been introduced in 

section 3.2.1.1. 

For the purposes of this study a set of relevant independent design parameters 

for a pair of involute gears was considered as follows:  

Pressure angle is 20 degrees for both gears. Number of teeth for gear 1 ranges 

between 10, 20 and 40. Gear transmission ratios have been considered as 0.25, 

0.5, 1.0, 2.0 and 4 which means that for gear 2, the number of teeth will be 5, 10, 
20, 40 and 80, respectively. The mating gear geometry is kept standard; 

therefore the value of dedendum, cutter tip radius, addendum and profile shift 

modification coefficient will be 1.25, 0.3, 1.0 and 0.0, respectively. Tooth 

thickness for gear 2 is assumed to be compatible to gear 1. For gear 1 as non-

standard gear different values for the design parameters are studied as: 

dedendum: between 1.00~2.20, cutter tip radius: between 0.00~0.62, 

addendum: 1.0, tooth thickness: between 0.50~0.70, profile shift modification: 

0.0. Different centre distance deviations are considered as per section 3.3. (} =0, 

0.01, 0.02, 0.03, 0.05, 0.07).  
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5.5.2. Interference limit curves 

The parametric mapping of the design space was conducted by means of the 

corner contact-and-penetration model of interference which has been 

developed in section 4.3. The limits between interference and non-interference 

regions in the design space were computed and are plotted in Table 5.1.  

In this table, the straight grey lines are the boundary line between interference 

and non-interference that has been suggested by Litvin [1] according to equation 

(4.13). The point & black line curves are the result of using the presented corner 

contact-and-penetration model. If the selected design parameter combination 

corresponds to a point will be above each line/curve, it means that the 

interference will be happened and if it will be below the line, it means that there 
is no interference and the design will be safe, according to the model 

corresponding to the particular curve. 

The results concern interference at the root of gear 1, therefore the curves are 

presented mathematically as minimum (root) clearance function	}(�� , ��). This 

new function is a function of addendum and cutter tip radius for each gear pair. 

The results of parametric mapping present in Table 5.1. It can be found that the 

interference limit is independent of the number of teeth of gear 1 or the contact 

ratio, and only dependent on the number of teeth of gear 2. 

 
Table 5.1: Interference limit curves as predicted by equation (4.13) (grey lines) versus the 

corner contact-and-penetration model (points & black lines) on the cLI - cWI plane 

 

 5.5.3. Tooth thickness limitation 

The maximum value of ��I with changing the amount of ��I has been introduced 

by equation (3.10) while the value of �� is given. In equation (3.10) different 

values for tooth thickness (��I) present some limitations for different 

combinations of ��I and ��I. Figure 5.2 presents the feasible design space for 

different ��I - ��I combinations in regard with tooth thickness limitations. With 

increasing the amount of tooth thickness, it is clear that the tolerance area for 

different values of ��I, ��I will be decreased. 
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Figure 5.2: The limitation of ��I - ��I combination for different values of tooth thickness 

(��I). (��5 assumed to be compatible) 

5.5.4. Centre distance deviation 

The influence of centre distance deviation for interference of a gear pair with 

different combinations of cutter tip radius and dedendum coefficient is 

presented in Figure 5.3. 

It is clear that increasing the deviation of centre distance causes a decrease of 

the interference risk for a gear pair. With decreasing the gear transmission ratio 

the interference risk will be increased, while the value of centre distance 

deviation is given. With increasing the value of centre distance deviation and 
decreasing the value of tooth thickness simultaneously, the risk of interference 

will be increased. 

There is a special result about the centre-distance deviation of larger gears. With 

increasing the number of teeth of the mating gear (VI=20, V5=80), the gap 

between the interference curve for nominal centre distance (}=0.00) and the 

centre distance with deviation of 0.01 (}=0.01) will be increased. This means that 

the sensitivity of occurrence of interference which is expressed mathematically 

as �}(�� , ��), and hence the corresponding uncertainty risk are reduced in the 

case of gears with more teeth, as can be seen in Figure  5.3.  

Figure 5.3 only shows results for VI=20, however identical trends appears for VI=5, 10, 40 and 80, because it was shown in Table 3.4 that the corner contact-
and-penetration interference at the root of gear 1 is not dependent on VI. 
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Figure 5.3: Influence of centre distance deviation on interference risk for different gear 

tooth combinations & transmission ratios 

5.5.5. Implication on gear tolerancing 

An illustration of the tolerance zone and how it affects design is presented in 

Figure 5.4. For instance, design at the centre of zone A is within the interference 
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envelopes (thick lines), but clearly zone A itself exceeds them. Therefore this 

design presents a high interference risk. Because of centre distance deviation 

(assembly errors, dynamics), it is wiser to select i.e. zone B (Figure 5.4), which 

presents a more safely placed tolerance zone.  
 

 
Figure 5.4: Influence of different deign parameters on the tolerance zone 

 

5.6. CONCLUSION 

In the present work the influence of the design parameters of gear tooth 

geometry and of the centre distance deviation on interference risk have been 

investigated, to determine the effect of errors in gear assembly process. A corner 
contact-and-penetration model for interference has been presented, which 

allows for minimising the clearance between gear teeth while maintaining 

interference-free operation. This is applicable to both analytically expressed and 

numerically discretised tooth profiles. Non-dimensionalisation methodology has 

been used to quantify the influence of the design parameters of gear geometry 

on interference risk. The tolerance zone has been evaluated, with regard to 

cutter tip radius, dedendum, tooth thickness and centre distance deviation. 

Different gear transmission ratios, contact ratios and a pressure angle of 20 

degrees have been considered. The results of the present study introduced a new 

guideline for the tolerance-based design of gear geometry, incorporating 
tolerance zones. 
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6-Design to maximise compactness 

and bending strength  
 

 

Summary 
A methodology is developed to design non-standard involute gear geometries 

generated by cutting tools with standard and non-standard proportions, such as 

to produce compact tooth meshes by minimizing the unused radial clearance, 

while at the same time avoiding detrimental corner contact at the tooth root. It 

is shown under which parametric combinations of dedendum and tip radius of 
the equivalent rack (cutter) the feasible design solutions for different tooth 

numbers and transmission ratios produce lower tensile bending stresses at the 

root, thus leading to optimal solutions for compact gears and allowing the 

identification of a global optimum. The analysis leads to a comprehensive 

mapping of the four-parametric design space in consideration of interference 

and undercutting and the discovered optima are compared to the design 

solutions found in current ISO, AGMA, GOST and JIS standards. 

 

6.1. INTRODUCTION 

In spite of the increasing possibilities of using explicit design methods for 

producing matched gear pairs, as in the case of moulded plastic gears, the large 

majority of gears used in power transmissions must still be batch-produced by 

some form of generating process, typically hobbing, milling, shaving, grinding 

etc. The design of such profile generated gears is subject to several restrictions 

arising from the need to use practical and therefore generally simple shapes for 

the generating cutters, which are typically abstracted for the purpose of analysis 
to an equivalent generating rack. In the case of involute gears, which comprise 

the large majority of generated gears, the rack profile is a trapezium. The 

positioning of the rack relative to the centre of the gear blank and its outside 

radius defines the tooth whole depth and the dedendum- and considering the 

blank’s outside diameter also the addendum. A rounding is typically applied to 

the rack tip to strengthen the cutter, which at the same time is responsible for 

producing a different trochoid shape for the tooth root than would otherwise be 

obtained by an unrounded tip. A larger cutter tip radius results in the removal of 

less material from the tooth root, producing wider tooth roots with trochoidal 

shapes characterised by larger radii of curvature. Generally, as follows from basic 
principles of the mechanics of tooth bending, both shortening the dedendum 

and enlarging the root fillet leads to stronger gear tooth forms. 
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However, not all combinations of whole depth/ dedendum and cutter tip radius 

are viable: 
• All other design parameters kept constant, increasing the whole depth will be 

limited by the tooth thickness, as it will tend to produce pointed teeth at a 

certain value, beyond which the outside diameter of the gear will be 

compromised by the cutting of the second tooth flank and the as-produced 

whole depth will be in fact reduced. 

• Reducing the whole depth and/ or increasing the cutter tip radius can 

conversely lead to interference at the tooth root, where the mating teeth will 

tend to develop secondary non-conjugate corner contact and penetration with 

catastrophic results during operation. 

• Too low a cutter tip radius and/ or large whole depth may also lead to 

undercutting during manufacturing. While it is quite possible for undercut gears 

to function, undercut tooth forms are weaker than non-undercut ones and are 

usually best avoided for this reason. 

Currently a number of models are known in gear theory to predict the 

geometrical (pointing, undercutting) and kinematical integrity (interference) for 

any given geometry, which may be used to detect and simulate the problematic 

conditions described above [1-5]. Based on these models, as well as basic CAD 

simulations, current commercial-grade software such as KISSsoft [6], Gear Design 
Pro [7], GearTeq [8] and GearTrax [9] also provide facilities to detect the same 

problems. However, while these analysis capabilities are competent, no 

comprehensive model exists to-date that is able to solve the same problem 

inversely, hence to dictate viable and optimal tooth designs so as to achieve 

specific performance goals, such as i.e. bending strength. Thus to design using 

the present models and methods many iterations are needed and it is generally 

not known where the optimal solutions lie in the design space. This is clearly 

manifested by polyphony of standards for gear tooth geometry currently in 

force. Even for the 20° involute system only, ISO [10], AGMA [11], GOST [12], JIS 

[13] etc offer many alternative rack (and hence tooth) proportions, in some cases 
also overlapping partly, but there is no evidence that these ‘industry best 

practices’ are optimal in terms of some performance index (i.e. strength), or even 

nearly-so. 

Over the years, several scientific models have been proposed to deal with 

important aspects of the gear design problem. I.e. a number of researchers [14-

29] have developed parametric models for bending strength calculation and 

optimisation. A number of different interference models can be found in [1, 30-

37], with Litvin’s model [1] probably being the most well-known, although 

recently found to have limited validity in the case of non-standard gear 
geometries. Undercutting studies can be found in [1, 4, 38-41]. 

With regard to gear geometry, different researchers have studied the effects of 

profile shifting [42-48], addendum [24, 49-56] and tooth thickness [56-60], while 
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dedendum and tooth root geometry have also been featured in a number of 

studies [16, 61-66].  

Yet the wealth of studies underlying the mentioned highlights remains largely 

compartmentalised, each study addressing by necessity a limited scope within 

the design space. In the context of multi-parametric gear design, and especially 

considering how geometric compatibility and interference impose non-linear 

constraints on what actually can be achieved, a method is still missing that will 

allow a multi-parametric overview of how compactness, undercutting and 

interference affect feasible designs in terms of contact ratio and (resistance to) 
different failure modes. Hereafter we shall explicitly concern ourselves with 

bending failure only, noting that inclusion of additional failure modes (i.e. pitting, 

scoring) can be achieved in the same manner. 

In this chapter, we start from basic principles to frame a comprehensive model 

for the parametric design of profile-generated involute gears. The model 

simultaneously considers all applicable geometric and kinematical constraints 

[14] to qualify each point in the design space (hence each combination of 

geometrical gear design parameters) in terms of geometrical and kinematical 

integrity. Bending strength is also considered as a relevant performance metric, 

and, building on prior results by the research team, the design space is 
characterised in terms of where the highest bending strength can be obtained. 

The same is done for the contact ratio, which is an important indicator for load 

sharing and dynamics. Based on each performance metric, a global optimum is 

thus identified; at the same time, given the multi-parametric nature of the 

problem, it may be desirable to dictate a-priori or restrict the range of certain 

parameters, such as the number of teeth and the transmission ratio, and thus 

loci of optimal solutions are also identified. 

The main contribution of this chapter is in synthesising the different 

compartmentalised state-of-the-art solutions it builds upon into one 

comprehensive multi-parametric model, with subsequent exploration of the full 
design space with regard to the considered parameters. While the focus here is 

on compactness, non-interference, bending strength and contact ratio, the same 

paradigm is extensible to pitting, scoring etc failure modes. Design guidelines are 

extracted and multi-dimensional maps of the design space are given in terms of 

dedendum/ whole depth, cutter tip radius, and numbers of teeth. Benchmarks 

against standards as well as known non-standard ‘best industry practices’ reveal 

significant potential in the less explored parts of the design space, especially with 

regard to a multitude of low-clearance, compact gear designs. In spite of several 

works dealing with compartmentalised aspects of the same design problem, 

neither the presented integral approach nor these findings have been shown 
previously in the literature. 
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6.2. MODELLING 

6.2.1. Non-dimensional functional definition of compact gearing 

We employ the same non-dimensionalisation concept as introduced in section 

3.2.1.1, whereby all gear dimensions are expressed as ratios of the gear module .  

Whole depth is the sum of the addendum and dedendum and is readily 
identifiable from the cutting geometrical setup, unlike the latter two, which 

depend also on the cutting kinematics, which in turn define the pitch circle. In 

this study, we consider the gears to be meshed at their nominal centre distances 

and pitch circles, maintaining thereby the link to the cutting kinematics for 

convenience. 

In the same convention, we consider an addendum coefficient of �� = 1 and 

therefore manipulate the dedendum and whole depth simultaneously, 

considering that: 

 �� = �� + �� (6.1) 

 

Where �� 	is the non-dimensional whole depth and ��  is the dedendum 

coefficient. 

6.2.2. Interference analysis 

In this analysis, the corner contact-and-penetration model of section 4.3 is 

applied. The occurrence of interference on the path of contact considers two 

mating tooth flanks, as shown in Figure 4.2. During a mesh cycle, these flanks will 

engage in conjugate action around the pitch point. The points of the gear profile 

were generated using an in house computer programme in C++, using the 

algorithm presented in Figure 4.3. 

6.2.3. Undercutting analysis 

Conditions of non-undercutting tooth by a rack-cutter (Figure 3.2) may be 

determined by using the general approach presented based on simple geometric 

considerations, which has been introduced by Litvin [1]. The undercutting 

limitation is expressed as: 

 )* - � ≥ 0 (6.2) 

 

From Figure 3.2 of section 3.2.1.1, we know however that: 
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� = <?\JI �.<?\)*(�6,> - �.)  

(6.3) 

 

Thus from equation (5.3) and substituting some details of Figure 3.2 in equation 

(6.2) we conclude that: 

)* - <?\JI ��<?\(45∘ + )*2 ) - ���_])*<?\)*[(�6,> - ��)<?\(45∘ + )*2 ) + ���_])*] ≥ 0 

(6.4) 

6.2.4. Tooth thickness analysis 

Equations (3.10) and (3.11) are used for tooth thickness analysis to find the 

limitation of tooth thickness with regard to the cutter tip radius and dedendum 

coefficient. 

6.2.5. Non-dimensional stress analysis: Root bending 

Tooth bending stress Stresses can be calculated in non-dimensional teeth �∗ by 
assuming unitary tooth width � = 1 and unitary normal load  !∗ = 1. The non-

dimensional stress is related to the actual bending stress �# using equation (3.2) 

as: 

 �# = �#∗  !�  

 

as suggested by Townsend [2] and Spitas [15, 23]. The actual stress calculations 

can be conducted by any suitable FEA. 

 

6.3. RESULTS AND DISCUSSION 

6.3.1. Geometrical feasibility 

For the purposes of this study a set of relevant independent design parameters 

was considered, as shown in Table 6.1. 
 
Table 6.1: Design parameters and ranges explored in the study 
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6.3.1.1 Interference Limit Curves 

Parametric mapping of the design space was conducted by means of corner 

contact-and-penetration model of interference which has been developed in 

section 4.3. The limits between interference and non-interference regions in the 

design space were computed and were presented in Table 5.1. The results 

concerned interference at the root of gear 1. 

The results of parametric mapping as shown in Table 5.1 clearly indicated that 

the interference limit was independent of the number of teeth of gear 1 

(reference gear) or the contact ratio, but only on dependent on the number of 

teeth of  gear  2 (mating gear). 

6.3.1.2 Undercutting limitation 

Using equation (6.1) for different number of teeth for gear 1 gives us this 

opportunity to design a gear without undercut as shown in Figure 6.1. With 

increasing the number of gear teeth and the value of ��, the safety of the design 

in the non-undercut part will be increased. 

 

 
Figure 6.1: Undercutting limitation of ��I - ��I combination for different number of 

teeth. The grey area is non-feasible design area 

6.3.1.3 Tooth thickness limitation 

The maximum value of �� , with changing the amount of ��  while the value of �� 

is given was presented by means of equation (3.10). Different value for �� as 

tooth thickness coefficient presented the limitation of the combination of �� and ��. The limitation of �� - �� combination for different value of tooth thickness 

coefficient (��) was presented in Figure 5.2. The design space for different 
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combination of �� and �� will be less with increasing the amount of tooth 

thickness. 

6.3.2. Bending strength and standards benchmark 

Four different combinations of �� and �� for a nonstandard gear (VI=10, 20, 40) 

meshing with a standard gear (V5 =5, 10, 20, 40, 80) the latter as per ISO53.2 

profile B [10]/ DIN867. Different gear transmission ratios are also taken into 
account, using the listed tooth number combinations. For the purposes of this 

investigation ANSYS was used to simulate the loading of different gear pairs with 

consistent boundary and loading conditions. For bending stress calculations 

point loading at the Highest Point of Single Tooth Contact (HPSTC), which, in 

consideration of Saint-Venant’s principle, produced fast and accurate 

calculations of the root stress using single tooth models meshed with iso-

parametric PLANE82 elements having an increased mesh density at the tooth 

root. The local mesh density choice was selected based on a sensitivity analysis 

based on initial trials with increasing density, until no measurable error in the 
stress prediction was produced. 

Based on these results which are shown in Figure 6.2 the following observations 

can be concluded: 

A) With increasing the value of �� and ��, the maximum bending stress (�I) will 

be decreased, due to a reduction of the stress concentration and of the bending 

moment at the tooth root cross-section;  

B) With increasing the number of teeth for gear 1, while the number of teeth for 

gear 2 is fixed and the value of ��I and ��I are given; �I will be decreased, due 

to the increase in contact ratio and corresponding decrease in the bending 

moment due to the lowering of the HPSTC. This trend is non-linear and becomes 

less significant with increasing numbers of teeth; 
C) With increasing the gear transmission ratio, �I will be increased (this is in 

agreement with point B). Furthermore, combing B and C makes it obvious that 

with decreasing the gear transmission ratio while the value of � is increasing, �1	will be decreased; 

D) The choice of ��I is limited by the number of teeth, with small tooth numbers 

allowing only a small variation in ��I; and 

E) Likewise, small tooth numbers limit the choice of ��I. Obviously, the value of 

gear contact ratio (�) is independent on the values of �� and ��. 
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Figure 6.2: Maximum non-dimensional root stress corresponding to the corner contact 

(CCP) limit curve as a function of ��I (left column) or ��I(right column), VI and V5 
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6.4. DESIGN GUIDELINES 
By gathering all the results of interference (section 6.3.1.1), undercutting 

(section 6.3.1.2), tooth thickness (section 6.3.1.3), root bending stress (section 

6.3.2) analysis, a mapping of the four-dimensional design space including 

dedendum and cutter tip radius coefficient for gear 1 and number of teeth of 

gear 1 and 2 and corresponding design guideline can be developed as shown in 

Figure 6.3.  

 

 
Figure 6.3: Depiction of four-dimensional design space ��I, ��I, VI, V5, showing the locus 

of feasible designs as bounded by the various interference and undercutting limits, as 

well as the compact designs that produce the minimal stresses 

 

Figure 6.3 serves as a case study to show the mapping of the four-dimensional 

design space for VI=20 (non-standard gear), V5 =5, 10, 20, 40, 80 (standard 

gear), with ��=0.5 because of the tooth thickness limitation and ��I and ��I 

between 1~2.16 and 0~0.6, respectively. 

The space of feasible designs is delimited by the tooth thickness and 

undercutting limit lines. By means of corner contact-and-penetration model we 

can identify the interference limit lines: The risk of interference will be increased 

with using decreasing values for �� and increasing values for ��. However, these 
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are the exact designs that have the lowest root stress/ highest root strength. 

Therefore Figure 6.3 can be used to identify optimal designs and allow an 

assessment of interference risk (proximity to the interference lines) versus 

bending strength increase. 

In particular, it is already established that the optimum design will be the 

intersection point of corner contact limit curves and tooth thickness limit lines 

(Chapter 4). Figure 6.3 reveals that these points are far from the standard points 

which means that there is promising room for exploration and improvement. It 

is apparently some of the compact designs (i.e. designs having a near-zero 
minimum tip-to-root clearance), which are closest to interference, that produce 

the minimal root stresses. 

Table 6.2. shows a comparison of the root stresses for the standard and the 

identified optimal compact designs. It is evident that by optimally adapting the 

dedendum and cutter tip radius coefficients to the number of teeth, significant 

reduction can be achieved in terms of the maximum root bending stress, 

resulting in higher bending strength. The achieved stress reduction at the 

reference gear is more prominent in the case of a mating gear with a smaller 

tooth number, because this affords much larger root radius and smaller 

dedendum, but remains significant regardless of the tooth number of the mating 
gear. Depending on the tooth numbers, stress reduction in this case is seen to 

range between 16%-48% (compared to DIN3972 I), 15%-46% (compared to ISO 

53 B), 12%-43% (compared to AGMA 201.02-68), 8%-42% (compared to JIS B 

1702-72), 6%-41% (compared to GOST 13755-68). 

In comparison with the suggested standard values for �� and �� for different 

standards (i.e. GOST, JIS, AGMA, ISO, DIN), the optimal design solutions revealed 

in Figure 6.3 and tabulated in Table 6.2 allow a better-informed choice of the 

relevant tooth design parameters, and the development of gear designs of 

known strength and safety without trial-and-error iterations, in a first-time-right 

manner. 

Using Figure 6.3 as a nomogram and guideline can serve to explore, compare and 
select at-a-glance gear designs, standard or otherwise, that possess sufficient 

bending strength for a given application and that are safe from undercutting and 

interference when in mesh with another known gear. The limiting influence of 

the tooth thickness is also considered. Alternatively, different values for �� and �� can be selected to achieve the minimum root stress for a given tip-to-root 

clearance, as per the methodology in a prior limited study (Chapter 3). Gear 

vibration excitation can further be accounted for and controlled, to a degree, by 

means of the contact ratio –particularly in the case of integer loaded contact 

ratio; such a study is omitted here. 
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               Table 6.2: Maximum root stress obtained by different designs 
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6.5. CONCLUSION 
In this chapter, a design guideline for the design of profile-generated involute 

gears to maximize compactness (i.e. minimise minimum tip-to-root clearance) 

and bending strength has been developed. It was shown that the bending 

strength-optimised tooth designs are also compact designs. Non-standard 

equivalent rack dedendum and cutter tip radius have been considered, as well 

as the compatibility limitation imposed by tooth thickness and undercutting. For 

modelling gear interference a corner contact-and-penetration model was used. 

Non-dimensionalisation methodology has been used to reduce the number of 

independent parameters and quantify the influence of the latter on interference 

risk. 
The results of the four-parametric design space exploration show that 

significantly lower root stress can be achieved with certain non-standard designs, 

resulting in a strength increase of between 6%-48%, depending on the tooth 

number of the mating gear. A design guideline in the form of a nomogram was 

produced, which can be used for the direct inverse mapping of design 

requirements to gear geometry, producing better-informed choice of the 

relevant tooth design parameters, and the development of gear designs of 

known strength and safety without trial-and-error iterations, in a first-time-right 

manner. 
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7-Effect of cutter tip radius on the 

maximum root bending stress  
 

 

Summary 
This chapter performs a parametric investigation of the cutter radius coefficient 

on the maximum bending stress at the root for spur involute gears. The approach 

of this chapter is to apply unitary force at the highest point of single tooth contact 

(HPSTC) and then calculation of the root stress using FEA. Non-dimensional 

modelling is used to obtain results applicable to entire gear families. FEM results 
are compared with stresses calculated based on the ISO 6336-Method B. A 

comprehensive comparison with the popular existing gear standards such as DIN, 

AGAM, ANSI, JIS and GOST is performed. It is shown under which value of the 

cutter tip radius, the feasible design solutions for different tooth numbers and 

transmission ratios produce lower bending stresses at the root, consequently 

leading to design a stronger gear. The analysis leads to the analytical relation 

between the cutter tip radius and maximum bending stress at the root as a 

function of the number of teeth (for gear 1) and  gear transmission ratios, which 

can be used non-standard involute gears as well. 
 

7.1. INTRODUCTION 

Gear is one of the most critical components in mechanical power transmission 

systems. The design of gearing is one of the classical topics of machine design [1-

5]. Spur gear is one kind of gear that widely used in power transmission between 

parallel shafts. Designing highly loaded spur gears for powertrain systems that 

are both strong and quiet requires analysis methods that can easily be 

implemented and also provide information on contact and bending stresses 

along transmission errors. The objective of the powertrain is to transmit power 
with lower weight, lower vibration, and higher load-carrying. Nevertheless, the 

gear load capacity may be limited by the bending strength [6]. 

Three main models of gear tooth failure have been stated in AGMA 2001 [7] 

Standard as: bending fatigue leading to the tooth crack, surface contact fatigue 

leading to flank pitting, and lubrication break down leading to scuffing. Hence, 

the prediction the bending stress at the tooth root is very important [8]. If the 

bending stress is too high, larger module has to be used to decrease it, but this 

will increase the tooth size. 
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7.1.1 Different standards 

Gear standards suggest some analytical formulas for the strength calculation of 

gears. BS 436(Part 3):1986 [9] provides methods for the calculation of contact 

and root bending stresses for metal involute gears. This standard is similar to the 

ANSI/AGMA (ANSI B6.1-1968, R1974) Standard [10] for stress calculation in pairs 

of involute spur or helical gears. For general gear design, ISO Standard provides 

a complex method similar to British Standard with less complexity. Some 

standards like ISO 6336 [11], DIN 3990 [12], and AGMA 908-B89 [13] use 

practically the same methods with different ranges for the factors in the 

calculation of load capacity, and eventually the gear strength calculations. AGMA 

6004-F88 [14], AGMA 6014-A06 [15], and AGMA 6011-I03 [16] are used for the 
strength calculation of open gear rims for the special applications. In recent 

years, the established standard of almost universal use is the ANSI (ANSI B6.1-

1968, R1974) [10] 20-degree standard spur gear form. It provides a gear with 

good strength and without fillet undercut for gears with more that seventeen 

teeth.  

7.1.2. Commercial software 

Gear design software use Standards and 2D FEA for the strength calculation. 

KISSsoft [17] provides the calculating according to the all well-known standards 

such as ISO, DIN, AGMA for plastic and metal gears with different applications 

i.e. naval ship, turbo drives, etc. Gear Design Pro [18] uses ISO and AGMA 

standards for this kind of calculation. HyGEARS [19] uses Finite Strips method 

[20], which is a 2D subset of the Finite Element Analysis to calculate tooth 

deformation and bending stresses instantly without having to resort to an 

external solver, a real time saver. 

7.1.3. Literature review 

Gear researchers have proposed some solutions to overcome the failure problem 

that bending stress causes. The equation for calculation of bending stress in a 

gear tooth was developed by Lewis in 1892 [21]. This equation applies as a 

foundation for a modern version of the bending strength equation defined by 

different standards such as AGMA. The new added factors in the standards in 
Lewis equation made it more accurate for the bending stress calculation.  

Spitas and Spitas [22] studied the bending strength of circular fillet gear teeth 

compared to trochoidal fillets produced with enlarged cutter tip radius based on 

2D FEA for the 20o involute gear system. The bending strength of the circular 

fillet gears surpasses that of trochoidal fillet gears irrelevant of the tip radius 

used for tooth numbers less than 17. In the case of higher tooth numbers, the 

solutions were equivalent.  
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Zhao et al. [6] investigated the increasing of bending strength in spur gears using 

shape optimization of cutting tool profile with introducing quadratic rational 

Bezier curve to describe the cutter tip based on FEA. 

Aziz and Chassapis [23] reported a comparative analysis of tooth-root strength 

using stress–strength interference (SSI) theory with FEM-based verification. In 

this research, a reliable algorithm was developed to evaluate the gear tooth 

reliability by the bending strength criterion and integrated into the developed 

gear program as a probabilistic design tool. 

Li [24] presented 3D FEM to conduct surface contact stress and root bending 
stress calculations of a pair of spur gears with machining errors, assembly errors, 

and tooth modifications. The results also compared with ISO and JGMA 

standards. In another research [25], he studied the effect of addendum on 

contact strength, bending strength and basic performance parameters of a pair 

of spur gears 

Pedrero et al. [26] calculated the tooth bending strength of high transverse 

contact ratio (between 2 and 2.5) for spur and helical gear drives. The 

determinant load conditions have been calculated and the nominal contact 

stress and the nominal tooth-root stress have been computed. 

Yamanaka et al. [27] experimentally investigated the influence of manufacturing 
methods (hobbed and forged gears) on bending strength and obtained the 

relationship between the strength and the manufacturing cost.  

Spitas et al. [28] performed a parametric investigation of the combined effect of 

whole depth and cutter tip radius on the bending strength of 20 involute gear 

teeth. The results of the tooth bending strength computerised by means of 

analytical calculations, and finite element simulations applied to determine the 

exact tooth geometry in search of stronger tooth form. 

Biernacki analysed of the material and design modifications influence on 

strength of the cycloidal gear system [29]. In this research, the influence of the 

plastic-steel combination on the stress and deformation distributions in the 
operation of the cycloidal gears was verified. 

Spitas and Spitas [30] studied four-parametric design of the bending strength of 

circular-fillet versus trochoidal-fillet in gear tooth design using Boundary Element 

Method (BEM). The set of geometrical and operational design parameters 

considered comprised the number of pinion teeth, contact ratio, tooth thickness 

coefficient, and profile shifting coefficient. 

Kapelevich and Shekhtman [31] applied FEA for bending stress evaluation of 

Direct Gear Design for non-standard gear tooth profiles. Optimization of the fillet 

profile allowed reducing the maximum bending stress in the gear tooth root area 

by 10-30%. 
Tesfahunegn et al. [32] studied the effects of the shape of linear and non-linear 

tooth profile modifications on the transmission error, bending, and contact 

stress of spur gears. The results of these comparisons showed that the optimal 
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amount of profile modifications was not independent of profile modifications 

shape; hence, the procedures used to design linear PMs could not be directly 

applied to the design of non-linear profile modifications. 

Pedersen [33] studies on the minimization of tooth bending stress in spur gears 

with simplified shapes of fillet and tool shape determination. A simple but 

sufficiently flexible root parameterization was applied and emphasis was put on 

the importance of separating the shape parameterization from the finite 

element analysis of stresses.  

Kawalec et al. [34] presented a comparative analysis of tooth-root strength 
evaluation methods used within ISO and AGMA standards and verified them with 

developed models and simulations using FEA. The influence of helix angle, 

pressure angle, and addendum modification coefficient on tooth-root strength 

has been investigated. The tooth-root stress will be decreased with increasing 

the macro design parameters such as module, the number of teeth, pressure 

angle, helix angle and addendum modification coefficient. The results were 

compared with loading at the tip point and the highest point of single tooth 

contact (HPSTC).The results for ISO standard and FEA were close to each other 

with large difference from AGMA standard. For example, if the number of teeth 

for gear 1 is N1=80, the result of tooth-root stress according to AGMA, FEA and 
ISO is 400, 500 and 535 MPa, respectively. Using the accurate result of FEA as a 

reference, it means that the difference between the result of FEA and ISO is 7%, 

nevertheless, the difference is 20% in comparison with AGMA. 

With this comprehensive research on different standards, software and 

literatures, it can be observe that no  study exists for effect of cuter tip radius on 

maximum bending stress at root which would be applicable for gear design. Even 

the gear software cannot provide such a design guideline for the influence of 

cutter tip radius on root bending stress and there is no way of assessing 

accurately the effect of different choices of cutter tip radius on gear strength. 

7.1.4. Gear parametric design with regard to the root strength  

Gear analyses in the past were performed using analytical methods, which 

required a number of assumptions and simplifications. In general, gear analyses 

are multidisciplinary, including calculations related to the tooth stresses and the 

failures. In this study bending stress analyses are performed, with the main aim 

of designing spur gears to resist bending failure. 
The gear root stress  can be reduced by optimizing the macro design parameters 

(module, number of teeth, pressure angle, diameters, helix angle, face width, 

addendum, dedendum, fillet radius, addendum modification, clearance, 

backlash) and micro design parameters (tip relief, root relief, profile 

modification, lead crown modification, roll angles of profile modification).  

Each one of the micro and macro design parameters has own influence on the 

tooth bending strength. The tooth-root stress will be decreased with increasing 



105 
 

the macro design parameters [34]. With increasing the addendum coefficient, 

the maximum root tensile stress will be increased [25]. The maximum bending 

stress at the root will be decreased with increasing cutter tip radius or with 

decreasing the amount of dedendum coefficient, while the other design 

parameters are given [28]. 

7.1.5. Current study 

In this study, the effect of the cutter radius on the root bending stress is 

investigated for the 20° gear system while trying to design spur gears to resist 

bending failure of the teeth. Non-dimensional modelling is used in order to 

reduce the independent geometrical parameters and make the results more 

generally applicable. The results presented here were obtained for pinions with 

10, 20, 40 and 80 teeth. The mating gears is standard gear with 20 teeth and ��=0.3, ��=1.25. These gear forms that were numerically generated and 

simulated do not produce interference [35]. Bending strength which is 

considered as a relevant performance metric, was built on prior results by the 
research team [28]. Bending stress calculated in two ways. The first one is 

according to the standard formulas of ISO 6336, which are kind of modified Lewis 

equation, and the second one is based on the point loading at the Highest Point 

of Single Tooth Contact (HPSTC) using 2D FEA and both ways are plotted for 

comparison. Design guideline for maximum bending stress at the tooth root is 

produced and two-dimensional map of the design area is given in terms of cutter 

tip radius and number of teeth.  

 

7.2. EXISTING MODELS 
All standard methods depend on the calculation of the nominal tensile bending 

stress at the fillet of the loaded spur gear tooth. The stress concentration 

compensates by applying a factor which derived by either empirical or semi-

empirical methods [36]. 

There are different method for calculation of maximum bending stress at the 

tooth root. The first one was introduced by Lewis [20], considering the tooth as 

a fixed beam at its root with the transmitted load. He used a parabola tangent to 

the dedendum of the tooth flank for determination of the critical section. AGMA 

standard [13] uses the modified version of Lewis formula for calculation of 
maximum bending root stress (Figure 7.1). The Local tooth-root stress �� can be 

calculated as: 

 �# = �.[6[�[  1�.
[¡[	¢£  

(7.1) 
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where �. is transmitted tangential load at the operating pitch diameter, [6 is 

overload factor, [� is dynamic factor for bending strength, [  is size factor, � is 

net face width of narrowed member, . is transverse metric module, [¡ is load-

distribution factor, [	 is rim-thickness factor and  ¢£ is bending strength 

geometry factor. 

 

 
Figure 7.1: Determination of the critical section location according to the AGMA 

standard [13] 

ISO (ISO 6336) [11] and DIN (DIN 3990) [12] uses “30 degrees tangent” method - 

called as Niemann formula [37]- for the bending stress calculation (Figure 7.2). 

This method is approximate and the stressed point is independent of the load 

location, located at a specific point at the tooth root. The applicability of this 

method is only for the design of low loaded gears [38]. The disadvantage of this 
method is not to consider the position changing of the critical section due to the 

displacement of the load along the active tooth profile [36].    

 

 
Figure 7.2: Determination of normal chordal dimensions of tooth root critical section 

according the ISO standard (ISO 6336-3 Method B) [11] 
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In this standard the Nominal tooth-root stress is calculated as: 

 �#* = �.�. ¢#¢ ¢¤ 
(7.2) 

 

And the Local tooth-root stress �# 	was introduced as:  

 �# = �#*[¥[�[#O[#¤ (7.3) 

 

Whereas, �. is transmitted tangential load at the pitch diameter, � is effective 

face width, . is transverse module, ¢# is tooth form factor, ¢  is stress 

correction factor, ¢¤ is helix angle factor, [¥ is application factor for bending 

strength, [� is dynamic factor for bending strength, [#O is transverse load 

distribution factor root stress and  [#¤ is face load distribution factor root stress. 

The semi-empirical method named as Heywood’s method [39], is utilised for the 
determination of maximum real stress at critically stressed point at the root of a 

stubby beam with constant width (Figure 7.3) [40]. This method was later 

modified in order to make more precise prediction of the critical point. Heywood 

equation is based on photo-elasticity experiment with various fillet geometries 

of tooth. Tooth and root geometry are considered simultaneously. 

 

 
Figure 7.3: Tooth geometry for stress calculations using modified Heywood formula [40] 
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�¦ = §¦ �_] &¦� �1 + 0.26 © ℎ�2��«
*.¬� 6��ℎ�5 +20.72ℎ��� ©1 - ℎ®ℎ� ¯ <?\ &¦«

- <?\ &¦ℎ� ° 

(7.4) 

 

Whereas �¦	is root bending stress at loading position j, §¦ is transmitted load at 

loading position ±, &¦  is load angle, ℎ� is Tooth thickness at critical section, �	is 

face width of gear tooth, ¯ is approximately 1/4, according to Heywood [38], �� 

is fillet radius, ��%  is bending moment arm. 

The Heywood formula concentration of the equivalent straight-sided projection 

shape did not lend itself to all generated gear design variation. However this 

method is more accurate than the modified Lewis method for normal gear 
design. This formula correlates well with the experimental data and finite 

element analysis results [41, 42].  

An empirical formula for calculation the maximum root bending stress has been 

introduced by Dolan and Broghamer [43] based on a photo-elastic study of stress 

in gear tooth fillets. In addition, the same methodology has been done by Kelly 

and Pederson [42] based on photo-elastic work, combining the best features of 

two existing methods. Some data from actual gear test run were shown verifying 

the accuracy of the new solutions. 

In addition to the aforementioned methods some commercial software like 

KISSsoft [17] use a method named as Static Calculation. In this method, each 
coefficient (application factor, face load factor, transverse coefficient, dynamic 

factor) is set to 1.0. The load at the tooth root is calculated with the tooth form 

factor according to ISO 6336-Method B and the helix angle (without the stress 

correction factor). 

Nevertheless, in all the methods the loaded gear tooth is treated as a simple 

cantilever beam bending theory. The calculated stress is multiplied by different 

factors to produce the real bending stress with varying accuracies due to 

parameters included. 

In this chapter the 30 degrees tangent method (Niemann formula) according to 

ISO 3663-Method B [11] is used for the calculation of maximum root bending 
stress, as most of the commercial gear design software use [17-19]. The results 

compared with the results of Finite Element Method applying the load at the 

highest point of single tooth contact (HPSTC) according to Spitas [44].  

 

7.3. FEA OF ROOT STRESS (VS. ISO 6336)  

For the purposes of this investigation ANSYS was used to simulate the loading of 

different gear pairs with consistent boundary and loading conditions, namely 
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point loading at the Highest Point of Single Tooth Contact considering one-tooth 

models fixed at their boundary (Figure 3.7), consistent with standard practice 

[34]. 

The iso-parametric element PLANE82 is used for modelling the gear tooth. This 

element provides accurate results for mixed (quadrilateral-triangular) automatic 

meshes and can tolerate shapes well suited to model curved boundaries. 

 

Highest Point of Single Tooth Contact  

The choice of load point is an important criteria in designing the gear. It is proven 
that the normal load  ! on a gear tooth is not maximum when applied at the 

addendum circle [46]. Generally, the load is assumed to have acting at the tip of 

the gear tooth. The load can act lower down the tip along the tooth profile. 

Nevertheless, for maximum nominal bending stress, assuming perfection in gear 

tooth, the load is assumed to be acting at the highest point of single tooth 

contact (HPSTC) [22, 44]. This point can be defined as the point along the tooth 

profile which is distant one the base pitch from the tip circle when measured 

along the line of action as presented in Figure 7.4 [22, 44]. Point ² ́ in Figure 7.4, 
is the highest point of single tooth contact (HPSTC) for gear 1 and its position, 

defining the radius �	 ́	, is [22, 44]: 

 

�	 ́ = XI² ́ 	= 2��I5 + (³ - 1)<´µ(³ - 1)<´¶ - 2·��I5 + �́ I5 

(7.5) 

 

Dividing by the module of the pair, the above equation yields its equivalent in 

terms of non-dimensional values: 

 

�	>% = �	 ́	 = 2��I>5 + (³ - 1)<´>µ(³ - 1)<´>¶ - 2·��I>5 + �́ I>5 

(7.6) 

 
The HPSTC is unique for different gear transmission ratios and tooth geometries. 
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Figure 7.4: Non-dimensional gear modelling of a single teeth contact, Point B' is the 

highest point of single tooth contact (HPSTC) for gear 1 [22, 44] 

 

7.4. COMPARISON METHOD: CURRENT APPROACH (AT HPST WITH FEA) 

AND ISO 6336 METHOD B 
Gear strength and durability relate to the power and forces to be transmitted. 

Thus, the equations that relate tangential force at the pitch circle (�.), power ( ), 

and torque (j) are basic to the calculations. Because of the static calculation, the 

power is not applicable ( = 0). 

We use the applied load as   !∗ = 1 at HPSTC (equation 6.6) with FEA for 

different combination of a gear pair. The gear number one is standard gear with 

different amount of cutter tip radius coefficient according to the different 

standards and the amount of dedendum coefficient is given (��=1.25). The 

pressure angle for both gears is 20 degree. The mating gear (gear number 2) is 
standard gear according to AGMA, 201.02 [44] (N2=20, ��=0.30, ��=1.25). The 

comparison between the amount of cutter tip radius coefficient (��) for different 

standards (��=1.25, ��=1.00) is presented in Table 7.1. 
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Table 7.1: Comparison of different standards; different cuter tip radius (��) and given 

dedendum (�� = 1.25). The addendum coefficient is constant (�� = 1.0)  

Standard 

 
��  ��  

ISO 53 [46] Profile A 0.38 1.25 

Profile B 0.30 1.25 

Profile C 0.25 1.25 

DIN 867 [47] 

 

1 0.30 1.25 

2 0.25 1.25 

3 0.20 1.20 

DIN 3972 :1952 II  [48], DIN 58412:1987 [49] 0.20 1.25 

JIS B 1702-72  [50] 0.375 1.25 

NF E 23-011 1972 [51] 0.38 1.25 

AGMA 201.02-68 [52] 0.30 1.25 

ISO TR 4467 [53] 0.38 1.25 

GOST 13755-68 [54] 0.40 1.25 

ANSI B6.1 [55] 0.30 1.25 

 

The static calculation according to ISO 6336-Method B [11] is used as the 

analytical results for the result comparison. We make a comparison with using 
the same created torque as follows:  

1) Finding the HPST for  the tooth of gear one,  

2) Apply normal force as  !∗ = 1  at HPST using equation (7.6), 

3) Calculating the created torque according to equation (3.2), 

4) find the result of maximum bending stress ��∗ from ANSYS, 

5) Applying equation (3.2) to the non-dimension result. 

 Then, for ISO 6336-Method B:  

A) Applying the created torque from the current approach to find �. (the 

nominal tangential load, the transverse load tangential to the reference 
cylinder), 

B) Using equation (7.2) to find the Nominal tooth-root stress �#*, 

C) Calculation the local tooth-root stress �# 	according to equation (7.3). 

 

7.5. RESULTS AND DISCUSSION 

Six different sizes of cutter tip radius coefficient (��= 0.20, 0.25, 0.30, 0.375, 0.38, 

0.40) are considered, while the size of dedendum and addendum are given as ��=1.25, ��=1.00, respectively. Four distinct cases are examined for unshifted 

teeth with VI=10, 20, 40, and 80 teeth. These teeth are considered to be 
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dimensionless and loaded at their HPSTC according to equation (7.6). The 

number of teeth, cutter tip radius, dedndum and addendum coefficient for the 

mating gear (gear 2) is given (V5=20, ��=0.30, ��=1.25, ��=1.00).  

Based on these results which are shown in Figures 6.5 and 6.6, observed 

findings can be summarized: 

A) With increasing the value of ��, the amount maximum bending stress will be 

decreased, 

B) With increasing the number of teeth for gear 1, while the number of teeth for 

gear 2 is fixed and the value of �� and �� are given; σ� will be decreased, 

C) With increasing the gear transmission ratio, σ�	will be increased,  
D) The value of gear contact ratio is independent on the value of �� and ��. As it 

is obvious with decreasing the gear transmission ratio while the value of gear 

contact ratio is increasing, �# will be decreased. 

E) The difference between the results of the current approach and ISO standard 

will be decreased with increasing the amount of ��, while the gear transmission 

ratio is given. 

F)  The difference between current approach and ISO standard will be increased 

with increasing the number for teeth for gear 1, while the value of cc is given. 

For example, from 1.77% for ��=0.40, VI=10 up to 43.2% for ��=0.40, VI=80. 
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 Figure 7.5: The maximum bending stress at tooth root with different amount of 

cutter tip radius and gear contact ratio 
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Figure 7.6: Influence of the number of teeth for gear 1, while the value of cutter tip radius 

is given 

 

The difference between the current approach and ISO standard can be explained 

in two ways: first is the position of the critical section for calculation the 

maximum bending stress at the root, and the second one is the position of the 

load at the tooth. 

In FEA, the maximum stress at root area can be easily found (Figure 3.6), however 

in ISO standard there is special point, which is found with 30 degrees tangent 

method as the calculation point for obtaining the maximum bending stress at the 

root.  
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7.6. DESIGN RECOMMENDATION 

In Figure 7.5 the analytical formula for maximum bending stress at the root as 

function of cutter tip radius, the number of teeth and gear transmission ratio 

(	�#(�� , V1, ^I,5) ) was presented for each graph.  

For the next version of standards, this analytical formula can be used as a design 

guideline for the influence of cutter tip radius as on the design parameters on 

maximum root bending stress of spur involute gears which is also applicable for 

non-standard design for involute gears. Using this design guideline can decrease 
the amount of time and cost of analyses and leading us to obtain better results 

to achieve maximum root stress for the design of stronger gears with selecting 

the non-standard value for cutter tip radius. Clearly, the same approach can be 

used for the influence of other design parameters on the gear strength. This 

formula can replace the calculation inside the current standards while leaving 

the rest of the standards unchanged improving the validity of the standards 

without need for excessive revision. 

 

7.7. CONCLUSION 
In the present study, a parametric investigation of the effect of the cutter tip 

radius coefficient on the maximum root bending stress of spur involute gears was 

carried out using Finite Element Analysis conducted on non-dimensionalised 

tooth geometries and loading conditions considering loading at the highest point 

of single tooth contact (HPSTC). 

The results of maximum bending stress at the root from the current approach 

were compared with the Method B of ISO 6336 (30 degrees method). A thorough 

comparison with the popular gear standards such as AGMA, DIN, JIS and GOST 

was presented. The differences ranged from 1.77% (VI =10, V5=20, ��=0.40) up 
to 51.3% (VI=80, V5=20, ��=0.20) which can be seen in Figure 7.6, revealing 

significant inaccuracies inherent to the ISO 6336-Method B. These inaccuracies 

were also explained from the point of view of the basic principles.  

Based on the accurate finite element analysis results, a parametric investigation 

was used to produce analytical  formulas for maximum bending stress at the root 

as function of the cutter tip radius, the number of teeth and the gear 

transmission ratio, hence of the form �#(�� , V1, ^I,5). The formula can be used 

as a design guideline for the selection of the cutter tip radius to maximise the 

gear strength for standard and non-standard involute gears. Furthermore the 

same formula can replace the corresponding calculation in ISO 6336 for root 
bending strength as well as in the software that use this standard, resulting in 

increased accuracy and better informed designs with minimal change to the 

standards overall. 
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8- Multi-parametric design model 

considering manufacturability and 

geometrical compatibility 
 

 

Summary 

A generalised non-dimensional multi-parametric model for involute spur gear 

design is presented, considering manufacturability and geometrical 

compatibility, where the latter considers various modes of interference and 
accounts for the combined effects of the module, pressure angle, tooth 

addendum, dedendum, cutter tip radius, and the numbers of teeth of a pair of 

mating gears. The effect of the same parameters together with tooth thickness 

on the manufacturability of the individual gear teeth is also modelled in terms of 

pointing and undercutting. The full range of parameter values, including non-

standard ones, is considered. The resulting combined model serves to provide a 

complete analytical overview of the multi-parametric design space and is 

suitable for the fast assessment of existing designs, for implicit or explicit (direct) 

gear design, for extracting design guidelines, and for design optimisation. The 
model can be used to identify and explore highly promising under-used 

subspaces of the parametric design space, which are currently of significant 

interest to i.e. the automotive and aerospace industries. 

 

8.1. INTRODUCTION 

8.1.1. General framing of the problem 

In almost all kinds of industrial applications for motion and power transmission 

such as automotive, aerospace, robotics, machinery etc., gears - and involute 

gears in particular- are indispensable and mission critical elements of the design. 

Gear design itself is a complex process that, in spite of much accumulated 

knowledge and supporting standards, computational models [1-7] and software 

[8-12], still critically depends on the experience of the designer, especially if time 

constraints prohibit an exhaustive iterative multi-parametric search. In fact, the 
possible independent design parameters that must be studied even in the case 

of a ‘simple’ spur gear configuration comprise i.e. module, addendum, profile 

shift, tooth thickness, dedendum, cutter tip radius, pressure angle, face width 

etc, thus already numbering 8 parameters. The study is further complicated by 

the possibility to adjust each parameter for each gear separately. More crucially, 

it is important to consider the choice of these parameters in the early stage of 
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the design, and in full consideration of the couplings (and constraints) that 

govern their feasible choices. The part of the design space that is not excluded 

because of aforementioned constraints can then be subject to parameter 

selection and possibly a design optimisation study. Already, in the automotive 

and aerospace industry every major company is developing and exploring its own 

class of non-standard designs and continuous improvements are being sought to 

achieve higher compactness, higher strength and load carrying capacity, 

improved dynamics with reduced noise and vibration signatures, in particular 

with regard to performance under partial or reversing loads, whining, rattling 
etc. 

Several but limited studies and supporting models exist for this kind of design 

space exploration: Dedicated studies exist i.e. for the influence of module [7, 13], 

addendum [14-22], profile modification [23-29] tooth thickness [30-36], 

dedendum [37-42], cutter tip radius [43-46], pressure angle [47-54], etc, but 

without considering the simultaneous manipulation of other design parameters 

as well, typically assigning standard values to the latter. Additionally, many 

researchers have investigated the influences of each design parameter for 

different applications such as contact analysis [55-63], stress [64-71], vibration 

[72-78], dynamics [79-88], cracking [89-93], lubrication [94-101], etc, but with 
similar limitations to their scope of the design space. Furthermore, the 

knowledge present in industrial publications/ technical reports is on the other 

hand very specific to given machine applications and not easily generalizable or 

verifiable. 

Hereunder we provide some selective examples of the aforementioned 

limitations in scope, which, while justified or necessary in the context of the 

respective studies, mean that the possibility to generalise the results without 

additional modelling is likewise limited: 

8.1.1.1. Dedicated parametric studies 

Module: for example, with regard to the influence of the module, Nonaka et al 

[13] studied the strength of spur gear teeth with small modules of the order of 

0.1 to 1.0 mm by using a specially designed gear test rig. The failure mode of gear 

teeth was observed for both tempered and soft nitrided gears. A sign of uneven 

contact along face width was found only for very small gears of modules 0.1 and 

0.2 mm, which was very unlikely for such high precision in alignments of gear 
axes. Influences of the choice of pressure angle or tooth proportions were not 

considered, limiting the scope of the study. 

Addendum: With regard to the effect of addendum, for example, Li [15] 

investigated its influence on tooth contact strength, bending strength of spur 

gears. Finite element analysis, the method of mathematical programming and 

teeth contact model were utilized to lead the contact analyses of the loaded 

teeth, calculation of stress and deformation of spur gears with not the same 
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contact ratios and addendums. Load-sharing rate, root bending stress, contact 

stress, mesh stiffness and also the transmission error of the spur gears were 

analysed. It was detected that the number of contact teeth can be increased with 

increasing the amount of addendum, in addition, the contact & root bending 

stresses can be reduced with this kind of increasing. The effects of cutter tip 

radius (hence fillet radius), pressure angle etc parameters were not accounted 

for in this study. 

Profile modification: for instance, Lin et al [28] investigated the influence of 

parabolic and linear profile modification on low contact ratio of spur gears tooth 
with regard to the dynamic response. The influence of the modification zone’s 

length and the whole modification were calculated at different speeds and loads 

for obtaining the optimum amount of profile modification with regard to the 

minimum dynamic loading. A novel design charts were presented that have been 

included the non-dimension maximum dynamic load curves. The charts were 

applied at several loads using various profile modification. Minimisation of the 

dynamic loads can be defined from the charts taking into the account the 

optimum amount of profile modification. Several design parameters having an 

influence on the tooth stiffness function, including pressure angle, addendum 

and root fillet were not in the scope of this study. 
Tooth thickness: for example, Hsu and Su [30] proposed a novel approach by 

using a modified adjustable tooth thickness hob to decrease the tooth flank 

twisting of a crowning gear with the same centre distance. The topologies of the 

tooth surface, static transmission error and contact ellipses were also 

investigated in this work using adjustable tooth thickness of the modified hob. 

For demonstration and verification of the competence of the proposed gear 

hobbing method (considering the longitudinal crowning), there examples were 

studied. While the methodology proposed is readily generalizable, it is e.g. not 

clear how well the results would hold if different tooth proportions and 

corresponding contact ratios would be used. 
Cutter tip radius: for example, Spitas et al [43] proposed non-dimensional multi-

parametric analytical model to determine corner contact and penetration at the 

root of the gear tooth to find the influence of the design parameters (i.e. number 

of teeth, cutter tip radius, dedendum, addendum and contact ratio) on the 

possibility of the interference. Based on this approach, novel design guidelines 

for nonstandard compact tooth (short dedendum, large root fillet) were 

presented. 

Spitas and Spitas [45] applied finite element method to investigate the bending 

strength for two kinds of fillet, the circular fillet and the trochoidal fillet. The 

results showed that for the number of these higher than seventeen, the bending 
strength of both fillets are equivalent circular fillet can be used instead of 

trochoidal fillet. However, in both aforementioned studies the results can be 

expected to vary significantly if larger values for the pressure angle were used. 
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Pressure angle: for example, Lin [53] presented an analytical model for meshing 

of planar gears considering the typical geometry of the gear tooth profile. The 

angular displacement of gears was presented as a function of pressure angle. 

Different pressure angle functions could produce different gear tooth 

geometries. Although the new methodology can be used for any kind of gear 

mesh, nevertheless the possible variation of other tooth geometrical 

characteristics, such as addendum, was not in the scope of this study. 

8.1.1.2. Application-driven parametric studies 

Contact analysis: for example, Medvedev et al [55] presented an analytical 

modelling for contact analysis of multi-pair gear. The parabolic function of 

transmission errors was applied for contact pressure. The precise transmitted 

torque and force of each contact pair and the contact pressure of the multi pair 

contact were determined by means of a new algorithm. The algorithm can be 

used for any kinds of gears and an example of spiral bevel gear has been applied 
for demonstration. 

Generation, contact and stress analysis: for example, Litvin et al [70] represented 

computerised improvements in generation, design, stress analysis and 

simulation of gear meshing. A modified algorithm of tooth contact analysis and 

a new parabolic function of transmission errors designed for noise simulation. 

The proposed developments have been demonstrated for the design and 

simulation of three kinds of gear drives (spiral bevel gear, face-gear, modified 

helical gear). While the approach is very general, it does not readily afford the 

correlation of specific design parameters to behaviours without a dedicated 

study. 
Vibration: for example, Farshidianfar and Saghafi [75] applied Melnikov 

analytical analysis to investigate the chaotic performance of a gear system. The 

dynamic model of the gear system was included the time varying mesh stiffness, 

backlash, static transmission error and external excitation. The initial values of 

the control parameter for the happening of divergence and start of chaos were 

predicted by the proposed analysis. Moreover, for verification of the analytical 

approach, the numerical bifurcation analysis and numerical simulation of the 

system were applied. As typical in such studies, the focus was not on parametric 

analysis that could produce direct design insights without further study. 

Dynamics: for example, Faggioni et al [83] developed a Random-Simplex 
optimization algorithm to find the optimum amount of profile modifications for 

vibration redaction of a gear system using a nonlinear dynamic model. The good 

results were achieved by using high contact ratio gear properties and the 

proposed optimisation methodology. The scope of this study did not cover 

variations in the pressure angle. 

Cracking: With regards to tooth root cracking, for example, Pandya and Parey 

[92] studied the influence of the gear design parameters (such as: root fillet 
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radius, pressure angle, backup ratio) and the effect of crack path on time varying 

gear mesh stiffness. A cumulative reduction index has been proposed for 

investigating the crack propagation in a tooth root using 2D finite element 

analysis. The percentage change in time varying mesh stiffness has been 

determined by using variable crack intersection angle approach and a model of 

total potential energy. However the influence of addendum (or whole depth) 

was not in the scope of this study. 

Lubrication: for example, Larsson [100] analysed the transient non-Newtonian 

elastohydrodynamic lubrication of an involute spur gear. With taking into the 
account the influence of fluid transition; the film thickness of lubricant and the 

pressure were calculated. In addition, considering the influence of shear strength 

restriction, it has been assumed that the model of the fluid was a non-Newtonian 

model and the film lubrication was isothermal. The results indicated that the 

influence of fluid transition was prominent at the transitions of the load. Once 

the load was increased (almost doubled), the minimum amount of film thickness 

was enlarged for a while because of the squeeze effect. At several points of 

contact, the stresses of subsurface and the factor of friction were evaluated. In 

this study, two types of oil (poly-α-olefin & paraffinic mineral) were used as 

lubricant. Effects of pressure angle and addendum were not considered. 
Although all above mentioned examples of studies contribute significantly to the 

knowledge base that is relevant to gear design, each of them (justifiably) deals 

with interrelated design parameters in the separate contexts of their own focal 

areas- particularly the module, pressure angle and addendum seem to always be 

treated as decoupled design choices and there is little information about 

synergies (or conflicts) in the choice of these parameters. As such, they do not 

offer a comprehensive model that can account for interactions between these 

parameters. I.e. changing the module and the pressure angle of one gear at the 

same time may have synergistic or conflicting effects, when meshing with 

another gear, possibly leading to improved strength or interference; pressure 
angle and addendum choices can result in strength improvement, but also 

undercutting; the cutter tip radius choice for one gear may cause interference 

with the addendum choice for the mating gear [43, 44] etc. These types of 

couplings, which either affect manufacturability (for example undercutting) or 

geometrical compatibility (for example interference), have not so far been 

addressed comprehensively in the literature in a coupled sense. 

In the presence of such overwhelming complexity, the predominant answer has 

been standardisation of gear design parameters and combinations thereof [8-

12]. Traditional gear design is generally based on standardised cutting tools, 

which makes the design of gears simple and available for any application. The 
drawback is that standard gear designs are known to have less than optimum 

performance in a range of applications, such as very high power density, high 

power-to-weight ratios, metal-to-plastic replacement, low-cost, compact, and 
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low-vibration powertrains, which need to be designed with non-standard 

parameters. This becomes especially relevant as new production methods rely 

much less on standardised tooling, especially if non-generating processes are 

employed, for example, broaching, injection moulding, sintering etc. 

This chapter aims to enable the multi-parametric design of gears in consideration 

of the major identified couplings between design parameters that limit or 

otherwise constrain the design space. Explicitly, the occurrence of undercutting 

and interference will be related to the combined values of the gear cutter 

pressure angle, module, number of teeth, cutter tip radius, dedendum, 
addendum, tooth thickness of each of two gears in a pair. The order of 

complexity is reduced my means of non-dimensionalisation with respect to the 

module, as well as the analytical coupling of some of these apparently 

independent parameters. The resulting model is both complete and 

computationally lightweight, to allow its use during the conceptual design and 

corresponding exploration of the design space. 

As this chapter is focused on geometrical compatibility, the implications of 

parameter choices on stresses, load-carrying capacity, stiffness, dynamics etc are 

not considered herein. These will be the object of a subsequent study. 

8.1.2. Manufacturability and geometrical compatibility as two 

considerations of gear design  

8.1.2.1. Manufacturability (tip pointing, undercutting) 

The first thing to be addressed in design is the matter of feasibility of a particular 

gear geometry choice: Can it be manufactured as intended? Except in the case 

of direct gear design [97-100], where gear geometry is directly and explicitly 

defined, typical design procedures define the gear geometry implicitly, based on 

basic gear rack parameters. In this sense, it can be that the gear produced by the 

manufacturing process deviates from the expected form due to the occurrence 

of secondary cutting action by the rack cutter, which manifests as either tip 

pointing or undercutting. 
1) Tip pointing, which is essentially the elimination of the tooth top land and 

potentially the reduction of the tooth whole depth, can result from the use of a 

large pressure angle, and/ or addendum, or large positive profile shifting [2]. 

2) Undercutting is the condition where additional material is removed from the 

root of the tooth, potentially also removing part of the lower involute profile. It 

can result from the use of small numbers of teeth, small pressure angles, and/ 

or small cutter tip radii [2]. 

Tip pointing concerns the involute geometry exclusively and is as such very 

straightforward to calculate [1, 36,102]. On the other hand, undercutting 

prediction concerns both the involute flank and the non-involute root segments 
and as such requires a more involved calculation. A number of analytical models 

for undercutting have been proposed, of which the more accurate ones include 
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the effect of tip rounding, which introduces an additional parameter that in 

effect removes material from the cutter tip and lessens the propensity to 

undercut.  

With regard to tip pointing in particular; 

Litvin [1] studied the location of a tooth pointing area taking into the account 

that at the tooth top land, the two surfaces of the tooth had intersection. In order 

to solve this problem, a numerical programming has been presented. Different 

conditions were presented to avoid pointing tooth for modified involute gears, 

Novikov–Wildhaber helical gears and face-gear drives. 
Townsend [2] presented a set of formulation for calculation to determine the 

maximum amount of tooth thickness in order to generate a tooth pointing. To 

compute the diameter of pointed tooth, an algorithm for testing the value of a 

gear tooth (with long and short addendum) was developed. 

Kapelevich [102] showed that the pointed tooth of an asymmetric gear could be 

generated using the positive profile shift for number of teeth less than 17 

resulting the increase of load capacity while the pressure angle and the 

maximum transverse contact ratio are the same of asymmetric  and symmetric 

pointed tooth gear. 

Marita [6] investigated the effect of positive profile shift modification on pointed 
tip. With increasing the amount of the positive correction, the tooth became 

more and more pointed. This phenomenon was termed as “Peaking”.  

Rackov et al [103] applied generalized particle swarm optimization algorithm for 

high contact ratio gear. It was found the possibility if generation the pointed 

tooth would be increased with increasing the amount of addendum. To avoid 

this occurrence, all the constraints and equations were checked and the 

optimum amount of profile shift modification and addendum were calculated 

with the proposed optimisation methodology. 

Arikan [104] studied on the determination of addendum modification 

coefficients for spur gears operating at non-standard centre distances 
considering avoiding pointe tooth and undercutting. The performance of gear 

were optimised with regard to addendum modification coefficients taking into 

the account the amount of dedendum, centre distance, clearance, backlash, gear 

ratio, contact stresses and root stresses. 

Bair [105] investigated a three-dimensional geometric pointed tooth of crowned 

elliptical gear at major axis. The gear drive was designed to avoid edge contact 

while there was an axial misalignment. The rack cutter was used for developing 

an analytical model of the gear drive. Moreover, a numerical programming was 

computed for generation gear tooth without pointed teeth. 

In the traditional theory of involute meshing, there is a minimum number of 
teeth to avoid the undercutting root by means of the tooling generating rack, i.e. 

for many 20 degree involute pinions this minimum number is 17. However, such 
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rules of thumb are of little use when dealing with non-standard designs, in which 

case more detailed models are appropriate: 

Litvin [1] defined the limitation condition for tooth undercutting that the tooth 

has been generated by means of rack-cutter taking into the account the meshing 

between involute part of the gear and the straight line of the rack cutter. 

Townsend [2] and Spotts [4] showed that for each pressure angle there is critical 

number of teeth that undercutting happens while the standard amount of 

addendum coefficient equals 1.0 and the amount of profile shift coefficient 

equals 0.0. I.e. for the pressure angle of 14½°, 20°, and 25° spur gears, the tooth 
root undercut occurs with a number of teeth lower than 32, 17 and 12, 

respectively. 

The undercutting conditions for symmetric spur gears which have been designed 

directly are not constrained by the restrictions of the generating rack and its 

profile shift coefficient [36, 102].  

Alipiev et al [106] proposed a generalized approach to describe the tooth 

undercutting. In this study, three kinds of boundary condition were defined for 

undercutting of spur gear tooth. The first one which was the traditional 

undercutting boundary condition called as “undercutting-type I”.  The second 

and the third one were descried as “undercutting-type IIa” and “undercutting-
type IIb”. Based on this study, the type IIa and type IIb were made by means of 

the fillet of the rack cutter, whereas the type I was made by the straight line of 

the rack cutter profile. Moreover, the boundary condition for preventing 

undercutting of all the three typed were presented considering the amount of 

fillet radius of the rack cutter  

He et al [107] presented a theoretical study and numerical simulation for 

undercutting occurrence. Minimum number of the involute gear teeth without 

undercutting was found in two different approaches as the traditional boundary 

condition and cutter tip radius limitation. The results indicated that the minimum 

number of teeth without undercutting considering traditional restriction is less 
than the cutter tip radius limitation. 

Brauer [108] presented the analytical relations for a straight conical involute gear 

tooth surface and its offset surface to avoid undercutting occurrence.in tis study, 

Merritt [5] formulation for undercutting restriction was applied for the 

modelling. A developed expression for undercutting check was presented 

considering the amount of addendum modification coefficient. 

While the starting point of each of these models is the same, namely the 

geometrical simulation of gear to rack contact, the mathematical formulations 

present discrepancies in their predictions, as will be seen in section 8.2.2. 

Based on these models the different undercutting conditions we calculate the 
minimum number of teeth to avoid undercutting as shown in Table 8.1. 
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Table 8.1: Comparison of undercutting equations for minimum number of teeth 
Researcher(s) Minimum number of teeth to avoid undercutting 

 

Litvin[1], Kapelevich [102], 

Alipiev (type I) [106] V ≥ 2(�� - ��)sin5 )*  

 
Townsend[2], Spotts  [4] V ≥ 2��sin5 )* 

 
He [107] V ≥ 2(�� + ��)sin5 )*  

 
Alipiev (type II) [106] V ≥ ��sin)* 

 
Merritt [5], Brauer [108] V ≥ 2u�� - �� - ��(1 - sin)*)vsin5 )*  

 

In this chapter, we perform an independent investigation of the conditions that 
lead to tip pointing and undercutting, in the course of which we explain also the 

discrepancies observed between the existing models. 

8.1.2.2. Geometrical compatibility (interference) 

Even if a gear is manufacturable, as per section 8.1.1.1, it is not guaranteed that 

two gears configured in a pair and made to mesh will do so without geometrical 
interference. For this reason, there are guidelines in the standards, which steer 

parameter selection to subspaces in the design space where it is known a-priori 

that interference does not occur [101-102, 106-111]. However, interference 

becomes a concern when non-standard tooth forms with reduced radial 

clearance are employed, such as large-fillet short-dedendum gears [38]. These 

tooth forms have shorter involute working flanks and excess material at the root, 

which can lead to non-conjugate corner contact and penetration at the tooth 

root. Existing models for interference are unable to predict this, or rely on 

calculation-intensive simulations, which make them impractical for design. 

As with undercutting, simple analytical models exist and are widely used to 
predict interference [1, 3]. However, these models have been proven recently to 

underestimate interference risk, and corner contact and penetration in 

particular, when small numbers of teeth are concerned, especially if compact 

low-dedendum gears produced with large cutter tip radii are concerned [38-39]. 

Interference for non-standard gears happens because of the penetration of the 

tip of the driven gear (gear number 2) at the tooth root of the driving gear (gear 

number 1). The new interference model has to cover the area of penetrating that 
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occurs at the corner-to-root contact region. Furthermore, interference due to 

module/ pressure angle compatibility, tooth width compatibility (backlash), and 

radial clearance compatibility are non-trivial factors that must be considered in 

non-standard gear design [112]. Thus in the case of non-standard and compact 

gear geometry, these new computational models have to be implemented in the 

context of multi-parametric design. 

Based on these considerations, interference modelling can be categorised in four 

parts as: 
1. Pitch compatibility: Normally the use of the same module and pressure angle 

for both gears in a mating pair, as dictated by all standards, is sufficient to 

guarantee pitch compatibility. In general, however, these may be assigned 

different values for each gear, as long as base pitch compatibility is maintained 

[112]. 

2. Thickness-wise interference: Negative backlash, i.e. due to errors in tooth 

thickness or centre distance, also leads to interference. It can be detected by 

observing only the conjugate parts of the profiles. Nonetheless, if the leading 

profiles are positioned in a compatible meshing position, seizure will manifest 

as corner penetration at the coast sides [49,112]. 

3. Radial interference: The concern here is that the radial clearance can be so small 

that the top land of one gear will contact the root of the mating gear [112]. 

4. Corner contact and penetration: While standards provide sufficient clearances 

to avoid interference for any selectable combination of the gear design 

parameters, this may not be the case in many non-standard and compact gear 

design configurations [38]. In those cases, it is possible that the corner of the tip 

of one gear tooth will contact and tend to penetrate the root of the mating gear 

tooth, causing interference. 

Pitch compatibility, often taken for granted with standard mating gear pairs, is 

no longer guaranteed if module and pressure angle are free to vary between the 
gears. This is given special consideration in the present study, together with basic 

models for thickness-wise (backlash) and radial interference. 

Furthermore, the well-known analytical solution which has been suggested by 

Litvin [1] is valid for studying interference occurring along the line of action only, 

which is a false premise in most non-standard and compact gear design 

configurations [38], where corner contact and penetration is a concern. In 

particular the necessary and sufficient condition for non-interference at the root 

of the reference gear (gear 1) proposed by Litvin [1] and elaborated by the 

authors as follows (re-writing equation (4.12)) [43]: 

 �� ≤ ��<?\ 0'4 + )2̀ 1 ]e�)6
- b2312V5 + ��545 - 14V55'5�_]5)6 - 12V5']^\)6c <?\ 0'4
+ )2̀ 1 <?\)6 

(8.1) 
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In fact, equation (8.1) only predicts a tangent to the exact interference limit curve 

and is generally not valid, except at sufficiently high values of �� and �� of gear 1 

(Figure 8.4). In this chapter equation (1) still provides a useful limit-tangent to 

the exact interference limit curves, which are calculated by the corner contact-

and-penetration model [43]. In this work we perform a synthesis of appropriate 

models for the four different types of interference, providing a comprehensive 

set of accurate multi-parametric mathematical conditions for the geometrical 

compatibility of gear pairs. 

8.1.3. Standards and computational resources for implicit and explicit/ 

direct gear design 

For the design of gear geometry, a number of established design solutions have 

been codified in standards for implicit gear design such as GOST 13755 [113], ISO 

53[114], NF E 23-011[115], ISO TR 4467 [116], JIS B 1702 [117], DIN 867 [118], 

AGMA 201.02 [119], DIN 3972 [120]. These standards have been implemented 

in dedicated gear design software such as KISSSoft [8], HyGEARS [9] and Gear 

Design Pro [10]. 
Applicable standards also exist for explicit/ direct gear design, for instance 

ANSI/AGMA1006-A97 [121], as well as dedicated books [102] and software, for 

example Gear Tooth Root Fillet Optimization Software [122]. 

Given that the above sources are fundamentally implementations of the models 

discussed under section 1.1, they are also subject to the same critical 

considerations. 

Where applicable throughout the chapter, a few selected standard solutions and 

de facto industry solutions (‘best practices’) are shown in context in the enlarged 

design space, allowing a quick assessment as to how close they are to naturally 
emerging design limits (which are often associated with local optima). 

8.1.4. Current study 

In this chapter, we start by introducing a non-dimensionalisation methodology 

(section 3.2.1.1) to produce an elegant generalised representation and reduce 

the order of the multi-parametric problem (sections 8.4.1-8.4.3). The basic 
principles are introduced to frame a comprehensive manufacturability (tip 

pointing, undercutting) and geometrical compatibility (interference) model for 

the parametric design of profile-generated involute gears (sections 8.2.1-8.2.4 

and 8.2.1-8.2.5 respectively). The synthesised model simultaneously considers 

all applicable geometric and kinematical conditions and constraints to qualify 

each point in the design space (hence each combination of geometrical gear 

design parameters) in terms of manufacturability and geometrical compatibility.  

The design parameters considered include the module, pressure angle, tooth 

thickness, addendum, dedendum, cutter tip radius, and number of teeth of each 
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gear. While in principle the module and pressure angle may be varied between 

gears subject to specific constraints on pitch compatibility [113], in this study for 

simplicity the convention of choosing a common module and pressure angle for 

both gears in a mating pair is maintained. This reduces the considered design 

parameters from 14 to 12, all of which are in principle independent in the context 

of non-standard design. An extensive multi-parametric study is conducted over 

subsections 8.5.1.1-8.5.1.6, discussing the most notable effects of different 

choices for the considered design parameters. 

To demonstrate the capabilities of the model, this chapter proposes two 
geometric metrics that function as indirect performance indicators, which are 

relevant to gear design: a) Compactness (associated with strength and stiffness) 

and b) Contact ratio (associated with dynamics and peak-to-peak dynamical 

transmission error). These are discussed in section 8.5.2. However useful, the 

proposed metrics are by no means exhaustive – they serve only to demonstrate 

the utility and additional insights obtainable by the developed multi-parametric 

model. For each performance indicator, given the multi-parametric nature of the 

problem, it is possible to dictate a-priori or restrict the range of certain 

parameters, thus limiting the search area for design space exploration (and the 

number of associated strength or dynamical simulations), or even suggest a 
global optimum at the boundary of the constrained design space. 

Finally, design guidelines are extracted and multi-dimensional maps of the design 

space are given in terms of the aforementioned design parameters. Benchmarks 

against standards as well as known non-standard ‘best industry practices’ reveal 

significant potential in the less explored parts of the design space, especially with 

regard to a multitude of low-clearance, compact gear designs. 

 

8.2. MANUFACTURABILITY MODELLING 

8.2.1. Tip pointing 

Tip pointing is the condition where the top land of the teeth disappears, leaving 

both sides of the working tooth profiles (drive and coast) to intersect. 

The shape of the tooth becomes more peaked or pointed and the tooth flank 

becomes more curved as the pressure angle increases (Figure 8.1). Therefore, 
the top land becomes smaller and eventually results in pointed or peaked tip. 

Gear standards [113-121] recommended that the tip thickness should be greater 

than equal to 0.2 times the module for the hardened gears and this may be 

increased to 0.25 times the module in exceptional cases. The limitation of peaked 

or pointed tooth makes a boundary to the maximum amount of pressure angle.  

For a particular number of teeth there is a critical upper profile shift above which 

the teeth become pointed. With profile shifting, gear teeth generated by the 

same basic rack can be made to have different tooth thicknesses. In turn, the 

maximum attainable outside diameters of such gears are a function of tooth 
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thickness. For any given number of teeth, the tooth thickness can be increased 

such that the tip will become pointed at the outside diameter circle [2]. However, 

the resulting teeth do not have the correct whole depth because the involute 

curves cross over below the expected outside diameter (this phenomenon is 

termed ‘peaking’ [6]). The amount that the outside diameter of a gear is to be 

modified is usually a function of the tooth thickness desired.  

The maximum amount that the tooth thickness of a gear can be increased to just 

achieve a pointed tooth can be found already in Dudley’s Gear Handbook [2], 

reproduced here using an adapted notation: 
 

���¸¹ = V0^\¯	 0cosJI ����1 - ^\¯	)*1 - '22 tan)*  

(8.2) 

 
Where ���¸¹ is the maximum addendum coefficient at which a tooth having full 

working depth will come to a point,	)* is standard pressure angle of the rack 

cutter and cosJI sºs» is pressure angle at tooth tip.  To avoid pointed teeth and 

undercut root, it is needed to shorten the amount of addendum and working 

depth, however equation (8.2) cannot give us the condition of the avoidance of 

pointed tooth. 

Buckingham [3] introduced a condition to avoid pointed tooth that the arc tooth 
thickness at outside radius (��) will be less than zero. With this regard, Figure 8.1 

is presented to formulate this condition [3]. 

 

 
Figure 8.1: Pointed tooth model as per Buckingham [3] 
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Referring to Figure 8.1, jI is the tooth thickness at outside radius (��),	^\¯	)� 

and ^\¯	)*  are the involute function of )� 	(pressure angle at ��) and )* 

(pressure angle at �*), respectively.  

From Figure 8.1, it can be obvious that: 

 cos)* = ���6  (8.3) 

cos)� = ���� (8.4) 

 

And  

 �� = �6 + cos)* (8.5) �� = �6 +��  (8.6) 

 

From equations (8.3) and (8.4), we have:  

 ���� =
V2  cos)*V2  +�� 

(8.7) 

 

The arc tooth thickness at outside radius (��) can be presented as: 

 ^\¯	)� = (j* 2�6⁄ ) + ^\¯	)* (8.8) 

  

Which can be rewritten as: 

 ^\¯	)� = 0'��V 1 + ^\¯	)* (8.9) 

 

With substituting equation (8.7) into equations (8.4) and then equations (8.9), 

the condition of avoiding pointed tooth can be presented as: 

 

^\¯	 bcosJIbV2 cos)*V2 + �� cc < 0'��V 1 + ^\¯	)* 

(8.10) 

 

Illustration of equation (8.10) is presented in Figure 8.2. The grey area 

corresponds to tooth pointing, which is undesirable for gear design. 
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Figure 8.2: Illustration of tip pointing area design according to the condition of equation 

(8.10) 
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8.2.2. Undercutting 

Conditions of non-undercutting by a rack-cutter may be determined by using the 

general approach presented based on simple geometric considerations has been 

introduced by Litvin [1]. The geometry of gear cutting at the tooth fillet (gear not 

shown, only rack cutter tooth shown for clarity) has been further elaborated by 

the authors [44] and is shown in Figure 8.3. According to this model the condition 

for non-undercutting is as follows: 

 )* - � ≥ 0 (8.11) 

 

It follows from Figure 8.3 that: 
 

� = tanJI �.tan)*u�6,> - �.v  

(8.12) 

 

Further substituting some details of Figure 8.2 in equation (8.12) yields: 

 

)* - tanJI �� tan 045° + )*2 1 - �� cos)*tan )* �u�6,> - ��v tan 045° + )*2 1 + �� cos)*� ≥ 0 

 

(8.13) 

According to research by He et al. [107], if the rack addendum extends inside the 

point of tangency of base circle and pressure line (Point $¾ in Figure 8.3), gear 

undercutting consequentially occurs. Therefore, the addendum of the rack must 
be under the theoretical contact point. The cutter centerline is tangent with the 

gears’ reference circle. The requirement without undercutting for standard 

involute spur gears as follows:  

 7 sin)* ≥ �. (8.14) 

 

By substituting some details of Figure 8.3 in equation (8.14) we obtain: 

 u�6,> sin5 )* - ��v tan 045° + )*2 1 + �� cos)* ≥ 0 (8.15) 

 

On the other hand, according to Merritt [5], Brauer [108] and Alipiev et al. [106] 

(undercutting of type I) undercutting occurs (approximately) if the path of 

contact extends past the interference point. Therefore, a transverse plane of the 

tooth is not undercut if: 
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7 ≥ $¾  (8.16) 

 

And with same details of Figure 8.3 in equation (8.16), leading again to equation 

(8.15). 

 

 
Figure 8.3: Geometry of gear cutting at the tooth fillet [44] 

 

The predictions from the three undercutting models derived in equations (8.13), 

(8.15), (8.17) above are plotted and compared in Figure 8.4. According to Figure 

7.4 the undercutting condition that has been introduced by Litvin [1], Merritt [5], 

Brauer [108] and Alipiev et al. [106] has same results for undercutting and non-

undercutting parts of spur gears. 
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Figure 8.4: Comparison of undercutting phenomena for different theories 

 

It is apparent that Litvin’s condition, as per equation (8.11), and Merritt’s 
condition, as per equation (8.16), produce identical predictions for interference, 

which are more conservative than the predictions based on He’s condition 

(equation (8.14)), where the combined influence of the dedendum coefficient 

and the rack cutter tip radius coefficient has been considered.  

8.2.3. Tooth thickness analysis 

Figure 8.5 describes the case of maximum cutter tip radius max �� [43-45, 123], 

where it can be observed that the tip thickness  <>́ of a sharp tooth of the non-

dimensional rack cutter relates to the pitch thickness  '(1 - ��), the dedendum  

and the pressure angle according to equation (3.10) as follows:  

 ?,@��A = B12'(1 - ��) - �� tan)*C tan 0'4 + )*2 1 
 

 

Equations (3.10) and (3.11) are used for tooth thickness analysis to find the 

limitation of tooth thickness with regard to the cutter tip radius and dedendum 

coefficient. Notice that application of a larger radius than that calculated from 

equation (3.10) would result in an undercut cutter tooth, having a smaller whole 

depth and  �� value than intended. 
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8.2.4. Form radius analysis 

By exploiting the symmetry of the rack cutter tooth as shown in Figure 8.3 (which 

has been introduced in Chapter 3, section 3.2.1.2), the following relationship can 

be deduced: 

 �� - �. = �� cos)*tan 0'4 + )*2 1 

 

And therefore, 

 

8.3. GEOMETRICAL COMPATIBILITY (INTERFERENCE) MODELLING 

8.3.1. Pitch compatibility 

In this study, we use the conditions for pitch compatibility developed by Spitas 
[54, 112]. The underlying considerations and model are explained as follows. 

Let us examine a pair of involute gears contacting at an arbitrary point A, as 

shown in Figure 8.5. Gear 1 can be uniquely defined by its base radius �́ I and 

number of teeth VI and gear 2 similarly by its base radius �́ 5 and number of 

teeth V5. It is possible to uniquely define point B as the intersection of the tooth 

profile of gear 1 with line GA, if point B is rotated by an angle 
5H!F . Correspondingly 

point ¿ is defined as the intersection of the tooth profile of gear 2 with line GA, 

if ¿ is rotated by an angle  
5H!G. By virtue of the properties of the involute:  

 {² = <´I  ,  {¿ = <´5 (8.17) 

 

Clearly, to assure perfect contact of the next pair of rack-pinion teeth at A, the 

points B and ¿ must coincide, hence the necessary condition for pitch 

compatibility is: 

 <´I = <´5 (8.18) 

 
Let us examine a rack and an involute pinion (gear 1) in contact at an arbitrary 

point A, as shown in    Figure 8.5. The rack can be uniquely defined by its pitch <a 

and pressure angle )* and the pinion by its base radius �́  and number of teeth V. In this case point B is uniquely defined as the intersection of the tooth profile 

��∗ = 23 �.tan)*45 + (�6∗ - �.)5  
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of gear 1 with line GA, if the latter is rotated by an angle  
5H! . Correspondingly, 

the rack must also travel a distance <a; hence the rack profile also intersects line 

GA at a new point ¿. By virtue of the properties of the involute: 

 {² = <´ (8.19) 

 

It can easily be verified from Figure 8.5 that: 

 {Γ = <a cos)* (8.20) 

 

In order to assure perfect contact of the next pair of rack-pinion teeth at A, the 

points B and ¿ must coincide, hence the necessary condition for pitch 

compatibility is: 

 <´ = <a cos)* (8.21) 

 

From equation (8.21) we derive the following conclusion: 

Two different racks defined by the pairs <a, )* and <a¾, )*¾ generate gears of the 

same base pitch <´ if and only if: 

 <a cos)* = <a¾ cos)*¾ (8.22) 

 

Because of equation (8.18) the generated gears can mesh perfectly, 

notwithstanding any tooth clearance restrictions, the racks that satisfy the 

condition of equation (8.22) are considered equivalent. 
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Figure 8.5: Pitch compatibility: pinion-rack (left), pinion-wheel (right) [54, 112] 

8.3.2. Thickness-wise interference: Seizure 

Let us examine the pair of involute gears illustrated in Figure 8.5. Besides the 

base radii �́ I and �́ 5 and numbers of teeth VI and V5, a sufficient geometrical 

definition of the gears must include the inside radii ��I and ��5, the outside radii ��I  and ��5 and the thickness coefficients at the base circles ��´I  and ��´5 

respectively. The centre distance of the gear pair is ?I5. 

The general condition for sufficient tooth backlash is derived [54]: 

 VI +V5' ()� - tan)�) ≤ 1 - ��´I - ��´5 
(8.23) 

 

Where )� is the operating pressure angle,  ��´I  and ��´5  are the thickness 

coefficients at the base circles for gear 1 and 2, respectively. 

8.3.3. Radial interference 

One of the main constraints for fillet optimisation is a minimum radial clearance. 

Radial clearance results from the difference between addendum and dedendum 

of two mating gears, with standard radial clearance coefficients varying from 0.2 
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to 0.35. The minimal clearances must in any case be greater than zero to avoid 

the tooth tip/root interference. However, operating conditions, including 

temperature and humidity (especially with plastic gears), may reduce root 

clearances. Besides, low radial clearances may result in trapping lubricant in the 

tooth root area, increased hydraulic losses, and reduced gear efficiency, 

especially for relatively wide spur gears. This may require designing the tooth 

fillet with increased root clearances even with some compromise of bending 

stress reduction [54, 124].  

In order to ensure that the conjugate gears operate without the risk of seizure, 
there should be a minimum allowable radial clearance. 

To assure radial clearance the following relationships must be true: 

 ��I + ��5 ≤ ?I5 (8.24) ��5 + ��I ≤ ?I5 (8.25) 

 

That ��I and ��5	 are the inside radii of gear 1, 2, ��I and ��5 are the outside radii 

of gear 1, 2, and  ?I5 is the centre distance of the gear pair. 
Furthermore, equation (8.25) can be reworked into the following form, 

considering that nominally ?I5 = �6I + �65 

 ��I - ��5 + 1 ≥ 1 (8.26) 

 

and introducing the notation: 

 ��ItÁÂ = ��I - ��5 + 1 (8.27) 

 

Equation (8.26) takes the form: 

 ��ItÁÂ ≥ 1 (8.28) 

 

A similar condition can be formulated from equation (8.24) for gear 2. The 

significance of ��ItÁÂ will be revisited in section 8.3.5. 

8.3.4. Corner contact and penetration 

A detailed study of interference resulting from corner contact and penetration 

can be found in  Chapter 4, section 4.3 (Figure 4.2). The points of the gear profile 

were generated using an in house computer programme in C++, using the 

algorithm presented in Figure 4.3. The algorithm has been used in this study for 

implementing the corner contact’s model, is in accordance with equations (from 
(4.35) to (4.49)) which have been introduced in section 4.3.1.3. 
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8.3.5. Addendum and dedendum analysis 

By means of the corner contact and penetration method from section 4.3, 

interference and non-interference design space for different combinations of the 

design parameters are presented in Figure 8.6. The design parameters are 

included as the number of teeth for gear 1 and 2, cutter tip radius coefficient of 

gear 1, dedendum coefficient of gear 1 and addendum coefficient of gear 2. 

According to the results of Figure 8.6, there is a relation between dedendum 

coefficient of gear 1 (��I) and addendum coefficient of gear 2 (��5). 

The relation is introduced as follows, same as in equation (8.27): 

 ��ItÁÂ = ��I - ��5 + 1 

 

 

Introducing this equivalent metric for ��, which notably takes into account the 

mating gear as well, each family of curves is reduced to a single curve (coincident 

with each thick black line in Figure 8.6). 
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Figure 8.6: Detection of interference and non-interference are for different combination 

of the design parameters including addendum coefficient of gear 2 (cg5) 

 

8.4. PARAMETRIC COUPLINGS AND SYNTHESIS OF GENERALISED MODEL 

8.4.1. Parametric couplings 

We notice the following important couplings between gear design parameters: 
• Normally, it is considered that the pressure angle of two mating involute gears 

has to be the same, in order to allow them to mesh. However, it follows from 

basic geometry that any involute will fulfil the necessary tangency conditions 

when mating with any other involute, so the actual concern is pitch 
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compatibility: base pitch compatibility in particular. In fact, gears with different 

pressure angles may still mesh properly if they have the same base pitch, which 

can be obtained by a proper selection of the individual (non-standard) gear 

modules. In this sense, base pitch compatibility imposes a strong coupling 

between the pressure angle and module. 

• Although in principle the addenda and dedenda of a pair of gears (4 parameters 

in total) may be selected arbitrarily, the predicted interference behaviour can 

be expected to depend on two distinct combinations involving the addendum 

of one gear and the dedendum of the other gear, as demonstrated in section 

8.3.4. Clearly, increasing the amount of addendum of one gear will necessitate 

and increase in the dedendum of the mating gear. 

• Tooth thickness and pressure angle are related with regard to tip pointing. With 

increasing the pressure angle it will be necessary to increase tooth width in 

order to avoid tip pointing. Addendum and dedendum (hence whole depth) are 

likewise coupled with tooth thickness and pressure angle in the same context, 

with shorter teeth being less prone to tip pointing even for large pressure angles 

and small tooth widths. This is shown in section 8.2.1. 

• Dedendum, cutter tip radius and pressure angle can be expected to have a 

combined effect on the occurrence of undercutting, as shown in section 8.2.2. 

• Thickness-wise interference between two gears can be expected to depend on 

tooth thickness, the operating pressure angle, and the numbers of teeth of both 

gears, all coupled as shown in section 8.3.2. 

• Considering radial interference at the root of one gear mating with another 

gear, it has been shown in section 8.3.3 to depend on the relation between 

dedendum of the reference gear, the addendum of the mating gear, and the 

numbers of teeth of both gears. The same consideration is valid for radial 

interference at the root of the mating gear. 

• Addendum, cutter tip radius, pressure angle and tooth thickness are in principle 

properties of the rack cutter (and cutting layout). As shown in section 8.2.3, not 

every combination is viable: i.e. a large cutter tip radius must be accommodated 

by correspondingly large thickness and/ or large pressure angle and/ or small 

addendum. While each one of these 4 parameters is in principle independent, 

the limits on each one are strongly coupled. 

Thus hereinafter we shall consider the above couplings and the corresponding 

developed models to describe and support the relevant design choices. 

8.4.2. Design parameters 

Hereunder some of the considered parameters are discussed, summarising the 

main considerations typically at play in the context of gear design. This section, 

together with section 8.4.1, serves to support the condensed synthetic overview 

produced in section 8.4.3. 

8.4.2.1. Pressure angle (ÃÄ) 

Pressure angle is the slope of the gear tooth at the pitch point. If the pressure 

angle were 0°, the tooth is parallel to the axis of the gear- and is really a spur-



144 
 

gear tooth. Generally, gears can be manufactured with different type of pressure 

angles of 14.5°, 20o and 25o in industrial applications.  

High pressure angles such as 22.5°, 25°, and 27.5° are in some cases used to 

increase bending strength [2]. Most designers prefer a 20° pressure angle for 

spur gears. In the past, the 14.5° pressure angle was widely used because it 

affords higher contact ratios. It is not popular today because it is more 

susceptible to undercutting when small numbers of pinion teeth are needed. 

Also, it lacks the load-carrying capacity of the 20° tooth form. Pressure angles 

above 20° give higher load capacity but may not run quite as smoothly or quietly 
because of reduced contact ratios. 

In involute gear manufacturing, the 20° system has prevailed over the years [47-

54] since it offers good pitting resistance along with acceptable bending strength, 

and good contact ratio without undercutting over 17 teeth, or 15 teeth if the 

maximum allowable rack cutter tip radius is used [1-7]. However, for tooth 

numbers less than 14 the only solution to avoid undercutting is to apply positive 

profile shifting of the cutting tool, resulting in long addendum teeth, decreased 

contact ratio, and increased sliding velocities at the ends of the path of contact 

[23-29]. The low tooth number region corresponds to the pinion designs that are 

reported to suffer more from bending than the mating gears [2]. Therefore, the 
selection of the fillet geometry is important for achieving adequate bending 

strength in low-tooth pinions if one wants to avoid applying profile modifications 

or changing the centre distance.  

Gears generated with non-standard pressure angle have been demonstrated to 

achieve higher bending strength [54]. In fact, the same working flank can be cut 

by infinite combinations of pressure angles and modules [47-54], but with 

varying implication on the produced root shape and strength. Practical 

limitations to using high pressure angle values arise from unwanted tooth tipping 

(Figure 8.7) and corresponding addendum reduction, as well as increased radial 

force and bearing load components. 
 

 
Figure 8.7: Tooth profile geometry with different pressure angle 
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Figure 8.7 shows the geometry of on tooth of a spur gear with different pressure 

angle. With different value of the pressure angle, a different part of the same 

involute will be produced (e.g. if applying profile shift), or possibly an entirely 

new involute. Increasing the pressure angle tends to increase the tooth root 

thickness, strength and consequently the load carrying capacity. 

8.4.2.2. Module (Å) 

Geometrically speaking the module is just a scale factor for a gear. For instance 

all geometrical features of a spur gear with m=2mm are two times bigger than 

the corresponding features of a m=1mm gear, provided that the number of 

teeth, nominal pressure angle and the whole depth, fillet radius, backlash and 

profile shifting coefficients are the same. All linearly affected magnitudes (i.e. 

root stress including stress concentration, sliding velocity etc.) increase either 

proportional (sliding velocity) or inversely proportional to it (root stress), while 

others (i.e. contact stress) follow a non-linear relationship. Regarding the 
efficiency of a gear pair it is mainly dominated by the sliding velocities of the 

gears in mesh along their path of contact, therefore the bigger the module the 

higher the losses for a given angular velocity and transmission ratio. 

8.4.2.3. Cutter tip radius (ÆÆ) 

The root fillet of a tooth in normally generated by the cutter tip trajectory. The 
root carries the maximum bending stress of the tooth, and therefore the value 

of the cutter tip radius has a significant effect on tooth bending strength. 

Increasing the cutter tip radius results in larger generated root fillet therefore 

reducing stress concentration and the value of the maximum root stress. 

At the same time, a larger cutter tip radius tends to reduce the involute part of 

the tooth, thereby increasing the risk of interference with mating gears and 

limiting the values that may be applied practically. 

Other considerations are: 
• Small or zero radius has been known to cause localised tool wear, causing in 

turn poor surface quality and dimensional inaccuracy of the manufactured gear 

• For a given whole depth, there is a practical limitation on the maximum radius 

that is obtainable; the larger radii will be incompatible with the designated 

whole depth for the 20° gear system, or the cutter teeth will be undercut, i.e. 

they cannot be realised unless the whole depth is reduced 

 8.4.2.4. Addendum (ÆÇ) 

With increasing the addendum, the number of simultaneously meshing teeth 

and the contact ratio can be increased, which can result in decreasing the 

operating transmission error and noise; long addendum gears are typically used 

to obtain transverse contact ratio of two or above (which is particularly useful in 

e.g. automotive spur gears). Contact ratio-induced load sharing and resulting 

gear tooth strength can also be regulated by judicious choice of addendum. 
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Other considerations include: 
• The whole depth required to accommodate a long addendum is bigger, resulting 

in lower attainable stiffness per tooth. 

• Long addendum pinion with short addendum gear pairs are in some cases 

utilised to strengthen the pinion and adjusting the tip sliding velocities [2] 

8.4.2.5. Dedendum (ÆÈ) 

Addendum and dedendum together define the tooth whole depth and are such 
closely coupled with regard to geometrical compatibility and interference. The 

following considerations apply: 
• Increasing the tooth whole depth to achieve higher contact ratio can reduce the 

load carrying capacity of individual teeth 

• On the other hand, for high contact ratio spur gears (above two), where one 

expects the load-sharing between mating teeth to compensate for this 

reduction, a small pitch error or other error could neutralise this effect, making 

high contact ratio designs applicable only under precise accuracy (and cost) 

conditions 

• With increasing dedendum coefficient the leverage of the applied load increases 

therefore leading to higher fillet stress values 

8.4.2.6. Profile shifting 

Profile shifting simultaneously affects the apparent addendum, dedendum, 

tooth thickness and pressure angle. As such, it can be modelled equivalently by 

means of these other parameters. 

8.4.2.7. Tooth thickness (ÆÉ) 

Tooth thickness has a direct effect on the tooth root cross-section and 
corresponding bending stresses and strength, with higher thickness giving better 

results. However, the geometrical compatibility of mating gears imposes limits 

on the thickness of mating teeth, or interference will occur. Backlash can be 

controlled for a given centre distance by controlling the thickness of the mating 

gear teeth. Other applicable design considerations are that: 
• Pinion tooth thicknesses are often increased at the expense of the mating gear 

to strengthen the pinion [2]. 

• The determination of tooth thickness depends on the amount of desired 

backlash and the desired addendum, for a minimum size of tooth top land [2]. 

The choice of tooth thickness can be used to mitigate tooth pointing. 

8.4.2.8. Number of teeth (Ê) 

The numbers of teeth of two mating gears combined dictate their transmission 

ratio and basic kinematics. Almost all other characteristics of the gear pair, 

including contact ratio, load sharing, strength etc are implicitly affected by this 

choice. The number of teeth of a gear together with its module dictate the gear 
size. 



147 
 

8.4.3. Generalised model 

Base on the explanation in section 8.4.1, it can be concluded that the dependent 

design parameters can be reduced to independent design degree of freedoms 

only. 

The design parameters that we discuss in this work are as: the number of teeth 

for gear 1 and 2, pressure angle, cutter tip radius, dedendum, addendum, tooth 

thickness. 

With different formulations as explained in pervious sections, some of the design 

parameters are coupled and can be found from other formulations to be 

independent. Table 8.2 shows that how to use different formulas to reduce the 

design DOFs. 
 

Table 8.2: Dependency of the design parameters 

Design parameters 

 (one per gear) 

Dependency  Explanation 

			α*	 α*I =	α*5 = α* 
or same base pitch 

Pitch compatibility 

cg,	α*,	cN,	N	 Eq. (8.10) Avoidance of tip pointing cW,	cL,	α*,	N	 Eq. (8.13) Avoidance of undercutting cW,	cL,	α*,	cN	 Eq. (3.10) Cutter shape coupling/limitation   cN,	αL,	N	 Eq. (8.23) Avoidance of thickness-wise 

interference (backlash) cW, cg	(cWËÌÍ)	 Eq. (8.28) Avoidance of radial interference cW, cg	(cWËÌÍ),	cL,	α*,	N	 Eqs. (4.20)-(4.22) Corner contact and interference 

 

8.5. RESULTS AND DISCUSSION 

8.5.1. Multi-parametric gear design maps and limit curves 

Considering a pair of mating gears 1 and 2, in this section the relations between 

the design parameters such as the number of teeth for gear 1 and 2, pressure 

angle, cutter tip radius, dedendum, addendum, tooth thickness with regard to 

manufacturing feasibility (tip pointing/ non-pointing and undercutting/ non-
undercutting) and geometrical compatibility (interference/ non-interference) 

are discussed. The corresponding design subspaces and limit curves are 

identified. 

8.5.1.1. Influence of pressure angle on manufacturability 

Figure 8.8 shows the manufacturing feasibility design space, according to 
equation (3.10), for different values of the pressure angle (10°, 14.5°, 20°, 25°, 

30°, 35°, 40°, 45°, 50°, 60°) while the value of tooth thickness coefficient is given 

(�� = 0.5). With increasing the pressure angle, the possibility of using larger �� 
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will be increased and simultaneously the possibility of using larger cutter tip 

radius will be decreased.  

 

 
Figure 8.8: Influence of pressure angle on manufacturing feasibility with given amount 

of tooth thickness 

 

Figure 8.9 reports the result of a more general study, according to equation 

(3.10), showing the complete relation between ��, ��, ��  and )* (10°, 14.5°, 20°, 

25°, 30°, 35°). 

In the left column, the diagonal lines present the amount of cutter tip radius 

coefficient (��) and the grey subspace corresponds to manufacturing non-
feasibility. With smaller pressure angle, the feasible subspace will be bigger. 

In the right column, a 3D plot is given of the relation between ��, ��, �� for given 

amount of pressure angle. The subspace above the surface corresponds to non-

feasible parameter combinations. With increasing the pressure angle, the 

feasible design space will be decreased. 
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)* = 10° )* = 10° 

)* = 14.5° )* = 14.5° 

)* = 20° )* = 20° 
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Figure 8.9: Feasibility of a gear design according to equation (3.10) (relation between cW, cL, cN  and α*) 

)* = 25° )* = 25° 

)* = 30° )* = 30° 

)* = 35° )* = 35° 
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8.5.1.2. Tooth thickness limitation (cutter tooth undercutting) 

Equation (3.10) presents the maximum value of ��, with changing the amount of �� while the value of �� is given. In equation (3.10), different values for tooth 

thickness (��=0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70) 

present some limitations for different combinations of �� and ��. Figure 8.10 

presents the feasible design space for different �� - �� combinations in regard 

with tooth thickness limitations. With increasing the amount of tooth thickness, 

it is clear that the tolerance area for different values of ��, �� will be decreased. 

 

 
Figure 8.10: Tooth thickness limitation for different combinations of cL , cW 

8.5.1.3. Interference limits in the design space 

Figure 8.11 presents the limits to the design space imposed by interference for 

different combinations of the design parameters including VI, V5 (5, 10, 20, 40, 

80), ��, ��, )* (10°, 14.5°, 20°, 25°, 30°, 35°. With regard to feasibility, equation 

(3.10) has been applied to find the maximum possible amount of tooth thickness 

coefficient. For calculating the interference subspace and corresponding limit 

curve the algorithm of corner contact and penetration method (section 8.3.4) 

has been implemented. Above the tooth thickness limitation line lies non-

feasible design space. The non-interference subspace is bounded from the left 

by the family of curves depending on the pressure angle and the number of teeth 

of the mating gear. 

With increasing pressure angle and the number of teeth for gear 2, the design 
subspace corresponding to manufacturing feasibility and non-interference will 

be smaller. Hence larger gears with bigger pressure angle are more at risk of 

manufacturing and interference problems. 
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Figure 8.11: The design subspace corresponding to manufacturability and non-

interference for different combinations of the design parameters including NI, N5, cLI, cWI, and α* 

8.5.1.4. Undercutting limitation 

Using equation (8.13) for different numbers of teeth for gear 1 (VI=5, 10, 20, 40, 

80) allows to design a gear without undercut as shown in Figure 8.12, where the 
negative values for cc are obviously not feasible. With increasing the number of 

gear teeth and the value of ��, the safety of the design against undercutting will 
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be increased. Increasing the pressure angle also enlarges the design subspace 

that is free from undercutting. 

 

 

 

 
Figure 8.12: Undercutting and non-undercutting design subspaces for different 

combinations of NI, cL, cW,	α*. The grey subspace corresponds to non-feasible designs 

8.5.1.5. From radius limitation 

Figure 8.13 shows the form radius for a 20-tooth pinion for an exhaustive array 

of dedendum and cutter tip radius combinations for undercut and non-undercut 

root tooth as calculated by equations (4.20), (4.21) and (4.22). Extreme 

combinations of dedendum and cutter tip radii that are impossible to attain have 

been filtered out by use of equation (8.13) and therefore no corresponding 

values exist at the far end of the chart, which is shown in Figure 8.14. 
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Figure 8.13: Form radius limitation for (a) non-undercut and (b) undercut root tooth 

(N=20) 

 

It is easy to identify a region of dedendum and cutter tip radius combinations, 
where the form radius is minimised and therefore the involute potion of the 

teeth is maximised. As one moves away from that region, two different trends 

are to be identified: a) For combinations of relatively large values of dedendum 

and small values of cutter tip radius the form radius increases, suggesting the 

presence of a secondary cutting action (undercutting). b) For combinations of 

relatively small values of dedendum and large values of cutter tip radius the form 

radius increases also, which, depending on the mating gear geometry and the 

centre distance, presents an increasing risk of interference. As this is the region 

that produces the shallowest teeth with the stronger fillets, it is expected that 

this is the region where the optimal designs are to be sought. 
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Figure 8.14: Calculated non-dimensional form radius for a 20-tooth pinion for the 

possible combinations of dedendum and cutter tip radius. Useful designs lie between the 

rightmost (undercutting) and leftmost (interference) extremes 

 

It is also important to note that the iso-�� curves are linear throughout the 

definition field; this means that any increase of cutter tip radius must be made 

at the expense of increasing the dedendum coefficient by an analogous amount. 
The ratio of this analogy is easily determined from equation (3.4) as: 

 Î��Î�� = �_] )*<?\ 045* + )*2 1 
(8.30) 

 
For the 20° gears studied here, this means that ΔcW ΔcL⁄ = 0.658. 

8.5.1.6. Addendum limitation 

From section 8.3.5 it can be concluded that instead of ��I, we can use ��ItÁ>ÐÂ¸Ñt|. as defined in equation (8.27), thereby incorporating the effect of 

the addendum in this new metric, which is always positive, since the addendum 

of the mating gear may not be larger than the dedendum of the reference gear. 
Figure 8.15 presents the interference limit curve calculations in consideration of VI, V5, ��I, ��I and ��5. 
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These results show that the risk of interference will be increased with using 

smaller value of ��ItÁÂ, which can be the result of increasing the addendum of 

the mating gear, and/ or bigger value of ��.  

The results show that the interference limit is not dependent on the number of 

teeth of gear 1 or the contact ratio, but only on the number of teeth of gear 2. 

Thus any combination of VI, ^I5, where  VI^I5 = V5 is constant, produces an 

identical interference limit curve. This insight and in additional ��ItÁ>ÐÂ¸Ñt|. 
allow reducing by two the dimensions of the parametric space, without loss of 

generality. 

 

Figure 8.15: Reducing the five-parametric design space for interference limit curves to 

the three-parametric design space cWIËÌÍ, cLI, N5 after elimination of parameters NI, iI5 

and cg5 

 

Considering the dedendum coefficient fixed, another relevant observation is that 

the contact ratio of will be increased with decreasing the amount of equivalent 

dedendum coefficient, which is practically equivalent to increasing the 

addendum coefficient of the mating gear and is not affected by the dedendum 

or the cutter tip radius of the reference gear, as shown in Figure 8.16. The overall 
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contact ratio will depend of course on the addenda (or equivalent dedenda) of 

both gears. 

 

 
Figure 8.16: The relation between equivalent dedendum coefficient (��tÁÂ) and gear 

contact ratio 

8.5.2. Compact and high contact ratio tooth forms 

In section 8.5.1, a large family of combinable plots has been presented, from 

which the manufacturability and compatibility design subspaces can be 

delimited. 

Compact tooth form can be designed with minimising the total volume of gear 

tooth. Besides reducing the module, this can be done by reducing the number of 
teeth and minimising the clearance between gear teeth [126-131]. Higher 

pressure angles, which are conductive to higher load carrying capacity and small 

modules and addenda, which are conductive to high scoring/ scuffing resistance, 

can also be chosen. 

Likewise, while only pressure angle and the addenda of both gears affect the 

contact ratio, their feasible values when attempting to increase the contact ratio 

are affected by many other design parameters (including the limitation of form 

radius). The produced design spaces allows a fast assessment of these limits and 

corresponding attainable values. 
Given that the design space, considering both gears in a pair, contains multiple 

parameters and the design goals vary from one application to another, from the 

provided analytical mapping of the design space limits the optimal (or Pareto-

optimal) solutions can be found on a case by case basis. Figure 8.17 offers a 

qualitative summary of several of the plots presented in section 8.5.1 and can 

serve as a starting point and design guideline. 
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As the relations between the design parameters reduced to the independent 

design DOFs, selecting the design parameters can be easy and fast to find 

compact and/ or high contact ratio tooth forms. 

Already, in high performance gear applications in the automotive and aerospace 

sectors the industry has moved away from the standard tooth proportions and 

many gear designs currently being developed or in use fall in the regions of the 

design space denoted by the thick arrows (left and top left part of the feasible 

design space). This is still largely based on trial-and-error. To the best knowledge 

of the authors, Figure 8.17 is the first representation to explain why such designs 
are optimal in the �� - �� space, in terms of compactness and contact ratio (both 

of which are a function of ��tÁÂ) allowing a better-informed design space 

exploration and design optimisation.  

 

 
 
Figure 8.17: Overlay of different limit lines and delineation of feasible and non-feasible 

design subspaces on the multi-parametric non-dimensional design space (��/��tÁÂ , ��, �� 

, V). The limit lines corresponding to different values of )* are not shown for clarity 

8.5.3. Implications of the choice of pressure angle 

According to the results of section 8.5.1.2, the pressure angle plays an important 

role regarding not only gear performance, but also the size/extent of the design 
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subspace that is consistent with manufacturability and compatibility. Larger 

pressure angles are only feasible within limited design subspaces. 

This means that for the large pressure angles that are used for special 

applications such as high capacity load carrying in heavy industry, the presented 

mapping can be used to precisely navigate the narrow design space in order to 

reach feasible designs. 

 

8.6. CONCLUSION 
This chapter presented a number of original and reworked mathematical models 

that are relevant to assessing the manufacturability and geometrical 

compatibility of gears, considering the multi-dimensional design space involving 

simultaneously the pressure angle, module, addendum, dedendum, cutter tip 

radius, thickness, and number of teeth of both gears in a pair. These models were 

synthesised into one comprehensive meta-model that supports fast assessment 

of gear design feasibility. 

Various modes of interference were considered as well as the manufacturability 

of the individual gear teeth in terms of pointing and undercutting. Differences 

between different available models (e.g. with regard to undercutting were 
identified and discussed). Furthermore, models for pitch compatibility and 

corner contact and penetration were presented that provide new possibilities for 

non-standard and compact tooth form designs. 

The resulting combined model serves to provide a complete analytical overview 

of the multi-parametric design space and is suitable for the fast assessment of 

existing designs, for implicit or explicit (direct) gear design, for extracting design 

guidelines, and for design optimisation. The model can be used to identify and 

explore highly promising under-used subspaces of the parametric design space, 

which are currently of significant interest to i.e. the automotive and aerospace 
industries. 
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9- Engineering gear tooth 

compliance  
 

 

Summary 
Design of powertrains involving compact, high-power-density and/or high 

precision gear transmissions need precise computational modelling of dynamics 

and compliance, over numerous calculation-intensive iterations. Another main 

concern, with regard to low-vibration systems in particular, is how to tailor the 

whole stiffness of a gear pair for limiting the amount of vibration in the gear 
system. However, current analytical/empirical methods for calculating gear 

compliance become inaccurate outside of the standard geometries for which 

they have been derived, whereas numerical, methods rely on complex finite 

element models, which are very resource intensive in order to be accurate. To 

address these shortcomings in this chapter, we develop a versatile hybrid 

analytical-numerical method and non-dimensional modelling framework for 

accurately calculating gear mesh compliance of arbitrary (including non-

standard) tooth geometries. Finite element analysis is used for the calculation of 

bending & foundational compliance in conjunction with Saint-Venant's Principle, 
which has been used to allow accurate and fast numerical calculation whereas 

Hertzian compliance is calculated analytically with high accuracy for curved 

elastic body contact. The influence of different combinations of cutter tip radius, 

dedendum, number of teeth and gear transmission ratio on gear mesh 

compliance is investigated. By means of cubic Hermitian interpolation, the 

results of the hybrid analytical-numerical method have been mapped to a multi-

parametric compliance function of the instantaneous position of two mating 

gears along the line of action and a large array of design parameters. The 

obtained compliance functions can be applied directly to gear dynamical 

simulations, parametric design and optimisation algorithms etc. The same 
functions can also provide powerful inverse solutions, which can be used for 

direct compliance-based gear design, i.e. to obtain optimised low-vibration 

powertrains.  

 

8.1. INTRODUCTION 

Achieving difficult goals in the design of powertrains regarding performance and 

reliability is more and more dependent on advanced computational models. The 

heuristic and often iterative nature of the design process means that accurate 
models must be sought that at the same time reduce complexity and 

computational cost and increase insight and versatility: i.e. non-dimensional 
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analytical formulation and multi-scale modelling (local meshing geometry/ 

physics versus drivetrain-scale system response) lend themselves well to this 

approach. These methods increase the capability of innovative non-standard 

(out-of-the-box) solutions in different aspects of the design. For strong, compact, 

efficient, vibration-free gears, the key challenge is to overcome the uncertainties 

imposed by a host of (chaotic and semi-chaotic) errors, external excitations and 

self-excitations. Ultimately, the sensitivity to each of these factors must be 

understood well, modelled, and then beyond-the-state-of-the-art techno-

economically appealing design solutions, guidelines and architectures must be 
formulated to minimise or eliminate such sensitivities.  

As an example, low-vibration gear systems can be obtained in principle by 

tailoring the stiffness of the meshing gears [1-8], which requires methods for 

calculating compliance that are design- and iteration-friendly. The main problem 

for the design of high-accuracy low-vibration gear drives is the prediction of 

positional accuracy and vibration.  

In the context of studying gear vibration, the main excitation happens during the 

transfer of the load from the driving gear to the driven gear across a varying 

number of simultaneous moving tooth contacts, each characterised by a 

different instantaneous stiffness. The resulting changes in stiffness and load 
sharing as well as external excitations can and do cause the direction and 

amplitude of the contact forces to change rapidly, producing vibration. While 

little can be done to alter this fundamental phenomenon, the following can be 

observed: 
• Gear configuration design can be employed to simultaneously consider the 

effects of a host of parameters of the gear and drivetrain topology and geometry 

with the purpose of achieving desired low-vibration responses predictably and 

robustly. Of course, such configuration design requires obtaining a model for 

the prediction of gear vibration and an investigation of gear dynamics is needed. 

• Low-vibration gear systems have to be controlled by tailoring the stiffness of the 

meshing gears. Modelling of the gear mesh compliance at multiple positions 

during a mesh cycle is essential to calculate the total gear stiffness, where 

typically more than one pairs of teeth are in mesh. 

• Ultimately, a fast and accurate model for instantaneous mesh compliance is 

needed, that lends itself well to multiple calculations and iterations. 

Investigations of gear mesh compliance and its effects on gear performance have 

been carried out over many years since the 1940’s [9-29]. The basic premise is 

that two mating gears contact in the direction of the line of action and the 

displacements of the teeth happen along the line of action. The definition of 

tooth compliance is the ratio of the elastic deflection to the transmitted load- as 

such, compliance is the inverse of stiffness. 

The computational modelling of gear mesh compliance is an essential requisite 

in any investigation pertaining to gear dynamics [30-34], also in consideration or 

errors and profile modifications [35-39] and is also important for quasi-static 
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calculations such as employed when dimensioning profile modifications [40-42]. 

Generally, stiffness tailoring for mating gears to limit the amount of vibration in 

the gear system can be important in the design of low-vibration drivetrains. 

Investigations of the magnitudes of elastic tooth deformations and also their 

effects on gear performance have been done by many researchers [11-27, 43]. 

There are some advantages in studying of the elastic deformations on a gear 

tooth such as I) measuring the total compliance of a gear pair in high precision 

control systems, II) calculation of the gear mesh compliance for dynamic analyses 

of compact gear drives and III) optimisation of the gear profile modification in 
heavily loaded compact gears, i.e. wind turbine gearing [1]. 

Whatever its application, however, it is obvious that the calculation of the mesh 

compliance should be both accurate and fast enough to fit into the 

computational resource constraints of a real-time dynamical simulation or an 

iterative optimisation algorithm. This is generally not the case with presently 

known models. 

Computational models for compliance can generally be classified as either 

analytical, empirical and numerical (typically FEA-based). The analytical [15-21] 

and empirical models [22-27], although fast, present various shortcomings in 

terms of their calculation accuracy and (in)ability to analyse (optimised) non-
standard tooth forms, whereas the numerical FEA-based models [28-29, 44-45] 

are typically intensive in terms of computational resources, slow, and impossible 

to apply efficiently during a dynamical simulation or a (multi-) parametric design 

optimisation process. Typical shortcomings of these models are as follows: 
• (Quasi-) analytical/ empirical models: Use of simplified analytical or empirical 

quasi-analytical models for bending and foundational deflections produces 

results of limited accuracy, which are often only valid for certain standard 

geometries and cannot be generalised to new non-standard tooth forms [11-

18,23-27]. 

• Numerical (FEA) models: Use of fine and complex finite element meshes, often 

also including contact elements, to account for generalised geometries, 

requiring large model preparation and computational time overheads [1,19-22]. 

These are too cumbersome to use effectively in a design and optimisation 

process. 

To model compliance, two mating gears are considered to contact in the 

direction of the line of action, the displacements of the teeth taking place along 

said line of action. The compliance of one tooth (or the contacting tooth pair) is 

calculated from deflections due to bending- (Bending compliance), foundation- 

(Foundation compliance) and contact deflection (Hertzian compliance) [18, 25]. 

By dividing the deflection by the transmitted load, a compliance coefficient can 

be obtained as the inverse of stiffness. 
The work presented in this chapter comprises two parts. Firstly, the development 

of an improved model for the instantaneous calculation of gear mesh 

compliance, which alleviates the shortcomings of previous models. Building on a 
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fundamental understanding of the tooth contact mechanics problem and making 

innovative use of Saint Venant’s principle to combine different sub-models 

effectively, it features a hybrid analytical-numerical approach that combines fast 

computation with high accuracy. The model is intended for use in 1) evaluating 

the compliance of mating gears in high precision control systems, 2) calculating 

the gear mesh stiffness for dynamic analyses of compact gear systems, 3) 

optimising the profile modification in heavily loaded compact gears, for instance 

wind turbine gearing, and 4) recognising the performance of new type of gears 

as i.e. non-metallic gears. The overall deflection is calculated as the sum of 
bending deflection (bending compliance), foundation deflection (foundation 

compliance) and contact deflection (Hertzian compliance) as shown in Figure 9.1. 

Secondly, to further increase the speed of subsequent computations, the 

solutions are mapped via interpolation to multi-parametric analytical compliance 

functions using cubic Hermitian polynomials. 

With regard to mapping the compliance computation results to analytical 

functions, a comprehensive look into the literature [1, 14, 16, 21, 27] already 

suggests that the relation between the gear mesh compliance and the position 

of two mating teeth along the line of action should be approximated well by third 

degree polynomial functions. Obviously using higher degree for the polynomial 
function could in theory provide for a more accurate function, but at the cost of 

calculation complexity- and possibly physicality: Polynomial interpolation is –

after all– applied to determine possible values for an indicated function 

expressed at a distinct set of points. The geometric abilities of the interpolations 

are based on how well the interpolated curve replicates the inherent shape 

participated by means of the points [27]. For a truthful and perfect interpolation, 

special characters of the points i.e. concavity, convexity and monotonicity have 

to be considered. These mathematical properties can define a good fit in a 

geometric point of view. Finding a best fit curve is kind of an experimental choice 

based on human judgment [46]. 
A key consideration has been that the details or artefacts that cannot be 

established from the points must not be introduced. To obtain these 

specifications for an interpolated function, the function has to be established 

considering both geometric and algebraic properties [47, 48]. 

In this chapter, different gear design parameters are considered, including the 

number of teeth, contact ratio for different combinations of standard and non-

standard tooth proportions (addendum, dedendum, root fillet/ cutter tip radius, 

thickness). The non-linear effect of varying transmitted load is also considered. 

Bending, foundation and Hertzian compliance are modelled using a hybrid 

analytical-numerical method, which achieves results of comparable accuracy to 
a fine-mesh-based numerical method using contact elements but at a speed 

comparable to simplified mesh finite elements. 
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Regarding the choice of spline interpolation method, Cubic Hermitian 

Interpolation (CHI) and its application to shape control was considered [48] 

among other alternatives. CHI is applied to solve a number of different test 

problems with two discrete points. The degree of convergence for the cubic 

Hermitian function is controlled by the order of accuracy of the expansion [46]. 

In the case of the present work, early comparative tests with other cubic 

interpolation forms showed that the Hermitian parameterisation produced a 

much higher physicality of the results, allowing meaningful regressions to be 

made connecting the polynomial coefficients to the gear design parameters. This 
has yielded a robust and powerful inverse solution for the compliance-based 

simulation and design of gear drives. 

 

 
Figure 9.1: The relations between compliance of a gear pair and low-vibration system 

pertinent to the design of high-tech powertrains 

 

9.2. NON-DIMENSIONALISATION OF GEOMETRY 
Non-dimensionalisation is used in this study to provide greater generality to the results, 

without loss of accuracy [28-29, 44-45]. In this work geometrical features are non-

dimensionalised in terms of the module. Hence any given feature 
 can be related to its 

non-dimensional correspondent 
∗	by equation (2.1) as:  

 
 = 
∗  
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9.3. GENERALISED NON-DIMENSIONAL MODELLING OF GEAR MESH 

COMPLIANCE 
The direction of displacements and of contact of two mating gears is considered 

along the line of action. As per standard practice, we define tooth compliance as 

the ratio of the elastic deflection to the transmitted load. Using the principle of 

superposition, the overall deflection is calculated as the sum of bending 

deflection (bending compliance), foundation deflection (foundation compliance) 

and contact deflection (Hertzian compliance). 

The compliance coefficient is defined herewith by the following relationship: 

 $ = } ∗ 
(9.1) 

 
Where $ is non-dimensional tooth compliance, } is normal tooth deflection 

along the line of action,   is the module and  ∗is non-dimensionalised force 

which defined as 

  ∗ =  . �. Ó 
(9.2) 

 

Where �  is face width of the gear, Ó is modulus of elasticity and   is normal 

tooth load along the line of action. The total tooth pair compliance $  can be 

found as the summation of ‘partial’ compliances, thus: 

 $ = ($	I + $#I) + $¡ + ($	5 + $#5) (9.3) 
 

Where $	, $# and $¡ defined as bending- , foundation- and Hertzian compliance 

respectively. Subscript 1 and 2 related to the gear number 1 and the gear number 

2, respectively. 

We discuss the calculation of these components as follows. 

9.3.1. Bending-Foundational Compliance 

Traditionally for the calculation of bending defection, a gear tooth is considered 

as a non-uniform cantilever beam with an effective length	Ôt	[13-14], based on 

a rigid foundation, as shown in Figure 9.2. 



174 
 

 
Figure 9.2: Modelling of a gear tooth as a non-uniform cantilever beam on a rigid 

foundation 

 

Considering bending deflection }	 and external load  ∗, the bending compliance 

($	), will be introduced as: 

 $	 = }	 ∗ (9.4) 

 
Due to fillet geometry and the flexibility of the tooth support material, we 

consider next that the foundation of the tooth is actually not rigid and will 

deform, this time with the tooth acting as a rotating rigid body (Figure 9.3). The 

foundation deflection is generally a function of fillet geometry, load position and 

direction. The analytical calculation of the foundation deflection of the gear 

tooth is based on the theory of Muskhelishvili [26] which applied to circular 

elastic rings [13-14], but in principle any method applying appropriate boundary 

conditions will be appropriate. The formulation of foundation compliance ($#), 

as calculated from the foundation deflection (}#) and external load  ∗is: 

 $# = }# ∗	 (9.5) 

 

) 
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Figure 9.3: Deflection of tooth due to foundation flexibility 

9.3.1.1. Calculation approach 

For this work, the finite element method is applied for the calculation of bending 

and foundation compliance. Therefore, the bending and foundation compliance 

can be combined as follows: 
 $	Q# = $	 + $# (9.6) 

 

And the total compliance as mentioned in equation (8.5) can be rewritten as: 

 $ = $(	Q#)I + $¡ + $(	Q#)5 (9.7) 

 
The conceptual unification of bending and foundational compliance greatly 

simplifies the problem of identifying the boundary conditions, as making an 

accurate distinction between the tooth and its foundation would be largely 

arbitrary. It should be noted that, while this unification is typical for finite-

element-based models, the Hertzian contact phenomenon is not included, 

marking a departure from all previous models. 

9.3.1.2. Definition of (discrete) meshing points 

In this research, the gear mesh compliance is calculated at several discrete 

points. Point 1 (Figure 9.4) is the initial point on the working line of action, where 

) 
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the tip point of gear 1 is touching the lowest working point of the profile of gear 

2, which must lie above its form circle, as it has been introduced in [28]. The pitch 

point is represented here as point 4. The distance from the initial point (point 1) 

to the pith point (point 4) is divided by two for creation of point 3. With the same 

process, point 2 as a middle point between point 1 and point 3 will be created. 

The interval from point 4 to point 1 is assigned a positive position parameter (+ξ). 

With the same derivation method, points 5, 6, and 7 will be developed (Figure 

9.4). 

 

 
Figure 9.4: Developing isolated points on the line of action for bending & foundation 

compliance calculation 

 

Unlike in all prior finite-element-based models, in this study the load is not 

applied at the contact point for calculation of bending & foundational deflection. 

The reason is that application of a point load at the contact surface of a tooth 

leads to an unrealistic local deformation/ singularity of the mesh (false 

penetration) and a corresponding error in predicting the tooth deflection. This 

penetration, as created by a normal force, can be seen in the finite element 

model of Figure 9.5. This error should obviously be avoided in the calculations. 
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Figure 9.5: Penetration at the contact point of gear surface in finite element analysis 

software 

 

In this chapter we eliminate this ‘false penetration’ error by applying an 

equivalent normal load to the loaded gear tooth at a location sufficiently far from 

the actual contact point, so as to separate the local singularity at the point of 
equivalent load application from the overall deflection field around the actual 

contact point due to the bending and foundation compliance. Defining such an 

equivalent load is possible by virtue of Saint Venant’s principle [49-54]. To obtain 

said equivalent load, we offset the normal tooth load along its line of action until 

the intersection of the line of action with the tooth centre axis. It is obvious from 

this geometrical construction that both the force and the bending moment 

applied to the tooth are maintained the same, which is sufficient for the required 

load equivalence. With this approach a singularity now appears near the centre 

of the tooth mesh, but this has been confirmed to have negligible influence on 

the overall simulated deflection and stress field, which is also proven in a 
subsequent sensitivity analysis in this chapter. This is illustrated in Figure 9.6. 

As an illustration, Figure 9.6 shows the application of Saint-Venant’s principle for 

a gear tooth. In case (a) the tooth replaces with a cantilever beam which is loaded 

at the contact point (point Õ). By means of Saint-Venant’s principle, the 

deflection at point Õ (Figure 9.6(b)) will be calculated at point Õ%   (Figure 9.6(c)). 
The calculations will be on the correspondent point of the centre line of the gear 

tooth (Figure 9.7). 

 

 
Figure 9.6: Implementation of Saint-Venant’s principle for a gear tooth in order to 

calculate bending & foundational compliance 
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ANSYS is used for the purposes of this investigation to calculate bending & 

foundation compliance. This software simulates the loading of different gear 

pairs with consistent boundary and loading conditions, namely point loading at 

isolated contact points (seven points in Figure 9.4) along the line of action. The 

iso-parametric element PLANE82 is used for modelling the gear tooth. This 

element provides accurate results for mixed (quadrilateral-triangular) automatic 

meshes and can tolerate shapes well-suited to model curved boundaries. This is 

illustrated in Figure 9.7. 

 

 
Figure 9.7: Calculation of bending & foundational compliance on the correspondent 

point in the centre line of gear tooth using finite element methods for two different 

contact positions 

9.3.2. Hertzian compliance 

Hertz’s theory of elastic contact is utilised to account for local compressive 
deformation in the area of tooth contact. Though an approximation, the contact 

of two mating teeth can be taken to be equivalent to two cylinders having the 

same radius of curvature at the contact point. The radius of curvature changes 

continuously in case of an involute curve, and it changes sharply in the vicinity of 

the base circle.  

In this work the accurate Roark’s Formulas [27] for strain due to pressure on or 

between elastic bodies, will be used to find the Hertzian deflection between two 

teeth (Figure 9.8).  
 



179 
 

 

Figure 9.8: Contact of tow mating teeth 

 

Roark's handbook gives a summary of deflection formulas that are based on a 
Hertz pressure distribution. For the case of two cylinders pressed into contact, 

the distance between the cylinders is reduced by: 

 

}¡ = 20 �1 (1 - Ö5)'Ó 323 + ln 16ØIØ5Ô5 4 

(9.8) 

 

Where  �⁄ 	is load per unit length,	Ö is Poisson's ratio, Ó is Young's modulus, ØI,	Ø5 are the radius of curvature of the tooth of gear number 1 and 2, 

respectively, at the point of contact and Ô is total width of rectangular contact 

area for Hertzian deflection. 
The total contact width Ô for the case of two gear teeth in contact with 	Ö = 0.3  

is given by 
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Ô = 2.152 [Ù�Ó  

(9.9) 

 

Where [Ù = 2ØIØ5ØI + Ø5 
(9.10) 

 

9.3.2.1. Non-dimensionalisation in Hertzian compliance 

In this study all geometrical features will be non-dimensionalised in terms of the 

module. 
 Ø∗ = Ø (9.11) 

[Ù∗ = [Ù = 2ØI∗Ø5∗ØI∗ + Ø5∗ (9.12) 

Ô∗ = Ô = 2.158 ∗[Ù∗ (9.13) 

}¡∗ = }¡  
(9.14) 

 

With this respect, the non-dimensional Hertzian deflection }¡∗ can be expressed 
as: 

 }¡∗ = 2 ∗' (1 - Ö5) 323 + ln 16ØI∗Ø5∗(2.15)5 ∗[Ù∗4 
(9.15) 

 

Substituting [Ù∗ from equation (9.12) into equation (9.15): 

 

}¡∗ = 2 ∗' (1 - Ö5) ©23 + ln 8(ØI∗ + Ø5∗)(2.15)5 ∗ « 
(9.16) 

 

Replacing  ØI∗,	Ø5∗ with following relations as shown in Figure 9.8: 

 

ØI∗ = ·�6F5 ∗ - �́ F5 ∗ - y 
(9.17) 

Ø5∗ = ·�6G5 ∗ - �́ G5 ∗ + y 
(9.18) 

 

In equation (9.16),	}¡∗ can be rewritten as: 
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}¡∗ = 2 ∗' (1 - Ö5)
Ú
ÛÜ23 + ln 8©·�6F5

∗ - �́ F5 ∗ +·�6G5 ∗ - �́ G5 ∗«(2.15)5 ∗ Ý
Þß 

(9.19) 

 

However: 
 ·�6F5 ∗ - �́ F5 ∗ = �́ I∗ tan()) (9.20) 

·�6G5 ∗ - �́ G5 ∗ = �́ 5∗ tan()) (9.21) 

 

Where �6 and �́   are pitch radius and base radius respectively. 

Eventually non-dimensional Hertzian deflection can be obtained as: 

 	
}¡∗ = 2 ∗' (1 - Ö5) ©23 + ln 8u�́ I∗ + �́ 5∗v 	tan())(2.15)5 ∗ « 

(9.22) 

 

This means that for a given load the Hertzian deflection only depends on 

pressure angle and base radius of gear number 1 and 2. 

Considering equation (9.22), the Hertzian compliance $¡ will be calculated as: 

 

$¡ = }#∗ ∗  
(9.23) 

9.4. MULTI-PARAMETRIC TOOTH MODELLING 

For the purposes of this study a set of relevant independent design parameters 

was considered (dependent ones are shown in parentheses), as shown in Table 

9.1. 

 
Table 9.1: Design parameters and ranges explored in the study 

 
 

For the generation of the tooth model, a computer programme was developed 

based on discrete representation of the tooth flank by infinitesimal involute 

segments [55].  
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9.5. RESULTS AND DISCUSSION 
The results obtained from the developed model are presented in the context of 

two different investigations. The first investigation (section 9.5.1.1) calculates 

the compliance function in terms of the meshing position along the path of 

contact (line of action) in consideration of the non-linear influence of the load 

magnitude on compliance due to Hertzian effects. The second one (section 

9.5.1.3) is the influence of gear geometry on compliance. The computed 

compliance values are presented in the form of parametric graphs for different 

numbers of teeth of the mating gear and tooth form design parameters, as a 

function of the position of a gear pair along the line of action. 

9.5.1. Model validation, sensitivity analysis and benchmarking 

A fully numerical calculation approach was also developed in the context of this 

work, similar to [56-57], to serve as a benchmark and help validate the developed 

hybrid model. 

The analysis is carried out with the help of ANSYS WORKBENCH 14.5 [58] for the 

calculation of total compliance and the customized APDL (ANSYS Parametric 
Design Language) looping program for the calculation of Hertzian compliance.  

Two conditions have been assumed in advance for this study as: a) there is no 

sliding in the contact zone between the teeth (no shear force considered, this is 

reasonably accurate considering that shear forces are typically less than 1% of 

the normal contact forces); b) the contact surface is continuous and smooth. For 

these purposes ANSYS can solve the contact problem and not be limited by the 

above two conditions. A two-dimensional contact model was modelled. First, 

parameter definitions are given and then cloud points of the profile (involute-

trochoid) of the gear 1 and 2 are calculated (according to Table 9.1) to plot gear 

geometry. 

9.5.1.1. Modelling of Spur Gear  

In this study, total compliance is determined, during the transmission of 

dimensionless torque of 9.3969 by steel spur gears, using finite element analysis. 

The value of dimensionless torque is the multiplication of non-dimensionalised 

force ( ∗) along the line of action at pitch point and base radius ( �6 cos) ). The 
non-dimensionalised force in this particular example is 0.005. The spur gear is 

sketched and modelled in SolidWorks 2013. Gear 1 is non-standard gear with VI=20, ��I = 0.10, ��I = 1.10 and gear 2 is 20 teeth standard gear with ��5 =0.30, ��5 = 1.25. The value of �� is given as 0.5 for both gears. 

9.5.1.2. Finite Element Analysis  

In this section, finite element analysis is carried out in ANSYS Workbench 14.5 
[58] to determine the maximum deformation at the pitch point for gear 1 (Figure 

9.9).  
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Three contact models, namely node-to-node, node-to-surface, and surface-to-

surface [56], are supported by ANSYS. For different problem different types of 

model is used and in the present work the surface-to-surface model was 

selected. The finite element model recognises possible contact pairs by the 

presence of specific contact elements. These contact elements are then 

interpreted with the model exactly where they are being analysed for 

interaction. The contact conditions of gear teeth are sensitive to the geometry 

of the contacting surfaces, which means that the elements near the contact zone 

need to be refined. Accordingly, the mesh density was increased locally around 
the contact points, in order to achieve high accuracy while maintaining 

reasonably low computational requirements for the entire model. An eight 

nodded iso-parametric plane strain quadratic quadrilateral element was used to 

make the finite element models of the two mating teeth. The target surface was 

chosen in the tooth of gear 1 and meshed by 2D target element. The contact 

surface was chosen in the tooth of gear 2 with 2D contact element Conta175 and 

the target surface was chosen in the tooth of gear 2 with 2D contact element 

Targe169 [58]. 

 

 
Figure 9.9: Meshing of a gear pair, lower gear is non-standard gear NI=20, cWI=1.10, cLI=0.10, upper gear is standard gear N5=20, cW5=1.25, cL5=0.25 

8.5.1.3. Boundary Condition  

Fixed support is applied to the inner rim of the gear 1. Frictionless support is 

applied on the inner rim of gear 2 to allow its tangential rotation but restrict from 

radial translation. Non-dimensionalised moment of 9.3969 is applied on the 

inner rim of upper gear in counter clockwise direction as a driving torque (Figure 
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9.10). This is the moment which has been created by the unitary force at the 

pitch point. 

 

 
Figure 9.10: Boundary condition of two mating gears, lower gear is non-standard gear NI=20, cWI=1.10, cLI=0.10, upper gear is standard gear N5=20, cW5=1.25, cL5=0.25 

9.5.1.4. Deformation Analysis 

To find the maximum deflection at the pitch point, two different types of smart 

mesh density (coarse and fine) have been used in ANSYS, where ‘smart’ denotes 

that the mesh density is locally variable. The smart fine mesh is five times smaller 

than the smart coarse mesh (average area for a single element is 0.032439) at 

the contact area. The accuracy of solution increases with the number of elements 

taken. However, a higher number of elements will result in increased 

computational cost. Hence optimum number of divisions should be taken. The 

deflection result calculated with a coarse and a fine mesh is 0.04485 and 

0.04569, respectively (Figure 9.11). 
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Figure 9.11: Deformation pattern of a gear pair, lower gear is non-standard gear NI=20, cWI=1.10, cLI=0.10, upper gear is standard gear N5=20, cW5=1.25, cL5=0.25 

 

The total compliance for this case study, as per the hybrid model, is 9.21317. By 

means of equation (9.1) the total deflection will be 0.04606. The calculation time 

for coarse and adaptive fine mesh is 244s and 383s seconds, respectively. 
 

A comparison between the developed hybrid solution and the results of ANSYS 

for different mesh size is given in Table 9.2. By comparing these results, it can be 

found that the results of hybrid calculation and finite element analysis are 

comparable and validated. With using smart fine mesh, the error percentage will 

be decreased. Although by using coarse mesh the calculation time will be 1.57 

times faster, the result of using fine mesh is 3.3 times more accurate, using the 

hybrid calculation as the benchmark. 
 

Table 9.2: Comparison of total deflection obtained from hybrid calculation (equation 

(9.2)) and ANSYS WORKBENCH 14.5, (average area for a single element of adaptive 

coarse mesh: 0.162195, average area for a single element of adaptive fine mesh: 

0.032439 at contact area) 

Total deflection 

(hybrid) 

Total deflection (numerical) Deviation 

percentage (%) 

0.04606 

 

adaptive coarse mesh 

(calculation time:244 s) 

0.04485 2.63 

adaptive fine mesh 

(calculation time:383 s) 

0.04569 0.80 

 

The result of Table 9.2 shows the accuracy of the hybrid approach for the total 

compliance. To (indirectly) assess the accuracy of using Saint-Venant's Principle 

for the calculation of the combined bending and foundational compliance, the 

accuracy of the Hertzian compliance calculation is also investigated by finite 

element analysis, as follows. 
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In order to verify the FEM contact model procedure, contact between two 

cylinders was modelled [56]. Half-cylinders were meshed in the model as shown 

in Figure 9.12(a), the radius of each cylinder being Ø1 and Ø2 respectively, i.e. the 

local radii of curvature of the teeth of gear 1 and 2 at the point of contact. The 

smart fine meshed rectangular shaped elements were generated near contact 

areas as shown in Figure 9.12(a). The dimensions of the elements are based on 

the half-width of the contact area. The mesh near the contact zone needs to be 

highly refined because of the sensitivity of the geometry. Finer meshing generally 

leads to a more accurate solution, but requires more time and system resources. 

The normal contact deflection along the contact surface from the ANSYS solution 
is presented in Figure 9.12(b). This figure shows the distribution of the contact 

deflection along the contact area. 
 

 
Figure 9.12: (a) adaptive rectangular shaped elements generated near contact areas for 

two half equivalent cylinders of two mating teeth, (b) Normal contact deflection along 

the contact surface 

 

The comparison of maximum contact deflection, obtained from Hertz equation 

and ANSYS 14.5 is given in Table 9.3. With smart fine-meshed model the results 

are somewhat more accurate, considering the analytical calculation as the 

benchmark. 
 
Table 9.3: Comparison of accuracy between Hertzian equation (equation (9.22)) and 

ANSYS results (average area for a single element of adaptivecoarse mesh: 0.162195, 

average area for a single element of adaptive fine mesh: 0.032439 at contact area) 

Analytical deflection 

( Eq. (9.23)) 

Numerical deflection (ANSYS) Deviation percentage 

(%) (error) 

0.024437 

 

adaptive coarse mesh 0.024036 1.64 

adaptive fine mesh 0.024068 1.51 

 

Since the total compliance is the combination of bending and foundational 

compliance and Hertzian compliance, the bending and foundational compliance 
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accuracy of the hybrid model can be assessed indirectly from the information in 

Tables 9.2 and 9.3. The deviations of the full-finite-element model results (for 

coarse and fine meshes) from the hybrid model are summarised in Table 9.4. The 

results of Table 9.4 are the subtraction of the results of Table 9.3 from Table 9.2 

according to the following relation: 

 $	Q#Q¡ - $¡ = $	Q# (9.24) 
 

Table 9.4: Deviations of the full-finite-element model (using coarse and fine mesh) from 

the hybrid model 

Mesh 

size 

Total compliance 

deviation (%) 

Hertzian compliance 

deviation (%) 

Bending & foundational 

compliance deviation (%) 

coarse 2.63 1.64 3.74 

fine 0.8 1.51 0.0046 

 

As can be seen, the hybrid model is quite accurate and potentially more accurate 

than the finely-meshed full-finite-element model, given that the latter’s 

predictions converge to the former’s with increasing mesh density. Notably, the 
deviation in the calculation of bending & foundational compliance is practically 

zero for adaptive fine mesh, which further suggests that the use of Saint Venant’s 

principle in the hybrid model produces accurate results. 

9.5.2. Influence of Loads on Gear Mesh Compliance 

The calculated non-linear influence of load on deflection and therefore 
compliance is presented in Figures 9.13, 9.14, 9.15 and 9.16. 

In particular, the influence of load on non-dimensional compliance has been 

investigated for one pair of mating teeth considering different gear transmission 

ratios (^I5=0.5, 1, 2, 4), obtained by meshing a non-standard gear (gear 1, VI=20) 

with different amount of cutter tip radius (��= 0.545, 0.515, 0.485, 0.460) and 

dedendum coefficient (��=1.0917, 1.1417, 1.1917, 1.2333) and standard gear 

(gear 2, V5=10, 20, 40, 80) with �� = 0.30, �� = 1.25. Figures 9.13, 9.14, 9.15 

and 9.16 show that the amount of Hertzian compliance on point 7 as the final 

point along the line of action has the maximum compliance for a given normal 

load for different combinations of a gear pair and different amounts of cutter tip 
radius and dedendum coefficient. Furthermore the total gear mesh compliance 

is maximum, at point 7. With increasing the number of teeth for the mating gear, 

the total gear mesh compliance will be increased for point 7.  
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Figure 9.13: Influence of the position of different loads location on the tooth profile along 

the line of action for calculation of total gear mesh compliance, NI=20, N5=10, cW=1.0917, cL=0.545, (point number refers to Figure 9.4) 
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Figure 9.14: Influence of the position of different loads location on the tooth profile along 

the line of action for calculation of total gear mesh compliance, NI=20, N5=20, cW=1.1417, cL=0.515, (point number refers to Figure 9.4) 
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Figure 9.15: Influence of the position of different loads location on the tooth profile along 

the line of action for calculation of total gear mesh compliance, NI=20, N5=40, cW=1.1917, cL=0.485, (point number refers to Figure 9.4) 
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Figure 9.16: Influence of the position of different loads location on the tooth profile along 

the line of action for calculation of total gear mesh compliance, NI=20, N5=80, cW=1.2333, cL=0.460, (point number refers to Figure 9.4) 

 

Three different combinations for �� and �� for different respective combinations 

of a non-standard gear (VI=20) and a standard gear (V5= 10, 20, 40, 80) were 

used for the calculation of bending and foundational compliance. The pressure 

angle is 20o. The coefficient values were picked from across the parametric 
boundary (family of rising curves) of interference and non-interference area 

which has been investigated with using the corner contact-and- penetration 

method (Chapter 4), as presented in Figure 9.17. The area has an upper boundary 

at the tooth thickness limit line (straight descending line) [29]. The third point of 

each set is located exactly at the intersection of the parametric interference limit 

curve and the tooth thickness limit line. The (��, ��) coordinates of the selected 

points are overlaid on Figure 9.17. 

 

 
Figure 9.17: Interference limit curves in the three-parametric design space cWI,	cLI, N5 

(Chapter 4) 



194 
 

Figure 9.18 presents a comparison between different combinations of cutter tip 

radius and dedendum coefficient for different combinations of non-standard 

gear (VI=20) and standard gear (V5= 10, 20, 40, 80) for calculation of bending & 

foundational compliance.  

 

 
Figure 9.18: Comparison the amount of bending & foundational compliance between 

different combinations of cutter tip radius and dedendum coefficient for different 

combinations of gear pair, reference gear (NI=20) in non-standard gear, mating gear 

(N5= 10, 20, 40, 80) is standard gear with cL=0.30, cW=1.25 (point number refers to Figure 

9.4) 

 

According to the results, it can be found that: 
1) Points on the interference limit curves are characterised by the same 

compliance, thus the interference limit curves are the iso-compliance curves; 

2) With increasing the value of cutter tip radius and dedendum coefficient at the 

same time, the amount of bending & foundational compliance will be increased; 

and 

3) Initial contact point (point 1) on the line of action has minimum and final point 

(point 7) has maximum value of bending & foundational compliance. 
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While points 2-3 are well-anticipated from basic principles, point 1 is particularly 

non-obvious and interesting: Apparently all gear geometries on the same 

interference limit curve share a mechanical similarity. 

9.5.3. Influence of design parameters on gear mesh compliance 

In this section, the influences of the design parameters of gear geometry have 
been investigated. The reference gear (gear 1) is a non-standard gear and gear 2 

is a standard gear, both with 20 teeth. The value of non-dimensional force is 1 

( ∗ = 1). 

The total compliance of mating tooth pair is calculated through summation of 

the compliance curves corresponding to the one pair of mating teeth. 

As the results shown in Figures 9.19, 9.20, 9.21 and 9.22, it can be concluded 

that: 
1) With increasing the value of dedendum coefficient (��) with given value of 

cutter tip radius coefficient (��), the bending & foundation compliance will be 

increased and also the total gear mesh compliance of each point along the line 

of action will be increased; 

2) The bending & foundation compliance will be decreased with increasing the 

value of cutter tip radius coefficient, whereas the value of dedendum coefficient 

is given; and 

3) The total gear mesh compliance at pitch point (point 4 in Figure 9.4), where ξ=0, 

has a minimum value  compared to all other meshing positions. 

It can be concluded that the design parameters pertaining to the gear geometry 

have a significant influence on gear mesh compliance, which can now be taken 

systematically into account. 

This conclusion gives us this vision that the design parameters of gear geometry 

play a significant role in gear mesh compliance, which should be taken into 

account. 
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Figure 9.19: Influence of dedendum coefficient on gear mesh compliance (NI=20 

nonstandard, N5=20 standard, P∗=1) (point number refers to Figure 9.4) 
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Figure 9.20: Influence of cutter tip radius coefficient on gear mesh compliance (NI=20 

nonstandard, N5=20 standard, P∗=1) 
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Figure 9.21: Influence of cutter tip radius coefficient on gear mesh compliance (NI=20 

nonstandard, N5=40 standard, P∗=1) 
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Figure 9.22: Influence of cutter tip radius coefficient on gear mesh compliance (NI=20 

nonstandard, N5=80 standard, P∗=1) 

 

As Figures 9.19 , 9.20, 9.21 and 9.22 show, there are some clear relationships 
between the gear mesh compliance (C) function along the line of action, the 

position of two mating teeth (ξ), design parameters (�L, ��) for every combination 

of different numbers of teeth for a gear pair. The differences are more 

pronounced at the part of the path of contact corresponding to the positive ξ 

values; conversely, the compliance values converge at the extreme negative ξ 

values. Finding the analytical relations between these four parameters is 

complex and will be the subject of next step. 

The results allow us to use a function as the polynomial of degree 3 for 

compliance as follows: 

 $ = &nyn + &5y5 + &Iy + &* (9.25) 

 

where	&n,	&5,	&I	and	&* all must be a function of the design parameters which in 

this case are cutter tip radius coefficient (�L), dedendum coefficient (��) and 

number of teeth (V). 

To find the function of &	in equation (9.25) a well-known mathematical 

methodology called as cubic Hermitian interpolation [46-48, 59-62] on the unit 

interval will be used. 
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9.6. CUBIC HERMITIAN INTERPOLATION (CHI) 

Computational modelling involves the geometrical consideration of the solution 

domain [46-48, 59-62]. Linear interpolation functions are the most common 

choice considering in this respect because of obtainability and theoretical 

simplicity of tools for generation the functions. 

Polynomial interpolation is applied at a discrete set of points or a cloud point to 

drive feasible values for approximate functions. For interpolation the continuity 
properties of the data such as convexity, concavity and monotonicity have to be 

remained. Thus the interpolation has to be presented in terms of algebraic and 

geometric characters. 

Cubic Hermitian interpolation (CHI) presents a strong technique for solving two-

point boundary value problems. CHI is a strong and powerful tool for the design 

of curves. In recent years, cubic hermite spline, especially and its application to 

shape control have been considered [63-71]. 

The standard one-dimensional linear Lagrange basis functions are  

 qI(y) = 1 - y		; 			q5(y) = y			 
 

(9.26) 

Where y  is a local coordinate on the element (varying from 0 at local point 1 to 

1 at local point 2). The linear interpolation formula for this case is 

 â(y) = q¹(y)â¹	(, = 1, 2) ≡ qI(y)âI +	q5(y)â5 

 
(9.27) 

Where â¹ is the value of â	at point	,. Such an interpolation preserves continuity 

between elements, but fails to preserve slope continuity. Extension of this idea 

to more than one variable is afforded by using a local y variable in each direction. 

In contrast to this, the one-dimensional four Hermitian interpolation basis 

functions ΨåS 	in with local coordinate ξ ∈ [0,1]	are [60]: 
 æI*(y) = 2yn - 3y5 + 1 æII(y) = yn - 2y5 + y æ5*(y) = -2yn + 3y5 æ5I(y) = yn - y5 

(9.28) 

 

The Hermitian basic function of equation (9.28) is presented in Figure 9.23 
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Figure 9.23: Hermitian interpolation basis functions 

 

Where index , indicates to each of the two local points of a 1D element, and 

index ^ refers to the kind of continuity the basis is responsible for at that point. 

Interpolation of an arbitrary field â in a 1D element is given by a linear 

combination of these four basis functions as follows: 

 â(y) = æ¹Ð(y)â,Ð¹			(^ = 0, 1	; , = 1, 2) ≡ æI*(y)âI +æII(y) çâçy èI +æ5*(y)â5 +æ5I(y) çâçy è5 

 

(9.29) 

Equation (9.29) is an interpolation of â that preserves continuity of function and 

derivative across element boundaries. Here â,*¹  is the value of â at point ,	and â,I¹ = éêéë  at point ,, ,=1, 2.  

A further step is required to apply the cubic Hermitian interpolation in practice. 

The derivative 
éêéë ì¹ defined at point , is dependent upon the local element y-

coordinate. 

 The cubic Hermite polynomial í(,) has the interpolative properties: 

 í(0) = 
(,*),				í(1) = 
(,I) í́(0) = 
%(,*),				í́(1) = 
%(,I) 
 

(9.30) 

Where  í(0) is the start point of the curve, í́(0) is the tangent at the start point 
describing how the curve leaves point, í(1) is the endpoint of the curve  and 
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í́(1) is the tangent at the endpoint of the curve. Both the function values and 

their derivatives are known at the endpoints of the interval [x0, x 1]. This 

situation is illustrated in Figure 9.24. 

 

 
Figure 9.24: Cubic Hermite Polynomial 

 

On the unit interval (0,1), a starting point $* at y = 0	and an ending 

point $I  at y=1 with starting tangent $%*	at y=1 and ending tangent $%I at  y=1 , 
the polynomial can be defined by:  

 $(y) = (2yn - 3y5 + 1)$* + (yn - 2y5 + y)$%*+ (-2yn + 3y5)$I + (yn - y5)$%I 

(9.31) 

 

Where y ∈ [0,1]	and	$*,	$I,	$%* and $%I	are kinds of a polynomial function of 

degree 3 of �L,	�� and N with the following conditions: 

 $*|.î* = $*|¹P $%*ï.î* = $%*ï¹P $I|.îI = $I|¹F $%Iï.îI = $%Iï¹F 

 

(9.32) 

Where ,* and ,I are starting point and ending point on the contact line 
respectively, that for the different gear transmission ratio (^I5=1, 2, 3) are not 

the same. 

The results of Cubic Hermitian interpolation for the different gear transmission 

ratio are presented in Figures 9.25 and 9.26. In all combinations, the first gear is 

non-standard gear with 20 teeth, and the gear number 2 is a standard gear. 
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Figure 9.25 presents the sub-functions of each gear transmission ratio and Figure 

9.26 is a comparison of each one of the non-dimensionlised sub-function for the 

different gear transmission ratio (^I5=1,2,3). 

 

 
 

 
 

Figure 9.25: Results of Cubic Hermitian interpolation sub-functions of a pair of mating 

teeth (non-standard and standard gear) with different gear transmission ration (iI5=1, 2, 

3) 
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Figure 9.26: Comparison of each sub-function of non-dimensionlised compliance for 

different gear transmission ratio (iI5=1, 2, 3) using Cubic Hermitian interpolation 

 

With the result of CHI for the combinations between a non-standard gear with 

20 teeth and standard gear with 20 teeth, we will have: 

 $* = -2.422 - 0.3165�� + 1.045�� $%* = -3.404 + 0.4807�� - 1.443�� $%I = 4.753 + 0.6905�� - 1.996�� $%I = 5.281 + 0.7591�� - 2.223�� 

 

(9.33) 

For the total compliance function for combination between VI=20 (non-

standard) and V5=20 (standard) the equation (9.31) can be rewritten as follows: 
 $uy, �� , ��v = (2yn - 3y5 + 1)u-2.422 - 0.3165�� + 1.045��v+ (yn - 2y5 + y)u-3.404 + 0.4807�� - 1.443��v+ (-2yn + 3y5)u4.753 + 0.6905�� - 1.996��v+ (yn - y5)u5.281 + 0.7591�� - 2.223��v 

(9.34) 

 

And with the combination between VI=20 (non-standard) and V5=40 (standard) 

with CHS interpolation, we will have: 

 $* = -2.548 - 0.2204�� + 0.9962�� $%* = 3.658 + 0.3248�� - 1.427�� $I = 6.613 + 0.6094�� - 2.556�� $%I = 6.784 + 0.6144�� - 2.823�� 

(9.35) 

 

The compliance function of this combination (VI=20 non-standard and V5=40 

standard) whereas ^I5=2 will be as: 
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$uy, �� , ��v = (2yn - 3y5 + 1)u-2.548 - 0.2204�� + 0.9962��v+ (yn - 2y5 + y)u3.658 + 0.3248�� - 1.427��v+ (-2yn + 3y5)u6.613 + 0.6094�� - 2.556��v+ (yn - y5)u6.784 + 0.6144�� - 2.823��v 
(9.36) 

 

And for mating gear teeth with ̂ I5=3 (VI=20 non-standard, V5=80 standard), the 

sub-functions of compliance present as follows: 

 $* = -2.427 - 0.06702�� + 0.8043�� $%* = 3.521 + 0.09184�� - 1.173�� $I = 7.619 + 0.1875�� - 2.535�� $%I = 7.388 + 0.177�� - 2.463�� 

 

(9.37) 

And eventually the compliance as a function of y,	�� 	and ��	for this pair of gear 

can be rewritten as: 

 $uy, �� , ��v = (2yn - 3y5 + 1)u-2.427 - 0.06702�� + 0.8043��v+ (yn - 2y5 + y)u3.521 + 0.09184�� - 1.173��v+ (-2yn + 3y5)u7.619 + 0.1875�� - 2.535��v+ (yn - y5)u7.388 + 0.177�� - 2.463��v 
(9.38) 

 

It can be concluded that the different gear transmission ratio of different pairs 
of mating teeth have own gear mesh compliance function. 

Equations (9.34), (9.36) and (9.38), if solved inversely in terms of the design 

parameters, can provide a powerful inverse solution, which can be used for 

direct compliance-based design, i.e. to obtain optimised low-vibration 

powertrains.  

Clearly, the same approach can be extended to parametric models of three-

dimensional gear configurations, cracked teeth etc geometries admitting 

suitable parametric descriptions. 

 

9.7. CONCLUSION 

In the first part of  this work a versatile hybrid analytical-numerical method and 

non-dimensional modelling framework for accurately calculating gear mesh 

compliance of arbitrary (including non-standard) tooth geometries has been 

developed. Finite element analysis has been used for the calculation of bending 

& foundational compliance simultaneously. Saint-Venant's Principle has been 

applied to the numerical method to make the calculations accurate and fast, 

producing a practically zero (0.0046%) deviation compared to much more 

complex full-finite-element models using smart fine meshes. The calculation of 
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Hertzian compliance has been accomplished by means of a robust analytical 

method (Roark’s formula for strain due to pressure between elastic bodies) with 

computational speed than contact-element-based FEA of similar accuracy.  

Non-dimensional modelling has been utilised to obtain results for whole multi-

parametric gear families, including non-standard tooth proportions, lending 

wide generality to the results. The influences of different combination of the 

design parameters i.e. cutter tip radius, dedendum, number of teeth and gear 

transmission ratio for the calculation of gear mesh compliance have been 

studied. It has been found that the boundary between interference and non-
interference area for different combinations of a gear pair is the iso-compliance 

curve. The accurate calculation of gear mesh compliance can be used in different 

aspects of gear design i.e. dynamical simulation and optimisation, vibration 

reduction, and (quasi-static) load sharing, failure modelling and crack 

propagation studies. 

In the second part, the results of compliance functions have been formulised into 

a function by means of Cubic Hermitian interpolation. This is a hybrid analytical-

numerical function of i) cutter tip radius coefficient, ii) dedendum coefficient, iii) 

number of teeth and iv) the position of two mating gear teeth on the line of 

action. The obtained compliance functions can be applied directly to gear 
dynamical simulations, parametric design and optimisation algorithms etc. 
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10- Conclusion and 

recommendation 

 

Conclusion of Chapter 3 

This works presented unified multi-parametric model considering design 

relevant coupling, that in Chapter 3, parametric study of the combined effect of 

whole depth and cutter tip radius on tooth strength and compliance for the 20° 

involute gear system was presented.  Standard 20° spur gears are typically 

generated with a whole depth of 2.2 to 2.25 times the module. At the nominal 

centre distance, this leaves a radial clearance, which is in itself redundant from a 

functional point of view. However the intrinsic geometry of the cutting process 

always results in a non-involute root profile (the trochoid), which is even more 
pronounced in the case of using a rounded cutter tip in order to increase the 

strength of the cutting edge. Larger tip radii produce stronger tooth fillets, 

potentially increasing the bending strength, but reducing the involute part of the 

tooth. Thereby they increase the risk of interference with mating gears. Chapter 

3 performed a parametric investigation of the combined effect of the cutter 

radius and the dedendum on the clearance and the resulting tooth bending 

strength using analytical calculations, computerised generation and finite 

element simulations to determine the exact tooth geometry in search of stronger 

tooth forms. Non-dimensional modelling were used to reduce the number of 

independent parameters and obtain results applicable to entire gear families. 
 

Conclusion of Chapter 4 

In Chapter 4, multi-parametric investigation of interference in non-standard spur 

gear teeth were studied. Tooth interference, normally avoided altogether by 

adhering to standard design guidelines, becomes a concern when non-standard 

tooth forms with reduced radial clearance are employed, such as large-fillet 

short-dedendum gears. These tooth forms have shorter involute working flanks 

and excess material at the root, which can lead to non-conjugate corner contact 

and penetration at the tooth root. Existing models for interference are unable to 

predict this, or rely on calculation-intensive simulations, which make them 
impractical for design. This chapter proposed a general and fast mathematical 

model for calculating corner penetration at the tooth root, which is applicable to 

both analytically expressed and discretised tooth geometries. Based thereupon 

a non-dimensional multi-parametric investigation were carried out to quantify 

the effect of addendum and dedendum length, cuter tip radius, number of teeth 

and contact ratio on the interference risk. On this basis generalised guidelines 

were produced for the design of compact nonstandard large fillet short 
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dedendum 20° involute gears, including a method using standard cutters with 

indexing offsets. Prior analytical and numerical interference models in the 

literature were shown to be limited subcases of this model. 

 

Conclusion of Chapter 5 

In Chapter 5, the influence of centre distance deviation on the interference of a 

spur gear pair were performed. Gear design generally considers global geometry 

like tooth profile shape and centre distance, however, it needs also to consider 

the tolerances introduced in the manufacturing and assembly of two mating 
gears. The influence of these tolerances can be predicted better by 

understanding the behaviour of such manufacturing and assembly errors in 

conjunction with the gear geometry design process. To address this, in this 

chapter, the influence of the centre distance deviation and of the design 

parameters (i.e., cutter tip radius, dedendum, and tooth thickness) of the tooth 

profiles on interference were investigated. An analytical modelling framework 

for interference of a gear pair were developed, which were used to characterise 

a structurally well-defined gear meshing system. The tolerance zone were 

evaluated, with regard to cutter tip radius, dedendum, tooth thickness and 

centre distance deviation for a structurally well-defined gear mesh model. 
Different gear transmission ratio, contact ratio and a pressure angle of 20° have 

been considered. The results of this chapter can be used as a guideline for the 

tolerance design of a gear pair. 

 

Conclusion of Chapter 6 

In Chapter 6, design of profile-generated involute gears to maximise 

compactness and bending strength using non-standard equivalent rack 

dedendum and tip radius were studied. A methodology were developed to 

design non-standard involute gear geometries generated by cutting tools with 

standard and non-standard proportions, such as to produce compact tooth 
meshes by minimising the unused radial clearance, while at the same time 

avoiding detrimental corner contact at the tooth root. It was shown under which 

parametric combinations of dedendum and tip radius of the equivalent rack 

(cutter) the feasible design solutions for different tooth numbers and 

transmission ratios produce lower tensile bending stresses at the root, thus 

leading to optimal solutions for compact gears and allowing the identification of 

a global optimum. The analysis leads to a comprehensive mapping of the four-

parametric design space in consideration of interference and undercutting and 

the discovered optima were compared to the design solutions found in current 

ISO, AGMA, GOST and JIS standards. 
 

Conclusion of Chapter 7 
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In Chapter 7, the effect of cutter tip radius coefficient on the maximum root 

bending stress of spur involute gears with comparative evaluation of different 

standards were investigated. A parametric investigation of the cutter radius 

coefficient on the maximum bending stress at the root for spur involute gears 

were performed. The approach of this chapter were to apply unitary force at the 

highest point of single tooth contact (HPSTC) and then calculation the stress at 

the root using FEA. The results of FEM were compared with stresses calculated 

based on the ISO 6336-Method B. A comprehensive comparison with the popular 

existing gear standards such as DIN, AGAM, ANSI, JIS and GOST were performed. 
It was shown under which value of the cutter tip radius, the feasible design 

solutions for different tooth numbers and transmission ratios produce lower 

bending stresses at the root, consequently leading to design a stronger gear. The 

analysis leads to the analytical relation between the cutter tip radius and 

maximum bending stress at the root as a function of the number of teeth (for 

gear 1) and  gear transmission ratios, which can be used non-standard involute 

gears as well. 

 

Conclusion of Chapter 8 

In Chapter 8, a generalised non-dimensional multi-parametric involute spur gear 
design model considering manufacturability and geometrical compatibility were 

performed. An accurate generalised model for various modes of interference 

present as corner contact-and- penetration (CCP) model were presented in 

consideration of the module, pressure angle, tooth addendum, dedendum, 

cutter tip radius, and the numbers of teeth of a pair of mating gears. The effect 

of the same parameters together with tooth thickness on the manufacturability 

of the individual gear teeth were also modelled in terms of pointing and 

undercutting. The study of this chapter serves to provide a complete analytical 

overview of the multi-parametric design space and is suitable for the fast 

assessment of existing designs, for implicit or explicit (direct) gear design, and for 
design optimisation. The model can be used to identify and explore highly 

promising under-used areas of the parametric design space, which are currently 

of significant interest to i.e. the automotive and aerospace industries. 

 

Conclusion of Chapter 9 

In Chapter 9, a versatile analytical-numerical method for accurate calculation of 

instantaneous gear mesh compliance in real time were studied. Design of 

powertrains involving compact, high-power-density and/or high precision gear 

transmissions need precise computational modelling of dynamics and 

compliance, over numerous calculation-intensive iterations. Another main 
concern, with regard to low-vibration systems in particular, is how to tailor the 

whole stiffness of a gear pair for limiting the amount of vibration in the gear 

system. However, current analytical/empirical methods for calculating gear 
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compliance become inaccurate outside of the standard geometries for which 

they have been derived, whereas numerical, methods rely on complex finite 

element models, which are very resource intensive in order to be accurate. To 

address these shortcomings in this chapter, we develop a versatile hybrid 

analytical-numerical method for accurately calculating gear mesh compliance of 

arbitrary (including non-standard) tooth geometries. Finite element analysis 

were used for the calculation of bending & foundational compliance in 

conjunction with Saint-Venant's Principle, which has been used to allow accurate 

and fast numerical calculation whereas Hertzian compliance were calculated 
analytically with high accuracy for curved elastic body contact. The influence of 

different combinations of cutter tip radius, dedendum, number of teeth and gear 

transmission ratio on gear mesh compliance has been investigated.  Non-linear 

effects of load have also been considered. The results of this chapter are 

particularly well-suited for complex iterative tasks, such as dynamical simulation 

and gear design. 

In addition, engineering gear tooth compliance using an interpolated multi-

parametric cubic Hermitian function map based on a hybrid analytical-numerical 

contact mechanics model were presented in this chapter. A versatile non-

dimensional model were developed for the fast and accurate calculation of gear 
mesh compliance in any position along the path of contact. By means of cubic 

Hermitian interpolation, the results of the hybrid analytical-numerical method 

have been mapped to a multi-parametric compliance function of the 

instantaneous position of two mating gears along the line of action and a large 

array of design parameters. The obtained compliance functions can be applied 

directly to gear dynamical simulations, parametric design and optimisation 

algorithms etc. The same functions can also provide powerful inverse solutions, 

which can be used for direct compliance-based gear design, i.e. to obtain 

optimised low-vibration powertrains.  

 
Recommendations 

Given the main hypothesis that gear design can be optimized by manipulating 

interference and compliance to produce low-vibration gears allowing to do the 

dynamical simulation is essential to bring together the whole PhD as meaningful, 

defendable piece of research that has impact. The following opportunities have 

been found during the research for further research: 

 
• Programming via numerical analysis software to find directly the multi-

parametric design space for the fast assessment of existing designs, for implicit 

or explicit (direct) gear design, for extracting design guidelines, and for design 

optimisation. 

• Using the comprehensive and consistent meta-model to identify and explore 

highly promising under-used subspaces of the parametric design space, which 
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are currently of significant interest to i.e. the automotive and aerospace 

industries. 

• The accurate calculation of gear mesh compliance can be used in different 

aspects of gear design i.e. dynamical simulation and optimisation, vibration 

reduction, and (quasi-static) load sharing, failure modelling and crack 

propagation studies. 

• The obtained compliance functions can be applied directly to gear dynamical 

simulations, parametric design and optimisation algorithms etc. 

• Control of high precision compact compliant gear mechanisms using test-rig 

can be investigated. 

• The hybrid analytical-numerical formulation of the gear mesh compliance can 

be implemented into the vibration equations of the gear system to investigate 

the behaviour  the system dynamic  

• Multi-parametric design implementation of ultra-high pressure angle gear 

transmissions can be analysed. 

• Design of high-ratio high-efficiency high-power gear transmission topologies 

can be studied. 
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Nomenclature 
 

Symbol Definition Symbol Definition )* pressure angle ��(��Ð)	 base circle radius (of gear i) 

)I5 nominal centre distance �6(�6Ð)	 radius of pitch circle (of gear i) )�	 operating pressure angle �́ (�́ Ð)	 involute base radius (of gear i) � tooth width ��(��Ð) inside radius (of gear i) ��(��Ð) cutter tip radius coefficient (of gear i) ��(��Ð)	 outside radius ��(��Ð) dedendum coefficient (of gear i) �	 bending stress at tooth critical 

cross-section ��(��Ð)                                          addendum coefficient (of gear i) ³	 contact ratio ��(��Ð) tooth thickness coefficient (of gear i) <� 	 base pitch (ref. to involute) ��(��Ð) profile shift coefficient (of gear i) <a	 circular pitch 

��´(��´Ð)	 thickness coefficients at the base circles (of 

gear i) 

∗	 (as subscript) ref. to non-

dimensional gear 

�� form circle radius ^	 ref. to gear no. i 

<́ trochoid tip thickness of the generating 

rack tooth (sharp tooth) 

,	 addendum modification coefficient 

 ! normal force 	VÐ 	 number of teeth (of gear i) 

 module {Ð	 point on profile of gear i 

Xðxzzzzzzh vector from centre of gear i to intersection  

point  
XñXòzzzzzzzzh	 vector from the centre of gear i to 

the centre of gear j {I(|){I(|QI)zzzzzzzzzzzzzzzzzzzzzzzzzzh
 

vector from two consecutive points on the  

tooth profile geometry of the gear number one 
Xñ[òzzzzzzzzh	 vector from the centre of gear i to 

the tip point of gear j x intersection point of tooth profiles XÐ 	 centre of gear i 

<hS(�S) tooth flank vector equation of gear no. i yI	 unitary vector of {I(|){I(|QI)zzzzzzzzzzzzzzzzzzzzzzzzzzh
 

i1,2     gear transmission ratio y5	 unitary vector of  XI[5zzzzzzzzzzh 
X centre of reference coordinate system [Ð 	 single ref. point at the corner of 

gear no. i pÐ angular position (of gear i) q�Ð 	 angle corresponding to the tooth 

pitch thickness of gear i opÐ angular velocity   (of gear i)  	 tooth load along the line of action 

?I5 nominal centre distance Ôt	 effective length of gear tooth 

∆?I5 centre distance deviation }		 bending deflection 

} total deflection }# 	 foundation deflection 

� tooth width }¡ 	 Hertzian deflection Ó modulus of elasticity Ö	 Poisson's ratio 

$ total gear mesh compliance ØÐ 	 radii of curvature at the point of 

contact of gear i $	 bending compliance [Ù	 equivalent radius of curvature $# foundation compliance y	 length along the working line of 

action frim start point of contact $¡ Hertzian compliance Ô width of rectangular contact area 

for Hertzian deflection $	Q# bending & foundation compliance 	  
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