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We study a charge qubit with level splitting ", coupled to a quantum point contact driven by voltage V.
In the limit of weak coupling, the qubit polarization shows cusps at " � �eV. We show that, for stronger
couplings, prominent peculiarities occur at fractions " � �eV=2. Further increase of the coupling leads to
a polarization corresponding to a pseudo Boltzmann distribution with an effective temperature �eV.
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The quantum point contact [1] has become a basic
concept in the field of quantum transport owing to its
simplicity. Its common experimental realization is a nar-
row constriction that connects two metallic reservoirs. An
adequate theoretical description for this setup is a non-
interacting one-dimensional electron gas interrupted by a
potential barrier. The barrier is completely characterized
by its scattering matrix. This enables the scattering ap-
proach to quantum transport [2].

Despite the correctness of the noninteracting electron
description, truly many-body quantum correlations in a
QPC do exist and are observable. These manifest them-
selves in the full counting statistics (FCS) of electron
transfers [3] and allow for detection of two-particle entan-
glement [4] through the measurement of nonlocal current
correlations. This suggests that the observation of many-
body effects in a QPC crucially relies on a proper detection
scheme.

In this Letter, we probe a QPC with a charge qubit. Such
a device has already been realized using single and double
quantum dots. Previously, the QPC has been used as a
detector of the qubit state [5,6]. We propose a scheme in
which these roles are reversed. Provided the qubit and QPC
are coupled strongly, switching between the qubit states is
accompanied by severe Fermi-Sea shake-up in the QPC.
The ratio of switching rates determines the qubit polariza-
tion. The dc current in the QPC reads the qubit polariza-
tion. Thereby we obtain information about the Fermi-Sea
shake-up in the QPC.

For our results to apply, the qubit transition rate induced
by the QPC should therefore dominate the rate due to
coupling with other environmental modes. We estimate
this requirement to be fulfilled already in the weak cou-
pling regime.

Before analyzing the system in detail, the following
qualitative conclusions can be drawn. The qubit owes its
detection capabilities to the following fact: In order to be
excited it has to absorb a quantum " of energy from the
QPC. Here " is the qubit level splitting, a parameter that
can be tuned easily in an experiment by means of a gate
voltage. The QPC supplies the energy by transferring

charge from the high voltage reservoir to the low voltage
reservoir. The transfer of charge q allows qubit transitions
for level splittings " < qV, V being the bias-voltage ap-
plied. Thus, the creation of excitations in the QPC is
correlated with qubit switching.

We can assume that successive switchings of the qubit
between its states j1i and j2i are rare and uncorrelated. The
qubit dynamics are then characterized by the rates �21 to
switch from state j1i to state j2i and �12 from j2i to j1i. The
stationary probability to find the qubit in state j2i, or
polarization for short, is determined by detailed balance
to be p2 � �21=��12 � �21�. The polarization can be ob-
served experimentally by measuring the current in the
QPC. The current displays random telegraph noise, switch-
ing between two values I1 and I2. These correspond to the
qubit being in the state j1i or j2i, respectively. The dc
current I gives the average over many switches and is
thus related to the stationary probability by I �
�1� p2�I1 � p2I2. The values of I1, I2, and I are deter-
mined through measurement and p2 is inferred.

When the QPC and qubit are weakly coupled [7,8], a
single electron is transferred [9]. This liberates at most
energy eV, implying that the rate �21 is zero when " > eV
and the rate �12 is zero when " <�eV. The resulting p2

changes from 1 to 0 upon increasing � within the interval
�eV < � < eV. Cusps at " � �eV signify that the charge
e is transferred. [See Fig. 2(a)].

Guided by our understanding of weak coupling we can
speculate as follows about what happens at stronger cou-
plings. Apart from single electron transfers, we also expect
the coordinated transfers of groups of electrons. A group of
n electrons can provide up to neV of energy to the qubit.
Therefore, peculiarities in p2 should appear at the corre-
sponding level splittings " � �neV, n � 1; 2; 3; . . . [10]
However, it is not a priori obvious that these peculiarities
are pronounced enough to be observed. The reason is the
decoherence of the qubit states induced by electrons pass-
ing through the QPC. This smooths out peculiarities at the
energy scale that is the inverse of the decoherence time. In
the strong coupling regime, especially when the qubit
couples to many QPC channels, the decoherence time is
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estimated to be short so that smoothing is severe. As a
result, it is not clear whether peculiarities at neV are the
dominant feature at strong coupling.

Therefore, strong coupling of the QPC and the qubit
requires quantitative analysis. We have reduced the prob-
lem to the evaluation of a determinant of an infinite-
dimensional Wiener-Hopf operator. We calculated the de-
terminant numerically for a single channel QPC and found
that peculiarities at multiples of eV are minute. Their
contribution to p2 does not exceed 10�4 and is seen only
at logarithmic scale and at moderate couplings. Instead, far
more prominent features occurs at " � 1

2 eV. General rea-
soning does not predict this. Straightforward energy bal-
ance arguments suggest that a charge e=2 has been
transferred between the QPC reservoirs. We are tempted
to view this as a fractionally charged excitation generated
by the qubit. However, the setup under consideration does
not support an independent determination of the excitation
charge. If we further increase the coupling, by adding
channels to the QPC, we find a pseudo Boltzmann distri-
bution p2 � �1� exp��"=kBT	�
�1, with the effective
temperature kBT	 of the order eV. All peculiarities disap-
pear due to decoherence.

Let us now turn to the details of our analysis. The system
is illustrated in Fig. 1. The Hamiltonian for the system is
 

Ĥ � T̂ � Û1j1ih1j � �Û2 � "�j2ih2j � ��j1ih2j � j2ih1j�:

(1)

The operator T̂ represents the kinetic energy of QPC
electrons. The operator Ûk describes the potential barrier
seen by QPC electrons when the qubit is in state k � 1, 2
and corresponds to a scattering matrix �sk in the scattering
approach. (We use an inverted caret to indicate a matrix in
the space of transport channels.) QPC electrons do not
interact directly with each other but rather with the qubit.
This interaction is the only qubit relaxation mechanism
included in our model. We work in the limit �! 0, where
the inelastic transition rates �12;21 between qubit states are

small compared to the energies eV and ". In this case, the
qubit switching events can be regarded as independent and
incoherent.

Now consider the qubit transition rate �21. To lowest
order in the tunneling amplitude � it is given by
 

�21 � 2�2 Re
Z 0

�1
d�ei"� lim

t0!�1
tr�eiĤ2�e�iĤ1���t0�

� �0e
iĤ1���t0�
: (2)

This is the usual Fermi Golden Rule. The Hamiltonians Ĥ1

and Ĥ2 are given by Ĥk � T̂ � Ûk and represent QPC
dynamics when the qubit is held fixed in state jki. The
trace is over QPC states, and �0 is the initial QPC density
matrix.

The evaluation of the integrand is a special case of a
general problem in the extended Keldysh formalism [11].
The task is to evaluate the trace of a density matrix after
‘‘bra’s’’ have evolved with a time-dependent Hamiltonian
Ĥ��t� and ‘‘kets’’ with a different Hamiltonian Ĥ��t�.

 eA � tr�T �e�i
R
1

�1
dtĤ��t��0T

�ei
R
1

�1
dtĤ��t�
: (3)

We implemented the scattering approach to obtain the
general formula

 A � tr ln�ŝ��1� f̂� � ŝ�f̂
 � tr lnŝ�: (4)

The operators ŝ� and f̂ have both continuous and discrete
indices. The continuous indices refer to energy, or in the
Fourier transformed representation, to time. The discrete
indices refer to transport channel space. The operators
ŝ� � �s��t���t� t0� are diagonal in time. The time-
dependent scattering matrices �s��t� describe scattering
by the Hamiltonians Ĥ��t� at instant t. (It is the hallmark
of the scattering approach to express quantities in terms of
scattering matrices rather than Hamiltonians.) The opera-
tor f̂ � �f�E���E� E0� is diagonal in the energy represen-
tation. The matrix �f�E� is diagonal in channel space,
representing the individual electron filling factors in the
different channels. A full derivation of Eq. (4) will be given
elsewhere. It generalizes similar relations published in
[12,13].

In order to apply the general result to Eq. (2), the time-
dependent scattering matrices �s��t� are chosen as �s��t� �
�s1 � ��t� �����t���s2 � �s1� and �s� � �s1. The QPC scat-
tering matrices �s1� �s2�with the qubit in the state 1(2) are the
most important parameters of our approach.

Without a bias-voltage applied, the QPC-qubit setup
exhibits the physics of the Anderson orthogonality catas-
trophe [14]. For the equilibrium QPC, the problem can be
mapped [12] onto the classic Fermi edge singularity (FES)
problem [15–17]. In effect the authors of [12] computed
A in equilibrium. Our setup is simpler than the generic
FES problem since there is no tunneling from the qubit to
the QPC. As a result, out of all processes considered in
[12], we only need the so-called closed loop diagrams. The
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FIG. 1 (color online). A schematic picture of the system con-
sidered. It consists of a charge qubit coupled to a QPC. The
shape of the QPC constriction, and hence its scattering matrix,
depends on the state of the qubit. The QPC is biased at voltage V.
A gate voltage controls the qubit level splitting ". There is a
small tunneling rate � between qubit states.
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relevant part of the FES result for our setup is an anoma-
lous power law ��0�21 �"� � ���"� 1

j"j �
j"j
Ec:o:
�� for the equilib-

rium rate. Here Ec:o: is an upper cutoff energy. The
anomalous exponent � is determined by the eigenvalues
of ŝy2 ŝ1 [18] as � � 1

4	2 jTr ln2�ŝyf ŝi�j. The logarithm is
defined on the branch ��	;	
. For a one or two channel
point contact, 0<�< 1.

We now give the details of our calculation for the rates
out of equilibrium. From Eqs. (2) and (4) it follows that
�21�"� / j�2j

R
1
�1 d�e

�i"� detQ̂�V����. For positive times
�, the operator Q̂�V���� is defined as [12]

 Q̂ �V���� � 1� ��s�1
2 �s1 � 1��̂���f̂�V�; (5)

while for negative �, Q̂�V���� � Q̂�V�����y. The time-
interval operator �̂��� � ��t� t0���t����� t� is diagonal
in time and acts as the identity operator in channel space
for times t � t0 2 �0; �
 and as the zero-operator outside
this time interval.

For the purpose of numerical calculation of the deter-
minant we have to regularize Q̂�V����. This is done by
multiplying with the inverse of the zero-bias operator to
define a new operator ~Q��� � Q̂�0�����1Q̂�V����. Its deter-
minant is evaluated numerically. The rate �21��� at bias
voltage V is then expressed as the convolution �21�"� �R
d"0
2	 �eq

21�"� "
0� ~P�"0� of the equilibrium rate and the

Fourier transform of ~P��� � det ~Q�V����, that contains all
effects of the bias-voltage V.

We implemented this calculation numerically, and com-
puted the probability p2 to find the qubit in state j2i. Our
main results are presented in Fig. 2. We used 2� 2 scat-
tering matrices parametrized by ŝ�1

2 ŝ1 � exp�i
�x� and
repeated the calculation for several 
 2 �0; 	
. Small 


corresponds to weak coupling. The curve at 
 � 	=16 is
almost indistinguishable from the perturbative weak cou-
pling limit discussed in the introduction. Cusps at �eV
indicate that qubit switching is accompanied by the trans-
fer of single electrons in the QPC.

The increasing decoherence smooths the cusps for the
curve at 
 � 	=4 (2b). When the coupling is increased
beyond 
 � 	=2 steps appear at �eV=2 (c). Further in-
crease of the coupling results in a sharpening of the
steps (d).

Let us now briefly consider the limit of strong coupling
where the qubit significantly affects the scattering in many
QPC-channels. In this case, ~P�"� is approximately a
Gaussian, ~P�"� / exp�� "2

2��eV�2
� with � a large dimension-

less number proportional to the number of channels. The
interpretation of this is that electron fluctuations in the
QPC affect the qubit level splitting. The typical fluctuation
induced is �"� eV

����
�
p

. The frequency scale of the fluctu-
ations is eV which is small compared to �". The fluctua-
tions are, therefore, quasistationary. Their distribution are
Gaussian by virtue of the central limit theorem. This leads
to a pseudothermal polarization p2 � 1=�1� exp�"=kBT	�
where the effective temperature kBT	 � 2

����������
�=�

p
eV is of

the order of eV. The constant � is evaluated from nu-
merics. For example, for N � 1 identical channels with
scattering matrices exp�i
�x� and
 � 3	=4 we find� 

N=7 and effective temperature 
 0:36eV. The added de-
coherence inherent in a many-channel QPC smooths out all
peculiarities. Details of the calculation are presented in the
supplementary material [19].

Let us speculate about the origin of the " � eV=2
peculiarities. It would have been easy to explain peculiar-
ities at " � neV, n � 2; 3; 4; . . . in p2�"� as resulting from
the transfer of multiple electrons. But for fractional pecu-
liarities we have to turn to an indirect analogy with the
model of interacting particles on a ring threaded by a
magnetic flux [20]. There, one expects that the energy
eigenvalues are periodic in flux with period of one flux
quantum. However, the exact Bethe-ansatz solution [20]
reveals a double period of eigenvalues with adiabatically
varying flux.

For our nonequilibrium setup, energy eigenvalues are
not particularly useful. The natural eigenvalues to describe
the phenomenon are those of the operator ~Q�V����. They
depend on the parameter eV� which is an analogue of flux.
The product of the eigenvalues, i.e., the determinant ~P��� is
not precisely periodic in � since it decays at large � owing
to decoherence. Still, it oscillates and the period of these
oscillations doubles as we go from weak to strong coupling
[Fig. 3(b)]. The doubling can be understood in terms of
the transfer of the eigenvalues of ~Q�V���� upon increasing �
[Fig. 3(a)] assuming the parametrization ŝ�1

2 ŝ1 �
exp�i
�x�: In the large � limit, energy-time uncertainty
can be neglected in a ‘‘quasiclassical’’ approximation: The
operator �̂��� projects onto a very long time interval, and
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FIG. 2 (color online). The probability p2 that the qubit is in
state j2i vs level splitting ". At weak coupling between the QPC
and qubit, (a),(b) the transfer of a single electron gives rise to
cusps in p2 at �eV. Peculiarities at �eV=2 (c),(d) dominate the
signal at strong coupling. Scattering matrices were parametrized
as stated in the text. (a),(b),(c),(d) respectively, correspond to

 � 	=16, 	=4, 7	=10, and 4	=5.
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is replaced by the identity operator. ~Q�V� becomes diagonal
in energy. All eigenvalues that are not equal to 1 are
concentrated in the transport energy window 0<E<
eV, where the filling factors in the QPC reservoirs are
not the same. For ŝ�1

2 ŝ1 parametrized as above, these
eigenvalues equal cos�
�. There are eV�=2	 of them. In
other words, the number of eigenvalues equal to cos

grows linearly with �. Numerical diagonalization of
~Q�V���� [Fig. 3(a)] shows that one eigenvalue is transferred
from 1 to cos�
� during time 2	=eV. If cos�
�> 0 as in
the weak coupling case [bottom of Fig. 3(b)], this gives rise
to P��� oscillations with frequency eV=2	 manifesting
integer charges. However, cos
 becomes negative at
stronger couplings, so that P��� changes sign with each
eigenvalue transfer [Fig. 3(b) (top)]. Two eigenvalues have
to transfer to give the same sign. The result is a period
doubling of the oscillations in ~P���. This resembles the
behavior of the wave vectors of the Bethe-Ansatz solution
in [20].

The parametrization of the ŝy2 ŝ1 � exp�i
�x� is not
general. However, the eigenvalue transfer arguments help
to understand general scattering matrices. Eigenvalue
transfer still occurs at frequency eV=2	 but instead of
traveling along the real line, eigenvalues follow a trajectory
inside the unit circle in the complex plane. Peculiarities at
fractional level splittings eV=2 are pronounced if the end
point of the trajectory has a negative real part. Numerical
results for general scattering matrices are presented in the
supplementary material [19].

Results presented so far are for ‘‘spinless’’ electrons.
Spin degeneracy is removed by, e.g., high magnetic field. If
spin is included, but scattering remains spin independent,
then two degenerate eigenvalues are transported simulta-

neously. In this case, the eV=2 peculiarities disappear for
the parametrization exp�i
�x� but persists for more gen-
eral scattering matrices. The results of further numerical
work that confirm this are presented in supplementary
material [19].

We have studied a quantum transport setup that can
easily be realized with current technology, namely, that
of a quantum point contact coupled to a charge qubit. The
qubit is operated as a measuring device, its output signal—
the polarization p2 —is directly seen in the QPC current.
When the qubit is weakly coupled to the QPC, the depen-
dence is dominated by processes where a single QPC
electron interacts with the qubit. For intermediate cou-
plings, the dependence shows peculiarities at level split-
tings �eV=2. These peculiarities are the result of many-
body correlations induced in the QPC by qubit switching.
Decoherence destroys these peculiarities in the limit where
the qubit couples many QPC channels, leading to a pseudo
Boltzmann polarization with effective temperature eV.
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FIG. 3 (color online). The behavior of eigenvalues (a) and the
determinant ~P��� (b) at weak and strong QPC-qubit coupling,
respectively. The parameter 
 in equals 4	=5 (top) and 	=16
(bottom) representing the strong and weak coupling limits,
respectively. Deviations from the correct asymptotics are due
to finite size effects. (b) contains the second derivative of ~P��� �
detQ̂�0�����1Q̂�V����. (The second derivative is taken to remove
an average slope and curvature.)
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