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PREFACE

Within the group of Acoustics of the Delft University of Technology, develop-—
ment of echo—acoustical processing techniques has become the most important
topic on the research program. In echo—acoustical research, velocity analysis
requires ample attention, since appropriate processing of echo—acoustical data
is possible only if the velocity distribution of the medium through which the
acoustic waves have propagated is accurately known. In addition, velocity may
provide valuable information on the medium properties. Operational velocity

analysis techniques as described in the literature apply to reflection energy

only; the velocity information available in diffraction energy is not used.
Therefore, there exists a great need for velocity analysis techniques which

are also applicable to data with an abundant amount of diffraction energy.

The idea that lateral dispersion of inverted data, as quantified by minimum

entropy norms, could be a suitable criterion for velocity analysis of diffrac-
tion data was born in Delft a few years ago. In the present thesis, the evalu-
ation of this idea is discussed, resulting in an operational technique called

MEVA: Minimum Entropy Velocity Analysis.

I feel very privileged that I had the opportunity to do the research for my
thesis in a dynamic team like the Delft group of Acoustics. I wish to express
my special gratitude to the leader of that group, my promotor, professor

A.J. Berkhout. I am afraid that, without his permanent critical, stimulating
and constructive attention — which only seldom drove me to despair — this

thesis would never have been completed.

I express my thanks also to my colleagues and some cooperating students, for
being prepared to discuss my ideas and problems, for providing data sets
suitable to test my theories and techniques, for giving me the opportunity to

use their hardware and software, and to generate some illustrative figures.
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A special word of gratitude deserves our secretary Hanneke Mulder, who not
only gave me a lot of mental support, but also typed out my preliminary manus-—

cripts, so that I could read what I really had written down.

I also thank mr. De Knegt of the drawing-office and mr. Suiters of the photo-
graphy service of our department, and mrs. Gerda Boone for their contributions

to the final design of this book.

That MEVA will find useful application in echo—acoustical practice is my

sincere wish.

Diemer de Vries
June 1984
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CHAPTER I:

VELOCITY ANALYSIS -IMPORTANCE,
POSSIBILITIES AND LIMITATIONS

I.1 INTRODUCTION

The objective of this thesis is the development of a new velocity analysis
technique which makes use of the spatial dispersion of acoustic wave fields.
The technique can be employed in all areas where acoustic imaging is applied:
exploration seismology, (sub)bottom profiling, medical diagnostics, non—

destructive material testing.

In the above applications, the importance of velocity analysis appears in

several ways:

(1) accurate knowledge of velocity information is required to optimize wave
field extrapolation results as used in spatial inversion techniques,

(2) knowledge of propagation velocity provides extra information on
characteristic properties of a medium (e.g. lithology, state of human
tissue, composition and condition of materials).

More specifically in seismic processing, velocity information is also indis—

pensable for the data reduction procedure known as 'stacking'.

During the past decades, many papers on velocity analysis have been published.
It appears that operational velocity analysis techniques apply to r e f 1 e c—
t i o n data as generated by continuous boundaries. In this context, diffrac-
tion energy as generated by discontinuities along a boundary is treated as
detrimental information which should be suppressed. This the more remarkable,

since diffraction data contain as much velocity information as reflection



data. In this thesis, a velocity analysis technique is developed which aims at
extracting velocity information from d i £f f r a ¢ t i o n data, thus being

applicable to configurations as complex geologic structures, human tissues,
inhomogeneous materials, etc. On the other hand, the proposed technique may be
applied to reflection data as well, thus forming an interesting alternative to

existing methods.

In this introductory chapter, firstly the importance of velocity analysis, as
indicated above, will be considered in more detail. Next, different approaches
with their advantages and limitations are discussed, followed by a survey of
available techniques. Then, the basic ideas behind the velocity analysis
technique developed in this thesis are summarized. Finally, an outline of the

other chapters is given.

I.2 IMPORTANCE OF VELOCITY ANALYSIS

The essential role of propagation velocity in acoustic imaging is most simply
shown as follows. Echo data are recorded as a function of t i m e . After
spatial i nversion, the result represents the acoustic image of the
medium as a function of d e p t h . Obviously, correct 'mapping' of time into
depth is determined by the v e 1 o c ity distribution of the medium.
Hence, without accurate knowledge of this velocity distribution a reliable
image can never be obtained. When this knowledge is not available a priori,

the crucial problem to be solved is how to extract velocity information from

the recorded data before, or incorporated in, the inversion process.

The essence of spatial inversion is that, for different positions of source(s)
and detector(s), the recorded reflection and diffraction data are d o w n -
ward extrapolated to the discontinuities in the medium from
which they originate. In computerized inversion techniques, downward extrapo-
lation is performed using an inversion operator in which propagation velocity
plays a vital role. After downward extrapolation to a certain depth level L
an estimation of the reflectivity at depth z, is obtained by imaging,
i.e. by selecting the data in a time window around t = 0. By repeating this

procedure for all depth levels of interest (zm =z, 2 ), an

oy
/A |
acoustic image of the medium is formed. The combined process of inversion



(downward extrapolation) and imaging is in seismic nomenclature denoted as

migration.

It should be noted that in real-time acoustic imaging - often applied in
medical diagnostics and then better known as acoustic focussing -
the above concept also holds: focussing is an approximation of wave field
inversion. For a well-resolved and correctly positioned focus point it is
necessary that a good estimate of the medium velocity or velocity distribu-

tion is used.

Fig. I-1 shows the effect of a velocity error on the image of a finite, tilted
reflector with a central opening ('reflectivity drop'). It is seen in Figs.
I-lc,e that a velocity error causes a po s i t ioning error as well as
deterioration of l1ateral resolution: the edges of the
reflector image are not well defined, i.e. the image becomes more

dispersed.

Besides being a parameter of high importance in the inversion process, propaga-
tion velocity is a characteristic material constant. Hence, accurate knowledge
of velocities can be used for characterization of materials.
In tabel I/1, the propagation velocities of pressure waves are given for
several media as found in the three areas of application mentioned in the
introduction: sediments (seismology), tissues (medical diagnostics) and

construction materials (non—-destructive testing).

It is seen that, for the human t i s s u e s considered (except fat), the
velocity values are found within a small range around 1560 m/s. Hence, tissue
characterization on velocity criteria is only possible if the velocity values
can be accurately determined. For tissues in vivo, characterization is even

more difficult, since propagation velocity varies during contraction (Mol,
1981).

Finally, we mention the necessity of velocity analysis for a specific

s eismic application. In conventional seismic processing, data traces
for which source and detector positions have the same midpoint ngmmonlgid
Point gather), are combined ('stacked') to one trace, i.e. enhancement of
signal-to—noise ratio is obtained by data reduction . The prin-

ciple is illustrated in Fig. I-2 for a horizontal reflector. Note that the CMP
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Table I/1
Some media and their propagation velocities for pressure waves.
medium velocity [m/s]
sediments weathered layer ca. 1000
(seismology) unconsolidated
sands and clays ca. 2000
consolidated
sands and clays ca. 3000
carbonate rocks ca. 4000
tissues fat 1445 + 35
(medical spleen 1555 + 35
diagnostics) liver 1580 + 30
kidney 1563 + 5
heart ca. 1570
blood ca. 1570
bone ca. 3000
materials concrete ca. 4500
(non—-destructive steel ca. 5900
testing) perspex ca. 2700

gather forms a hyperbolic reflection pattern (Fig. I-2b). It is
seen that stacking is a two—step process: the CMP gather is lined up by 'nor-
mal moveout correction' (Fig. I-2c) and added to approximate a zero-offset
trace at the gather midpoint (Fig. I-2d). For the simple case considered here,
appropriate normal moveout correction is fully determined by the propagation

velocity between surface and reflector.
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Figure I-2: Stacking of a common midpoint gather.

a: source-detector configuration and ray geometry for a horizontal
reflector

b: common midpoint gather

c: common midpoint gather after normal moveout correction

d: post—stack trace, approximating a zero-offset trace at the

midpoint

From the considerations in this section the conclusion can be drawn that
accurate velocity analysis is very important in acoustic (especially seismic)

imaging.

I.3 SUMMARY OF APPROACHES TO VELOCITY ANALYSIS

In order to explore the interior structure of a medium, the area of interest
may be covered with a sufficiently dense grid of sources and detectors, and an
aliasing-free complete data s et may be recorded, i.e. for each
source the response is monitored by a full range of detectors, see Fig. I-3a.

Then, complete acoustic information about the medium will be obtained.
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Figure I-3: Schematic configurations of sources (O) and detectors (x)
to obtain

a: a complete data set

b: a multi-trace data set

Note that each row represents the geometric configuration for one

physical experiment.

As will be argued more extensively in chapter II, a complete data set can

elegantly be represented in the form of a data ma t r i x , see Fig. I-4.
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Figure I-4: Representation of a complete data set as a data matrix.

In this matrix, each column represents the data generated in one physical
experiment, i.e. the responses of one source at the respective detectors. We

1

denote such a column of the data matrix as a source gather ’. Each row

1) In seismic nomenclature, the data from one physical experiment is called a

seismic record.



represents the response of all sources at a given detector, i.e. a detector
gather. It is easily seen that common midpoint gathers as discussed in the pre-

vious section appear as antidiagonals in the data matrix. The zero—offset data
form the main diagonal. The subdiagonals represent common offset sections, gi-

ving for each source the response at a detector on a given distance (offset).

A complete data set may include reflection as well as refraction and diffrac—
tion energy. Hence, spatial inversion of a complete data set without any data
reduction ('pre-stack inversion') yields full acoustic information about the

medium.

In spatial inversion of a complete data set, the data of each physical experi-
ment, i.e. each column of the data matrix, is inverted. The result thus
obtained is gathered according to the depth points of origin, thus forming
Common Depth Point gathers. All CDP gathers are stacked and combined to form a
true CDP-stacked section, representing the acoustic image of the medium
considered. Performing this migration process, v e loc ity information
can be extracted in three different ways:
(1) CDP gathers have maximum lateral c o he r e n c y if the correct velo-
city distribution of the medium has been used in the inversion process,
(2) CDP-stacked traces have maximum a m p 1l i t ud e (of the envelope) if
obtained with correct velocity,
(3) the complete CDP-stacked section (i.e. the pre-stack migration result) has
minimum 1 a teral dispersion if obtained with correct velo—
city. As shown in this thesis, lateral dispersion can be properly quanti-

fied by norms based on the criterion of minimum entropy.

Inversion of complete data sets requires acquisition and processing of huge
numbers of data. Hence, for practical and economic reasons, complete data sets
are approximated by mul ti-trace data sets obtained with a
sparsed source-detector configuration, an example of which is given in

Fig. I-3b. Note that missing detectors correspond with zero's in the columns

of the data matrix.

Traditionally in seismic applications, multi-trace data sets are arranged to
common midpoint (CMP) gathers when used as input for
velocity analysis procedures. This preference of CMP gathers has two basic

reasons:



(1) In many practical situations, reflection energy within one CMP gather is
generated by a s ma 1l 1 part of each boundary: see Fig. I-2a for the
simple situation of a horizontal reflector. Hence, in many practical situa—
tions the boundaries may be considered as f 1 a t within a CMP gather
range.

(2) In many practical situations, reflection data from a flat boundary within
one CMP gather form patterns which may be considered as hyper -
bolic, see Fig. I-2b. The asymptotes of each hyperbola are determined
by the structure and the v e 1l o c i ty distribution of the medium
between surface and reflectivity boundary considered. Hence, velocity

information can be obtained by processing simple hyperbolic responses.

Velocity information can be extracted from CMP gathers in several ways:

(1) after normal moveout correction (Fig. I-2c), a CMP gather has maximum
coherency if the correction has been performed according to the
correct hyperbola. Also, in this case,

(2) the stacked trace (Fig. I-2d) has maximum reflection ampl i tude.

Moreover, it can be shown that an estimation of the stack can be obtained by

migrating the CMP gather. Hence, velocity information can be

extracted from

(3) the maximum reflection amp l i t ude of the migrated CMP gather, or,
as proposed in this thesis,

(4) the lateral extension of the migrated CMP gather quantified by m i n i -

mum entropy norms.

In practical applications CMP velocity analysis is concentrated on reflection
energy only. To cope with refraction data as well, special techniques are
required, e.g. T-p mapping (see subsection I.4.3). Diffraction energy is actu-
ally detrimental, due to interference with the hyperbolic reflection patterns.
In case of highly discontinuous complex media, echo data is measured in which
diffraction energy predominates. Hence, for such media CMP velocity analysis

is not a realistic proposition: other approaches are to be developed.

As mentioned in the introduction of this chapter, operational velocity analy-
sis techniques extracting velocity information specifically from diffraction
energy are scarcely indicated in literature. In this thesis such a technique

is proposed. The basic idea behind this technique is that the 1 a ter al



dispersion of diffraction energy is mi nimal if inverted with
correct velocity ,b see also Fig. I-1. Lateral dispersion appears
as a lateral extension effect which properly can be quantified by norms based
on the criterion of minimum entropy . Instead of CMP gathers,
common of fset (including zero-offset) data should be used for
velocity analysis on diffraction data, i.e. the distance between sources and
detectors should be constant (including zero). Note that, instead of zero—

offset data, stacked data (see Fig. I-2d) can be used as well.

The above classification of velocity analysis approaches is summarized in
table I-2. In the next section a survey is given how these principles are
worked out in various velocity analysis techniques as proposed in the

literature.

Table I/2

Classification of different approaches to velocity analysis.

data arrangement data to be velocity analysis
included in criteria

velocity analysis

reflection *coherency of
CDP gather
multi-record refraction *maximum amplitude of
data set stacked CDP gather
diffraction *minimum entropy of

CDP-stacked section

*coherency of normal
moveout corrected
CMP gather

CMP gathers reflection *maximum amplitude of
stacked CMP gather

*maximum amplitude or
minimum entropy of

migrated CMP gather

common offset *minimum entropy of
sections (inclu- diffraction migrated common
ding zero-offset offset section

and stacked data)




1.4 SURVEY OF VELOCITY ANALYSIS TECHNIQUES

1sb.1 General remarks

In human tissues, the propagation velocities of pressure waves approximate the
value 1560 m/s within a few percents, as was seen in Table I/1. Hence, in
imaging techniques employed in me d i ¢ a 1 diagnostics, this value is
commonly used independently of the specific tissues considered. Due to the
random and relatively small fluctuations in the actual velocity distribution,
this simplified approach often yields imaged results of acceptable quality.

In non-destructive testing of ma t er i al s , the test specimen usually
consists of a single bulk medium (e.g. concrete, steel), the velocity of which

is known by good approximation.

In seismics , however, the sediments of interest show large velocity
variations (500 m/s < ¢ < 5000 m/s) in both vertical and lateral directions.
Therefore, accurate velocity analysis is a topic of increasing interest in
this field and most operational velocity analysis techniques have their origin

in geophysical research.

In this paragraph, we shall give a survey on velocity analysis techniques of
contemporary interest, paying attention to underlying principles and applica-
bility. For reasons of surveyability, we arrange the velocity analysis
techniques in three categories, viz.:

(1) techniques using ref lection energy as input data,

(2) techniques using re fraction energy as input data,

(3) techniques using d i f f r ac t i o n energy as input data.

T42 Velocity analysis techniques concerning reflection energy

Most velocity analysis techniques are based on processing of CMP r e f 1 e c -
t i on data. As discussed in section I.3, such data form — at least approxi-
mately - hyperbolic patterns in the two-dimensional space-time

(x,t) domain. The apex of each hyperbola is given by the zero—offset (mid-
point) travel time to the boundary considered, whereas the asymptotes are

described by

X =4 vt (i-1)
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The value of velocity v is determined by depths, shapes and velocities

stack

of all layers between surface and boundary. v is denoted as such, since

stacking of CMP data yields optimal result ifS::anormal moveout correction

(see Fig. I-2c) is performed according to the hyperbola with correct apex and
asymptotes, i.e. correct vstack' Thus, optimization of the moveout-corrected
result in terms of c o herency or the stacked data in terms of a m -

plitude forms a technique for velocity analysis.

The above velocity analysis technique has some limitations. As mentioned
before, it only deals with reflection data as generated by approximately flat
boundaries. Moreover, the CMP response is purely hyperbolic only for a homo-
geneous overburden. For an inhomogeneous overburden the responses are approxi-

mately hyperbolic for small offsets only. The approximation deteriorates with

increasing dips and increasing curvatures. Due to these imperfections, the

accuracy of the above velocity analysis technique decreases with depth.

Velocity analysis based on processing of reflection data has been applied long
since. Diirbaum (1954) published the theoretical basis for the hyperbolic
model. Dix (1955) indicates how, for a horizontally layered system, the
interval velocities of the respective layers can be recursively calculated

from the estimated stacking velocities v The formula describing this

stack’
recursive relation has become a classic under the name 'Dix formula'. Taner

and Koehler (1969) formulate coherency criteria to estimate v and they

apply, with limited accuracy, the Dix formula also to dippingsgzﬁﬁdaries.
Brown (1969) considers the influence of long-offset data. In the early seven—
ties, much work has been done to extend the validity of the Dix model to
dipping boundaries: Levin (1971), Larner and Rooney (1973), Shah (1973),
Everett (1974). Krey (1976) generalizes, for small offsets, the theory of
Diirbaum to arbitrary dipping or curved boundaries in three dimensions and
Hubral (1976) proves the applicability of this theory for practical situa-
tions. May and Straley (1979) refine the mathematical description of the
deeper boundary responses, taking higher order terms into account. Berryhill
(1979) applies wavefield 'datuming' (a kind of velocity replacement technique)
to obtain better CMP results for the underlying strata. Khattri et al. (1980)
propose the Fibonacci estimation technique as an alternative to coherency

techniques. Hajnal and Sereda (1981l) give an analysis of possible errors made

in applying the Dix formula. Recently, extension of reflection data velocity



13

analysis to media with lateral velocity variations has been discussed: Hubral
(1980), Lynn and Claerbout (1982), Loinger (1983).

Since only reflection data obey the simple hyperbolic CMP model illustrated in
Fig. I-2, the presence of r e fraction and particularly
diffraction energy deteriorates the applicability of CMP velocity
analysis techniques. This was also mentioned by Taner et al. (1970) and later
by Blackburn (1980). Arguing that downward wave field extrapolation focusses
diffraction energy and thus diminishes its smearing effect, Doherty and
Claerbout (1976) propose to m i g r a t e the pre-stack multi-trace data
with a roughly estimated velocity before picking CMP gathers and estimating
Votack by application of the usual coherency techniques. A more thorough
approach is to migrate the pre-stack data with different velocity values,
estimating directly the migration velocity by applying coherency techniques to
the migrated result. This procedure was proposed by Gardner et al. (1974) and
Sattlegger (1975), and applied in practice by Dohr and Stiller (1975) and
Sattlegger et al. (1976). Owusu et al. (1983) extend the application of this

method to three-dimensional data using a fast migration algorithm.

As mentioned in section I.3, migration of a CMP gather yields an estimate of
the stack to be obtained from that gather. From paraxial (i.e. small offset)
CMP data an accurate stack estimate can be found even after downward extra—
polation with an erroneous velocity: then, imaging must be performed using a
time window not around tim=0 as usual, but around a time tim%O. The stack

is well-resolved but positioned at an erroneous depth: velocity error and

depth error are exchanged. The actual value of t depends on the velocity

error, so that this value contains velocity infoi$ation. This phenomenon was
first described by Doherty and Claerbout (1974). Yilmaz and Chambers (1980)
evaluated the possibility of velocity extraction, applying a special mapping
procedure to determine tim and using maximum amplitude as a criterion for
optimal migration. In a paper on the effects of velocity errors on migration
and focussing, De Vries and Berkhout (1984) place the exchangeability of velo-—
city errors and depth errors, as present in recursive migration techniques, in
a wave theoretical context. They also indicate the possibility to extract

velocity information from the time shift denoted above as t

.

im
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Figure I-5: Schematic illustration of T-p mapping (slant stacking) of

CMP reflection and refraction data

a: CMP gather on a horizontal boundary between two media with velo-
cities ¢y and cy (xc is half offset corresponding with critical
angle)

b: to the definition of parameters p and T

c: CMP gather after T—p mapping

d: CMP gather on a horizontal 3-boundary configuration after T-p

mapping



I.4.3 Velocity analysis techniques concerning refraction energy

Compressional p-waves incident on an acoustic boundary under critical angle
generate, besides a reflected wave, a r e f r ac t ed wave. This refracted
p-wave (in geophysics also called 'head wave') travels along the boundary with

the velocity c, of the lower layer. Refraction energy is radiated to the sur-

face, appearinz in the CMP response alonga s traight 11ine, see
Fig. I-5a. By transforming the x-coordinate into horizontal 'slowness' para-
meter p and the t-coordinate into intercept time T, see Fig. I-5b, the hyper-
bolic part of the CMP response is transformed into an e 1 1 i p s e and the
linear part (representing refraction energy) into a 'focus' point at
p=1/c2, see Fig. I-5c. For a configuration of horizontal boundaries this pro—
cess of '"T-p mapping' results in a pattern of ellipse-like curves, the inter-
sections of which denote refraction energy and are positioned at p=l/cn+1,
see Fig. I-5d. Hence, the positions of the refraction energy points after T-p
mapping yield velocity information.

As a logic continuation of the work by Doherty and Claerbout (1976), Schultz
and Claerbout (1978) introduce the principles of the T-p mapping procedure
mentioned above, which they denote as s 1l ant s tacking, since the
transformation is carried out by summing the data along slanting straight
lines (see also Fig. I-5b). They indicate how velocity analysis techniques
using coherency criteria can be applied to both reflection and refraction data
after slant stacking, also in media with lateral velocity variations. Diebold
and Stoffa (1981) follow the same principles, whereas Stoffa, Diebold and Buhl
(1982) explicitly include wide aperture data. Clayton and McMechan (1981)
apply velocity analysis to slant stacked refraction data after migration,
leaving reflection data out of consideration. In a quite different approach,
Weglein et al. (1981) use slant stacked data including refractions as input
for an algorithm inverting reflection coefficients to velocity data based on
the Lippmann—-Schwinger and Schroedinger equations. Schultz (1982) presents a
method by which interval velocities are determined applying coherency tech—
niques to recursively migrated slant stacked data. Aki and Richards (1980)
indicate how in the (1,p) domain velocity analysis can be applied to media
with velocity gradients. Research on this topic is nowadays done in the group
of acoustics of the Delft University of Technology.

As a final remark, it should be mentioned that a more extensive survey on
velocity analysis techniques as applied in seismics is given by Hubral and
Krey (1980).
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I.4.4 Velocity analysis techniques concerning diffraction data

As mentioned in the previous subsections, and more systematically analyzed by
Taner et al. (1970) and Blackburn (1980), CMP gathers loose their simple geome-
tric properties when comprising an abundant amount of scattering d i f -
fraction energy. Hence, for complex, laterally discontinuous struc-—

tures, velocity analysis techniques based on the hyperbolic CMP concept are

not applicable.

As indicated in section I.3, two approaches may be adopted to perform velocity

analysis in the presence of abundant diffraction data:

(1) pre-stack inversion of multi-trace data sets. We saw (subsection I.4.2)
that this approach was discussed by Gardner et al. (1974), Sattlegger
(1975), Doherty and Claerbout (1976), Owusu et al. (1983). In the philoso-
phy behind velocity analysis techniques as considered by the above authors

diffraction energy is 'tolerated' as an inevitable part of the input data

to be coped with, and certainly not as a source of velocity information.

(2) treatment of diffraction data as a s pe c i f i ¢ source of velocity

information. Then, recorded data should be gathered such that diffraction
energy is clearly profiled. For this purpose, common of fset
data (including zero-offset data and stacked data) are appropriatel). In
common offset data acquisition, the response of a single diffractor has a
hyperbolic shape, as has the response of a reflector in CMP data acquisi-

tion.

Several authors have proposed ideas to tackle the problem of velocity analysis
in complex media using the second approach outlined above. Since medical appli-
cations of echo—acoustics are usually performed with zero-offset scanning
devices, it can be understood that researchers from this field have largely

contributed to the development of diffraction data analysis.

1) This is confirmed by Hubral (1975), where he states: "Diffraction curves
which are observed on stacked sections ... provide useful subsurface infor-
mation about a diffractor in a similar way as CDP (= CMP, DdV) arrival
times provide information about a reflector. They can therefore be consi-
dered for the purpose of interval velocity computations and time-to-depth

conversions as well”.



Sanzgiri (1977) discusses a zero—offset velocity analysis technique which
seems applicable to flat reflectors only. Dameron (1979, 1980) describes a

zero-offset velocity analysis technique applicable to media with weak velocity
variations in one dimension. Much work on velocity analysis has been done at
Denver University, U.S.A., resulting in a series of papers on zero-offset or
common offset velocity inversion algorithms applicable to media where the velo—
city variations are small perturbations on a (preferably constant) reference
value: Cohen and Bleistein (1979), Gray and Bleistein (1980), Gray et al.
(1980), Gray (1981 a, b), Bleistein and Cohen (1982). Raz (1981 a,b) presents
a general theory on velocity profile inversion, the practical applicability of
which is not yet clear. Robinson et al, (1982) use the cross—correlation
between two ultrasound zero—offset scans acquired from the same target to
determine an 'image shift' from which velocity information can be obtained.
Worth mentioning are also the efforts to extend velocity analysis techniques
as used in transmission tomography to reflection and diffraction data: Wade et
al. (1978), Kenue and Greenleaf (1982), Kaveh et al. (1982), Hiller and Ermert
(1982). Until now, the results seem to be not practically applicable.

The conclusion must be drawn that a velocity analysis technique with general
applicability to common offset (including zero-offset) diffraction data is not
available. As a contribution to the fulfillment of this gap, the author pro-
poses the 'minimum entropy' technique which is the subject of this thesis. The

basic elements of this technique are summarized in the next section.

I.5 BASIC ELEMENTS OF MINIMUM ENTROPY VELOCITY ANALYSIS

As mentioned before and seen in Fig. I-1lb, diffraction energy appears in zero-—
offset records as hyperbolic patterns. M i gr at ion of the data has a

f ocussing effect on the diffraction energy: migration with a well-
chosen operator containing the right v e 1l oc ity value makes the diffrac-
tion patterns collapse (Fig. I-lc) thus assigning minimum 1 a te r al
dispersion to the data. Hence, the lateral extension of migrated
zero-offset (and, similarly, common offset) diffraction patterns can be used

as a criterion for velocity analysis.

It will be shown that in the space-frequency domain the lateral extension of
migrated zero-offset (or common offset) diffraction patterns - representing

the focussing quality of the inversion operator — can be described in terms of
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band-limited spatial wavelets having minimum d i s per s i o n in case of

correct migration velocity.

A suitable way of quantifying wavelet dispersion is the application of norms
known in geophysical literature as 'minimum entropy' norms. Therefore, we
shall refer to our technique as Minimum Entropy Veloci-

ty Analysis , abbreviated as MEVA.

Since the spatial wavelet concept describing inverted zero-offset diffraction
data is also valid for inverted CMP reflection data, MEVA also applies to
reflection data, forming an alternative to the techniques mentioned in sub-

section I.4.2.

The principles and preliminary results of MEVA were first published by
De Vries and Berkhout (1982). Recently, Hanlan et al. (1983) presented a paper
in which a velocity analysis technique is proposed extracting velocity infor-

mation from migrated diffraction data by a statistical whitening process.

1.6 OUTLINE OF THE FOLLOWING CHAPTERS

In chapter II, a wave theoretical model for zero-offset data is presented.
Inversion of zero-offset data is described using a spatial matched filter
performing phase correction as well as amplitude weighting. The inverted
result is presented in terms of band-limited spatial wavelets determined by

spatial amplitude and phase spectra.

In chapter III, the influence of velocity errors on inversion is discussed.
Particularly, effects on the phase spectrum and, hence, on the dispersion of

the spatial wavelets are considered.

In chapter IV, the concept of 'entropy' and especially 'minimum entropy' is

considered. Minimum entropy norms are defined and interpreted as measures of

resolving power of a data set, specified by dispersion and sparsity. Basic

properties of minimum entropy norms are evaluated.

In chapter V, the applicability of minimum entropy norms to spatial wavelets

is shown, making them a tool for velocity analysis (MEVA). Elementary appli-

cations are presented.



In chapter VI, applications of MEVA are discussed. Simulated as well as

measured data sets are considered, including zero-offset as well as CMP data
from various application fields. MEVA is shown to be a powerful technique with

a wide applicability.
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CHAPTER II:

WAVE THEORETICAL APPROACH TO ACOUSTIC
MODELING AND INVERSION

II.1. INTRODUCTION

In any echo—acoustical technique, two basic processes are to be discerned, viz.

the forward process and the inverse process.

In the f orward process, a sound wave is generated at the surface of the
system to be investigated. This sound wave propagates downward through the un-
derlying medium, is reflected and diffracted by inhomogeneities and layer boun-—
daries, then propagates upward, and finally is recorded in some aperture area

at the surface. The forward process is also called mo d e 1 i ng process.

In the i nverse process, an acoustic image of the medium below the aper-
ture area is formed by appropriate processing of the recorded data. This proces—
sing is called image reconstruction, spatial inversion, focussing or, especial-
ly in seismics, mi gr at i o n . Basically, all inverse techniques aim at
elimination of the propagation effects introduced by the forward process, as

well as the influences of source and detector characteristics.

Both forward and inverse process can be represented by physical models based on
acoustic wave theory. Propagation is described by the scalar acoustic wave equa-
tion, reflection and diffraction by the boundary conditions imposed to that
equation. Kirchhoff used the wave equation, together with Huygens's principle
stating that any wave front may be considered as a configuration of secondary

sources, to develop his theorem which enables forward extrapolation of a



22

sound field on a closed surface to any point enclosed. Rayleigh modified this
theorem for data on (infinite) plane surfaces. Based on this, forward propa-
gation of sound waves through a medium can be described by extrapolation
operators which are often called generalized Rayleigh-operators. Berkhout
(1982) shows that, in general, these operators can be elegantly represented in
matrix notation, and in special cases as a spatial convolution. On the other
hand, the inverse process where propagation effects are eliminated can be des-—
cribed by inverse extrapolation operators, derived from the forward operators
by matrix inversion or deconvolution. In later chapters about velocity analysis
(chps. V, VI), mainly z e r o- o f f s e t data will be considered, i.e.
data acquired by positioning sources and detectors at the same places in the
aperture area. Therefore, in this chapter emphasis will be laid on the discus-
sion of a model describing forward and inverse processing of zero-offset data.
Since many elements of this derivation are clearly described by Berkhout

(1982), references to this textbook are made where possible.

1I1.2 PHYSICAL MODEL FOR DATA SIMULATION

I1.2.1 General physical model

In Fig. II-1, the solid lines denote a three-dimensional medium consisting of
irregularly shaped layers below a horizontal surface plane on which a configu-
ration of sound sources (0O) and detectors (x) is arranged. In order to model
the sound field at the detector positions, we cover the medium with a grid of
horizontal planes in each point of which the reflection properties are given,

depending generally on frequency and angle of incidence. For perfect modeling,

S - — z

__________ = =1 R(2n),Z(z ), Y(Zm)

Figure II-1: General physical model for echo-acoustical data.
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the vertical distance between the horizontal planes should be infinitesimally

small, but in practical situations a finite interval may be taken depending on
the wavelengths of the acoustic waves as well as on the density and propagation
velocity gradients in the medium considered. Between the horizontal planes, the
propagation is described by the appropriate homogeneous extrapolation operator.
There are three types of operators describing forward extrapolation of a sound
field from a plane through a homogeneous medium to a point, denoted as WI, WII
and WIII. Their applicability depends on the field parameters considered: opera—
tor WI describes extrapolation from normal particle velocity to pressure, WII
describes extrapolation from pressure to pressure or from normal velocity to
normal velocity, WIII describes extrapolation from pressure to normal velocity.
The derivation of those operators from wave theory is described by Berkhout

(1982, chp. 5).

When the medium consists of s o 1 i d materials, a compressional sound wave,
often denoted as p-wave, may be converted into other wave types, such as shear
waves, bending waves a.o.. Since a - certainly interesting - study of this wave
conversion falls beyond the scope of this thesis, we consider in our model
only the p-waves treating the other wave types as noise, as is
done in most studies on inversion. This means that, in the horizontal planes
considered, only the reflection properties for p-waves have to be specified.
The form in which those properties must be described depends on the source and
detector types. If the source has a monopole character and hence defines normal
particle velocity, whereas the detector has a dipole characteristic thus being
pressure-sensitive, the reflection properties should be given in terms of local
impedance Z. If source and detector are of the same type, the reflection proper-
ties must be specified in terms of reflectivity R. Finally, in case of a pres—
sure source and a velocity detector, the local admittance Y is the suitable
parameter to describe reflection properties. Thus, the propagation between two
planes can in all cases be formulated by the homogeneous operator denoted above

as WII.

In our model, we shall assume pressure sources and pressure detectors only, so
that reflection properties will always be described in terms of pressure r e -
flectivity . This does not affect the general validity of our model,
since the other cases can simply be transformed to the above one: a velocity
source is dealt with by replacing in the first step (zo ~”zl) operator WII by
operator WI, a velocity detector by replacing in the last step (zl+’zo)

operator WII by operator WIII. See Berkhout (1982, pg. 162).
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Besides primary reflection, between aperture plane and boundaries multiple re-—
flections will occur. In our model, we shall neglect such multiples for simpli-
city reasons. Berkhout (1982, sections 6.9, 6.10, 7.6) indicates how, if
desired, multiples can be taken into account in forward as well as in inverse

processing by relatively simple algorithms.
Applying the limitations mentioned above, the one-way wave equation may be used
leading toa primary simulation model for p—waves which we shall dis-

cuss in more detail in the next subsection.

I1.2.2 Physical model for simulation of pressure-to-pressure primaries

In Fig. II-2 the data flow in modeling two-dimensional multi-record pressure
primaries from one depth level z, is shown. Fig. II-2a shows the schematic
geometry, whereas Fig. II-2b represents the physical model in the form of a

block diagram.

L === = o= mamEm e =E 58 R(zn)

| S@) 1—»~|w<zm,zc,)]—»LR(zmw(zo,zm)]—»uxzo) >Pay

Figure II-2: Physical two-dimensional model for simulation of pressure
primary data from one depth level.

a. schematic geometry

b. block diagram

As Berkhout (1982, sections 6.2, 6.6) explains, the elements of the block

scheme generally can be represented by ma t r i ¢c e s , so that the modeling
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process can be described by a series of matrix multiplications, summed over all

depth layers of interest:
Pz ) - D(zo)[%W(zo,zm)n(zm)W(zm,zo)] Sz ). (1113

Here S(zo) and I)(zo) define the characteristics of sources and detectors
respectively, l‘(zm) describes the pressure reflectivity at depth level Z
VV(zm,zo) and \V(zo,zm) the sound wave propagation from surface z, to
depth level z. and vice versa, whereas l’(zo) denotes the multi-record

pressure recording at the surface.

The basic aims of forward and inverse processing can simply be indicated using

matrix equation (II-1):

(1) in forward processing, matrices §, D, Wand R are known and pri-
mary pressure response P is calculated by a process of matrix multipli-
cation,

(2) in inverse processing, Pis recorded, S and D are supposed to be
known, matrices W are (approximately) known and an estimation of R is

found by a process of matrix inversion.

Next, we shall discuss the matrices composing Eq. (II-1) in some more detail.
The elements of all matrices are described in the s pace-frequen-

¢ y domain.

S(zo) is the source matrix. Each ¢ o 1 u m n represents a source array used
for one seismic experiment. Note that if elementary pressure sources (i.e.
dipole sources) are used, each matrix column gn(zo) contains only one non-
zero element the position of which indicates the position on the x-axis. Hence,

written as a function in the space-frequency domain the nth column reads:
Sn(x,zo,wi) = S(x,zo,mi)d(x—nAx). (I1-2a)

Such an elementary source can be considered as a spatial pulse at surface level
z - In case of extended source arrays (length 2K+l), the position of the
central non-zero column element indicates the array centre position on the

x—-axis:
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K
Sp(x,z5,wg) = S(x,zo,wi) 2: S (x=(mt+i)Ax). (II-2b)
i=-K

(2) downward propagation matrix W(zm,zo)

Primary energy propagation from surface level z, to depth level z. is

described by matrix VV(zm,zo):
S(z) = Wiz ,2)8(z,). (11-3)

Let us consider one physical experiment, performed with a dipole source with

unit strength — i.e. a spatial unit pulse - positioned at (nAx,zo). Then, only

the nth column vectors of S(zm) and S(zo) are of interest, gn(zo)

having one non-zero element S_ (z ):
nn'" o
Son(zs) = Sn(nAx,zo,wi) = 1. (11-4a)
We now write:
> -
Sn(zm) = VV(zm,zo)Sn(zo), (1I-4b)

or, considering N discrete data points at each depth level:

m ] B 4 P
S1n Wyq Wygewe oWy oo Wy 0
SZn . Won . 0
: . : : f ) (LI~4c)
sr:m = wr:ll wnz....wtin....wriN 1
Sy 2 WypooomeneaWig ooe Wy 0 2,

th column of matrix

>
It is easily seen that Sn(zm) as well as the n
VV(zm,zo) are 'spatial wavelets' which can be interpreted as the s pa-

tial impulse response toa source in point (nAx,zo), see

also Fig. II-3a.

In an analogous way it can be seen that the nth r o w vector of matrix
VV(zm,zo) represents the response in point (nAx,zm) to a full array of

dipole unit sources at surface level z , see Fig. II-3b.
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Figure II-3: Illustration to the interpretation of column vectors (a)

and row vectors (b) of propagation matrix VV(zm,zo).

For a homogeneous medium, the elements qu of matrix \V(zm,zo) are given by
homogeneous extrapolation operator WII, multiplied with spatial increment Ax to
which we here assign unit value for simplicity. Berkhout (1982, section 5.6)
shows that, for a homogeneous two—dimensional medium, operator WII and, hence,

W is specified for krpq >> 1 as:

Pq
— exp(—jkr_ )
wpq(x’z’wi) = AZm %%——*;——37323—’, (II-5a)
Pq
with:
N/} = 5/20149), (11-5b)
bz = |z -z |, (11-5¢)
k = k(x,z) = wi/c(x,z), (11-54d)
r = [ranx)® + 2 )7, (11-5¢)

see Fig. I1I-4. Note that operator WII can be interpreted as the pressure field

of a dipole source positioned at (qAx,zo).
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XF)= AX

Figure II-4: Geometry to the two-dimensional homogeneous operator WII.

Due to the practical necessity of data truncation (aperture limitation), the
elements of \V(zm,zo) are of interest only within a limited range of r. For
example, the significant elements of the nth column vector, Fig. II-3a, lay
within a limited range - say, 2L-1 points - around x=nAx. Then k(x,z), Eq.
(II-5d), is approximately determined by the velocity distribution around this
point. Hence, matrix ‘V(zm,zo) can be represented as a b a n d matrix with

a width of 2L-1 points around the main diagonal:

’— o
W W, e wl&
W31 M39 2 Ny @)
. £ 2 n-L+1,n
2 Shos B ™
le.\....... W \\
- % 0 .
Wiz .2 ) N t Ny N (11-6)
X : nn "
\ . . N \w
W : N-1L+1,N
2L-1,L N
\\. . :
w .
(@) mtl-l,n -
% e
Ne S "wNN

If there are no lateral velocity variations in the medium, all column vectors
are shifted versions of each other, so that VV(zm,zo) isa symme tric

Toeplitz matrix:
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o Wy eemeWpg
woow 5
1 0 N N
NN N \ O
e N5 N
-1\ N NN
W(zm,zo) = \ Y NN \w . (11-7)

-

In this case, the matrix representation of wave propagation can be replaced by
a simpler notation since all columns now contain identical elements, represen—

ting a spatial wavelet W which is invariant in source (centre) position xq:

TCREITN =% WO =% 5B 250 1) (% 520,05 ) (11-8a)

This expression denotes a s patial convolution in x, to be

written as:

S(x,zm,wi) = W(x,Azm,wi) * S(x,zo,wi), (11-8b)

W(X, Az ,w;)
S

w4 —> X

see also Fig. II-5.

N1
N

w,
w
Figure 1I-5: Propagation from level z, to level z, interpreted as a

spatial convolution.

In this case of lateral homogeneity, the homogeneous operator, Eq. (II-5a), can

be Fourier transformed (finite DFT) to the wavenumber-frequency domain, resul-

ting in:
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_ oD ALK 2
W(kx,Azm,w ) = exp[-j(k"-k )®Az ] for k <

0
=

i (I11-9a)

2
Wik, ,02_,u0,) = exp[—(ki—kz)Azm] for ki > k. (1I-9b)

1
The spatial convolution given in Eq. (II-8b) is transformed toa mul t i -
plication in this domain:

s(kx,zm,wi) = w(kx,Azm,wi)s(kx,zo,wi). (11-10)
The spatial limitations of the rows and columns composing matrix VV(zm,zo),
together with the practical limitation of temporal bandwidth (wi i—wmax) can
be expressed in limitations of the spatial bandwidth of W(kx,Azm,wi):

[k | < k ; (11-11)

x| X ,max

Hence, operator w(x,Azm,wi) is often called a band-1imited

spatial wavelet.

It should be mentioned here that, as Berkhout (1982, par. 6.2) derives, the
wave propagation from one layer to another has a r e c ur s i v e character,
which means in matrix notation:

Wz ,z2) =w(zm,zm_l)T(zm_l)W(z W(zz,zl)T(zl)W(zl,zo). (1I-12)

m—l’zm—z)"'
In this expression, matrix ]‘(zl) specifies the transmission properties of
depth level z,, etc. In this way, variations in the medium velocity in v e r -

t i cal direction can always be coped with.

(3) upward propagation matrix W(z ,z )
Matrix \V(zo,zm), describing the wave propagation from depth level zm to sur-
face level Z,s has analogous properties as Vv(zm,zo). The nth column

vector now represents the spatial impulse response at surface level z to a
source positioned in (nAx,zm) - see Fig. II-6a - whereas the nth row
vector gives the response in (nAx,zo) to an array of dipole sources at depth

level Z 0, Fig. II-6b.
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Figure I1-6: Illustration to the interpretation of column vectors (a)

and row vectors (b) of propagation matrix VV(zo,zm).

It is simply seen by comparing Figs. II-3 and II-6 that, in the absence of
vertical variations, VV(zo,zm) can be derived from VV(zm,zo) by

interchanging rows and columns:

Wz ,z) = Wi ,z2). (11-13)

z
o]

If there are no lateral variations as well,\v is symmetric and hence:
\V(zo,zm) =\V(zm,zo). (II-14)

(4) reflectivity marriz R(z )
Matrix l‘(zm) denotes the pressure reflectivity of depth level Z specifying
which part of the incident pressure field - given by S(zm) - is radiated back

to the surface:

Pz ) = R(z)S(z)). (11-15)
Note that in general the reflectivity is dependent on frequency and angle of
incidence.

Considering the nth column vector of S(zm), denoting the incident pressure

field around (nAx,zm), we write:
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> >
B (2 = R(z8 (2, (11-16a)
or:
_ _ = =
Py | Ryq RypeseeRypeessRiy sln'}
P2n E RZn . sZn
; - : : : . (1I-16b)
R Ry RypeesR eeesR o 8o
1>Nn-J RypeeeseeseRypeee Ry | | Syn
L. bees — e -

th ’ .
It is seen that the n column of l‘(zm) defines the contribution to
3n(zm) from the incident pressure at point (nAx,zm), i.e. element Snn, see
Fig. II-7a. The nth r ow of l‘(zm) specifies how the total incident field

around (nAx,zm) contributes to the reflected pressure i n that point, see

Fig. II-7b.

Figure II-7: Illustration to the interpretation of columns (a) and
rows (b) of reflectivity matrix l‘(zm).

Hence, the nth

row of l‘(Zm) defines the angle—-dependent reflection coeffi-
cient at (nAX,zm). In the special case that the reflection coefficient is not
angle-dependent, the subsurface is 'locally reacting': Pnn is determined by

B only and, hence, l‘(zm) is a diagonal matrix.

Matrix ])(zo) determines the sensitivity and directivity properties of the
detector arrays at the surface. The nth r ow of l)(zo) specifies those
properties for an array around point (nAx,zo). Hence, for an arrangement of

single detectors ])(zo) is a diagonal matrix.
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Matrix l’(zo) represents the multi-trace primary pressure data at surface

level z,. Element qu specifies the pressure contribution at detector

(centre) position (pr,zo) due to a source at — or a source array around -

point (qAx,zo). Hence, as was illustrated in Fig. I-4:

each column of matrix l’(zo) represents a s our c e gather, i.e. the
response of all detectors to one source,

each row represents a d e t e c t o r gather, i.e. the response of one
detector to all sources,

the main antidiagonal represents the common midpoint gather
around the aperture centre, i.e. the responses of detectors in (pr,zo) to
sources in (-pr,zo), where p = =K, =(K=1); weey =1, O, 1, ..., K-1, Kj the
other antidiagonals represent common midpoint gathers around other aperture
points,

the main diagonal represents the z e r o - o f f s e t data, i.e. the
responses of detectors placed at the same positions as the sources,

the subdiagonals represent c ommon o f f s et sections, for which the

offset between sources and detectors is constant.

Note that, if only zero-offset data are recorded, l)(zo) is a diagonal matrix.

Final remark:

In this section, we considered a two—-dimensional model. The same treatment

holds for the three-dimensional situation, where each matrix element represents

a

vector. The homogeneous operator, describing the wave propagation between

points (xA,yA,zo) and (xB,yB,zm) then reads:

with

fe Taike
Wi, ¥z ) = 5 J exp(-jkr), (11-17a)
r
2 _ L 52 o K 5 ¥
= (xA XB) + (yA yB) + (Azm) & (IT-17b)

The double Fourier transform to the wavenumber-frequency domain reads:

- TR, M il 2..2 2
w(kx,ky,z,wi) = exp[-j(k —kx—ky)%Azm] for k +k 2 k=, (I1-18a)

<

Wk okyo2,0;) = expl- (c e 2452 ] for K2+ #2 >l (11-18b)

[3V]
N



34

I1.3 MODELING AND INVERSION IN ZERO—-OFFSET TECHNIQUES

II.3.1. Adaptation of the physical primary model to the zero-offset
configuration

If data acquisition is performed in z er o - o f f s e t , for each physical

experiment source and detector are placed at the same point. Hence, assuming
point sources and detectors, the matrices S(zo) and l)(zo) are diagonal
matrices. In zero-offset techniques, the reflectivity of any boundary may, with
good approximationl), be described as 'locally reacting', since only one

angle of incidence is of importance , viz. the angle normal to the boundary in
the point considered. Hence, the reflection coefficient is quasi angle—indepen—

dent, which corresponds with local reaction. Hence, for zero-offset acquisition

also ]{(zm) can be described as a diagonal matrix.

Taking into account the diagonal properties of S(zo), l)(zo) and ]‘(zm), we

now write, for the response of one depth level Zs the general matrix equation

P(z)) = Dz )W(z ,z )Rz )W(z ,2z )8 (z) (11-19a)
as:
Pi1--P1n Dy Wipe- ¥l (R WijessWig 118y
s ; \ : 2 % : : %
: ;| = \ : ; : - «(II-19b
. : \ : : \\ : : \\ \ .
By g Ol | F1ne Rnf | "1 ¥ wy S\N

The diagonal source and detector matrices can be included in the propagation

matrices as weighting functions, hence:

A ] " "
Pll"'PlN wll...le R11 wll"'wlN
: : : i \ : :
g D= : : \ : . (1I-19
: : : ! \ : : . e
P, P w! W! \R W W
N1°°°"NN 1IN °*"NN NN N1°°°*"NN

1) Here, the cur vature of the incident wavefront is neglected, which
introduces an error - l‘(zm) has some non—-zero subdiagonals — which in most

practical situations has no significant influence.
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In zero-offset acquisition techniques, only the ma in diagonal of
response matrix l%zo) is considered. Due to the diagonal property of matrix
l‘(zm), the diagonal elements of l’(zo) can be written as:

(1I1-20)

_ ——
Pom % wimwimki i*

Using the subscript ZO to indicate the zero—offset situation we write

Eq. (II-20) in matrix notation as follows:

oale) = Wypla,on, (a3, (11-21a)

where

- i
By0(zo) = (BipaPygseeesBi) s

. (I1-21b)
Ryo(zg) = (RyysRyg,enssBip) s
= S —
2 .2 2
S11D11 w]] Boyevertiy
% L E
W, (z.,2) = . o - (I11-21c)
% : :
2 2
SePin| 1 Win e Py

qu being given by the homogeneous extrapolation operator WII, Eq. (II-5a),

and superscript ( )T denoting transposition.

If there are no lateral velocity variations in the medium, matrix equation
(II-21a) can be replaced bya spatial convolution - see
also Fig. II-5 - so that the zero—offset primary pressure response of a

two—dimensional configuration of m depth layers can be written as:
- A * =
P, o (X,2,0,) = S(w,) ;; Wy (X,02,,00) * Ry (x,2,,0,), (1I-22)

where S(mi) denotes the spectral strength of the source-detector combination
and wzo(x,Azm,wi) is the squared WII-operator. Throughout our discussion of
zero—offset techniques - which play a dominant role in the following chapters -
we shall use this notation in the form of a convolution, even if there are
lateral velocity variations. Then, the operator has to be interpreted as a

space-variant convolution.
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For a two-dimensional homogeneous medium, the zero-offset extrapolation opera—

tor wzo(x,Azm,wi) reads:

2
Wzo(x,Azm,wi) =W (x,Azm,wi)

(11-23)

2 jk exp(=2jkr)
(Azm) 2m r3

which is not a solution of the linear wave equation. Berkhout (1982, sect. 6.8)
shows that in practical situations, WZO(X,Azm,wi) may be approximated with
sufficient precision by the non-squared homogeneous operator WII after substi-

tution of the d o u b 1l e frequency value or the h a 1l f velocity value:

wzo(x,Azm,wi) ~ w(x,Azm,Zwi)

= Jk exp(=2jkr) (1I-24)
Azm 372 s
¥ b iz

Hence, the spatial Fourier transform of wZO(X’AZm’“ﬁ) is approximated by:

Wyl Bz w ) exp[—j(4k2—k§)%Azm] for k2 < ui?, (11-25a)
w 9 . 2% 2 2
WZO(kx,Azm,wi)w exp[—(kx—4k )2Azm] for ky > 4k". (I1-25b)

It should be realized that we now introduced a ma t hema t ical model
of the physical situation, covering the depth planes with 'mathematical

dipoles', the strength of which is given by reflectivity distribution

Rzo(x,zm,wi).
Two final remarks should be made here:

(1) Berkhout (1982, section 6.7) shows that replacement of propagation matrices
VV(zo,zm) and VV(zm,zo) by one two-way propagation matrix is also possi-
ble for common o f f s et data. Hence, considerations on proces—
sing of zero-offset data can easily be extended to common offset data by re-
placing matrix ‘VZO (or spatial wavelet wZO) by a matrix VVCO (or spa-—
tial wavelet WCO) representing two-way propagation of common offset data.
(2) Fig. II-8 shows that modeling the zero-offset response of a single diffrac-
tor and modeling a common midpoint gather on a horizontal

reflector involve identical travel times yielding similar
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hyperbolic responses. This means that spatial wavelet WZO

describing wave propagation in the first situation is identical to spatial

wavelet W applying to the second situation. Hence, considerations on

CMP
processing of zero-offset diffractor responses can easily be extended to

hyperbolic CMP gathers of reflection data.

Z, T X
|
1
|
It
|
|
|
Zm
ZO - '-—1_1_'—'# x
t

Zm

Figure II-8: Analogy between zero-offset diffraction data and common

midpoint reflection data.

a: ray geometry of zero-offset modeling of a single diffractor below a
homogeneous layer

b: zero-offset response of a single diffractor

c: ray geometry of CMP modeling of a horizontal reflector below a
homogeneous layer

d: CMP gather on a horizontal reflector

I1.3.2. Inversion scheme for zero-offset data

In subsection II.2.2 it was made clear that, in general, an inversion process
involves a sequence of matrix inversions (i.e. solution of a series of linear

equations) in order to solve the reflectivity matrices ll(zm) from matrix
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equation (II-1). Since, however, for z er o - o f f s e t primary data Eq.
(II-1) can be written in the form of a single spatial convolution, Eq. (II-22),
inversion of zero-offset data only requires a single d econvolu-

t i o n procedure in order to eliminate the effects of propagation operator
wzo(x,Azm,wi). Hence, omitting for simplicity the spectral factor S(u&),

for each depth level z an estimate of reflectivity distribution

Rzo(x,zm,wi) is represented by:

*
<Rzo(x,zm,wi)> F(X,Azm,wi) PZO(x,zo,wi)

(I1-26)

I

* *
F(X,Azm,wi) wzo(x,Azm,wi) Rzo(x,zm,wi),

where F(X,Azm,wi) is to be interpreted as a spatial deconvolution operator.
It is clear that a fully correct estimate of the reflectivity distribution is

obtained if, and only if:

F(x,02 ,0,) * Wyo(x,02z ,0,) = 8(x), (11-27)
which in the wavenumber-frequency domain corresponds with:
F(kx,Azm,mi)wzo(kx,Azm,wi) =1, for all kx' (I1-28)

Substitution of Eq. (II-25) into Eq. (II-28) yields:

~ . 2 .2 2 2
F(kX,Azm,wi) = exp[ j(4k —kx)%Azm] for kx < 4kT, (I1I-29a)
¥k, 02 ,0,) = exp[+(ki—4k2)5Azm1 for k2 > 4k, (11-29b)

Eq. (II-29b) shows that this operator has an unstable character: evanescent
components of the recorded field are 'blown up'. Besides, the propagation
operator WZO(x,Azm,mi) is usually spatially band-limited due to aperture

and frequency limitations, and often has a smaller spatial bandwidth than the
always—present spatially coherent noise. For kx—values where the signal-to-
noise ratio is low, this noise is also 'blown up' by a broadband deconvolution

operator.

Hence, conditions (II-27,28) can never be reached so that a perfect estimate of

reflectivity distribution RZO(x,zm,wi) can never be obtained. Berkhout



39

(1982, section 7.2) proposes three alternatives to achieve an o p t imal
estimate:

* band-limited inverse filtering,

* least-squares inverse filtering,

* matched filtering,
expressing preference for the last technique because of its simplicity and

practical applicability. Properties of inversion operators based on the

acoustic wave equation are also discussed by De Vries and Berkhout (1981).

In matched filtering , the deconvolution operator is chosen,

in the wavenumber-frequency domain, as:
Tk, ,0z_0;) = Wy (k02 ,w,) (11-30)
x20%me Wi 20\ x> P Wi/

*
where ( ) denotes complex conjugation. Hence, for zero-offset data without

spatial bandwidth limitation, we find according to Eq. (II-25):

- 22 2 2
Rk, ,0z,,0;) = expl 3(4k 2%z ) for k2 <4k,  (II-3la)

Flle, 0z ,0;) exP[—(kﬁ—z;kz)%Azm] for k2 > 4k’ (I1-31b)

Fourier transformation yields the following expression in the space-frequency

domain:
O R (11-32)
T

It is seen that for proper matched filtering the correct wavenumber value k
and, hence, the correct velocity distribution in layer Azm should be inserted
into the deconvolution operator. Then, neglecting absorption effects, matched

filtering represents a pure s patially zero-phasing

procedure within the spatial bandwidth of interestl). Hence, for the matched

1) In practice, data acquisition is performed in an aperture of finite length
which means that operator WZO(X,Azm,wi) is multiplied with a box-window
and, hence, WZO(kX,Azm,wi) is convolved with a sinc-function. This
convolution leads to a ripple in the spatial amplitude spectrum known as the
Gibbs—-phenomenon, which can be suppressed by spatial windowing. Although,
hence, IﬁZOI is not exactly white within the spatial bandwidth considered,

the white filter F is used for inversion.
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filtered result we write:

UZO(kx’zm’wi) =
(I1-33a)
F(kx’Azm’wi)wzo(kx’Azm’wi) =1 Ikx| . kX,max< 2k
and hence:
Uzo(®:25,%4) =
sin(kX maxx)
F(x,Azm,wi) * Wzo(x,Azm,wi) = comst. — 2 T (I1-33b)
X ,max

which is a real zero—phase function. If, however, erroneous velocity values are
chosen, the deconvolved result is no longer zero—-phase, which means that the
dispersion of the resulting spatial wavelet increases and, hence, the lateral
resolution of the estimated reflectivity distribution decreases. These effects

will be discussed in more detail in chapter III.

Finally, we present two migration schemes for zero—offset data based on matched
filtering, viz. a recursive and a non-recursive scheme. The r ecur sive
scheme is formulated by Berkhout (1982, section 7.9) and applies if velocity
variations must be taken into account, The medium is divided into depth layers
such that, within the aperture, these layers can be considered as homogeneous.

Since the wave field is migrated layer by layer, this recursive technique is

also called a stripping technique. For each depth level, the

reflectivity distribution is estimated in the space-frequency domain:
* *
<RZO(x,z1,wi)> =W (x,Azl,Zwi) on(x,zo,wi)

*
<Rzo(x’22’wi) =W (X,AZZ,Zwi) ® <RZO(X)Z1’U)1)> (11I-34a)

*
= =
<Rzo(x,zm,wi)> W (x,Azm,2wi) <RZO(x,zm_1,wi)>

with

hzy = |z =z _;

. (I1-34b)
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Imaging is performed by Fourier transformation of each estimated reflectivity

distribution to the space-time domain, taking the value for t=0:

max
1
=0)> = — < > |
<rzo(x,zm,t 0) - Re f Rzo(x,zm,wi) dw. (II-35)
W .
min
Non-recursive schemes can be applied if, within the entire aper-
ture, a constant velocity may be used. Then, migration can be performed in the
wavenumber-frequency domain, using a simple and fast algorithm. In one depth
step, the medium is imaged down to the deepest level of interest, so that such

'mapping ' techniques. The scheme given

techniques are also known as
here is based on a paper by Stolt (1978) and formulated by Berkhout (1982,
section 8.5). Basically, the scheme calculates the wave field at t=0 for all
depth levels using the matched filtering operator in the wave-frequency domain

given in Eq. (II-29), as follows:

ZI—WIP(x,z,w)dm
W (11-36)
@bﬁmuﬁﬂkOMumwM«5%mwbﬁw&.
2T x?7? X X X
w kX

Introducing kz according to:

p(x,z,t=0)

_ 2 _ 2%
k, = (4k kx)
, : (11-37)
= (a9 2
- (4 C2 k-x) ’

Eq. (II-36) is rewritten as:

k
1.2 : z & y
p(x,z,t=0)=(§5) J.exp(szz)dkz'[ —3 1% P'(kZ,O,kz)exp(-JkXx)dkx,
(k“+k )
k Z X
z X
(I11-38a)
with ~, _cx 8 fo2.2 ~
P (kx,O,kz) =3 P(kx,O,2 kz+kx). (11-38b)

The mapping procedure as formulated by Eq. (II-38a) is performed in four steps:

(1) A double Fourier transform is applied to the recorded data:

1

FT'
P(k,,0,w)-

=

p(x,0,t) TF P(x,0,u)
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Figure II-9: Response and images of a dipole diffractor.
a: geometry

b: zero-offset response

c: optimal image obtained by matched filtering

d: image for limited spatial bandwidth

e: image for limited temporal bandwidth

f: image for limited spatial and temporal bandwidth
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(2)'§(kx,0,w) is transformed to the (kx’kz) domain according to
Eq. (II-38b):
P(k. ,0,w) = B (k ,0,k )
(3) P’ (k ,0,k ) is multiplied with the weighting factor k /(k +k )%
(4) To the result of step (3) a double Fourier transform is applied.
=1

- Pk, ,0,k,) T PT(x,0,k) FL p(x,z,t70).
(k +k )

II.4 EXAMPLES

In order to conclude this chapter in an illustrative way, examples will be

shown of forward as well as inverse processing of simulated data.

In Fig. II-9a, the geometry is given of a configuration consisting of a single
dipole diffractor positioned centrally below a line aperture. Fig. II-9b shows
the modeled zero-offset pressure response, using a broadband source pulse

(wmin<w<wmax)' Fig. II-9c shows the imaged result in the space-time domain
after matched filtering as described in subsection II.3.2, using full spatial
and temporal bandwidth. Figs. II-9d,e,f show the images after bandwidth limi-
tation: in Fig. II-9d the spatial bandwidth is limited to ]kxliksin(ﬂ/lz), in
Fig. II-9e the temporal bandwidth has been reduced with a factor 10 around the
original central frequency, in Fig. II-9f both limitations are applied simulta-
neously. It is seen that s p a t i a 1 bandwidth limitation leads to 1 a t e-
r a 1 broadening of the image, whereas t e m p o r a 1 bandwidth limitation

L)

gives rise to dispersion in ver t ical direction 7.

It should be noted that the data displayed in Fig. II-9 can be physically
interpreted in two different ways (see also subsection II.3.1):
(1) as zero-offset data obtained from a point diffractor representing a local

element of a density contrast,

1) However, since temporal and spatial frequency are related through wavenumber
k, there is mutual influence between temporal and spatial bandwidth

limitation, as is seen in the figures.
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Figure II-10: Response and image of a diffractor distribution.

a: geometry

b: zero-offset response

c: mapped image

d: mapped image, enlarged

In b and ¢ only one of each five traces has been plotted, whereas in d

all traces are presented.
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(2) as a common midpoint gather obtained from a locally reacting plane reflec-

tor representing a density contrast between two layers.

Fig. II-10a shows a configuration of 64 dipole diffractors, randomly distri-
buted over a square depth field below an aperture line. Fig. II-10b shows the
modeled zero—offset response and Figs. II-10c,d the imaged result after non-
recursive mapping in the wavenumber—-frequency domain, using full spatial and

temporal bandwidth.

Fig. II-l1la shows the geometry of a finite reflector with a tilt angle

(a = 30°) in respect to the aperture line and a small opening ('reflectivity
drop') in the centre. Fig. II-11b gives the zero-offset response at the aper-
ture line. Fig. II-1llc displays the imaged result obtained with non-recursive
mapping in the wavenumber-frequency domain. Comparison of Figs. II-lla and b
shows that the zero-offset response of a dipping reflector 'shifts away' in
lateral direction from the reflector position. Hence, if the response is
recorded within an aperture covering the reflector area only - as indicated
above Fig. II-1lla - only a limited part of the reflected wave field is
acquired. Inversion of this windowed response yields an image which does not
resemble the reflector model, as is shown in Fig. II-11d. Hence, for imaging of

dipping reflectors wide apertures must be chosen.
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CHAPTER lil:

INFLUENCE OF VELOCITY ERRORS ON ACOUSTIC
INVERSION

III.1. INTRODUCTION

In chapter II it has been shown that proper data inversion, e.g. by appli-
cation of spatial matched filtering, leads to an image having a spatial
zero—phase spectrum. However, this is only true if the correct velocity
distribution of the medium is inserted into the inversion operator. In this
chapter, the effects of velocity errors on the inverted result in various

domains will be discussed, especially for zero-offset data.

I11.2. INFLUENCE OF VELOCITY ERRORS ON THE SPATIAL WAVELET RESULTING AFTER
MATCHED FILTERING

In subsection II.3.2 we have shown that, for absorption—-free media, matched
filtering is a spatial zero-phasing operation, i.e. the resulting spatial
wavelet has a spatial zero—phase spectrum. For zero-offset data from a depth

level z we derived, see Eq. (II-33a):

ijlzo(kx’z"*’i) =
F(kx,z,wi)wzo(kx,z,wi) =
oy A _
W (ko200 0 (k 2,0,
exp(jkzz)exp(-jkzz) =1,

|k | <k < 2k (I1I-1a)

with

ko= (w2, (111-1b)
Z X
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If, however, instead of the true velocity value c an er roneous
value c¢' is inserted into operator ?(kx,z,wi), the spatial amplitude
spectrum of ﬁzo(kx,z,wi) remains unaffected but the spatial p h a s e

spectrum is no longer zero:

'tfzo(kx,z,wi) = exp[ j(k z-k,2)], ]kxl ikx’max < 2k (I11-2a)
with
§ o2 Ok _
k! o= (47K, (III-2b)
k' = w/c'. (I1I1I-2c)

It is seen that the error in the spatial phase angle increases with depth
level z. The influence of other parameters (wi, c'-c) becomes clearer if we
consider the approximation of Eq. (III-2) for |kx| <<k, which corresponds

with small aperture angles. Then:

k2

k o~ 2k - 4_1’: , (11I-3a)
k2

k!~ 2k' - =& (111-3b)
4k

and hence k2
& 1 _ Iy . % _ o
Uéo(kx,z,wi) ~ exp[J{Zwi(E7- E? T (e" c) }z]. (I1I-3c)

It is now seen that:

(1) the spatial phase angle has a non—zero value for kx=0’ the sign of which
depends on the sign of the velocity error. The absolute value depends on
the velocity value as well as the velocity error and increases with
frequency.

(2) the spatial phase angle increases or decreases — depending on the velocity
error sign - with[kx|in a parabolic sense, the 'steepness' depending on

absolute velocity error and frequency.

The above considerations are illustrated in Fig. III-1 and Table III/l. Func-
tion ﬁzo(kx,z,wi) as given by Eq. (III-2a) is considered for three frequen-—
cies (wi=%yo, W, and Zwo) and a depth level z=20xo, Ao being the wave-

length corresponding with Wye For each frequency, Uio is band-limited such
that lkxl < 20k where o is chosen VER Fig. II1I-la shows how the spatial

bandwidth increases with frequency. Fig. ILI-1b gives the spatial amplitude



w; = Vow, Wiz Gy Wy = 20,

¢ . 090
¢ . o098 J\) q
c

102 L

82

Vo

60
¢ : 100 I
T 40

[ = 0 12
¢ . 102
| L o N
€. 110
c _/’\\ A

-22 -18 2 10 x 25&

Figure III-2: Directivity patterns of spatial wavelet Uzo(x,z,wi)

for various velocity error and frequency values; Ao = 2ﬂc/wo.



51

spectra for the three frequencies, being white within the bandwidth consi-
dered. Figs. III-lc,d,e,f show how spatial phase ®(kx) changes with kx, in
respect to the values ¢(0) for kx=0, for velocity errors of -2%, +2%, -10%

and +10% respectively. In each figure, the results for the three frequencies
considered are displayed. The values of ®(0) are given in Table III/1, for all

frequency and velocity error combinations. As expected from Eq. (III-3c), for

a given velocity error ¢(0) is proportional with frequency.

Table III/1

Spatial phase ¢(0) of ﬁz for kx=0, for velocity errors and

0
frequencies considered in Fig. III-1.

Ws
e'/e - %ﬂo Yo Zwo
.90 ‘ 4.44T 8.88m 17.78m
.98 0.82m 1.63m 3.27m
1.02 -0.78m =1.577 - 3.14T
1410 =3.64T =7.27T =14:55m

In Fig. III-2, the modulus patterns are given of the corresponding spatial
wavelets Uzo(x,z,wi), i.e. the spatial Fourier transform of Eq. (III-2a).
Note that these figures can be interpreted as d irectivity
patterns. In case of correct velocity, the modulus value for x=0 has been

normalized to 100 for each frequency.

The following phenomena are evidently shown:

(1) The lateral dispersion of the directivity patterns increases
with increasing velocity error.

(2) If the correct velocity value is used, the lateral dispersion of the
directivity patterns decreases with increasing frequency, as expected.
In case of velocity errors, however, this frequency-dependence vanishes.

(3) For a given frequency, the amplitude for x=0 decreases with increasing
velocity error, and even may no longer form the absolute maximum of the
pattern. This is in agreement with the well-known fact - see e.g. Berkhout
(1974) - that a two—sided signal has maximum amplitude for x=0 if the
phase spectrum is zero. The decrease of amplitude for x=0 due to velocity
errors increases with frequency.

(4) As can be seen in Eq. (III-3c), ﬁéo

velocity error c'-c. Hence, directivity patterns and phase spectra are not

is not a symmetric function of

congruent for velocity errors with opposite sign.
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III.3. INFLUENCE OF VELOCITY ERRORS ON THE INVERTED RESULT IN THE SPACE-
TIME DOMAIN

In the space-frequency domain, the spatial wavelet resulting
after deconvolution of zero—-offset propagation operator Wzo(x,z,k=wi/c)
with a matched filter F(x,z,k'ﬁ»i/c') reads:

= R -
Uzo(x,z,wi) F(x,z,k') Wzo(x,z,k) (I1I-4a)

or, applying the coordinates indicated in Fig. III-3:

A
v

Figure II1-3: Illustration to Eq. (III-4).

Uzo(g,z,wi) = f F(x—g,z,k')wzo(x,z,k)dx (III-4b)
Lx(z=0)
or, substituting Eq. (II-30):

UZO( E,Z,wi) = f WEO(X_E;z)k')WZO(X)Z,k)dX

L.(2z=0) y (I1I-4c)
x
_ = 2~ exp(2jk'p) exp(=2jkr)
- fv Kk 372 372 9%
with L’(2=0) g E
X
r2 = [x2+z2]%, (I11-4d)
pz = [(x-fi)2 + 22]%- (I11-4e)
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It is seen that, in the space-frequency domain, the dipole pressure field
given by Wzo(x,z,k) is submitted to amplitude weighting
(apodization) through the factor p_3/2 as well as phase correc

t i on through the factor exp(2jk'p). Choosing £=0, the resulting phase
factor is exp[-2j(k-k')r]. In absence of velocity errors k' equals k, the
contributions to the integral in Eq. (III-4c) have equal (viz. zero) phase for

all x and hence UZO(E,z,wi) has maximum value for &=0.

Next, we Fourier transform Eq. (III-4c) to the s pace -t ime domain
for £=0, using the shift theorem

F(w)exp(-jkr) z: f(t—%). (I1I-5)

Then: 2

I
E — flt - 2(5 - Dlax (I111-6a)

ma/c'e fo(z=0) ¥

where f(t) is the inverse Fourier transform of the function

UZO(O,z,t) =

F(w) = we (I1II-6b)

Eq. (III-6a) expresses that, apart from amplitude weighting, inversion can in
the space-time domain be interpreted as a travel time compen-
s ation procedure: for each aperture coordinate x, a fraction 2r/c' is

subtracted from signal arrival time 2r/c. In the following, this is discussed

in more detail.

The travel times from a secondary dipole source at (£ =0,z) are given by

1
(P+z?)?

(%) = c/2

(I11-7a)
2r
c

and, hence, form the hy per bo la drawn as a solid curve in Fig. III-4,
with asymptotes

2x
c

. " (I1I-7b)

THe
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Figure IT1I-4: Travel times and travel time compensation values: two
hyperbolae.
solid curve: travel times 1(x), Eq. (III-7a),

dashed curve: compensation values T'(x), Eq. (III-8a).

Eq. (III-6) expresses that application of a matched filter to zero-offset data
in the wavenumber—-frequency domain corresponds, in the space-time domain, with
compensation of travel times, i.e. subtraction from T(x) of a value T'(x)

given by the dashed hyperbola in Fig. III-4:
Tl(x) = _i_l'f (III-8a)

with asymptotes

T =4 % (I1I-8b)
In absence of velocity errors c' equals c¢, all travel times are fully compen—
sated and the resulting image has optimal Iateral resolution determined by
spatial bandwidth. If, however, c' differs from ¢ the travel times are n o t

fully compensated: a fraction AT remains, given by

At(x)

(x) - 1"(x)

(III-9)

1 1
21'(; C_') .

Fig. III-5 illustrates how this imperfect travel time compensation leads to

deterioration of the imaged result. Fig. III-5a shows the zero-offset response
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of a single dipole diffractor positioned centrally below a line aperture (one-
sided aperture angle 45°). Fig. III-5b shows the diffractor image after
matched filtering using correct velocity. Figs. III-5c¢,d,e,f display the
diffractor image after processing with a relative velocity error of -5%, +5%,
-10% and +10% respectively. The upper parts of the figures show the maximum
amplitude per trace and can be interpreted as broadband directivity patterns.
It is seen that, as in the space—-frequency domain, velocity errors lead to
lateral d i s per s ion of the image in the space-time domain: the image
pattern broadens with increasing velocity error whereas the maximum amplitude

decreases.

The author has amply discussed, together with a co—author, the effects of
velocity errors on imaged results in two papers: De Vries and Berkhout (1983),
De Vries and Berkhout (1984), the former of which is added to this thesis as
appendix A and should be consulted for details. A few important features are

summarized below.

Until now, we only considered inversion procedures, where downward extra—
polation takes place to the depth level where the secondary sources are posi-
tioned. If the choice of the extrapolation step is free and denoted as z' to
be distinguished from source depth z, the general expression for the travel
time fraction which is n o t compensated after extrapolation reads, in
paraxial approximation x <<z,z':

z oy Z(J_

() = 22 - Ly + (- ?‘z—,), (111-10)

cf. appendix A, Eq. (3).

Consideration of Eq. (III-10) leads to the following conclusions:
(1) The f i r s t term at the right hand side vanishes if

1
z' = CT z. (III-11)

Then, the vertical travel time (x=0) is fully compensated and an image is
found at or around t=0, but localized at a wrong depth. In practice, this
situation appears when mapping techniques are applied which only take the

extrapolated data at (or around) t=0 into account (e.g. Stolt, 1978).
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Figure ITI-5: Influence of velocity errors on the image of a single
diffractor (one-sided aperture angle 45°):

a: zero-offset response

b: image obtained with correct velocity

c,d: id. with -5% and +5% relative velocity error

e,f: id. with -10% and +10% relative velocity error

The upper figure parts show the corresponding directivity patterns.
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(2) The s e cond term at the right hand side vanishes if

z' = CC—, z. (II1I-12)

Then, the uncompensated travel time fraction AT is independent of x,
yielding an image with optimal lateral resolution shifted from t=0 to

2z"

C'

(I11-13)

- = ree' 2 _
=t = [ 1]

and positioned at an erroneous depth according to Eq. (III-12). Hence,
velocity errors are e x ¢ han g e d with depth errors to get an opti-
mal image. This image, however, is only obtained if, using a recursive
'stripping' technique, the extrapolated result is time-windowed around
t=tim and not, as usual, around t=0. From the value of tim’ c can be

determined as was also suggested by Yilmaz and Chambers (1980).

Fig. I1I-6 illustrates the above phenomena. The inverted response of a dipole

diffractor is given for various choices of z' and various velocity errors.

Special attention should be paid to the following points of interest:

(1)

(2)

(3)

III.

The figures of the middle row (d,e,f) give the inverted response at dif-
fractor depth, z'=z. It is clearly shown that, apart from time errors,
the data is u n d e r migrated ('moustache'-shape) for c'< c (d) and

o v e r migrated ('smile'-shape) for c¢'> ¢ (f).

The figures on the diagonal (a,e,i) give the images as mapped around t=0,
i.e. after full compensation of vertical time: z'/c' = z/c. The effects
of undermigration for c¢' <c (a) and overmigration for c¢'> ¢ (i) are even
stronger than for z'=z above.

The figures on the anti-diagonal (c,e,g) show the images resulting after
recursive stripping: z'=(c/c')z. For all values of z', an image with

optimal lateral resolution is found around t=t,m.
i

4, EXAMPLES

To show the effects of velocity errors on the imaged results of more

complicated structures, the images are given of the same configurations as in

section IL.4, but now also with a relative velocity error of -10% and +10%.
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Fig. III-7 shows the mapped image of a 64 point diffractor distribution,
Fig. III-8 the mapped image of a dipping reflector with a central opening.

It is seen that velocity errors yield two effects:

(1) deterioration of 1 ateral resolution, especially at
places where d i f f r action energy is generated, i.e. at point
diffractors and edges of reflectors,

(2) errors in positioning in vertical and, for a dipping

reflector, also in horizontal direction.
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CHAPTER IV:
ENTROPY

Iv.1l INTRODUCTION

After showing, in the previous chapters, the importance of velocity information
in echo—-acoustics, and before showing in the next chapter how so-called minimum
entropy norms can be successfully applied for velocity analysis, we shall dis-
cuss in this chapter the concept and properties of en t r o py and, especi-
ally, minimum entropy . After some notes about the history of
the entropy idea, the concept of entropy as introduced by Shannon (1948) in
communication theory will be exposed. It will be shown how, in a simple and
logical way, this entropy can be related to the concept of minimum entropy as
found in geophysical literature. On this concept, a generalized minimum entropy
(ME) norm is defined which can be interpreted as a measure of resolving power
of a single- or multi-trace data set, its value being determined by parameter
sparsity and system dispersivity. This norm is compared with ME-norms as
appearing in geophysical literature as a tool for deconvolution of seismic
recordings - the limitations of which are indicated in this chapter as well.
Next, the behaviour of our ME-norm is discussed under variation of echo—
acoustical data set properties as pulse bandwidth and phase, reflectivity
density, interference and noise. To complete this chapter about entropy, an
appendix is dedicated to maximum entropy spectral analysis, a well-known signal
processing technique which is shown to have little more in common with our

ME-norm than the word 'entropy'.
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Iv.2 SHANNON'S ENTROPY AND RELATED NORMS

Iv.2.1 Historical notes

'Entropy', being a more or less established concept in communication and infor-
mation theory, has for a long time only been known in the field of thermo-—
dynamics. There, it was introduced in the 19th century (Clausius, 1875), giving
a relation between increment of heat during a reversible process and absolute

temperature.

In 1948, Shannon introduced in his already classic paper "A Mathematical Theory
of Communication”, as a measure of a priori uncer tainty about the

realization of an event, the function

H=- Z PilOg Py» (Iv-1)
1

Py being the probability of event i. This function in itself was not new:
Boltzmann used its continuous analog as early as 1872, as a probability measure
of transitions of gas molecules. The reason for Shannon to call the function
'entropy' seems to have the following anecdotic character, as told by Tribus
(1978), who interviewed Shannon about his personal reaction when he realized
that he had identified a measure of uncertainty:

Shannon said that he had been puzzled and wondered what to call his

function. 'Information' seemed to him to be a good candidate as a

name, but 'Information' was already badly overworked. Shannon said he

sought the advice of John von Neumann, whose response was direct, "You
should call it 'entropy' and for two reasons: first, the function is
already in use in thermodynamics under that name; second, and more
importantly, most people don't know what entropy really is, and if you

use the word 'entropy' in an argument you will win every time!"
P

Since Shannon gave his measure this name, discussions have been started about
the relation, or even the possible identity, between the entropy in statistical
thermodynamics on the one side, and the 'new' entropy in communication theory
on the other. Brillouin (1953) showed a close relation and consistency, Jaynes

(1957) proved a sort of identity.



The great merit of Shannon is that he supplied the function given in Eq. (IV-1)

with a universal meaning, thus making it possible to develop it further and to

apply it in many fields of research. Tribus (1978) gives a survey of appli-
cations, which comprises diverging topics as land use planning, molecular

biology and exploration seismology.

In the next paragraphs, we shall study Shannon's entropy function in some more

detail, and see how it is related to maximum and minimum entropy concepts used

in (e.g. echo—acoustical) signal processing.

IV.2.2 Shannon's entropy: a measure of a priori uncertainty

Shannon formulated his 'entropy', in discrete notation, as:

N
H=- 2: P; log Pi» (IV-2a)
i=1

Z P, = 1, (IV-2b)

with:
where N is the number of possible events (e.g. results of an experiment) and
Py is the probability of event i.

Let us consider two extreme situations:

a. Only o n e event is possible, which means that there is no a priori un-

certainty, and realization of the event (e.g. execution of the experiment)

does not yield any information, where we define 'information' as the diffe-

rence between a priori and a posteriori uncertainty.

Hence:

;=0 143 .
. I -

Pi = 1’ i = J’

as illustrated in Fig. IV-1.

Then, since by convention
Lo 1 =0 (1V-4)
pi+0 pi og pi ’

we find for the entropy the m i n i mum value:

H = 0. (1V=-5)
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Figure IV-1: Probability distribution for minimum (zero) entropy.

b. A1l N events have equal probability, which corresponds with a maximal

a priori uncertainty and maximum information by realizing an event. From

Eq. (IV-2b) follows for this case:

g A =T e S (1V-6)

2| —

P; =

This is illustrated in Fig. IV-2.

oL ]3 I L1 LI

1 2 i N-1 N
Figure IV-2: Probability density distribution for maximum entropy.

For the entropy we now find:

= o 1 1
H = -N. N log (N)
CIV=7)

log N

which, under the constraint formulated in Eq. (IV-2b), is the ma x i -

m um value of H.
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We conclude that a basic requirement for Shannon's entropy to be a measure of
a priori uncertainty is fulfilled: no uncertainty corresponds with zero entro-
Py, maximum uncertainty corresponds with maximum entropy. It should be noted

that more properties are required (such as additivity and symmetry) to give a

full characterization of entropy.

IV.2.3 A measure of a priori certainty

Let us now introduce another function H' of p;, as follows:

H' = o

= ﬁ (NPi)log (Npl)s (IV-Sa)

M=

with, according to Eq. (IV-2b):

N
Np, = N ¥ p, = N. (1V-8b)

M

1

Ik

It is easily seen that there is a simple relation between H' and H:

H' = log N - H. (IV-9)

When entropy H equals zero, H' has its maximum value log N, and vice versa.
Since H is a measure of a priori uncertainty, H' can be used as a criterion of

a priori certainty.

Table 1IV/1 shows values of H and H' for some simple probability distributions

with N = 8, which number has also been chosen as the base of the logarithm.

It should be noted that:

(1) each probability distribution uniquely defines a value of H and a value of
H',

(2) Hand H' are s ymme t r i ¢ measures: the order of the probabilities
has no influence on the values of H and H' (cf. Table IV/1l, ¢ and d, g and
h),

(3) a sparse and peaked distribution yields a low value of H and a high value
of H',

(4) a dense and smooth distribution yields a high value of H and a low value of

H'.



Table IV/1

Uncertainty and certainty measures for some simple probability distri-

butions. (Only the values 0, .1, .5 and 1 are represented in the dis-

tributions).

PO YRR | 0.00 1.00

T ST 0.15 0.85

j (B T ra. 0.31 0.69

T el 0.31 0.69

b T L 0.33 0.67
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IV.2.4 Entropy of an amplitude distribution: a measure of resolving power

We now leave the field of statistics with its probability distributions, and
consider instead an N-point data set described by some positive definite para-
meter a;, such as:

- the absolute value of the data

- the squared value (i.e. a measure for the local energy)

- the RMS value

- the envelope

For simplicity we call a; the 'amplitude' of the data. We normalize the ampli-

tudes to the sum of the amplitude distribution:

a.
1
ai = s (IV-10a)
D &
- 8
7
and define:
a; a;
qi = Nai = _-] - = (IV—lOb)
N2 8 %
L
so that ay is a scale-independent version of amplitude ai.
Note that:
N
Eia{ =1 (Iv-11a)
i=1
and N
2 =N, (1v-11b)

1

XL

which is entirely analogous to Eqs. (IV-2b) and (IV-8b) for probability Py and
product Npi respectively.

This means that a function V, defined as:

e

q;1log q;, (IV-12a)

1
Vo=
N 4

1

is related to the normalized amplitude distribution - or, apart from a con-
stant, to the amplitude distribution itself - in exactly the same way as

certainty measure H', Eq. (IV-8a), is related to the corresponding probability
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density distribution

1)

. Hence, a sparse and peaked amplitude distribution

yields a high value of function V, a dense and smooth distribution a low value.

As

a.

1Y)

in subsection IV.2.2, we now consider two extreme situations:

All amplitudes are zero, except one which has value A.

Hence:
a; = 0, i # 3
a, =&, 1= 1 (IV-13a)
i
and:
a' =0, i #j (1V-13b)
a'=1, i = j.

This amplitude distribution is illustrated in Fig. IV-3.

A

0 1 1 1 L — . |

1 2 3 4 5 jJ N-1N

Figure IV-3: Amplitude distribution with minimum (zero) entropy.

Due to the complete analogy with Eq. (IV-3) and Fig. IV-1, it is obvious to
call this amplitude distribution, with V = log N, a minimum (or:
zero) en t r o py amplitude distribution. In geophysical literature dea-
ling with deconvolution of seismic data sets, e.g. Wiggins (1978), this
nomenclature is used indeed, but with a rather vague argumentation instead

of the straightforward connection shown here.

The 'parsimonious norm' P as defined by Claerbout (1977) is the analog of
entropy H, Eq. (IV-2), for such an amplitude distribution:
N
P =- zz ai log ai (IV-12b)
i=1

See also the footnote on page 83.



b. All amplitudes have equal value A.

Hence:

gy = &, L= Lyewey N (1V-14a)

and:

1
al =§» 1=1,..., N, (IV-14b)

which yields the distribution shown in Fig. IV-4.

A

NN

0]

1 2 3 4 5 j N-1N

Figure TV-4: Amplitude distribution with maximum entropy.

Based on the complete analogy with Eq. (IV-6) and Fig. IV-2, we call this

distribution, with V = 0, a maximum entropy amplitude distribution.

In echo—acoustical practice, one-dimensional amplitude distributions as dis—
cussed above are often dealt with in the form of time traces describing, for
the detector position considered, the response of a system to some source wave-

let. The s parsity of such a trace is determined by the sparsity of the

1 A}

reflections in the system. The compactness of the wavelet after
travelling through the medium from source to detector determines whether a
reflection appears peaked or smoothed in the trace pattern. Compactness is
interpreted here as a quality inverse to d i sper s ion, being deter-
mined by properties of both the source and the medium of propagation. Reflec-
tion sparsity and wavelet compactness together describe the r e s o 1 -

ving power of the trace:

high sparsity and high compactness (= low dispersion) yield a trace with a few

high amplitude peakes and, hence, high resolving power,

low sparsity and low compactness (= high dispersion) yield a trace with a

'smeared out' amplitude distribution and, hence, low resolving power.



72

Generalizing the analogy mentioned above, we conclude that the entropy of an
echo—acoustical data trace decreases with increasing resolving power, i.e. with
increasing reflector sparsity and increasing wavelet compactness. Function V,
defined in Eq. (IV-12a), i n creases with d e creasing entropy, and will

therefore in the following be called a Minimum Entropy norm.

IV.2.5 Entropy of an amplitude distribution related to uncertainty

The interesting question arises if the entropy of an echo—acoustical trace, as
defined in the previous subsection, has any relation with 'uncertainty', for

which the original entropy as defined by Shannon is a criterion.

The answer is positive as far as we consider the uncertainty in the i n t e r -
pretation of the data. When the entropy is high, i.e. the amplitude
distribution is smooth, we cannot decide if we have sparse reflections con-
volved with a dispersed wavelet, or dense reflections convolved with a compact
pulse. This means high uncertainty in interpretation. On the other hand, when
the entropy is low, i.e. the trace shows a few high amplitude peaks, inter—

pretation can be done with low uncertainty.

We conclude that the entropy of an amplitude distribution, although defined on
grounds of formal analogy, is also related to the entropy as defined by Shannon

in terms of interpretation.

Iv.3 MINIMUM ENTROPY NORMS
IV.3.1 Influence of amplitude parameter a,
According to the conventions of the previous section we apply to an N-point

data trace i (i=1, 2,...,N), a minimum entropy (ME) norml) of the form:

1
V= ﬁ'g: qilog 4 (Iv-15a)
with

dy = T (IV-15b)

a.
i
b
2 a
=
i

2| -

1) 'norm' is used here as in common language, not in topological sense.
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a; being a positive definite amplitude parameter of data V- Note that ¥y is

'mapped' in an unambiguous way into data a,. It was seen that this norm V can

i
be interpreted as a measure of the resolving power of the data trace, since it

yields a high value if the trace contains a few high peaks.

The actual values of V, and the sensitivity for variations in y;» are evident—
ly influenced by the choice of amplitude parameter 8, The optimal choice of
a; depends on the application considered.

In table IV/2, values of V (with log-base 8) are given for some simple 8-point
data distributions and different choices of a. To enhance comparability, the
values of V are normalized, for all choices of ai, to 1.00 for the minimum

entropy configuration (a). The following amplitude parameters are considered:

4y = |yi|’

1 max
|y, ; (1yi 2 ly; 13
) ]yilmax T2 ]yi max> ' O§< Y3 max> s,
2
8; T Vi
a, = env(y,),
a; = envz(yi).

Here, env(yi) denotes the envelope of the data, defined as:
env(y,) = [ys + 1My, }1%, (1V-16)

H{yi} being the Hilbert transform of Fare It should be noted that for

a =env(yi), ME-norm V is not symmetric in the sense of note (2) on page 67.

i
Hence, in this case the analogy with Shannon's entropy concept is violated on a

fundamental point.
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Table IV/2

ME-norm V = qilogs(qi) for different choices of a; = ;;qi. (The

distributions of Yi contain values O,

A,
to the probability distributions in Table IV/1.)

.5 and 1 and are identical

\'
a; = lyil Bp y% env(y.) envz(yi)
» €Xp 1 i
& i I Lo 1.00 1.00 1.00 1.00 1.00
b i I T, S 0.85 0.81 0.97 0.92 0.95
¢ e T L T L 0.69 0.68 0.76 0.55 0.60
d s T T R S T 0.69 0.68 0.76 0.63 0.74
e L T T T - 0.67 0.67 0.67 0.38 0.44
PR T 1 T LT , 0.50 0.48 0.58 0.20 0.38
g —* T * 4 4 A& 0.44 0.34 0.87 0.56 0.79
h t— I A Y S S 0.44 0.34 0.87 0.57 0.83
: T 4 T 2 I 2 T L 0.19 0:15 0.31 0.15 0.22
i T T I T l[ T [J 0.03 0.01 0.09 0.03 0.06
k T T I I I T T T 0.00 0.00 0.00 0.00 0.00
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following features are noteworthy:

For amplitude parameter choice a; = Iyil’ V is very sensitive to the
presence of additive small values (e.g. noise), as is seen by comparison of
the values for configurations a, b and g, or i and j. For a, =

i
] this effect is even stronger. On the contrary,

1= expl=1y, 171 | pax
the choice a; =y, makes V less sensitive to small values. Which choice

is preferable depends on the application considered: if small amplitudes
must be detected, a high sensitivity of V to such amplitudes is desired; if
influence of noise must be eliminated, V should be chosen insensitive to
lower amplitude values.

The envelope of adata configuration not only depends on the data
values but also on their order. Therefore, in contrast with the other ampli-
tude parameters, for ai=env(yi) and ai=env2(yi), V has different

values for configurations c¢ and d, also for g and h. In this way an ME-norm
can discriminate between data sets with equal amplitude distributions but

different intervals.

IV.3.2 Generalization of the minimum entropy norm concept

If some norm has to be a measure of resolving power of a data trace Yy @

necessary condition is that it emphasizes peaks in the amplitude distribution

of Y- If the amplitude is represented by a function a

; as described above, a

peak corresponds with a value of ai exceeding strongly the average value 3;

and hence with a large value of q = ai/éz. Emphasizing high values of 4y

is realized by multiplying a4y with a weighting function F(qi) increasing

monotonically with q,-

In the ME-norm defined by Eq. (IV-15), this weighting function is given by

F(q;) = log q;, (Iv-17)

which indeed increases monotonically, but slowly, with qi. To have a more

flexible measure of resolving power that can be specified in dependence of the

application considered, we generalize the norm V given above to:

1
V=R 9 Fag, (1v-18)

where the only requirement to function F(qi) is that it increases monotoni-

cally with q;-
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Notes:

(1) For the generalized form of Eq. (IV-18), the full formal analogy between V
and the entropy-related certainty measure H' given in Eq. (IV-8) no longer
holds. Still, we shall persevere in calling V a minimum entropy (ME) norm,
according to the analogy in interpretation discussed in subsection IV.2.5.
Moreover, we shall denote weighting function F(qi) as entropy
function.

(2) For entropy functions other than F(qi) = log 455 the values of V are not
restricted to the interval between zero and log N as before. For, e.g.,
F(qi) = qi, the minimum value of V is 1 and the maximum value is NP.
Still, the extreme values are obtained for the same data distributions as

before.

An entropy function F(qi) increasing weakly with q yields an ME-norm in which
also the lower data values - i.e. the amplitude distribution below the peaks -
play a significant role. On the other hand, a function F(qi) increasing strong-
ly with a leads to an ME-norm, the value of which is determined by a few
peaks only. To illustrate this, table IV/3 shows values of ME-norms V as
defined by Eq. (IV-18), for some simple 8-point data distributions, with the
following choices of F(qi):

F(qy) = logg(q,),

F(q,) = q} )
F(a) = q;
F(q,) = q% >
F(q,) = aqf .

To eliminate the influence of the amplitude parameter a,, this parameter has
been chosen |yi| and the average value 5; has been taken equal for all
situations. Then, the configurations considered represent the distributions of
y; as well as a; and 9y In order to enhance the comparability, again the
values of V are normalized to 1.00 for the minimum entropy configuration (a).
It is seen that the spread of lower amplitude values (cf. configurations f, g,
h) strongly influences V in case of 'weak' entropy functions as log q; or q?,
whereas V is invariant to such differences for F(qi) = qh_ For the latter
entropy function, V is very sensitive to the number of high peaks: cf.

configurations a, b, c.



Table IV/3

ME-norm V = ti(qi) for different choices of entropy function

F(q,).
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The data sets represent the distributions of (positive) variable ¥,

as well as a; and q;, since a; |y | and a is constant.
Vv
- 5 2 4
F(q;)= logg(q,) | q a4y 9y 9
‘2
a T T 1.00 1.00 1.00 1.00 1.00
11
b ——t—— o 0.67 0.71 0.50 | 0.25 0.06
2/3 2/3 2/3
c T : T . T 0.47 0.58 0.33 0.11 0.01
7/8 1/8
d T 1 T et 0.58 0.66 0.45 0,210 0.05
1 3/4 1/4
e T * | 658 0.63 0.41 | 0.18 0.04
1 1/2 1/2
£ oL I 0.50 0.60 0.38 0.16 0.03
1/3 .1 1/3 1/3
g T . SR 0.56 | 0.33 | 0.14 0.03
1/7 T1 1/7
h =2 2 ¢ ¢ ¢ 9 0.20 0.49 0.29 0.13 0.03
3/14 1/2 3/14
| 2 1 7 S S S 0.03 0.37 0.14 0.02 0.00(1)
1/4 1/4
j oAk b b & & & | 5,00 0.35 0.13 0.02 0.00(02)
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In echo—acoustics, a data set usually consists of some gather of related data
traces. Moreover, the main goal of inversion techniques is to produce a well-
resolved image of reflectors and diffractors, where noise and propagation

effects are eliminated as much as possible. Therefore, it seems convenient to
define a measure of resolving power for a multi-trace data set, to which the
ME-norm defined by Eq. (IV-18) can be an appropriate basis. As a mul t i -

t race ME-norm for a data set comprising M traces we introduce:

M
V=D wyv.. (Iv-19a)
=33

Vj is the contribution of the j-th data trace, defined by Eq. (IV-18) and now

written as:

N
Vo=g > a. e (1V-19b)

wj isa trace wedighting factor , giving the opportunity
to enlarge the contribution of significant traces and suppress the influence of
traces containing only insignificant data values or noise. (Note that the value
of V., is scale-independent, so that without weighting the contribution to V by
traces containing significant and insignificant data would be of equal impor-

tance!)

In order to make the contribution to V of an individual trace proportional to
its 'strength', the trace weighting factors wj should take into account the
ratio of some 'strength' parameter per trace to the total value of that para-
meter calculated over the whole multi-trace data set. In table IV/4, the values
of ME-norm V according to Eq. (IV-19) are given, applied to the data sets of

2
Fig. IV-5, for a; = ¥g» F(qi) =4, and the following choices of wj:



Wi = Wynwgh = 1/M (M is number of traces),
B _ lyji’max,j
Y1 T Ymax,lin zi 1) - ’
i
2
_ _ (yj')max,j
wj wmaX,Squ 22(y2 ) ’
3 ji‘max, ]

%lyjil
wj " Ysum,1lin Eizilyji|"
I 8

2

j sum, squ jj 2
’

To enhance comparability, the maximum value of V is normalized to 1.00.

Table IV/4
Multi-trace ME—norm for the data sets of Fig. IV-5, for different

trace weighting factors.

== 2
amplitude parameter: ai = aiqi = yi,
entropy function $ F(qi) =
Va’ Vb denote the ME-norm values obtained for the data sets of
Fig. IV-5a and -5b respectively.
wj Va Vb
w 0.62 0.07

unwgh

w . 0.95 0.30
max,lin

w 1.00 0. 57
max, squ

w 7 0.88 0.09
sum, lin

W 1.00 0.30
sum, squ
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The following points should be noted:

(1) For the noise-free data set (Fig. IV-5a) most traces contain one wavelet.
Since ME-norm Vj is independent of the scale of the data, the values will
be of the same order for all traces except the practically empty ones.
Therefore, the value of multi-trace ME-norm V is of the same order for all
trace weighting factor choices, see the Va-column in tabel IV/4. Only for
averaging without weighting, i.e. wj = 1/M, when also the empty traces where
Vj ~ 0 are fully taken into account, the value of V is significantly
lower.

(2) In the data set of Fig. IV-5b, the weaker wavelets are masked by noise. All
traces except a few ones around the center now have a very low Vj—value,
so that for any trace weighting factor V is significantly lower than in the
noise-free case.

(3) For the noisy data set, the presence in a trace of one wavelet rising signi-
ficantly above the noise will have a relatively small influence on the
s um of |y| or y2 in that trace. If it is desirable to suppress the
influence of the presence of noise it is preferable to use a trace weigh—
ting factor v, based on the ma X i m u m per trace of ]y] or, even
better, Y2; see the Vb—column in table IV/4. Doing so, however, the
danger arises that an 'occasional' high noise peak significantly influences

the resulting ME-norm value.

IV.3.3 Minimum entropy norms in literature

Since the late seventies, measures of 'spikiness' or 'ordering' of a data set
based on the minimum entropy concept appear in geophysical literature, to be
used as a criterion for optimal deconvolution of a seismic registration:
Minimum Entropy Deconvolution (MED), see Wiggins (1978), Ooe and Ulrych (1979),
Deeming (1981l). In those papers, the relation between minimum entropy and the
'entropy' as defined by Shannon — see subsection IV.2.2 - is rather vague: if,
anyhow, an argumentation about the terminology is given, it usually follows the
line that 'entropy' is a kind of synonym to 'chaos', 'disorder', so that maxi-
mal ordering should correspond with minimum entropy. In fact, the word 'entro-
py' could entirely be missed in this context. Since, however, it is used after
all and a relationship with the entropy concept as used in communication and
information theory has to be indicated, the author prefers the argumentation
given in subsections IV.2.4 and IV.2.5: a formal identity of the basic

|l

formulae, supported by common aspects of 'uncertainty'.
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In the following, we shall give a survey of ME-norms found in geophysical

literature. Many of those norms are based on optimization criteria used in more
general - i.e. not specifically seismic - data analysis procedures, where they
were not associated with any 'entropy'-idea. The ME-norms discussed are not
necessarily of the form we introduced in Eq. (IV-18), but they all have in
common that they are non-linear functions of the amplitude of the data,

emphasizing significant peaks.

Wiggins (1978) uses, as a criterion for optimal deconvolution of a seismic
trace, the var ima x -norm introduced by Kaiser (1958) as a tool for
maximization of the variance of a set of orthogonal vectors, and evaluated by

Cooley and Lohnes (1971):

ji
varim _ _1 o (1V-20)
j (E:yz )2
s |
1
1
which fits into our definition apart from the factor NG
yyarie - Zq F(q, (1v-21a)
J i
with:
Alyw = »
it e
y2
R -
qji = —;— . (IV-21b)
Yj-

A multi-trace version of the varimax-norm with a trace-independent normali-
zation factor is the kur t o s i s —norm, introduced by Saunders (1953,

1961) and used for seismic deconvolution by Ooe and Ulrych (1979):

ZZ y?i
Lo 5 T (1V-22)

7 2
(2273
j 1
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In order to get an ME-norm which, in MED-performance, yields better detection
of small reflections than the varimax—and kurtosis—norms, Claerbout (1977)1)
developed his ex trinsic ME power mnorm:
e.p _ 2 2 2 1 2
Ng = = . log ¥, =« ..) log & : (1v-23)
p Ziyjl 8 Yy %yJi g Néyji,
which takes values between zero and log N, just as our ME-norm with logarithmic
weighting function, Eq. (IV-12). The norm is called 'extrinsic' because its
value is additive in the sense that
e.p e.p e.p.
= + . -
Vj+k Vj Vk (IV-24)
Another way to enlarge the detectability of small reflections is indicated by

Ooe and Ulrych (1979): they modified the varimax— and kurtosis—norms by repla-
2

cing the amplitude parameter aji = yji by:
2
aj; = 1 - exp[-0 —5—=——— 1, (1IV-25)
(yji max, j

where O is a positive constant to be chosen appropriately. For 00, the

original varimax- and kurtosis—norms reappear.

1) In this reference, Claerbout also introduces his par s imomnious
norm, which is not an ME-norm, but a norm increasing with entropy:
n n
Ti! i@
) Zl ly551 108l |
P, = log ). [rgg ™ = (n>0)
i

d Z; |inln

Its value is between zero (for minimum entropy as in Fig. IV-3) and log N
(for maximum entropy as in Fig. IV-4). Note that for a, 6 = [n and

ji lyji

2; aji = 1 this norm reads:

Pj = —zi: aji log aji’

which is fully analogous to Shannon's entropy H, Eq. (IV-2).
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In his interesting survey on minimum entropy deconvolution, Deeming (1981)

considers the same generalized ME-norm formula that we gave in Eq. (IV-18):

1
v, —EYT a4,F(a5) (1V-26a)
with a
q., =—1, (1V-26b)
i —
" T
_']l

but only considers the amplitude parameter

2
aji = yji' ) (IV-26c)
IV.4 SENSITIVITY OF MINIMUM ENTROPY NORMS TO VARIATIONS IN ELEMENTARY DATA

TRACE PROPERTIES

We have seen that ME-norms are a measure of resolving power of an echo—

acoustical data set, which is determined by two main factors:

(1) the compactness of the wavelet with which the reflections are
convolved, determined by d i s per s ion effects due to source and
medium of propagation. Compactness is quantified by bandwidth and
P h a s e spectrum of the wavelet;

(2) the sparsity or, inversely, the density of reflections.

Consequently, the value of an ME-norm of a data set will be significantly influ-
enced by variations in those elementary parameters. Moreover, interference
between adjacent wavelets may occur, also affecting the value of ME-norm V.
Measured data are always more or less polluted with coherent and/or incoherent
noise; in other words: some distribution of detrimental amplitudes is

added to the useful data, thus disturbing the information of interest and

correspondingly diminishing the value of ME-norm V.

Quantitatively, the influence on V of the effects mentioned above will depend
on the choice of amplitude parameter a,, entropy function F(qi) and trace
weighting factor wj. Qualitatively, however, the trends are the same for any
choice of these norm parameters. Therefore, we shall discuss the sensitivity of

V to the above effects only for amplitude parameter a=y2 and a few choices of
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F(q), omitting the subscripts i for notation simplicity. Moreover, we consider

one single data trace.

In Fig. IV-6 the effects on V of the wavelet compactness parameters, i.e.
bandwidth and p has e, are illustrated for F(q)=q. V is calculated
for a data trace containing only one wavelet, as a function of the bandwidth of
this wavelet. For each bandwidth, three phase spectra are considered, correspon-
ding with zero—phase, minimum-phase and mixed-phase wavelet character. It is
seen that V increases monotonically with increasing bandwidth (i.e. increasing
compactness and decreasing length), the slope being largest for zero-phase and
smallest for mixed-phase wavelets. For one bandwidth value, the Hanning-
windowed amplitude spectrum, the phase spectra and the corresponding time wave—
lets are displayed as well. The well-known fact that, for a given amplitude
spectrum, the zero-phase spectrum corresponds with the shortest possible
wavelet length (e.g. Berkhout, 1974), is clearly illustrated. The general
conclusion from Fig. IV-6 is that ME-norm V i n creases with i n creasing

wavelet compactness, i.e. d e creasing dispersion.

The dashed curves in Fig. IV-7 show, for F(q)= loge(q), q%, q and q2
respectively, the values of V as a function of reflection dens ity d,
i.e. the percentage of points filled with unit dirac pulses in a trace contai-
ning for the rest only zero's. As expected, V decreases monotonically with d,
with a decay rate depending on the entropy function F(q). The solid curves in

Fig. IV-7 also give V as a function of d, but now after convolution of the unit

dirac pulses with a zero—-phase wavelet of bandwidth 4fmi

or 1 — 5 MHz). Since in this case i nter fer ence between neighbouring

5 (e.g.: 10 - 50 Hz,

wavelets may occur, affecting the value of V, for each value of d the result is
given after averaging over 50 random pulse distributions. It is seen that now V
decreases stronger with d than in the previous broadband situation, for all

entropy functions F(q). Practically, one could say that there is a critical

density value d depending on F(q), above which the V-curve proceeds

P
nearly horizontzii; - here, some appropriate slope criterion should be
introduced - so that for reflection densities higher than dCrit the ME-norm
cannot give any indication about the real density value d. Within this
limitation, we may draw from Fig. IV-7 the general and expected conclusion that
ME-norm V d e creases with 1 n creasing reflection density, i.e. d e crea—

sing reflection sparsity.



87

1.00f F(q)=In(q) 1.00F F(a)= va

0 10 20 30 40 50% 0 10 20 30 40 50%
—d —d
1.00 _ 1.00 =q2
Vv F(a)=q v F(a)=q
T 75 T 75F
50 .50
.25 25
\
0 ik il 0 \‘ (s 1 1 1
30 40 50% 0 10 20 30 40 50%
—d —d

Figure IV-7: ME-norm V as a function of data density d, for different
entropy functions F(q)-.
—————————— : anit dirac pulses, broadband;
: unit dirac pulses, convolved with a zero—-phase wavelet of
bandwidth Afmin'
To eliminate fluctuations due to wavelet interference in the

band-limited situation (solid curves), for each value of d the result

has been averaged over 50 random pulse distributions.

It is interesting to mention here another criterion in data analysis techni-
ques: the so-called WT-criterion, stating that the maximum number of indepen-
dent parameters in a data recording that can be determined equals the product
of bandwidth and registration time. For the band-limited data considered in
Fig. IV-7 W=O.4fS (fS is sample frequency) and T=256/fs, so that WT=102.4,
corresponding with a density of 40%. For this density value the ME-norm curves
in Fig. IV-7 have zero slope. Hence, in terms of the WI-criterion, ME-norms as

considered here have a weak discriminating power. This clearly indicates the
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fundamental limitations of ME-norms as a tool for deconvolution of seismic

traces, as applied by Wiggins (1978) and other authors mentioned in
section IV.3.

The role of inter ference between wavelets in a band-limited data
trace was already mentioned above. To get some insight into these interference

effects, the following experiment was done.

A set of 80 dirac-pulses was generated with amplitude values uniformly distri-
buted between -0.5 and + 0.5. This set was randomly placed in a 1024-point data
trace — note the low density: d= 7%, so that we have a really sparse data
configuration — and then convolved with a band-limited zero-phase wavelet
(w=3fmin=0'3fs)' For the same set of 80 dirac-pulses this procedure was
repeated 100 times, so that we got 100 data traces with the same parameters but
different interference effects. Fig. IV-8 shows the first 20 pulses, before and
after convolution, of one realization. For these 100 data traces, ME-norm V was

calculated for a=y2 and F(q)=q, normalized to 1.00 for the mean value. This

+0.5 +0.5
0.0 § _ 00 Ll~———”l Al
CONVOLUTION “
-0.5 -0.5 -
Y 0 5 10 15 30 23 usec
0 5 10 15 20 25 usec et
—_—

Figure IV-8: Realization of a trace containing 20 zero—phase wavelets
with uniformly distributed amplitudes between [-0.5, +0.5] and random
place in the trace.

tracelength: 256 points

wavelet : bandwidth 1-4 MHz, two-sided cosine window 807%.
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mean value V and standard deviation O are given in the first row of table IV/5.

Then, all traces were split up into two parts of 512 points. For the resulting

200 traces, ME-norm V was calculated, again normalized on the mean value of the

Table 1V/5

Normalized mean and standard deviation of ME-norm V for sets of

band-limited data traces of different lengths.

tracelength number of traces mean value V standard deviation O
1024 100 1.00 0.07
512 200 1.01 0=15
256 400 1.03 0.28
128 800 1.06 0.44

original 100 traces. Mean value and standard deviation are given in the second
row of table IV/5. The splitting procedure was repeated two more times, the cor-
responding results complete table IV/5. We see that mean value v slowly increa-
ses with decreasing trace length, whereas standard deviation 0 increases much
stronger. This means that — as intuitively expected - interference effects

cause larger fluctuations in ME-norm V for short traces than for longer ones,
since in long traces the effects of interference tend to cancel out. It should
be noted, however, that the fluctuations in V are not only due to interference,
but to a truncation effect as well: in general, splitting up a trace into two

parts of equal length does not yield equal division of the number of pulses.

Finally, we consider the influence of the presence of n o i s e on the value
of V. We take into account incoherent (white) noise as well as coherent noise
having the same amplitude spectrum as the signal and appearing as 'grass' in
impulse response recordings. As a signal, we use a sparse unit dirac—-pulse
trace (density 10%) convolved with a zero—-phase wavelet with varying bandwidth.
As in Fig. IV-6, V is calculated (here for a=y2 and F(q)=q only) as a function
of bandwidth, now averaged over 10 random realizations of the sparse pulse con-
figuration and in the presence of noise. The results are given in Fig. IV-9 for
incoherent (a) and coherent (b) noise and different signal-to-noise ratios.
Comparing the noise-free results (S/N-ratio «) to the zero-phase curve of

Fig. IV-6, we clearly see the effects of interference. Comparing Figs. IV-9a

and b, we see that the influence of coherent and incoherent noise on V is not
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Figure IV-9: ME-norm V calculated as a function of bandwidth, using
different signal-to—noise ratios.
a: incoherent noise
b: coherent noise
The zero-phase wavelet is convolved with a sparse trace of unit dirac
pulses (density: 10%). Results are averaged over 10 realizations.

amplitude parameter: a = y2

entropy function : F(q) = q

significantly different. In both cases, the increase of V with increasing band-

width (i.e. decreasing wavelet dispersion) is detrimentally affected by in-

crease of noise level; for S/N-ratio <10 dB, the influence of wavelet disper-—

sion even totally disappears. In general we conclude that the presence of noise

diminishes the discriminating power of ME-norms.
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IV.5 MAXIMUM ENTROPY SPECTRAL ANALYSIS

In the previous sections of this chapter we discussed minimum entropy norms to
be used as measures of resolving power of a data set. Obviously related, and
more current in literature about data analysis, is the concept of ma x i -

m u m entropy, commonly used in the context of spectral analysis techniques.
This maximum entropy concept, however, concerns probability density distribu-
tions of (stochastic) data and n o t amplitude distributions. It is therefore
directly dealing with entropy as defined by Shannon, Eq. (IV-2), and has very
little to do with the minimum entropy norms we considered above. Merely in
order to make this chapter on entropy more complete, we discuss the principles

of Maximum Entropy Spectral Analysis (MESA) in appendix B.

IV.6 CONCLUSIONS

In this chapter norms of the form
)

have been introduced which quantify the resolving power of a data set. As in

geophysical literature, these norms are denoted as minimum entro-
p y (ME) norms. It was shown that a justification of this name is found in the
analogy, in formulation as well as in interpretation, with the entropy concept

known from communication theory.

It was shown how, for a given reflection sparsity, ME-norms are a measure of
wavelet dispersion, being determined by bandwidth and phase spectrum. On the
other hand, for a given wavelet dispersion, ME-norms are a measure of reflec-

tion sparsity.

Finally, it was shown that decreasing bandwidth (leading to increasing wavelet
interference), decreasing sparsity and the presence of noise generally deterio-—
rate the discriminating power of ME-norms, giving a fundamental limitation to

their applicability in minimum entropy deconvolution techniques as proposed in

the literature.
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CHAPTER V:

MINIMUM ENTROPY IN RELATION TO VELOCITY
ANALYSIS

V.l INTRODUCTION

In chapter III, it was shown that velocity errors lead to lateral dispersion of
the spatial wavelets which represent inverted zero—offset data in the space-
frequency domain. In chapter IV, minimum entropy (ME) norms were introduced in
the space-time domain, as a measure of resolving power or, for a given spar-
sity, as a measure of dispersion of a data set. In this chapter, these elements
will be brought together. First it is shown that the concept of ME-norms as a
measure of resolving power also holds in the space-frequency domain. Hence,
correct velocity in the inversion process, corresponding with minimal spatial
dispersion of the inverted data, yields maximum values of ME-norms applied to
the inverted data in the space-frequency domain. This leads to introduction of
'Minimum Entropy Velocity Analysis' (MEVA), valid for inverted zero-offset data

within certain limits of diffractor sparsity in lateral and vertical directi-
ons. It will be shown that MEVA applies to data sets other than zero-offset as

well, and may also be used in the space-time domain after data transposition.

V.2 APPLICABILITY OF MINIMUM ENTROPY NORMS IN THE SPACE-FREQUENCY DOMAIN

In chapter IV we applied ME-norms to data sets in the space—time domain as a
measure of resolving power along the time axis. It was seen that this resolving
power is determined by the sparsity of the parameters together with the compact-
ness of the convolving temporal wavelet. The compactness may be interpreted as
an inverse measure of the dispersion of the wavelet determined by bandwidth and

phase.
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More specifically, one trace p(t) of a o n e —-dimensional pressure recording

can be written as:

= ' = B
pled = F el = j % ¥ (&) + ale)
m
(v-1)
= g(t) * % a (t -t ) *r (t)+n(t),
m

where:
s(t) is the temporal source wavelet,
rm(t) is the reflectivity of the mth boundary,

am(t—Tm) is the attenuation filter, representing absorption and transmission

losses between the surface and the mth boundary,

T is the two-way travel time between the surface and the mth
boundary,
n(t) is the additive noise.

After Fourier transformation, the source wavelet can be specified by an

amplitude spectrum and a phase spectrum in the frequency domain:

s(t) pr S = [S(w)|{exp j¢(w)}. (V-2)

In general, reflection and attenuation coefficients are frequency-dependent.
The properties in the frequency domain can be specified by Fourier trans—

formation of the time domain filters rm(t) and am(t):

t(8) pr Ro(w) = [R ()] expliup(w)l, (v-3a)

a (t) gp A (W) = A (0)] exp{iy, ()] (V-3b)

Hence, assigning depth coordinates zO to the acquisition plane and z  to the
mth boundary, the one-dimensional model given in Eq. (V-1) can be written,
after Fourier transformation to the frequency domain and under assumption of a

noise~free situation:

P(z_,w) = A'(Az_,w)R(z_,w)exp{-jwr_}
o %: m m m (V—[{)

S(m)zz A(AZm,w)R(Zm,w)eXP{‘ijm}-
m
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Here, the subscripts m for the functions Rm and Am’ Aé have been replaced by

variables z, and Azm=|z = respectively, in order to indicate explicitly

z,|
m "o
that the former function applies to a depth level, the latter to a depth inter—

val.

If the medium and/or the configuration of sources and detectors is two— or
three-dimensional, the wave propagation between surface and boundaries can no
longer be described by one-dimensional functions A as above. Instead, propaga-
tion through a layer is now described by a two— or three-dimensional spatial

wavelet W, which in general is a complex function in the space-frequency domain:

W(x,y,0z,w0) (three-dimensional) (V-5a)

=
]

or

W = (x,Az,w) (two—-dimensional). (V=-5b)

In general, W is treated as a function of lateral coordinate(s) x (and y) with
depth interval Az and frequency component w; as parameters. Hence, confining

our discussion to the two—dimensional situation we write:

=
]

W(X,AZ,wi)

Re(W(x)} + § Im{WGx)} |, (V-6)
Wy

]

[W(x) | exp{j¢(x)}{Az’wi'

After Fourier transformation to the wavenumber—frequency domain, the
two—dimensional spatial wavelet can be specified by a spatial amplitude

spectrum and a spatial phase spectrum:
= ~ ~
W(x,Az,wi) FT W(kx,Az,wi) = |w(kx)| eXp{J@(kx)} Az,wi' (v=7)

In subsection II.3.1 we derived that, using the spatial wavelet concept, a
t w o —dimensional multi-trace zero-offset pressure recording in acquisition

plane z=z can be formulated in the space-frequency domain as follows:

- ' * &,
on(x,zo,wi) %;w (x,Azm,wi) Rzo(x,zm,wi) N(x,zo,wi)
(v-8)

A * #
s(wi)%wzo(x, zm,wi) Rzo(x,zm,wi) N(x,zo,wi),
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where:
S(wi) is the spectral component of the source wavelet for frequency wi’ as
given by Eq. (V-2),

wzo(x,Azm,wi) is the band-limited spatial wavelet (lkxlé:k ax) deter-

m
mining, for zero-offset acquisition, the two-way :;ve propagation
between acquisition plane z=z and depth plane z=z_, for frequency
wy, with Azm = zm—zol,

Rzo(x,zm,wi) is the zero-offset reflectivity distribution in plane z=z .,
for frequency Wy,

N(x,zo,wi) is the additive noise distribution in the acquisition plane, with

frequency Wy .
Now, two remarks of fundamental importance should be made:
(1) The one-dimensional model formulated in Eqs. (V-1) - (V-4) is fully consi-
stent with the two-dimensional model given in Eq. (V-8), since Eq. (V-4)
can be written in the convolution representation of Eq. (V-8) defining:

WZO(X,Azm,wi) = 6(x)A(Azm,wi)exp{-jwiTm}. (v-9)

(2) There is a strong formal analogy between Eqs. (V-1) and (V-8), which is
specified in table V/1.

Table V/1
Analogous elements in Eqs. (V-1) and (V-8).

time domain, Eq.(V-1) space-frequency domain, Eq.(V-8)
p(t) Poo(x,z,0,)

"(t=T )= * = ' =
am(t Tm) s(t) am(t Tm) \ (x,Azm,wi) S(wi)wZO(X,Azm,wi)
ralt) Ryo(Xs2g,0;)
n(t) N(x,zo,wi)

The analogy is also seen in the interpretation of the two equations.
Eq. (V-1) means:
In modeling temporal response p(t), a sequence of reflectivities

rm(t) is convolved with temporal wavelets

aé(t—Tm) = s(t) * am(t—Tm).
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After Fourier transformation, these temporal wavelets can be specified
by temporal amplitude and phase spectra according to Eqs. (V-2,3).
Eq. (V-8) means:
In modeling zero—offset spatial response PZO(X’ZO’wi)’ where wi
is a parameter, a zero—offset reflectivity distribution

Rzo(x,zm,wi) is convolved with a complex spatial wavelet
w'(x,Azm,wi) = S(wi)wzo(x,Azm,wi), m = LBy ssel

for each depth level z
After Fourier transformation, these spatial wavelets can be specified

by spatial amplitude and phase spectra according to Eq. (V-7).

From the formal analogy between data in the time domain and in the space-

frequency domain, we may draw an important conclusion:

All considerations, dedicated in chapter IV to ME-norms applied to data in the
space~time (x,t) domain (i.e. functions of t i m e for a number of s pace
coordinates), are also valid for ME-norms applied to zero-offset data in the
space-frequency (x,wW) domain (i.e. functions of s p a ¢ e coordinate for a

number of f r e quency values).
Examples of such considerations:

(1) in_the (x,t) domain:

The value of an ME-norm applied to a temporal response (at x=x0) is a mea-

sure of the vertical resolving power of the response, giving insight how

well different events can be detected separately in the t- and z-directions.
The value of an ME-norm applied to a spatial response (for w=wi) is a mea—
sure of the lateral resolving power of that response, giving insight how

well different events can be detected separately in the x—direction.

(2) in the (x,t) domain:
The value of an ME-norm applied to a temporal response (at X=xo) is deter—
mined by the compactness of the temporal wavelets together with the sparsi-

ty of the (vertical) reflector distribution.
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The value of an ME-norm applied to a spatial response (for w= wi) is deter—
mined by the compactness of the spatial wavelets together with the sparsity
of the reflectivity distribution which is now extended in two dimensions (x
and z).

Or, in particular, for one boundary at z=z)

The value of an ME-norm applied to a spatial response (for w= wi) is deter—
mined by the compactness of the spatial wavelet together with the sparsity

of the zero-offset reflectivity distribution at depth z .

(3) in_the (x,t) domain:

The compactness of the temporal wavelet, being an inverse measure of disper—
sion, is determined by temporal bandwidth and temporal phase spectrum.
The compactness of the spatial wavelet, being an inverse measure of spatial

dispersion, is determined by spatial bandwidth and spatial phase spectrum.

(4) in_the (x,t) domain:
For a multi-trace data set (i.e. temporal responses at x=x1,x2,...,xN),
multi-trace ME-norms can be defined, weighting the contributions of each
individual trace with a suitable trace weighting factor.
similarly, in the (x,w) domain:
Defining a set of spatial responses for frequency sequence
w = wl,wz,...,mM
be defined, weighting the contributions of each individual channel with a

a multi-channel data set, multi-channel ME-norms can

suitable channel weighting factor. Intuitively, it seems appropriate to

relate these weighting factors, in some way, to the ratio of the amplitude

spectrum ]S(w)| of the temporal wavelet and the noise spectrum |N(w) :
Besides all similarities mentioned above, there is a basic difference between
data in the (x,t) and the (x,w) domain: data in the (x,t) domain are real,
whereas data in the (x,w) domain generally are complex. ME-norms were applied
to temporal (real) data after transformation to some positive definite ampli-
tude parameter, see section IV.2. In order to maintain the full analogy, we
shall apply ME-norms to spatial (complex) data after transformation to some
real positive definite amplitude parameter, for which the mo d ul us (or
its powers) is suitable. Hence, discussing dispersion of a spatial wavelet,

sparsity of a spatial reflectivity distribution, resolving power of a spatial
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response, etc., we in fact relate these properties to the moduli of these

spatial functions.

To illustrate the above arguments, we shall now apply ME-norms to the spatial
wavelet wZO appearing in Eq. (V-8). In subsection II.3.1 we showed that a

good approximation of this band-limited spatial wavelet, describing the two-way
wave propagation between surface z=z and a depth plane at z=z in a two-
dimensional zero-offset pressure recording, is given by the two-dimensional far-—
field version of the homogeneous extrapolation operator with 'half-velocity'

(or double frequency) substitution:

Wy (KaB2 0, ) & W(x,Az ,20,)

o, I exp(=2jkn) (¥=10)
m i r3/2 ? .

with
Az = |z -z_|
o “m

and

Lo}
]

2 2
w0’ + 0z )%,

see Fig. V-1.

Figure V-1: Geometry to Eq. (V-10).

Note that 2k (=u&/(c/2)) has replaced k in the original operator as specified
by Eq. (II-5).

It should be recalled here that, in this two-dimensional zero-offset model, any

boundary is represented by a configuration of secondary line sources with
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az=0 az= 2), az= 10X, az=20),
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Figure V-2: Band-limited spatial wavelets describing zero-offset wave

propagation.
bandwidth:

kx| < 20k, @ = g\/E

propagation intervals: 8z = 0, ZAO, IOAO, 20%0; Ao = 271/k

From top to bottom, amplitude spectra, phase spectra, real parts,
imaginary parts and modulus (i.e. directivity) patterns of spatial

wavelets are displayed.
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dipole character. The strength of each dipole is given by the local reflecti-
vity. Be aware that this a ma t hematical representation and not a

physical description of the boundary.

We saw (subsection 1I.3.1) that the spatial Fourier transform of Eq. (V-10) is

given by:
w(kX,Az,Zwi) = exp(-szAz) (V-11la)

with
K2 - - 5, (V-11b)

This means that the spatial phase angle |k Az| increases with propagation
interval Az for a given kx-value. ‘

This is illustrated in Fig. V-2 where, for a temporal frequency ub, the above
spatial wavelet is considered within a limited spatial bandwidth given by (see

Fig. V-2a)

20k

W )| =1, |k

X

A

(V-12)

Wk )| =0, |k | > 20k,

X
where k = wo/c and 0 is a parameter here chosen %4/2. For the propagation

interval Az the values O, ZAO, IOXO and 20)\o have been chosen, where

A = 2me _ 21 (V-13)

Besides the spatial amplitude and phase spectra according to Eq. (V-11),
Fig. V-2 shows, as a function of x, the real parts, the imaginary parts and the

modulus patterns (directivity patterns) of the corresponding spatial wavelets.

It is seen that, as expected, i n creasing propagation interval Az leads to an
i n creasing spatial phase spectrum and to i n creasing spatial dispersion of
the wavelet in the x-domain. Minimum dispersion is found for the zero—phase
wavelet. Moreover, it is seen that for non—-zero-phase wavelets the real and
imaginary parts have a sweep character, which corresponds with what we found

for time wavelets, see Fig. IV-6.
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ME-norms of the form
V= ayFlay) (V-14)

are applied to the modulus patterns of Fig. V-2. Note that the data are already
presented in the form of a positive definite amplitude parameter, so that a

transformation as suggested in subsection IV.3.1 is not necessary and hence

[W(x))|
iy M =i Bl By mewey Ba (V-15)

WG |

2
Using entropy functions F(q) = q%, q and q  respectively, we find the values
of V given in table V/2. For each entropy function, the value of V for Az=0 is

normalized to 1.00.

Table V/2
Normalized values of ME-norms V for the modulus patterns of the

spatial wavelets specified in Fig. V-2.

V= % % q;F(q))
bz |F(@)=q% | F(@)=q | F(a)=q®
0 1.00 1.00 1.00
2%0 0.72 0.40 0.10
IOXO 0.43 0,13 0.01
20)0 0.35 0.08 0.00(3)

It is seen that, for all entropy functions, the values of V decrease with
increasing Az, i.e. with increasing wavelet dispersion, as expected. The
decrease is strongest for high-power entropy functions.

For a given choice of spatial bandwidth parameter o - see Eq. (V-12) - the
spatial bandwidth increases linearly with temporal frequency, as was illustra-

ted in the (kx’k) diagram of Fig. III-la.
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az=0 Az = 2A0 AZ=1OAO AZ=2OA0

V:.62 V:.33 V:.12 V:.08
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Figure V-3: Influence of temporal frequency on the directivity
patterns of spatial wavelets as specified in Fig. V-2.

From top to bottom, directivity patterns are displayed for wi = %wo,
W, and 2wo respectively, Wy being the frequency considered in

Fig. V-2. The modulus value for x=0 is normalized to 100 for each
frequency.

ME-norm values, applying amplitude parameter a = |W| and entropy
function F(q)=q, are given in the figures, normalized to the value for

w, =w _, Az=0.

i (o 1
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Figure V-4: Schematic application of ME-norms to a two—dimensional

data set.
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In Figs. V-3 the directivity patterns of spatial wavelets are shown for the
same value of ¢ and the same depth intervals Az as in Fig. V-2, but now for

temporal frequencies %uo,w and 2w° respectively. The modulus value for x=0

o
is normalized to 100 for each frequency. It is seen that dispersion decreases
(i.e. compactness increases) with increasing temporal frequency and corres—
ponding spatial bandwidth. In the figures, the values of ME-norm V are given,
for the amplitude parameter of Eq. (V-15) and for entropy function F(q) = q,
normalized to the value for Wy = Wy Az=0. As expected, V increases with

increasing frequency, but less strongly for increasing Az.

Above, we applied ME-norms to single spatial wavelets. To complete this
section, we shall now apply ME-norms to simulated two-dimensional zero-offset
data sets. Generally, such data sets contain information about the geometry of
the underlying two—dimensional medium, especially when the recorded data is
processed with some inversion operator in order to eliminate propagation
effects, as discussed in chapter II. The information about the medium can be
qualified by resolving power of the data in vertical as well as in lateral
direction. As we saw earlier in this section, the resolving power in v e r —

t i cal direction can be specified by applying an ME-norm in the s p ac e -
t i me domain along the time axis. The value of this norm which we denote as
Vx(t) is determined by temporal wavelet dispersion and vertical reflectivity
sparsity. The 1l a t e r a 1l resolving power can be specified by applying an
ME-norm in the s pace-frequency domain along the space axis. The
value of this norm which we denote as Vw(x) is determined by spatial wavelet
dispersion and the sparsity of the zero—offset reflectivity distributions in
the sub-surface planes. Hence, ME-norms Vx(t) and Vw(x) can be usefully

applied according to the scheme given in Fig. V-é4.

In this way, we first consider the influence of bandwidth on the va-
lues of Vx(t) and Vw(x) for the zero—offset image of a regular two—dimensional
diffractor distribution embedded in a homogeneous medium. See Fig. V-5, where
four image patterns are considered, in which two temporal and two spatial band-
widths are combined. Both temporal and spatial wavelets are zero-phase. Under
the figures the values of Vx(t) and Vw(x) are given, normalized to the values
for full temporal and full spatial bandwidth (Fig. V-5a). As expected, Vx(t)

is strongly diminished by temporal bandwidth limitation and not significantly
influenced by variation of spatial bandwidth. For Vuﬁx) the opposite holds: its
value is independent of temporal bandwidth and decreases with decreasing

spatial bandwidth.



106

TimME
<sEC>

TIME
(sEC>

-488

LATE

[] Pet] 809880 -4un L

RAL DISTANCE (M) LATERAL DISTANCE M)

Vy® -1.00 Vy ) =1.03
V,(¥):1.00 Vv, 0= .14
§ d
< = =
< > g
Vy - 26 Vy®- .28
V,(¥)=1.00 V)= .14

Figure V-5: Image patterns and corresponding ME-norm values of a

two-dimensional diffractor grid as a function of temporal and spatial

bandwidth.

a: image with full temporal and full spatial bandwidth

b: image with full temporal and limited spatial bandwidth

c: image with limited temporal and full spatial bandwidth

d: image with limited temporal and limited spatial bandwidth.
amplitude parameter: a = |y]|

entropy function : F(q) = q2.

Fig. V-6 concerns the influence on Vx(t) and Vw(x) of sparsity varia-

tion of a diffractor grid, in vertical as well as in lateral direction. The ima—

ges of the configurations are simulated for given zero-phase temporal and spati-

al wavelets. Here, Vx(t) and Vw(x) are normalized to the values for reference
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(high) sparsity in both directions (Fig. V-6a). As expected, Vx(t) decreases
with decreasing vertical sparsity (increasing vertical density) being insensi-
tive to lateral sparsity variations. Contrarily, Vw(x) is insensitive to
vertical sparsity variation and decreases with decreasing lateral sparsity

(increasing lateral density).

TIME
<sEC>

Le H

)
-800 -40m o o0 8C0-900 -40n 0 400 a0

LATERAL DISTANCE M) LATERAL DISTANCE M)

V) =1.00 Vy - .99
Tase. Vw(x) :1 .00 Vw(x) = '23
a '
1 ) i
Vy )= .35 Vyt) = .35
V0= 96 V0= .22

Figure V-6: Image patterns and corresponding ME-norm values of a
two-dimensional diffractor grid as a function of vertical and lateral
sparsity.

a: image with reference (high) vertical and lateral sparsities

b: image with half lateral sparsity (double lateral density)

c: image with half vertical sparsity (double vertical density)

d: image with half lateral and vertical sparsities

amplitude parameter: a = |y|

entropy function : F(q) = q2
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Figure V-7: Modulus patterns of Uzo(x), i.e. directivity patterns of
an inverted diffractor response, for different frequency components,

without (b,c,d) and with (e,f,g) velocity error. The values of ME-norm
V are normalized to the maximum value occurring (d).

amplitude parameter: a = ]UZOI
2
entropy function : F(q) = q
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V.3 MINIMUM ENTROPY VELOCITY ANALYSIS
V.3.1 Velocity analysis using minimum entropy norms in the space-frequency
domain

In section III.2 we considered band-limited spatial wavelet UZO(X’Az’wi)
defined as:

Uy o(x,02,0,) = F(x,02,0,) * W, (x,02,0,), (V-16)

representing zero-offset data from a reflectivity distribution at depth Az
below the acquisition plane after inversion with matched filtering operator F.

It was shown that the lateral dispersion of this spatial wavelet increases if
an erroneous velocity value is inserted into operator F, see Fig. III-2.

Since, according to what we concluded in the previous section, i n creasing
dispersion of a spatial wavelet corresponds with d e creasing ME-norm values,
we may expect that the maximum value of an ME-norm applied to spatial wavelet
UZO will be found if no velocity errors are present.

The above hypothesis is illustrated and verified in Fig. V-7 where, in simu—
lation, the inverted response is considered of an elementary diffractor posi-
tioned at a depth level z=1000m below an aperture length of 2000m, the medium
having a propagation velocity of 2000m/s, see Fig. V-7a. Note that this inver-—
ted response can be represented by spatial wavelet UZO(X’Z’uﬁ)' The directi-
vity pattern of the inverted diffractor response is given for three frequency
components (wi =W , W

low’ central’ whigh
spectrum, for correct velocity (Figs. V-7b,c,d) and a velocity error of 10%

) of a cosine-shaped amplitude

(Figs. V—7e,f,g)1). The corresponding values of ME-norm V, normalized to the
highest value occurring (Fig. V-7d) are given in the figures. As expected, the
values of V are smaller in case of velocity error. Moreover, it is seen that in
the error—free situation the value of V increases with increasing frequency, as
it should be, whereas this effect is hardly found when a velocity error is

present.

1) The response considered is generated in the (x,t) domain. Due to the speci-
fic signal processing applied, the side lobes of the directivity patterns
for correct velocity - which should be represented by sinc-functions - are
'randomized', so that these patterns are not fully comparable with those in

Fig. ITI-2.
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Figure IV-8: ME-norm V as a function of relative velocity error,
applied to |Uzo(x)]. Results are given for single frequency
components (a,b,c) and summed over all frequencies after weighting
with the temporal amplitude spectrum (d). Noise—free situation.

amplitude parameter: a = IUZO]
entropy function : F(q) = q4



For the same configuration, the variation of ME-norm V for a continuous

velocity error range is given in Fig. V-8, where the relative velocity error is

varied between -10% and +10%. Figs. V-8a,b,c give the V-curves for the spatial
wavelets Uzo(x,z,wi) corresponding with low, central and high frequency
respectively. Fig. V-8d gives V as a multi-channel ME-norm, summed over all
frequencies weighted with the cosine-shaped amplitude spectrum. Here, and in
following velocity detection examples, entropy function F(q) has been chosen
q4, since optimal discrimination between velocity error effects appears to
require a high-power entropy functioun. (See also subsection VI.3.1 of the next

chapter.)

In Fig. V-8 we see, as expected:

(1) ME-norm V shows a maximum for Ac=0, if taken as a single—-frequency as well
as a multi-channel norm.

(2) For higher frequencies, the V-curves become narrower, which means a more
accurate detection of the correct velocity value.

(3) For higher frequencies, ME-norm V cbtains a higher maximum value (compare
the scales of the vertical axes), so that in the multi-channel norms (Fig.
V-8d) the contributions of the higher frequencies dominate, resulting in a

relatively narrow V-—curve.

In Fig. V-9 the calculations of Fig. V-8 are repeated, but now after addition

of noise to the simulated recording (signal-to-noise ratio O dB). It is

seen that from frequency components with a low signal-to-noise ratio (Figs.

V-9a,c) no velocity information can be obtained, but only from components where

this ratio is high (Fig. V-9b). An appropriate spectral weighting function is

in this situation:

2
w(w) = Cic I — (v-17)
Is@) [ + [N |

N(w) being the noise spectrum; see Fig. V-9d.

From the above results, the following general and highly important conclusion

can be drawn:

Application of minimum entropy norms to inverted zero-offset data in the

space-frequency domain is a tool for velocity analysis.
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Figure V-9: ME-norm V as a function of relative velocity error,

applied to |Uzo(x)|. Results are given for single frequency compo-—

nents (a,b,c) and summed over all frequencies (d) after weighting with

the function of Eq. (V-17).

signal-to—noise ratio: 0 dB

amplitude parameter : a

= [yl

entropy function : F(q) = ¢q
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We shall call this technique Minimum Entropy Velocity
Analysis , abbreviated as MEVA.

More specifically, we conclude from Figs. V-8,9 that MEVA can in principle be
performed by applying an ME—norm to one spectral component of the inverted
spatial wavelet. This component should have a high signal-to-noise ratio and,
preferably (for detectability purposes), a high frequency. To further enhance
the detectability, the contributions of a number of strong spectral components
should be added, preferably after weighting with a factor based on the signal-
to-noise ratio, e.g. as given by Eq. (V-17). It should be mentioned that, due
tothe orthogonality of the spectral components, the spatial
wavelets are independent of each other and, hence, yield independent contribu-
tions to the multi-channel ME-norm. Note that, if the addition step is omitted,
MEVA estimates velocity as a function of frequency, which is relevant for media

with frequency-dependent properties (e.g. absorption).

To conclude this subsection, we shall make some remarks on the applicability of
MEVA. Above, as input data for MEVA was used the band-limited spatial wavelet
UZO’ representing the inverted zero—offset response of a s in gl e dif-
fractor. In practice, zero—offset (or stacked) data contain diffraction energy
from a spatial distribution of diffractors. Then, MEVA is applied to inverted

zero—offset responses to be written in the form:

ZZUZO(X - %y, 02 ,0,). (V-18)
m 1

For data as such, the value of ME-norm V not only depends on the dispersion
(compactness) of spatial wavelets UZO’ but also on diffractor s pars i-
t y in lateral as well as in vertical direction. Below a certain sparsity

ME-norms become insensitive for variations in wavelet dispersion and, hence,

MEVA will not work.

Since inversion of common o f f s et data can be described by a

spatial wavelet U o having similar properties as U MEVA can as well be

C z0’

applied to inverted common offset data.

In subsection II.3.1, the analogy was indicated between the spatial wavelets
describing a hyperbolic zero-offset diffractor response and, on the other hand,

a hyperbolic common midpoint reflector response. This analogy
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holds after inversion, and for velocity analysis purposes UZO and UCMP may
be interchanged. Hence, MEVA can also be applied to inverted CMP responses from

a distribution of reflectors - i.e. largely continuous layer boundaries = to be

written in the form:
UCMP(x,ATm,wi), (V-19)

where Arm represents the two-way zero-offset travel time to the mth reflec-
tor. In this way, MEVA forms an alternative to other velocity analysis tech-
niques concerning CMP reflection data, see subsection I.4.2. It should be noted
that MEVA can be applied to a multiple set of CMP gathers without the necessity

to form one gather by stacking.

In the next chapter, several applications of MEVA to simulated as well as

measured data sets will be evaluated.

V.3.2 Velocity analysis using minimum entropy norms in the space-time

domain
The question arises if MEVA is also possible on inverted results in the
space-time domain. In Fig. III-5 it was seen how the lateral exten—
sion (dispersion) of a diffractor image i n creases with i n creasing velo-
city error. Hence, consistently with what we did in the space-frequency domain,
velocity information may be obtained by applying ME-norms to the data in late-
ral direction, i.e. to the t r an s po s ed data sets in the space-time
domain. Doing so, we may expect a d e creasing ME-norm value for i n creasing
velocity error, since the number of significant data points in the transposed

traces increases and hence the resolving power decreases with increasing velo—

city error.

Fig. V-10 compares multi-trace(—channel) ME-norms V applied to the inverted
diffractor response corresponding to the geometry of Fig. V-7a, as a function
of relative velocity error, calculated in three different ways: VX(t) in the
space-time domain along the time axis (Fig. V-10a), Vt(x) in the space-time
domain along the space axis (Fig. V-10b) and Vw(x) in the space-frequency do—
main along the space axis (Fig. V-10c, identical to Fig. V-8d). Since vertical
dispersion is not basically affected by velocity errors, Vx(t) does not show a
clear correlation with velocity error. As expected, both Vt(x) and Vw(x) have

maximum value for correct velocity. Due to the orthogonality of the spectral



116

components, the detectability of Vw(x) is higher than that of Vt(x).
Therefore, Vw(x) will generally prevail above Vt(x) in velocity analysis

techniques.

V.4 CONCLUSIONS

We have shown that application of minimum entropy norms to spatially inverted
data forms an attractive tool for velocity analysis. MEVA should preferably be
applied in the space-frequency domain but can also be used in the space-time

domain after data transposition.

MEVA is applicable to inverted zero—offset or stacked data, where it is used to
extract velocity information especially from diffraction data. This application

can be extended to inverted common offset data.

Moreover, it was shown that MEVA can also be applied to inverted common mid-
point reflection data, thus forming an interesting alternative to existing CMP

velocity analysis techniques.
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CHAPTER VI:
APPLICATIONS

VI.1l INTRODUCTION

In this chapter, Minimum Entropy Velocity Analysis (MEVA) will successively be
applied to media which have been selected from the field of echo—acoustical
technology where velocities play an important role: seismics and medical diag-
nostics. Since in non—destructive material testing the measurement techniques
are still analog and one—dimensional, applications in this field are not inclu-
ded here. Since the MEVA concept has primarily been developed in order to
extract velocity information from diffraction energy, we first consider the

applicability of MEVA to simulated diffractor distributions.

The chapter concludes with the formulation of practical recommendations for

MEVA application.

VI.2 SIMULATED ZERO-OFFSET DATA FROM DIFFRACTOR DISTRIBUTIONS

VI.2.1 Distributions of elementary diffractors

First, we discuss the results of MEVA applied to the diffractor distribution
earlier represented in Fig. II-10: 64 diffractors are randomly distributed in a
homogeneous bulk medium (velocity c = 2000 m/s) below a line aperture, see Fig.
VI-la for geometrical details. The noise—free zero—-offset response at the
aperture (Fig. VI-1b) has been simulated using a source pulse with a cosine-
windowed amplitude spectrum between 0.5 and 3 MHz. Hence, the average diffrac-

tor distance in both x— and z—-directions approximately equals ZAC, where Ac
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represents the wavelength of the central component of the source pulse

spectrum.

Fig. VI-lc shows the results of MEVA applied to the inverted response. The
downward extrapolation velocity has been varied between 1800 and 2000 m/s.
Respectively, the three curves represent, as a function of velocity, ME—norm
Vt(x) calculated in the space-time domain along the space axis, Vx(t) calcu—
lated in the space-time domain along the time axis, and Vw(x) calculated in
the space-frequency domain along the space axis. In all examples in this
chapter, amplitude parameter a=y2 and entropy function F(q)=q4 have been

applied.

It is seen that application of MEVA to a two—-dimensional diffractor distri-
bution leads to results which differ from what we found earlier for a single
diffractor:
(1) ME-norms as calculated in the three ways considered, i.e. Vt(x), Vx(t)
and Vw(x), all show a maximum value for correct velocity. Inversion with
this velocity value yields the optimally resolved image shown in Fig. VI-1d
(identical to Fig. II-10d).

2) Vt(x) and also Vx(t) have a higher velocity detectability than V (x).
These phenomena can be explained as follows.

ad (1):

As discussed before, introduction of velocity errors in the inversion operator
causes increasing lateral extension of each diffractor image. If the diffrac-
tors have different vertical coordinates, increasing lateral extension also
causes an increasing number of 'significant' data points in each time (or
depth) trace and, hence, increasing entropy along those traces. This is schema-
tically illustrated in Fig. VI-2, and can also be clearly seen in Fig. III-7
where the image of the present diffractor distribution is displayed for rela-
tive velocity errors of —-10% and +10%.

Hence, for two-dimensional diffractor distributions as considered here, entropy
along the time axis as well as along the space axis is minimum in case of

correct velocity, yielding maximum values for VX(t) as well as Vt(x).
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Figure VI-2: Inverted result (schematic) of a two-dimensional
diffractor distribution.
a. correct velocity: minimum entropy in x— and t—directions

b. incorrect velocity: increased entropy in x- and t—directions

ad (2):

In calculating ME-norm Vt(x)’ dispersion effects in each transposed time trace
are considered separately. However, in calculating W»O(x) for some spectral
component W total spectral strength for w=w is considered as a function of
lateral coordinate x. Since only the amp 1l i t ud e spectrum is taken into
account, the depth from which a contribution originates (or the corresponding
time delay) is of no importance in the calculation. This means that the three
schematic patterns of diffractor images given in Fig. VI-3 yield identical am—
plitude distributions ]P(x,wo)l for spectral component W and, hence, identi-
cal values of Vwo(x).

It should be realized that the pattern of Fig. VI-3b may represent the optimal
image of a distribution of 5 diffractors. Inversion of the same configuration
with an erroneous velocity may — apart from hyperbolic curvature and amplitude
effects - lead to an approximation of the pattern of Fig. VI-3c. Hence, large
differences in Wu(x) for correct and erroneous velocity values are not to be
expected for such configurations.

Generally, the phenomenon illustrated in Fig. VI-3 can be formulated as
follows: in calculating ME-norm Vw(x), a two—dimensional diffractor distri-
bution is interpreted as a o n e —-dimensional distribution, see Fig. VI-3a.
The lateral sparsity of this one-dimensional distribution can be significantly
smaller than the lateral sparsity for each depth level in the original two—
dimensional distribution. This leads to decreasing sensitivity for variations

in lateral dispersion, i.e. for velocity errors.
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Figure VI-3: Three diffractor image configurations (a,b,c) yielding
the same amplitude distribution for spectral component wo(d) and

identical values of ME-norm Vwo(x).

For the diffractor distribution considered in Fig. VI-1, the above argument is
illustrated in Fig. VI-4. For central spectral component wc the amplitude
distribution |P(x,wc)| is given for correct downward extrapolation velocity
(Fig. VI-4a) and a relative velocity errvor of 10% (Fig. VI-4b). It is seen that
both patterns have a high—entropy character. Particularly, the dispersion at
the e d g e s of the diffractor area shows significant dependence of the
applied velocity value, causing the peak of Vw(x) to occur at the correct

velocity as shown in Fig. VI-lc.
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Conclusions:

(1) For two—dimensional (x,z) diffractor distributions, MEVA can successfully
be applied in the space—time domain (transposed a n d non—transposed) as
well as in the space-frequency domain. Considering efficiency, application
in the space-time domain is attractive, since Fourier transformation can be
omitted.

(2) For two—dimensional diffractor distributions, the prevalence of Vw(x) over
Vt(x) and Vx(t) disappears, since decrease of 'effective' lateral sparsi-

ty can lead to decreasing sensitivity to velocity errors.

In the previous simulation example the average diffractor distance was approxi-
mately twice the central wavelength of the source pulse. A similar simulation
experiment on MEVA application has been done for the two—dimensional diffractor
configuration shown in Fig. VI-5a, where the average distance in both direc-
tions has been reduced to the central wavelength of the pulse. Note that in
contrast to the previous case where dimensions and frequencies as common in the
field of medical diagnostics were used, we now consider seismic ranges: the
aperture size is 2400 m, the source spectrum contains frequencies between 10

and 50 Hz. The bulk medium velocity has been chosen 1500 m/s.

ME-norm Vt(x) - which also for this configuration proves to have the highest
detectability — has been calculated as a function of velocity in three diffe-

rent ways:
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1

(2)

(3)

The

inversion of the complete zero—offset response and ME-norm calculation on

the complete inverted data set (Fig. VI-5b),

inversion of the complete response and ME-norm calculation on a limited
part of the inverted data (windowing after inversion, Fig. VI-5c),
inversion of a limited part of the response and ME-norm calculation over
the inverted result (windowing before inversion, Fig. VI-5d).

applied windows are indicated in Fig. VI-5a.

It is seen that

(1)

(2)

(3)

application of MEVA after inversion of the complete response yields an
accurate detection of the correct velocity,

windowing of the inverted data — i.e. neglection of the inverted diffrac—
tion phenomena at the edges of the diffractor area - has no significant
influence,

windowing before inversion eliminates a useful amount of recorded diffrac-

tion energy and, hence, deteriorates the velocity detectability.

Additional simulation experiments have been performed on diffractor distribu-

tions with average distances significantly smaller than the central wavelength

of the source pulse. In accordance with the general assumption that one wave-

length forms the limit of spatial resolution (see also Fig. VI-5), MEVA fails

to provide information for these situations.

Conclusions:

(1)

(2)

MEVA yields accurate velocity detection for two-dimensional diffractor
distributions with average distances (in both directions) of at least the
centfal wavelength of the source pulse.

Windowing b e f o r e inversion may significantly deteriorate the results
of MEVA, whereas windowing a f t e r inversion does not have a signifi-

cant influence.

VI.2.2 Diffracting discontinuities on reflectors

We now consider the configuration earlier represented in Figs. I-1 and II-11,

consisting of a finite reflector with a central opening. The width of the ope-—

ning is approximately 1.5 times the central wavelength of the source pulse. The

propagation velocity of the surrounding medium equals 2000 m/s. See Fig. VI-b6a

for

more geometric details. It should be noted that the present configuration

is relevant for seismic applications, where discontinuous layer boundaries are

considered.
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The continuous parts of the reflector may be considered as an array of elemen-

tary diffractors with zero interval width, in digital processing techniques
approximated by a finite distance determined by the spatial sampling interval.
In modeling the zero-offset response of such a continuous diffractor array, the
hyperbolic responses of the individual diffractors interfere such that no dif-
fraction phenomenon - in the sense of scattering — appears. At lateral disconti-
nuities like edges and other types of significant reflectivity changes this
interference is incomplete, so that only such points effectively appear as
secondary sources of diffraction energy. This is illustrated in Fig. VI-6b,
where the noise-free zero-offset response of the model described in Fig. VI-6a
is shown: four diffraction curves are clearly seen, generated by the four

discontinuities in the model.

Hence, for MEVA application the above model is highly equivalent to a sparse
configuration of four diffractors. However, in the zero-offset response the
'useful' diffraction energy is low in respect to the 'useless' reflection
energy, which in the MEVA context is equivalent with a low signal-to—-noise
ratio. As expected on the above arguments, results of MEVA qualitatively
resemble those for a single diffractor: Vx(t) fails to give any velocity
information, whereas Vt(x) and Vw(x) show a peak value for correct velocity.
Vw(x) has a better detectability than Vt(x), since the 'overall' lateral
dispersion of the inverted pattern is taken into account in Vw(x). Vuﬁx) is
given as a function of velocity in Fig. VI-6c, the image obtained with correct
velocity being displayed in Fig. VI-6d. The low signal-to-noise ratio of
diffraction energy due to the abundant amount of reflection energy suggests
that better MEVA results are to be expected after preprocessing such that most
reflection energy is removed from the data. Then, as for the two-dimensional
diffractor distributions discussed in subsection VI.2.l, MEVA is expected to

work satisfactorily in the space-time domain as well.

Conclusions:

(1) In zero—offset responses from highly continuous reflectors, as found in
layered media, only the contributions from lateral discontinuities and
other types of large lateral reflectivity changes appear in the form of
diffraction energy.

(2) Hence, for MEVA application such layered media are equivalent with
diffractor distributions, the sparsity of which is determined by the

geometry of the lateral reflectivity discontinuities.
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(3) In the zero—offset response of layered media with sparse diffraction energy
sources, the ratio between diffraction energy and reflection energy is
often low, which in the MEVA context is equivalent with a low signal-to—
noise ratio. This suggests that MEVA results should improve after prepro-
cessing such that most reflection energy is removed from the data.

(4) Applying MEVA to zero—offset data from layered media with sparse diffrac-
tion energy sources, ME-norm Vw(x) gives optimal velocity detectability.
However, it is expected that MEVA will also yield satisfactory results in
the space—time domain after preprocessing such that reflection energy is

eliminated.

VI.3 SEISMIC APPLICATIONS

VI.3.1 Simulated CMP data from one horizontal boundary

In subsection V.3.1, the applicability of MEVA to common midpoint reflection
data was indicated, based on the analogy of the spatial wavelets describing
propagation in a CMP reflector response and a zero-offset diffractor response.
Hence, all arguments and conclusions given in section V.3 for application of
MEVA to the zero-offset response of a single diffractor also hold for the CMP
response of a horizontal boundary. It was suggested that MEVA forms an alter—

native to existing CMP velocity analysis techniques.

To support this suggestion, we here compare the result of MEVA with the result
of the well-known velocity analysis technique described by Taner and Koehler
(1969), expressing for each velocity estimate the coherency of the normal
moveout corrected data in terms of 'semblance' E. The comparison is made for
simulated CMP data from a horizontal boundary below a homogeneous layer (c =
1500 m/s) at a depth of 500 m, the maximum half offset being 768 m. The noise-
free situation as well as a signal-to—noise ratio of 0 dB in the response has
been considered. The source pulse used has a cosine-windowed amplitude spectrum

between 10 and 60 Hz.

Fig. VI-7 shows the results. It is seen that ME-norm Vw(x) - with amplitude
parameter a=y2 and entropy function F(q)=q4 — yields a significantly better
velocity detectability than semblance E for the noise-free situation. For the
situation with noise, the detectability of the two norms is approximately
equal. Further experiments have shown that for entropy functions F(q) contai-

ning a lower power of q, the prevalence of the ME-norm disappears. On the other
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hand, for higher power values of q in the entropy function, ME-norms become too

sensitive for occasional (e.g. noise) peaks, so that F(q)=q4 seems an appro-

priate choice for velocity analysis applications.

Conclusions:

(1) MEVA is a good alternative to existing CMP velocity analysis techniques.

(2) Application of ME-norms Vw(x) using a strong entropy function yields a
better velocity detectability than application of coherency techniques.

F(q)=q4 appears to be an appropriate choice.

VI3.2 Simulated CMP data from a model of three dipping layers

Fig. VI-8a shows the model considered, consisting of three dipping layers with
velocities c; = 2000 m/s, ey = 2500 m/s and cy = 3000 m/s. The raypath pat-
tern for CMP modeling is drawn in the model. Fig. VI-8b shows the CMP response
with a signal-to—noise ratio O dB, in which three hyperbolic reflection pat-
terns can be distinguished. The source pulse has a cosine-windowed amplitude

spectrum between 10 and 70 Hz.

An estimate of the stack of the three boundary responses is now obtained by
successively migrating the CMP gather, in a non-recursive way, with a number of
velocity values spanning a range within which the three stacking velocities are
to be expected. For each velocity value, MEVA is applied to the inverted data
such that Vw(x) is calculated separately within three time windows. The windows
are chosen such that in each window the stack estimate of one boundary response
is to be expected. The zero-offset travel times in the CMP gather yield infor—
mation for proper window choice. In Figs. VI-8d,f,h the three windows are indi-

cated.

Figs. VI-8c,e,g show the values of Vw(x) as a function of velocity within the

three windows. The velocity value corresponding with the maximum of Vw(x)

within window n (n=1,2,3) is interpreted as an estimate of the stacking

velocity vst,n for the CMP response of the nth boundary. Fig. VI-8d,f,h

show the migrated results obtained with the three stacking velocity estimates.

It is seen that

(1) within each window, a well-resolved stack estimate is obtained for the
corresponding boundary response, using the stacking velocity estimate found
with MEVA,

(2) the focussing quality of the stack estimates in terms of lateral
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Figure VI-8: MEVA applied to three dipping layers.

a.
b.

C.

d.

e.

g
h.

geometry

CMP response, S/N-ratio O dB

Vw(x) as a function of velocity in time window 1, yielding a stack-—
ing velocity estimate L for the CMP response of the first
boundary

inverted result obtained using velocity vStl
as ¢, for time window 2

as d, using velocity vSt2

as ¢, for time window 3

ad d, using velocity Vel
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Figure VI-9: MEVA applied to stacked field data

a. stacked data

b. Vw(x) as a function of velocity, calculated for the full inverted
data set

c. migrated result obtained with velocity 2025 m/s

d. id., obtained with velocity 1800 m/s

e. id., obtained with velocity 2200 m/s



134

'compactness' decreases with depth. This well-known phenomenon is caused by
decrease of spatial bandwidth with depth.

Hubral (1976) gives a formula with which, for dipping layers, interval veloci-
ties can be estimated from stacking velocities. Applying this formula - which
is an extension of the famous Dix-formula - the results given in table VI/1 are

obtained.

Table VI/1
Interval velocities calculated from stacking velocities estimated with

MEVA, using Hubral's formula.

layer n B (m/s) c, (m/s) <cn>(m/s) rel.error
: ]
1 2000 2000 2000 0%
2 2400 2500 2555 2%
3 2610 3000 3026 1%

It is seen that, for the present model where interval velocities increase with
depth, these velocities are estimated with an accuracy of a few percents. This
accuracy is of the same order as obtained with velocity analysis techniques

based on coherency, see Taner and Koehler (1969).

Conclusions:

(1) In estimating stacking velocities from CMP gathers obtained from dipping
layer configurations, MEVA is a successful alternative to velocity analysis
using coherency techniques. This is confirmed by the equal accuracy with
which interval velocities can be estimated from stacking velocities
obtained with the two techniques.

(2) In order to estimate stacking velocities for successive boundary responses,
MEVA must be applied to the inverted data within different time windows.

VI.3.3 Stacked field data

Fig. VI-9a shows a set of stacked field data in which a high amount of diffrac—

tion energy is clearly visible. Hence, this data set is very appropriate to

determine optimal migration velocities using MEVA.

Fig. VI-9b shows ME-norm Vw(x) as a function of migration velocity, using the

full migrated data set and the full spectrum of the source pulse for the
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ME-norm calculation. The maximum value of Vw(x) is found for a velocity of

2025 m/s, yielding the migrated pattern of Fig. VI-9¢ where, due to focussing
of the diffraction energy, different faults are clearly visible. Note that MEVA
has indicated the velocity value which yields an optimal o v er all resol-
ving power in lateral direction for the complete data set. For comparison,
migrated patterns obtained with velocity values 1800 m/s and 2200 m/s are shown
in Fig. VI-9d,e. It is seen that now the faults are imaged less sharply due to
undermigration of diffraction energy in the former case and overmigration in

the latter.

MEVA was also applied to the inverted data within a space-time window indicated
in Fig. VI-9¢. Then, %»(x) varies as a function of velocity as shown in

Fig. VI-10a: a maximum is found for velocity value 2060 m/s. This means that
for optimal migration (in the sense of optimal lateral resolution) of the sub-
surface area within the window, a higher velocity is required than for optimal
migration of the full data set. Obviously, for the latter case also the lower

interval velocities of the upper layers play a significant role.

In subsection V.3.1 it was suggested that processing time required for MEVA in
the space-frequency domain can be reduced by considering only a few frequency
components with high signal-to—-noise ratio. For the data considered here, the
source pulse has a spectrum roughly between 5 and 120 Hz, with high energy
components between 30 and 80 Hz. Hence, MEVA was also applied to the inverted
data within the above window for the latter frequency range only. Disappointing-
ly, the technique now failed to work, and also when frequencies between 80 and
120 Hz were taken into account. A good result, however, giving a maximum of
Wm(x) for the same velocity value as in the broadband case with even higher
detectability, was obtained when only the 1 o w frequencies between 5 and

30 Hz were considered, see Fig. VI-10b. Even when only one low-frequency compo-—
nent (15 Hz) is included in the ME-norm calculation, MEVA yields a consistent
result, see Fig. VI-10c.

The above effects of bandwidth limitation in ME-norm calculation can be ex—
plained by assuming that diffraction energy — generally containing strong high-—
frequency components — is 1 ow - p a s s filtered by the stacking process,
due to destructive interference of high-frequency components during addition of

the normal moveout corrected data.
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Figure VI-10: MEVA applied to a limited part of the inverted stacked
data (for data window see Fig. VI-9¢c).

a. broadband result (5 - 120 Hz)

b. result for 5 - 30 Hz frequency band

c. result for single frequency component 15 Hz

d. result for corresponding near—-trace data, 30 - 80 Hz frequency band

This assumption was confirmed by an additional experiment, where MEVA was
applied to the near-tr ace data of the present multi-trace data set,
i.e. for each source position the normal moveout corrected recording of the
nearest detector (common offset) is taken. With stacked data, near—trace data
have in common that they approximate zero—-offset data. A basic difference,
however, is that addition of traces has not taken place so that — at the cost
of a low signal-to-noise ratio — destructive interference effects are avoided.
Applying the same data window as before and once more considering the high-
energy frequency range of the source pulse (30 — 80 Hz), MEVA yields the result
shown in Fig. VI-10d. It is seen that the maximum value of Vw(x) is found for

the same velocity as in the stacked data case, but now for frequencies where
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MEVA failed before. Hence, it can be concluded that stacking causes low-pass

filtering of diffraction energy indeed.

Conclusions:

(1) For stacked data, MEVA forms a tool for estimating migration velocities.

(2) MEVA can be applied to limited parts of the inverted data set, determining
optimal migration velocity for each data window separately.

(3) In the space-frequency domain, MEVA processing time can be reduced by consi-
dering a small bandwidth only. For stacked data, low frequencies are gene-
rally preferred, since, due to the stacking process, the diffraction energy

has been low-pass filtered.

VI.4 MEDICAL APPLICATIONS

VI.4.1 Zero-offset data measured on a phantom

A 'phantom' is a physical model containing medium properties and discontinui-
ties which are representative for human tissue configurations. The phantom

considered here consists of nylon wires and anechoic holes ('cysts') embedded
in a graphite doped gel. The geometry is shown in Fig. VI-lla. Zero—offset
measurements have been performed on this phantom within an aperture indicated

in Fig. VI-1lla, during a registration time such that the response of the third

(®)

I data window I
T
3 .
[IO Ca
| |
6emCh - _| *E 3
| | Y
3 ]
a O9m
& < © 32m - Vw(X)
< . 4
H 2m e H
2
16 cm
[ 2
1300 1400 1500 1600 1700

“Cysts” : Ri tors g .
Cysts”: @ 0.75 cm eflectors : @ 0.03 cm velocity (m/sec)

a

Figure VI-11: MEVA applied to zero-offset data measured on a phantom.
a. geometry and data window

b Vw(x) as a function of velocity
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wire of the vertical row was just recorded. A transducer was used generating a

pulse with a spectrum between 2 and 4 MHz.

MEVA was applied to this data set after inversion using all pulse spectrum
components, yielding Vw(x) as a function of velocity as shown in Fig. VI-12b.
The maximum value of Vw(x) is found for velocity value 1505 m/s, thus being an
estimate of the bulk medium velocity. Further experiments showed that MEVA
gives consistent results — yielding bulk velocity estimates within a range of
+ 1% around 1500 m/s - as long as at least one wire response is present in the
ME-norm calculation data window. Without such response, the bulk medium with
its very dense distribution of graphite particles represents a far too low

reflection sparsity to be appropriate for MEVA application.

VIi.4.2 Zero—offset data measured on real tissue

Zero-offset measurements have been performed on a specimen of animal tissue
(rumpsteak), fixed in an underwater measurement basin. Recordings were made
over an aperture length of 25.6 mm, using a pulse with a spectrum between 1 and
4 MHz. Registration time was 0.1 ms. MEVA was applied to the full inverted data

set.

Fig. VI-12a shows Vw(x) as a function of the velocity value used in the
nonrecursive inversion process, calculated with consideration of the total
pulse bandwidth. A maximum is found for a velocity value 1535 m/s.

Figs. VI-12b,c show that the same results hold if the frequency range consi-
dered is reduced to a band around the central frequency, or even to the single

central component!
Fig. VI-12d finally shows the image of the specimen.

Conclusion:

MEVA can successfully be applied to tissue configurations for estimation of

bulk velocities and migration velocities.

VI.5 PRACTICAL RECOMMENDATIONS FOR MEVA APPLICATION

We conclude with the formulation of some practical recommendations for success—

ful MEVA application, based on the discussions in this chapter.
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a. broadband result (1 - 4 MHz)
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c. result for single frequency component 2.5 MHz
d. image of specimen
(1) To obtain a high velocity detectability, entropy function F(q) is appropri-

(2)

ately chosen q4 in all MEVA applications.

Since the basic criterion of MEVA is the 1 a t e r a1l dispersion of an
inverted data set, MEVA should principally be applied in the space-
frequency domain or the space-time domain along the s p a ¢ e axis.
Generally, in the space—frequency domain a higher velocity detectability is
obtained. However, MEVA performed in the space—time domain is more attrac—
tive from an efficiency point of view. In addition, if the medium under

consideration contains low-sparsity diffractor distributions extending in
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(3)

(4)

(5

(6)

both lateral and vertical directions, MEVA is pr e fer ably applied
in the space-time domain where, in such cases, the data can be used without
transposition as well (i.e. MEVA application along the t i m e axis is
possible).

If MEVA is applied to zero—offset or stacked data, an estimate of the opti-
mal migration velocity is obtained. Local variations of optimal
migration velocity can be determined by w i nd owing the data

a f ter inversion.

If MEVA is applied to CMP data, an estimate of s t a c k i n g velocities
is obtained. To obtain the stacking velocity estimate for one specific boun—
dary response, MEVA should be applied withina time window of
the inverted data around the related zero-offset time.

If MEVA is applied to zero—offset or stacked data from 1 ay e r e d
media, it is advantageous to include a preprocessing step eliminating a
large amount of reflection energy. The result will resemble the response of
a two-dimensional diffractor distribution to which MEVA can be applied in
the space-time domain as well.

If MEVA is applied in the space-frequency domain, processing time can be
reduced by considering only a limited number of spectral components with
high signal-to-noise ratio. The contributions of these spectral components
may in practice be added without weighting. For stacked data, low-frequency
components should be chosen, since stacking introduces low-pass filtering

of diffraction energy.
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APPENDIX A:

A note on the effect of velocity errors in computerized acoustic

focusing techniques
D. de Vries and A. J. Berkhout

Delft University of Technology, Department of Ap.lied Physics, Group of Acoustics, P. O. Box 5046, 2600 GA

Delft, The Netherlands
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In computerized acoustic focusing procedures, the values of the propagation velocities of the
media between (secondary) sources and registration area must be inserted into the wave-field
extrapolation operator. These values are often only approximately known. In this discussion, the
effect of velocity errors will be evaluated for several acoustic focusing techniques, active as well as

passive.
PACS numbers: 43.60.Gk, 43.85.Ta

INTRODUCTION

In computerized acoustic focusing procedures, record-
ed wave-field data are processed with an extrapolation oper-
ator (see e.g., Refs. 1 and 2). The authors have shown earlier®
that for optimal focusing in terms of axial and lateral resolu-
tion, an operator should be applied derived from acoustic
wave theory, performing phase correction and amplitude
weighting in the space-frequency domain. When correct ve-
locity values are used, the result is a spatially bandlimited,
zero-phase image. In the space-time domain, phase correc-
tion is replaced by delay correction, so that unweighted fo-
cusing can also be described as a procedure compensating for
travel times between source and receivers. If the propagation
velocities between source and receivers are not accurately
known and erroneous values are inserted into the extrapola-
tion operator, the position and the resolution of the focused
results are affected in an unfavorable way, as will be shown
below.

. THEORY

We consider a point source in an absorption-free, ho-
mogeneous medium (velocity ¢) with coordinates (0,0,z) in a
Cartesian system. The travel times to a recording aperture in
plane z = 0 are given by

m(p) = lle/cf + (p/c1"% p? =X+ 2 (1a)
This expression describes a hyperbola in the p-t plane,

shown as the solid curve in Fig. 1. In paraxial approxima-
tion, i.e., p<z, Eq. (1a) may be approximated by a parabolic

353

expression:

T p)=z/c + p*/2cz. (1b)
For optimal focusing of the recorded data, i.e., for recon-
struction of an image of the point source with correct posi-
tion and optimal resolution, the travel times given by Eqgs.
(1a,b) must be correctly compensated for all p. In general,
however, either z or ¢ or both are not known and for a given
estimate the time corrections read, in paraxial approxima-
tion:

FIG. 1. Travel times and travel-time corrections: two hyperbolae. Solid
curve: travel times {0); Dotted curve: travel-time corrections 7'( p).

J. Acoust. Soc. Am. 74(1), July 1983; 0001-4966/83/070353-04$00.80; © 1983 Acoust. Soc. Am,; Letters to the Editor
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T'(p)=z/c' + p*/2c'Z, (2)
see the dashed curve in Fig. 1. Hence, in general a raypath-
dependent fraction of the travel times remains uncompen-
sated:

, 2
el —rlo=(2-Z)+ (1 L) )
c @ 2\ez 2
It is seen from Eq. (3) that, for ¢'s#¢, no value of z’ can be
found such that 7{ p) — 7'( p) = 0 for all p, and vice versa.

Now, assuming that ¢’ is the available—however
wrong—estimate of ¢, we can vary our focusing depth z' to
optimize our result. We shall discuss two different choices.

(a) Assume 2’ is chosen such that

Z' = (c'/c)z. (4)
Now, the first term in Eq. (3) vanishes, which means that the
vertical travel time 7(0) is correctly compensated, but a ray-

path-dependent fraction 47{ p) of all other travel times re-
mains uncompensated:

w0~ Eo- ()]

The resulting distortion in the image depends on velocity

(5)
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FIG. 2. Focused image of a harmonic dipole line source, when focusing
depth 2’ is chosen according to Eq. (4). (a)-{e) give results for an aperture
angle of 15° and various relative velocity errors, (f}j) for an angle of 60°.
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error and aperture angle. In Fig. 2, simulation results are
given for a dipole line source generating a harmonic field. It
is seen that, especially for large aperture angles, relatively
small velocity errors destroy the focused image completely
for this choice of focusing depth.

(b) Assume z' is chosen such that

z' = (c/c)z. (6)
In this case, the second term in Eq. (3) vanishes. This means
that after correction a raypath-independent fraction of the
travel times remains uncompensated:

A7 = [(¢'/c)? — 112'/c'. (7)

Thus, in the paraxial region to which the validity of Eq.
(3) is restricted, all recorded signals are “lined up” after time
correction and summation in an appropriate time-window
yields maximum output. This means that the focused image
has optimal lateral resolution for all velocity errors but it is
positioned at a wrong depth given by Eq. (6). This is illustrat-
ed in Fig. 3, which also shows that even for large aperture
angles where the paraxial approximation does not hold, the
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FIG. 3. Focused image of a harmonic dipole line source, when focusing
depth 2’ is chosen according to Eq. (6). Parameters as in Fig. 2.
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resolution of the image is hardly affected by velocity errors
for this choice of focusing depth..

Il. APPLICATIONS

In this section we shall apply the above theory to four
acoustic imaging systems:

(a) Active acoustic imaging systems based on pulse-echo
techniques: (1) using short pulses (high-resolution registra-
tion); (2) using lengthy pulses (low-resolution registration).

(b) Passive acoustic imaging systems: (1) detection of im-
pulsive sources; (2) detection of continuous sources.

In this discussion, three time variables should be discri-
minated:

e travel time, 7 p):
the time interval between signal generation at the (sec-
ondary) point source and signal arrival at the detector
with aperture coordinate p. If the source is situz..ed on
the z axis, 7{0) is called vertical travel time.

e registration time, T (p):
the time interval between start of the recording and
signal arrival at the detector.

e travel time correction 7'( p):
correction applied to travel time 7( p) in order to image
(focus) the recorded data.

A. High-resolution pulse-echo techniques

In these techniques, recording is started at the moment
that a source on the surface sends a short pulse into the un-
derlaying medium. Diffracted pulses are recorded in the ap-
erture area with high temporal resolution. If sources and
detectors are placed in zero-offset or common midpoint con-
figuratior,, the one-way travel times 7{ p) from diffractor to
detector can be accurately determined from registration
times 7' ( p):

op)=T(p)2, (8)

and can be displayed as a hyperbola in the p—t domain with
the vertical travel time

0)=z/c 9)

as apex (see Fig. 4). In these techniques, imaging includes
correction to the travel times according to a hyperbola with

"

T(o)

FIG. 4. Imaging procedure in pulse-echo techniques assuming short pulses.

355 J. Acoust. Soc. Am., Vol. 74, No. 1, July 1983
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T(0)i™—

undeterminable

T(p), undeterminable

FIG. 5. Imaging procedure in pul ho techniq ing lengthy
pulses.

apex 7(0) which corresponds to choosing focusing depth z'
according to Eq. (4).

Consequently, the vertical travel time 7(0) is fully cor-
rected and a raypath-dependent travel time fraction 47( p),
given by Eq. (5), remains uncompensated for p#0. Full fo-
cusing, i.e., maximum output amplitude and correct source
depth localization, only occurs when ¢’ = ¢. Thus this proce-
dure can be used for velocity determination by varying ¢’ and
using the output amplitude of the imaged result as a criterion
to be maximized.

B. Low-resolution pulse-echo techniques

As in the previous case, recording is started when a
pulse is generated into the medium, but now, due to source
properties, absorption, etc., the received pulses have a
lengthy character, causing a low temporal resolution in the
recorded data. Hence travel times 7( p) cannot be accurately
determined from registration times T'( p). Especially vertical
travel time 7(0) is not well defined (see Fig. 5).

Therefore, the apex 7'(0) of the hyperbola describing the
travel-time corrections to be applied for imaging, can be ar-
bitrarily chosen within the length of the recorded signal.

The imaged result is now localized at depth
(10)
By varying 7'(0), the amplitude of the imaged result can be
maximized. If ¢’ = ¢, this leads to 7'(0) = 7(0), i.e., correct
source localization and full focusing. If, however, ¢’ #c the
maximum amplitude is found for

7'(0) = (¢/c')*7(0), (11a)
which corrésponds with choosing focusing depth z' corre-
sponding to Eq. (6):

z = (e/c'le: (11b}
In other words: velocity errors are exchanged for vertical
travel-time errors and depth errors.

Figure 5 illustrates this situation. Within the paraxial

region the travel-time correction hyperbola 7'(p) has the
same shape as the (unknown) travel-time hyperbola {p).

z' =c'7'(0).

Letters to the Editor 355
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After time correction all recorded signals are “lined up.” A
raypath-independent travel-time fraction 47, given by Eq.
(7), remains uncompensated. Note that in this situation an
accurate estimate of the medium velocity can not be deter-
mined from the imaged result.

C. Passive imaging in search of impulsive sources
(crack detection)

In these “wait and listen” techniques, recording is start-
ed at an arbitrary moment. If in the underlaying medium a
“crack” arises, this leads to registration of usually short
pulses in the aperture area. As under Sec. ITA, registration
times T ( p) form a well-defined hyperbola, but obviously 7°(0)
has no relation with vertical travel time 7(0). This means that
7(0) can by no means be determined.

Therefore we introduce

6(p) =1(p) — 7(0) = p*/2cz. (12)
Imaging is now performed by applying a time correction

8'(p) =p*/2c'z'. (13)
By choosing z’ according to Eq. (6):

2’ =(c/c')z, (14)

full-time correction is applied to every raypath and full fo-
cusing takes place, but the depth on which the crack is local-
ized is only correct if ¢’ = ¢. In conclusion, velocity errors
are exchanged for depth errors according to Eq. (14).

D. Passive imaging in search of continuous sources
(e.g., gas leakage detection)

In this technique, the source may already be active at
the moment the recording is started. Thus, as in the previous
case, there is no relation between registration time 7°(0) and
vertical travel time 7(0). The situation is similar to the one
discussed under Sec. IIB (see also Fig. 5), except that now the
choice of vertical travel-time correction 7'(0) is absolutely
free. Again, the image amplitude is maximized by choosing
2’ according to Eq. (6). Correct source localization is only
possible if ¢’ = ¢, since also in this technique exchange takes
place between velocity and depth errors.

11l. CONCLUSION

It has been shown that the effect of velocity errors on
the result of (computerized) acoustic focusing techniques
may be quite large, and depends strongly on the application
and the optimization technique being used.

'J. F. Claerbout, Fundamentals of Geophysical Data Processing (McGraw-
Hill, New York, 1976).

?R. H. Stolt, Geophysics 43 (1), 2348 (1978).

°D. de Vries and A. J. Berkhout, ““Wave theoretical approach to acoustic
focusing,” J. Acoust. Soc. Am. 70, 740-748 (1981).
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APPENDIX B:
MAXIMUM ENTROPY SPECTRAL ANALYSIS

In chapter IV we discussed m i n i m u m entropy norms to be used as measu-
res of resolving power of a data set. Obviously related, and more current in
literature about data analysis, is the concept of ma x i m um entropy,
commonly used in the context of spectral analysis techniques. This maximum
entropy concept, however, concerns probability density

distributions of stochastic data and n o t amplitude distributions.

Hence, it has very little to do with the minimum entropy norms we intro—

ducedl), but is directly related to Shannon's entropy, reading in discrete

form:
H S _ZpiIOgPis (B-la)
i
with
2p =1, (B-1b)
A

Py being the probability of event i. Merely in order to make the discussion
on entropy more complete, we shall now briefly explain the principles of
Maximum Entropy Spectral Analysis (MESA) as introduced by Burg in 1967 and
applied and refined by himself and many others.

We consider a stationary, stochastic signal y(t), characterized by some proba-
bility density distribution. A finite and discretely sampled registration of
y(t) is available, from which the discretized autocorrelation function Rm =
R(mAT) has been calculated for a limited range of m-values: |m| <M.

Now, an estimation of the power spectrum S(f) of y(t),

1) The concept of minimum—cross—entropy introduced by Shore (1981l) is not
related to our minimum entropy norms, but is a variant on maximum entropy,

used for estimation of spectra of multiple signals.
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which is related to the autocorrelation function Rm through discrete Fourier

transformation:

S(£) = At D R exp[-j2nfmAt], (B-2)

m=—co

has to be made from the restricted number (2Mt+l) of known values of Rm.

In many spectral analysis techniques, the unknown values of Rm are assumed to
be zero, which in fact a is very harsh assumption. Therefore, Burg (1967) pro-
posed to find a spectral estimate <S(f)> which is consistent with the known
values of Rm, making as few assumptions as possible about the unknown values.
This can be realized by requiring that <S(f)>, with the constraint of consis-
tency with the known values of Rm’ corresponds to the most random signal y(t)
and hence is maximally white . It was already proven by Shannon
(1948) that, for a stationary stochastic signal with given probability density
distributién, the entropy H is maximum if the signal spectrum is white. Hence,
the spectral estimate <S(f)> as proposed above is found by ma x i m i -

z i ng - under the constraint of consistency with the known Rm—values - the

entropy of the signal.

In many discussions about MESA, the stochastic signals considered are assumed
to be banddiimited (-B Xt iAB)» and have a g a u s s i a n distribution with
an expectation equal to zero, which in practice often (but not always) is

approximately true.

For gaussian processes with zero mean it can be derived - see e.g. Haykin and
Kessler (1979) - that entropy H is simply related to the autocorrelation

matrix R of the process:
H = %1n[det R]. (B-3)

The above authors suggest that, for reasons of convergence, it is more appro—
priate to introduce in this context the entropy r a t e h:

Ry
Y1n[det R)™! (B-t4a)

-
]

lim H
= ““m. (B-4b)
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Note that, since R =R__, M+l denotes the number of d i f ferent
values of the autocorrelation function in the range considered. Haykin and
Kessler (1979) also derive a relation, based on Szegd's theorem, between auto-—

correlation matrix R and power spectrum S(f):

I B
e RI™! - 2Bexp32‘—Bf 1n[s(f)]df$, (B-5)
=B

where 2B denotes the limited signal bandwidth.

Substituting Eq. (B-5) in Eq. (B-%4) we find a relation between entropy rate h

and power spectrum S(f):

B
b = %1a[28] + % f In[S(£)]df. (B-6)
B

Using the relation between power spectrum and autocorrelation function given

in Eq. (B-2), and assuming that sampling is done at the Nyquist rate such that

- 1 X
At = 55 (B-7)
we rewrite Eq. (B-6) as
B [eo)
h =2 | 1n| 3 R exp(-327Ent0) [ds (B-8)
4B e T p{=J 4
-B

thus giving a relation between entropy rate and the values of Rm which are

known for |m| < M and unknown for |m| > M+l.

MESA provides an estimate of power spectrum S(f) by maximizing its whiteness
and, hence, the corresponding entropy rate within the constraint of consis-

tency with the known values of Rm- This is done by postulating:

dh _

oR
m

0, [m| 2ml (B-9)
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By working out Eqs. (B-8,9), as is done quite instructively by Haykin and
Kessler (1979), the following expression is found for the maximum entropy

power spectrum estimate <S(f)>:

B
<s(fy = 4 , (B-10)

M 2
ZB\I + ég%amexp(—ZJﬂfmAT)

where PM is the output of a prediction—error filter of order M and a are
the corresponding filter coefficients chosen in consistence with the known
values Rm of the autocorrelation function.

Here, as in the definition of resolving power measures, reference to 'entropy'
could be omitted: Berkhout (1970) indicated the analogy with prediction error
filtering and Van den Bos (1971) proved the equivalence with least—squares

fitting of an all-pole autoregressive model.

Finally it should be mentioned that also in information theory some authors
prefer to avoid the word 'entropy', denoting Shannon's measure and related

norms as 'information measures' (e.g. Boekee and Van der Lubbe, 1980).
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SUMMARY

In this thesis, a velocity analysis technique is proposed which, in the first
place, has been developed for application to echo-acoustical d i f f r ac -
t i on data, where most techniques known from literature fail to work
successfully. Besides, the methode appears to apply to r e flection

data as well, thus forming also an alternative to existing techniques.

The basic idea behind the proposed technique is that an i nverted wave
field has minimum lateral dispersion if processed
with correct velocity . For a given sparsity of diffractors,

lateral dispersion can appropriately be quantified by a norm
1 N
Vo= ﬁz q;F(q;),
i=1
where N is the number of data points in lateral direction, 9 is a normalized

amplitude parameter and F(qi) is a function monotonically increasing with

q4; thus emphasizing amplitude peaks in the data. Since norms of this type

have earlier been used in geophysics, for deconvolution purposes, under the
name minimum entropy norms, this name has been adopted and the
proposed technique is denoted as Minimum Entropy Velocdin-

ty Analysis (MEVA).

In chapter I, a survey is given of existing velocity analysis techniques and
its applications, leading to the conclusion that, for diffraction data, tech—
niques with general applicability are not available and new ways should be

explored.

In chapter II, a wave theoretical model for modeling and inversion of primary
compressional waves is discussed. In particular, the model is adapted to

zero—-of fset data acquisition, since zero-offset — or, more in gene—
ral, common offset — techniques are very suitable to extract information from
diffraction data. The analogy between zero-offset propagation of d i f -
fraction energy and common midpoint propagation of r e f 1l e c -

t i on energy is illustrated.
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In chapter III, focussing quality of an inversion operator is described in

terms of the s patial wavelet obtained af ter inver-

s i on . This spatial wavelet represents, in the space-frequency domain, the
image of an elementary diffractor. It is shown that the 1 ateral dis-
persion of the inverted spatial wavelet increases if a ve locity
error is introduced into the inversion operator. This phenomenon will

appear to form the basis of MEVA.

In chapter IV, the en t r o py concept is introduced. Shannon proposed
entropy as a measure, based on probability density functions of stochastic
variables, of a priori uncer tainty in communication theory.
Maximum entropy corresponds with maximum uncertainty. By changing the sign, a
measure of a priori cer t ainty can be defined, having maximum value
for minimum entropy. It is shown that for a one—-dimensional data set (which is
not necessarily stochastic), a measure of resolving power can
be defined, the form of which is fully identical to the certainty measure
mentioned above, except that probability is now replaced by amplitude. Due to
the formal analogy, we call this measure a minimum entropy (ME)
norm. The value of an ME-norm is determined by the sparsity of events (in our
applications: echo's) as well as the dispersion of the pulses representing
those events. Dispersion, in its turn, is determined by bandwidth and phase
spectrum. ME-norms are also defined for a two—dimensional data set in the
space—time domain. The sensitivity of ME-norms to variations in elementary
data set properties as sparsity, bandwidth, phase spectrum and noise are

discussed.

In chapter V, the formal analogy between one echo—acoustical data trace in the
time domain and one spectral component of a two—dimensional data set in the
space-frequency domain is demonstrated. From this, the conclusion is drawn
that all properties derived for ME-norms applied to data in the space-time
domain, are also valid for ME-norms applied to data in the space-frequency
domain. In the latter case, the role of temporal wavelets (pulses) is perfor-
med by s patial wavelets. In the space-frequency domain, ME-norms quan—
tify lateral resolving power, for a given sparsity of diffractors determined
by lateral dispersion. Since in chapter III it was shown
that lateral dispersion is affected by velocity errors, the basic validity of
MEVA in the space-frequency domain is thus made clear. It is shown that MEVA

can also be applied in the space-time domain, after data transposition, since
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lateral dispersion of spatial wavelets also appears in that domain as lateral
extension of diffractor images. As an example, MEVA is applied to the zero-
offset response of a single diffractor, which in the present context may also
be interpreted as the common midpoint response of a reflector. In this way,
principal applicability of MEVA to zero-offset diffraction data as well as CMP

reflection data is demonstrated.

In chapter VI, applications of MEVA are discussed. Simulated as well as mea—
sured data are taken into consideration, related to the fields of seismics and
medical ultrasound diagnostics. It is concluded that, applied to zero-offset
diffraction data, MEVA is a successful tool for the determination of migration
velocities. Applied to CMP reflection data, MEVA is an interesting alternative

to existing techniques aiming at estimation of stacking velocities.
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SAMENVATTING

SNELHEIDSANALYSE GEBASEERD OP 'MINIMUM ENTROPY'

In dit proefschrift wordt een snelheidsanalysetechniek geintroduceerd die in
de eerste plaats werd ontwikkeld voor toepassing op echo—akoestische d i f -
f ractie- data. Ontwikkeling van een dergelijke techniek was gewenst,
omdat uit de literatuur bekende methoden slechts geschikt zijn voor behande-
ling van r e f 1l ec t i e -energie. Overigens blijkt de voorgestelde methode
ook toepasbaar op reflectie-data, daarmee een alternatief vormend voor de

bestaande technieken.

De basisgedachte achter de voorgestelde techniek is, dat een ge I nver-
teerd golfveld minimale laterale dispersie
heeft indien de inversie met de ju i ste snelheden is uitge-
voerd. Voor een gegeven dichtheid van diffractoren kan laterale dispersie

worden gekwantificeerd door een norm

1

vV =~
N.
1

M=

ti(qi) s
1

waarin N het aantal data punten in laterale richting voorstelt, q; een genor-
meerde amplitudeparameter is en F(qi) een functie die monotoon stijgt met
argument ¢, . Men ziet gemakkelijk in dat V hoge waarden aanneemt indien de
amplitudeverdeling een klein aantal hoge pieken bevat. Normen van dit type
werden eerder toegepast in de geofysische signaalverwerking ter deconvolutie

minimum entropy =

van seismische registraties onder de naam

normen. Deze naam is overgenomen en de voorgestelde snelheidsanalysetechniek

wordt aangeduid als "Minimum Entropy Velocity Analysis" (MEVA).

In hoofdstuk I wordt een overzicht gegeven van uit de literatuur bekende
snelheidsanalysetechnieken en hun toepassingsmogelijkheden. De conclusie wordt
getrokken dat, voor diffractie-data, technieken met algemene toepasbaarheid

niet beschikbaar zijn zodat naar nieuwe mogelijkheden moet worden gezocht.
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In hoofdstuk II wordt een fysisch model voor het modelleren en inverteren van

compressiegolven besproken, gebaseerd op de akoestische golftheorie. Het model

wordt speciaal toegespitst op zgn. zero-offset - technieken,
waar bron en ontvanger zich op dezelfde plaats aan het oppervlak van het onder—
zochte medium bevinden. Dergelijke technieken zijn zeer geschikt om informatie
te verkrijgen uit diffractiedata. De analogie tussen de voortplanting van
diffractie- energie in "zero-offset”"-technieken en die van r e -
flectie- energie in "common midpoint"-technieken (bron en ontvanger
staan steeds evenver aan weerszijden van een gemeenschappelijk middelpunt)

wordt aangegeven.

In hoofdstuk IIT wordt de focusseringskwaliteit van een inversieoperator be-
schreven met behulp van het "spatial wavelet” dat mna inversie resul-
teert. Dit "spatial wavelet" is een ruimtelijke amplitudeverdeling die, in het
ruimte-frequentie-domein, de afbeelding van een elementaire diffractor repre-
senteert. Aangetoond wordt dat de 1 aterale dispersie van dit
"spatial wavelet" toeneemt wanneer in de inversieoperator een snelheidsfout
wordt geintroduceerd. Dit verschijnsel zal de basis blijken te vormen voor

MEVA.

In hoofdstuk IV wordt het begrip en t r o p i e geIntroduceerd. Shannon
voerde entropie in als een maat voor a priori onzekerheid in de
communicatietheorie. Hierbij is entropie gebaseerd op de waarschijnli jkheids—
dichtheidsfuncties van stochastische variabelen. Maximale entropie correspon—
deert met maximale onzekerheid. Door het teken te veranderen, kan een maat
voor a priori z e ker heid worden gedefinieerd, die een maximale waarde
heeft voor minimale entropie. Getoond wordt hoe, voor een éé&n-dimensionale
datareeks (die niet stochastisch hoeft te zijn) een maat voor s c he i -
dend vermogen kan worden gedefinieerd die qua vorm geheel identiek
is aan bovengenoemde zekerheidsmaat; alleen is waarschijnlijkheid nu vervangen

door amplitude. Vanwege de formele analogie noemen we deze maat een mi-
nimum entropy " (ME)-norm. De waarde van een ME-norm wordt bepaald
door de dichtheid van te registreren parameters (in deze toepassingen: echo's)
alsmede door bandbreedte en fasespectrum van de tijdpuls die zo'n parameter in
beeld brengt. Bandbreedte en fasespectrum bepalen tezamen de dispersie van de
puls. Behalve voor een één-dimensionale datareeks worden ME-normen ook gede-
finieerd voor twee-dimensionale datasets in het ruimte-tijd-domein. Tenslotte
wordt de gevoeligheid van ME—-normen besproken voor variaties in eigenschappen

van de dataset, zoals parameterdichtheid, bandbreedte, fasespectrum en ruis.
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In hoofdstuk V wordt de formele analogie aangetoond tussen &é&n echo—akoes-—

tische dataregistratie in het tijddomein en &&n spectrale component van een
twee—dimensionale dataset in het ruimte-frequentie-domein. Hieruit wordt de
conclusie getrokken dat alle eigenschappen die werden afgeleid voor ME-normen
toegepast op data in het ruimte—-tijd-domein, principieel ook gelden voor ME-
normen toegepast op data in het ruimte-frequentie—domein. In het laatste geval
wordt de rol van de tijdpulsen overgenomen door eerdergenoemde "spatial wave-—
lets”. In het ruimte-frequentie—-domein zijn ME-normen een maat voor lateraal
scheidend vermogen. Voor een gegeven diffractordichtheid wordt dit scheidend
vermogen bepaald door 1 aterale dispersie . Aangezien in hoofd-
stuk IITI werd gedemonstreerd dat laterale dispersie wordt beinvloed door snel-
heidsfouten is hiermee de principiéle toepasbaarheid van MEVA in het ruimte-
frequentie-domein aangetoond. Voorts wordt aangegeven dat MEVA ook kan worden
toegepast in het ruimte-tijd-domein via datatranspositie, aangezien laterale
dispersie van "spatial wavelets" in dat domein tot uiting komt als laterale
verbreding van diffractorafbeeldingen. Als voorbeeld wordt MEVA toegepast op
de "zero-offset"-responsie van een enkele diffractor, die in deze context ook
mag worden geinterpreteerd als de "common midpoint"-responsie van een reflec-—
tor. Aldus wordt de principiéle toepasbaarheid van MEVA op "zero-offset"

diffractie-data zowel als "common offset"” reflectie-data aangetoond.

In hoofdstuk VI worden toepassingen van MEVA besproken. Gesimuleerde zowel als
gemeten data worden beschouwd, betrekking hebbend op de toepassingsgebieden
seismiek en medische diagnostiek.

Geconcludeerd wordt dat MEVA met succes kan worden toegepast op "zero-offset"”
registraties van diffractie-data teneinde migratiesnelheden te bepalen.
Toegepast op “common midpoint"” reflectie-data vormt MEVA een interessant

alternatief voor bestaande methoden om "stack"-snelheden te bepalen.
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1979 - heden = 1lid van het bestuur van het Nederlands Akoestisch

Genootschap, sinds februari 1984 als voorzitter

1981 - heden - docent aan het Koninklijk Conservatorium te 's—Gravenhage
in het vak "Ruimte-akoestiek"”, in het kader van de

muziekregistratie—opleiding

15 september 1982 - geboorte van zoon Tjalling









10.

s

Medisch onderzoek op consultatiebureau's voor zuigelingen
en kleuters dient, in plaats van door huisartsen, te worden
verricht door in preventieve benadering geschoolde jeugd-

artsen.

Het oproepen tot stakingen bij openbare diensten dient te

worden bestraft als een economisch delict.

Het vaderschap leidt tot ingrijpende herziening van

opvattingen betreffende wereldvraagstukken.

Een promovendus kan met tien stellingen volstaan.

7 juni 1984 Diemer de Vries



STELLINGEN
behorende bij het proefschrift

"Velocity Analysis based on Minimum Entropy”

"Minimum Entropy"-normen toegepast op geinverteerde data
in het (x,w) domein kunnen, behalve voor snelheidsanalyse,
in algemenere zin dienen als maat voor de focusserings—
kwaliteit van de gebruikte inversieoperator.

(Dit proefschrift)

De beperkte toepasbaarheid van "Minimum Entropy"-normen
voor deconvolutie van seismische data kan simpel worden
aangetoond door de maximaal discrimineerbare reflectie—
dichtheid te vergelijken met het WI-criterium.

(Dit proefschrift)

Bij alle toepassingen van geluid als afbeeldingsmiddel
dient men wel te beseffen dat GkoUE1V "horen" betekent en
dat de akoestische wetenschap zich derhalve steeds ook met

hoorbaar geluid moet (blijven) bezighouden.

In de zaalakoestische adviespraktijk wordt doorgaans te

weinig aandacht besteed aan luidheidsaspecten.

Aangezien van een lange dunne snaar de boventonen harmo-
nischer zijn dan van een korte dikke snaar met dezelfde
grondtoon, verdient toonomvangvergroting van de contrabas
tot C door middel van een verlengde E-snaar de voorkeur

boven het toevoegen van een vijfde snaar.

Trillingen die door celli en contrabassen via de steunpen
in een podium worden opgewekt veroorzaken een akoestisch
nabi jheidsveld dat slechts dient tot muzikale zelf-

bevrediging van de bespelers.

Een overschot aan ingenieurs is eenvoudig te voorkomen door
goede beheersing van de Nederlandse taal als voorwaarde te

stellen voor het verkrijgen van het ingenieursdiploma.
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