
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Quasiparticle
Dynamics in
Disordered
Superconductors
Modeling the Single Photon Response

Thomas Rugers



Quasiparticle
Dynamics in
Disordered

Superconductors
Modeling the Single Photon Response

by

Thomas Rugers

Student number: 5167825
Daily supervisor: Ir. S. A. H. de Rooij
Supervisor: Prof. dr. ir. J. J. A. Baselmans
Project Duration: October, 2022 - December, 2022
Faculty: Faculty of Applied Sciences, TU Delft

Cover: LEKID schematic by [1] (Modified)



Preface

Three years ago I first stepped foot in the TU Delft after freshly coming out of high school. The fact that
physics is interesting was clear to me but what it meant to practice physics I had yet to see. Learning
all the basic physics in the bachelor courses is important but working on my bachelor’s thesis I saw
what it means to be a scientist. To do research is a hard task that requires a lot of determination and
leaves no room for not being thorough.
I am still standing at the beginning of a whole journey but I want to thank Steven for giving me a first look
into the world of research, thank you for always being able to make time and have endless discussions
with me. I also want to thank Jochem and Pieter for giving great advice and making sure I wouldn’t get
ahead of myself. And lastly, I would like to thank my parents for their ever-lasting support throughout
my whole bachelor’s.

Thomas Rugers
Delft, December 2022

i



Abstract

Magnetic Kinetic Inductance Detectors (MKIDs) are very good radiation detectors which are even ca-
pable of single photon detection in the near-infra red and higher frequency range. MKIDs are currently
used to detect exoplanets and the goal is to also retrieve information of the atmosphere of exoplanets.
However, MKIDs don’t have the photon absorption efficiency and resolving power to do this yet.

In this thesis we look at the single photon pulses of a new superconducting material, beta phased
tantalum (β-Ta), since this material shows promising properties for MKIDs. The single photon pulse
shapes of this material are not yet fully understood. Therefore wewill createmodels for the quasiparticle
dynamics in β-ta to try and further our understanding of the single photon pulses in this material.
From the Rothwarf-Taylor equations we derive multiple models. These are then tested on the data. We
first try the double exponential model which does not work. Then we look at the 1/t model and this
model does seem to work better. We propose a different response time of the system. Fitting a new
response time we get a very good fit to the single photon pulses. The main hypothesis is that there
is an extra relaxation time for the quasiparticles as they need to distribute themselves throughout the
superconductor. We see that the fitted response time is wavelength dependent which would support
the hypothesis.
We conclude that the 1/tmodel with an adjusted response time explains the single photon pule shapes
the best.
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1
Introduction

Since the beginning of time humanity has been curious about the world around us. This is why Christo-
pher Columbus and Marco Polo were exploring the globe and Isaac Newton was figuring out the math-
ematical rules of nature. But maybe the most interesting question of all was about that starry night sky
that riddled humanity every time they looked at it.
First people started making observations with their bare eyes. However, the eyes don’t make for very
precise measuring instruments. When Galileo Galilei made the first telescope in 1610 he made a big
contribution to observing space but he was still dependent on his eyes. But a really big change came
in 1905 when Einstein proposed that light consisted of quantized energy bundles that this changed.
An electrical device could now detect light with the photoelectric effect. From here detectors could be
made, where firstly single photon detection became possible with photomultiplier tubes.
For astronomy before the 80s mostly photographic plates were used. After that, because of their very
high quantum efficiencies, the charged coupled devices (CCD) and the complementary metal–oxide–
semiconductor (CMOS) became the standard [2]. Most notably the Hubble telescope uses these de-
tectors.

Next, the discovery of superconductors created the gateway to a new type of detector. These detectors
are called Microwave Kinetic Inductance Detectors (MKIDs) and they can measure very small energy
disturbances. Small enough so that the measurement of a single photon in the range of visible light is
possible. An image of an MKID array can be found in figure 1.1. The MKID can also then determine the
wavelength of the photon that it measures. MKIDs are already being used to observe distant galaxies
in the Deep Spectroscopic High-redshift Mapper (DESHIMA) project. Here the MKIDs are used as a
power integrating detector in the Atacama Submillimeter Telescope Experiment (ASTE) in Chile so we
can find out more about the history of the universe [3].
The next step will be to get an MKID-based sensor into space with a satellite to remove atmospheric
distortion. This would make it among other things possible for MKIDs to measure the atmosphere of
exoplanets enabling it to research their habitability.

However, there are still some hurdles with the usage of MKIDs that need to be overcome. The most
common superconducting material that is used in MKIDs is Aluminium. This is a well-understood su-
perconductor but some of its properties make it hard to use as a sensor.
Firstly its photon absorption efficiency is low. This is the percentage of photons that get absorbed into
the superconductor as some of the photons will get reflected off or pass right through the material.
Secondly, the energy-resolving power for photons is not sufficient yet for exoplanet atmosphere spec-
troscopy. These two reasons make it a problem to use the MKID effectively.

This is the reason that we are looking into new superconducting materials. One of these is β-phased
Tantalum (β-Ta), a disordered superconductor. The behavior of this superconductor however is very
different from Aluminium. We are looking at the behavior of a single photon pulse. Some examples of
these can be found in the right picture of figure 1.1. These single photon pulse shapes are different
from Aluminium and inconsistent with the old theory. Understanding these shapes would mean that
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the material can be used effectively in the MKIDs.
That’s why in this thesis the single photon pulse shape of β-Tantalum will be researched. The goal is to
understand the quasiparticle dynamics in the superconductor by making a model that will fit the single
photon pulses.
In chapter two first the theory behind superconductivity will be explained and then quasiparticle dynam-
ics and the working of MKIDs. In the third chapter different models to explain the single photon pulse of
an MKID will be presented and looked at. Then in the fourth chapter, these models will be tested with
the single photon pulses that were measured from the β-Ta MKIDs. Finally in chapter five conclusions
will be made together with recommendations for future work.

Figure 1.1: On the left is an image of the NIKA-2 MKID array. And in the right graph are examples of averaged single photon
pulses measured on Chip 2, KID 2 at different wavelength photon pulses at a temperature of 18 mK and with a read-out power

of -105 dBm.



2
Theory

2.1. Superconductivity
In 1911 Dutch physicist Heike Kamerlingh Onnes cooledmercury down to 4.2 Kelvin using liquid Helium,
where he researched the properties of metals at low temperatures. He observed a complete vanishing
of electrical resistance [4]. It was not until 1957 that a complete theory was made for superconductivity,
the Bardeen–Cooper–Schrieffer (BCS) theory. This theory will be discussed on a surface level here
with the necessary knowledge for this thesis.

In BCS theory Leon Cooper showed that free electrons in metals at low temperatures are unstable and
can form pairs if there is an attractive potential. As long as there is an attractive potential, even if it is
very weak the electrons will pair up into so-called Cooper pairs. The binding energy of a Cooper pair
is given by 2∆ = 3.52kBTc. Where kB is the Boltzmann constant and Tc is the critical temperature.
In metals, the attractive potential is generally explained by the deformation of the lattice due to the
electron as shown in figure 2.1. As one electron deforms the lattice by attracting the positively charged
atoms it creates a small more positively charged region. This then creates an attractive potential for an-
other electron making the electrons pair up. All the electrons which are fermions pair up with each other
becoming bosons. this enables them to all be in the same state. So the electrons form a condensate
basically becoming an electron superfluid.[5], [6]

Figure 2.1: The deformation of the lattice in a metal because of an electron creating a positive charge density in the vicinity.
Figure from [7]

These Cooper pairs induce all of the superconductor properties. The most important one is the vanish-
ing of the electrical resistance. As all the electrons have become a condensate they move through the
lattice without any dissipation. Accelerating the electrons is then only limited by their inertia giving rise
to kinetic inductance.

3



2.2. Quasiparticle dynamics 4

At non-zero temperatures, there will still be phonons with an energy equal to or greater than 2∆ in the
material which can break the Cooper pairs. When a Cooper pair breaks it splits up into two quasipar-
ticles. These are a superposition of an electron and a hole (a positively charged region that indicates
the lack of an electron at a certain position) which can be viewed as a single fermion. While phonons
are breaking the quasiparticles, recombination of quasiparticles into Cooper pairs is also possible. De-
pending on the temperature there will be a certain density of quasiparticles in the material at equilibrium.
This is given by,

nqp = 4N0

∫ ∞

0

f (E; kBT )Ns(E)dE = 4N0

∫ ∞

∆

f (E; kBT )E√
E2 −∆2

dE, (2.1)

where N0 is the electron density of states at the Fermi level, f (E; kBT ) is the quasiparticle distribution,
and Ns(E) = ℜ

(
E√

E2−∆2

)
is the normalized BCS quasiparticle density of states. By multiplying this

density with the volume of the superconductor you will obtain the total amount of thermal quasiparticles:
N0

qp = n0
qpV

In this equation, as the temperature goes up the number of quasiparticles goes up too.
Then if the Fermi-Dirac distribution is used and low temperatures are considered (kbT ≪ ∆), nqp can
be approximated by [8],

nqp ≈ 2N0

√
2πkbT∆e−∆/kbT , (2.2)

Up until now, only the thermal equilibrium has been looked at but for MKIDs it is necessary to look at
the case where the amount of quasiparticles is disturbed out of thermal equilibrium. This is the case
when a photon hits the superconductor and breaks the Cooper pairs up into quasiparticles. In the next
section, these quasiparticle dynamics will be looked at.

2.2. Quasiparticle dynamics
As quasiparticles recombine into a Cooper pair they release a phonon, and the other way around a
phonon can be absorbed by a Cooper pair to break it which in turn generates quasiparticles. So one
can write master equations considering the phonons of the system and quasiparticles.
The equations that describe this are called the Rothwarf-Taylor equations [9] which are coupled non-
linear differential equations given by,

dNqp

dt
= −

RN2
qp

V
+ 2ΓBNω,

dNω

dt
=

1

2

RN2
qp

V
− ΓBNω − ΓesNω + ΓKNω,B ,

dNω,B

dt
= ΓesNω − ΓKNω,B .

(2.3)

Here the system is made up of three levels. Firstly there is the number of quasiparticles Nqp which in-
teracts with the phonons in the superconductorNω which is the second level. The phonons considered
are only the ones with energy Ω ≥ 2∆ which can break the Cooper pairs. The last level is made up of
the phonons in the cooling bath to which the superconductor is connected.
The first line of the equations looks at the change in the number of quasiparticles. First, there is a
recombination term which is quadratic since they combine as a pair into a Cooper pair. Here R is
the recombination constant. Then for the second creation term phonons can break the Cooper pairs
and create quasiparticles, this is dependent on the pair breaking rate ΓB = 1/τpb and the number of
phonons.
The second line of the equation gives the change in pair-breaking phonons and the first term is the
same quadratic term that appears in the quasiparticle equation since at the same time a phonon is
created. However, for two quasiparticles, one phonon is created which explains the factor 1/2. The
same goes for the second term. The last two terms are about the phonons escaping into the bath and
coming from the bath back into the superconductor. Here Γes = 1/τes and ΓK are the phonon escape
rate into the bath and the rate at which the bath phonons enter the superconductor from the phonon
bath respectively.
The last equation looks at the phonons in the bath which go up if a phonon escapes into it and go down
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when one goes back into the superconductor.

Since the bath is so much bigger than the superconductor the photons from the bath are basically
always in equilibrium. Setting the bath phonons constant we find that ΓesN

0
ω = ΓKN0

ω,B . From this, we
end up with two equations, one for the quasiparticles and one for the pair-breaking phonons. In this
thesis, zero as a superscript means that it is a steady state value or thermal equilibrium value.

dNqp

dt
= −

RN2
qp

V
+ 2ΓBNω

dNω

dt
=

RN2
qp

2V
− ΓBNω − Γes

(
Nω −N0

ω

)
.

(2.4)

The first term in both of the equations in 2.4 is still the recombination of quasiparticles. Then the second
term is the pair breaking by the phonons and the last term in the phonon equation is the escaping of
phonons into the phonon bath. These equations do not have an analytical solution (yet) so to solve
them certain assumptions have to be made. There are two limits in which these equations can be
solved. The first is when there is a large number of excess quasiparticles (δNqp ≫ N0

qp), this means
that recombination will be dominant so we can ignore the pair-breaking term and solve the quasiparticle
equation,

dNqp

dt
= −

RN2
qp

V
⇒

∫
1

N2
qp

dNqp = −
∫

R

V
dt ⇒ Nqp(t) = Nqp(0)

R
V

Nqp(0)t+
R
V

.

Where first the terms are moved around to separate the variables and then it is integrated on both sides.
From the result, it can be seen that in the regime where there is a high amount of excess quasiparticles
the recombination of quasiparticles has a dependence of∝ 1/t. This regime is when T << Tc and thus
the amount of thermal quasiparticles is very low. If a photon hits the superconductor in this regime the
number of excess quasiparticles will be very big compared to the thermal quasiparticles. We will call
this the low-temperature regime.
The other regime is when the amount of excess quasiparticles is very small. Then a linearization can be
made to find that the amount of excess quasiparticles is a single exponential, δNqp ∝ e−2t/τqp , where
τqp = 1/ΓR = V /RN0

qp is the single quasiparticle lifetime. An in-depth derivation of this will be done in
the next chapter.

There has been a calculation of the single quasiparticle lifetime done by Kaplan [10]. He showed that
when using the Fermi-Dirac distribution for low temperature and quasiparticles of energy ∆ is,

τqp =
τ0√
π

(
kBTc

2∆

)5/2
√

Tc

T
e∆/kBT =

V τ0
N0

qp

N0 (kBTc)
3

2∆2
, (2.5)

where τ0 is an electron-phonon interaction time, which is a material parameter. Its shows that the
lifetime of the quasiparticles is inversely proportional to the quasiparticle number itself. For low temper-
atures we expect the quasiparticle lifetime to be very high. Equation 2.5 gives us the means to calcu-
late the quasiparticle lifetime by theory and also the recombination constant as they are connected by
R = V /τqpN

0
qp.

2.3. Kinetic Inductance Detectors
Now that we know the basics of superconductivity and quasiparticle dynamics we can take a look at
how theMKIDs are used as a light detectors. In anMKID the superconductor is placed into a microwave
resonator. The superconductor is capacitively coupled to a read-out line with which the signal is read
out at Gigahertz frequencies.
So the question is how the superconductor reacts to an external alternating electrical field. For this we
can use Ohm’s law, j = σE. Here we define two parts of the conductivity, σ = σ1 − jσ2, where the
first real part σ1 is the dissipative part and the second imaginary part σ2 is the inductance part. The
dissipative part is coupled to the quasiparticles which still have electrical resistance and the inductance
part is coupled to the inertia of the Cooper pairs and is thus called kinetic inductance. As a photon hits
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the superconductor the number of quasiparticles and Cooper pairs change which induces a change in
σ1 and σ2.

Through the read-out line runs a certain power also called the read-out power. Since this line is coupled
to the superconductor part of its power is transferred to the superconductor by accelerating the quasi-
particles and Cooper pairs. As the inductive, resistive, and capacitive parts make up an RLC circuit it
has a certain resonance frequency at which maximum power is transferred to the superconductor. We
will sweep the frequency to find the resonance frequency of the resonator. The resonator will then be
driven at its resonance frequency.

An overview of the MKID working principle is given in figure 2.2. Figure 2.2(a) first shows a Cooper
pair breaking into quasiparticles and figure 2.2(b) gives a schematic of the circuit made by the resonator.
It can be seen how the read-out line is capacitively coupled to the resonator which has a capacitance,
changing induction, and changing resistance with the changing amounts of quasiparticles. Lastly in
figure 2.2(c) we can see the change of resonance frequency due to a photon stream hitting the super-
conductor. The photons break the Cooper pairs into quasiparticles in the superconductor inducing a
change in kinetic inductance. With this change, the resonance frequency lowers and the resonance
dip decreases. The width of the peak widens because the quality factor decreases. This happens
because there are more quasiparticles so the dissipation increases. This change in kinetic inductance
and power dissipation is what we measure.

Figure 2.2: An overview of the working principle of MKIDs. In (a) Cooper pairs are broken by an incoming photon of energy
E > 2∆. (b) A simplified circuit of an MKID that shows the read-out line (upper line) being capacitively coupled to the

microwave resonator. As the amount of Cooper pairs and quasiparticles change the kinetic inductance and resistance of the
resonator also change. (c), The microwave transmission in the read-out line is shown as a function of frequency in the
resonator. When a photon is absorbed the resonance frequency shifts because of the change in inductance and the dip

decreases as the resistance goes up. The legend shows the applied power on the superconductor at 1.54 THz. figure from [11]

2.3.1. KID Setup
The KIDs looked at for this thesis are Lumped Element KIDs (LEKIDs) that use a high resistivity β-Ta
inductor and a NbTiN interdigitated capacitor. A schematic is shown in figure 2.3. The read-out line is
the central line in the figure which is a coplanar waveguide (CPW) made of NbTiN. This means that on
both sides there is a grounded part running parallel with the supply line. The CPW is then capacitively
coupled to the resonator using a coupling bridge. This connects to an interdigitated capacitor made of
NbTiN where the length of the fingers in the capacitor changes the resonance frequency for each KID.
Finally, the capacitor connects to the inductor made of β-Ta on which the photons will fall changing the
resistance and inductance.
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Figure 2.3: A schematic overview of an array of LEKIDs. On the left, we can see six different KIDs coupled to the read-out line
on both sides. The ground plane is also connected at regular intervals. On the right, a closer look at one KID can be seen with

the NbTiN IDC and the β-Ta inductor. [1]

The chip is cooled down to temperatures below the critical temperature inside a pulse-tubed dilution
refrigerator. The setup in this cryostat can be seen in figure 2.4. It consists of multiple temperature
stages where the lowest stage is called the 100-mK stage. This stage is shielded from stray light
emitted by the 3-K stage. An optical fiber couples laser light into the cryostat which is first thermalized
to 3 K. This optical fiber then goes through the shield into a 100-mK box where it first has to go through
a diffuser before it enters the 100-mK stage. The diffuser spreads out the light which then hits a BK7
window to only let in light in the visible spectrum to the submillimeter region. After the window, the light
will fall onto the detector from where the microwave measurements are made.

Figure 2.4: A schematic overview of the inner parts of the cryostat, where the different temperature stages can be seen
together with the optical setup. Figure from [12]

2.3.2. KID Measurement Coordinates
We now know how the MKID measures the change in resonance frequency and Q-factor by the change
in power from the read-out line. But how does one translate this to the change in the number of quasi-
particles? Equation 2.2 enables us to calculate an effective quasiparticle temperature from the number
of quasiparticles. Mattis and Bardeen [13] showed that from there it is possible to calculate σ1 and σ2.
So the first step is the connection from the number of quasiparticles to the complex conductivity.
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The next question is how the complex conductivity influences the circuit from which we are measuring.
This information is captured within the surface impedance, Zs = Rs + jωLs, which is a material prop-
erty that characterizes its response to an external field at a certain frequency. Here Rs is the surface
resistance, Ls is the surface inductance, and ω is the angular frequency of the signal. How these are
calculated is explained very well in [11] and are given by,

Rs = µ0ω
σ1

2σ2
βλ coth

(
d

λ

)
Ls = µ0λ coth

(
d

λ

)
,

(2.6)

where λ is the penetration depth, µ0 the magnetic permeability of vacuum and β = 1 + 2d/λ
sinh 2d/λ .

Since the superconductor is part of a resonating circuit the changes in the surface impedance will
change the resonance frequency and Q-factor. We can define the internal quality factor as [14],

Qi =
ωL

R
=

1

αk

ωLs

Rs
=

2

αkβ

σ2

σ1
, (2.7)

where αk = Ls/L is the kinetic induction fraction, where L is the total inductance in the circuit and Ls is
the sheet inductance. A higher internal quality factor means that there is less energy lost to accelerating
the particles or in other words, there are fewer quasiparticles.
With these equations, we can find how changes in the complex conductivity induce changes in the
Q-factor and resonance frequency. For a change in σ it has been shown that [15],

δ

(
1

Qi

)
≈ αkβ

2

δσ1

σ2
, (2.8)

where once again the low temperature limit was used, σ2 ≫ σ1 and δσ1 ≫ δσ2. And for the resonance
frequency it gives [15]:

δω0

ω0
=

αkβ

4

δσ2

σ2
. (2.9)

The last step is how the measured complex transmission is connected to the resonator properties. In
figure 2.2(b) we saw a schematic overview of the MKID and from this, the forward transmission can be
calculated [16]:

S21 =
Q/Qi + 2jQ δω

ω0

1 + 2jQ δω
ω0

, (2.10)

where Q is the loaded quality factor 1/Q = 1/Qi + 1/Qc, with Qc the coupling quality factor and δω =
ωread − ω0. ωread is the driving frequency of the read-out line which is set to the resonance frequency
of the resonator.
When the read-out frequency is swept while the KID is kept in equilibrium S21 traces out a circle in the
complex plane (red circle in figure 2.5). In the limit where |δω| → ∞ we can see from equation 2.10
that S21 → 1 which can also be seen in figure 2.5 which is the most right point of the red circle. The
most left point is when δω = 0 which gives Smin

21 = Q/Qi. With this information, we can deduce that
the center point of the circle is xc = (Smin

21 + 1)/2.
When making a measurement ωread will be equal to the resonance frequency making δω equal to zero.
So S21 will be at its minimum or the most left point in the circle. However when a photon hits the
superconductor the resonance frequency and quality factor change. With this S21 will change. This is
shown with the blue dots in figure 2.5 where we can see that the radius of the circle changes and S21

moves on the circle with a certain phase.
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Figure 2.5: [15]

In general, these changes are described by the coordinates amplitude (A) and phase (θ) with respect
to the center point of the circle. These are given by,

A =

√
(ℜ (S21)− xc)

2
+ I (S21)

2

1− xc
,

θ = arctan
(

I (S21)

xc −R (S21)

)
.

(2.11)

For these coordinates, S. de Rooij [15] calculated the relationship between the changes in the quality
factor and resonance frequency and amplitude and phase which are given by,

δA ≈ −2Qδ

(
1

Qi

)
,

θ ≈ 4Q
δω

ω0
.

(2.12)

Here it was used that δA = 1−A and tan θ ≈ θ. Combining equations 2.12, 2.8, and 2.9 we have finally
come full circle and are able to derive the changes from the coordinates with respect to the changes in
quasiparticles [11], [14]:

dA

dNqp
= −αkβQ

|σ|V
dσ1

dnqp
,

dθ

dNqp
= −αkβQ

|σ|V
dσ2

dnqp
.

(2.13)

The equations show that the responsivity of the KID is dependent on the factor αkβQ/|σ|V for both
coordinates. These coordinates, however, are only linear in the small signal limit.

Since these coordinates are only linear for small signals we will use different coordinates for the pulse
analysis in this thesis. In the paper of N. Zobrist [17] the authors propose a Smith Chart-like coordinate
system which we will call (R,X). The details of this coordinate system can be found in the paper as it
surpasses the depth of this thesis but the most important fact is that this coordinate system has a linear
response to the photon energy.

In figure 2.6 some data is shown to compare the amplitude and phase coordinates to the R and X
coordinates. We are looking at averaged single photon pulses at two different wavelengths on the same
chip and KID. The pulse heights have been normalized to their maximum to enable us to compare the
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differences in shape. The original pulse heights were around 10−1 for the 1545 nm pulse and around
1 for the 402 nm pulse.

Figure 2.6: Normalised single photon pulses in both the amplitude/phase and the R/X coordinates at two different photon
wavelengths. The data is taken from Chip A, KID 2 at a read-out power of -101 dBm and a temperature of 18 mK.

From this figure, we conclude that the difference between amplitude/phase coordinates or R, X coor-
dinates is negligible for low pulses and very small for high pulses. This is why it is chosen to work with
only (R,X)-coordinates for the data analysis. To be consistent with the coordinates and to make sure
the nonlinearities with respect to the quasiparticle number of amplitude and phase in the high pulse
domain don’t influence the analysis.



3
Methods and Models

Predicting the behavior of the quasiparticles in the superconductor starts with analyzing the Rothwarf-
Taylor equations (equation 2.4. In this chapter, we will look at the different limits of the quasiparticle
behavior enabling us to solve the Rothwarf-Taylor equations in these limits. This will give us analytical
solutions that can be tested. These will then be compared to the numerical solution of the Rothwarf-
Taylor equations

3.1. The Exponential Model
3.1.1. Double Exponential Model
The first model has at its core the limit that the excess amount of quasiparticles created by the photon
pulse is a lot smaller than the thermal quasiparticle amount (δNqp ≪ N0

qp). Let us start with the Rothwarf-
Taylor equations as in equation 2.4. We can then split the quasiparticle and phonon terms into an
equilibrium part and excess part by writing Nqp = N0

qp + δNqp and Nω = N0
ω + δNω. If we insert this

into equation 2.4 we can then linearize this by discarding the nonlinear terms in δNqp and δNω. This
results in,

dδNqp

dt
= −

2RN0
qpδNqp

V
+ 2ΓBδNω,

dδNω

dt
=

RN0
qpδNqp

V
− (ΓB + Γes)δNω,

(3.1)

where we used that the equilibrium amount of quasiparticles and phonons are the thermal amount
(N0

ω = NT
ω ). This can be written down into the following vector equation:

da
dt

= −Γ · a+ u, Γ =

(
2ΓR −2ΓB

−ΓR Γω

)
, (3.2)

with a = (δNqp, δNw), ΓR = RN0
qp/V and Γω = ΓB +Γes. This is a first-order coupled linear differential

equation so we assume the solution to be along the line of an exponential or superposition of exponen-
tials: eλt. Trying this solution on equation 3.2 we find an eigenvalue problem for the Γ matrix. Solving
for the eigenvalues of this matrix we find:

λ =
2ΓR + Γω ±

√
(2ΓR + Γω)2 + 8ΓR(ΓB − Γω)

2
. (3.3)

This gives us a general solution expression for, for example, the quasiparticles in the system:

δNqp = Aeλ−t +Beλ+t, (3.4)

where A and B are general constants. We call this the double exponential model.

11



3.1. The Exponential Model 12

3.1.2. Single Exponential Model
From here we can make one more assumption to simplify the expression for the eigenvalues. From
theory [10] we know that ΓR ≪ ΓB + Γes = Γω. We will take the slow time λ− which will be the
quasiparticle lifetime. We Taylor expand λ− in ΓR around zero to the first-order since it is very small
compared to the other terms. First the partial derivative in ΓR is calculated:

dλ−

dΓR
= 1− 2ΓR + Γω + 2 (ΓB − Γω)√

(2ΓR + Γω)
2
+ 8ΓR (ΓB − Γω)

, (3.5)

and then using λ−(ΓR) ≈ λ−(0) +
dλ−
dΓR

(0)ΓR we get:

λ−(ΓR) ≈
Γω −

√
Γ2
ω

2
+ (1− Γω + 2(ΓB − Γω)√

Γ2
ω

)ΓR. (3.6)

Working this out further gives:

Γ∗
R ≈ (1− Γω + 2(ΓB − Γω)

Γω
)ΓR = (

2Γes

Γω
)ΓR = 2ΓR(

Γes + ΓB

Γes
)−1 = 2ΓR(1 +

ΓB

Γes
)−1. (3.7)

Here we called the apparent recombination rate constant of the quasiparticles Γ∗
R = 1/τ∗qp. Writing the

expression like this gives us some insight into the behavior of the bulk when the phonon system is a lot
faster than the quasiparticle system. Firstly the apparent bulk quasiparticle rate is twice as fast since it
accounts for both the quasiparticles recombining into a Cooper pair. And secondly, there is the phonon
trapping factor which slows down the system. This is because phonons that are emitted by a Cooper
pair break another Cooper pair before escaping into the phonon bath.
Thus knowing R and V together with the number of thermal quasiparticles one can use equation 2.5
to calculate ΓR and from there also calculate Γ∗

R. For these approximations we are left with only one
exponential decay thus we call it the single exponential model.

To test these models graphs are made of the analytical exponential model versus a numerical solution
of the Rothwarf-Taylor equations. This is done to test the limits of the model. The two limits are the
low-temperature limit and the phonon times versus the quasiparticle times. In figure 3.1 we first take a
look at the temperature limit. The variables taken for the model are given in the appendix. At 200 mK
the single exponential model is very close to the numerical solution. However, at 100 mK the numerical
solution has a completely different shape compared to the single exponential model. It is clear that at
the beginning of the pulse shape the 1/t behavior is dominating.

Figure 3.1: A comparison of the Single exponential model with a numerical solution of the Rothwarf-Taylor equations for
different temperatures.

Secondly, we assumed the phonon lifetimes the be a lot slower than the quasiparticle lifetimes. If this
is not true then the single exponential model should turn into the double exponential model. This is
exactly what we see in figure 3.2. In the left graph, it is first looked at the case if only one of the lifetimes
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is a lot slower. But we can see, here the model still works. Then on the right, it shows the case where
both the phonon lifetimes are not a lot faster than the quasiparticle lifetime. This confirms that for the
model to work just one of the phonon lifetimes has to be a lot faster than the quasiparticle lifetime. So
if just the pair breaking time or the escape time is a lot slower than the quasiparticle lifetime then that
doesn’t break the limit as ΓB +Γes is still bigger than ΓR. They both have to be slow to break the limit.

One thing that has to be noted is the fact that for the double exponential model the two lifetimes are not
the quasiparticle and phonon lifetimes. We don’t decouple the systems by stating that one of the two
is a lot faster. This means that there is no single lifetime for either of the systems as they are coupled.

Figure 3.2: A comparison of the Single exponential model with a numerical solution of the Rothwarf-Taylor equations for
different escape and pair breaking times.

3.2. The 1/t model
The next model will attempt to capture both the exponential and the 1/t behavior of the quasiparticle
decay, as explained in the previous chapter. This means this model has to work in both the high and
low-temperature limits. We start with the same strategy as was used in the exponential model where
we split the number of quasiparticles and phonons into an equilibrium (steady state) value plus an
excess amount of particles. However here a linearization can’t be made since the approximation that
δNqp ≪ N0

qp is not true. Substituting this into the Rothwarf-Taylor equations and rewriting we get the
following coupled nonlinear differential equations.

dδNqp

dt
= −R

V
δN2

qp − 2ΓRδNqp + 2ΓBδNω,

dδNω

dt
=

R

2V
δN2

qp + ΓRδNqp − (ΓB + Γes)δNω,

(3.8)

where ΓR is the same as before. We notice that the equations are almost symmetrical so we sum the
first line with twice the second line and we get,

dδNqp

dt
+ 2

dδNω

dt
= −2ΓesδNω (3.9)

To solve the equations we once again decouple them by assuming that the phonon times are much
faster than the quasiparticle recombination times. This would mean that the quasiparticle system is the
slower system and dominates the decay. As there are phonons being created with the recombination
of quasiparticles these will then immediately either escape or break another Cooper pair. This means
that the number of phonons will stay very close to equilibrium and all small changes immediately vanish.
Hence the number of phonons is in a quasi-equilibrium state. Thus we assume that dδNω

dt ≈ 0. This
gives us the following relation:

δNω = − 1

2Γes

dδNqp

dt
. (3.10)

Filling this in in the equation for dδNqp

dt we get,
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(
1 +

ΓB

Γes

)
dδNqp

dt
= −R

V
δN2

qp − 2ΓRδNqp. (3.11)

where we see that we can separate the variables,

1
R
V δN2

qp + 2ΓRδNqp

dδNqp = − 1

1 + ΓB

Γes

dt. (3.12)

To integrate this, for the left part of the equation, means that we have to do a partial fraction decompo-
sition. By doing this and integrating we get,

ln
(

δNqp

R/V δNqp + 2ΓR

)
= − 2ΓR

1 + ΓB

Γes

t+ C1, (3.13)

where C1 is an integration constant. We recognize 2ΓR/(1 + ΓB

Γes
) as Γ∗

qp = 1/τ∗qp so writing it out in
terms of excess quasiparticles:

δNqp

R/V δNqp + 2ΓR
= et/τ

∗
qp+C1 ⇒ δNqp(t) =

2ΓR

C2e
t/τ∗

qp −R/V
, (3.14)

where we made a new constant by setting C2 = ec1 . Filling in t = 0 gives us the value for the second
integration constant: C2 = R/V + 2ΓR

1
δNqp(0)

. Using this we get to the final equation for δNqp:

δNqp(t) =
2ΓR

(R/V + 2ΓR
1

δNqp(0)
)et/τ

∗
qp −R/V

⇒ δNqp(t) =
2N0

qp

(1 + 2N0
qp/δNqp(0))e

t/τ∗
qp − 1

,

(3.15)
where we used the fact that ΓR = RN0

qp/V .
Looking at the found expression for the excess amount of quasiparticles, we can retrieve the two
regimes of the quasiparticle decay. If N0

qp/δNqp(0) ≪ 1 then we get the equation:

δNqp(t) ≈
2N0

qp

et/τ
∗
qp − 1

, (3.16)

which behaves as 1/t for times t ≪ τ∗qp. This is what we expect from theory and what we saw from the
numerical solution for low temperatures. Then if N0

qp/δNqp(0) ≫ 1 we get the expected equation of an
exponential:

δNqp(t) ≈ 2N0
qpe

−t/τ∗
qp . (3.17)

Now we will take a look at how the 1/t model matches the numerical solution. Firstly figure 3.3 shows
that the 1/t model works perfectly for both temperature regimes. It can be seen how just as expected
at the beginning of the curve the decay exhibits 1/t behavior and later on will switch to exponential
behavior.

Figure 3.3: A comparison of the 1/t model with a numerical solution of the Rothwarf-Taylor equations for different
temperatures.
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Secondly looking at the phonon versus quasiparticle lifetime regimes we expect the same as for the
exponential model: when the approximation, ΓR ≪ ΓB + Γes, does not work the model breaks down.
This is also what we see in figure 3.4.

Figure 3.4: A comparison of the 1/t model with a numerical solution of the Rothwarf-Taylor equations for different
temperatures.

3.3. Response time
The KIDs are resonators meaning that they will also have a certain response time τr to the photon pulse.
This response time we take as the resonator ring time: τring = Q

πf0
, where Q is the loaded quality factor

of the system. This response time is put into the model as a convolution with an exponential of time τr
as,

(R,X)(t) = s(t) ∗ u(t− td)e
−(t−td)/τr , (3.18)

where (R,X)(t) is the signal used with the response time, s(t) is the model signal without response
time, u(t) is the unit step function and td is the delay of the pulse.



4
Results and Discussion

We have analyzed the data of two chips called LT192chipX and LT243chipA which we will abbrevi-
ate as Chip 1 and 2 respectively. Chip 1 has been measured at different temperatures and photon
wavelengths and Chip 2 has only been measured at different photon wavelengths. A chip consists of
multiple KIDs as can be seen in figure 2.3. The measurements have been done at certain read-out
powers which will also always be specified. Lastly, as was explained in chapter 2 all data will be ana-
lyzed in (R, X) coordinates.
The pulses shown are an average of around a thousand single photon pulses to filter out noise.

The first interesting observation that can be made about the data is the fact that read-out powers
influence the pulse shape. This is shown in figure 4.1 where KID 2 on chip 2 has been measured
at different read-out powers for the same temperature and wavelength. It seems that the higher the
read-out power, the longer the quasiparticle decay takes.
From figure 4.1 it can be seen that the decay speed at the end of the pulse is the same for all read-out
powers, the difference in shape comes from the beginning of the pulse which might mean that there is
something going on with the response time of the system. For now, only low read-out powers will be
looked at to ensure no effects from the read-out power will influence the data analysis.

Figure 4.1: Averaged single photon pulses measured on Chip 2, KID 2 at different read out powers at a temperature of 18 mK,
and a photon wavelength of 673 nm.

Some examples of the temperature- and wavelength-dependent data are shown in figures 4.2 and 4.3
respectively.

16
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Figure 4.2: Averaged single photon pulses measured on Chip 1, KID 11 at different temperatures with a photon wavelength of
1545 nm with a read-out power of -105 dBm.

Figure 4.3: Averaged single photon pulses measured on Chip 2, KID 2 at different wavelengths photon pulses at a
temperature of 18 mK and with a read-out power of -105 dBm.

We can immediately see some interesting properties of the data. For the temperature-dependent data
of chip 1, the R pulse shows single exponential behavior and this is not the case for X. This behavior
is found on all the KIDs of chip 1 for all wavelengths and temperatures.
For the wavelength-dependent data of Chip 2, there seems to be the same behavior for both R and X.

This difference in the R and X coordinate is contradictory to the basic model of quasiparticle dynamics
and the MKID theory. As there are more quasiparticles there should be fewer Cooper pairs in the same
amount by a factor of 2. This means that σ1 and σ2 should show the same changes. This then also
means that the two coordinates should also behave the same.
Secondly, the data from chips 1 and 2 differ, and the cause for this is unknown. We will fit the double
exponential and the 1/t model on the single photon pulses and try to deduce information from there.

4.1. Double Exponential Model
We will now take a look at the double exponential model from equation 3.4 as a fit for the single photon
pulses from the data. The fit formula is given by,

δ(X,R)(t) = ae−t/τ− + be−t/τ+ , (4.1)

where a, b, τ−, and τ+ are all fit parameters. τ− is the slow lifetime and τ+ is the fast lifetime. The
two lifetimes in formula 4.1 are not known as the systems are not decoupled. This is why compared
to the last model we will not be able to compare the fit parameters to the theory. We will leave all four
parameters a, b, τ−, and τ+ as free fit parameters to see if this model can potentially fit the data.
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4.1.1. Fit Procedure and fits
With the double exponential model, we expect that there are two exponentials in the curve. One at the
start of the curve and one at the end. These are both individually fitted with a single exponential to
extract the lifetime. An example of this is shown in figure 4.4.
We decide to only take the lifetimes from the X pulses as the R pulses don’t show double exponential
behavior.

Figure 4.4: Curve fit of the double exponential model to obtain the two lifetimes in the single photon pulse. The data comes
from Chip 1, KID 11 at a temperature of 60 mK at a wavelength of 1545 nm and with a read-out power of -105 dBm.

For the double exponential model, we can see the fits in for the temperature-dependent data in figure
4.5 and for the wavelength-dependent data in figure 4.6. For the temperature-dependent data of chip
1, there are no fits for the R coordinate so only two fits at different temperatures for the X coordinate
are shown. The wavelength-dependent data does have fits for both coordinates which are shown for
two different wavelengths.
Looking at the fits one can clearly see that the double exponential model does not fit the shape of the
pulses in any case. Apart from the figures shown here, this is true for all temperatures and wavelengths
also on different KIDs. Thus we come to the conclusion that the double exponential model is not a good
model for the single photon pulses we’re seeing.

Figure 4.5: Two fits of the double exponential model to the data of chip 1, KID 11 at two different temperatures with a photon
wavelength of 1545 nm and a read-out power of -105 dBm.(Only for the X coordinate)
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Figure 4.6: Two fits of the double exponential model to the data of chip 2, KID 15 at two different wavelengths at a temperature
of 18 mK and a read-out power of -105 dBm.

4.1.2. Fit Parameters
The obtained lifetimes from the double exponential fits are plotted against temperature and wavelength
in figure 4.7 where on the left is the temperature dependence and on the right is the wavelength depen-
dence. A theory line for τ∗qp is also shown in figure 4.12. The theory line has been scaled to cross the
τ+ point at 160 mK to show the difference in temperature relation.
Lastly, the region from 170 mK until 190 mK has been marked. These are the points where the X
pulses start showing single exponential behavior.

Figure 4.7: The two lifetimes of the double exponential fit are plotted against temperature in the left graph and against
wavelength in the right graph. The marked region in the left plot is where the data becomes a single exponential. For the

temperature dependence, a theory line for τ∗qp has been provided.

As we can see in the left plot of figure 4.7 τ− stays very constant with temperature and eventually the two
lifetimes match up which makes sense as we take the same lifetime there from the single exponential.
The τ+ shows very different behavior from the theory for τ∗qp. It seems to saturate below 100 mK. For
the wavelength dependence on the right figure, we see that both lifetimes stay within a factor of 2.
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4.2. The 1/t model
The 1/t model as was shown in formula 3.15 will now be fitted to the data. In formula 4.2 the fitting
formula is given with fit parameters A and B.

δ(X,R)(t) =
A

(1 +B)et/τ
∗
qp − 1

. (4.2)

The fit parameters have the following correspondences to the model,

A = 2
∂(R,X)

∂Nqp
N0

qp,

B = 2
N0

qp

δNqp(0)
,

(4.3)

where (R,X) is one of the coordinates of the data of the single photon pulse and ∂(R,X)
∂Nqp

is given by
formula 2.13.

4.2.1. Fit Procedure and Fits
As we saw in Chapter 3 the 1/tmodel in the limit of long times and low amounts of excess quasiparticles
should behave like a single exponential. This means that we can find the apparent quasiparticle lifetime
by fitting a single exponential to the ”tail” of the pulse. An example is shown in figure 4.8.

Figure 4.8: Fitting the tail of a single photon pulse to obtain τ∗qp. This is done on the data from chip 1, KID 11 at 40 mK with a
photon wavelength of 1545 nm and a read-out power of -105 dBm.

We choose to obtain the quasiparticle lifetime τ∗qp always from the X data. This is for multiple reasons:
first of all, for the R data of chip 1 there is no tail and we don’t know what the lifetime of its exponential
decay is so it doesn’t make sense to obtain one from there. Secondly, the signal-to-noise ratio of the
X data is better and lastly, it is done to be able to compare the two coordinates. As the theory of our
model says that the lifetimes of the two coordinates should be the same. We can compare this by using
the same lifetime for both of the coordinates.

First, we made the attempt to calculate the number of quasiparticles by theory from the quasiparticle
lifetime using equation 2.5. Then also the number of excess quasiparticles from the pulse was calcu-
lated from the energy of the photon and the energy of the Cooper pairs. From there only the scaling
factor A from equation 4.3 needed to be fitted as a conversion from the number of quasiparticles to the
specific coordinate. This resulted in figure 4.9 which shows that for both R and X this is clearly not the
way to go. This we could have expected as the theory of the lifetime did not match the found lifetimes
as we saw in figure 4.12.
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Figure 4.9: 1/t curve fit where N0
qp was calculated from the lifetime from the curve fit. Data from chip 1, KID 11 at 40 mK with

a photon wavelength of 1545 nm and a read-out power of -105 dBm.

So then it was decided to leave both the parameters N0
qp and δNqp as free parameters to see if this

function could make for a good fit. This would mean using equation 4.2 as a fit function with both A
and B as free parameters. First, we will take a look at the temperature-dependent data. The results of
this are shown in figure 4.10.
For the R coordinate, it is very clear the fit does not work and shows the difference in lifetime compared
to the X coordinate data. For the X data it gets pretty close but the shape still differs. It seems like the
first decay takes longer in the data than in the model. At higher temperature, the X data shows single
exponential behavior it was chosen to take the first exponential as lifetime.

Secondly, we look at the wavelength-dependent data in figure 4.11. For the wavelength-dependent
data, the R and X coordinates are more alike thus the 1/t fit works better here for the R coordinate. It
shows a very good fit for the X coordinate, especially for lower wavelengths. However, interestingly
here the data compared to the fits seems to shift with wavelength. For lower wavelength and thus
higher energies, the 1/tmodel works very well and the first fast decay seems to take longer in the data.
At higher wavelengths or lower energies, the fit seems to start to become worse as it undershoots with
a first decay that takes too long. This would mean that the length of the first decay is pulse height
dependent. It would mean that there is something going on with the first decay that our model is not
taking into account.
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Figure 4.10: Curve fit of the 1/t model for the temperature-dependent data of Chip 1, KID 11 at a wavelength of 1545 nm, and
a read-out power of -105 dBm.
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Figure 4.11: Curve fit of the 1/t model for the wavelength-dependent data of Chip 2, KID 15 at a temperature of 18 mK, and a
read-out power of -105 dBm.
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4.2.2. Fit Parameters
The obtained lifetimes can be found in figure 4.12 for the temperature and wavelength-dependent data.
A theory line is drawn from equation 2.5 in the left figure from 4.12. It is scaled to match the last point
of the fitted τ∗qp to be able to clearly show the clear difference in temperature dependence.

Figure 4.12: The obtained lifetimes τ∗qp plotted versus temperature and wavelength. The temperature-dependent graph on the
left also has a theory line which is scaled to match the last point. The data is from all temperatures of chip 1, KID 11 at -105

dBm, and all photon wavelengths of chip 2, KID 15 at -105 dBm.

Considering the temperature dependence of τ∗qp we expect the lifetime to go up as the temperature
goes down. This does happen in the left plot in figure 4.12 however if we compare it to the theory
line it should happen a lot faster. It seems as if the lifetime saturates for low temperatures which is
also seen in [18], [19]. There the suggestions are made that either the saturation of the quasiparticle
lifetime is due to the presence of a relaxation channel, which is not caused by the conventional process
dominated by electron-phonon interaction [18] or that the quasiparticle lifetime saturation is due to a
saturation in the quasiparticle density [19].
For the wavelength dependence, we expect the lifetime to stay constant as the temperature also stays
constant. In the right plot of figure 4.12 we can see that the lifetime doesn’t stay within a factor 2 and
seems to exhibit a wavelength dependence.

The fit parameters A and B that were obtained from the fits in the last section are plotted against
temperature and against wavelength in figure 4.13.

Figure 4.13: The fit parameters of the 1/t fit A and B plotted against temperature in the left graph and against wavelength in
the right graph. The marked region in the left plot is where the data becomes a single exponential. For the temperature

dependence theory lines for A and B are shown.

A and B are both dependent on N0
qp as in equation 4.3. That means they would have the same temper-

ature dependence. However, A is also dependent on the responsivity between the number of quasipar-
ticles and the measurement coordinate. This scaling factor is dependent on the Q-factor which does
change with temperature. At high temperatures, the Q-factor will go down because of the increased



4.3. The 1/t Model With a Different Response Time 25

amount of quasiparticles. So the scaling factor would also go down for higher temperatures and so will
A. This can be seen in the left plot in figure 4.13. In the fit parameters and the theory line.
The fit variables A and B don’t fit the theory as for low temperatures they both seem to saturate. This is
probably because of the same thermal quasiparticle saturation as was talked about for the τ∗qp. For high
temperatures, we observe a single exponential thus the results for A and B are clearly not reasonable.
The wavelength dependence of B/A = 1/δNqp(0)

δ(R,X)
δNqp

is shown in the right plot of figure 4.13. This
should have a linear wavelength dependence as with higher wavelength the amount of quasiparticles
increases and thus B increases again. That is exactly what we see as B/A increases linearly with
the wavelength. A linear curve fit, y = ax, is also plotted with the B/A points to show the linear de-
pendence. The linear offset should be zero because when the wavelength decreases the number of
quasiparticles should increase to the point where B ∝ 1/δNqp(0) → 0.

4.3. The 1/t Model With a Different Response Time
We have seen how the first part of the single photon pulse doesn’t match our 1/t model. There seems
to be a different time constant at the beginning of the curve. This might be the response time as this
changes the behavior of the first part of the single photon pulse.
Thus we decide to try and fit a new response time. First, we fit the quasiparticle lifetime the same way
as before by fitting it to the tail of the pulse. But then the problem is that the variables A and B are very
dependent on the response time. This means that changing one is going to change the other a lot. So
trying to fit all three parameters at once does not work. This is why we fit them iteratively. We start with
the response time from theory which we took as the resonator ring time: τr = τring = Q

πf0
and then we

fit A and B. With these parameters, we fit a new response time and from there we fit new A and B and
keep repeating until the difference between the new iteration and the last one is smaller than 10−4.

With this method, we obtained new response times for the systems. Firstly we look at the results for
the temperature-dependent data. This first had a ring time of τring = 0.52 µs. Four fits at different
temperatures with a new response time can be seen in figure 4.15.

Figure 4.15: Fits of the 1/t model with a different response time that was fit iteratively. The data is from chip 1, KID 11 at -105
dBm.



4.3. The 1/t Model With a Different Response Time 26

The beginning of the curve fits a lot better with a new response time. Especially for the lower tempera-
tures does it seem to do very well. We do see that at the end of the curve there is a small undershoot.

Next, we can take a look at the wavelength-dependent data for the X and R coordinate with new re-
sponse times in figure 4.16. Here the found fit response time was different for every photon wavelength.
The original calculated response time of the system was 1.5 µs. The found lifetimes from the fits of
every pulse can be seen in figure 4.17.

Figure 4.16: Fits of the 1/t model with a different response time that was fit iteratively. The data is from chip 2, KID 15 at -105
dBm.

Also for the wavelength-dependent data, a different response time seems to improve the curve fits a lot.
The found lifetimes from both the temperature-dependent and wavelength-dependent data from every
pulse can be seen in figure 4.17.

Figure 4.17: 1/t model with fit response time. The data is from all temperatures of chip 1, KID 11 at -105 dBm, and all photon
wavelengths of chip 2, KID 15 at -105 dBm.
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The temperatures from 170 to 190 mK are not shown in the left graph of figure 4.17 as these pulses
are single exponential thus no response time can be determined. From the right graph in figure 4.17
we can see a wavelength dependence for the response time which seems to be linear. Looking at the
response time versus the temperature it seems that for low temperatures it stays constant and at higher
temperatures, it becomes faster.
The new A and B fit parameters still show the same temperature and wavelength relations.
The hypothesis for these different lifetimes is that there is another response time in the system that
slows everything down apart from the ring time of the resonator tring = Q

πf0
. We think this comes

from a relaxation time immediately after the photon hits the superconductor. We are looking at a dis-
ordered superconductor this means that the structure inside the superconductor can lead to very un-
equally distributed quasiparticles. These quasiparticles would then first have to distribute throughout
the superconductor before they could recombine into Cooper pairs effectively. This would explain the
wavelength dependence as creating more quasiparticles at higher energies would take create a longer
relaxation time.



5
Conclusion and Recommendations

At the start of this thesis, we aimed to find a model that could explain the shape of the single photon
pulses of β-Ta. To start we made several models to explain the behavior of the quasiparticle dynamics
in the superconductor. After that, we compared these models to single photon pulses from the data of
two chips. We first looked at the double exponential model and saw that it did not fit well with the single
photon pulses. Therefore, we conclude that the single photon pulse shape is not due to the assumption
of ΓR ≪ ΓB + Γes being broken.

From there we moved on to the 1/t model. It became clear that we could not use calculated param-
eters N0

qp and τ∗qp from theory as they were vastly different from the ones in the single photon pulses
of the data. For this reason, we decided to leave all the variables in the fit free except the quasiparti-
cle lifetime which was obtained from the tail of the single photon pulse. This seemed to fit better than
the double exponential model but in the first decay, there was a difference with the pulses from the data.

Most of the extracted parameters from the fits didn’t follow the theory. Firstly the obtained lifetimes were
a lot smaller than our theory suggests. In other works [18], [19] it is also seen that the lifetimes saturate
and don’t correspond to the theory in low temperatures, but here it is also for high temperatures.
Secondly, the fit parameters of the 1/t model didn’t show the temperature dependence we would ex-
pect. They both also saturate at low temperatures. From this, we conclude that the saturation of the
lifetime must come from a saturation in quasiparticles.
For the wavelength dependence of the variables, we did get the expected linear wavelength relation of
B/A.

Since the 1/t model looked promising but didn’t completely fit yet we proposed a different response
time. When we fit the response time as well we obtained very good fits for the single photon pulses. The
extracted lifetimes seemed to be linearly wavelength dependent. From this, we can conclude that for a
higher energy pulse there is a longer response time. For the temperature dependence, the response
time remains constant and then drops for higher temperatures. We think this is because as the tem-
perature rises there are more quasiparticles for the system to respond faster to the pulse. Lastly, we
saw a big difference in response time between the coordinates R and X in the wavelength-dependent
data. This could have to something with the fact that they measure two different things: quasiparticles
and Cooper pairs. Or because the responsivity of the two coordinates is also different.

We finally conclude that the 1/t model with adjusted response time is the best model to explain the
single photon pulses of β-Ta. This means that the quasiparticle system first shows 1/t behavior in the
low-temperature regime and at the end of the pulse exponential behavior.

28



29

For following research we recommend looking at the following:

1. The difference in response times from theory.
2. The position dependence of parameters in the superconductor.
3. Pulse shape effects at different read-out powers.
4. Different behavior in different materials.

Firstly, we don’t know where the difference in response times from theory comes from. It is therefore
recommended to look further into this.
Secondly, β-Ta is a disordered superconductor which means there is a position dependence of param-
eters in the superconductor. From these position dependencies uneven distributions of quasiparticles
could emerge directly after the photon pulse which would create a longer relaxation and thus response
time. It will be interesting to see if these position dependencies can significantly change the photon
pulse shapes.
Thirdly, at different read-out powers, the single photon pulses showed different shapes which could
have something to do with the response times.
And lastly, looking at different materials will give more information if for example these properties are
also observed in aluminium.
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A
Constants of the Models

Variable Value Unit Description
h 4.136 ×10−3 µeV·µs Planck’s constant
c 2.9979 ×108 µm/µs Speed of light
Kb 86.17 µeV K−1 Boltzmann’s constant
Tc 1.11 K Critical temperature
τ0 81 ×10−3 µs Phonon electron interaction time
TD 266 K Debye temperature
N0 3.07 ×104 µeV−1 · µm−3 Single spin electron density of states at the Fermi level
V 25 µm3 Volume of the superconductor
∆ 168.34 µeV Cooper pair bonding energy
τpb 0.015 ×10−3 µs Pair breaking time
τes 0.02 ×10−3 µs Phonon escape time

Table A.1: All the constants used in the models of chapter 3.
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