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Abstract
The delineation of the regions of interest (ROIs) plays an important role in the radiotherapy workflow.
The ROIs include the gross tumor volume (GTV), the clinical target volume (CTV), the planning target
volume (PTV) and organs at risk (OARs). There are however uncertainties related to the delineation
of the ROIs due to interobserver variability between radiation oncologists caused by e.g., a lack of
consensus on anatomic definition or a lack of contrast in medical images. The largest interobserver
variability has been found in esophageal cancers, head and neck cancers, and lung cancers. To pre
vent interobserver variability, autocontouring software can be used to delineate the ROIs. There are
however also uncertainties in the delineations made by autocontouring software.

The purpose of this study was to perform an accurate evaluation of the dosimetric effect of delineation
uncertainties. To do so, first a method to characterize the delineation uncertainties had to be found. The
delineations uncertainties were characterized with principal component analysis (PCA). By performing
PCA on a set of delineations, the eigenmodes which represent the variations between the delineations
can be found and new random delineations based on the eigenmodes can be formed. To determine
the dosimetric impact of the delineation uncertainties, two cases were investigated: (1) the dosimetric
impact of delineation uncertainties for a fixed dose distribution; and (2) the dosimetric impact of delin
eation uncertainties for a dose distribution reoptimized for every possible realization of a delineation.
For the fixed dose distribution, Polynomial Chaos Expansion (PCE) was used as a metamodel for the
dose volume histogram (DVH) of the target, and for the reoptimized dose distribution PCE served as a
metamodel for the total dose distribution and the DVHs of the target and other ROIs.

The delineation uncertainties of two data sets were analyzed: (1) 12 manual delineations of the GTV
of a hepatocellular carcinoma patient; and (2) 90 autocontours of the CTV and brainstem of a head
and neck patient. The variation of the manual delineations of the GTV could be accurately described
by 5 eigenmodes, while 45 eigenmodes were needed to describe the variations of the brainstem auto
contours. The delineation uncertainties in the autocontours of the CTV could not be characterized by
PCA due to the shape of the CTV.
The dosimetric effect of the delineation uncertainties of the manual delineations for a fixed dose distri
bution was investigated for both an intensity modulated proton therapy (IMPT) plan and a volumetric
modulated arc therapy (VMAT) plan for 10,000 random delineations of the CTV. For this patient the
CTV was equal to the GTV. In the VMAT plan, the CTV received sufficient dose for all delineations, but
the PTV was underdosed in 17.1% of the delineations. In the IMPT plan, the CTV was underdosed
in 69.0% of the delineations. This percentage of underdosed CTV delineations in the IMPT plan was
reduced when the plan was made robustly. The results for the fixed IMPT dose distribution should
however be verified with a more accurate PCE model.
A proof of principle for the PCE as a metamodel for the reoptimized dose distribution and DVHs of the
target and other ROIs was shown. However, a more accurate PCE model with a higher polynomial
order would be needed to analyze the effects of the reoptimization on the dose delivered to the ROIs.

It has been shown that the dosimetric impact of delineation uncertainties can be modelled using PCE.
This is a first step towards systematically and quantitatively taking into account delineation uncertainties
in radiotherapy treatment planning. In future research the analysis of the dosimetric impact of the un
certainties can e.g., be used in adaptive radiotherapy in which autocontouring is used. By knowing the
dosimetric impact of the uncertainty, treatment plans could be optimized such that a structure receives
its target dose with a certain probability or critical areas where the dosimetric impact of the delineation
uncertainties is large could be flagged such that these areas are checked before treatment.
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1
Introduction

In 2020, it is estimated that 19.3 million people worldwide were diagnosed with cancer and there were
nearly 10 million cancer deaths. The number of cancer cases is expected to rise to 28.4 million by
2040, which is a 47% increase [39].
The ways to treat cancer include chemotherapy, surgery and radiotherapy. Radiotherapy uses ionizing
radiation to kill the malignant cells in the body. The ionizing radiation can either come from a source
located inside the body, which is used in brachytherapy, or the ionizing radiation is delivered from
outside the body, which is done in external beam radiotherapy. The radiation delivered to the body
damages the DNA in the cells in the tumor, while sparing the surrounding tissue as much as possible.
The goal of radiotherapy is to cure the patient while minimizing the complications related to treatment.
The amount of radiation delivered to a volume is expressed in the unit Gray (Gy). There are two main
types of external beam radiation therapy, namely photon therapy and proton therapy.

1.1. Proton and Photon Therapy
Photon therapy utilizes high energy photons which are delivered by a linear accelerator. The photons
interact with the molecules in the body and deposit their energy. A photon beams first has a build
up region in the body, after which the energy deposited by the photons decreases exponentially with
increasing depth. To achieve a high dose to the tumor and limit the dose to surrounding tissue, it is
therefore necessary to use multiple photon beams from different directions.
One way of improving the dose distribution in the body within photon therapy is with intensitymodulated
radiation therapy (IMRT). In IMRT, the photon beams are shaped more conformally to the 3D shape
of the tumor using multileaf collimators and by varying the intensity of the photon beams. This way
the dose can be more focused on the tumor and the dose to surrounding tissue is thus reduced. One
type of IMRT is volumetricmodulated arc therapy (VMAT). VMAT uses multileaf collimators and pho
ton beam intensity modulation to shape the photon beam to the tumor while the gantry is continuously
turning around the patient. The advantage of VMAT compared to conventional IMRT is that the patient
can be treated with a wider range of beam angles in a shorter time [2].

Another form of external beam radiation therapy is proton therapy. In proton therapy, high energy
protons deposit energy in the body. In contrast to photons, protons deposit most of their energy in a
small region called the Bragg peak. The depth dose profiles of a photon beam and a proton beam
travelling through tissue are displayed in Figure 1.1a.
With the Bragg peak, proton therapy has the big advantage that the high dose region can be centered
around the tumor while the dose to surrounding tissue is low. This characteristic of proton therapy
makes it ideal for treating tumors in regions near organs at risk (OARs). The location of the Bragg
peak in the body can be adjusted by adjusting the proton beam energy. The depth range of the Bragg
peak can be widened by using multiple proton beams with different energies. By combining these pro
ton beams, a wider high dose region is created which is called the spread out Bragg peak (SOBP).
An illustration of the SOBP is displayed in Figure 1.1b. One type of proton therapy is intensity mod
ulated proton therapy (IMPT). IMPT uses proton pencil beams to deliver dose to spots in the tumor.

1
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(a) The depthdose profile of photons and protons
travelling through tissue. For photons, there is a short
buildup region where the deposited dose increases
as a function of the depth in the tissue, after which
the deposited dose falls exponentially as the photons
travel farther through the tissue. For protons, the dose
is mainly deposited in the Bragg peak. Figure repro
duced from [12].

(b) An illustration of the depthdose profile of the spread out
Bragg peak (SOBP) depicted by the solid line. The dashed lines
represent the depthdose profile of the individual proton beams,
which combined together result in the SOBP. As can be seen,
the SOBP resulting from combining the proton beams has a
larger region where a high dose is delivered than the Bragg
peak of the individual proton beams. Figure reproduced from
[8].

Figure 1.1: An illustration of (a) the depthdose profile of photons and protons in tissue and (b) the depth dose profile of the
spread out Bragg peak

These spots are located at different depths and lateral locations in the tumor. The proton pencil beam
originates from the accelerator and the energy, magnetic deflection and weights of the beam are con
tinuously altered to deliver the desired dose to the spots [21]. In Figure 1.2 an example of the difference
between the dose distribution of an IMPT and an IMRT treatment plan is shown. As can be seen, the
high dose region is located around the target in both the IMPT plan and the IMRT plan. However, in
the IMPT plan the low dose and middle high dose regions are also conformal to the target, while in the
VMAT plan the low dose and middle high dose regions are spread out over a larger region in the head.

Figure 1.2: In (A), the dose distribution of an IMPT plan to treat craniopharyngioma is displayed, and in (B) an IMRT plan for
the same treatment can be seen. The IMPT plan delivers less dose to the structures surrounding the tumor than the IMRT plan.

Furthermore, the integral dose to the brain tissue is decreased with IMPT. Figure reproduced from [31].



1.2. Radiotherapy Workflow 3

1.2. Radiotherapy Workflow
In Figure 1.3 the typical workflow of a radiotherapy is demonstrated. The workflow consists of a pre

Figure 1.3: The workflow of a typical radiotherapy treatment. Figure reproduced from [14].

radiotherapy workup where a tumor is diagnosed in the patient. Next the radiotherapy treatment is
prepared by obtaining a CTscan or an MRIscan of the patient and delineating the regions of interest
(ROIs) in the patient. The ROIs include the gross tumor volume (GTV), the clinical target volume (CTV),
the planning target volume (PTV) and the OARs. The GTV is the part of the tumor which is visible on
the planning image of the patient. Because there are also microscopic tumor extensions present which
cannot be seen on the planning image, a CTV is defined. The CTV is the GTV plus an additional margin
to account for the microscopic tumor extensions. To account for uncertainties in the setup of the patient
and other possible motions of the CTV, an additional margin is added to the CTV. The resulting volume
is the PTV. The PTV is however not suitable for IMPT treatments and also cannot be used for range
uncertainties in proton therapy. Therefore robust treatment planning is used in IMPT to ensure that the
prescribed dose is delivered to the CTV [43]. Finally, the OARs are organs near the CTV which could
be damaged by irradiation.
Next, a treatment plan is made whichmeets the planning aims of the treatment. To do so, the prescribed
dose to the ROIs is specified and an iterative process takes place to obtain the radiation beams which
achieve the prescribed dose to the ROIs. Subsequently, the radiotherapy treatment takes place where
the patient is treated with the optimized treatment plan.
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1.3. Delineation Uncertainties in Radiotherapy
In the radiotherapy workflow, the delineation of the ROIs is one of the most important steps, as it deter
mines which areas in the body will receive a high dose (GTV, CTV and PTV) and which regions in the
body should receive a dose which is as small as possible (OARs). If the delineation of the target volume
is not satisfactory, this can lead to an inadequate coverage of the target volume and consequently lead
to a lower dose delivered to the tumor than planned, which can lead to recurrences. Inconsistencies
in the target volume delineation can thus possibly have large implications. The variations in target
delineation can be due to a number of factors. One of the factors is interobserver variability, which
means that the delineations by different observers will be different. The interobserver variability can
be caused by e.g., a lack of consensus in the anatomic definition of the ROI or a lack of contrast in a
medical image. The interobserver variability has been found to depend on the tumor site. The largest
interobserver variabilities have been reported in esophageal cancers, head and neck cancers, and
lung cancers [35]. For example, in one study the ratio between the largest and smallest GTV volume
delineated of an esophageal tumor delineated by 48 radiation oncologists was found to be 6 [40]. In
Figure 1.4 the delineations by 11 radiation oncologists of the GTV on a CT of a patient with lung cancer
is shown. As can be seen, the differences between the delineations are very significant.
It has also been found that there is uncertainty in the delineation of OARs. Schikk et al. found that for
delineations of the bladder and prostate by 6 radiation oncologists the ratio of the largest delineated
volume to the smallest delineated volume was approximately 4 [32].

Figure 1.4: Delineations of 11 radiation oncologists of the GTV on a CT of a patient with lung cancer. Figure reproduced from
[38].

Another factor that causes variation in the target delineation can be intraobserver variability, thus that
the same observer will not delineate the exact same volume when presented with the same image at
different points in time. This has however been found to be a smaller source of uncertainty than inter
observer variability [22].
To decrease human errors, autocontouring software can be used to automatically delineate the ROIs.
There are several autocontouring techniques which are used in autocontouring software, including
atlasbased and deep learning techniques. However, these autocontouring techniques have also been
found to be have inherent delineation uncertainties [18].

With the advent of increasingly precise radiotherapy treatments, like IMPT and IMRT, which have a
high dose falloff at the edge of the delineations, uncertainties in the ROI delineation can have a large
impact on the dose delivered to the ROI. For instance, if a CTV delineated by a radiation oncologist is
smaller than the true CTV and the radiation oncologist’s CTV is used for the treatment planning, the
dose to the true CTV will probably be too low. It is therefore essential that the delineation uncertain
ties are well characterized and taken into account in radiotherapy treatment planning. Furthermore,
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the development of more automated radiotherapy techniques like adaptive radiotherapy rely on auto
contouring software to delineate the ROIs. To ensure a successful treatment, it is essential to know the
uncertainties related to the autocontouring software.

There have been several studies which have quantified the effect that delineation uncertainties have
on the dose delivered to the ROIs. For instance, in a study by Rasch et al. two radiation oncologists
delineated the CTVs on 9 CTs of patients with paranasal tumors and the PTVs were made by expanding
the CTVs by 5 mm. If a treatment plan was made on the PTV of one of the radiation oncologists, the
same treatment plan would always lead to an underdosage in the PTV delineated by the other radiation
oncologist [30]. In another study, Aliotta et al. generated many delineations by randomly perturbing
manual delineations of several OARs and determined whether the maximum allowed dose in the OARs
was exceeded in any of the randomly perturbed delineations. For the spinal cord and esophagus it was
found that the maximum dose could exceed the maximum allowed dose in several of the perturbed de
lineations [1].
The studies done so far on evaluating the dosimetric impact of delineation uncertainties either only
evaluate delineations on the same image by a small number of observers, which does not give an
accurate probability of whether a target dose is met, or the perturbations of one reference delineation
are made randomly, which possibly does not lead to realistic delineations. To accurately determine the
probability of reaching a target dose, a large number of realistic delineations would be needed.

1.4. Research Purpose
The purpose of this study is to perform an accurate evaluation of the dosimetric effect of delineation un
certainties. There are several goals related to this purpose. Firstly, the delineation uncertainty should
be characterized and a method to generate random delineations based on this characterization should
be made. Next, using the characterization of the uncertainties, it is investigated whether Polynomial
Chaos Expansion (PCE) can be used to model dosimetric quantities as a function of the characterized
uncertainties. It is researched whether PCE can serve as a metamodel for dosimetric quantities in the
case that the dose distribution stays fixed and in the case that the dose distribution is reoptimized for
each realization of a new delineation.

This project is performed at both the Medical Physics & Technology research group, which is part
of the Radiation Science & Technology department of the Applied Physics faculty of Delft University
of Technology, and the Radiotherapy Medical Physics and Technology research group of the Erasmus
Medical Center in Rotterdam.

1.5. Structure
The rest of the thesis follows the following structure. In Chapter 2 the theory relevant to this research
will be discussed, which starts with theory on the characterization of delineation uncertainties. Then
the idea behind principal component analysis and its applications to delineations will be set out, after
which autocontouring and treatment planning are discussed. Finally the theory of Polynomial Chaos
Expansion and its application to serve as a model for dosimetric quantities. In Chapter 3, the methods
and materials used in this thesis are set out, which starts with the description of the data used in the
research, followed by how the uncertainty models for both interobserver variability and autocontouring
are determined. Finally, it is shown how the polynomial chaos model in constructed and validated
as a metamodel for dosimetric quantities for both a fixed dose distribution and a reoptimized dose
distribution. In Chapter 4 the results are presented, which include the uncertainty quantification and
characterization of both manual delineations and autocontours. Then the PCE validation results are
shown, followed by the dosimetric effects that delineation uncertainties have. In Chapter 5 the results
are discussed, after which the conclusions of the research are given in Chapter 6.





2
Theory

In this chapter the theory used in this research is detailed. First the theory of delineation uncertainties is
discussed in Section 2.1, after which the idea behind principal component analysis is explained along
with its application to delineations in Section 2.2. Then the applications of autocontouring and one
autocontouring method is presented in Section 2.3, followed by a description of the steps in treatment
planning and the treatment planning system used in this thesis (iCycle) in Section 2.4. Finally, the
theory of Polynomial Chaos Expansion and its application to delineation uncertainties are presented in
Section 2.5.

2.1. Delineation Uncertainties
In this section the theory of delineation uncertainties is explained. First the different ways of char
acterizing delineation uncertainties is set out along with the methods to determine the goldstandard
delineation. Finally, conventional ways of compensating for delineation uncertainties are discussed.

2.1.1. Characterization of Delineation Uncertainties
It is difficult to compare different studies regarding delineation uncertainties as a variety of parameters is
used to compare delineations. These parameters can either describe the distribution of the delineations
or they describe the concordance, i.e. the agreement, between the delineations.
Parameters which can be used to describe the distribution of the delineations are e.g.,:

• Range (Lists the minimum delineated volume and the maximum delineated volume),

• Mean (goldstandard) delineation and (local) standard deviation,

• Ratio between largest and smallest delineated volume.

Parameters to describe the concordance between delineations are e.g.,:

• Dice similarity coefficient (2(𝐴∩𝐵)𝐴+𝐵 ),

• Jaccard conformity index (𝐴∩𝐵𝐴∪𝐵),

• Geographical miss index (𝐵−(𝐴∩𝐵)𝐵 ).

𝐴 ∩ 𝐵 denotes the intersection between 𝐴 and 𝐵 and 𝐴 ∪ 𝐵 denotes the union between 𝐴 and 𝐵. In
the concordance measures, 𝐴 is the delineation made by the radiation oncologist and 𝐵 is the gold
standard delineation. The goldstandard is discussed in Section 2.1.2.

The ratio between largest and smallest delineated volume is the easiest comparison measure to apply
as there is no need for a reference standard.
The dice similarity coefficient (DSC) is the most widely used standard to compare delineations. The

7
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DSC, similar to other concordance parameters, has the disadvantage that it is not sensitive to differ
ences at the edge of the delineations if these differences have a small impact on the volume of the
delineation. Measures like the standard deviation on the other hand are not sensitive to the volume of
the delineation.
The DSC and standard deviation both require a reference delineation from which they are measured.
This reference delineation is also known as the goldstandard delineation.

2.1.2. GoldStandard Delineation
When looking at different delineations on the same CT, the problem of the lack of a ground truth arises.
Lacking the ground truth, there are several methods to find a goldstandard delineation which replaces
the ground truth. The goldstandard delineation can be determined by:

• The delineation based on a consensus among multiple radiation oncologists.

• A delineation determined by the simultaneous truth and performance level estimation (STAPLE)
algorithm. The STAPLE algorithm determines a probabilistic estimate of the goldstandard delin
eation based on the optimal combination of all delineations [45].

• A probability map which indicates the probability that a certain voxel belongs to a delineated
contour. The goldstandard is then chosen as the contour which contains all voxels which were
inside the delineations of at least a given percentage of the delineations [30]. An example of the
use of a probability map to determine the goldstandard is shown in Figure 2.1.

A B

Figure 2.1: An example of the use of a probability map to form a goldstandard delineation. In (A), four delineations are
displayed along with the probabilities that a certain area is encompassed by a delineation. (B) displays the goldstandard

delineation which is obtained by setting a threshold of 50% on the probability map.

The use of a probability map to determine the goldstandard has some drawbacks. A threshold of
50%, which is a commonly used threshold, is possibly not reliable if there is a small number of delin
eations. The consensus between the delineations can also vary depending on the delineated organ.
This suggests that the consensus threshold should be dependent on the organ type and the number
of delineations [11].

2.1.3. Conventional Methods of Compensating for Delineation Uncertainties
Delineation uncertainties aremost often compensated for by adding amargin around the CTV according
to a margin recipe. In the margin recipe developed by van Herk et al. [44] the delineation uncertainty
is considered as a systematic error with a standard deviation of Σ⃗𝑑. Σ⃗𝑑 is a vector because the size of
the delineation uncertainty can be different in the 𝑥, 𝑦 and 𝑧 direction. Σ⃗𝑑 is then combined with the
standard deviation Σ⃗𝑠 of the setup error and the standard deviation Σ⃗𝑚 of the organ motion to form the
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combined standard deviation Σ⃗. The 𝑥component of Σ⃗ is given by:

Σ𝑥 = √Σ2𝑚,𝑥 + Σ2𝑠,𝑥 + Σ2𝑑,𝑥 , (2.1)

where Σ𝑚,𝑥, Σ𝑠,𝑥 and Σ𝑑,𝑥 are the 𝑥components of Σ⃗𝑚, Σ⃗𝑠 and Σ⃗𝑑, respectively. The 𝑦 and 𝑧components
are of a similar form. To ensure that 90% of the patient population receives at least a minimum dose
of 95% of the nominal dose to the CTV, the CTV is expanded by using a rolling ball algorithm, where
the shape of the ’ball’ is an ellipsoid of which the lengths of the principal semiaxes in the 𝑥, 𝑦 and 𝑧
direction are the 𝑥, 𝑦 and 𝑧 components of 2.5Σ⃗, respectively. [44].

The above method concerns the expansion of the CTV to the PTV. It thus does not concern delin
eation uncertainties of e.g., OARs. The uncertainties in the delineation of the OAR however also have
an important role in the treatment planning, as the goal is to minimize the dose delivered to the OARs.
Furthermore, the above method does not work for IMPT where no margins are used around the CTV.

2.2. Principal Component Analysis (PCA)
In this section the principle of Principal Component Analysis (PCA) will be explained, along with its
application to delineations.

2.2.1. Idea Behind PCA
Principal Component Analysis, from now on ’PCA’, is a tool used in data analysis that computes the so
called prinicipal components of a data matrixX. These principal components can be used to reduce the
dimensionality of X, while preserving as much of the data’s variability as possible. The representation
of the data in this lower dimension can show the structures which explain the dataset.
For PCA, the data matrixX should be arranged in such a way that all𝑁 rows contain the measurements
and the 𝑀 columns contain the variables, i.e., X is an 𝑁 ×𝑀 matrix.
The𝑁 principal components of the data are vectors in𝑁dimensional space along which the variance of
the projection of the data points on that principal component is maximized. Each principal component is
orthogonal to the other principal components and the first principal component has the largest projected
variance of the datapoints, the second principal component the second largest projected variance, and
so forth. In Figure 2.2 a 2D example is given which visualizes the two principal components which are
centered around the mean of the data points. It can be seen that the projected variance of the data is
largest on the first principal component and the second principal component is orthogonal to the first
principal component.
In Figure 2.3 an example of the use of PCA for dimensionality reduction for a 3D data set is demon
strated. In Figure 2.3a the 3D data set is visualized, with the corresponding principal components in
Figure 2.3b. By projecting the data points onto the first two principal components, the dimension of the
data set can be reduced from three to two dimensions, as can be seen in Figure 2.3c.

2.2.2. PCA Applied to Delineations
To apply PCA to delineations, an adaptation of the pointdistribution model [7] is used. In a point dis
tribution model, an object is represented by points on its surface. PCA is used to analyze the statistics
of the movement of these points across the different delineations, resulting in the average position of
the points on the surface and the main modes of variation of the points. These modes of variation are
called eigenmodes, and are the same as the principal components of the data. Therefore, the principal
components will from now on be referred to as eigenmodes in the rest of the thesis. In this section the
application of the pointdistribution model to delineations is shown.

Parameterization of delineation geometries
Given 𝑁 delineations on the same CT scan, the geometry of the 𝑖th delineation (𝑖 = 1, ..., 𝑁) is parame
terized by the surface shape vector �⃗�𝑖, which is given by:

�⃗�𝑖 = (𝑥1(𝑖), ..., 𝑥𝑀(𝑖)), (2.2)
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Figure 2.2: Example of principal component analysis applied to a 2D data set. It can be seen that the projected variance of the
data is largest on the first principal component and the second principal component is orthogonal to the first principal

component. Figure adapted from [37].

Figure 2.3: Example of principal component analysis to reduce the dimensionality of a 3D data set. In (a) the data set is
visualized and the corresponding principal components of the data are visualized in (b). (c) shows the projection of the data set

onto the first two principal components. Figure reproduced from [29].

where 𝑥𝑗 (𝑗 = 1, ..., 𝑀) denotes the distance from the center of mass of the goldstandard delineation to
the 𝑗th surface point. The surface points for each delineation are obtained by determining the intersec
tion point between the surface of the delineation and a line which originates in the center of mass of the
goldstandard delineation and travels in the direction of polar angle 𝜃 (𝜃 = 0∘, 0.1∘, ..., 179.9∘, 180∘) and
azimuthal angle 𝜓 (𝜓 = 0∘, 1∘, ..., 359∘, 360∘). When there is a 0.1 degree increment in the polar angle
and a 1 degree increment in azimuthal angle between measurements of the surface point distance, the
length 𝑀 of each surface shape vector �⃗�𝑖 is 1801×361 = 650161 elements.
There exists the possibility that a line which originates in the center of mass of the goldstandard contour
intersects the delineation surface multiple times. This can for instance happen when the delineation
forms a concave 3D surface. In this case, the first intersection point of the line with the 3D surface is
taken as the input for the surface shape vector �⃗�𝑖. This will result in points on the 3D surface not being
characterized by �⃗�𝑖. It is therefore important to validate that the surface shape vectors �⃗�𝑖 characterize
the 3D delineation surface well enough. An example of a 2D concave surface with multiple intersec
tions is shown in Figure 2.4.

Decomposition of delineation geometries into eigenmodes
To perform PCA on the parameterized delineation geometries, it is assumed that the surface shape
vectors 𝑝𝑖 are correlated and the data is thus suitable for dimensionality reduction. This is a safe as
sumption to make, as delineations are located around the same position and will mainly only vary in
shape. This variability in shape can be described by much less than𝑀 dimensions of the surface shape
vector 𝑝𝑖. Using PCA, the correlated deformations of the delineations are found and the corresponding
eigenmodes which describe the deformations are found. To perform PCA, the data stored in the sur
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Figure 2.4: Example of multiple intersections on a 2D concave surface. The line originating from the center of mass crosses the
border of the surface 3 times. In this case only the first intersection point would be used as input for the surface shape vector.

face shape vectors 𝑝𝑖 needs to be altered.
From the surface shape vectors, a mean surface shape vector �⃗� is made. The mean shape vector is
given by:

�⃗� = 1
𝑁

𝑁

∑
𝑖=1
�⃗�𝑖 (2.3)

The mean surface shape vector �⃗� is subtracted from the surface shape vectors for each delineation
and then stacked into one surface shape matrix P as follows:

P = (
�⃗�1 − �⃗�
�⃗�2 − �⃗�
⋮

�⃗�𝑁 − �⃗�
) ∈ ℝ𝑁×𝑀 (2.4)

The goal of principal component analysis is to find a collection of orthogonal eigenmodes �⃗� such that the
variance of the dataset projected onto the direction of each eigenmode �⃗�𝑙 (𝑙 = 1, ..., 𝐿total) is maximized,
where 𝐿total is the total number of eigenmodes. These eigenmodes are equal to the eigenvectors of the
covariance matrix C, which is defined as:

C = 1
𝑁 − 1P

𝑇P ∈ ℝ𝑀×𝑀 (2.5)

The covariance matrix represents the geometric variability between the delineations, and the eigen
modes describe the deformation characteristics of the ensemble of delineations, under the assumption
of a Gaussian distribution. The eigenvalues corresponding to the eigenmodes rank the eigenmodes
with respect to how much they represent the variability between the delineations. The eigenmodes with
the largest eigenvalues represent the eigenmodes which span the space where the largest variations
between the delineations occur.
A new space is spanned by the eigenmodes in which the spread of data along the direction of each
eigenmode �⃗�𝑙 turns into a 1D Gaussian distribution. The variance 𝜎2𝑙 of the data projected on eigen
mode �⃗�𝑙 is given by:

𝜎2𝑙 = 𝜆𝑙 , (2.6)

where 𝜆𝑙 is the eigenvalue corresponding to eigenmode �⃗�𝑙

Singular Value Decomposition
The eigenmodes are equal to the eigenvectors of the covariance matrix C, but it is unnecessary to
determine all eigenvectors because there are only 𝑁 nonzero eigenvalues, as the covariance matrix is
calculated from 𝑁 surface shape vectors, and typically 𝑁 << 𝑀. This means that the eigenvectors with
an eigenvalue of zero are not necessary to calculate. Therefore, it is more computationally efficient to
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determine the eigenmodes using singular value decomposition (SVD) of the surface shape matrix P.
SVD decomposes the 𝑁 ×𝑀 surface shape matrix P into three matrices:

P = USV𝑇 , (2.7)

where U and V are orthonormal matrices and S is a diagonal matrix. The columns of U are the left
singular vectors and the vectors of V are the right singular vectors. The scalar values on the diagonal
of S are the singular values 𝑠𝑙 corresponding to the columns �⃗�𝑙 of 𝑈 and columns �⃗�𝑙 of 𝑉. From the
SVD of P it follows that:

P𝑇P = (USV𝑇)𝑇(USV𝑇) = (VSU𝑇)(USV𝑇) (2.8)
U is an orthonormal matrix, so U𝑇U = I. From this it follows that:

P𝑇P = VS2V𝑇 = (𝑁 − 1)C (2.9)

The covariance matrix C can thus be rewritten as

C = 1
𝑁 − 1VS

2V𝑇 , (2.10)

which is basically an eigendecomposition of C. The columns �⃗�𝑙 of V are the eigenvectors of C and the
diagonal elements 𝑠2𝑙 of S2 are the corresponding eigenvalues 𝜆𝑙. It can be seen that the eigenvalues
𝜆 of the covariance matrix are equal to the square of the singular values of P divided by (𝑁 − 1), i.e.,:

𝜆𝑙 =
𝑠2𝑙

𝑁 − 1 (2.11)

It is thus possible to calculate the eigenvectors of the covariance matrix, i.e., the eigenmodes of defor
mation of the delineations, and the corresponding eigenvalues by determining the SVD of the surface
shape matrix P. Within principal component analysis, the original data is transformed to a new coordi
nate system with new coordinate axes along the directions of the eigenmodes. The importance of each
eigenmode is represented by the magnitude of the corresponding singular value. The larger the singu
lar value corresponding to an eigenmode, the larger the variance of the data when it is projected onto
the corresponding new coordinate axis. Usually, the magnitude of the singular values corresponding to
the eigenmodes decreases quickly and the data can be explained well by projecting it onto a coordinate
system made up of the most dominant eigenmodes which explain most of the variance of the data.
In the case of the delineation geometries, the number of surface points 𝑀 will be much larger than
the number of delineations 𝑁. Consequently, the last 𝑀 − 𝑁 columns of V have no significance. The
corresponding singular values in S will also be zero. It is therefore more efficient to calculate the
economysized SVD of the surface shape matrix P, which computes only the first 𝑁 columns of V,
resulting in an 𝑀 ×𝑁 matrix.

Construction of delineation geometries with eigenmodes
The developed PCA model can be used to recreate the original delineation geometries as described
in the surface shape matrix P, but can also be used to create new delineation geometries. Using 𝐿
eigenmodes, a reconstructed shape matrix P𝐿rec can be created using the following formula:

P𝐿rec = U𝐿S𝐿V𝑇𝐿 , (2.12)

where U𝐿 is an 𝑁 × 𝐿 matrix containing the first 𝐿 columns of U, S𝐿 is an 𝐿 × 𝐿 matrix containing the
upper left part of S and V𝐿 is an 𝑀× 𝐿 containing the first 𝐿 columns of V. The resulting reconstructed
shape matrix P𝐿rec is an 𝑁 ×𝑀 matrix, analogous to the shape matrix P. P𝐿rec now however has a lower
rank of 𝐿.
The reconstructed surface shape vectors �⃗�𝐿𝑖,𝑟𝑒𝑐 are obtained by adding the mean shape vector �⃗� to the
𝑖th row of P𝐿rec. The more eigenmodes 𝐿 that are used to create P𝐿rec, the smaller the difference will be
between P and P𝐿rec.
To create a random delineation geometry, the random surface shape vector �⃗�𝐿random is calculated by:

�⃗�𝐿random = �⃗� +
𝐿

∑
𝑙=1
𝑐𝑙,random ⋅ �⃗�𝑙 , (2.13)
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where coefficients 𝑐𝑙,random for eigenmode �⃗�𝑙 are chosen from a Gaussian distribution with mean 𝜇 = 0
and standard deviation 𝜎𝑙 = √𝜆𝑙, i.e.,:

𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 ∼ 𝒩(0, 𝜆𝑙) (2.14)

2.3. AutoContouring
In this section the principles of autocontouring will be set out. First the necessity of autocontouring in
the current advancements of radiotherapy will be explained, followed by the theory behind atlasbased
autocontouring and finally the principles of Bspline deformable image registration will be detailed.

2.3.1. AutoContouring in Adaptive Radiotherapy
The manual delineation of a CT by a radiation oncologist is a very timeconsuming process which can
take several hours per patient. Furthermore, as discussed in the introduction, manual delineations are
prone to inter and intraobserver variabilities which limit accuracy and can have an impact on the dose
delivered to the ROIs. Autocontouring can solve these issues which arise from manual delineations.
In autocontouring the ROIs are automatically identified and delineated by an autocontouring software
in a short time period. This is very important regarding the new advancements in adaptive radiotherapy.
In traditional radiotherapy, a CT scan is often acquired one week before the treatment and the treatment
plan is based on this single CT scan. The radiation dose is split into fractions, whichmeans that the dose
will be delivered to the patient over the course of several days to weeks. However, the anatomy of the
patient will likely change before the treatment starts and between the daily fractions. The dose delivered
to the ROIs will therefore not be the same as the planned dose. The goal of adaptive radiotherapy is
to deliver the dose accurately in the presence of such anatomical changes. Adaptive radiation therapy
consists of the following steps:

1. Approximately 1 week before the treatment a planning CT is made which is delineated by a
radiation oncologist and a treatment plan is made.

2. On the day of the treatment a daily CT is made which is delineated by an autocontouring soft
ware. The treatment plan is then adapted accordingly to compensate for the observed anatomical
variations.

There are two types of adaptive therapy, namely offline and online adaptive radiation therapy. In offline
adaptive radiotherapy, the treatment plan is adapted at certain timepoints during the treatment course
(e.g., once a week), while in online adaptive radiotherapy the treatment plan is adapted before every
fraction.
Thyrza et al. have found that it is possible to adapt a proton therapy treatment plan in a few minutes
using planlibrary supported automated replanning [19]. With such fast replanning, it is possible to treat
the patient very quickly after the daily CT has been made. To further reduce the time between the daily
CT and the treatment, autocontouring plays an important role.
The field of autocontouring has grown in a fast pace over the past two decades [6] and there are
different types of autocontouring techniques. In this thesis an autocontouring software using the
atlasbased autocontouring technique is used.

2.3.2. AtlasBased AutoContouring
There are two types of atlasbased autocontouringmethods, namely single atlasbased autocontouring
and multiatlasbased autocontouring. In single atlasbased autocontouring there is one reference im
age which has its ROIs already delineated by a radiation oncologist. This delineated reference image
is called the atlas and is used as a reference for other images which need to be delineated. To create
a delineation on a new image, the autocontouring software uses deformable image registration (DIR)
to find the transformation which optimally maps the reference image to the new image. The reference
delineations are then also transformed to the new image using this transformation. Single atlasbased
autocontouring can however be impacted by the anatomical variability that exists between different
images of the same patient [13].
Multiatlasbased autocontouring usesmultiple atlases which represent a variety of anatomical variabil
ities of the patient. There are then several approaches which can be used to generate the delineation
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on the new image. First, all atlas images can be transformed using DIR and the atlas delineations are
mapped onto the new image. The deformed delineations are then combined to form the delineation
produced by the autocontouring software. This is called multiatlas fusion. A second option is to se
lect a single atlas image which most closely resembles the new image. Using DIR the atlas image is
again transformed to the new image and the atlas delineation is mapped to the new image. This is
called singleatlas selection. Finally, it is possible to select a selection of atlases which resemble the
new image. The generation of the delineation on the new image is then again done by combining the
mapped selected atlas delineations. This is called multiatlas selection and fusion [33]. A visualization
of all these atlasbased autocontouring methods can be seen in Figure 2.5.

Figure 2.5: Overview of all atlasbased autocontouring methods. From left to right: singleatlas autocontouring, multiatlas
fusion autocontouring, singleatlas selection autocontouring, multiatlas selection and fusion autocontouring. Figure

reproduced from [33].

2.3.3. Bspline Deformable Image Registration
DIR plays an important role in autocontouring. One method of DIR is Bspline DIR. Bspline DIR is
a type of nonlinear transformation. In Bspline DIR, every voxel in a fixed image 𝐹 is mapped to a
corresponding voxel in a moving image 𝑇. The deformation vector field (DVF) �⃗� is defined on every
point in the fixed image and describes how the voxels in the moving image are displaced with respect
to their initial position in the fixed image. The DVF is modeled with cubic Bsplines.
A sparse set of uniformly distributed control points is superpositioned on the fixed image’s voxel grid.
These control points divide the voxel grid up into many equally sized tiles. The cubic Bsplines are
continuous curves which are only defined on a set of control points. The number of control points
per dimension that the Bsplines are defined on equals 𝑂𝑠𝑝𝑙𝑖𝑛𝑒 + 1, where 𝑂𝑠𝑝𝑙𝑖𝑛𝑒 is the order of the B
spline curve. For cubic Bsplines, where 𝑂𝑠𝑝𝑙𝑖𝑛𝑒 equals 3, there are thus 4 control points per dimension,
resulting in 43 = 64 control points in a 3D image that a cubic Bspline is defined on. This means that
the DVF of a voxel in a tile is calculated using the 64 control points in the vicinity of that tile. Each
control point can be described by its local coordinates (𝛼, 𝛽, 𝛾). Given a voxel at position (𝑥, 𝑦, 𝑧), the
control points (𝛼, 𝛽, 𝛾) that are used in the calculation of the DVF in this voxel are given by:

𝛼 = ⌊ 𝑥𝑁𝑥
− 1 + 𝑖⌋

𝛽 = ⌊ 𝑦𝑁𝑦
− 1 + 𝑗⌋

𝛾 = ⌊ 𝑧𝑁𝑧
− 1 + 𝑘⌋ ,

(2.15)

where 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 are the number of voxels in a tile in the 𝑥, 𝑦 and 𝑧 direction, respectively, and
𝑖, 𝑗, 𝑘 = 0,… , 3.
A voxel in a tile can also be described in terms of the local coordinates (𝑢, 𝑣, 𝑤) within a tile. (𝑢, 𝑣, 𝑤)
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are given by:

𝑢 = 𝑥
𝑁𝑥
− ⌊ 𝑥𝑁𝑥

⌋

𝑣 = 𝑦
𝑁𝑦

− ⌊ 𝑦𝑁𝑦
⌋

𝑤 = 𝑧
𝑁𝑧
− ⌊ 𝑧𝑁𝑧

⌋

(2.16)

Using the local coordinates of a voxel in a tile, the Bspline basis functions are defined as:

𝛽𝑖(𝑢) =

⎧
⎪

⎨
⎪
⎩

(1−𝑢)3
6 if 𝑖 = 0

3𝑢3−6𝑢2+4
6 if 𝑖 = 1

−3𝑢3+3𝑢2+3𝑢+1
6 if 𝑖 = 2

𝑢3
6 if 𝑖 = 3,

(2.17)

and similarly for 𝛽𝑗(𝑣) and 𝛽𝑘(𝑤).
Finally, the components of the DVF �⃗� in point (𝑥, 𝑦, 𝑧) are given by:

𝜙𝑥(𝑥, 𝑦, 𝑧) =
3

∑
𝑖=0

3

∑
𝑗=0

3

∑
𝑘=0

𝛽𝑖(𝑢)𝛽𝑗(𝑣)𝛽𝑘(𝑤)𝑃𝑥(𝛼, 𝛽, 𝛾)

𝜙𝑦(𝑥, 𝑦, 𝑧) =
3

∑
𝑖=0

3

∑
𝑗=0

3

∑
𝑘=0

𝛽𝑖(𝑢)𝛽𝑗(𝑣)𝛽𝑘(𝑤)𝑃𝑦(𝛼, 𝛽, 𝛾)

𝜙𝑧(𝑥, 𝑦, 𝑧) =
3

∑
𝑖=0

3

∑
𝑗=0

3

∑
𝑘=0

𝛽𝑖(𝑢)𝛽𝑗(𝑣)𝛽𝑘(𝑤)𝑃𝑧(𝛼, 𝛽, 𝛾),

(2.18)

where 𝑃𝑥(𝛼, 𝛽, 𝛾), 𝑃𝑦(𝛼, 𝛽, 𝛾) and 𝑃𝑧(𝛼, 𝛽, 𝛾) are the Bspline coefficients in control point (𝛼, 𝛽, 𝛾).
Using the DVF �⃗�, each voxel in the moving image is moved, creating a deformed moving image. To
compare the deformed moving image with the fixed image, a cost function is used. A cost function
commonly used in Bspline DIR is the sum of squared differences (SSD) cost function [36]. The SSD
cost function computes the intensity differences between the deformed moving image and the fixed
image and is given by:

𝐶 = 1
𝑁vox

𝑁vox,𝑥
∑
𝑥=1

𝑁vox,𝑦

∑
𝑦=1

𝑁vox,𝑧
∑
𝑧=1

(𝐹(𝑥, 𝑦, 𝑧) − 𝑇(𝑥 + 𝜙𝑥(𝑥, 𝑦, 𝑧), 𝑦 + 𝜙𝑦(𝑥, 𝑦, 𝑧), 𝑧 + 𝜙𝑧(𝑥, 𝑦, 𝑧)))
2 , (2.19)

where 𝑁vox is the number of voxels in the moving image 𝑇 after it has been deformed by the DVF
�⃗�. 𝑁vox,𝑥, 𝑁vox,𝑦 and 𝑁vox,𝑧 are the number of voxels in the deformed moving image in the 𝑥, 𝑦 and 𝑧
direction, respectively.
To get the best registration between the deformed moving image and the fixed image, the cost function
must be minimized. When the cost function is minimized, the deformed moving image and the fixed
image are most similar to each other. To search for the minimum value of the cost function, its derivative
is taken with respect to the Bspline coefficients 𝑃𝑥, 𝑃𝑦 and 𝑃𝑧. The derivative of the cost function with
respect to the Bspline coefficients is also called the cost function gradient. Using a gradient descent
method, the cost function gradient will be used to iteratively decrease the cost function by altering
the Bspline coefficients until a minimum is reached. Once the cost function has been minimized, the
obtained optimal Bspline coefficients are used to form the DVF which can be used for DIR between
the moving image and the fixed image.

2.4. Treatment Planning
In this section, first the general principles of radiotherapy treatment planning will be explained, after
which the working principles of the treatment planning system iCycle will be set out. Finally, the concept
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of robust treatment planning will be detailed, along with its implementation in iCycle.

2.4.1. Principles of Treatment Planning
The goal of radiotherapy treatment planning is to find the machine parameters that result in a dose
distribution in the body which results in the highest quality of life for the given patient. The main machine
parameters that need to be determined are the number of beams, the beam intensities and beam
angles. These parameters are chosen such that the dose delivered to the tumor is sufficient, while the
dose to surrounding healthy tissue is minimized. Treatment plans are made with a treatment planning
system. The CT with the delineated structures is used as input for the treatment planning system, along
with the prescribed dose 𝐷prescribed for the tumor and the dose constraints for the surrounding tissue.
Based on this input, the treatment planning system determines the required machine parameters to
satisfy these treatment aims and also outputs the corresponding dose distribution. The dose distribution
is checked by the radiation oncologist and if the dose distribution does not satisfy the treatment aims,
the treatment aims are altered, and a new treatment plan is made. This process is repeated until a
satisfactory dose distribution is achieved.
In treatment planning, the number of beams and the angles of these beams are often chosen in a trial
anderror procedure or based on a template. Depending on the experience of the planner, choosing
beams with a trialanderror procedure can be a long process. Using a template is less time consuming,
but it may lead to a treatment plans which could have been better with different beam angles and number
of beams [5].

2.4.2. Treatment Plan Evaluation Tools
Different metrics can be used to evaluate the treatment plan quality. Firstly, a dose volume histogram
(DVH) can be used. In a DVH, the 3D dose distribution in a structure is displayed in a 2D graph. In
the graph, the relative volume is plotted against the dose. The points on the curve display how much
of the volume of a structure receives at least a certain dose.
Another way to evaluate a treatment plan is with the percentile dosage 𝐷𝑥%, which represents the
minimum dose received by the 𝑥% of the volume which receives the most dose. For instance, 𝐷98% =
54 Gy means that the minimum dose received by 98% of the volume equals 54 Gy.
A more clinically significant treatment plan evaluation tool is the normal tissue complication probability
(NTCP) model. The NTCP estimates the risk that an OAR risks radiationinduced complications. In this
thesis, the Lyman Kutcher Burman model [10] is used to calculate the NTCP. The NTCP is a function of
the generalized equivalent uniform dose (gEUD). Given an inhomogeneous dose distribution delivered
to an OAR, an homogeneous irradiation with the gEUD will lead to the same effect on the OAR. The
gEUD is given by:

gEUD = (∑
𝑗
𝜈𝑗 ⋅ 𝐷1/𝑛𝑗 )

𝑛

, (2.20)

where 𝜈𝑗 is the volume fraction of the OAR which receives dose 𝐷𝑗. 𝑛 is the volume effect parameter
and depends on the irradiated organ. If the organ has a serial architecture, e.g., the bowel, 𝑛 is low. In
organs with a serial architecture complications can already occur when a small region of the organ is
irradiated. Organs with a parallel architecture, e.g., the lung, have a high 𝑛. Parallel architectures may
receive a high dose in a small region without any complications.
The NTCP is given by:

NTCP = 1
√2𝜋

∫
𝑡

−∞
𝑒−

𝑥2
2 𝑑𝑥, (2.21)

where 𝑡 is given by:
𝑡 = gEUD− 𝑇𝐷50

𝑚 ⋅ 𝑇𝐷50
(2.22)

In Equation 2.22, 𝑇𝐷50 is the tolerance dose for a 50% probability of complications in the organ and 𝑚
is a fit parameter. 𝑇𝐷50 and 𝑚 are organdependent, just like 𝑛.

2.4.3. iCycle: Automated Multicriteria Treatment Planning System
In this thesis the fully automated treatment planning system iCycle is used. iCycle uses multicriteria
optimization to choose the best beam angles and beam intensities in the case of IMRT [5], and the
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best pencil beam locations and corresponding intensities in the case of IMPT [46]. To do so, iCycle
uses a wishlist. The wishlist contains prioritized objectives and constraints which are defined by the
physician. The objectives are given a certain priority. An objective with a higher priority will be given
more importance to be reached within the constraints than an objective with a lower priority. An objec
tive could for instance be to deliver a prescribed dose 𝐷prescribed to the CTV and a constraint could be
a maximum dose that is allowed to be delivered to a surrounding OAR.
To select the optimal beam angles in IMRT, iCycle first generates a plan with no beams. Then beams
from a set of candidate beam directions are added to the plan. These candidate beam directions are
chosen such that there would be no collisions between the patient couch and the gantry. The deter
mination of the beam directions to add to the plan is an iterative process. In iteration 𝑖, every single
nonchosen candidate beam direction is onebyone individually added to the existing beam directions
from iteration 𝑖 − 1 and the beam intensities for this beam configuration are optimized with a radiother
apy optimization problem. The beam direction which gives the most favorable dose distribution is then
added to the previous 𝑖 − 1 beam directions to give a beam arrangement with 𝑖 beams.
For the pencil beam optimization in IMPT, every iteration 𝑖 a number of pencil beams are randomly
selected from a fine grid and added to the existing pencil beams from iteration 𝑖 − 1. During the opti
mization process the optimal weight of each pencil beam is found. The pencil beams with a low weight
after the optimization are excluded from the set of pencil beams, resulting in an optimal set of pencil
beams for iteration 𝑖.
The optimal beam direction or pencil beams are found by using the 2𝑝𝜖𝑐 method, which results in a
Paretooptimal radiotherapy plan [4]. A Paretooptimal plan is a plan in which an objective cannot be
minimized more without negatively affecting the other objectives. The imposed constraints are strictly
met in the Paretooptimal plan and the objectives are optimized while taking into account their priori
ties. This optimization is achieved in two phases. In the first phase, each objective is minimized while
respecting the constraints. The highest prioritized objective is minimized first, followed by the lower
prioritized objectives. When an objective has been minimized, this objective is turned into a constraint.
This then serves as a constraint for the lower prioritized objectives. Defining these new constraints
assures that the minimization of objectives with a lower priority will not negatively affect the obtained
values of the higher priority objectives. Consequentially, more constraints are imposed for the mini
mization of lower objectives. At the end of the first phase, each objective has reached its goal value
or will be higher than its goal value due to the imposed constraints. If there are objectives which could
have been minimized beyond their goal value in the first phase, they will be minimized as much as
possible in the second phase. This is again done in the order of decreasing objective priority.
The resulting Paretooptimal plan is the 𝑖th treatment plan. In IMRT, the beam direction in the 𝑖th treat
ment plan is in turn used to determine the (𝑖 + 1)th beam direction, while in IMPT the pencil beams
in the 𝑖th treatment plan are added to the random selection of pencil beams to determine the (𝑖 + 1)th
treatment plan. This iterative process continues until the addition of more beams or pencil beams does
not lead to a better clinically significant plan. A Paretooptimal plan can then be selected which has the
best tradeoff between the quality of the plan and the number of beams.

2.4.4. Robust Treatment Planning
As discussed in the introduction, the concept of the PTV is applicable to photon therapy, but not applica
ble to IMPT. In photon therapy the dose distribution stays largely the same when there is a change in the
geometry of the patient. Therefore, a movement of the CTV within the PTV will lead to an approximately
equal dose delivered to the CTV. However, in the case of IMPT the dose distribution does not stay the
same when the patient geometry changes. This is because density differences along the beam can
alter the position of the Bragg peak. Furthermore, the range uncertainty of the proton beams can lead
to an under or overshoot of the CTV, which can cause overdosage or underdosage in the CTV [43]. To
account for the uncertainties in proton therapy, robust treatment planning is used. In robust treatment
planning, systematic and random setup errors are considered for, along with range errors. iCycle uses
objectivewise minimax optimization to perform robust treatment planning. In objectivewise minimax
optimization, the dose distribution is considered in a scenario with no errors (nominal scenario) and a
number of error scenarios. In these scenarios, the worst case value of the objectives and constraints
is optimized. To account for the range error along the beam direction, a range robustness (𝑅𝑅) setting
is used, which is given as a percentage. For the random and systematic setup errors in the 𝑥, 𝑦 and 𝑧
direction, a setup robustness (𝑆𝑅) setting is used, given in millimeters. In iCycle a total of 19 scenarios
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are considered during the objectivewise minimax optimization.

2.5. Polynomial Chaos Expansion (PCE)
In this section the theory behind Polynomial Chaos Expansion (PCE) will be introduced. Polynomial
Chaos (PC) techniques are schemes which approximate a model output as a polynomial function of
the model input parameters and are part of a group of spectral techniques of which the aim is to use a
Fourier series like expansion to reproduce the solution of a stochastic problem. PCE is a PC function
which forms a metamodel of the problem it is designed for and it can be used to describe the stochastic
nature of the output of the problem [28].

In PCE, the output of the problem is represented by a Fourier series like expansion using multi
dimensional polynomials, also called PC basis vectors. The spectral expansion of the output 𝑅 as
a function of the uncertain input 𝜉 is expressed as:

𝑅(𝜉) =
∞

∑
𝑘=0

𝑟𝑘Ψ𝑘(𝜉), (2.23)

whereΨ𝑘 are the PC basis vectors and 𝑟𝑘 are the expansion coefficients. The uncertain input 𝜉 is given
by:

𝜉 = (𝜉1, 𝜉2, ..., 𝜉𝑆), (2.24)

which is a vector with length 𝑆, where each element 𝜉𝑗 corresponds to a random variable with a prob
ability density function (PDF) 𝑝𝜉𝑗(𝜉𝑗). In this research it is assumed that the random variables are
independent and the joint PDF is simply given by:

𝑝�⃗�(𝜉) =
𝑆

∏
𝑗=1

𝑝𝜉𝑗(𝜉𝑗) (2.25)

2.5.1. PC Basis Vectors
The PC basis vectors are constructed via the tensorization of univariate polynomials. Each univariate
polynomial depends on a random variable 𝜉𝑗. Based on the distribution of the uncertain input 𝜉, the
polynomial type is provided by the WienerAskay scheme, which gives the most optimal polynomial
type for the most common uncertain input distributions [47]. This research focuses on a Gaussian dis
tributed random input, so probabilists’ Hermite polynomials 𝐻𝑒𝑜 are the most suitable. Here 𝑜 denotes
the order of the polynomial. The first five orders of the Hermite polynomials 𝐻𝑒𝑜 are displayed in Table
2.1.

Table 2.1: The first five polynomials of the probabilists’ Hermite polynomial family

Order Polynomial
𝑜 = 0 𝐻𝑒0(𝜉) = 1
𝑜 = 1 𝐻𝑒1(𝜉) = 𝜉
𝑜 = 2 𝐻𝑒2(𝜉) = 𝜉2 − 1
𝑜 = 3 𝐻𝑒3(𝜉) = 𝜉3 − 3𝜉
𝑜 = 4 𝐻𝑒4(𝜉) = 𝜉4 − 6𝜉2 + 3

With the choice of the probabilists’ Hermite polynomials, all PC basis vectors are of the form

Ψ𝑘(𝜉) =
𝑆

∏
𝑗=1

𝐻𝑒𝛾𝑘,𝑗(𝜉𝑗), (2.26)

where �⃗�𝑘,𝑗 = (𝛾𝑘,1, ..., 𝛾𝑘,𝑆), which is a multiindex to differentiate between the different orders of the
polynomials. The index �⃗� is used to determine which orders of polynomials are included in the PCE.
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In the full domain of the random variables, indicated by 𝒟, the PC basis vectors defined in 2.26 are
orthogonal, i.e.:

⟨Ψ𝑘 , Ψ𝑙⟩ = ∫
𝒟
Ψ𝑘(𝜉)Ψ𝑙(𝜉)𝑝�⃗�(𝜉) 𝑑𝜉 = ℎ2𝑘𝛿𝑘,𝑙 , (2.27)

where ⟨.⟩ is the inner product in 𝒟, 𝛿𝑘,𝑙 is the Kronecker delta and ℎ𝑘 is the norm of the 𝑘th basis vector.
The 𝑂th order full PC basis set Γ(𝑂) is given by:

Γ(𝑂) = {
𝑆

∏
𝑗=1

𝐻𝑒𝛾𝑘,𝑗(𝜉𝑗) ∶
𝑆

∑
𝑗=1
𝛾𝑘,𝑗 ≤ 𝑂} = {Ψ𝑘(𝜉) ∶

𝑆

∑
𝑗=1
𝛾𝑘,𝑗 ≤ 𝑂} (2.28)

The number of basis vectors for an 𝑂th order PC basis set is given by:

𝑃 + 1 = (𝑆 + 𝑂)!
𝑆!𝑂! (2.29)

The PCE in Equation 2.23 can then be truncated to 𝑃 + 1 PC basis vectors, i.e.:

𝑅(𝜉) ≈
𝑃

∑
𝑘=0

𝑟𝑘Ψ𝑘(𝜉), (2.30)

with Ψ𝑘(𝜉) ∈ Γ(𝑂)∀𝑘.
For example, in a 2D problem with input parameters 𝜉 = (𝜉1, 𝜉2), where 𝜉1 and 𝜉2 both are normally
distributed, and 𝑂 = 2, the full PC basis set would contain 6 basis vectors according to Equation 2.29.
These 6 basis vectors along with the corresponding multiindices are displayed in Table 2.2.

Table 2.2: The PC basis vectors with the corresponding multiindices for a 2D problem with a 2nd order full basis set

Order Multiindices PC basis vectors
𝑜 = 0 �⃗�0 = (0, 0) Ψ0(𝜉) = 𝐻𝑒0(𝜉1)𝐻𝑒0(𝜉2) = 1
𝑜 = 1 �⃗�1 = (1, 0) Ψ1(𝜉) = 𝐻𝑒1(𝜉1)𝐻𝑒0(𝜉2) = 𝜉1

�⃗�2 = (0, 1) Ψ2(𝜉) = 𝐻𝑒0(𝜉1)𝐻𝑒1(𝜉2) = 𝜉2
𝑜 = 2 �⃗�3 = (2, 0) Ψ3(𝜉) = 𝐻𝑒2(𝜉1)𝐻𝑒0(𝜉2) = 𝜉21 − 1

�⃗�4 = (1, 1) Ψ4(𝜉) = 𝐻𝑒1(𝜉1)𝐻𝑒1(𝜉2) = 𝜉1𝜉2
�⃗�5 = (0, 2) Ψ5(𝜉) = 𝐻𝑒0(𝜉1)𝐻𝑒2(𝜉2) = 𝜉22 − 1

2.5.2. Hyperbolic Trim
In practice, it is often not required to use all PC basis vectors in the full PC basis set. This is because
responses are generally dominated by only a small number of important parameters and low order
interactions, as stated by the ”sparsity of effects” principle [25]. As a consequence, PC basis vectors
which represent higher order interactions can be left out of the PC basis set. This process of removing
PC basis vectors from the full PC basis set is called hyperbolic trimming. Hyperbolic trimming is done
using the 𝑞quasinorm for multiindices �⃗�𝑘,𝑗, which is defined as [3]

||�⃗�𝑘||𝑞 = (
𝑆

∑
𝑗=1
𝛾𝑞𝑘,𝑗)

1/𝑞

, (2.31)

where 𝑞 is the hyperbolic trim factor which ranges between the values 0 and 1. Only the vectors which
satisfy ||�⃗�𝑘||𝑞 ≤ 𝑂 are included in the PC basis set. When 𝑞 = 1, it can be seen that the full PC basis
set is obtained. However, for decreasing values of 𝑞, more and more multivariate PC basis vectors,
which depend on multiple terms in the input, will be cut out. The univariate PC basis vectors, depending
on one value in the input, will however never be cut out. This leads to a PC basis set containing less
PC basis vectors which are mainly a function of the dominant univariate dependencies and low order
interactions [27].
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2.5.3. Expansion Coefficients
Now the expansion coefficients 𝑟𝑘 can be determined. Because the Ψ𝑘(𝜉) polynomial basis functions
are orthogonal to each other with respect to the joint probability density function 𝑝(𝜉), the expansion
coefficients 𝑟𝑘 can be calculated with:

𝑟𝑘 =
⟨𝑅(𝜉),Ψ𝑘(𝜉)⟩
⟨Ψ𝑘(𝜉), Ψ𝑘(𝜉)⟩

=
∫𝒟 𝑅(𝜉)Ψ𝑘(𝜉)𝑝�⃗�(𝜉)𝑑𝜉

⟨Ψ𝑘(𝜉), Ψ𝑘(𝜉)⟩

= 1
ℎ2𝑘
∫
𝒟
𝑅(𝜉)

𝑆

∏
𝑗=1

𝐻𝑒𝛾𝑘,𝑗(𝜉𝑗)𝑝𝜉𝑗(𝜉𝑗) 𝑑𝜉

(2.32)

This method of calculating the expansion coefficients is called spectral projection. Equation 2.32 can
however not be readily solved as the numerator contains the unknown dependence of the response
on the input parameters 𝑅(𝜉). To solve this problem, the multidimensional integral is approximated
by a cubature formula. This cubature formula is constructed from onedimensional quadratures using
tensorization. The quadrature formula for a general function 𝑓(𝜉𝑗), which depends on a single variable
𝜉𝑗, is given by:

𝐼(1)𝑓 = ∫
𝑏

𝑎
𝑓(𝜉𝑗)𝑝𝜉𝑗(𝜉𝑗) 𝑑𝜉𝑗 ≈ 𝑄

(1)
𝑙𝑒𝑣𝑓 =

𝑛𝑙𝑒𝑣
∑
𝑖=1

𝑓(𝜉(𝑖)𝑗,𝑙𝑒𝑣)𝑤
(𝑖)
𝑙𝑒𝑣 , (2.33)

where 𝜉(𝑖)𝑗,𝑙𝑒𝑣 ∈ [𝑎, 𝑏] and 𝑤
(𝑖)
𝑙𝑒𝑣 ∈ ℝ are quadrature points and weights which are predefined by 𝑝𝜉𝑗(𝜉𝑗)

and the chosen quadrature rule. The level index 𝑙𝑒𝑣 indicates the accuracy of the quadrature. A higher
level index gives a more precise approximation of the integral but this also gives a higher number of
function evaluations 𝑛𝑙𝑒𝑣.
There are many different quadrature rules which can be distinguished by their accuracy and by their
nestedness. Quadratures in rules with full nestedness contain all points of the lower level quadratures
too, while quadratures in rules with no nestedness contain no points of the lower level quadratures.
In this research the GaussHermite quadrature rule is used. The GaussHermite quadrature rule can
integrate accurately up to order 2𝑛𝑙𝑒𝑣−1 and it has a low nestedness. The number of value evaluations
𝑛𝑙𝑒𝑣 is chosen to be equal to to 2⋅𝑙𝑒𝑣−1, so the order of polynomials that the GaussHermite quadrature
rule is accurate to equals 2(2 ⋅ 𝑙𝑒𝑣 − 1) − 1 = 4 ⋅ 𝑙𝑒𝑣 − 3.
The onedimensional quadratures are used to form the cubature by tensorization. An 𝑆 dimensional
cubature calculated using a full tensorization looks as follows:

𝐼(𝑆)𝑓 = ∫
𝒟
𝑓(𝜉)𝑝�⃗�(𝜉) 𝑑𝜉 ≈ 𝑄

(𝑆)
⃗𝑙𝑒𝑣𝑓 = (𝑄

(1)
𝑙𝑒𝑣1 ⊗𝑄(1)𝑙𝑒𝑣2 ⊗⋯⊗𝑄(1)𝑙𝑒𝑣𝑆)𝑓

=
𝑛𝑙𝑒𝑣1
∑
𝑖1=1

𝑛𝑙𝑒𝑣2
∑
𝑖2=1

⋯
𝑛𝑙𝑒𝑣𝑆
∑
𝑖𝑆=1

𝑓(𝜉(𝑖1)1,𝑙𝑒𝑣1 , 𝜉
(𝑖2)
2,𝑙𝑒𝑣2 , ⋯ , 𝜉(𝑖𝑆)𝑆,𝑙𝑒𝑣𝑆)𝑤

(𝑖1)
𝑙𝑒𝑣1𝑤

(𝑖2)
𝑙𝑒𝑣2 ⋯𝑤

(𝑖𝑆)
𝑙𝑒𝑣𝑆

=
𝑛

∑
𝑖
𝑓(𝜉(𝑖))𝑤(𝑖)

(2.34)

In the final line of Equation 2.34 there is a sum over all possible combinations of quadrature points. This
will lead to an exponentially growing number of required needed evaluations of 𝑓(𝜉) as the dimension
of the problem increases. The number of function evaluations needed for an 𝑆dimensional problem is
equal to ∏𝑆𝑗=1 𝑛𝑙𝑒𝑣𝑗 .
In Figure 2.6a an example of a full 4th level GaussHermite grid in 3 dimensions can be seen. A
4th level grid contains 7 points which means that a total of 73 = 343 function evaluations need to
performed for the 3 dimensions. To decrease the number of function evaluations needed, and thus
decrease the computation time, Smolyak sparse grids are used. The idea of Smolyak sparse grids is
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(a) Cubature points for the full grid (b) Cubature points for the Smolyak sparse grid

Figure 2.6: Full and Smolyak sparse 4th level GaussHermite grid in 3 dimensions. Figures reproduced from [27].

that there are elements calculated with the quadrature rules which are more important for representing
multidimensional functions than others [20]. To produce the Smolyak sparse grid, a small number of
the most important cubature points are selected. In order to select the cubature points to include in the
Smolyak sparse grid, the difference formula of the quadratures is used:

Δ(1)𝑙𝑒𝑣𝑓 = 𝑄
(1)
𝑙𝑒𝑣𝑓 − 𝑄

(1)
𝑙𝑒𝑣−1𝑓, (2.35)

with 𝑄(1)0 𝑓 = 0. With Equation 2.35 the cubature tensorization (Equation 2.34) can be rewritten as:

𝑄(𝑆)⃗𝑙𝑒𝑣𝑓 =
𝑙𝑒𝑣1
∑
𝑙1=1

𝑙𝑒𝑣2
∑
𝑙2=1

⋯
𝑙𝑒𝑣𝑆
∑
𝑙𝑆=1

(Δ(1)𝑙1 ⊗Δ(1)𝑙2 ⊗⋯⊗Δ(1)𝑙𝑆 )𝑓, (2.36)

where ⃗𝑙𝑒𝑣 is a vector which contains the different quadrature levels used along different directions. By
introducing a multiindex 𝑙 which distinguishes the different grids, the cubature tensorization turns into:

𝑄(𝑆)⃗𝑙𝑒𝑣𝑓 = ∑
𝑙∈ℐ(𝑙𝑒𝑣)

Δ(𝑆)𝑙 𝑓, (2.37)

with ℐ(𝑙𝑒𝑣) being the set of included multiindices depends on the level 𝑙𝑒𝑣. For the Smolyak sparse
grid, the multiindices included in ℐ are given by:

ℐ𝑆𝑚𝑜𝑙𝑦𝑎𝑘(𝑙𝑒𝑣) = {𝑙 ∶
𝑆

∑
𝑗=1
𝑙𝑗 ≤ 𝑙𝑒𝑣 + 𝑆 − 1} (2.38)

The consequence of the definition of the multiindices in equation 2.38 is that the maximum integration
level in any direction is equal to 𝑙𝑒𝑣 and the maximum dimension of the included grids is 𝑙𝑒𝑣 − 1. The
use of a Smolyak drastically decreases the number of function evaluations needed. In Figure 2.6b it
can be seen that a sparse grid has significantly less cubature points than a full grid. In this particular
case of a 4th level grid, only 105 function evaluations need to take place compared to 343 in a full grid.

In this thesis the extended Smolyak sparse grids will be used, which is a method to improve the in
tegration accuracy with a small number of extra function evaluations. In the extended Smolyak sparse
grids, the integration level of the onedimensional grids of the highest order with 𝑙𝑗 = 𝑙𝑒𝑣 + 𝑆 − 1,
where 𝑗 indicates one of the dimensions, is increased. This is done by increasing 𝑙𝑗 with 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎, i.e.,:
𝑙𝑗 = 𝑙𝑒𝑣 + 𝑆 − 1 + 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎. The multiindices in ℐ are then given by:

ℐ𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑆𝑚𝑜𝑙𝑦𝑎𝑘(𝑙𝑒𝑣) = ℐ𝑆𝑚𝑜𝑙𝑦𝑎𝑘(𝑙𝑒𝑣) ∪ {𝑙 ∶ 𝑙𝑗 = 𝑙𝑒𝑣 + 𝑆−1+ 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎} ⧵ {𝑙 ∶ 𝑙𝑗 = 𝑙𝑒𝑣 + 𝑆−1} (2.39)
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The replacement of the level 𝑙𝑒𝑣 with 𝑙𝑒𝑣 + 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎 leads to only 2 ⋅ 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎 extra calculations per
dimension, while significantly improving the performance of the PCE. Furthermore, higher order uni
variate polynomials can be used in the PCE with the addition of 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎 [27]. In the rest of the thesis,
the extra level index 𝑙𝑒𝑣𝑒𝑥𝑡𝑟𝑎 will be referred to as Extra Levels (𝐸𝐿).

The polynomial chaos coefficients from Equation 2.32 can now be calculated using the extended
Smolyak sparse grids with:

𝑟𝑘 =
1
ℎ2𝑘

∑
𝑙∈ℐ𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑆𝑚𝑜𝑙𝑦𝑎𝑘(𝑙𝑒𝑣)

Δ(𝑆)𝑙 (𝑅Ψ𝑘) =
1
ℎ2𝑘

𝑛

∑
𝑖
𝑅(𝜉(𝑖))Ψ𝑘(𝜉(𝑖))𝑤(𝑖), (2.40)

where the function 𝑓 in Equation 2.32 has been replaced by the product of the response and the PC
basis function. With Equation 2.40 only a limited number of responses 𝑅(𝜉𝑖) are needed to calculate
the PC coefficients.
In the rest of this thesis the grid level 𝑙𝑒𝑣 will be called the Grid Level (𝐺𝐿) and the polynomial order 𝑂
will be referred to as 𝑃𝑂. The 𝐺𝐿 and 𝑃𝑂 must be chosen such that a desired integration accuracy is
reached. Once the desired accuracy has been reached, the cubature points 𝜉(𝑖) and the weights 𝑤(𝑖)
need to be determined which belong to the grids given by Equation 2.39 for the given 𝐺𝐿. With this info,
Equation 2.40 can be solved to determine the PC coefficients, which in turn are used in the truncated
response function (Equation 2.30) in combination with the corresponding PC basis vectors.

2.5.4. MultiDimensional Polynomial Regression
Another way to build the PCE is with multidimensional polynomial regression. In multidimensional
polynomial regression, the expansion coefficients 𝑟𝑘 are calculated with a least square problem. Given
a set of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 samples of the uncertain input 𝜉(𝑖), with the corresponding responses 𝑅(𝜉(𝑖)) and PC
basis functions Ψ𝑘(𝜉(𝑖)), the expansion coefficients are obtained by solving the least square problem:

𝑟 = arg min
̃⃗𝑟

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑
𝑖=1

(𝑅(𝜉(𝑖)) −
𝑃

∑
𝑘=0

𝑟𝑘Ψ𝑘(𝜉(𝑖)))

2

, (2.41)

where 𝑟 = (𝑟0, ⋯ , 𝑟𝑃), The solution to the least square problem, given that 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≥ 𝑃, is given by:

𝑟 = (A𝑇A)−1 A𝑇 (
𝑅(�⃗�(1))

⋮
𝑅(�⃗�(𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠))

) , (2.42)

where A ∈ ℝ𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠×𝑃, with 𝐴𝑖,𝑘 = Ψ𝑘(𝜉(𝑖)). The points where the uncertain input 𝜉 is sampled can be
chosen either randomly according to the distribution of the elements in the uncertain input or can be
equal to the quadrature points which are described in Section 2.5.3. To obtain a robust solution and to
prevent overfitting, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≈ 2(𝑃+1) has been found to be a sufficient number of sample points [17].
Once the expansion coefficients 𝑟 have been determined, they can be used in the truncated response
function (Equation 2.30) along with the corresponding PC basis vectors to form the PCE.

2.5.5. PCE Applied to Delineation Uncertainties
In this thesis PCE will be used to model dose distributions (exact output 𝑅) as a function of the random
eigenmode coefficients 𝑐𝑙,random of the PCAmodel (uncertain input). The uncertain input vector will thus
look like:

𝜉 = (𝑐1,random, 𝑐2,random, ⋯ , 𝑐𝐿,random) (2.43)

All eigenmode coefficients 𝑐𝑙,random are Gaussian distributed with mean 0 and standard deviation √𝜆𝑙.



3
Methods & Materials

In this chapter themethods used in this thesis are shown. First the raw data of both amanual delineation
data set and an autocontouring data set are shown in Section 3.1, along with the wishlists to make a
radiotherapy plan with these data sets. Then the construction of the delineation uncertainty model is
discussed for both the manual delineations (Section 3.2) and the autocontours (Section 3.3). Subse
quently the construction and validation methods of the PCE as a metamodel for dosimetric quantities
of random delineations in a fixed dose distribution are shown in Section 3.4 and finally the construction
and validation methods of the PCE as a metamodel for the reoptimized dose distribution are shown in
Section 3.5.

3.1. Raw Patient Data
In this thesis two data sets were used. One data set was used to study the uncertainties in manual
delineations and the other data set was used to study the uncertainties in autocontouring.

3.1.1. Manual Delineation Data Set
The first data set was obtained from a study performed by Habraken et al. [15]. In this study, 12 partic
ipating centers were provided with a CT scan of the same patient with hepatocellular carcinoma. The
resolution of the CT was 0.9766×0.9766×2.5000mm. The participating centers submitted delineations
of the GTV and the liver on the CT scan. For this data set the CTV was equal to the GTV. One of the
delineation sets was marked as the planning delineation set and a VMAT plan was made with this these
delineations, which also included delineations of the stomach, kidneys, esophagus, bowel, galbladder,
heart and spinal cord. The CT with the planning delineations of the CTV and liver is displayed in Figure
3.1a. The prescribed dose delivered to the PTV (CTV plus a 5 mm margin) with this plan was 54 Gy
in six fractions. The dose distribution of this plan can be seen in Figure 3.1b. For the CTV, the dose
constraint was that the dose received by 98% of the volume had to be at least the prescribed dose on
the PTV (𝐷98% ≥ 54 Gy). Furthermore, for the PTV the dose constraint was that 95% of the volume
had to receive at least 54 Gy (𝐷95% ≥ 54 Gy).
In this thesis an IMPT plan was also made for the above patient. To create an IMPT plan for this pa
tient, a wishlist was constructed, which can be seen in Table 3.1. Both nonrobust and robust treatment
plans were made. In the case of the robust treatment plans, the 𝑅𝑅 equalled 2%, the 𝑆𝑅 was set to 1,
2, 3, 4 or 5 mm and only the constraint on the minimum dose in the CTV was optimized robustly.

3.1.2. AutoContouring Data Set
The second data set was obtained from a patient at the Erasmus Medical Center in Rotterdam, The
Netherlands. This data set consisted of one planning CT and six repeat CTs of the head and neck
region. All CTs had a resolution of 0.9766 × 0.9766 × 2.0000 mm. The structures on the planning CT
were manually delineated by a radiation oncologist. The most important delineated structures are the
CTV along with the OARs near the CTV. The OARs near the CTV are the brainstem and spinal cord.
The CTV was separated into a high dose CTV and a low dose CTV. The prescribed dose to the high

23
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(a) Planning delineations of the CTV (green) and the
liver (blue)

(b) Dose distribution of the VMAT plan planned on planning
delineations

Figure 3.1: Planning delineations of the CTV and liver with the corresponding dose distribution in a 54 Gy VMAT plan for the
hepatocellular carcinoma patient.

Table 3.1: The wishlist to generate treatment plans in iCycle for the hepatocellular carcinoma patient. The column ’Type’
indicates whether the goal is to minimize/maximize the maximum/minimum dose (Linear), or to minimize/maximize the mean
dose (Mean). ’Ring’ indicates a ring around the structure. The structure ’MU’ (monitor units) is added to push down the dose

overall dose in the patient.

Priority Structure Min/Max Type Goal
Constraint CTV Maximize maximum Linear 54 Gy
1 CTV Minimize maximum Linear 60 Gy
2 CTVring05mm Minimize maximum Linear 0.90*60 Gy
3 CTVring510mm Minimize maximum Linear 0.85*60 Gy
4 CTVring1015mm Minimize maximum Linear 0.75*60 Gy
5 CTVring1525mm Minimize maximum Linear 0.50*60 Gy
6 Liver excluding CTV Minimize minimum Linear 1 Gy
7 Liver excluding CTV Minimize maximum Mean 1 Gy
8 Stomach Minimize maximum Linear 1 Gy
9 Bowel Minimize maximum Linear 1 Gy
10 Esophagus Minimize maximum Linear 1 Gy
11 Spinal cord Minimize maximum Linear 1 Gy
12 Right kidney Minimize maximum Mean 1 Gy
13 Heart Minimize maximum Linear 1 Gy
14 MU Minimize maximum Linear 1

dose CTV was 70 Gy and the prescribed dose to the low dose CTV was 54 Gy. The dose contraint
to the CTVs was that 98% of the CTV volume had to receive at least 95% of the prescription dose
(𝐷98% ≥ 0.95 ⋅ 𝐷prescribed). The delineations of the high dose CTV, brainstem and spinal cord on the
planning CT are displayed in Figure 3.2. The delineations on the planning CT were registered to the
six repeat CTs using Bspline DIR and the resulting delineations on the repeat CTs were checked and
modified if necessary. The wishlist to make an IMPT treatment plan for this patient is shown in Table
3.2. The dose distribution of the IMPT plan made with iCycle on the planning CT with the manual
delineations can be seen in Figure 3.3.

3.2. Delineation Uncertainty Model for InterObserver Variability
In this section the formation of the delineation uncertainty model for interobserver variability between
the manual delineations of the GTV in the liver is set out, along with metrics used to determine the
accuracy of the model.
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(a) Transverse view of the planning CT with delin
eations of the high dose CTV (green) and brainstem
(blue)

(b) Sagittal view of the planning CT
with delineations of the high dose
CTV (green), brainstem (blue) and
spinal cord (purple)

Figure 3.2: Planning CT with delineations of the high dose CTV, brainstem and spinal cord.

3.2.1. Building the Uncertainty Model
PCA was used to develop a delineation uncertainty model of the manual delineations of the GTV in the
liver. To do so, the delineation information contained in the DICOM files needed to be preprocessed.
The DICOM files of the delineations of the GTV were imported into Matlab [23] using the function di
comrt2matlab [26]. Using this function, the delineation information of the manual delineations was
converted from DICOM files to Matlab structures. These structures contained the delineation informa
tion of the GTV in the form of the coordinates of the delineation on each CT slice and in the form of a
3D binary map which was equal to 1 inside the GTV and equal to 0 outside the GTV. To convert the
sliceperslice delineations into a 3D structure, the Matlab function boundary was used, which forms
an exterior surface around the sliceperslice delineations. The 3D structures of the GTV delineations
by the different observers were used to form a probability map of the collection of delineations. The
probability map was created by adding the 3D binary masks of the delineations made by the different
observers and normalizing it to the number of delineations. A threshold of 50% was then used to form
the gold standard delineation.
From the goldstandard delineation, the eigenmodes 𝑣𝑙 and the corresponding eigenvalues 𝜆𝑙 were
calculated as described in Section 2.2. To calculate the distance from the center of mass of the gold
standard delineation to the surface of each delineation, the function Triangle/Ray Intersection was used
[42].

3.2.2. PCA Model Accuracy
To evaluate the accuracy of the PCA model of the delineations with respect to the number of eigen
modes, two metrics were used. Firstly, the number of eigenmodes needed to explain 90% of the
variance of the data was determined. Secondly, the reconstruction error of the PCA model as a func
tion of the number of eigenmodes was determined. The reconstructed delineations with 𝐿 eigenmodes
were compared to the real delineations. The local absolute reconstruction error 𝑑𝐿𝑎𝑏𝑠,𝑖 for delineation 𝑖
reconstructed with 𝐿 eigenmodes is given by:

𝑑𝐿𝑎𝑏𝑠,𝑖 = |�⃗�𝑖 − �⃗�𝐿𝑖,𝑟𝑒𝑐|, (3.1)

where �⃗�𝑖 − �⃗�𝐿𝑖,𝑟𝑒𝑐 indicates an elementwise subtraction and |...| indicates the absolute value.
The local absolute reconstruction error was measured to determine the minimum number of eigen
modes necessary to give an accurate reconstruction.
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Table 3.2: The wishlist to generate treatment plans in iCycle for the head and neck patient. The column ’Type’ indicates
whether the goal is to minimize/maximize the maximum/minimum dose (Linear), or to minimize/maximize the mean dose

(Mean). ’Expanded’ indicates an expansion of the structure, ’shrunk’ indicates a shrinkage of the structure and ’ring’ indicates a
ring around the structure. The structure ’MU’ (monitor units) is added to push down the dose overall dose in the patient.

Priority Structure Min/Max Type Goal
Constraint Brainstem Minimize maximum Linear 54 Gy
Constraint Spinal cord Minimize maximum Linear 50 Gy
Constraint Optic nerves Minimize maximum Linear 55 Gy
Constraint Optic chiasm Minimize maximum Linear 55 Gy
Constraint Lenses Minimize maximum Linear 10 Gy
Constraint High dose CTV Maximize minimum Linear 0.97*70 Gy
Constraint Low dose CTVexpanded10mm Maximize minimum Linear 0.98*54 Gy
Constraint Low dose CTVexpanded10mm Maximize minimum Linear 0.98*54 Gy
Constraint High dose CTV Minimize maximum Linear 1.3*70 Gy
Constraint Low dose CTVexpanded10mm Minimize maximum Linear 1.3*54 Gy
Constraint Low dose CTVshrunk10mm Minimize maximum Linear 1.3*54 Gy
1 High dose CTV ∩ OARs Maximize minimum Linear 0.97*70 Gy
1 High dose CTV ∩ OARs Maximize minimum Mean 0.96*70 Gy
2 High dose CTV Minimize maximum Linear 1.06*70 Gy
2 Low dose CTVexpanded10mm Minimize maximum Linear 1.06*54 Gy
2 Low dose CTVshrunk10mm Minimize maximum Linear 1.06*54 Gy
3 (High dose CTV ∪ low dose CTV)ring010mm Minimize maximum Linear 1.06*54 Gy
3 (High dose CTV ∪ low dose CTV)ring1015mm Minimize maximum Linear 0.90*54 Gy
4 MU per spot Minimize maximum Linear 35
5 Brainstem Minimize maximum Linear 30 Gy
5 Spinal cord Minimize maximum Linear 30 Gy
6 Cochlea Minimize maximum Linear 40 Gy
7 Optic nerves Minimize maximum Linear 30 Gy
7 Optic chiasm Minimize maximum Linear 30 Gy
8 Eyes Minimize maximum Mean 30 Gy
8 Lenses Minimize maximum Linear 5 Gy
9 Brain Minimize maximum Linear 30 Gy
10 Parotids Minimize maximum Mean 1 Gy
11 Submandibular glands Minimize maximum Mean 1 Gy
12 Musc constrict Minimize maximum Mean 1 Gy
13 Oral cavity Minimize maximum Mean 1 Gy
15 Esophagus Minimize maximum Mean 1 Gy
15 Larynx Minimize maximum Mean 1 Gy
15 Glottis Minimize maximum Mean 1 Gy
15 Cricopharyngeus Minimize maximum Mean 1 Gy
16 (High dose CTV ∪ low dose CTV)ring010mm Minimize maximum Mean 1 Gy
16 (High dose CTV ∪ low dose CTV)ring1015mm Minimize maximum Mean 1 Gy
16 (High dose CTV ∪ low dose CTV)ring1525mm Minimize maximum Mean 1 Gy
17 MU Minimize maximum Linear 1

3.2.3. Generating 2D Delineations from 3D Shapes
The goal of PCA was to create random delineations. The delineations created with PCA are however
in 3D, while real delineations are made slice per slice in 2D. Therefore, the 3D random delineations
were projected back onto the 2D slices of the CT scan and saved as Cartesian coordinates on that
slice. For a CT scan with 𝐾 slices the following steps were taken:

• The random surface shape vector �⃗�𝐿random was converted into Cartesian coordinate vectors �⃗�random,
�⃗�random and 𝑧random.

• For the CT slice (𝑘 = 1, ..., 𝐾) at height ℎslice(𝑘), it is determined which values in the vector 𝑧random
are between 0.3 mm smaller and 0.3 mm bigger than ℎslice(𝑘). The indices of these values in
𝑧random were stored in the vector �⃗�slices(𝑘).

• The vectors �⃗�slice(𝑘) and �⃗�slice(𝑘) contained the values of �⃗�random and �⃗�random at the indices �⃗�slices(𝑘).

• The function boundary was used to form a boundary around �⃗�slice(𝑘) and �⃗�slice(𝑘). The points in
this boundary were saved in the vectors �⃗�slice,boundary(𝑘) and �⃗�slice,boundary.

�⃗�slice,boundary(𝑘) and �⃗�slice,boundary(𝑘) could now be saved as the coordinates of the random delineation
at height ℎslice(𝑘).

To avoid the generation of unrealistic delineations, the absolute value of random coefficients 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚



3.3. Delineation Uncertainty Model for AutoContouring 27

(a) Transverse view of the dose distribution on
the planning CT with delineations of the high
dose CTV (green) and brainstem (blue)

(b) Sagittal view of the dose distribu
tion on the planning CT with delin
eations of the high dose CTV (green),
brainstem (blue) and spinal cord (pur
ple)

Figure 3.3: IMPT therapy dose distribution on the planning CT made with iCycle.

was limited 2.5⋅√𝜆𝑙. In Figure 3.4 an example of an unrealistic delineation is shown. The 2D slice of the
delineation is at the top of the delineation where it splits up into separate regions. As can be seen, the
delineation comprises of three different regions at this height. However, the function boundary treats
all the points as one region. Therefore the generation of multiple regions is avoided in this research. It
was found that this was avoided when |𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚| ≤ 2.5 ⋅ 𝜆𝑙.

Figure 3.4: An example of the formation of an unrealistic delineation. The blue scatter points are the points given by
(�⃗�slice , �⃗�slice) and the red line is the 2D delineation formed by the function 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦. The points (�⃗�slice , �⃗�slice) form three

separate regions, but the 2D delineation only consists of one region.

3.3. Delineation Uncertainty Model for AutoContouring
The next goal was to make an uncertainty model of an autocontouring software. In this thesis the
commercially available autocontouring software MIM (MIM Version 6.9.3, MIMVista Corp, Cleveland,
Ohio) is used to create autocontours. To create the autocontours, MIM utilized atlasbased auto
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contouring.

3.3.1. Generation of Synthetic CTs
Tomake an uncertainty model of the autocontouring softwareMIM, first a large number of synthetic CTs
were generated. To do so, the planning CT was registered to the six repeat CTs using Bspline DIR in
RTStudio, i.e., the planning CT was the moving image and the repeat CTs were the fixed images. This
resulted in six DVFs. From each DVF 15 randomly scaled DVFs were generated. These 15 randomly
scaled DVFs were formed by sampling 15 scaling factors from a normal distribution with mean 0.5 and
standard deviation 0.3 and multiplying the Bspline coefficients 𝑃𝑥, 𝑃𝑦 and 𝑃𝑧 of the DVF (Equation 2.18)
with each scaling factor. Doing this for all six DVFs resulted in a total of 6×15=90 random DVFs. In
RTStudio, the planning CT was then transformed with each of the 90 random DVFs to form 90 synthetic
CTs. The scaling factors were sampled from a normal distribution with mean 0.5 because this would
lead to synthetic CTs which are the most dissimilar to the planning CT and the repeat CTs, while still
generating realistic CTs. If the sampled scaling factor was negative, this would still lead to a realistic
synthetic CT. An example of a synthetic CT can be seen in Figure 3.5.

(a) Transverse view of the synthetic CT (b) Sagittal view of the synthetic CT.

Figure 3.5: One of the 90 synthetic CTs. The synthetic CT was made by deforming the planning CT (figure 3.2) with a random
DVF.

3.3.2. Autocontouring in MIM
To make autocontours in MIM, first an atlas had to be made. This atlas consisted of the delineated
planning CT and the delineated repeat CTs. The 90 synthetic CTs were imported into MIM. Within
MIM, an automatized workflow was established which delineated the input CTs and saved the resulting
delineations. It was chosen to use singleatlas selection autocontouring, along with the default settings
in MIM. In Figure 3.6 the workflow can be seen. Autocontours were made on all 90 synthetic CTs using
this workflow. The autocontours were then all exported to RTStudio, where they were registered back
to the planning CT using the inverse random DVFs. This resulted in 90 delineation sets on the planning
CT.

3.3.3. Building and Validating the Uncertainty Model
The 90 delineation sets on the planning CT were used to form an uncertainty model of the auto
contouring software using PCA. The uncertainty model was made for the high dose CTV and brainstem
delineations. The uncertainty model was made and validated using the same approaches as described
in Section 3.2. One difference however was that the high dose CTV consisted of three separated re
gions. To perform PCA on the high dose CTV and the brainstem together, a goldstandard of each
region of the CTV and of the brainstem were determined along with the corresponding centers of mass.
From the centers of mass of the high dose CTV, three sets of surface shape vectors �⃗�𝑖,𝑗,CTV and three



3.4. PCE Model for a Fixed Dose Distribution 29

Figure 3.6: Overview of the workflow in MIM. In the row Atlas Segmentation, the settings for the autocontouring are displayed.
It was chosen to use one match to run the autocontouring, which is equivalent to singleatlas selection autocontouring. The
other settings are default autocontouring settings in MIM. In the row Save RTstruct, the name and the save location of the

autocontour are defined.

mean shape vectors �⃗�𝑗,CTV were calculated for the high dose CTV, where 𝑗 ∈ (1, 2, 3) indicates the re
gions of the high dose CTV. From the center of mass of the brainstem, a set of surface shape vectors
�⃗�𝑖,brainstem and a mean surface shape vector �⃗�brainstem were calculated. The surface shape matrix P was
then made as follows:

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

�⃗�1,1,CTV − �⃗�1,CTV
⋮

�⃗�𝑁,1,CTV − �⃗�1,CTV
�⃗�1,2,CTV − �⃗�2,CTV

⋮
�⃗�𝑁,2,CTV − �⃗�2,CTV
�⃗�1,3,CTV − �⃗�3,CTV

⋮
�⃗�𝑁,3,CTV − �⃗�3,CTV

�⃗�1,brainstem − �⃗�brainstem
⋮

�⃗�𝑁,brainstem − �⃗�brainstem

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

∈ ℝ4𝑁×𝑀 (3.2)

SVD was performed on the surface shape matrix in Equation 3.2, which resulted in eigenmodes 𝑣𝑙 with
4𝑁 elements. Elements (1,...,𝑁) of each eigenmode 𝑣𝑙 were the eigenmode 𝑣𝑙,CTV,1 of the first region
of the high dose CTV, elements (𝑁+1,...,2𝑁) of 𝑣𝑙 were the eigenmode 𝑣𝑙,CTV,2 of the second region,
elements (2𝑁+1,...,3𝑁) of 𝑣𝑙 were the eigenmode 𝑣𝑙,CTV,3 of the third region and elements (3𝑁+1,...,4𝑁)
of 𝑣𝑙 were the eigenmode 𝑣𝑙,brainstem of the brainstem.

3.4. PCE Model for a Fixed Dose Distribution
Previous work by van der Voort et al. [44] has shown that PCE can be used as a metamodel for the
dose distribution as a function of setup and range uncertainties in IMPT. Using PCE, it is possible to
simulate many dose distributions for different setup and range error scenarios in a very short amount of
time and to thus perform a statistically significant analysis on the effect of setup and range uncertainties.
In this thesis PCE was first used to model the DVH of a delineated structure for a fixed dose distribution.

3.4.1. Construction of PCE
The PCE was constructed using the openGPC package in Matlab [28] [27]. The openGPC can build
the PCE using sparse grids with a fixed PC basis set and can also do this adaptively.
The inputs of the openGPC code were the grid level 𝐺𝐿, the number of extra levels 𝐸𝐿, the polyno
mial order 𝑃𝑂 and the polynomial type, the included eigenmodes (�⃗�1⋯�⃗�𝐿) of the delineated struc
ture, the mean 𝜇 and standard deviation 𝜎 of coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) corresponding to
the included eigenmodes and the fixed dose distribution location. The mean 𝜇 of the coefficients
(𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) equalled 0 and the standard deviation 𝜎 equalled (√𝜆1, ⋯ , √𝜆𝐿)
The next step in the openGPC code is to generate the cubature points needed to approximate the
integrals to calculate the PC coefficients. In this thesis, the number of cubature points was reduced by
using extended Smolyak Sparse grids.
Next, the PCE object is generated which contains the polynomial basis vectors with a maximum poly
nomial order of 𝑃𝑂. Furthermore, a hyperbolic trim is performed on the polynomial basis vector set to
exclude basis vectors which represent higher order interactions. The hyperbolic trim factor is calculated
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within openGPC. If spectral projection is used, the hyperbolic trim 𝑞 is chosen such that the value of the
expansion coefficients can still be accurately determined. If multidimensional polynomial regression
is used, no hyperbolic trim is applied, but it is checked that 𝑃 < 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2 .
Subsequently, the response for all cubature points is calculated. Each cubature point corresponds to a
certain set of coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) and an external code, the ‘black box’, computes the
DVHs for the delineations constructed with the coefficients corresponding to each cubature point. The
black box is a function which has as input the coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚), the eigenmodes
(�⃗�1, ⋯ , �⃗�𝐿) and the fixed dose distribution. Within the black box, first a surface shape vector �⃗�𝐿𝑟𝑎𝑛𝑑𝑜𝑚 is
constructed as described by Equation 2.13. Then the random delineation is projected onto 2D slices
as described in Section 3.2.3. The random delineation is then stored as a DICOM file and the DVH of
the random delineation for the fixed dose distribution is calculated. This calculation is done using the
Matterhorn Python library from the Erasmus MC. The DVH calculated by the black box is then fed back
to the openGPC code.
Using the responses obtained from the black box, the PC coefficients are calculated using either spec
tral projection or multidimensional polynomial regression and saved in a PCEobject, along with the
basis vectors. The PCE can then be checked for accuracy.

3.4.2. PCE Validation
To determine which grid order and polynomial order were necessary to generate an accurate PCE to
model the DVH as a function of the eigenmode coefficients, the exact DVH was compared to the DVH
generated by the PCE in different validation scenarios. Furthermore, the difference in the 𝐷98% (CTV)
or the 𝐷95% (PTV) generated by the PCE was compared to the exact value. This evaluation was done
with two metrics. Firstly the mean absolute difference Δ𝐷98%,𝑚𝑒𝑎𝑛 (CTV) or Δ𝐷95%,𝑚𝑒𝑎𝑛 (PTV) between
the PCE generated value and the exact value in all validation scenarios was determined. Secondly,
the 90th percentile value of the absolute difference Δ𝐷98%,90 (CTV) or Δ𝐷95%,90 (PTV) for all validation
scenarios was determined. Finally, the mean difference Δ𝐷0%,𝑚𝑒𝑎𝑛 in the maximum dose and the mean
difference Δ𝐷100%,𝑚𝑒𝑎𝑛 in the minimum dose were calculated.
100 validation scenarios were chosen in which the coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) were sampled
from a Gaussian distribution with mean 𝜇 equal to 0 and standard deviation 𝜎 equal to (√𝜆1, ⋯ , √𝜆𝐿).
However, if the absolute value of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 was larger than 2.5⋅𝜆𝑙, the validation scenario was not used.
This was to avoid the generation of unrealistic random delineations, as described in Section 3.2.3.

3.4.3. Characterizing Delineation Uncertainty Effects for a Fixed Dose Distribu
tion

Once the right 𝐺𝐿 and 𝑃𝑂 had been chosen, PCE could be used to model the DVH of a delineated
structure as a function of the eigenmode coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) and thus characterize the
effects of the delineation uncertainties. The effect of the delineation uncertainties was characterized in
two ways.
Firstly, the underdosage probability of the targets was investigated. This was done by creating 10,000
DVHs of a target using the PCE and determining in how many of these cases the dose was under the
constraint dose of 𝐷95% ≥ 0.95 ⋅ 𝐷prescribed for the PTV and 𝐷98% ≥ 0.95 ⋅ 𝐷prescribed for the CTV.
Secondly, DVH distributions for the delineated volumes were created. The DVH distributions were
created by again sampling 10,000 DVHs using the PCE and visualizing the confidence intervals in
which the sampled DVHs lie.
For the above characterization methods the values of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 for each realization of the DVH were
checked and if the absolute value of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 was larger than 2.5 ⋅ 𝜆𝑙, the DVH was not used.

3.5. PCE Model for a Reoptimized Dose Distribution
PCE was also used to model the DVHs of delineated structures and the total dose distribution when a
treatment plan was reoptimized to a random realization of a delineated target.

3.5.1. Construction of PCE
The PCE was constructed in a similar fashion to the method described in Section 3.4. However, now
the input consisted of the grid level 𝐺𝐿, the polynomial order 𝑃𝑂 and the polynomial type, the included
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eigenmodes (�⃗�1, ⋯ , �⃗�𝐿) of the delineated structure, the mean 𝜇 and standard deviation 𝜎 of coefficients
(𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) corresponding to the included eigenmodes, and the locations of the planning
CT, the planning delineations and the wishlist.
Furthermore, before the responses of all the cubature points were calculated, first a dose mask was
generated. To generate the dose mask, a number of worst case scenarios, where the random coeffi
cients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) are large, are fed to the black box and the response is evaluated.
For this PCE model, the random coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚), the eigenmodes (�⃗�1, ⋯ , �⃗�𝐿) and
the locations of the planning CT, the planning delineations and the wishlist serve as input for the black
box. Within the black box, first a random delineation is formed of the structure of interest using the ran
dom coefficients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚). The random delineation is then saved along with the other
delineations needed for planning. Then iCycle makes a treatment plan using the saved delineations,
the planning CT and the wishlist. Once iCycle has made the treatment plan, the black box returns the
dose distribution per voxel on the planning CT, the DVH of the random delineation made with coeffi
cients (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , ⋯ , 𝑐𝐿,𝑟𝑎𝑛𝑑𝑜𝑚) and the DVHs of any other desired delineated ROIs.
If in any of the worst case scenarios the dose in a voxel is lower than a cutoff dose 𝐷cutoff, the voxel is
excluded from the PCE. 𝐷cutoff was set to 0.01 Gy. The dose mask is a binary vector which indicates
which voxels are above 𝐷cutoff and thus included in the PCE.

3.5.2. PCE Validation
To validate the constructed PCE, 9 validation scenarios were used to determine the 𝐺𝐿 and 𝑃𝑂 neces
sary to generate an accurate PCE. The size of the coefficients was also limited to 2.5 ⋅ 𝜆𝑙 to avoid the
generation of unrealistic delineations.
To validate the PCE model, firstly the DVHs of the random delineations were compared to the exact
DVHs, as also described in Section 3.4.2. In this case Δ𝐷98% and Δ𝐷2% were determined for every
validation scenario.
Secondly, the total dose distribution on the CT in the validation scenarios was compared to the exact
dose distribution using gamma evaluation. In gamma evaluation, a calculated dose distribution 𝐷𝑐 and
a reference dose distribution 𝐷𝑚 are compared by considering the spatial displacement and the dose
difference between the two dose distributions. For each reference point 𝑟𝑚 in 𝐷𝑚, the dose/distance
variable Γ(𝑟𝑚 , 𝑟𝑐) is given by:

Γ(𝑟𝑚 , 𝑟𝑐) = √
|𝑟𝑚 − 𝑟𝑐|2
(Δ𝑟)2 + |𝐷𝑚(𝑟𝑚) − 𝐷𝑐(𝑟𝑐)|

2

(Δ𝐷)2 , (3.3)

where Δ𝑟 is the distancetoagreement and Δ𝐷 is the acceptable dose deviation. For each point 𝑟𝑚 in
the reference dose distribution the value of 𝛾(𝑟𝑚) is determined, which is given by:

𝛾(𝑟𝑚) = min{Γ(𝑟𝑚 , 𝑟𝑐)}, ∀{𝑟𝑐} (3.4)

If the value of 𝛾(𝑟𝑚) is smaller than 1, the point 𝑟𝑚 is accepted and if 𝛾(𝑟𝑚) is larger than 1, the point
𝛾(𝑟𝑚) is rejected.
For each validation scenario, 𝛾(𝑟𝑚) was calculated for every voxel in the exact dose distribution with
respect to the dose distribution obtained with the PCE model. In this thesis Δ𝑟 was set to 1 mm and
Δ𝐷 was set to 0.1 Gy.
Furthermore, the dose distribution generated by the PCE and the exact dose distribution were com
pared voxelwise. This was done by calculating the Δ𝐷2 of the dose difference between the exact dose
and the PCE generated dose. Δ𝐷2 is the minimum dose difference of the 2% of voxels which have the
largest dose difference.

3.5.3. Characterizing Delineation Uncertainty Effects for a Reoptimized Dose
Distribution

Once the right 𝐺𝐿 and 𝑃𝑂 had been chosen, the PCE was used to model the DVH of the CTV in the
same way as described in Section 3.4.3. For the hepatocellular carcinoma patient a DVH distribution
of the healthy liver was also made and the the NTCP of the healthy liver was calculated in all scenarios.
The healthy liver was defined as the liver delineation excluding the CTV delineation. The NTCP was
calculated with the Luman Kutcher Burman model, as desribed in Section 2.4.2. The NTCP parameters
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were based on the model obtained by Dawson et al., which describes the dosevolume tolerance for
radiationinduced liver disease [9]. The volume effect 𝑛 equalled 0.9700, the tolerance dose 𝑇𝐷50
equalled 39.8 Gy and the fit parameter 𝑚 equalled 0.12.



4
Results

In this chapter the results of the research are presented. First the results of the delineation quantifi
cation and characterization for both the manual delineations and autocontours are shown in Section
4.1. Thereafter the use of PCE as a meta model for the DVH for a fixed dose distribution and both
the DVH and the dose distribution for a reoptimized dose distribution is validated in Section 4.2. Fi
nally, the dosimetric effects of delineation uncertainties for a fixed dose distribution (Section 4.3) and
a reoptimized dose distribution (Section 4.4) are shown.

4.1. Delineation Uncertainty Quantification and Characterization
4.1.1. Manual Delineations
The 3D delineations of two out of the 12 manual delineations of the GTV in the liver are displayed in
Figure 4.1. The probability map for all manual delineations of the GTV on two different CT slices can

(a) Delineation 1 (b) Delineation 2

Figure 4.1: Two of the 12 manual delineations of the GTV by the radiation oncologists.

be seen in Figure 4.2. The goldstandard delineation was obtained by thresholding the probability map
at 0.5. The goldstandard delineation is displayed in Figure 4.3.
The DSCs of all the delineations with respect to the goldstandard delineation are displayed in Table
4.1. The mean DSC is 0.8780 with a standard deviation of 0.0542. The ratio between the largest de
lineated volume and the smallest delineated volume equals 1.8088. Next PCA was performed on the

Table 4.1: The DSCs for all manual delineations of the GTV with respect to the goldstandard delineation.

Delineation number 1 2 3 4 5 6 7 8 9 10 11 12
DSC 0.7475 0.8364 0.8541 0.8902 0.9083 0.9155 0.8921 0.8749 0.8385 0.9352 0.8925 0.9507
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(a) Probability map at 𝑧 = −1387.5 mm (b) Probability map at 𝑧 = −1411.5 mm

Figure 4.2: Probability map of the manual delineations of the GTV at 𝑧 = −1387.5 mm and 𝑧 = −1411.5 mm.

Figure 4.3: Goldstandard delineation of the manual delineations of the GTV.

set of delineations, as described in Section 3.2. First the surface shape vectors for each delineation
were determined. The total length of each surface shape vector 𝑝𝑖 was 650161. In Table 4.2 the num
ber of multiple intersections in the determination of the surface shape vectors for each delineation is
shown. The average number of multiple intersections equals 818 per delineation and the maximum
is 5035, which corresponds to 0.13% and 0.77% of the number of elements in each surface shape
vector, respectively. The time to build the surface shape vectors for all delineations was approximately
3 hours. The delineation with 5035 multiple intersections and an example of a multiple intersection with
this delineation are shown in Figure 4.4. The high number of multiple intersections is partially due to a
concavity at the bottom of this delineation.

Table 4.2: The number of multiple intersections in the determination of the surface shape vectors 𝑝𝑖 for the manual GTV
delineations.

Delineation number 1 2 3 4 5 6 7 8 9 10 11 12
Number of multiple intersections 652 165 423 308 298 5035 654 1704 144 224 175 32

The eigenmodes of the set of delineations were determined using PCA. In Figure 4.5a, the fraction of
the variance of the data that each eigenmode explains is shown. As can be seen, most of the variance
of the data is explained by a small number eigenmodes, which means that the differences between
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(a) Delineation 6 (b) Multiple intersections of line with the surface of the de
lineation

Figure 4.4: (a): Manual delineation 6 of the GTV. (b): An example of the line originating in the center of mass of the
goldstandard GTV delineation and intersecting the surface of delineation 6 multiple times.

the different delineations are concentrated in a small number of correlated deformations. The first 5
eigenmodes explain 90.0 % of the variance. In Figure 4.6, a visualization of the effect of the two most

(a) (b)

Figure 4.5: (a): Fraction of the variance of the manual GTV delineation data that each eigenmode explains.
(b): The mean error along with the maximum reconstruction error for the manual delineations as a function of the number of

eigenmodes.

important eigenmodes on the delineation made with the mean surface shape vector �⃗� (Equation 2.3)
is shown. The delineation made with the mean surface shape vector �⃗� will be referred to as the mean
delineation in the rest of this thesis. It can be seen that the eigenmodes deform the mean delineation
by several millimeters.
Figure 4.5b shows the mean and maximum reconstruction accuracy of the original delineation ge
ometries as a function of the number of dominant eigenmodes used in the reconstruction across all
delineations, as described in Equation 3.1. As expected, the maximum error and mean error decrease
as more eigenmodes are used to reconstruct the data and the mean and maximum error go to 0 mm
when all 12 eigenmodes are used. When using 4 eigenmodes the mean reconstruction error is already
less than 1 mm. It was thus decided to use 4 eigenmodes to form the random delineations of the GTV
in the PCE model.

4.1.2. AutoContours
The delineation uncertainty of the autocontouring software MIM was quantified for both the brainstem
and the high dose CTV delineations. First the delineation uncertainty of the high dose CTV is quantified
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(a) The effect of eigenmode 𝑙 = 1 on the mean de
lineation at 𝑧 = −1389 mm

(b) The effect of eigenmode 𝑙 = 2 on the mean
delineation at 𝑧 = −1416.5 mm

Figure 4.6: Visualization of the effect of the first (a) and second (b) eigenmode on the mean GTV delineation. Delineation 1
(red) is obtained from the surface shape vector �⃗� = �⃗� − √𝜆𝑙 ⋅ �⃗�𝑙, delineation 2 (green) is obtained from �⃗� = �⃗�, and delineation 3

(yellow) is obtained from �⃗� = �⃗� + √𝜆𝑙 ⋅ �⃗�𝑙

and characterized, after which the same is done for the brainstem.

High Dose CTV Delineations
The probability map of the high dose CTV at three different heights is shown in Figure 4.7. It can be
seen that the delineations can differ by a couple of millimeters at some spots. This is for instance visible
on the probability map at 𝑧 = −490mm, where there is a part of the left region which is only covered by
approximately 80% of the delineatinons. In Figure 4.8 the goldstandard delineation of the high dose
CTV is shown. The mean DSC of all delineations with respect to the goldstandard is 0.9670 with a
standard deviation of 0.0075. The ratio between the maximum delineated volume and the smallest
delineated volume is 1.0245.
The high dose CTV consists of 3 separate regions, which means that 3 surface shape vectors were
made per delineation, as described in Section 3.3.3. To reduce the computation time, the polar an
gle 𝜃 was increased with 1∘ increments when determining the surface shape vectors, opposed to the
0.1∘ increments for the manual delineations. This resulted in surface shape vectors with a length of
361 × 181 = 65341 elements. The computation time to construct all surface shape vectors for all
delineations of the high dose CTV was approximately 10 hours. The average number of multiple inter
sections for the top region of the high dose CTV is 2261, which is 3.5% of the number of elements in
the surface shape vector. The maximum number of multiple intersections equals 2825, which is 4.3%
of the number of elements in the surface shape vector. For the lower region of the high dose CTV the
mean number of multiple intersections is 1094 (1.7%), with a maximum of 1491 multiple intersections
(2.3%). Finally, for the middle region the mean number of intersections equals 114 (0.2%), with a max
imum of 440 (0.7%). The high number of multiple intersections in the top part of the high dose CTV is
due to its concave shape. In Figure 4.9 one delineation of the top part of the high dose CTV is shown
along with a line originating in the center of mass of the goldstandard and crossing the surface of this
delineation multiple times.
Because of the high number of multiple intersections in the high dose CT, the shape of the individual
delineations could not be properly established using surface shape vectors. Therefore it was decided
not to perform PCA on the high dose CTV delineations, as this would not give an accurate characteri
zation of the variation between the delineations.

Brainstem Delineations
In Figure 4.10 the probability map of the brainstem delineations is shown on two CT slices. It can be
seen that the variation among the delineations is minimal, as the largest part of the delineations totally
overlap and there are only small variations of around 1 millimeter with respect to the region where all
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(a) Probability map at 𝑧 = −430 mm. (b) Probability map at 𝑧 = −490 mm.

(c) Probability map at 𝑧 = −540 mm.

Figure 4.7: Probability map of the delineations of the high dose CTV at 𝑧 = −430 mm, 𝑧 = −490 mm and 𝑧 = −540 mm.

Figure 4.8: Goldstandard delineation of the autocontours of the high dose CTV.

delineations overlap. The goldstandard delineation obtained from thresholding the probability map at
0.5 can be seen in Figure 4.11. The mean DSC of the delineations with respect to the goldstandard
delineation is 0.9680 with a standard deviation of 0.0071. Furthermore, the ratio of the maximum de
lineated volume to the minimum delineated volume equals 1.0784.
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(a) Delineation 20 (b) Multiple intersections of line with the surface of the de
lineation

Figure 4.9: (a): The top region of delineation 20 of the high dose CTV. (b): An example of the line originating in the center of
mass of the goldstandard delineation and crossing the surface of delineation 20 multiple times.

(a) Probability map at 𝑧 = −408 mm (b) Probability map at 𝑧 = −428 mm

Figure 4.10: Probability map of the delineations of the brainstem at 𝑧 = −408 mm and 𝑧 = −428 mm.

Figure 4.11: Goldstandard delineation of the autocontours of the brainstem.
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The time to compute all surface shape vectors was approximately 3 hours. The average number of
multiple intersections per delineation is 84 and the maximum number equals 480, which correspond to
0.13% and 0.73% of the total number of elements in the surface shape vectors, respectively.
From the surface shape vectors the eigenmodes were determined using PCA. Because the surface
shape vectors of the high dose CTV could not be determined accurately, PCA was only performed on
the surface shape matrix of the brainstem, and not on the combined surface shape matrix which is
shown in Equation 3.2.
The fraction of the variance explained by each eigenmode is shown in Figure 4.12a. The variance of
the data is not dominated by a small number of eigenmodes as 45 eigenmodes are needed to explain
90.2% of the variance of the data. The effect of the two most dominant eigenmodes on the mean de
lineation is shown in Figure 4.13. It can be seen that these eigenmodes have very little effect on the
mean delineation.
In Figure 4.12b the reconstruction error as a function of the number of dominant eigenmodes is shown.
When 0 eigenmodes are used for the reconstruction, which means that the error is being calculated
with respect to the mean delineation, the mean error is already below 0.5 mm and the maximum error
is below 1.5 mm. As the number of eigenmodes increases, the mean error and maximum error tend
towards 0 mm.

(a) (b)

Figure 4.12: (a): Fraction of the variance of the brainstem delineation data that each eigenmode explains.
(b): The mean error along with the maximum reconstruction error for the brainstem delineations as a function of the number of

eigenmodes.

4.2. PCE Validation
In this section PCE is validated as a metamodel for two responses as a function of the random eigen
mode coefficients.
First the use of the PCE as a model for the DVH of a CTV and PTV for a fixed dose distribution
is validated. The PCE model was built to model the DVH of the CTV and PTV of the hepatocel
lular carcinoma patient using 4 eigenmodes, and thus resulting in the uncertain input vector 𝜉 =
(𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐3,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐4,𝑟𝑎𝑛𝑑𝑜𝑚). The PCE model was made for both the VMAT plan and
the IMPT plan. It was decided not to build a PCE model for the head and neck patient with the auto
contours because the number of eigenmodes needed to explain the variations between the brainstem
autocontours was too large to build a PCE model with. Building a PCE model with 45 eigenmodes
would require a large amount of computation time and memory and would not be feasible. The fixed
dose distribution for the IMPT plan with which the PCE was built is shown in Figure 4.14. This dose
distribution was obtained by making a treatment plan with iCycle with the wishlist given in Table 3.1.
The CTV delineation used in planning was equal to the goldstandard GTV delineation determined in
Section 4.1.1.
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(a) The effect of eigenmode 𝑙 = 1 on the mean de
lineation at 𝑧 = −446 mm

(b) The effect of eigenmode 𝑙 = 2 on the mean delin
eation at 𝑧 = −390 mm

Figure 4.13: Visualization of the effect of the first (a) and second (b) eigenmode on the mean brainstem delineation.
Delineation 1 (red) is obtained from the surface shape vector �⃗� = �⃗� −√𝜆𝑙 ⋅ �⃗�𝑙, delineation 2 (green) is obtained from �⃗� = �⃗�, and

delineation 3 (yellow) is obtained from �⃗� = �⃗� + √𝜆𝑙 ⋅ �⃗�𝑙

Figure 4.14: IMPT dose distribution on the goldstandard delineation of the CTV. The delineations of the CTV (red), liver
(brown), bowel (purple), spinal cord (light blue) and left kidney (light green) are also shown.

The PCE is also validated as a model for the reoptimized dose distribution for different realizations of
the CTV delineations for the hepatocellular carcinoma patient using 2 eigenmodes. The uncertain input
vector was 𝜉 = (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚). This model was only made for the IMPT plan.

4.2.1. PCE Model for a Fixed Dose Distribution
To model the effect of the delineation uncertainties for a fixed dose distribution with the PCE, first the
grid level and polynomial order had to be established with which the PCE accurately recreated the
exact DVHs. To do so, the DVHs created by the PCE were visually compared with the exact DVHs
and the values of the 𝐷98% (for the CTV delineations) and the 𝐷95% (for the PTV delineations) obtained
from the PCE model were compared to the exact values in 100 validation scenarios. The results of the
comparison are shown in Table 4.3, along with the time to build the PCE with the given PCE settings.
All these PCEs were built using spectral projection. Furthermore, in Table 4.4 the mean difference in
the maximum dose Δ𝐷0%,𝑚𝑒𝑎𝑛 and the mean difference in the minimum dose Δ𝐷100%,𝑚𝑒𝑎𝑛 is shown. It
can be seen that for the VMAT plan, Δ𝐷95%,𝑚𝑒𝑎𝑛 and Δ𝐷98%,𝑚𝑒𝑎𝑛 for the PTV and CTV, respectively, are
relatively low when a grid level of 4 with an extra level is used in combination with a polynomial order
of 5. However, for the IMPT plan the Δ𝐷98%,𝑚𝑒𝑎𝑛 remains high up to a grid level of 5 with an extra level
and a polynomial order of 6.
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As can be seen in Table 4.4, Δ𝐷100%,𝑚𝑒𝑎𝑛 and Δ𝐷0%,𝑚𝑒𝑎𝑛 are relatively large for all PCE settings for all
structures. This is because the 𝐷100% and 𝐷0% are very sensitive parameters which only depend on
the dose in one voxel and thus these parameters are hard for the PCE to model. However, because in
this thesis only the 𝐷95% and the 𝐷98% are used to determine whether a delineation meets a planning
constraint, the inaccuracies in the 𝐷100% and 𝐷0% are not deemed significant.

Table 4.3: The mean and 90th percentile of the difference across the 100 validation scenarios between the PCE calculated
𝐷98% and 𝐷95% and the exact values for various PCE settings. Here the number following 𝐺𝐿 is the grid level, the number

following 𝐸𝐿 is the number of extra levels and the number following 𝑃𝑂 is the polynomial order. The computation time for the
PCE construction with the given PCE settings is also given.

CTV VMAT plan PTV VMAT plan CTV IMPT plan Computation time
Δ𝐷98%,𝑚𝑒𝑎𝑛 Δ𝐷98%,90 Δ𝐷95%,𝑚𝑒𝑎𝑛 Δ𝐷95%,90 Δ𝐷98%,𝑚𝑒𝑎𝑛 Δ𝐷98%,90

GL3EL1PO4 0.23 Gy 0.61 Gy 0.20 Gy 0.35 Gy 0.64 Gy 1.31 Gy 10 min
GL4EL1PO5 0.09 Gy 0.20 Gy 0.13 Gy 0.28 Gy 0.39 Gy 0.95 Gy 15 min
GL5EL1PO6 0.09 Gy 0.19 Gy 0.13 Gy 0.33 Gy 0.37 Gy 0.71 Gy 45 min

Table 4.4: The mean and 90th percentile difference across the 100 validation scenarios between the PCE calculated 𝐷100% and
𝐷0% and the exact values for various PCE settings. Here the number following 𝐺𝐿 is the grid level, the number following 𝐸𝐿 is

the number of extra levels and the number following 𝑃𝑂 is the polynomial order.

CTV VMAT plan PTV VMAT plan CTV IMPT plan
Δ𝐷100%,𝑚𝑒𝑎𝑛 Δ𝐷0%,𝑚𝑒𝑎𝑛 Δ𝐷100%,𝑚𝑒𝑎𝑛 Δ𝐷0%,𝑚𝑒𝑎𝑛 Δ𝐷100%,𝑚𝑒𝑎𝑛 Δ𝐷0%,𝑚𝑒𝑎𝑛

GL3EL1PO4 1.13 Gy 1.19 Gy 6.09 Gy 0.61 Gy 3.12 Gy 0.08 Gy
GL4EL1PO5 1.16 Gy 1.20 Gy 5.68 Gy 0.80 Gy 1.69 Gy 0.15 Gy
GL5EL1PO6 1.17 Gy 1.49 Gy 6.20 Gy 0.75 Gy 2.18 Gy 0.25 Gy

For the CTV and PTV in the VMAT plan, the PCE model built with 4 grid levels, 1 extra level and a
polynomial order of 5 was chosen to model the DVH of these structures on a fixed dose distribution.
In the construction of the PCE there were 209 function evaluations, including 8 function evaluations
because of the extra level. This PCE consisted of 73 PC basis vectors after a hyperbolic trim with
𝑞 = 0.8614.
In Figure 4.15 the DVHs of the mean delineations of the CTV and PTV, where all coefficients 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚
equal 0, for the fixed dose distribution are shown. As can be seen, the DVHs overlap very well, except
at 100% relative volume. This is due to the inaccuracy of the PCE determining the 𝐷100%, as discussed
earlier.

(a) An overview of the whole dose range of the DVH. (b) A zoomed in view of the DVH.

Figure 4.15: The exact DVH and the PCE generated DVH of the mean CTV and PTV delineations in the fixed VMAT plan. The
DVHs overlap everywhere, except at 100% relative volume. This is due to an inaccuracy of the PCE in determining the 𝐷100%.

The inaccuracy of the PCE in modeling the 𝐷100% is also shown when looking at the dependence of
the 𝐷100% on the individual eigenmodes. In Figure 4.16 the 𝐷100% of the CTV and PTV in the VMAT
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plan is plotted as a function of the random coefficients 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 for eigenmode 1 and eigenmode 2.
The exact 𝐷100% clearly does not overlap with the 𝐷100% calculated by the PCE. This is because the
exact 𝐷100% does not change smoothly when the random coefficients change and there are sudden big
jumps in dose when the random coefficients change. This is hard for the PCE to reconstruct. However,
when looking at the dependence of both the 𝐷98% for the CTV and the 𝐷95% for the PTV on the random
coefficients (Figure 4.17), it can be seen that the exact𝐷98% and𝐷95% overlap with the values calculated
by the PCE in the region where realistic delineations are made (−2.5 ≤ (𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚/√𝜆𝑙) ≤ 2.5).

(a) The dependence of the 𝐷100% of the CTV on the ran
dom coefficients of the first two eigenmodes.

(b) The dependence of the 𝐷100% of the PTV on the ran
dom coefficients of the first two eigenmodes.

Figure 4.16: The dependence of the 𝐷100% of the CTV and PTV on the first 2 eigenmodes in the fixed VMAT plan calculated by
the PCE along with the exact dependence of 𝐷100% on the first 2 eigenmodes.

(a) The dependence of the 𝐷98% of the CTV on the ran
dom coefficients of all eigenmodes.

(b) The dependence of the 𝐷95% of the PTV on the ran
dom coefficients of all eigenmodes.

Figure 4.17: The dependence of the 𝐷98% of the CTV and the 𝐷95% of PTV on all eigenmodes in the VMAT plan calculated by
the PCE along with the exact dependence of 𝐷98% and 𝐷95% on all eigenmodes.

For the CTV in the IMPT plan, the PCE models shown in Table 4.3 were deemed too inaccurate.
Therefore, a PCE model was built using a grid level of 6, 1 extra level and a polynomial order of
7. Furthermore, this PCE model was built using regression, as opposed to spectral projection. In the
construction of the PCE there were 2009 function evaluations, including 8 function evaluations because
of the extra level. The PCE consisted of 330 PC basis vectors and there was no hyperbolic trim applied.
The construction time of this PCE was approximately 2.5 hours.
In the 100 validation scenarios, Δ𝐷98%,𝑚𝑒𝑎𝑛 was 0.34 Gy and Δ𝐷98%,90 was 0.61 Gy. In Figure 4.18 the
DVH of the mean CTV is shown. The dependence of the 𝐷98% on the individual random coefficients for
each eigenmode is shown in Figure 4.19. The PCE calculated values of the 𝐷98% overlap well with the
exact 𝐷98% values in the region where realistic delineations are made (−2.5 ≤ (𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚/√𝜆𝑙) ≤ 2.5),
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but there is some discrepancy between the curves near 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚/√𝜆𝑙 = 0, as can be seen in Figure
4.19b.

(a) An overview of the whole dose range of the DVH. (b) A zoomed in view of the DVH.

Figure 4.18: The exact DVH and the PCE generated DVH of the mean CTV delineation in the fixed IMPT plan. The DVHs
overlap well, but there is some difference between the curves at the dose fall off point.

(a) An overview of the whole range of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 used in
building the PCE.

(b) A zoomed in view with −1 ≤ (𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚/𝜆𝑙) ≤ 1.

Figure 4.19: The dependence of the 𝐷98% of the CTV on all eigenmodes in fixed IMPT plan calculated by the PCE along with
the exact dependence of 𝐷98% on all eigenmodes.

4.2.2. PCE Model for a Reoptimized Dose Distribution
To validate the use of the PCE as a metamodel for the reoptimized dose distribution for different
realizations of the CTV for the IMPT plan and find the desired grid level and polynomial order, a gamma
evaluation between the exact dose distribution and the PCE generated dose distribution was performed
for 9 different validation scenarios, as described in Section 3.5.2. Furthermore, the Δ𝐷2 was determined
between the exact and PCE generated dose distribution in the validation scenarios. The percentage
of voxels that passed the gamma evaluation and the Δ𝐷2 for each validation scenario for various PCE
settings are shown in Table 4.5. All these PCEsweremade using spectral projection. It can be seen that
the number of accepted voxels is rather low for all PCE settings and the Δ𝐷2 is high. The percentage of
accepted voxels would ideally be close to 100%. The computation time for the PCE built with settings
GL2EL1PO3 was approximately 24 hours and for the settings GL3EL1PO4 it was approximately 140
hours. The long computation times are caused by the time that it takes iCycle to create a treatment plan,
which is around 1.5 hours. The treatment plans were made sequentially, which meant that only one
treatment plan was made at a time. Furthermore, the computation time was increased due to other jobs
which were being performed on the server. The absolute difference between the exact 𝐷98% and the
PCE calculated 𝐷98% for varying PCE setting is shown in Table 4.6, along with the absolute difference in
the 𝐷2%. It can be seen that Δ𝐷98% is always very low, but Δ𝐷2% is quite high for all validation scenarios.
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This is probably because there is only a constraint on the minimum dose delivered to the CTV, so the
𝐷98% stays near the same value across all validation scenarios. However, there is no constraint on
the maximum dose delivered to the CTV, so the 𝐷2% can vary more between the different validation
scenarios.
It was chosen to construct the PCE with a grid level of 3, 1 extra level and a polynomial order of 4.
The number of function evaluations was 21, including 4 function evaluations due to the extra level. The
PCE consisted of 12 basis vectors after a hyperbolic trim with 𝑞 = 0.995.

Table 4.5: The percentage of accepted voxels and the Δ𝐷2 in the reoptimized IMPT plans in all the validation scenarios for
various PCE settings. The number following 𝐺𝐿 is the grid level, the number following 𝐸𝐿 is the number of extra levels and the
number following 𝑃𝑂 is the polynomial order. In the validation scenario column, the scenario is given by (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚).

GL2EL1PO3 GL3EL1PO4
Validation scenario Accepted voxels Δ𝐷2 Accepted voxels Δ𝐷2

(0,0) 77.51% 2.44 Gy 76.80% 3.07 Gy
(1 ⋅ √𝜆1, 0) 68.39% 4.70 Gy 68.80% 6.32 Gy
(0, 1 ⋅ √𝜆2) 77.29% 3.38 Gy 69.94% 6.19 Gy
(2 ⋅ √𝜆1, 0) 70.69% 4.45 Gy 66.46% 5.83 Gy
(0, 2 ⋅ √𝜆2) 72.34% 4.46 Gy 62.05% 6.72 Gy

(1 ⋅ √𝜆1, 1 ⋅ √𝜆2) 73.57% 4.12 Gy 66.26% 7.27 Gy
(1 ⋅ √𝜆1, 2 ⋅ √𝜆2) 66.81% 6.05 Gy 68.54% 5.30 Gy
(2 ⋅ √𝜆1, 1 ⋅ √𝜆2) 68.34% 5.79 Gy 68.20% 5.11 Gy
(2 ⋅ √𝜆1, 2 ⋅ √𝜆2) 61.19% 6.31 Gy 68.15% 4.56 Gy

Table 4.6: The difference between the exact and PCE calculated 𝐷98% and 𝐷2% of the CTV in the reoptimized IMPT plans in all
validation scenarios for various PCE settings.The number following 𝐺𝐿 is the grid level, the number following 𝐸𝐿 is the number
of extra levels and the number following 𝑃𝑂 is the polynomial order. In the validation scenario column, the scenario is given by

(𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚).

GL2EL1PO3 GL3EL1PO4
Validation scenario Δ𝐷98% Δ𝐷2% Δ𝐷98% Δ𝐷2%

(0,0) 0.4522 Gy 0.2966 Gy 0.4283 Gy 0.0348 Gy
(1 ⋅ √𝜆1, 0) 0.0776 Gy 0.4675 Gy 0.0046 Gy 0.6680 Gy
(0, 1 ⋅ √𝜆2) 0.0269 Gy 0.0432 Gy 0.0963 Gy 0.6329 Gy
(2 ⋅ √𝜆1, 0) 0.2272 Gy 0.1350 Gy 0.1319 Gy 0.0506 Gy
(0, 2 ⋅ √𝜆2) 0.0382 Gy 0.1879 Gy 0.0021 Gy 0.4857 Gy

(1 ⋅ √𝜆1, 1 ⋅ √𝜆2) 0.0736 Gy 0.4974 Gy 0.0463 Gy 0.9474 Gy
(1 ⋅ √𝜆1, 2 ⋅ √𝜆2) 0.0809 Gy 0.8471 Gy 0.0137 Gy 0.6094 Gy
(2 ⋅ √𝜆1, 1 ⋅ √𝜆2) 0.0295 Gy 0.0196 Gy 0.0597 Gy 0.0640 Gy
(2 ⋅ √𝜆1, 2 ⋅ √𝜆2) 0.0342 Gy 0.9505 Gy 0.0031 Gy 0.0506 Gy

For the nominal case where 𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 = 0 and 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚 = 0, the exact dose distribution along with the
dose distribution calculated with the PCE are shown in Figure 4.20. The two dose distributions look
similar.
The DVHs of the CTV and liver in the exact nominal dose distribution and the dose distribution gener
ated by the PCE are shown in Figure 4.21a. The DVHs based on the PCE were made in 2 ways. For
the first approach, the DVH was calculated directly by the PCE. For the second approach, the DVH
was based on the dose distribution generated by the PCE. Both approaches yield DVHs which overlap
with each other in the nominal case. When comparing the exact DVHs with the DVH calculated with
the PCE, the DVHs of the CTV overlap well. However, the exact DVH and the PCE calculated DVH of
the liver do not overlap.
In Figure 4.21b the DVHs of the CTV and liver in the validation scenario where 𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 = 1 ⋅√𝜆1 and
𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚 = 1 ⋅ √𝜆2 are shown. Here it can be seen that the exact DVH and the PCE generated DVHs
of the CTV do not overlap near the maximum dose in the CTV, but they do overlap until and a bit past
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(a) Exact dose distribution (b) PCE generated dose distribution

Figure 4.20: The exact dose distribution (a) and the dose distribution calculated by the PCE (b) in the nominal scenario in the
reoptimized IMPT plan. The delineations of the CTV (light blue), liver (yellow), spinal cord (blue), kidneys (orange and red), and

bowel (purple) are also shown.

the dose falloff point.

(a) Nominal scenario (b) Validation scenario where 𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 = 1 ⋅ √𝜆1 and
𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚 = 1 ⋅ √𝜆2

Figure 4.21: The exact DVH and the DVH calculated by the PCE in the nominal scenario and a validation scenario in the
reoptimized IMPT plan. For the CTV and liver, two DVHs based on the PCE are plotted: one of a direct calculation of the DVH

by the PCE, and one which is based on the PCE dose distribution.

The dependence of the dose in the voxels close to the edge of the mean CTV delineation on the random
coefficients is shown in Figure 4.22. When the random coefficients change, which corresponds to a
change in shape of the CTV, the dose in these voxels can increase or decrease rapidly. In voxel 113847
the dose calculated with the PCE follows the exact dose well as a function of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚. However, in
voxel 203089 the dose calculated by the PCE does not exactly follow the exact dose, especially as a
function of only 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚. This could be because the exact dose makes a big jump (from 20 Gy to 40
Gy) when 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚 goes from 1 ⋅ √𝜆2 to 2 ⋅ √𝜆2. If a higher polynomial order is used to build the PCE,
the dose calculated by the PCE could possibly be able to follow this sudden jump better.
The dependence of both the 𝐷98% and the 𝐷2% of the CTV on the random coefficients is shown in Figure
4.23. As expected, the 𝐷98% does not vary much for different realizations of the CTV delineation. The
exact 𝐷2% and 𝐷98% do not seem to vary smoothly as a function of the random coefficients, so it is hard
for the PCE to model these parameters. However, a PCE with a higher polynomial order could possibly
replicate the 𝐷2% and 𝐷98% better.
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(a) Voxel 113847 (b) Voxel 203089

Figure 4.22: The dependence of the dose in two voxels on the random coefficients for both the exact dose distribution and the
dose distribution generated by the PCE in the reoptimized IMPT plans. The voxels are situated near the edge of the mean CTV

delineation.

(a) 𝐷2% (b) 𝐷98%

Figure 4.23: The dependence of both the exact and PCE calculated 𝐷2% and 𝐷98% of the CTV on the random coefficients in the
reoptimized IMPT plans.

4.3. Dosimetric Effect of Delineation Uncertainties for a Fixed Dose
Distribution

4.3.1. VMAT Plan
For the fixed VMAT plan, the DVH distribution of 10,000 randomly generated delineations of the CTV
is shown in Figure 4.24. A histogram of the corresponding 𝐷98% values is shown in Figure 4.25. Only
0.2% of the delineations do not meet the dose constraint (𝐷98% ≥ 54 Gy). This signifies that the 5 mm
margin between the CTV and the PTV is enough to account for the delineation uncertainties in the CTV.
There are some artefacts in the DVHs made by the PCE, as can be seen in the DVH distribution. In
some of the DVHs, the 𝐷100% is larger than the 𝐷99% and in other cases the maximum dose is smaller
than the 𝐷1%. This is because the PCE model is not accurate in the determination of the 𝐷100% and the
𝐷0%, as discussed in Section 4.2.1.
The DVH distribution of 10,000 random PTV delineations was also made. The PTV was equal to the
CTV plus a 5 mm margin. The DVH distribution is shown in Figure 4.26. The histogram of the 𝐷95%
values of the generated DVHs is displayed in Figure 4.27. In 17.1% of the random delineations the
𝐷95% value is under the 54 Gy dose constraint. The mean 𝐷95% for the random delineations equals
56.0 Gy and the average underdosage for the delineations which did not meet the target dose equals
2.1 Gy.



4.3. Dosimetric Effect of Delineation Uncertainties for a Fixed Dose Distribution 47

(a) An overview of the whole dose range of the DVH. (b) A zoomed in view of the DVH distribution.

Figure 4.24: The DVH distribution of 10,000 randomly generated CTV delineations in the fixed VMAT plan. The colors indicate
the confidence levels for a DVH to be in. The DVH of the goldstandard delineation and the delineation used for planning are

also plotted. The intersection of the planning constraint and the 98% volume line indicates the 𝐷98% dose constraint.

Figure 4.25: Histogram of the 𝐷98% values for the 10,000 random delineations of the CTV in the fixed VMAT plan.

(a) An overview of the whole dose range of the DVH. (b) A zoomed in view of the DVH distribution.

Figure 4.26: The DVH distribution of 10,000 randomly generated PTV delineations in the fixed VMAT plan. The colors indicate
the confidence levels for a DVH to be in. The intersection of the planning constraint and the 95% volume line indicates the

𝐷95% dose constraint.
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Figure 4.27: Histogram of the 𝐷95% values for the 10,000 random delineations of the PTV in the fixed VMAT plan.

4.3.2. IMPT Plan
For the IMPT plan, the DVH distribution of 10,000 randomly generated CTV delineations is shown in
Figure 4.28. It can be seen that for the goldstandard CTV delineation the 𝐷98% dose constraint is
exactly met, but in a majority of the cases the 𝐷98% is under 54 Gy. This is reinforced by the histogram
of the 𝐷98% for all 10,000 random delineations displayed in Figure 4.29. The 𝐷98% is under the dose
constraint for 69.0% of the random delineations and the mean 𝐷98% equals 50.4 Gy. Of the random
delineations which do not meet the dose constraint, the average 𝐷98% is 5.8 Gy under the target dose.
The fact that the dose constraint is not met in a majority of the cases is due to the fact that the dose
distribution is highly conformal to the goldstandard delineation. A delineation which is deformed with
respect to the goldstandard will likely have part of its volume in a low dose region, which will make
the 𝐷98% drop. It should be noted that the DVHs calculated with the PCE for the fixed dose distribution
in the IMPT plan are inaccurate, as discussed in Section 4.2.1. It should therefore be investigated
whether the PCE model can be made more accurate to verify these results.

(a) An overview of the whole dose range of the DVH. (b) A zoomed in view of the DVH distribution.

Figure 4.28: The DVH distribution of 10,000 randomly generated CTV delineations in the fixed IMPT plan. The colors indicate
the confidence levels for a DVH to be in. The DVH of the goldstandard delineation used for planning is also plotted. The

intersection of the planning constraint and the 98% volume line indicates the 𝐷98% dose constraint.

The effect of adding robustness settings to the IMPT treatment plan was also investigated. To this end,
the 𝑅𝑅 setting was set to 2% and the 𝑆𝑅 setting varied from 1 mm to 5 mm, in 1 mm increments. For
each of these robustness settings a new PCE model was built using spectral projection with a grid level
of 4, 1 extra level and a polynomial order of 5. The Δ𝐷98%,𝑚𝑒𝑎𝑛 and Δ𝐷98%,90 between the exact DVH
and the PCE calculated DVH for all robustness settings in 100 validation scenarios are shown in Table
4.7. It can be seen that the Δ𝐷98% is relatively large for all robustness settings, but does decrease as
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Figure 4.29: Histogram of the 𝐷98% values for the 10,000 random delineations of the CTV in the fixed IMPT plan.

𝑆𝑅 increases.

Table 4.7: The mean and 90th percentile difference across the 100 validation scenarios between the PCE calculated 𝐷98% and
the exact values for 5 different robustness settings.

Robustness settings Δ𝐷98%,𝑚𝑒𝑎𝑛 Δ𝐷98%,90
𝑅𝑅=2%, 𝑆𝑅=1 mm 0.3382 Gy 0.8549 Gy
𝑅𝑅=2%, 𝑆𝑅=2 mm 0.2682 Gy 0.6366 Gy
𝑅𝑅=2%, 𝑆𝑅=3 mm 0.1909 Gy 0.3881 Gy
𝑅𝑅=2%, 𝑆𝑅=4 mm 0.1700 Gy 0.3806 Gy
𝑅𝑅=2%, 𝑆𝑅=5 mm 0.1397 Gy 0.2824 Gy

The resulting DVH distributions of 10,000 random CTV delineations in the robust IMPT plans are shown
in Figure 4.30. It can be seen that the number of delineations that passes the CTV dose constraint
increases as the 𝑆𝑅 setting is increased. This is also as expected as the area of high dose becomes
larger when the 𝑆𝑅 increases and therefore a deformation of the goldstandard delineation will not lead
to a lower 𝐷98% in all cases. The fraction of delineations under the target dose, the mean 𝐷98% and
the average underdosage for the delineations that do not meet the dose constraint are summarized in
Table 4.8 for the various robustness settings.
Similar to the nonrobust IMPT plan, the PCE model is not entirely accurate for the robust IMPT plans.
These results should therefore also be verified with a more accurate PCE model.

Table 4.8: The fraction of delineations under the target dose (𝐷98% = 54 Gy), the mean 𝐷98% and the average underdosage for
the delineations which do not receive the target dose for 10,000 random CTV delineations in 5 fixed IMPT treatment plans

made with 5 different robustness settings.

Robustness settings Fraction of delineations
under target dose Mean 𝐷98% Average underdosage

𝑅𝑅 = 2%, 𝑆𝑅 = 1 mm 52.6 % 52.4 Gy 4.8 Gy
𝑅𝑅 = 2%, 𝑆𝑅 = 2 mm 30.3 % 54.6 Gy 4 Gy
𝑅𝑅 = 2%, 𝑆𝑅 = 3 mm 17.9 % 55.8 Gy 3.3 Gy
𝑅𝑅 = 2%, 𝑆𝑅 = 4 mm 9.7 % 56.7 Gy 3.0 Gy
𝑅𝑅 = 2%, 𝑆𝑅 = 5 mm 4.0 % 57.3 Gy 2.5 Gy

4.4. Dosimetric Effect of DelineationUncertainties for a Reoptimized
Dose Distribution

For the CTV in the reoptimized IMPT plan, the DVH distribution of 10,000 randomly generated delin
eations is shown in Figure 4.31. The DVHs were generated directly by the PCE. The mean 𝐷98% for
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(a) 𝑅𝑅 = 2%, 𝑆𝑅 = 1 mm. (b) 𝑅𝑅 = 2%, 𝑆𝑅 = 2 mm.

(c) 𝑅𝑅 = 2%, 𝑆𝑅 = 3 mm. (d) 𝑅𝑅 = 2%, 𝑆𝑅 = 4 mm.

(e) 𝑅𝑅 = 2%, 𝑆𝑅 = 5 mm.

Figure 4.30: The DVH distributions of 10,000 randomly generated CTV delineations in 5 fixed robust IMPT plans. The colors
indicate the confidence levels for a DVH to be in. The DVH of the goldstandard delineation used for planning is also plotted.

The intersection of the planning constraint and the 98% volume line indicates the 𝐷98% dose constraint.

the 10,000 delineations equals 56.99 Gy and all delineations meet the dose constraint (𝐷98% ≥ 54 Gy).
This is to be expected as a minimum dose constraint to the CTV was set during the treatment plan
optimization. However, it can be seen that the maximum dose in the CTV can vary. The maximum
dose of the 10,000 random delineations varies between 62.4 Gy and 64.2 Gy. The maximum dose can
vary because there is no constraint set on the maximum dose. It should be noted that the PCE model
is not accurate with the used polynomial order of 4, as discussed in Section 4.2.2. Therefore these
results are not entirely accurate.
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(a) An overview of the whole dose range of the DVH dis
tribution.

(b) A zoomed in view of the DVH distribution.

Figure 4.31: The DVH distribution of 10,000 randomly generated CTV delineations in the reoptimized IMPT plans.

Next the effect of the reoptimized dose distribution on the DVH of the healthy liver was investigated
by creating a DVH distribution of the liver in 10,000 reoptimized IMPT plans. The DVH distribution is
shown in Figure 4.32a. It can be seen that the different reoptimized IMPT plans result in different doses
delivered to liver and thus different DVHs. These results are however not entirely accurate because the
PCE generated DVHs do not entirely overlap with the exact DVHs, as seen in Section 4.2.2. Therefore
these results should be investigated more thoroughly when a more accurate PCEmodel has been built.
The clinical effect that these differences in the DVH have on the liver can be quantified by the NTCP
with the parameters given in Section 3.5.3. The NTCP gives the probability of radiation induced liver
disease. The NTCP values of the liver in the 10,000 reoptimized IMPT plans are shown in the histogram
in Figure 4.32b. The exact NTCP in the 9 validation scenarios was also calculated. In Table 4.9 the
exact NTCP in each validation scenario is shown.
The NTCP of the liver is very low in all 10,000 reoptimized IMPT plans, meaning that the effect of the
dose on the liver is minimal. However, it should be noted that NTCP values are dependent on the liver
DVHs generated by the PCE which were not accurate, so the NTCP values are also not accurate. The
exact NTCP values calculated in all validation scenarios are also very small and in the same order of
magnitude as the PCE calculated NTCP values in the 10,000 reoptimized IMPT plans.

(a) (b)

Figure 4.32: (a): The DVH distribution of the liver in 10,000 reoptimized IMPT plans. (b): Histogram of the NTCP values of the
liver for the 10,000 DVHs in (a).
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Table 4.9: The exact NTCP of the liver in all validation scenarios in the reoptimized IMPT plans. In the validation scenario
column, the scenario is given by (𝑐1,𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑐2,𝑟𝑎𝑛𝑑𝑜𝑚).

Validation scenario NTCP
(0, 0) 8.91 ⋅ 10−15

(1 ⋅ √𝜆1, 0) 2.44 ⋅ 10−14
(0, 1 ⋅ √𝜆2) 3.66 ⋅ 10−14
(2 ⋅ √𝜆1, 0) 1.65 ⋅ 10−14
(0, 2 ⋅ √𝜆2) 7.02 ⋅ 10−14

(1 ⋅ √𝜆1, 1 ⋅ √𝜆2) 2.88 ⋅ 10−14
(1 ⋅ √𝜆1, 2 ⋅ √𝜆2) 5.94 ⋅ 10−14
(2 ⋅ √𝜆1, 1 ⋅ √𝜆2) 2.70 ⋅ 10−14
(2 ⋅ √𝜆1, 2 ⋅ √𝜆2) 5.29 ⋅ 10−14



5
Discussion

In this chapter the results obtained in this thesis are discussed. First the use of PCA as a method
to characterize the delineation uncertainties for manual delineations and autocontours is discussed
in Section 5.1, along with the limitations of PCA to characterize delineation uncertainties and other
potential methods to model delineation uncertainties. Then the use of PCE as a metamodel for the
DVH and dose distribution for the fixed dose distribution and the reoptimized dose distribution is dis
cussed in Section 5.2. Finally, the dosimetric effects that delineation uncertainties have for a fixed dose
distribution and for a reoptimized dose distribution are examined in Section 5.3.

5.1. Principal Component Analysis
5.1.1. InterObserver Variability
PCA was used to characterize the delineation uncertainty of a GTV in the liver delineated by different
observers. As far as we know, this is the first time that PCA has been used to describe delineation
variability. PCA has been used before to characterize e.g., the interfractional motion of the prostate,
rectum and bladder during radiotherapy treatment [37].
The delineations of the GTV were shown to vary quite significantly as could be seen in the probability
map. The ratio of the maximum and minimum delineated volume and the DSCs also showed a big
variation between the delineations. 5 eigenmodes were needed to explain 90% the variability in the
shapes of the 12 delineations of the GTV and the dimensionality of the problem could be greatly re
duced with these eigenmodes.
It should however be noted that the delineations of 1 GTV of 1 patient were analyzed in this study. It
could therefore be that for other ROIs the shape variations between delineations by different radiation
oncologists are less or more correlated than found in this study and a different number of eigenmodes
would be needed to explain the variations. The GTV is an ROI which does not require much interpre
tation by the radiation oncologist, as only the visible part of the tumor on the medical image needs to
be delineated. The GTV in this thesis was also equal to the CTV, so the variations in the CTV were
equal to the variations in the GTV. However, for most tumors the CTV is not equal to the GTV, as the
CTV encompasses microscopic tumor extensions around the GTV which are not visible on the medical
image. In this case it is expected that the variations in the CTV delineations would be very different
from the variations of the GTV found in this thesis because there is more uncertainty in which parts
of the medical image belong to the CTV. The variations between CTV delineations can be reduced by
using a fixed tumor specific GTV to CTV margin which is determined from pathological studies [16].
Further analysis of CTV delineation uncertainties due to the presence of microscopic tumor extensions
is however outside the scope of this thesis.
Another aspect to take into account in the use of PCA to characterize delineation uncertainties is that
the shapes of tumors from patient to patient can vary, which means that the PCA model to characterize
the uncertainties in the delineations of the GTV for one patient is not directly transferable to another
patient.

53
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5.1.2. AutoContouring Variability
PCA was also used to characterize the delineation uncertainty of the brainstem and the high dose CTV
of a head and neck patient. The method of creating synthetic CTs from random DVFs worked well as
this ensured that only realistic synthetic CTs were formed. In MIM it was chosen to use singleatlas
based autocontouring. This choice was made because this is the atlasbased autocontouring method
which has the biggest inaccuracies, as discussed in Section 2.3.2. The autocontours registered back
to the planning CT could have variations with respect to each other due to one or both of the following
reasons:

• An inaccuracy in the DVF formed by registering the planning CT to one of the repeat CTs.

• An inaccuracy in the autocontours on the synthetic CTs made with singleatlas based auto
contouring.

It was found that 45 eigenmodes were needed to explain 90% of the variance between the auto
contours of the brainstem. This is a very large number and it is not convenient to use 45 random
coefficients as an input for a PCE model or any other model. The large number of eigenmodes shows
that many variations between the different autocontours are highly uncorrelated. In the probability map
which shows the overlap of the different autocontours it could already be seen that the differences be
tween the 90 autocontours were at most a 1 millimeter shift in any direction. These differences in the
autocontours seem to be arbitrary as these shifts occur in every single direction along the contour.
These random shifts could be a consequence of an inaccuracy in the registration of the planning CT,
an inaccuracy in the autocontouring software or an inaccuracy in the registration of the autocontours
back to the planning CT. In any case, the uncertainty in the delineation of the brainstem is not conve
nient to model with PCA. Therefore a different method to characterize the uncertainty in the brainstem
delineations would need to be found which is dependent on less variables.
For the high dose CTV delineations it was not possible to build a PCA model due to the number of
double crossings during the determination of the surface shape vector. More details on this limitation
are discussed in Section 5.1.4. From the probability map it could however be seen that there is more
variation in the autocontours of the high dose CTV than in the autocontours of the brainstem. This is
possibly because the tumor is not as visible on the CT as the OARs and therefore the delineations by
the autocontouring software will vary more.

5.1.3. PCA Performance
The number of eigenmodes needed to explain 90% of the variability of the delineations was significantly
different for the manual delineations and the autocontours. However, when looking at the relative num
ber of principal components with respect to the number of delineations, the dimension of the variation
space was reduced by 58% for the manual delineations, while for the autocontours of the brainstem
the dimension of the variation space was reduced by 50%. The dimensionality reduction is thus rela
tively similar for both the manual delineations and the autocontours.
The eigenmodes for the autocontours and the manual delineations represent very different variations
between the delineations. In the case of the autocontours, the eigenmodes represent the variations
due to inaccuracies in the autocontouring software or image registration, as discussed in Section 5.1.2.
These variations are very small and can be seen as noise which is largely uncorrelated, which leads
to a large number of eigenmodes needed to explain the variations. For the manual delineations, the
eigenmodes represent the variations in the delineations caused by the fact that different radiation on
cologists delineate the same structure differently. It can for instance be that one radiation oncologist
systematically delineates a structure slightly larger or more shifted to one direction than other radiation
oncologists. Such variations can also be seen in the eigenmodes in Figure 4.6, where the first two
eigenmodes of the manual GTV delineations led to a change of shape and a change of size of the
mean delineation. These variations are more correlated than the autocontouring variations and can
be described by fewer eigenmodes.
The ability to create realistic random delineations with the eigenmodes from PCA is limited by the data
used as input for PCA, as the eigenmodes only represent variations that are present in the input. It is
therefore necessary to make sure that the input delineations contain as much of the realistic variations
as possible and therefore a large number of input delineations is desired. However, the input delin
eations can contain redundancy which means that there can be an ideal number of input delineations
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which represents the variability between the delineations. Yu et al. [48] performed a study looking at
the ideal number of input DVFs needed as input for the PCA to represent all variations present in the
DVFs. The input DVFs were obtained by registering a planning CT to a number of repeat CTs. To find
the ideal number of DVFs needed, the number of eigenmodes needed to explain 90% of the variations
in the data was studied as a function of the number of input DVFs. When the number of input DVFs
was not enough, the number of eigenmodes needed to explain 90% of the variations increased when
the number of input DVFs increased. However, when the number of input DVFs was sufficient, the
number of eigenmodes stayed approximately the same, which meant that the new input DVFs did not
add any new variations. It was found that 26 DVFs were needed to capture all possible variations.
A similar analysis could be performed with the input delineations in this thesis. It could for instance be
that that the 12 manual delineations of the GTV by the radiation oncologists used in this study do not
capture all possible variations that exist due to interobserver variability between radiation oncologists
and that more delineations would be needed create an accurate uncertainty model.

5.1.4. Limitations
There are several limitations of the use of PCA to characterize delineation uncertainties. The first limi
tation is that multiple intersections can occur during the determination of the surface shape vector. This
effect was particularly visible in the determination of the surface shape vector for the high dose CTV
for the head and neck patient, where in one of the regions 3.5% of the elements of the surface vector
were inaccurate due to multiple intersections. This high number multiple intersections was due to a
concavity in the shape of the delineation, which is the case for the top region of the high dose CTV.
Because only the first intersection point is taken into account in the surface shape vector, there will be
parts of the surface which are not characterized by the surface shape vector in the case of multiple
intersections. Therefore this method of delineation characterization is only particularly suited to convex
shapes.
The second limitation of the use of PCA lies in the process of obtaining the random delineations on a 2D
CT slice. The random surface shape vector produces a cloud of scatter points which form the surface
of the 3D random delineation. To obtain the delineations on a 2D CT slice, the 3D scatter points just
above and below the height of the CT slice are projected onto the 2D CT slice. However, these points
do not truly lie on the 2D slice, which means that the delineation on the 2D slice does not exactly follow
the 3D delineation shape. This problem could be alleviated by reducing the increments with which polar
angle increased when determining the surface shape vector. This way more points of the 3D random
delineation will lie closer to or on the 2D slice, resulting in a more accurate 2D delineation. However,
this solution would come at the price of an increased computation time and memory use.
Another limitation encountered in this research uncertainties comes forth from the aforementioned pro
jection of the scatter points onto the 2D CT slices. The function boundary in Matlab is used to form
a boundary around the scatter points on the 2D slice. This boundary is the 2D delineation. However,
the function boundary does not take multiple regions of the delineation on the 2D slice into account.
Therefore, the 2D delineation is formed around both regions and encloses parts of the CT which are
not part of the true 3D delineation. This is however more a limitation of the function used in Matlab than
a limitation of PCA applied to delineations.

5.1.5. Other Delineation Uncertainty Characterization Methods
There are other methods which can potentially be used to characterize delineation uncertainties and do
not suffer from the limitations discussed in Section 5.1.4. One of these methods would be the use of a
Variational Autoencoder (VAE). The VAE is a deep learning generative model which is able to generate
new data based on training with real data. A VAE consists of two parts: an encoder and a decoder. In
the encoder the dimensionality of the data is reduced from the initial space to the latent space. In the
case of delineation geometries, the input to the encoder could be the a 3D matrix with the size of the
CT, where the matrix elements equal 1 inside the delineation and 0 outside the delineation. When the
dimensionality of the input is reduced from the input space to the latent space, the goal is to minimize
the amount of information that is lost. From the latent space the decoder then reconstructs the original
input data. The encoder and decoder pair are modified during training such that the input data and the
reconstructed input data are as similar as possible. Within the latent space, each input is encoded as
a Gaussian distribution. The latent space is regularized such that the Gaussian distributions of each
input are overlapping to ensure there is continuity in the latent space. Once the model has been trained
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it can be used to generate new data. This is done by sampling a point from latent space and decoding
this point with the decoder.
The VAE could be used in combination with the PCE to create random delineations, as was done with
PCA in this thesis. The uncertain input vector of the PCE would then consist of a point which is sampled
from the overlapping Gaussian distributions in latent space.

5.2. Polynomial Chaos Expansion
5.2.1. PCE as a MetaModel for the DVH for a Fixed Dose Distribution
PCE was used to model the DVH of different realizations of a delineation on a fixed dose distribution.
For the VMAT plan, the PCE was accurate in determining the DVH of the CTV and PTV, with a mean
error Δ𝐷98%,𝑚𝑒𝑎𝑛 of 0.09 Gy for the CTV and a mean error Δ𝐷95%,𝑚𝑒𝑎𝑛 of 0.13 Gy in the validation
scenarios. Furthermore, in 90% of the validation scenarios the error in the 𝐷98% was less than 0.19
Gy for the CTV and the error in the 𝐷95% for the PTV was less than 0.33 Gy in 90% of the validation
scenarios.
For the CTV in the IMPT plan, the error was however larger, with Δ𝐷98%,𝑚𝑒𝑎𝑛 equal to 0.34 Gy and
Δ𝐷98%,90 equal to 0.61 Gy. The discrepancy between the exact 𝐷98% and the PCE calculated 𝐷98% is
particularly present when 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 is near 0, as can be seen in Figure 4.19. This could be caused
by the range of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 that the PCE was built with. The range of 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 in building the PCE was
from approximately −6 ⋅ √𝜆𝑙 to 6 ⋅ √𝜆𝑙. This is outside the range that realistic delineations are formed
and therefore the expansion coefficients 𝑟𝑘 are calculated using potential unrealistic values of 𝐷98%.
Because the polynomials are then fit to incorrect training points, the accuracy of the PCE calculated
𝐷98% when 𝑐𝑙,𝑟𝑎𝑛𝑑𝑜𝑚 is near 0 could decrease.

5.2.2. PCE as a MetaModel for the DVH and Dose Distribution for a Reoptimized
Dose Distribution

A proof of principle of the use of PCE to serve as a metamodel for the dose distribution and DVHs of the
CTV and liver for a random realization of the CTV was given. To make the PCEmore accurate, a higher
polynomial order would be needed in the construction of the PCE. This was however not achievable in
this research as it took approximately 6 days to construct the PCE with a polynomial order of 4. The
computation time could be decreased by running multiple iCycle optimizations simultaneously when
building the PCE model.
It is surprising that the number of accepted voxels was higher for the PCE model built with a polynomial
order of 3 than for the PCE model with a polynomial order of 4 in many of the validation scenarios.
This could be because the PCE models were only validated in a small number of scenarios and that
the model with polynomial order of 4 does perform better in other scenarios which were not checked.

5.3. Dosimetric Effect of Delineation Uncertaties
5.3.1. Fixed Dose Distribution
VMAT plan
The effect of the manual delineation uncertainties on the CTV in the VMAT plan was found to be small,
as only 0.1% of the random delineations did not receive the target dose. It can thus be concluded that
on this treatment plan made with the planning delineation, the PTV made with a 5 mm margin with re
spect to the planning delineation is large enough to account for other possible realizations of the CTV.
This means that the 5 mm PTV margin is enough to account for the delineation uncertainties in this
case. However, the PTV is also meant to deal with e.g., setup uncertainties, which were not taken into
account in this study. For the PTV, it was found that in 17.1% of the realizations of the PTV the target
dose was not met, which is a significant amount. An underdosed PTV means that the CTV could also
not receive enough dose. It was found that basically all realizations of the CTV would receive enough
dose, but if the delineation uncertainty is combined with setup uncertainties, the potential underdosage
of the PTV could lead to an underdosage of the CTV. Therefore the effect of delineation uncertainties
in combination with setup uncertainties would need to be investigated.

IMPT plan
The effect of delineation uncertainties in the IMPT plan was significant, with 69% of the realizations of
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the CTV not receiving the target dose. This is a consequence of the very steep dose falloff around
the goldstandard delineation which was used for planning. If a part of a delineation falls outside the
highdose region, the 𝐷98% drops drastically. This shows that delineation uncertainties can be a big
problem in proton therapy treatments. Robust treatment plans were shown to increase the number of
CTV delineations which meet the target dose, with 96.0% of the delineations meeting the target dose
when the 𝑅𝑅 is set to 2% and the 𝑆𝑅 is set to 5 mm.
It should be noted that the PCE did have relatively large errors in determining the 𝐷98% of the CTV in the
IMPT plan, as Δ𝐷98%,𝑚𝑒𝑎𝑛 was 0.34 Gy in the validation scenarios. It should therefore be investigated
whether a more accurate PCE model can be made.
If the above results are found to be accurate, then it seems possible that robustness settings can be
used to mitigate delineation uncertainties in IMPT. This makes sense because the high dose region
becomes larger when robustness settings are used and a deformed delineation will thus probably still
be positioned in the high dose region. These robustness settings are however meant to compensate
for range and setup uncertainties, and not for delineation uncertainties. Delineation uncertainties are
fundamentally different from range and setup uncertainties, as in the case of range and setup uncer
tainties the delineation stays the same and the larger dose cloud assures that the CTV will receive
sufficient dose in the presence of setup or range errors. However, the dose in this dose cloud is not
homogeneous dose and is not static. The shape and dose distribution of the dose cloud will change if
there is e.g., a setup shift. The amount of change in the shape and dose distribution of the dose cloud
are dependent on e.g., the change of the density of the tissue that the proton beams travel through
due to this setup shift. Due to this changing nature of the dose cloud when a setup shift occurs, it is
not assured that a random realization of the CTV, that receives sufficient dose when there is no setup
shift, will still receive sufficient dose in the presence of a setup shift. It would therefore be necessary to
investigate whether delineation uncertainties can still be accounted for with robust treatment planning
while simultaneously taking into account setup and range uncertainties.

5.3.2. Reoptimized Dose Distribution
For the dose distribution which was reoptimized for every random CTV delineation, it was found that
the dose constraint (𝐷98% ≥ 54 Gy) was always met. This was as expected as a new reoptimized plan
for each delineation was made which should satisfy the planning constraints. However, the dose along
the rest of the DVH did vary between the different realizations of the delineations. A PCE model with a
higher accuracy would however be needed to study this effect more thoroughly.
The PCE model for the reoptimized dose distribution was also able to model the DVH of the liver, and
from the DVH the NTCP could be calculated. It could be seen that the DVHs in the different reoptimized
dose distributions differed from each other. The exact effect on the DVH of the liver can however only
be investigated with a more accurate PCE model. Nonetheless, from the NTCP values in the validation
scenarios it can be concluded that the dosimetric effect on the liver was minimal.
The use of the PCE as a metamodel for the reoptimized dose distribution could be an important tool in
the future of adaptive radiotherapy. In adaptive radiotherapy, as discussed in Section 2.3.1, a daily CT
is made of the patient which is delineated. Current research in adaptive radiotherapy aims at creating
the autocontours and a treatment plan within several minutes after the repeat CT so that the patient can
be treated immediately before any anatomical changes occur [24]. These autocontours are used to
adapt the existing treatment plan. It is however important to take the uncertainty in the autocontours
into account and know the dosimetric effect of the uncertainty on the target and on the OARs. This
dosimetric effect can be studied using PCE as a metamodel for the reoptimized dose distribution.
Based on the dosimetric effect on the target and the OARs, it can be decided whether adapting an
existing treatment plan to the daily CT is sufficient, or that a new reoptimized plan needs to be made
on the daily CT.





6
Conclusions & Recommendations

In this chapter the conclusions of this thesis will be given in Section 6.1 along with recommendations
for future research in Section 6.2. Finally, in Section 6.3 an outlook will be given on the application of
the methods developed in this thesis to future clinical practice.

6.1. Conclusions
In this work principal component analysis (PCA) was used to characterize the delineation uncertainties
for manual delineations of the GTV of a hepatocellular carcinoma patient and the autocontours of the
CTV and brainstem of a head and neck patient. The uncertainty in the autocontours of the CTV could
not be characterized by PCA due to the concave shape of the CTV. 45 eigenmodes were needed to
explain the variation in the autocontours of the brainstem and the uncertainties in the manual delin
eations of the GTV could be explained by 5 eigenmodes. Using these eigenmodes it was possible to
create random realizations of the delineations. The characterization of delineation uncertainties with
PCA has its limitations and is not applicable to all delineation shapes. Therefore a different method of
characterization is needed in future research.
Polynomial Chaos Expansion (PCE) was shown to be capable of modeling the dosimetric effects of
the manual delineation uncertainties. For the manual delineations, the CTV was equal to the GTV and
the PTV was equal to the CTV plus a 5 mm margin. On a fixed VMAT dose distribution it was found
that uncertainties in the GTV delineations did not lead to an underdosage of the CTV. However, the
uncertainties did lead to an underdosage of the PTV in 17.1% of the random delineations. For a fixed
IMPT dose distribution, the CTV was underdosed in 69.0 % of the random delineations. This percent
age went down when the IMPT treatment plan was made robustly. The results on the fixed IMPT plan
however need to be verified with a more accurate PCE model.
PCE was also used to model the reoptimized dose distribution and the DVH of the CTV and liver for
random realizations of the CTV delineation. However, a more accurate PCE model with a higher poly
nomial order would be needed to analyze the dosimetric effect to the CTV and surrounding OARs due
to the reoptimization.
PCE has been found to be a powerful tool in modeling the dosimetric effect of delineation uncertainties
on a fixed dose distribution and a proof of principle has been given for the PCE as a model of the
reoptimized dose distribution. This is a first step towards systematically and quantitatively taking into
account delineation uncertainties in radiotherapy treatment planning.

6.2. Recommendations
For future research on the effect of delineation uncertainties on treatment planning, there are several
areas that can be improved or researched further.
Firstly, a different method of characterizing the delineation uncertainty should be developed which can
be applied to more delineation shapes. This could be a machine learning approach like the VAE, as
described in Section 5.1.5.
The results in this thesis have shown that the dosimetric impact of delineation uncertainties of the CTV
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and PTV on a fixed dose distribution can be significant. For a photon therapy plan it could be inves
tigated whether the current CTV to PTV margin is sufficient to account for delineation uncertainties in
combination with setup uncertainties, or that the CTV to PTV margin needs to be altered. PCE is a
powerful tool to perform this analysis with. For proton therapy plans it was shown that robust planning
is able to compensate for delineation uncertainties. However, the PCE model lacked accuracy for the
proton therapy plan. It therefore should be investigated whether the PCE model can be made more
accurate. If an accurate PCE model is obtained, a next step would be to study whether robust treat
ment planning is able to account for the delineation uncertainties in combination with setup and range
uncertainties and which robustness settings would be needed to do so.
Another aspect that can be researched further is the PCE model as a metamodel for the reoptimized
dose distribution. The model developed in this thesis was not accurate enough to perform an analysis
on the dosimetric impact that the reoptimization has, but if a more accurate PCE with a higher polyno
mial order is built, an analysis of the dose delivered to the target and OARs can be performed. This
analysis can also include the impact on the NTCP of an OAR. In this research it was found that the
NTCP of the liver was very low in all scenarios. However, in other more sophisticated cases where an
OAR receives more dose, an analysis of the DVH and the NTCP of an OAR with the PCE model for
the reoptimized dose distribution can give a very good insight into the variability of these metrics and if
the OAR is at risk of being overdosed.
The impact of autocontouring uncertainties in adaptive radiation therapy can also be investigated fur
ther using the PCEmodel for the reoptimized dose distribution. Using this PCEmodel, critical structures
on which the delineation uncertainties have a large dosimetric impact can be identified. The identifi
cation of critical structures can take place by modeling the DVH distribution of all structures in many
realizations of the delineation and determining which structures have the possibility of being under
dosed (in the case of a target) or overdosed (in the case of an OAR).

6.3. Outlook
Hopefully, with further research and improvements, the methodology researched in this can be im
plemented in future clinical practice to account for delineation uncertainties in radiotherapy treatment
planning. For instance, treatment plans could be optimized such that the dose to the ROIs is adequate
with a certain probability given the delineation uncertainties of the ROIs. By taking the characterized
uncertainties into account during the treatment planning, the use of margins around a target to account
for delineation uncertainties would be unnecessary. A similar technique is used in robust treatment
planning to account for setup and range uncertainties in IMPT. However, robust treatment planning
only considers a limited number of error scenarios. A more promising approach is probabilistic treat
ment planning. In probabilistic treatment planning many more scenarios are taken into account along
with the probability of the scenarios [41]. Applied to delineation uncertainties, the scenarios would be
the different possible realizations of the delineation. Furthermore, developments are being made in the
use of functional MRI to quantify the tumor cell density in the target [34], which can help in providing
probabilistic definitions of the target.
The developedmethods can also be of importance in adaptive radiotherapy which uses autocontouring.
Adaptive radiotherapy can use probabilistic treatment planning based on the characterized uncertain
ties, but critical structures or areas where the dosimetric impact of delineation uncertainties is high can
also be identified. The critical areas where the dosimetric effects of delineation uncertainties are large
can be flagged such that they can be manually assessed by a radiation oncologist, ensuring that the
delineation is correct and the dose contraints will be met during treatment.
Finally, in adaptive radiotherapy the developed methods in this thesis can also be used to determine
whether adapting an existing treatment plan is sufficient for a successful treatment, or that a new re
optimized treatment plan needs to be made, as also discussed in Section 5.3.2.
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