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Constructions and Properties of Efficient
DNA Synthesis Codes

Kees A. Schouhamer Immink , Life Fellow, IEEE, Kui Cai , Senior Member, IEEE,
Tuan Thanh Nguyen , Member, IEEE, and Jos H. Weber , Senior Member, IEEE

Abstract—We report on coding methods for efficiently syn-
thesizing deoxyribonucleic acid (DNA) for massive data storage,
where a plurality of DNA strands are synthesized in parallel.
We examine the trade-offs between the information contents,
redundancy, and the average or maximum number of cycles
required for synthesizing a plurality of parallel DNA strands.
We analyze coding methods such as guided scrambling and
constrained codes for minimizing the cycle count.

Index Terms—Code design, DNA synthesis, guided scrambling,
multiple strands, nibble replacement algorithm.

I. INTRODUCTION

CHURCH et al. described pioneering experiments with
DNA based storage systems [1]. Naturally occurring

DNA consists of four types of nucleotides: adenine (‘A’), cyto-
sine (‘C’), guanine (‘G’), and thymine (‘T’). A DNA oligo is a
sequence of these four nucleotides that are composed by DNA
synthesizers. In DNA-based storage systems, binary source
data are translated into strings (called strands) composed of
four types of nucleotides, for example, by mapping two binary
source symbols into a single nucleotide.

A substantial body of literature has emerged focusing
on coding techniques for data storage in DNA. Studies
have delved into a spectrum of critical aspects, includ-
ing error correcting codes for restoring various kinds of
defects in DNA, such as substitution, insertions and dele-
tions and so on [2], [3], [4]. Also prior art work has been
published on constrained codes that, for example, avoid
long substrings of the same nucleotide, called homopoly-
mer runs, unbalance between GC and AT content [5], [6],
secondary structures [7], [8], or various combinations of
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constraints [9]. Due to the high cost of synthesizing strands,
more recent research has focused on low-cost synthesis of
DNA [10], [11], [12], [13].

In a common type of synthesis process, a plurality of
DNA strands are synthesized in parallel. Basically, the syn-
thesizer scans a fixed (predetermined) super sequence of DNA
nucleotides and appends a nucleotide at a time to the corre-
sponding DNA strands. As such, in each cycle of synthesis,
the machine only appends one nucleotide to a subset of the
DNA strands that require that particular nucleotide [10], [11],
[14]. Figure 1 depicts an example of the synthesis process of
k = 3 parallel strands, called x1, x2, and x3, exploiting the
fixed super sequence ACGTACGT . . .. The total number of
synthesis cycles in this example is 12. Lenz et al. and Elishco
and Huleihel [10], [13] showed that the super sequence that
maximizes the information rate is the alternating quaternary
sequence. The above synthesis of parallel strands can be seen
as a queuing problem, where ticket windows named ‘A’, ‘C’,
‘G’, and ‘T’ are open to serve customers with the same name
on a periodic basis.

Our goal in this work is to find coding tech-
niques for translating k source sequences, xi , into more
suitable sequences that limit or minimize the average
number of cycles. After an introduction in Section II,
we present coding techniques for efficiently synthesiz-
ing DNA in Section III. Section IV concludes our
contributions.

II. EFFICIENT SYNTHESIS OF DNA NUCLEOTIDES, BASICS

In this section, we start by introducing the main parameters
of our paper, namely a) information rate, b) redundancy, and
c) the distribution function of the cycle count. We present
properties of low-weight codes, which makes it possible to
compute the distribution function of the cycle count of a single
strand, information rate and redundancy in Sections II-A1
and II-A2. In Section II-B, we compute the cycle count of
multiple parallel strands.

We assume that we do not have four types of nucleotides,
but q, q > 1, types, denoted by 0, 1, 2, . . . , q − 1. We further
assume that k parallel n-symbol q-ary source streams, xi , 1 ≤
i ≤ k , are synthesized using a super sequence which is a cyclic
repetition of 0, 1, 2, . . . , q − 1, for example 012301230123 . . .
for the case q = 4.

Let Txs1,x2,...,xk denote the number of cycles required to
synthesize the k parallel source streams xi , i = 1, . . . , k . We
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Fig. 1. Basic diagram of DNA synthesis, where k = 3 parallel source data
streams, x1, x2, and x3, are synthesized using a super sequence S. The total
number of synthesis cycles in this example is twelve.

now concentrate on the computation of the cycle number of
synthesizing a single strand, k = 1. To that end, denote x = x1
and T = Txs1 , where we omitted the subscript for clerical
convenience. Then, following [10]

T = n +

n∑

i=1

yi , (1)

where

yi = (xi − xi−1 − 1) mod q , (2)

and x0 = q − 1. Clearly, n ≤ T ≤ qn . From (2) we infer

xi =
(
xi−1 + y ′i

)
mod q , (3)

where y ′i = yi + 1. In the context of magnetic and optical
recording, the above ‘modulo q integration’ operation (3)
is called precoding [15]. For the binary case, q = 2, (3)
simplifies into

xi = xi−1 ⊕ ỹi , (4)

where ỹi = 1 − yi and ⊕ denotes the exclusive-or (xor)
operation.

A. Low-Weight Codes

The symbol sum

w =

n∑

i=1

yi (5)

is often called the weight of y. We may translate a source
word into a low-weight codeword y and transform it into a
DNA sequence x using (3). Note that the map from x to y is
bijective using the mapping (2) or (3).

A fixed-weight code, Sw , of codeword length n consists of
codewords with symbol sum, w, that is,

Sw =

{
y ∈ {0, . . . , q− 1}n:

n∑

i=1

yi = w

}
. (6)

The cardinality of Sw , denoted by |Sw |, is found as the
coefficient of zw of the generating function

⎛

⎝
q−1∑

i=0

z i

⎞

⎠
n

. (7)

Fig. 2. Information rate W(t) versus γ = t/n , for n = 64, 128, 256 and
q = 4.

Let the low-weight code, S (t) = ∪t−n
w=0Sw denote the union

of the sets of codewords of weight w ≤ t − n, n ≤ t ≤ qn,
where the integer t denotes the maximum cycle count. Let

f (i) =
|Si−n |
qn

, n ≤ i ≤ qn, (8)

and

F (i) =

i∑

j=n

f (j ), n ≤ i ≤ qn, (9)

denote the distribution and cumulative cycle count distribution,
respectively.

1) Information Rate: A first basic coding parameter in this
context was described by Lenz et al. [10], who defined the
information rate of a low-weight code, S(t), denoted by W(t),
as the amount of information (measured in bits) per synthesis
cycle, that is,

W (t) =
1

t
log2

t∑

i=n

|Si−n | = log2 q
nF (t)

t
. (10)

Figure 2 shows the information rate, W(t), of low-weight
codes, S(t), versus γ = t/n for n = 64, 128, 256, and
alphabet size q = 4. Note that W (qn) = log2(q)/q , and thus
W(qn) = 1/2 for q = 2, 4.

Since

F

(
q + 1

2
n

)
≈ 1

2
, n � 1, (11)

we have

W

(
q + 1

2
n

)
≈ 2

n log2 q − 1

n(q + 1)
≈ 2 log2 q

q + 1
, n � 1. (12)

2) Redundancy: A second basic coding parameter is the
redundancy of S(t), denoted by r(t), defined by

r(t) = − log2

∑t−n
i=0 |Si |
qn

= − log2 F (t). (13)

Clearly, r(n) = n log2(q), r(qn) = 0, and, see (11),
r( q+1

2 n) ≈ 1. Figure 3 shows the (relative) redundancy, r(t)/n,
of low-weight codes versus (relative) maximum cycle count

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2024 at 06:53:33 UTC from IEEE Xplore.  Restrictions apply. 



SCHOUHAMER IMMINK et al.: CONSTRUCTIONS AND PROPERTIES OF EFFICIENT DNA SYNTHESIS CODES 291

Fig. 3. Relative redundancy, r(t)/n, of low-weight codes versus relative
maximum cycle count, γ = t/n , for n = 64, 128, 256 and q = 4.

γ = t/n for n = 64, 128, 256 and q = 4. Note that the
redundancy, r(t), is less than 1 bit for γ ≥ 5/2, but the
redundancy is rapidly increasing for decreasing values of γ.
The increase of W(t), see Figure 2, from around 0.8 at γ =
5/2 to its maximum of about 0.94 at γ ≈ 1.75 will come at
the cost of a redundancy r(t)/n of around 0.4, see Figure 3. It
is the province of the system designer to weigh the benefit of
a smaller cycle count versus the extra cost and volume of the
stored DNA material.

We may write down an approximation of r(t) by noting
that for large n the cycle count distribution f (t) can be
usefully approximated by a Gaussian distribution (Central
Limit Theorem),

f (x ) ≈ ϕ
(
x ;μ, σ2

)
=

1

σ
√
2π

e−
1
2 (

x−μ
σ )

2

, (14)

F (t) =

∫ t

x=−∞
ϕ
(
x ;μ, σ2

)
dx , (15)

where the cycle count average and variance, denoted by μo(n)
and σ2o(n), respectively, are

μo(n) =

qn∑

i=n

if (i) =
q + 1

2
n (16)

and

σ2o(n) =

qn∑

i=n

(i − μo(n))
2f (i) =

q2 − 1

12
n. (17)

After the evaluation of a Taylor series of r(t) at t = μo(n),
using the Gaussian approximation (14), we obtain

r(t) ≈ 1 + c1(t − μo(n)) + c2(t − μo(n))
2, n � 1, (18)

where

c1 = − 1

ln(2)

√
2

πσ2
andc2 =

1

ln(2)

1

πσ2
.

For q = 4, we find that c1 ≈ −1.03/
√
n and c2 ≈ 0.367/n .

Fig. 4. Distribution, gk (i), of the cycle count of k multiple strand synthesis
of uncoded data versus i/n for n = 64, q = 4, and number of parallel strands,
k = 1, 2, 4, 8 and 16.

B. Multiple Parallel Strand Synthesis

We assume that the elements of the sequence y are inde-
pendent and identically distributed (i.i.d.) random variables, so
that the cycle count of y is a stochastic variable. Let Tk denote
the largest cycle count value of k random samples drawn from
a population with distribution f (i). The distribution of Tk ,
denoted by gk (Tk = i), is

gk (i) = F (i)k − F (i − 1)k , n ≤ i ≤ qn. (19)

Results of computations of gk (i) versus i/n are shown in
Figure 4 for n = 64, q = 4, the number of parallel strands
is k = 1, 2, 4, 8 and 16. We notice that the peak (modus) of
the distribution shifts to larger values with increasing values
of the number of parallel strands k. In the next section, we
show that with a coding step of low redundancy, as small as
one bit, we can shift the distribution to much lower values
of the cycle count, and significantly reduce the probability of
occurrence of a maximum (worst case) cycle count.

III. CODING TECHNIQUES FOR EFFICIENTLY

SYNTHESIZING DNA

In order to minimize the average, or maximum, number
of synthesis cycles, we consider the usage of a constrained
code for translating the source sequence into a more suitable
version having a bearing on the average or maximum number
of required synthesis cycles.

For limiting the maximum number of cycles, an encoder
translates source data into a low-weight codeword y with
limited word sum and transforms it, using the precoding
operation (3), into the sequence x to be translated into a
DNA strand. Schalkwijk and Cover presented enumerative
coding schemes for generating q-ary fixed-weight codes [16],
[17]. Cover [17, Example 3], presented a binary scheme for
enumerating codewords whose weight lies in a prescribed
interval. His scheme can directly be applied to the situation at
hand where codewords with limited word sum are generated.
Recently more enumerative schemes (LOCO codes) have been
presented by Hareedy and Calderbank [18].

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2024 at 06:53:33 UTC from IEEE Xplore.  Restrictions apply. 
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Binary fixed-weight codes with equal numbers of 1’s and
0’s can be efficiently generated using Knuth’s procedure [19],
[20]. The cycle count of such sequences, after precoding (3),
equals 3

2n , while the redundancy is log2(n). Efficient coding
schemes for generating q-ary sequences of weight n(q − 1)/2
have been presented in [21], [22]. The redundancy of their
scheme is approximately logq n , n � 1. Binary coding
schemes for generating constant weight sets are presented
in [23].

The enumerative coding methods are efficient in terms of
redundancy, but its practical application is often compounded
by their complexity that does not scale linearly with word
length n. The other schemes listed above, such as q-ary
alternatives of Knuth’s celebrated scheme, cannot easily be
redesigned to generate sum constrained q-ary words.

In the next subsections, we take a look at alternative
schemes that have small complexity and redundancy. The
Polarity Invert (PI) scheme [10] requires a single bit for
minimizing the cycle count. We introduce the PI scheme with
multiple subwords, and show that the probability of occurrence
of a maximum cycle count is much smaller than that of the
basic PI scheme introduced in [10]. In guided scrambling [24]
(GS), a set of pseudo-random representations of the source
data is generated, and the encoder selects the representation
with the least cycle count. The Nibble Replacement (NR)
algorithm [25], [26] is a method for encoding/decoding low-
weight codes with small complexity and low redundancy.

A. Polarity Invert (PI) Scheme

In [10], a useful technique was presented for minimizing
the cycle count. We coin the name Polarity Invert (PI) for this
scheme. Define the inverse of the symbol yi by ỹi = q−1−yi ,
1 ≤ i ≤ n. We simply find, using (1), that

Ty + Tỹ = (q + 1)n, (20)

where Ty and Tỹ denote the cycle count of y and ỹ ,
respectively. Then, as a result, either Ty or Tỹ is less or equal
to μo(n). The encoder sends the vector requiring the least
cycle count, which requires a redundancy of one bit to signal
its choice.

The distribution of the cycle count is found by ‘folding’ the
values of f (w), w > μo(n), to f ((q + 1)n − w). Let f̂ (w)
denote the cycle count distribution of the PI scheme, then we
obtain for reasons of symmetry, n ≤ i ≤ qn,

f̂ (i) =

⎧
⎨

⎩

2f (i) i < μo(n)
f (μo(n)) i = μo(n)
0 i > μo(n).

(21)

The average of the distribution f̂ (i), denoted by μ1(n) =∑
i i f̂ (i), can, using the Gaussian distribution (14), be approx-

imated by

μ1(n) ≈
∫ μo(n)

x=−∞
xϕ

(
x ;μo(n), σ

2
o(n)

)
dx

≈ μo(n)− σo(n)

√
2

π
. (22)

Fig. 5. Distribution, ĝk (i), of the cycle count of the polarity invert scheme
of multiple strand synthesis versus i/n, for strand length n = 64, q = 4, and
number of parallel strands k = 1, 2, 4, 8, and 16.

In a similar vein we may compute the variance of the cycle
count of the PI scheme, denoted by σ21(n),

σ21(n) ≈
π − 2

π
σ2o(n). (23)

The cumulative cycle count distribution of the PI scheme
is denoted by F̂ (i). The distribution of the cycle count of
k multiple streams generated by the PI scheme, denoted by
ĝk (i), is

ĝk (i) = F̂ (i)k − F̂ (i − 1)k , n ≤ i ≤ qn. (24)

Results of computations of the distribution ĝk (i) are shown in
Figure 5 for word length n = 64, q = 4 and k = 1, 2, 4, 8, and
16 parallel streams. We notice that the cycle count distribution
of PI-generated strands concentrates more and more just below
the uncoded average, μo(n), with mounting number of parallel
strands k.

B. PI Scheme With Multiple Subwords

We may trade redundancy versus cycle count by devising
a code format where an n-symbol word is divided into � m-
symbol subwords. Clearly, n = �m . We apply the PI scheme
to each m-symbol subword, so that the overall redundance of
the n-symbol word equals � bit. Define the discrete convolution
of the distributions fx (i) and fy (i) by

fx ∗ fy (j ) =
∑

i

fx (i)fy (j − i). (25)

Let f̂[m](i) denote the cycle count distribution of the m-
symbol PI scheme (the subscript [m] was added to distinguish
it from the distribution f̂ (i) of an n symbol word). The
cycle count distribution of n-symbol words composed of
m-symbol subwords, denoted by h̃(i), is the �-fold convolution
of f̂[m](i), or

h̃(i) = f̂[m] ∗ f̂[m] ∗ · · · ∗ f̂[m](i). (26)

Figure 6 shows the distribution of the cycle count, h̃(i), of
multiple subword PI encoded single strand synthesis versus
i/n, for n = 64, q = 4 and subword length m = 64, 32, 16
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Fig. 6. Distribution of the cycle count, h̃(i), of multiple subword PI of
single strand synthesis versus i/n, for n = 64, q = 4 and subword length
m = 64, 32, 16 and 8.

and 8. The code redundancy is 1, 2, 4, and 8 bits, respectively.
Note that the maximum cycle count of the multiple m-
symbol subword scheme is the same as that of the original
scheme, namely (q + 1)n/2. The probability of occurrence of a
maximum cycle count is much smaller than that of the original
scheme.

The average and variance of the distribution h̃(i), denoted
by μ�(n) and σ2� (n), respectively, can be approximated by

μ�(n) =
∑

i

i h̃(i) = �
∑

i≤μo(m)

i f̂[m](i)

≈ μo(n)− σo(n)

√
2

π
� (27)

and

σ2� (n) ≈
π − 2

π
σ2o(n), (28)

which is independent of the number of subwords �. In the next
subsection, we analyze the performance of guided scrambling.

C. Guided Scrambling (GS)

Guided scrambling is an efficient high-rate code, where
the encoder sends the most suitable word taken from a
selection set of K pseudo-random representations of the source
word [24]. In a typical embodiment of GS, a representation
is generated by adding mod q a pseudo-random sequence to
the source data, where the pseudo-random sequence is taken
from the set of K predefined sequences, known to both sender
and receiver. The selected random word added to the source
word is identified by appending a tag to the sent word, so that
the receiver can uniquely undo the ‘randomization’. Clearly,
K ≤ qp , where p is the number of redundant symbols of the
identification tag. We concentrate here on the generation of
codewords with a small cycle count; it should be noted that
GS is a versatile technique so that other constraints such as
GC-balance or homopolymer-run restrictions [28] can easily
be embedded in the selection criteria.

Fig. 7. Distribution of the cycle count, h(i), of GS of single strand synthesis
for n = 64, q = 4, using a selection set of K = 1, 4, 1 and 64 pseudo-random
words.

The distribution of the cycle count of GS of a single strand,
where a selection set of K pseudo-randomly generated words
is used, denoted by h(i), is

h(i) = (1− F (i − 1))K − (1− F (i))K , n ≤ i ≤ qn.(29)

Examples of distributions are shown in Figure 7 for n = 64,
q = 4, using a selection set of K = 1, 4, 16 and 64 pseudo-
random words.

The encoder is not able to guarantee that it can generate a
codeword in S(t), that is, with a cycle count T ≤ t, n ≤ t ≤ qn.
The probability of encoder failure, defined as the probability
that the encoder does not produce an allowed codeword in
S(t), is denoted by Pr (t), and given by

Pr (t) =

qn∑

i=t+1

h(i) = (1− F (t))K . (30)

In case we design an encoder with an encoder failure rate
Pr (t) = ε, ε � 1, we infer that K ≥ Kε, where

Kε =
log2 ε

log2(1− F (t))
. (31)

The redundancy of the GS method at an encoder failure rate
ε, denoted by Dε(t), is defined by

Dε(t) = log2Kε. (32)

The (relative) redundancy is plotted in Figure 8 for ε = 10−4,
q = 4, and selected values of n.

1) Redundancy Estimate: Using the Gaussian approxima-
tion (15), we may write down a Taylor series of (31) and (32)
at t = μo(n), and obtain

Dε(t) ≈ c3 + c4(t − μo(n)), (33)

where

c3 = log2(− log2(ε)) and c4 = − 1

ln(2)2

√
2

πσ2
.

For ε = 10−4 and q = 4, we have c3 ≈ 3.732 and c4 ≈
−1.485/

√
n . Note that the coefficients of the linear terms

in (33) and (18) differ by a factor of 1/ ln(2) ≈ 1.443.
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Fig. 8. Relative redundancy, Dε(t)/n , of guided scrambling versus γ = t/n
for ε = 10−4 and word length n = 16, 32, and 64, q = 4.

D. Combined GS and PI Scheme

We may readily combine the GS and the PI scheme. Again,
as above, we define a selection set, {y1, y2, . . . , yK }, of K
pseudo-random words. An output word with T ≤ (q + 1)n/2
is guaranteed when there is at least one word yi and its
inverse ỹi in the selection set. We opt for a slightly different
code format that is amenable for analysis of its cycle count
distribution. We assume a format where the selection set is
{y1, y2, . . . , yK , ỹ1, ỹ2, . . . , ỹK }. Then, the redundancy of the
combined scheme, which is denoted by D̂ε(t), equals

D̂ε(t) = 1 + log2
log2 ε

log2

(
1− F̂ (t)

) . (34)

The cycle count distribution of the combined GS/PI scheme
is

ĥ(i) =
(
1− F̂ (i − 1)

)K −
(
1− F̂ (i)

)K
, n ≤ i ≤ qn.(35)

Figure 9 displays examples of distributions of the combined
GS/PI scheme for the same parameters as in Figure 7. We
have assumed the same code redundancy in the computations
of Figures 7 and 9, so that for K > 1 the number of pseudo-
random evaluations in GS/PI is halve that of the regular GS
scheme. The case K = 1 refers to the baseline PI code
presented in [10] having one bit redundancy. If K is relatively
small, we notice a significant difference in performance in
Figures 7 and 9, but the difference is diminishing for larger
values of K.

E. Nibble Replacement (NR) Algorithm

The generation of low-weight codes that limit the maximum
allowed cycle count of an n-symbol q-ary word to t is straight-
forwardly accomplished with a look-up table that translates the
(binary) source data into low-weight n-symbol q-ary words.
The decoder requires a look-up table for reversing the encoder
operation. The practical difficulty is that for, say, n > 30, the
required look-up tables for encoding and decoding are much
too large.

Fig. 9. Distribution of the cycle count, ĥ(i), of combined GS and PI of
single strand synthesis versus i/n , for n = 64, q = 4 and a set of K = 1, 2, 8
and 32 pseudo-random words. The case K = 1 refers to the baseline PI code
presented in [10].

The nibble replacement (NR) algorithm [25], [27] is an
alternative method for encoding/decoding with small com-
plexity and redundancy. As in the PI scheme with multiple
subwords, in the NR format, an n-symbol strand is divided
into L subwords of length m, so that n = Lm. Let tm be
the maximum allowed cycle count of an m-symbol q-ary
word, then the overall cycle count of the n-symbol q-ary word
is upperbounded by t = Ltm . The number of low-weight
m-symbol codewords, denoted by Mtm , equals, see (9),

Mtm = F (tm)qm . (36)

It would be a pleasant coincidence if Mtm is a power of two so
that encoding and decoding is a simple and efficient operation.
If Mtm is not a power of two, we can translate, using a look-up
table, at most ml = �log2Mtm  source bits into an m-symbol
q-ary word, and Mtm − 2ml available words are discarded.
This truncation to a power of two can seriously degrade the
code efficiency. In general, the NR algorithm may significantly
improve the redundancy with respect to the simple look-up
table-based method.

Define the integer mh = �log2Mtm � and let

L =

⌊
2mh−1

2mh −Mtm

⌋
. (37)

The NR algorithm translates Lmh−1 source bits into L mh -bit
words. Each mh -bit word is translated, using a look-up table,
into a q-ary m-symbol word that satisfies the prescribed tm -
cycle count constraint. For details of the NR method we refer
to [25]. The NR encoding method requires data storage of L
mh -bit words, the execution of the encoding algorithm, and a
look-up table for translating an mh -bit wide word into a word
of m q-ary symbols, so that very large, n-symbol wide, look-
up tables are avoided. The overall redundancy of the encoded
n-symbol word is

r(t) = L(m log2 q −mh) + 1 (38)

bit. The information rate W(t) is

W (t) =
Lmh − 1

t
. (39)
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Fig. 10. Cycle count distribution of n = 16 × 10 = 160 4-ary symbols,
tm = 22 and t = 352, generated by the NR algorithm assuming i.i.d. source
symbols, see Example 1, with a 33 bit overall redundancy. As a comparison,
the cycle count distributions of a 16 × 10 4-ary symbol word using GS and
for combined PI/GS both with 32 bit overall redundancy are shown.

TABLE I
RESULTS OF THE NIBBLE REPLACEMENT CODING METHOD FOR

SELECTED VALUES OF SUBWORD LENGTH m AND MAXIMUM

SUBWORD CYCLE COUNT, tm , q = 4

The next numerical example may illustrate the above.
Example 1: Let q = 4, m = 10, and tm = 22, then, using

the generating function (7), we obtain Mtm = 253.991. Hence,
we have mh = 18 and L = 16, so that n = Lm = 160
and t = Ltm = 352. Then, using (38) and (39), we obtain
r(t) = 33 and W(t) = 287/352 = 0.8153. Figure 10 shows the
distribution of the cycle count of the n = 160 4-ary word for
i.i.d. source symbols encoded by the NR algorithm with an
overall redundancy of 33 bit. As a comparison we plotted the
cycle count distributions of an n = 160 4-ary symbol word
divided into 16 subwords using GS or combined PI/GS with
a 32-bit overall redundancy.

Table I shows more results for q = 4 for selected values of
m and tm .

IV. CONCLUSION

We have reported on codes for efficiently synthesizing
DNA for data storage, where a plurality of DNA strands
are synthesized in parallel. We have analyzed the trade-off
between the information contents, redundancy, and average
or maximum number of cycles required for synthesizing a
plurality of DNA strands in parallel. Assuming random source
words, we have computed the cycle number distributions of
various code constructions. We have analyzed the performance

of polarity invert (PI) codes with and without multiple sub-
words, guided scrambling (GS), combined GS/PI codes, and
constrained codes based on the nibble replacement (NR)
algorithm.
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