
Delft University of Technology
Master of Science Thesis in Embedded Systems

Efficient Memory Architecture for Next
Generation Low-Power Embedded Systems

Sourav Mohapatra

Embedded
Networked
Systems

Efficient Memory Architecture for Next
Generation Low-Power Embedded Systems

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Sourav Mohapatra
29/08/2022

mailto:S.Mohapatra-1@student.tudelft.nl

Author
Sourav Mohapatra

Title
Efficient Memory Architecture for Next Generation Low-Power Embedded Systems

MSc Presentation Date

29/08/2022

Graduation Committee
dr. Przemys law Pawe lczak (chairman) Delft University of Technology
dr. Zaid Al-Ars Delft University of Technology
Vito Kortbeek Delft University of Technology

The work presented in this thesis has lead to a paper which will be submitted to
a conference for publication.

Abstract

In this thesis we propose a novel memory architecture design that is robust to
frequent memory failures targeting next generation low power embedded system.
We explore the how the architecture works and perform detailed evaluations to
show that our system achieves better performance than the state-of-the-art.

iv

“Premature optimization is the root of all evil’ – Donald Knuth

vi

Preface

There have been many advances in the computing sector. A fingertip-sized
processor now has more computing capabilities than a full-room-sized computer
30 years ago. But the same cannot be said for the power management sectors.
To power that fingertip-sized processor, we still need a large block of battery or a
constant power supply. This dependency on the power supply can be ignored for
many devices, but when we venture into the IoT domain, it plays a significant
role. If IoT devices must depend on on-device power sources, the usability
decreases and the environmental impact increases a lot. Battery-based systems
require regular maintenance and are more difficult to dispose of. The harvesting
of energy from nature provides a huge steppingstone for such systems.

Intermittent computing refers to a system in which the power supply is not
constant. Devices that are said to run intermittently depend on sources of energy
that can be harvested from the environment. Such a system requires dedicated
hardware and software support to be functional. The motivation behind this
work is to design the software and hardware framework for an intermittent
system that supports a cache-memory hierarchy.

Words cannot express my gratitude to my daily supervisor Vito and my
professor dr. Przemys law and for their invaluable patience and wonderful feedback.
I would also like to thank my defense committee, who generously provided
knowledge and expertise.

It would be remiss not to mention my amazing friends who gave me a social
circle where I could enjoy my time at TU Delft. I would especially like to thank
the embedded boys for being there for everything. A special mention to all the
Villagers of Bengland for the amazing trips, dinners, barbeques, and fun times.
I could not have undertaken this journey without these people.

I would like to mention my parents, who are there to always be my support
system. Their belief in me has kept my spirits and motivation high during this
process. Lastly, I would express my greatest gratitude to Swati, who listened,
guided, helped, and supported me in all aspects of my journey.

Sourav Mohapatra

Delft, The Netherlands
26th August 2022

vii

viii

Contents

Preface vii

1 Introduction 1

1.1 Problem statement . 3

1.2 Research Question . 4

1.3 Fundamental insight . 5

1.4 Contributions . 5

2 Related Work 7

2.1 Existing Intermittent Systems . 7

2.2 RISC-V based Intermittent Systems 8

2.3 Caches in Intermittent Systems 9

2.3.1 Analysis - PROWL . 10

2.3.2 Analysis - ReplayCache 10

2.4 Chipyard . 11

3 Motivation 13

3.1 Trade-offs in memory volatility 13

3.2 Challenges . 14

4 Cache Integration 17

4.1 Using cache as a WAR detector 19

4.2 Optimizing WAR detection . 19

4.3 Using compiler analysis . 20

4.3.1 Detecting safe memory sequences 21

4.3.2 Detecting dead memory accesses 21

4.4 System Architecture . 21

4.4.1 System Requirements . 21

4.4.2 Compilation Unit . 22

4.4.3 Execution Unit . 22

5 Implementation 25

5.1 Cache Controller . 25

5.1.1 Handling Cache Accesses: 25

5.1.2 Detecting WAR: . 25

5.2 Compiler . 26

ix

6 Evaluation 29
6.1 Evaluation Setup . 29

6.1.1 Target Architecture . 29
6.1.2 Evaluation Platform . 29

6.2 Memory Cost Model . 30
6.3 Evaluated Systems . 30
6.4 Benchmarks Used . 31
6.5 Results . 31

6.5.1 Analysis . 31
6.6 Cache Configurations . 34

6.6.1 Cache Sizes . 34
6.6.2 Cache Associativity . 34

7 Conclusions and Future Works 37
7.1 Conclusion . 37
7.2 Future Work . 37

x

Chapter 1

Introduction

With the current boom in the Internet of Things (IoT) sector, accelerated by
the ramping up of 5G deployment [66], the number of embedded IoT devices
is increasing rapidly [9]. As the number of IoT devices increases, the concern
for the sustainability of their deployment also increases [62]. Batteries are one
of the primary artifacts in reducing the sustainability of devices [72]. They
must be replaced every fixed period [22], they are a fire hazard [25] in deploy-
ment scenarios such as forests and are a burden on the environment when not
properly disposed of [26]. Batteries also increase their temperature as the load
increases [35] preventing them from performing computationally intensive tasks
in heat-sensitive environments (think of a smart contact lens [36]). Batteries
have limitations in evolving space technologies also where nano-satellites are
removing them for consuming extra volume and low stability [20]. A potential
solution is to completely renounce batteries and use a system in which energy
harvested [65] from ambient sources is the sole power supply.

Intermittently-powered devices [58] use energy harvested from natural sources
such as the sun, electromagnetic radiation, geothermal energy, etc. However,
since such energy sources are inherently unpredictable and result in random
power failures [56], the system must recover and continue to make progress.
Consider an example system [64, Section 3A] with an energy harvesting source
of 20 µW/cm3, a capacitor of 46 µF and a consumption energy of 1 µJ. It takes
22 seconds to charge and perform a set of calculations, and then the system
must harvest energy again for 22 seconds before continuing. In this cycle, the
system is completely devoid of power. To become a viable alternative to a
battery-based system, intermittently-powered systems must be wrapped with a
layer of software and hardware support which, by saving the program progress
in a Non-Volatile Memory (NVM), provides an option to recover and resume
execution from the saved state in case of power failure.

NVM—since persistent—can be used to intelligently save the state of programs
with mitigating actions such as backups and rollbacks of the stack, registers,
and other volatile components. But copying all the volatile states is inefficient
and consumes precious limited energy. An alternative is to use NVMs to replace
volatile components in memory hierarchies. Various works explore this approach,
for example, [61] uses a Magnetoresistive Random Access Memory (MRAM) for
ultra-low power IoT devices, [70] proposes a consistency-aware checkpointing
scheme, [55] develops a scheduler for Non-Volatile Processor (NVP) (which is

1

Ex
ec

ut
io

n

C
om

pi
la

ti
on

Energy Harvesting

mem
access

WAR
Detection

Data
Cache

Checpoint
Reduction

Cache
Controller

Hint
Handling

Dirty
Ratio

Double
Buffering

Compiler Transformation

Memory
Analysis

Checkpoint
Creation

Checkpoint
Restoration CPU

Non-Volatile Memory

.ELF

Checkpoint
Handling

Hint
Selection

Hint
Placement CC

nvm mem access

 Computational blocks proposed as a part of N CHO

Figure 1.1: An overview of NACHO architecture. The system is divided
into two units - compilation and execution. The compilation unit
creates the binary which acts as an input to the execution unit. The
data cache and the cache controller implement NACHO’s logic. Blocks
with colored outlines are proposed as a part of NACHO

when all the components in the system are non-volatile) and [63] proposes a
custom memory hierarchy based on NVP.

However, using NVM as main memory is not straightforward; it introduces a
set of consistency problems caused by Write After Read (WAR) memory accesses.
Figure 1.2 explains how WARs occurs when there is read access to a memory
location followed by write access to the same location. The system must ensure
memory consistency by identifying and mitigating the occurrence of WAR.

WAR example

R
W

Reg1=∅; a=4;

Reg1=4; a=5; Reg1=5; a=6;

initial state

before power off aer re-execution

correct: a=5; error: expected a=5;

incorrect aer re-executionpower off locationrestore location

Reg1=∅; a=5;
aer restart

2

1 3

4
Reg1 = a
a = Reg1 + 1
-power off-

...

...

Figure 1.2: A simple example showing how a memory sequence in which
a read is followed by a write can result in an inconsistent state after a
power failure. The register Reg1 is volatile and a is a memory location
in the non-volatile memory.

An example of such mitigation adopted by some work [74, 47, 45, 17, 42] is the
use of task-based programming constructs. The programmer divides the code
into small logical blocks of computations called tasks, and each task is performed
atomically whenever enough energy becomes available. Although highly efficient,
these solutions require the intervention of the programmer [39, Section 5.4] and
therefore cannot be used for legacy code without significant modification of the
source code [68]. Also, the programmer must dimension the impotent code for a
specific energy budget, which means that they need to rewrite the tasks when

2

the target energy harvesting environment changes. Checkpoints [71] remove
this dependency on the programmer. They automatically store the state of the
program in non-volatile memory and restore them in the event of power failure.
But, they are slower than tasks-based approach.

Some systems create checkpoints dynamically where a dedicated monitor
checks the available energy for computation. If that drops below a certain
threshold, a checkpoint is created. This method, termed Just In Time (JIT)
checkpointing [67, 13, 12, 33] is, in essence, driven by the decreasing availability
of energy. This makes it highly efficient as checkpoints are created only when
needed, but they can lead to corruption. Any assurance of incorruptibility hinges
on the prediction of energy consumption, which is inherently variable and can
lead to system failure without proper backup [16, Section 2.2.2]. On the contrary,
other systems incorporate a static method to create checkpoints. These are
primarily compiler-based techniques in which the placement of checkpoints is
determined during the compilation stage. Instead of energy availability, these
are driven by different forms of code analysis [68, 70, 71, 76]. Unlike JIT, these
systems ensure that the program does not get corrupted in any possible scenario.
However, to do so, they often over-instrument the code with checkpoints. which
makes them slower than JIT. Works like [30, 59], a dedicated hardware module
has been introduced to perform memory tracking and control the placement of
checkpoints during run-time.

To be as energy-efficient as possible, the goal is to maximize the computations
for a given burst of energy. In addition to computations, the system must also
create checkpoints to ensure intermittency. Few systems use different physical
memory technologies such as FRAM [11], STT-RAM [40, 51], NV-SRAM [41],
while others propose a form of resource-adaptive architecture, such as changes
in execution pipelines to optimize and dynamically allocate power budget [46]
and explore single-level cell (SLC) or multi-level cell (MLC) NVM [77]. This is
especially energy-inefficient when the nature of placement is static, as the system
creates checkpoints based on the code rather than on the energy availability.
Both the size and the number of checkpoints contribute to this overhead.

1.1 Problem statement

However, this act of creating checkpoints consumes a lot of energy and execution
time [17]. Looking at the results of a recent work [38, Figure 4], even the most
optimized solution has double the execution time compared to native unmodified
binaries without checkpoints. The higher the number of volatile components
(such as main memory, registers, peripheral states, etc.), the greater the energy
requirement for a checkpoint. For example, a volatile system consumes 445 µJ,
while the non-volatile system consumes only 23.1 nJ [64] for a backup operation.
However, completely sacrificing volatile memory and using only NVM, while
resulting in a decrease in checkpoint energy consumption, significantly increases
the cost of normal read and write operations, both in terms of energy and
time [44, 34]. There is a need for a balance between volatile and non-volatile
components.

Some works try to achieve this balance by reducing the size of checkpoints
while still using volatile components, i.e., a mixed-memory model [39, 48, 30].
Another direction is the use of a volatile data cache, which decreases the cost

3

of writing to the NVM. However, integrating a cache with intermittent systems
is not straightforward. The system still needs to address WAR hazards, which
become even more complicated in the presence of cache [75] as the cache delays
the actual write-back to NVM. The cache eviction policy that determines which
cache block must be evicted to make space for a new block, needs to be aware of
when the checkpoint is going to happen and how to proceed whilst maintaining
consistency. Furthermore, since the cache is a volatile entity, it must be written
to NVM before a checkpoint. These models can also be intelligently managed,
for example, by a virtual memory manager that assigns variables to volatile or
non-volatile memory [49].

Traditionally, low-power embedded systems, such as those based on STM [3, 4],
MSP [2], ESP [1] based, have not had a cache. Since the SRAM memories onboard
these systems are already fast, having a cache does not provide significant
improvements in access speed. Furthermore, caches do not work well with real-
time systems [27] without specialized cache management. However, this changes
when we consider caches for intermittent systems where NVMs are used. Using a
small data cache between the processor and NVM leads to a reduction in NVM
accesses that can provide significant energy savings. Also, since intermittent
systems themselves do not work well with real-time systems [19], having a cache
is no longer a deterrent but rather advantageous.

PROWL [31] uses a different replacement policy (cuckoo hashing) and the
associativity of the cache (skew associative) system to decrease the number of
checkpoints in the system. But using such a computationally intensive cache
architecture consumes more energy, is complicated to implement, and is highly
inflexible for adapting to different systems. ReplayCache [75] discusses that the
“stores” are not synchronous if a system uses a data cache. So, ReplayCache
“replays” all “stores” in a fixed code region after an event of power failure, thus
restoring the cache state to what it was before. In our interpretation, it is a
modified version of a redo log [52] that incorporates the cache. Furthermore, they
only support JIT checkpointing; therefore, they cannot provide any guarantee
of program incorruptibility. In a very recent work [14] the authors propose a
memory renaming approach in which dirty blocks that are evicted from the cache
are renamed to avoid causing idempotency violations. Although they achieve
performance gains, the sacrifice comes in terms of the use of additional and
dedicated hardware components and the increase in the space complexity of
NVM, which outweighs the gains in our opinion.

1.2 Research Question

Based on the above discussion, our opinion is that there is still a gap between
current state-of-the-art and an efficient cache-based intermittent-system. To
bridge that gap, there needs to be a system that closely integrates the hardware
and software support system while providing an efficient solution to handle
intermittency. This leads to the research question: How to design an efficient
intermittent system without complicated hardware support systems
and without the need for programmer intervention?

4

1.3 Fundamental insight

To address this research question, we take a different position. We argue that
a mixed-memory model with a simple addition of a cache will not solve the
problem. We rethink the fundamental way in which a cache can be integrated
into an intermittent system. We propose a design in which a data cache is very
closely integrated with the intermittent system. We use the data cache to
detect WAR during program execution. Furthermore, we use the cache to
detect memory patterns that increase the accuracy in detecting WARs.
Using this as the fundamental building block, we improve both performance
and energy consumption while ensuring forward progress with guarantee of
incorruptibility, compatibility, and not adding any additional hardware
components.

1.4 Contributions

In this paper, we present NACHO a compiler and hardware co-design in which we
tightly integrate a data cache into an intermittent system. NACHO uses a volatile
cache to reduce NVM accesses and also to detect possible WAR hazards that may
arise from frequent power failures. Due to the close integration with the system,
NACHO mitigates the need to use additional HW components, as well as the
need to modify the program binary. It detects and prevents data inconsistency
by using the inherent properties of how a cache accesses memory. On top of
this, we implement optional efficiency improvements by closely incorporating the
compiler into the system as well. NACHO is a complete intermittent framework
without the need for programmer intervention. Our solution can work with
both the JIT [67] and static [68] checkpoint-based paradigms. It can be used
with any form of cache architecture with any choice of cache block replacement
and placement policies. Furthermore, NACHO ensures that the system remains
incorruptible. No sequence of power availability can cause the system to
deviate from the correct execution.

We can conceptualize our solution through these three novel ideas.

1 We incorporate a data cache and use it to detect and handle WAR hazards
by dynamically initiating checkpoints. We also group cache evictions in
such a way that they can be handled by a single checkpoint, thus reducing
the number of checkpoints required.

2 Among the WAR hazards, we detect and separate “safe” and “unsafe”
writes using the cache. Thus, only “unsafe” writes require a checkpoint.
By doing so, we further reduce the number of checkpoints and NVM
accesses.

3 We introduce “compiler hints” in which, using a specific set of compiler
analysis, the cache marks certain unsafe writes as safe. These compiler hints
work in tandem with the cache controller to further reduce checkpoints
and NVM accesses.

To the best of our knowledge, this is the first software system that uses a
hardware software co-design with a data cache for an intermittent system.

5

6

Chapter 2

Related Work

In this section, we explore how caches work with an intermittent system and
provide motivation towards our research.

2.1 Existing Intermittent Systems

Hibernus [13] and Hibernus++ [12] employ specialized hardware support to
monitor the energy left. Whenever it falls below a threshold, both systems react
by firing an interrupt that preempts the application and forces the system to
take a checkpoint. Thus, checkpoints may take place at any arbitrary point in
time. Both systems copy the entire memory area, including unused or empty
portions, into NVM.

MementOS [58] and HarvOS [15] employ compile time strategies to insert
specialized system calls to check the energy buffer. Checkpoints occur proactively
and only when the execution reaches one of these calls. During a checkpoint,
every segment used in main memory is copied to NVM regardless of changes
since the last checkpoint.

There do not seem to be any recent hardware and software approaches that
tackle the efficiency of checkpointing systems. The most recent is So Far So
Good [73] which is a software-only approach. It proposes a software-only approach
where the system uses an exploration-and-achieve kind of approach. The program
runs until the power goes down and then places a checkpoint sometime before
the power failure point in the next run. Feels too optimistic about the possibility
of performance loss.

Software only Software + Hardware Hardware only
So Far So Good Clank A 3us wakeup timer
Alpaca Hibernus++ A NV controller
Chain Hibernus TCCP
Incremental Checkpoint Mementos
Ratchet QuickRecall
DINO

Table 2.1

7

There is another class of approach wherein the solution focuses on approxima-
tion to overcome the intermittency in power. In What’s Next [23] an approximate
calculation is used in the case of power failure, which is then improved if more
power is available.This contrasts with a more traditional all-or-nothing computing
approach.

DICE [8] aims to improve the amount of data that are written to NVM memory.
It works with existing systems, and instead of copying the full data to the NVM,
it copies only what is the differential between the current and the last checkpoint.
iCheck [43] addresses systems that do not even have a capacitor. They use
ambient energy analysis to predict power cycles with a certain probability and,
accordingly, place checkpoints.

Table 2.1 shows the various different works categorized by the nature of the
solution they provide. None of the software and hardware co-design solutions
are recent.

2.2 RISC-V based Intermittent Systems

Most of the intermittent research is done on ARM or MSP430-based microcon-
trollers. Some distantly related research publications use RISC-V to evaluate
their work. In Failure Sentinels [67] a low-power voltage monitor system is
developed which is then run in a RISC-V system. Almost similar to the above,
in Freezer [54] a non-volatile memory system is evaluated using a RISC-V-based
microcontroller. In a somewhat tangential direction, [60] proposes a fault-tolerant
RISC-V embedded system for use in space (intermittent power can be considered
as ‘fault’).

Table 2.2: State-of-the-art intermittent systems with cache support.

system
compiler
enhanced

legacy
compatible

RISC-V
support

supports
JIT

No extra
HW

Clank [30] ✗ ✓ ✗ ✓ ✗
PROWL [31] ✗ ✓ ✗ ✗ ✓
MEMIC [63] ✓ ✗ ✗ ✓ ✗

ReplayCache [75] ✓ ✗ ✗ ✓ ✓
COACH [32] ✓ ✗ ✗ ✓ ✗
NVMr [14] ✗ ✓ ✗ ✓ ✗

NACHO ✓ ✓ ✓ ✓ ✓

system
supports

cache
cache arch
agnostic

reduces
NVM

accesses
incorruptible

Clank [30] ✗ ✗ ✗ ✓
PROWL [31] ✓ ✗ ✗ ✓
MEMIC [63] ✓ ✗ ✓ ✗

ReplayCache [75] ✓ ✓ ✗ ✗
COACH [32] ✓ ✓ ✗ ∼ †

NVMr [14] ✓ ✓ ✓ ✓

NACHO ✓ ✓ ✓ ✓
† The work relies on existing checkpointing strategies, thus it can be as incorruptible as
the choice of strategy.
Yes (✓) No (✗) Partially (∼)

8

2.3 Caches in Intermittent Systems

The primary challenge of having a cache is addressing volatility. The state of the
cache has to be saved to a non-volatile memory location, and various works have
taken various different approaches in doing so. Table 2.2 shows the different
features of all the related work compared to our system.

Changing the cache

Some works present a modified cache that supports or enables intermittency in
some way. Modification can be in the cache architecture, placement/replacement
policies, in the way the cache responds to intermittency, and in how closely knit
the cache is to the system.

PROWL [31] uses a custom replacement policy and the associativity of the
cache system to decrease the number of checkpoints in the system. The basis of
their proposal is to mask the need for more checkpoints by delaying the eviction
of a dirty cache block. As long as the dirty cache block has not been evicted,
the main memory will not record the value, and there will be no consistency
problems in the event of power failure. A detailed analysis is provided below in
Section 2.3.1. What we do in NACHO is similar, but has key differences.

ReplayCache [75] discusses that “stores” are not synchronous if a system uses a
data cache. They can happen independently of the code flow. For an intermittent
system, this causes a problem because there is no way to know whether a given
“store” has been evicted from the cache to memory. So, ReplayCache “replays” all
stores in a fixed region of code after an event of power failure, thus restoring the
cache state to what it was before. It is a case of a redo log [52] that incorporates
the cache. A detailed analysis is provided below in Section 2.3.2.

Our solution NACHO incorporates cache very closely with the system, but
retains the flexibility to configure without affecting intermittent capability.

Using hybrid memory

Other works use a hybrid memory architecture designed specifically to handle
intermittency.

COACH [32] and MRAM-based [61] use parallel memories to effectively create
live backup. Although elegant, these proposals lead to higher energy consumption
and higher complexity of the design.

In [71, 69] the authors propose another approach in which the cache has a
set of volatile ways and a set of non-volatile ways. In [57] a new SVN-RAM
memory architecture is presented. Although these works claim to improve energy
efficiency, they do not address any consistency approach.

Clank [30], which does not use a cache, but is interesting to explore, as it uses
dedicated memory tracking hardware that detects data inconsistencies during
execution time. In NACHO we do something similar, but we do not use such
dedicated hardware. Instead, as we explain in Section 4.1, we intelligently use
the cache to perform consistency detection.

In a very recent work [14] the authors propose a memory renaming approach in
which dirty blocks that are evicted from the cache are renamed to avoid causing
idempotency violations. This approach uses a section of the NVM as a map

9

table, a corresponding map table cache, and adds filters to the data cache to
facilitate renaming. Although they reduce NVM accesses, the sacrifice comes in
terms of using extra, dedicated hardware components and consuming more space
in the NVM. Our solution achieves this without the above-mentioned pitfalls.

2.3.1 Analysis - PROWL

PROWL uses a combination of a replacement policy and the associativity of
the cache system to decrease the number of checkpoints in the system. Then it
compares the proposal with three (four) different approaches and presents the
results. The three (four) approaches are as follows.

• QuickRecall [33] - known as Unified NVM - has no cache but uses JIT

• Ratchet [68] - Offline approach of putting checkpoints

• Clank [30] - Online approach by detection of idempotent sections

• (Similar to what they propose but using a LRU replacement policy)

The basis of their proposal is to mask the need for more checkpoints by
delaying the eviction of a dirty cache block. As long as the dirty cache block has
not been evicted, the main memory will not record the value, and there will be no
consistency problems in the event of a power failure. The way they achieve this
is by proposing a cache replacement policy and a cache controller that integrates
the checkpointing with the policy. Their primary idea is to continue searching
on the ’ways’ of the cache until a block is found to keep the dirty block. This
idea of re-hashing is called cuckoo hashing. If there are no blocks available to
store the dirty block, it is evicted to the main memory, and a checkpoint signal
is raised. They also specify which family of hashing function they use to ensure
maximum efficiency.

There is no need to restore the cache data, as there is always a checkpoint to
ensure whenever a block is written to the main memory. This idea is similar to
a delayed write-back, but applied to a cache system. Their result consists of the
following takeaways.

• Increases energy efficiency by reducing the number of accesses to NVM

• Increases energy efficiency by reducing the number of checkpoints

• Improves the average response times

• Improves the cache load factor (utilization of cache)

2.3.2 Analysis - ReplayCache

ReplayCache enables intermittent systems to efficiently use data caches. To
better understand the proposal in the research, a discussion of the problem
of having caches needs to be highlighted. Having data caches means that the
“stores” are not synchronous anymore. They can happen independently of the
code flow. For an intermittent system, this causes a problem because there is
no way of knowing whether a given store has been evicted from the cache to
the memory or not. If this information is not known, there is a risk of memory

10

inconsistency in the event of power failure. An obvious solution to this is to use
NVM caches. But that results in high latency and high-power consumption - both
of which are detrimental to intermittent computing. The paper in consideration
provides a solution in which a SRAM (volatile) cache-based system is designed to
be intermittent capable using a software-only technique. The proposed solution
works with existing systems; QuickRecall [33] and NVP [61] are used.

The primary idea is to “replay” all the stores in a fixed code region after an
event of power failure. Therefore, the “stores” in that region are saved during
the compile time in a statically allocated memory region. The code region is
divided so that the number of registers used for the stores is not overwritten and
thus remains consistent.

In power failure recovery (after the existing checkpoint restoration), the saved
stores are re-executed. Once that is done, the program state returns to a
consistent state, and flow can continue. This solution is claimed to be the first
software-based approach to enable volatile caches in intermittent systems. The
analysis and results presented in the paper compare the performance with various
other cache-based systems.

2.4 Chipyard

To evaluate the implementation of new ideas, it is important to use a suitable
and capable platform. One of such a platform is Chipyard [10] which is an open
source framework for the agile development of chisel-based systems on a chip.
The framework takes into input the processor description written in Rocket Chip
(Chisel) along with the description of peripherals and computing components.
Then it produces the Verilog output, which is emulated through the Verilator
emulator. The Chipyard and Rocket Chip Generator are both open source and
can thus be used in future research.

We used Chipyard to evaluate our proposed designs in the early phase of
implementation. But as the complexity of the design grew, it became difficult
to incorporate the same into Chipyard. Eventually, we moved to a software
emulation-based system.

With the related works discussed, we can now proceed to present the motivation
behind this work.

11

12

Chapter 3

Motivation

The number of volatile and non-volatile components in a system have a big impact
on the total energy consumed. By exploring this property of memory volatility,
we can gain insight into determining an energy-efficient system architecture.

3.1 Trade-offs in memory volatility

To understand the motivation to use a volatile data cache, we need to look at the
potential energy consumption of a system, as shown in Figure 3.1. In the case of
completely non-volatile systems such as a NVP, everything is written back to
persistent storage, and the need to create checkpoints and restore them in case
of power failure disappears. However, the energy consumed to perform memory
accesses becomes high, diminishing the gains resulting from non-volatility. As
we move towards the opposite spectrum of fully volatile architectures, the energy
consumed per cycle decreases, but the size and number of the checkpoints and
the cost of re-execution increases. For a fully volatile system, everything needs
to be saved and restored, again skewing the associated costs. The desired
solution is a balance between the two, an architecture in which the
volatility offers fast access speeds without sacrificing too much on the
associated energy costs for checkpoints.

We argue that this sweet spot lies in having a volatile data cache between the
processor and a non-volatile main memory. The volatile SRAM-based data cache
provides high access speeds, while being small enough to ensure low checkpointing
overheads. The backing non-volatile main memory acts as the persistent entity
to ensure data retention across power failures.

There are works that have explored alliterative solutions such as Hybrid-
Cache [69] which uses both volatile and non-volatile cache together in a hybrid
architecture and COACH [32] which replicates the main memory to store both
the backed-up and the modified data, resulting in the use of two parallel memor-
ies. Unlike these systems, NACHO is designed to consume lower energy by not
using any extra hardware other than a modified data cache. We emphasize the
specificity of using no extra hardware by noting that the functions performed
by hybrid memory, parallel memories, and the memory-tracker are intelligently
incorporated into the data cache of NACHO. Other works such as NVMr [14]
proposes use of a cache and a renaming scheme for the NVM accesses while

13

Fully non-volatile Fully volatile

Re-execution

cost increases
Energy per

 cycle increases

Desired

design space

Area under curve represents total energy
consumed

Frequent NVM

 accesses

Frequent

checkpoints

Memory heirarchy

Figure 3.1: An intermittent system needs to achieve a balance between
the energy consumed in a backup operation and the energy consumed
in performing regular memory accesses. And the key to this is con-
trolling the volatility of the system.

instrnvm

Traditional intermient
systems with no data cache

nvm accesses nvm accesses

c
c
c
c
c
c
c

a
a
a
a
a
a
a

b
b
b
b
b
b
b

d
d
d
d
d
d
d

cache
Ø
Ø
Ø
a
b
b
b

c
c
c
c
c
d
c

A naive intermient system with a simple
data cache but no additional support

Checkpoints: 2
NVM Reads: 2

NVM Writes: 5

WAR occurs when cache evicts 'c'.
Without support, intermient

execution not possible

Checkpoints: NA
NVM Reads: 1

NVM Writes: 3

Checkpoint
triggered by

WAR violation

c

c

d

a

b

c

c

a

c

d
WAR

unhandled

tim
e

tim
e

R(c)
W(c)
R(c)
W(a)
W(b)
W(d)
W(c)

c
c
c
c
c
c
c

a
a
a
a
a
a
a

b
b
b
b
b
b
b

d
d
d
d
d
d
d

c

instr
R(c)
W(c)
R(c)
W(a)
W(b)
W(d)
W(c)

checkpoint

checkpoint

Figure 3.2: An example showing the memory accesses of a simple
program performing R(x) (a read operation at the memory location
“x”) and W(x) (corresponding write operation) operations on four
variables, as shown on the left-hand side. For the purpose of the
illustration, we show only four memory blocks a, b, c, and d that
correspond to some physical address in NVM memory. The cache
shown is a simple direct associative write-back [29] cache of size two
blocks.

PROWL [31] makes changes to the cache policies to decrease checkpoints. But
NACHO does not use use any new policies and memory access patterns which
makes it compatible with any cache architecture.

3.2 Challenges

However integrating a cache requires careful system design. We illustrate the
challenges using a simple example in Figure 3.2. Firstly, we show a traditional
intermittent system (left side of the figure), such as [68], that places a checkpoint

14

whenever there is a WAR violation, decided during compilation time. This
results in a functioning system with two checkpoints and seven NVM accesses.
Let us now consider the scenario (right side of the figure) in which a data cache is
present between the processor and NVM. Here, we see the advantage of having a
cache which exploits memory locality and reduces the number of NVM accesses
to four. However, this system cannot be executed intermittently because the
checkpoint placement logic depends on when a “write” to NVM is performed.
Having a cache that buffers the memory accesses delays this write. This is a
run-time phenomenon that cannot be predicted by the compiler, thus rendering
the checkpoint placement incorrect. Therefore, this system is not protected
against WAR violations. A simple addition of a cache to a working intermittent
system that uses compiler-based checkpointing is not feasible.

Other works have proposed different ways to mitigate this. Some use a
separate hardware entity to detect WARs [14] while some [71, 69] propose having
a hybrid cache with volatile and non-volatile components. COACH [32] and [61]
use parallel memories to effectively create live backup. Other works such as
PROWL [31] and ReplayCache [75] tweak the cache to control when a WAR can
occur. But each of them has a set of problems. HybridCache needs to constantly
move around data between the two cache components, COACH has to maintain
two parallel memories, which means extra energy consumption in doing so, and
PROWL and ReplayCache are software-only solutions that do not exploit the
hardware to have better energy efficiency as we do.

15

16

Chapter 4

Cache Integration

To overcome the challenges mentioned above, we propose a fundamentally
different approach. Instead of using the cache as a separate and standalone
entity, we interweave its functionality into the intermittent system. We design
the cache to become the detection entity for WAR, in addition to increasing data
retrieval performance by reducing the need to access the underlying data NVM.

In the remainder of the section, we explain the proposed design in detail. We
also use an example in Figure 4.1 to aid in understanding. It consists of three
steps that we use to build our proposal. Each step is assigned to one of the
subsections(4.1, 4.2 4.3) below.

1 Evicting all dirty bits on a cache-induced checkpoint: The example
program starts with an empty cache. Following the instructions in the
column instr, we see that (c) is first stored in the cache and then becomes
dirty upon execution of the next instruction. Similarly, (a) is also stored
as a dirty block in the empty set. After the fourth instruction, we observe
that the cache is full. The next instruction requires access to (b) which
means that one of the cache blocks must be evicted. As the collision set
contains a dirty block, that is, (a), the cache instructs the processor to
initiate a checkpoint. As part of the checkpoint, all dirty blocks are evicted
to the NVM, depicted by the green arrow. After eviction, the instruction
is executed and (b) is stored in the first set. Note that (c) in set 2 is
now marked as valid (not dirty) as it was evicted to NVM during the
checkpoint. Consequently, on execution of the next instruction, a write
to (b), (c) is overwritten without the need for eviction. For the final
instruction, the cache again has to signal a checkpoint, as dirty (d) has to
be evicted to accommodate (c). Looking at the number of checkpoints
and NVM writes, we arrive at 2 checkpoints and 4 NVM writes. We see
the gains from exploiting the cache’s data locality by comparing this with
the first figure in 3.2. Both NVM reads and writes are reduced by one.

2 Using possible WAR flag to only checkpoint during eviction of
unsafe writes. For this optimization, we instrument a small modific-
ation to the cache by adding a flag per cache set, which we refer to as
the possibleWAR flag. The program is the same as before, but the cache
enables a flag if a set stores a block read from the NVM; if it is the start of

17

nvm accesses

c
c
c
c
c
c
c

a
a
a
a
a
a
a

b
b
b
b
b
b
b

d
d
d
d
d
d
d

cache
Ø
Ø
Ø
a
b
b
b

c
c
c
c
c
d
c

Data cache with flush on checkpoint

c

a,c

b,d

nvm accesses

c
c
c
c
c
c
c

a
a
a
a
a
a
a

b
b
b
b
b
b
b

d
d
d
d
d
d
d

cache
Ø
Ø
Ø
a
b
b
b

c
c
c
c
c
d
c

With possible WAR bit but no hints

c

a

b,c

d

nvm accesses

c
c
c
c
c
c
c

a
a
a
a
a
a
a

b
b
b
b
b
b
b

d
d
d
d
d
d
d

cache
Ø
Ø
Ø
a
b
b
b

c
c
c
c
c
d
c

With both possible WAR bit and hints

c

a

d

Checkpoints: 2
NVM Reads: 1
NVM Writes: 4

All dirty cache lines are
flushed during a
checkpoint

Checkpoints: 1
NVM Reads: 1
NVM Writes: 4

Only dirty lines that can
cause WAR are flushed

Checkpoints: 0
NVM Reads: 1
NVM Writes: 2

Specific dirty lines are
marked clean using
compiler hints

a custom
instr as a

tim
e

tim
e

tim
e

Number of checkpoints halved while

NVM access remained the same
Completely removed checkpoints

while NVM writes halved

Le
ge

nd a dirty cache

a
a

clean NVM mem

dirty NVM mem Rx(c)

cache eviction

possible WAR bit custom instr
NVM read access NVM write w/ checkpoint

NVM write w/o checkpointØ empty cache
cache block marked clean

compiler
hint

1 2 3

instr
R(c)
W(c)
R(c)
W(a)
W(b)
W(d)
W(c)

instr
R(c)
W(c)
R(c)
W(a)
W(b)
W(d)
W(c)

instr
R(c)
W(c)
Rx(c)
W(a)
W(b)
W(d)
W(c)

triggered
checkpoint

by cache

triggered
checkpoint

by cache

triggered
checkpoint

by cache

Checkpoint

Figure 4.1: This example shows the status of cache and NVM accesses
for a simple abstract program. The column instr shows the memory
instructions that are executed. A NVM access is a read from the
NVM to the cache or an eviction of a dirty block from the cache
to the NVM. There can be no access from the NVM without going
through the cache. The cache used here is the same as that used in
Figure 3.2. It is a direct associative cache with 2 sets. Each set can
store one block, and the block size in the cache and in the NVM is
the same. A cache block can be in one of the three states valid, dirty,
and empty. A cache eviction is the writing of a dirty cache block back
to the NVM. In some cases, this action can cause a checkpoint signal
to be raised which is sent to the processor. In this case, all dirty cache
blocks are evicted to the NVM. For all checkpoint-induced evictions,
writes to the NVM are double-buffered and are not removed from the
cache. In contrast, in a normal eviction, no checkpoints are created,
and eviction implies that the data block is removed from the cache
and written to the NVM. There are four arbitrary memory blocks a,
b, c, d that are assigned to two sets of the cache in the following way
a, b → set 1 and c, d → set 2.

a read-dominated memory access. When the first instruction is executed,
(c) is placed in set 2 of the cache as part of a NVM read. Thus, the
possibleWAR flag is enabled (depicted by the blue box adjacent to the set).
Now, the criteria for creating a checkpoint include the state of the flag
possibleWAR. Only when the cache evicts a block that has the flag enabled
can it raise a checkpoint signal. Therefore, when the fifth instruction is
executed, (a) is evicted and replaced by (b) without creating a checkpoint.
Tracking the history of the memory stored in the set allowed it to be safely
evicted without the need to create a checkpoint. This normal eviction is
depicted by a purple arrow in the example. The program continues, and a
checkpoint is needed when (c) is evicted because the flag is enabled for the
second set. The checkpoint also clears the flag possibleWAR. Comparing
this with the approach in 1 , we notice a reduction in the number of
checkpoints.

18

3 Using compiler analysis to mark certain dirty blocks as clean.
The compiler can provide valuable information about the structure of the
program. For this step, we establish a bridge between the cache and the
compiler, in which the compiler can signal the cache to perform intelligent
evictions. Using custom assembly instructions, the cache can be instructed
to mark certain dirty blocks as clean. Looking at the example, we focus on
the memory block (c). We can observe that after the fourth instruction
that access (C), the next access is a write in the last instruction. During
this, it is not used by the program, and thus having it in the cache does
not provide any gain. This can be detected by the compiler, and it can
instruct the cache to mark the block as clean, even if it is dirty and has
the flag possibleWAR set. Since it is now marked as clean, writing to (d)

results in the eviction of a clean block that does not require any checkpoint.
It also eliminates the need for a normal eviction. When the program needs
(c) again, it is placed back in the cache. The important thing to note is
that this optimization does not affect the correctness of the program in
any possible way. The number of checkpoints is further reduced, and so is
the number of NVM writes.

4.1 Using cache as a WAR detector

This insight is based on the fact that a data cache delays when a “write” to
the underlying memory actually takes place. A WAR violation can only occur
when a “write” is performed after a “read” at a memory location. Therefore,
the cache effectively determines when WAR can occur by tracking the presence
of such access patterns in a given cache line. We take advantage of this insight
that a WAR violation can only be possible when a cache block is written back
to the NVM. We term this event of a cache line being written back to NVM as
Cache Write Back (CWB) 1. Upon detection of a CWB, the cache generates a
checkpoint signal and demands the processor to back up safely. The processor
then copies the registers to NVM. Since the cache is also volatile, all modified
memory blocks are copied to NVM2. By doing this backup, we ensure that the
system remains consistent. An added advantage comes in the form of clearing
the cache of all dirty lines during the checkpoint since it decreases the possibility
of a future WAR and thus reduces the number of created checkpoints.

Looking at the number of checkpoints and NVM writes in Figure 4.1 1 , we
arrive at 2 checkpoints and 4 NVM writes. We see the gains from exploiting the
cache’s data locality by comparing this with the first figure in 3.2. Both NVM
reads and writes are reduced by one. But there is still room for improvement.

4.2 Optimizing WAR detection

As explained above, the core idea is that a CWB can lead to a WAR violation.
However, some of these CWBs may not lead to a violation. This can be under-
stood more formally as the memory being read-dominated or write-dominated

1Similar to Intel x86 instruction CLWB
2Since the cache and the registers are still volatile, this copy operation has to be a safe

backup, for example by using double buffering.

19

as introduced in [30, Section 3.1.1]. They state that, for a sequence of memory
instructions, if the first access to memory addresses is a write, then this location
is write-dominated. Conversely, if the first access to a memory address (in a
given sequence of instructions) is read, then this location is read-dominated. The
idempotency violation can be defined as a write to a read-dominated memory
location. Any other form of access is safe and will not cause a violation. Since
any given memory sequence can be read-dominated or write-dominated, this
condition bounds all possible idempotency violations. With this understanding,
they used dedicated hardware to track whether memory accesses are read- or
write-dominated. On the contrary, we use the cache to perform the same tracking,
eliminating the need for an additional hardware component.

To understand how the cache performs this tracking, we take an example
of a simple cache of total size 256 bytes. We can consider it to be a 2−way
set-associative cache [29] with a block size of 4 B. This results in a total of 32
sets, each set having two lines with a data block of 4 B in each line. Program
memory is then mapped to these 32 sets using a simple hash of the memory
address. Since the mapping of addresses to the cache is static, we can deduce
the memory access sequence during the execution of the program, which can
then predict whether a CWB can cause a WAR or not by analyzing this memory
sequence.

To facilitate a clearer understanding, we redefine read-dominated and write-
dominated sequences to track a cache line instead of a memory address. A
read-dominated cache line is when the accesses in that line contain a read access.
Conversely, a write-dominated cache line is where there are only write accesses
(no read accesses) in this way.

A CWB does not result in a violation if it comes from a write-dominated cache
line. We term this write-back as a “safe-write”. A CWB can only result in a
violation if the associated cache way is read-dominated, which we term as an
“unsafe-write”. We track these memory sequences to all the cache lines during
the course of program execution and create a checkpoint only if an unsafe-write
is encountered.

This optimization is shown in Figure 4.1 2 . Compared to the approach in 1 ,
we notice a reduction in the number of checkpoints, but the NVM access remains
constant. An important thing to note is that the cache stores data based on a
hash of the memory address distinction between safe-write and unsafe-write is
also based on the hashed address. This implies that the WAR detection is not
exact and can contain false positives. This is a trade-off in using the cache (and
not a dedicated hardware module) as a memory tracker. However, to overcome
this trade-off, we take the help of compiler analysis.

4.3 Using compiler analysis

Even though it is not possible to use compiler-based WAR detection and check-
point in the presence of a cache, there are still various insights that static analysis
can provide, leading to a gain in efficiency. The scope of improvement mentioned
above can be reduced by using such compiler optimizations. In this work, we use
the compiler to provide information on the memories accessed by the program.

20

4.3.1 Detecting safe memory sequences

Some memory sequences do not lead to WAR even though they contain a write
to a read-dominated memory. For example, in the situation where the write
leading to WAR is succeeded by another write. In this case, the write does not
have any impact on the consistency, as it is always overwritten. In case of a
power loss, the re-execution of that section ensures that whatever inconsistent
data is written to the memory is again written over by another write. In such a
scenario, the creation of an additional checkpoint is not needed.

The compiler can detect such an occurrence and report it to the cache controller.
The cache controller can then mark the cache block containing that particular
memory address as “safe”. This prevents a checkpoint creation and reduces the
number of non-volatile accesses as well.

4.3.2 Detecting dead memory accesses

In another scenario, a write leading to WAR can be a write that ends the access
to that memory location. This is common in scenarios where the program writes
something to a variable before exiting a function and the memory location is not
accessed anymore. This scenario, although detected as a WAR violation by the
cache, does not lead to inconsistency. Thus, the compiler can detect and mark
such cases as safe as well. Similarly to the above case, the cache can instruct
the cache controller to mark the cache block mapped to the memory location as
safe.

We term this communication by the compiler to the cache controller as
“compiler hints”. In Figure 4.1 3 shows the working of the compiler hints and
how it prevents the creation of the extra checkpoint.

4.4 System Architecture

An overview of the architecture is shown in Figure 1.1. The system consists
of two primary units: the compilation and execution units. As part of the
compilation unit, the modified compiler generates a binary with embedded cache
hints. The execution unit comprises Microcontroller Unit (MCU), a data cache,
a cache controller, and an energy harvesting unit. In essence, the cache controller
and the cache can be considered as one hardware unit. All three components
work closely to ensure that the system works intermittently with a guarantee of
incorruptibility.

4.4.1 System Requirements

Along with supporting intermittent computing, our system provides the following
features that make it better than state-of-the-art.

1. Incorruptibility: Our system ensures that the state of the program
is never corrupted. As shown in Table 2.2, incorruptibility is not always
guaranteed. Using cache as a WAR detector, our solution does not rely
on energy prediction to create checkpoints. Using an energy detector
itself consumes energy and estimating the threshold for the system is not

21

accurate [58, Figure 1]. This removes the aspect of unpredictability and
assures a consistent state for any possible power trace.

2. Cache Architecture Agnostic: Even though our system incorporates
a custom cache, we do so carefully to be agnostic to the cache architec-
ture. Our solution can be used with any form of cache with any place-
ment/replacement policies as we make no modification to the fundamental
way in which caches work. Our additions are three additional bits that
can be seamlessly integrated with any cache architecture. As we show in
our evaluation, we experiment our system with various forms of cache and
provide the parameters that we consider to be the most efficient.

3. Supports JIT Checkpointing: Along with a guarantee of incorrupt-
ibility, we also provide the option to create checkpoints using the JIT
paradigm if desired. If such a paradigm is used, it removes the need to
perform double-buffering when there is enough energy available. When
the energy level is detected to be below a certain threshold, the system
goes back to the safe method of creating checkpoints.

Assumptions

Also, we do not address interaction with system peripherals such as communica-
tion modules or sensors. This is a problem that needs to be solved separately
and can be used in combination with our system.

4.4.2 Compilation Unit

The compilation unit works by modifying the compiler to instrument the source
code with custom instructions. As explained in Section 5.2, we use custom
instructions to inform the processor and the cache controller of the hints. In this
section, we present a brief overview of how the compiler computes when and
where to provide the hints. A detailed explanation of the compilation unit is
beyond the scope of this thesis.

We use the LLVM compiler infrastructure to make modifications to the default
compiler. Since LLVM is open source and has the support to make granular
changes, it becomes a better choice than GCC. Using the intermediate repres-
entation and analyzing the program dependency graph (PDG), we determine
the optimum location where the hints can be placed. Once the location of the
hints are determined, the binary is instrumented with a custom instruction that
can be understood by the processor and transferred to the cache controller.

The execution units fully supports the compilation unit in performing the
above optimizations. The cache controller takes over and handles the WAR
violations during runtime while taking into account the hints instrumented in
the modified binary. This is performed with very low overhead.

4.4.3 Execution Unit

The execution unit executes the program and manages the checkpoints to ensure
that intermittent computing is possible. The following major steps are performed
when a checkpoint must be created.

22

1. The cache determines whether there is a need to create a checkpoint as
described in Section 4.1. If so, then it signals the processor to perform a
checkpoint.

2. As part of the checkpoint, the processor copies the registers to the NVM.
Since the cache is volatile, all memory blocks that can cause WAR as
determined by the logic described in Sections 4.2 and 4.3 are copied to the
NVM.

3. The write-back to the memory during a checkpoint goes through a double-
buffering mechanism. Once successfully backed up, the cache blocks that
are copied back to NVM are marked as clean.

4. In the event a power failure occurs, the last checkpoint is restored. As part
of this, the registers, the program counter, and the instruction pointer are
restored. The program then continues to run. The cache, being a volatile
entity, starts again from an empty state.

23

24

Chapter 5

Implementation

We now proceed to present the implementation details of the architecture
described above.

5.1 Cache Controller

The cache in our system is managed by a cache controller through which we
perform WAR detection and checkpoint placement as described in Section 4.
An overview of the algorithm that governs this cache controller is presented in
Algorithm 1 and is explained in the following sections.

5.1.1 Handling Cache Accesses:

The processor calls the procedure MemoryAccess (Line 1, Algorithm 1) for every
memory instruction. When the processor requests access to a memory address,
the required data can be in the cache (cache hit) or need to be retrieved from NVM
(cache miss). In the event of a cache miss, the system can create a checkpoint if it
has the possibility of leading to a WAR violation (see Section 5.1.2). As part of
this checkpoint the cache controller also performs the eviction of the ditry cache
lines in procedure Checkpoint (Line 25, Algorithm 1). Procedures CacheLine,
which fetches a cache line using the memory address, and ReplacementPolicy,
which selects a cache line to be evicted in case of a cache miss, are standard
implementations based on the cache architecture.

5.1.2 Detecting WAR:

The cornerstone of our system is to detect when a WAR violation occurs; see
Section 4.1. In NACHO WAR detection is performed with the help of four flags
present for each cache line.

d (dirty): This standard flag indicates that the cache line has data that are
out of sync with the corresponding data in the non-volatile memory.

rd (read-dominated): This custom flag is set by the cache controller to true
when a memory access sequence in a given cache line is read-dominated as
explained in Section 4.2.

25

rd wd
pw d

✓

✓

✓

✗ ✗ ✗ ✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

…
rd wd

pw d

✓

✓

✓

✗ ✗ ✗ ✗

✗

✗

✗

✗

✗

✗

✗

…

Read Dom w/o WAR

✓✓ ✓

✓

✓

✗ ✗ ✗ ✗

✗

✗

✗

✗

✗

…

✓

✓ ✗ ✗ ✗

✗

✓

✓

✓

✓

✓

✗ ✗ ✗ ✗

✗

✗

✗

✗

✗

…

✓

✓ ✗ ✗ ✗

✗

✓

✓

Read Dom w/ WAR Write Dom w/o WAR Write Dom w/ WAR

rd wd
pw d rd wd

pw d

R(a)
R(a)
R(b)

R(a)
W(a)
R(b)

W(a)
R(a)
R(a)
R(b)

W(a)
R(a)
W(a)
R(b)

Figure 5.1: The function of the various flags that are implemented in
the cache as bits. The four flags are rd: read-dominated, wd: write-
dominated, pw: possible-war and d:dirty. The function of the rd and
wd flags corresponds to memory tracking as described in Section 4.2.
These flags control when a checkpoint signal is triggered. The four
different scenarios show all the possible memory accesses that can
occur. R(x) represents a read-memory access to an address location x.
The sequence marked in red causes WAR.

wd (write-dominated): Corresponding custom flag for when a sequence is
write-dominated.

pw (possible-war): This custom flag controls when a checkpoint is created
as shown in Line 9, Algorithm 1. The value of this flag is set or reset in
Procedure 15, Algorithm 1. In the event an unsafe write (see Section 4.2)
is detected, the cache controller raises a checkpoint signal.

Figure 5.1 shows the different scenarios in which the flags can detect safe-writes
and unsafe-writes (see Section 4.2).

5.2 Compiler

The detailed implementation of the custom compiler is beyond the scope of this
thesis work. The execution unit is designed keeping in mind the functionality
of the compiler. When receiving a compiler hint for a given address, the cache
controller clears the appropriate cache block’s pw, rd and wd bits.

This is supported as an add-on and can be seamlessly integrated with the
system design. As described in Section 4.3, this additional compiler hint improves
on the existing, already functional system.

26

Algorithm 1: Memory access handling
1 Algorithm MemoryAccess(address, type, value) :
2 line, miss ← CacheLine(address)
3 if miss is true then
4 line = CacheMiss(address, type)

5 UpdateLine(line, type)
6 UpdateData(line, value)

7 Procedure CacheMiss(address, type):
8 line = ReplacementPolicy(address) // Line to be evicted
9 if linepw is true then

10 Checkpoint()
11 else if linedirty is true then
12 Evict(line) // Write the line to memory
13 ResetLine(line) // Clear all the bits in the line

14 return line

15 Procedure UpdateLine(line, type) :
16 if type is Read then
17 if linewd is false then
18 linerd ← true

19 else if type is Write then
20 if linerd is false then
21 linewd ← true

22 if linerd is true then
23 linepw ← true

24 linedirty ← true

25 Procedure Checkpoint() :
26 for line in Cache do // For each line in the cache
27 if linedirty then
28 SafeEvict(line) // Double buffered evict

29 ResetLine(line) // Clear all the bits in the line

30 DoubleBufferWriteback() // Write back double buffered cache
31 CheckpointInterrupt() // Trigger CPU checkpoint interrupt

27

28

Chapter 6

Evaluation

We now proceed with the evaluation of NACHO.

6.1 Evaluation Setup

We begin by presenting an overview of our evaluation setup. We present and
justify our choice of target and platform.

6.1.1 Target Architecture

We implemented NACHO on top of the RISC-V architecture. The primary
motivation behind this decision is the open-source nature of the RISC-V ISA [53],
which allows modification of its ISA. We based our RISC-V processor on the
SiFive E21 standard core [6], a basic 32−bit embedded processor that targets
microcontroller applications. In addition to non-volatile main memory, we added
our NACHO specific cache and cache controller, which are governed by the logic
described in Section 5.

6.1.2 Evaluation Platform

The performance of NACHO was measured using an emulator designed for
the evaluation of intermittent computing. Emulation enables us to track vital
performance metrics, such as the number of clock cycles executed, the frequency
of memory accesses, and the occurrence of checkpoints. These metrics are
collected without adding to the execution time of the actual program, which is
crucial for our evaluation. Furthermore, emulation allows us to introduce two
verification steps, in which we verify the correct implementation of NACHO and
related works (see Section 6.3. Firstly, for every memory access generated by the
processor, we duplicate the same to a shadow memory. In this way, a memory
access request handled by NACHO would return the same value as contained in
the shadow memory. For the second safety measure, the emulator performs WAR
detection to verify the absence of any WAR violation, as done in [50, Section
5.2] and [38, Section 5.1.1] by using read and write specific address lists and
observing access patterns. These steps guarantee that, while using NACHO, the
evaluated benchmarks are incorruptible on power failures.

29

We selected ICEmu [21] as it supports the 32-bit RISC-V CPU architecture
and allows us to extend its behavior to implement NACHO and the related work.
ICEmu internally uses the QEMU-based [5] Unicorn CPU emulator [7].

6.2 Memory Cost Model

It should be noted that the exact performance of NACHO depends on the
implementation of the memory technology and components used. For the
purpose of evaluation, we have assumed a conservative set of metrics in which
an access to the NVM consumes twice the number of cycles than an access to
the cache. Usually, the cost is much higher, around 4-5× [31, Table 1].

6.3 Evaluated Systems

To assess NACHO we need to compare it with state-of-the-art systems for
intermittent computing. For this, we have selected PROWL [31]: a state-of-the-
art intermittent system supporting cache, and Clank [30], a dedicated memory
tracker-based intermittent system that performs dynamic WAR detection similar
to NACHO but without cache support. Additionally, we have considered two
versions of NACHO, enabling us to see how cache operations introduced in
Section 4 affect its performance.

1 Oracle NACHO: This is a theoretical version of our system that performs
exact memory tracking on top of a cache. As we describe in Section 4.1, detection
of WARs in our system is performed based on the granularity of a cache line—we
check accesses to read/write-dominated cache lines—which can lead to false
WARs being detected. Oracle NACHO makes this detection with exact addresses,
similar to how Clank uses memory buffers to detect WARs [30, Section 3.1]. In
other words, Oracle NACHO is a Clank with added cache. Although this makes
it a perfect WAR detector, this approach will incur a significant hardware cost
and complexity to the system that is not practical to implement, as it consists of
a cache as well as a dedicated per-memory address tracker. In contrast, NACHO
achieves WAR detection using just three bits per cache line (see Section 5.1.
Thus, we treat Oracle NACHO a theoretical lower bound to NACHO and use it
only for comparison purposes.

2 Naive NACHO: To see the improvements of each set of cache optim-
izations (as listed in Section 4) that we implement, we also consider a naive
version of NACHO that has just the WAR detection logic without any of the
optimizations implemented. Similar to Oracle NACHO, we use Naive NACHO
just for comparison purposes.

3 PROWL: Then we have also re-implemented PROWL [31]1. We choose
to include PROWL so as to provide a reference frame as it performs cache
modifications for intermittent systems. PROWL incorporates Cuckoo hashing
into its cache replacement policy and uses the skew-associativity of the cache

1Our implementation of PROWL might not be the exact same as the authors as at the
time of writing PROWL implementation was not released as open source. Most specifically,
the authors use a family of hashing functions, but do not provide the exact functions they
use for the evaluation. However, the overall idea remains the same and we consider that the
numbers presented are accurate enough for comparison purposes.

30

system to decrease the number of checkpoints in the system. The basis of
PROWL is to mask the need for more checkpoints by delaying the eviction of
a dirty cache block. To achieve this, PROWL performs a lot of in-cache data
movement, which increases the cost of execution on every cache miss.

In addition, PROWL does not perform any WAR detection, instead it delays
the occurrence of WAR. This makes it a system that can work in tandem
with NACHO which can detect WARs, and PROWL can implement its custom
replacement policy on top of NACHO’s WAR detection logic.

2 Clank: Lastly, we also implement Clank [30], which does not use a cache,
but uses a dedicated memory tracking hardware module which detects data
inconsistencies during execution time. Since NACHO performs similar detection
of WAR using only the data cache, we include Clank as a baseline to compare
performance metrics.

6.4 Benchmarks Used

The benchmarks used in the evaluation are CoreMark [18], CRC, SHA, and
Dijkstra from MiBench suite [28], picojpeg [24] and Tiny AES [37]. Coremark
is an industry-grade benchmark for measuring embedded system’s CPU per-
formance. TinyAES and picojpeg represent real-life application examples. All
selected benchmarks have been widely used in previous works on intermittent
computing, such as [38, 39, 68].

6.5 Results

With the setup explained, we can now present the results of our evaluation.

6.5.1 Analysis

Figures 6.1, 6.2, 6.3 and 6.4 show various evaluations of our system using
different parameters.

Execution Time

The execution time for a program gives insight into the actual computations
performed. In Figure 6.1 we see that NACHO consumes 24.3% and 28% less
execution cycles than Clank for a 2-way 256 B and 512 B cache configuration
respectively. It also consumes less cycles compared to Prowl by 17%
and 9%. We would like to emphasize that this performance improvement over
Clank—which has a dedicated hardware memory tracker—and PROWL—which
uses complicated cache associativity and replacement policies—is achieved by
adding just three extra bits (see Section 5.1.2) to a standard data cache (see
Section 3.1). However, the execution time does not provide the full picture. We
need to bisect and understand how individual aspects of the systems contribute
to the variation of performance.

31

coremark sha crc aes dijkstra picojpeg
0.4

0.5

0.6

0.70.7

0.9

0.8

1.0

1.1

n
or

m
al

iz
ed

ex
ec

u
ti

on
ti

m
e

On average
Nacho is

24.3% (256 B)
28.0% (512 B)

better
than Clank

Clank Prowl Nacho Oracle Nacho 256 B 512 B256 B 512 B

Figure 6.1: Execution time for all benchmarks for Clank [30], Prowl [31],
NACHO and Oracle NACHO (see Section 6.5). All results are normal-
ized to Clank as a reference system. The Oracle NACHO is shown as
the lower bound. The cache configuration used is 2-way set-associative
for two cache sizes 256B and 512B. Note that Clank is a non-cache
system and is thus not affected by cache configuration. NACHO uses
up to 28% less execution cycles compared to Clank and up to 17%
less than PROWL

Checkpoints

We now consider the number of checkpoints created by the systems during the
execution of the benchmarks. Checkpoints are usually correlated with a longer
execution time and higher memory accesses. Therefore, a reduction in the number
of checkpoints would indicate lower execution times. Results are presented in
Figure 6.2 that contradict this observation. We observe that NACHO creates
fewer checkpoints than Clank but that number is higher compared to PROWL,
which creates on average three times less checkpoints than NACHO.

Let us discuss PROWL’s results further. PROWL uses Cuckoo-hashing [31,
Section 3.C] combined with a skew associative cache that stores dirty blocks in
the cache longer than a traditional cache. Skew associativity provides multiple
hashing functions, which are then used when handling evictions to find an empty
position for an evicted block. With this modification to the replacement policy,
PROWL delays the need to create a checkpoint until the cuckoo hashing fails to
relocate a dirty block within a certain number of iterations. This results in a
significant reduction in the number of checkpoints, as we can see in Figure 6.2.
However, such a reduction in the number of checkpoints does not translate into a
reduction in the execution time shown in Figure 6.1. This disparity in numbers
leads us to explore the memory accesses for the systems.

Memory Accesses

The number of volatile memory accesses by each system is presented in Figure 6.3.
We observe that the accesses by PROWL are significantly higher than the rest. On
average, NACHO has 38.3% fewer volatile memory accesses compared to PROWL.
This higher number of volatile accesses is related to the cache replacement policy
use by PROWL. On every cache miss, the cache performs cuckoo hashing,

32

coremark sha crc aes dijkstra picojpeg
0.0

0.2

0.4

0.6

0.8

1.0

n
or

m
al

iz
ed

n
u

m
b

er
of

ch
ec

kp
oi

n
ts

1.
95

1.
72

Clank Prowl Nacho 256 B 512 B256 B 512 B

Figure 6.2: Number of checkpoints created during all benchmarks for
Clank [30], Prowl [31] and NACHO. All results are normalized to
Clank as the reference system. Bars with outlier results are marked
with the maximum value they reach. The same cache configuration as
presented in Figure 6.1 is used. NACHO creates fewer checkpoints
than Clank, but that number is higher compared to PROWL

leading to a much higher number of cache accesses (see the corresponding bar
stack in Figure 6.3) than our system. This rise in volatile-memory accesses
compensates for the gains obtained via the reduction in checkpoints for PROWL.
Effectively, NACHO creates more checkpoints for a lower number of memory
accesses and simultaneously maintains low execution cost. Frequent checkpoints
also mean that the regions between checkpoints are small. This leads to the size of
checkpoints being smaller compared to PROWL, thus reducing the re-execution
cost as well.

Discussion

Having a lower number of checkpoints makes PROWL closer to a volatile-
heavy system, which then has to be supplemented with periodically induced
checkpoints. Although NACHO sacrifices the number of checkpoints, it keeps the
overall execution cost lower. Furthermore, PROWL achieves fewer checkpoints
by modifying the cache architecture. This makes it inflexible and complicated,
as seen with the extra volatile-memory accesses that are carried out during the
cuckoo hashing on cache misses. NACHO on the other hand, can be used with
any form of cache architecture with minimal overhead. NACHO can also be
implemented on top of PROWL to combine the improvements of both systems
and future cache mechanisms.

The stepwise improvement from Clank to the initial naive NACHO and then
to our system shows how each implementation influences the performance. A
further comparison with Oracle NACHO also shows that our system is on average
within 2% of its performance. Recall that Oracle NACHO is an ideal lower
bound with a perfect memory tracker on top of a data cache, and our system
remains so close to this bound using very low hardware overhead and software
complexity.

33

coremark sha crc aes dijkstra picojpeg
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

n
or

m
al

iz
ed

m
em

or
y

ac
ce

ss

3.
99

On average
Nacho is

38.3% better
than Prowl

Naive
Nacho Prowl

Oracle
Nacho Nacho Reads Writes

Check-
points

Cuckoo
iterationsReads Writes

Check-
points

Cuckoo
iterations

Figure 6.3: The number of volatile memory accesses during all bench-
marks for Prowl [31] and the three variations of NACHO (see Sec-
tion 6.5). All results are normalized to Oracle NACHO as a reference
system. Bars with outlier results are marked with the maximum value
they reach. The different forms of volatile accesses are shown in the
stacked bars for each system. The “Cuckoo iterations” is present only
for Prowl due to their nature of cache replacement policy.

6.6 Cache Configurations

We now explore the effects of cache configurations on NACHO. In the evaluations,
we used 2-way set associative caches. The associativity of a cache implies the
number of cache blocks that are assigned to each hashed entry. A higher
associativity implies that the cache can store a larger number of blocks for a
given mapping before it needs to evict to make space. In Figure 6.4 we present
the execution cost of our system in different cache configurations with varying
sizes and associativity.

6.6.1 Cache Sizes

We observe that an increase in cache sizes improves performance. This is expected,
as with a larger cache, more dirty blocks can stay in the cache, effectively
increasing the region between WARs and therefore checkpoints. Furthermore, a
larger cache creates smaller mappings between cache lines and program memory,
which gives higher accuracy to per-line WAR detection used in our system, thus
bringing our system closer to the performance of Oracle NACHO.

6.6.2 Cache Associativity

Similar to cache sizes, the increasing number of cache associativity further
improves the performance of NACHO. It is interesting that this varies slightly
with the benchmark used, with the effect being more pronounced with picojpeg
and AES. Furthermore, in these benchmarks, the improvement of performance
in doubling the number of ways is more than that of doubling the size. This can
be attributed to the fact that increasing associativity decreases the probability
of a cache collision on cache miss, thus reducing the probability of a checkpoint.

34

coremark sha crc aes dijkstra picojpeg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

n
or

m
al

iz
ed

ex
ec

u
ti

on
ti

m
e

Oracle
Nacho

Naive
Nacho

2-way
256 B

4-way
256 B

2-way
512 B

4-way
512 B

2-way
1024 B

4-way
1024 B

Figure 6.4: A design space exploration of cache configurations with
NACHO. All results are normalized to 2-way 256B cache. Oracle
NACHO and Naive NACHO metrics are marked as references to
provide a lower and upper bound, respectively.

coremark sha crc aes dijkstra picojpeg
0.4

0.5

0.6

0.70.7

0.9

0.8

1.0

1.1

n
or

m
al

iz
ed

ex
ec

u
ti

on
ti

m
e

On average
Nacho is

25.9% (256 B)
30.6% (512 B)

better
than Clank

Clank Prowl Oracle Nacho 256 B 512 B256 B 512 B

Figure 6.5: Execution time for all the benchmarks for Clank and
NACHO with a 4-way set associative cache. Similar to Figure 6.1 but
with associativity doubled. The performance of NACHO increases
with an increase in the associativity of the cache.

An increase in cache sizes and associativity leads to an increase in the check-
point size, as the volatile data cache needs to be saved to the non-volatile memory.
However, the results show the opposite, and this can be attributed to the higher
accuracy of the detection of WAR and the fewer cache collisions.

On the basis of the above discussion, we can state that a 4-way set-associative
cache is more effective compared to a 2-way cache. Our prior evaluations used
2-way due to limitation on the number of hashing functions available to us for
PROWL’s implementation. An evaluation of 4-way cache is shown in Figure 6.5
where the performance improvement is better than that shown in Figure 6.1.

35

36

Chapter 7

Conclusions and Future
Works

7.1 Conclusion

We presented NACHO an intermittent system with full cache support without
additional hardware components. NACHO uses the cache as a WAR detection
entity and builds on this idea to provide a complete, energy-efficient and yet
incorruptible system. By reducing the number of checkpoints and memory
accesses, it achieves better performance than the state-of-the-art, while offering
support for any form of cache architecture. We evaluated the system presented
providing comparisons to similar works and noted our observations. We ended
the work by stating the cache configuration that works best for our system.

7.2 Future Work

The use of caches in intermittent systems is still being developed and needs
further dedicated research. In this work, we have explored how to use a cache
efficiently, but there remains scope for improvement.

Currently NACHO decides on the occurrence of WARs only by tracking the
memory in the cache. Compiler support mentioned in Section 4.3 still needs to
be implemented. This will provide a much higher efficiency gain in both the
reduction of the number of checkpoints and the number of non-volatile accesses.

Furthermore, our implementation is done in a highly configurable emulator.
This enabled us to implement all the different variations of NACHO and provide
a proper evaluation. The next step would be to implement the same in the actual
hardware. We initially aimed to implement the same in a SoC generator and
synthesize it in an FPGA but the workload proved to be higher than expected,
and thus that remains for future work. A brief introduction to the explored SoC
generator is given in Section 2.

Another possible direction of work is to implement NACHO on top of PROWL.
Our idea can work in collaboration with that of PROWL and thus can lead to a
better and efficient system.

Lastly, the next logical step after integrating a data cache is to add support

37

for a similar instruction cache. This would inch the system towards a complete
intermittent framework.

38

Bibliography

[1] ESP8266 Wi-Fi MCU. https://www.espressif.com/en/products/socs/esp8266.

[2] MSP430G2452 data sheet, product information and support. ht-
tps://www.ti.com/product/MSP430G2452.

[3] STM32F103C8 - Mainstream Performance line, Arm Cortex-M3 MCU
with 64 Kbytes of Flash memory, 72 MHz CPU, motor control, USB
and CAN - STMicroelectronics. https://www.st.com/en/microcontrollers-
microprocessors/stm32f103c8.html.

[4] STM8S103F3 - Mainstream Access line 8-bit MCU with
8 Kbytes Flash, 16 MHz CPU, integrated EEPROM -
STMicroelectronics. https://www.st.com/en/microcontrollers-
microprocessors/stm8s103f3.html.

[5] QEMU / QEMU · GitLab. GitLab, 2021.

[6] SiFive E21 Core Complex Manual. page 155, 2021.

[7] Unicorn Engine. Unicorn Engine, August 2022. original-date: 2015-08-
20T16:35:45Z.

[8] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Har-
oon Siddiqui, and Luca Mottola. Efficient intermittent computing with
differential checkpointing. ACM Press, 2019.

[9] Naved Alam, Prashant Vats, and Neha Kashyap. Internet of Things: A
literature review. In 2017 Recent Developments in Control, Automation &
Power Engineering (RDCAPE), pages 192–197, October 2017.

[10] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao,
Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chipyard: Integ-
rated Design, Simulation, and Implementation Framework for Custom SoCs.
IEEE Micro, 40(4):10–21, July 2020. Conference Name: IEEE Micro.

[11] Domenico Balsamo, Anup Das, Alex S. Weddell, Davide Brunelli, Bashir M.
Al-Hashimi, Geoff V. Merrett, and Luca Benini. Graceful Performance Modu-
lation for Power-Neutral Transient Computing Systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 35(5):738–
749, May 2016. Conference Name: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

39

[12] Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arreola,
Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and Luca Benini.
Hibernus++: A Self-Calibrating and Adaptive System for Transiently-
Powered Embedded Devices. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 35(12):1968–1980, 2016. Conference
Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems.

[13] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-
Hashimi, Davide Brunelli, and Luca Benini. Hibernus: Sustaining Compu-
tation During Intermittent Supply for Energy-Harvesting Systems. IEEE
Embedded Systems Letters, 7(1):15–18, March 2015. Conference Name:
IEEE Embedded Systems Letters.

[14] Abhishek Bhattacharyya, Abhijith Somashekhar, and Joshua San Miguel.
NvMR: non-volatile memory renaming for intermittent computing. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture, pages 1–13, New York New York, June 2022. ACM.

[15] Naveed Anwar Bhatti and Luca Mottola. HarvOS: Efficient Code In-
strumentation for Transiently-Powered Embedded Sensing. In 2017 16th
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 209–220, April 2017.

[16] Jongouk Choi, Qingrui Liu, and Changhee Jung. CoSpec: Compiler Dir-
ected Speculative Intermittent Computation. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’52, pages 399–412, New York, NY, USA, October 2019. Association for
Computing Machinery.

[17] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable
intermittent programs. In Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, pages 514–530, New York, NY, USA,
October 2016. Association for Computing Machinery.

[18] Embedded Microprocessor Benchmark Consortium. Coremark. August
2022. original-date: 2018-05-23T00:53:13Z.

[19] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemys law
Pawe lczak, and Josiah Hester. Reliable Timekeeping for Intermittent Com-
puting. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, pages 53–67, New York, NY, USA, March 2020. Association
for Computing Machinery.

[20] Brad Denby, Emily Ruppel, Vaibhav Singh, Shize Che, Chad Taylor, Fayyaz
Zaidi, Swarun Kumar, Zac Manchester, and Brandon Lucia. Tartan Artibeus:
A Batteryless, Computational Satellite Research Platform. Small Satellite
Conference, August 2022.

[21] Virgil Dupras. ICemu - Emulate Integrated Circuits. February 2022. original-
date: 2017-09-06T12:18:44Z.

40

[22] Laura Marie Feeney, Christian Rohner, Per Gunningberg, Anders Lindgren,
and Lars Andersson. How do the dynamics of battery discharge affect sensor
lifetime? In 2014 11th Annual Conference on Wireless On-demand Network
Systems and Services (WONS), pages 49–56, April 2014.

[23] Karthik Ganesan, Joshua San Miguel, and Natalie Enright Jerger. The
What’s Next Intermittent Computing Architecture. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 211–223, February 2019. ISSN: 2378-203X.

[24] Rich Geldreich. Picojpeg. July 2022. original-date: 2015-05-21T03:53:59Z.

[25] Mohammadmahdi Ghiji, Vasily Novozhilov, Khalid Moinuddin, Paul Joseph,
Ian Burch, Brigitta Suendermann, and Grant Gamble. A Review of Lithium-
Ion Battery Fire Suppression. Energies, 13(19):5117, January 2020. Number:
19 Publisher: Multidisciplinary Digital Publishing Institute.

[26] Rabeeh Golmohammadzadeh, Fariborz Faraji, Brian Jong, Cristina Pozo-
Gonzalo, and Parama Chakraborty Banerjee. Current challenges and future
opportunities toward recycling of spent lithium-ion batteries. Renewable
and Sustainable Energy Reviews, 159:112202, May 2022.

[27] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto
Fröhlich, and Rodolfo Pellizzoni. A Survey on Cache Management Mech-
anisms for Real-Time Embedded Systems. ACM Computing Surveys,
48(2):32:1–32:36, November 2015.

[28] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. MiBench: A free, commercially representative embedded benchmark
suite. In Proceedings of the Fourth Annual IEEE International Workshop
on Workload Characterization. WWC-4 (Cat. No.01EX538), pages 3–14,
December 2001.

[29] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Elsevier, October 2011.

[30] Matthew Hicks. Clank: Architectural Support for Intermittent Computation.
ACM SIGARCH Computer Architecture News, 45(2):228–240, June 2017.

[31] Ali Hoseinghorban, Mohammad Abbasinia, and Alireza Ejlali. PROWL:
A Cache Replacement Policy for Consistency Aware Renewable Powered
Devices. IEEE Transactions on Emerging Topics in Computing, pages
1–1, 2020. Conference Name: IEEE Transactions on Emerging Topics in
Computing.

[32] Ali Hoseinghorban, Amir Mahdi Hosseini Monazzah, Mostafa Bazzaz, Bardia
Safaei, and Alireza Ejlali. COACH: Consistency Aware Check-Pointing for
Nonvolatile Processor in Energy Harvesting Systems. IEEE Transactions on
Emerging Topics in Computing, 9(4):2076–2088, October 2021. Conference
Name: IEEE Transactions on Emerging Topics in Computing.

[33] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. QUICKRE-
CALL: A Low Overhead HW/SW Approach for Enabling Computations
across Power Cycles in Transiently Powered Computers. In 2014 27th

41

International Conference on VLSI Design and 2014 13th International
Conference on Embedded Systems, pages 330–335, January 2014. ISSN:
2380-6923.

[34] Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay
Raghunathan. Energy-Aware Memory Mapping for Hybrid FRAM-SRAM
MCUs in Intermittently-Powered IoT Devices. ACM Transactions on Em-
bedded Computing Systems, 16(3):65:1–65:23, April 2017.

[35] Andreas Jossen. Fundamentals of battery dynamics. Journal of Power
Sources, 154(2):530–538, March 2006.

[36] Do Hee Keum, Su-Kyoung Kim, Jahyun Koo, Geon-Hui Lee, Cheonhoo Jeon,
Jee Won Mok, Beom Ho Mun, Keon Jae Lee, Ehsan Kamrani, Choun-Ki Joo,
Sangbaie Shin, Jae-Yoon Sim, David Myung, Seok Hyun Yun, Zhenan Bao,
and Sei Kwang Hahn. Wireless smart contact lens for diabetic diagnosis
and therapy. Science Advances, 6(17):eaba3252, April 2020. Publisher:
American Association for the Advancement of Science.

[37] kokke. Tiny AES (C). August 2022. original-date: 2012-05-24T15:27:24Z.

[38] Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and
Przemys law Pawe lczak. WARio: efficient code generation for intermittent
computing. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI
2022, pages 777–791, New York, NY, USA, June 2022. Association for
Computing Machinery.

[39] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah
Hester, and Przemys law Pawe lczak. Time-sensitive Intermittent Computing
Meets Legacy Software. ACM, 2020.

[40] Fuyang Li, Keni Qiu, Mengying Zhao, Jingtong Hu, Yongpan Liu, Yong
Guan, and Chun Jason Xue. Checkpointing-Aware Loop Tiling for En-
ergy Harvesting Powered Nonvolatile Processors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(1):15–28,
January 2019. Conference Name: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

[41] Hehe Li, Yongpan Liu, Qinghang Zhao, Yizi Gu, Xiao Sheng, Guangyu Sun,
Chao Zhang, Meng-Fan Chang, Rong Luo, and Huazhong Yang. An energy
efficient backup scheme with low inrush current for nonvolatile SRAM in
energy harvesting sensor nodes. In 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 7–12, March 2015. ISSN: 1558-1101.

[42] Jinyang Li, Yongpan Liu, Hehe Li, Zhe Yuan, Chenchen Fu, Jinshan Yue,
Xiaoyu Feng, Chun Jason Xue, Jingtong Hu, and Huazhong Yang. PATH:
Performance-Aware Task Scheduling for Energy-Harvesting Nonvolatile Pro-
cessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(9):1671–1684, September 2018. Conference Name: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems.

42

[43] Wen Sheng Lim, Chia-Heng Tu, Chun-Feng Wu, and Yuan-Hao Chang.
iCheck: Progressive Checkpointing for Intermittent Systems. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
40(11):2224–2236, November 2021. Conference Name: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.

[44] Yongpan Liu, Jinshan Yue, Hehe Li, Qinghang Zhao, Mengying Zhao,
Chun Jason Xue, Guangyu Sun, Meng-Fan Chang, and Huazhong Yang.
Data Backup Optimization for Nonvolatile SRAM in Energy Harvesting
Sensor Nodes. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 36(10):1660–1673, October 2017. Conference Name:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

[45] Brandon Lucia and Benjamin Ransford. A simpler, safer programming
and execution model for intermittent systems. ACM SIGPLAN Notices,
50(6):575–585, June 2015.

[46] Kaisheng Ma, Xueqing Li, Srivatsa Rangachar Srinivasa, Yongpan Liu,
John Sampson, Yuan Xie, and Vijaykrishnan Narayanan. Spendthrift:
Machine learning based resource and frequency scaling for ambient energy
harvesting nonvolatile processors. In 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 678–683, January 2017.
ISSN: 2153-697X.

[47] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent
Execution without Checkpoints. arXiv:1909.06951 [cs], September 2019.
arXiv: 1909.06951.

[48] Kiwan Maeng and Brandon Lucia. Adaptive Dynamic Checkpointing for
Safe Efficient Intermittent Computing. pages 129–144, 2018.

[49] Andrea Maioli and Luca Mottola. ALFRED: Virtual Memory for Intermit-
tent Computing. In Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’21, pages 261–273, New York, NY, USA,
November 2021. Association for Computing Machinery.

[50] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Har-
oon Siddiqui. Discovering the Hidden Anomalies of Intermittent Computing.
page 12, 2021.

[51] Azalia Mirhoseini, Bita Darvish Rouhani, Ebrahim Songhori, and Farinaz
Koushanfar. Chime: Checkpointing Long Computations on Interm ittently
Energized IoT Devices. IEEE Transactions on Multi-Scale Computing
Systems, 2(4):277–290, October 2016. Conference Name: IEEE Transactions
on Multi-Scale Computing Systems.

[52] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. Steal but
No Force: Efficient Hardware Undo+Redo Logging for Persistent Memory
Systems. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 336–349, February 2018. ISSN:
2378-203X.

43

[53] RISC-V Org. About RISC-V. In RISC-V International, 2022.

[54] Davide Pala, Ivan Miro-Panades, and Olivier Sentieys. Freezer: A Special-
ized NVM Backup Controller for Intermittently Powered Systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(8):1559–1572, August 2021. Conference Name: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

[55] Chen Pan, Mimi Xie, Yongpan Liu, Yanzhi Wang, Chun Jason Xue, Yuan-
gang Wang, Yiran Chen, and Jingtong Hu. A lightweight progress maximiz-
ation scheduler for non-volatile processor under unstable energy harvesting.
ACM SIGPLAN Notices, 52(5):101–110, June 2017.

[56] Vijay Raghunathan, A. Kansal, J. Hsu, J. Friedman, and Mani Srivastava.
Design considerations for solar energy harvesting wireless embedded systems.
In IPSN 2005. Fourth International Symposium on Information Processing
in Sensor Networks, 2005., pages 457–462, April 2005.

[57] Arnab Raha, Akhilesh Jaiswal, Syed Shakib Sarwar, Hrishikesh Jayaku-
mar, Vijay Raghunathan, and Kaushik Roy. Designing Energy-Efficient
Intermittently Powered Systems Using Spin-Hall-Effect-Based Nonvolatile
SRAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(2):294–307, February 2018. Conference Name: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems.

[58] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: system support
for long-running computation on RFID-scale devices. In Proceedings of the
sixteenth international conference on Architectural support for programming
languages and operating systems, ASPLOS XVI, pages 159–170, New York,
NY, USA, March 2011. Association for Computing Machinery.

[59] H. Rayo Torres Rodriguez. A lightweight hardware architecture for inter-
mittent computing, August 2019. Publisher: University of Twente.

[60] Douglas Almeida Santos, Lucas Matana Luza, Cesar Albenes Zeferino,
Luigi Dilillo, and Douglas Rossi Melo. A Low-Cost Fault-Tolerant RISC-V
Processor for Space Systems. In 2020 15th Design Technology of Integrated
Systems in Nanoscale Era (DTIS), pages 1–5, April 2020.

[61] SenniSophiane, TorresLionel, SassatelliGilles, and GamatieAbdoulaye. Non-
Volatile Processor Based on MRAM for Ultra-Low-Power IoT Devices.
ACM Journal on Emerging Technologies in Computing Systems (JETC),
December 2016. Publisher: ACM PUB27 New York, NY, USA.

[62] Neha Sharma and Deepak Panwar. Green IoT: Advancements and Sustain-
ability with Environment by 2050. In 2020 8th International Conference
on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), pages 1127–1132, June 2020.

[63] Sivert T. Sliper, William Wang, Nikos Nikoleris, Alex S. Weddell, Anand
Savanth, Pranay Prabhat, and Geoff V. Merrett. Pragmatic Memory-
System Support for Intermittent Computing using Emerging Non-Volatile
Memory. IEEE Transactions on Computer-Aided Design of Integrated

44

Circuits and Systems, pages 1–1, 2022. Conference Name: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.

[64] Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yongpan Liu, and Vi-
jaykrishnan Narayanan. Nonvolatile processors: Why is it trending? In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, pages 966–971, March 2017. ISSN: 1558-1101.

[65] Sujesha Sudevalayam and Purushottam Kulkarni. Energy Harvesting Sensor
Nodes: Survey and Implications. IEEE Communications Surveys & Tutori-
als, 13(3):443–461, 2011. Conference Name: IEEE Communications Surveys
& Tutorials.

[66] Dan Wang, Dong Chen, Bin Song, Nadra Guizani, Xiaoyan Yu, and Xiaoji-
ang Du. From IoT to 5G I-IoT: The Next Generation IoT-Based Intelli-
gent Algorithms and 5G Technologies. IEEE Communications Magazine,
56(10):114–120, October 2018. Conference Name: IEEE Communications
Magazine.

[67] Harrison Williams, Michael Moukarzel, and Matthew Hicks. Failure Sen-
tinels: Ubiquitous Just-in-time Intermittent Computation via Low-cost
Hardware Support for Voltage Monitoring. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), pages
665–678, June 2021. ISSN: 2575-713X.

[68] Joel Van Der Woude and Matthew Hicks. Intermittent Computation without
Hardware Support or Programmer Intervention. pages 17–32, 2016.

[69] Mimi Xie, Chen Pan, Youtao Zhang, Jingtong Hu, Yongpan Liu, and
Chun Jason Xue. A Novel STT-RAM-Based Hybrid Cache for Intermittently
Powered Processors in IoT Devices. IEEE Micro, 39(1):24–32, January 2019.
Conference Name: IEEE Micro.

[70] Mimi Xie, Mengying Zhao, Chen Pan, Jingtong Hu, Yongpan Liu, and
Chun Jason Xue. Fixing the broken time machine: consistency-aware
checkpointing for energy harvesting powered non-volatile processor. In
Proceedings of the 52nd Annual Design Automation Conference, DAC ’15,
pages 1–6, New York, NY, USA, June 2015. Association for Computing
Machinery.

[71] Mimi Xie, Mengying Zhao, Chen Pan, Hehe Li, Yongpan Liu, Youtao
Zhang, Chun Jason Xue, and Jingtong Hu. Checkpoint aware hybrid cache
architecture for NV processor in energy harvesting powered systems. In
2016 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 1–10, October 2016.

[72] Yue Yang, Emenike G. Okonkwo, Guoyong Huang, Shengming Xu, Wei
Sun, and Yinghe He. On the sustainability of lithium ion battery industry
– A review and perspective. Energy Storage Materials, 36:186–212, April
2021.

[73] Bahram Yarahmadi and Erven Rohou. So Far So Good: Self-Adaptive Dy-
namic Checkpointing for Intermittent Computation based on Self-Modifying

45

Code. In Proceedings of the 24th International Workshop on Software and
Compilers for Embedded Systems, SCOPES ’21, pages 29–34, New York,
NY, USA, November 2021. Association for Computing Machinery.

[74] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. InK: Reactive Kernel for
Tiny Batteryless Sensors. pages 41–53, Shenzhen, China, 2018. Association
for Computing Machinery.

[75] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi,
Dongyoon Lee, Changwoo Min, and Changhee Jung. ReplayCache: Enabling
Volatile Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 170–182.
Association for Computing Machinery, New York, NY, USA, October 2021.

[76] Mengying Zhao, Qingan Li, Mimi Xie, Yongpan Liu, Jingtong Hu, and
Chun Jason Xue. Software assisted non-volatile register reduction for energy
harvesting based cyber-physical system. In 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 567–572, March
2015. ISSN: 1558-1101.

[77] Yang Zhou, Mengying Zhao, Lei Ju, Chun Jason Xue, Xin Li, and Zhiping
Jia. Energy-aware morphable cache management for self-powered non-
volatile processors. In 2017 IEEE 23rd International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), pages
1–7, August 2017. ISSN: 2325-1301.

46

	Preface
	Introduction
	Problem statement
	Research Question
	Fundamental insight
	Contributions

	Related Work
	Existing Intermittent Systems
	RISC-V based Intermittent Systems
	Caches in Intermittent Systems
	Analysis - PROWL
	Analysis - ReplayCache

	Chipyard

	Motivation
	Trade-offs in memory volatility
	Challenges

	Cache Integration
	Using cache as a WAR detector
	Optimizing WAR detection
	Using compiler analysis
	Detecting safe memory sequences
	Detecting dead memory accesses

	System Architecture
	System Requirements
	Compilation Unit
	Execution Unit

	Implementation
	Cache Controller
	Handling Cache Accesses:
	Detecting WAR:

	Compiler

	Evaluation
	Evaluation Setup
	Target Architecture
	Evaluation Platform

	Memory Cost Model
	Evaluated Systems
	Benchmarks Used
	Results
	Analysis

	Cache Configurations
	Cache Sizes
	Cache Associativity

	Conclusions and Future Works
	Conclusion
	Future Work

