
Indexing Music in Movies Using Audio Fingerprinting: An Audioneex Study

Cas J. Wever
Delft University of Technology

Abstract

Music indexing, the practice of identifying songs
contained in an audio sample, is an approach that
is widely used. As an underlying technique, ”au-
dio fingerprinting” can be used. In this technique,
an audio sample is converted to a fingerprint; a
smaller representation of the audio. This fingerprint
is compared to a database of fingerprinted songs
in order to retrieve the original song. In this re-
search, we aim to answer the question of how mu-
sic in movies can be identified using an audio fin-
gerprinting platform called Audioneex. Two con-
figurable parameters in the framework have been
varied, of which the configurations have been eval-
uated in terms of a benchmark that has been estab-
lished on synthesized data. The best performing
configuration found in the limits of the parameters
has been compared to the base configuration of Au-
dioneex. Based on the results, the selected configu-
ration improved the performance of the Audioneex
framework by 1 match for one matching algorithm
and by 3 matches for the other available matching
algorithm.

1 Introduction
Music indexing [1], the practice of identifying songs con-
tained in an audio sample, is widely used. As an underly-
ing technique for music indexing, ”audio fingerprinting” can
be used. When a framework implements this technique, it
converts an audio sample to so-called fingerprints, a smaller
representation of the sample. This is then compared to other
fingerprints in a database of already existing fingerprints, af-
ter which the fingerprint of the song in the database that is
most similar is then returned. Music indexing using this ap-
proach has multiple uses [2][3]: it can be used to identify
audio based on short samples. This property is used in ap-
plications like Shazam [4], for example, where one queries a
song in a time span of ten seconds to retrieve its name and
author. It is also possible to verify the integrity of audio using
this technique. When a person alters an audio sample, this
can be detected. Next to this, illegal copies of audio can be
detected using audio fingerprinting. These are but a few ex-

amples for which music indexing based on fingerprinting is
used.

1.1 Research
Although it has been used for a long time, music indexing
has never extensively been evaluated on music from movies,
as is shown in section 2. Since music that occurs in movies
is mixed and manipulated to align perfectly with its corre-
sponding scene, this opens up an entirely different field of
possible difficulties in the recognition of music. If this field
is not evaluated, it might form an impairment on indexing
applications similar to those mentioned above, such as the
detection of illegal movie distribution. To investigate what
issues music from movies introduces and what can be done
to mitigate possible challenges, research has been conducted
on an audio fingerprinting framework called Audioneex1. It
is a part of research conducted in a group, where each mem-
ber has performed research on a different audio fingerprinting
framework. In order to perform this overlapping research, a
collective benchmark has been established.
This research aims to answer the following question:

How can music in movies be identified using Audioneex?

In order to answer the research question, it has been divided
into sub-questions:

1. How does Audioneex perform in practice in music iden-
tification in movies?

2. How can parameters be configured to improve Au-
dioneex’ performance in terms of the benchmark?

1.2 Method of research
To conduct the research, a collective benchmark has been
established in [5]. This is an important step in the evaluation
of the performance, as it introduces a way to conduct
evaluation research that can be compared. Next to this, it
can be informative to compare individual research papers on
evaluating music indexing implementations on movies. From
such a comparison study, one could identify what choices in
the design of an audio fingerprinting framework could lead to
a performance peak, for example. Based on this benchmark,
the Audioneex framework has been analysed using a dataset
of over 10,000 synthesised samples. These samples have

1https://www.audioneex.com

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



been fabricated to resemble music in movies as accurately as
possible. The framework is evaluated based on three criteria:
Robustness, Reliability and Search speed and scalability.
The first two criteria have also been used to evaluate different
configurations of the framework, where the best performing
configuration in terms of these criteria has been selected to
be used in the evaluation of the third criterion. All details
about the criteria of the benchmark have been defined in [5].
It is highly suggested to read this work to understand all
concepts discussed in this research.

1.3 Structure
The paper is structured in the following manner: first, in
section 2, works that are related to this research will be de-
scribed. Then, in section 3, the algorithm will be analysed.
Succeeding this, the methodology of the research will be ex-
plained in section 4. After this, in section 5, the results of the
research will be presented. As the next item, in section 6, the
reproducibility of the research will be analysed. In section 7,
the paper will reflect on the results and will draw conclusions
based on the findings in section 5. Finally, in section 8, the
paper will be concluded and possible future work will be dis-
cussed.

2 Related Works
Audio fingerprinting frameworks have been evaluated in dif-
ferent settings. In this chapter, we will investigate some of
these evaluations. In literature about audio fingerprinting,
different methods are used to evaluate such frameworks. In
[6], the proposed system is run on over 100,000 fingerprinted
songs that were introduced to alignment shifts. There is, how-
ever, no mention of the type of song evaluated. In [7], differ-
ent types of signal degradations and modifications are intro-
duced in the test samples. Audioneex itself has been eval-
uated by its developer in [8]. It has been “evaluated using
10,000 query audio clips of 5 to 10 seconds extracted from a
set of 1,000 music recordings of different genres”. Different
audio modifications were applied to these samples, among
which equalization, echo, and tempo scaling. This evalua-
tion was not specifically tailored towards the identification of
movie music, however. Many such examples can be found
where modifications on data or the data itself were not based
on the type that occurs in movies. This is due to the fact that
research in the field of audio fingerprinting frameworks has
been considered done since the late 2000s. The works that do
exist, such as the aforementioned examples, are not tailored
to the use case of music indexing in movies. The missing part
of the evaluation of audio fingerprinting frameworks lies in
evaluating on a dedicated testing set of selected or modified
songs specific to movies.

3 Algorithm Analysis
In this section, we will introduce an overview of the inner
workings of the Audioneex platform. We will only go into
depth on specific aspects used by this research only. The full
description on which this chapter is based can be found at [8].

An in-depth structural overview of the inner workings of the
algorithm can be viewed at Figure 1.

Figure 1: A structural overview of the Audioneex platform by
A. Gram, 2019 (https://audioneex.readthedocs.io/en/latest/ images/
arch.png)

3.1 Fingerprinting
The fingerprinting and matching algorithms employed by the
Audioneex platform are based on the perceptual aspects of
sound. These aspects represent the way the human brain rep-
resents audio. When an audio sample is fingerprinted, its sig-
nal is first resampled to the frequency range of 100-3000 Hz,
where “most of the useful information to human listeners lie”.
After this, the Short Time Fourier Transform is used to trans-
pose the signal to the frequency domain.

Based on these frequencies, the algorithm first looks for
frequency peaks in the spectrum, that could indicate “relevant
audio events”. These audio events might indicate the pres-
ence of a music note or another relevant sample feature from
which it can be recognized. In the process of finding these
events, a parameter, which we from this moment on will call
k, is used to determine the sensitivity to the consistency of
the event [8]. The reasoning behind this is that these relevant
audio events “produce peaks of consistent intensity”. This pa-
rameter determines how many local maxima in the frequency
spectrum are selected as potential points of interest (POIs).

Varying the value of k could have an impact on Audioneex’
performance with respect to movie music identification. With
a high k value, more frequency peaks are selected as POIs. On
one hand, this might result in more information on the sound
sample in the final fingerprinted representation, which could
improve performance. On the other hand, it could result in
the selection of frequency peaks that are less consistent, thus
potentially belonging to noise. This would reduce the perfor-
mance of the framework. With a low k value, fewer frequency
peaks are selected as POIs. This might result in less infor-
mation on the sound sample in the final representation, thus
reducing performance. It might also ensure fewer frequency
peaks are selected that belong to noise, which would increase
the performance of the framework.

After collecting the audio events, non-maximum suppres-
sion filtering is applied, which selects the maximum peaks
within windows of 400 ms x 340 Hz. This results in the fi-
nal set of POIs. Following this step, the algorithm applies

2

https://audioneex.readthedocs.io/en/latest/_images/arch.png
https://audioneex.readthedocs.io/en/latest/_images/arch.png


a neighbourhood mapping, which is based on the Census
Transform [9], to the set of POIs. This results in a set of
binary descriptors of the audio sample, which is a vector that
describes the local audio data encapsulated around a certain
frequency peak. After obtaining these vectors, a clustering
algorithm is applied, which reduces their feature space from
720 to 100 dimensions. These new vectors of 100 dimensions
are called the ”auditory words”.

The reduction of the feature space might have an impact on
the performance of Audioneex, as it reduces the amount of in-
formation we retain from the original fingerprint. This infor-
mation might be vital to the recognition of music in movies.
However, because of the time constraints imposed on this re-
search, we are not considering the dimensionality of the au-
ditory words.

The fingerprint of the sample is formed out of an ordered
sequence of local fingerprints. A local fingerprint is formed
by an auditory word, the time location of that fingerprint, the
quantization error of the auditory word, and another parame-
ter called f, which is not discussed by the author. It is finally
stored in the database, using the inverted index structure, in
an inverted list. Each posting in the inverted lists is formed by
the local fingerprint, the fingerprint ID, the local fingerprint’s
time location, and the quantization error of the auditory word.

3.2 Identifying

When an unknown sample is queried, the algorithm quantizes
it using the database of auditory words and the Hamming dis-
tance. In this process, the sample is transformed into a list of
the most similar stored auditory words from the database. For
each of these auditory words, the corresponding inverted list
is retrieved. Based on more calculations described in [8], the
top-k most similar fingerprints are selected.

Next, from subsequences of the sample, fully connected
graphs are created. The nodes of these graphs consist of the
local fingerprints belonging to that subsequence and the edges
of the “position vectors between nodes in the time-frequency
space”. Subsequences of the top-k fingerprint candidates
are then aligned with the sample subsequences. From these
aligned candidate subsequences, graphs are created, which
are matched using Pairwise Geodetic Hashing. Finally, the
most similar fingerprint is returned.

For the identification process, Audioneex provides two
types of matching algorithms. Firstly, it provides the algo-
rithm described above, the MSCALE matching type. Sec-
ondly, it provides the XSCALE matching type. The only in-
formation provided on these matching algorithms by the de-
velopers of Audioneex is that XSCALE is “A modified ver-
sion of the standard algorithm designed to increase the search
speed at large scales by trading off some accuracy.” 2. These
different matching algorithms could have an impact on the
performance of Audioneex, as there seems to be a tradeoff
between accuracy and search speed. Therefore, we will con-
sider the matching algorithm type a configurable parameter
in the evaluation of the framework.

2https://audioneex.readthedocs.io/en/latest/api/constants.html#
CPPv4N9Audioneex10eMatchTypeE

4 Methodology
4.1 Established benchmark
To determine the performance of a music indexing frame-
work, a benchmark had to be established.
The criteria chosen for the benchmark are:

1. Robustness: This criterion represents how well the
framework responds to signal degradation and/or inter-
ference. It is measured using Recall.

2. Reliability: This criterion represents how much the out-
put of the framework can be trusted to be correct. It is
measured using Precision.

3. Search speed and scalability: This criterion represents
how fast and scalable the framework is with respect to
stored comparable fingerprints. It is measured by the
average search speed per query per database size.

4.2 Performance analysis
To answer the research question, the Audioneex framework
will be run on the evaluation data set belonging to the bench-
mark. The results of the tests will be quantified using the eval-
uation criteria as defined in the benchmark. Based on the ro-
bustness and reliability criteria, parameter configurations will
be tested. The final best performing configuration in terms of
the criteria will be used to test the framework on its search
speed and scalability.

After testing Audioneex on 114 samples from 4 movies
that were manually labeled, it did turn out not to perform
well on this data. From the 114 samples, it was only able
to correctly identify up to 14. For the purpose of finding a
cause for this, this research will be performed on synthesised
data. Synthesizing data allows isolating specific areas of mix-
ing and mastering that occur in movies. From this approach,
problems that occur when evaluating on actual movie data
could be identified individually. This allows finding individ-
ual remedies for those problems.

To generate this data, 15 categories of noise that occur
in movies have been selected based on frequently occurring
noises in movie data labeled by the research group. These cat-
egories are displayed in Appendix A. Two songs from each
provided movie have been randomly selected, which have
been overlayed with three different samples from each noise
category. Additionally, three amplitude changes have been
performed to simulate mixing and mastering. Apart from
these modifications, tempo changes and pitch shifts have been
introduced for a subset of the movie soundtracks. A descrip-
tion of the synthesis of the data can be found in [5].

4.3 Setup
Since the proposed way of generating data resulted in over
10,000 records, generating results one record at a time was
quite unfeasible. Therefore, it was critical to create a script to
run the Audioneex framework and generate results automat-
ically. For this, winux (Windows and Linux) example pro-
grams 1 and 3 from the Audioneex GitHub page were used3.
Program 1, the fingerprinting program, creates fingerprints of

3https://github.com/a-gram/audioneex

3

https://audioneex.readthedocs.io/en/latest/api/constants.html#_CPPv4N9Audioneex10eMatchTypeE
https://audioneex.readthedocs.io/en/latest/api/constants.html#_CPPv4N9Audioneex10eMatchTypeE


the movie soundtrack data set and stores them in the database.
Tokyo Cabinet4 was used as the fingerprinting database in this
program. We have modified the fingerprinting program to
store the name of the song belonging to the fingerprint as its
metadata. This was required to easily determine if a match
was correct in the following steps. Program 3, the identifying
program, identifies an audio sample from a specified database
of fingerprints. It was used to identify the synthesized data
on the fingerprint databases. The output of this program has
been modified to ease determining if a match was correct in
the following steps. All modified programs and used scripts
can be found on the research’s GitLab page5.

4.4 Parameter modification
As mentioned in section 3, there are two possible matching
types: MSCALE and XSCALE. These have been used as
a configurable parameter. Next to this, the parameter k has
been varied. We have used the values 4, 5, 6, 7, and 8 for
this parameter. As there was no clear mathematical relation
between this parameter and the Audioneex framework, we
have chosen these five values based on the parameter’s base
value in the system, k=6, and the “best range” as indicated
in the documentation of the code by Audioneex’ developer,
which was ranged from 5 to 7. For the evaluation, multiple
fingerprint databases were used based on the parameter con-
figurations. This resulted in eight fingerprint databases. For
the first tests, the same value was used for both the finger-
printing and identifying k. Each identifying program was thus
run on the database generated by the fingerprinting program
with the same fingerprinting and identifying k. The identi-
fying programs were executed twice; once on the XSCALE
configuration, once on the MSCALE configuration.

All parameter combination configurations can be found in
Table 1.

XSCALE MSCALE
4 4
5 5
6 6
7 7
8 8

Table 1: Configuration settings with respect to configurable param-
eter k

Since XSCALE was designed to improve search speed at
the cost of losing accuracy compared to MSCALE, we expect
the MSCALE matching type to perform better in terms of
precision and recall but worse in terms of the average query
time.

We do not have a clear hypothesis on the performance of
the platform with respect to the k configuration. As already
mentioned, a higher k could lead to more information about
the sample, but also to information from the noise being in-
cluded. A lower k could lead to less information about the

4https://dbmx.net//tokyocabinet/
5https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-

group-5-cjwever

sample, but also to information from the noise being ex-
cluded. Additionally, to study the effects of a difference
between the identifying and fingerprinting k, the fingerprint
databases generated by the best performing fingerprinting k
was taken, on which the identifying k was altered and run.

We think evaluating the relation between the fingerprint-
ing and identifying k is important, as noiseless, unmixed ver-
sions of a soundtrack are used to create the fingerprint data
set, while noisy, mixed versions are used as the input for the
identification process. Therefore, for fingerprinting, only fre-
quency peaks that actually belong to the original soundtrack
are used in the fingerprint, while in the identification process
there may be peaks that do not belong to this track. Because
of this, we expect different configurations of k to have a dif-
ferent impact with respect to the step of the process they are
used in.

Finally, to compare the performance on movie data with
the original configuration of Audioneex with the performance
with the final configuration with the best performance with
respect to the benchmark, these two configurations were run
on clips taken from the movie “Amadeus”.

Finally, we compare the performance of the original con-
figuration of Audioneex with that of the selected best con-
figuration on actual movie data. The configuration is run
with both the XSCALE and MSCALE algorithms. The test
is performed on 114 clips with music taken from 4 manu-
ally labeled movies: Amadeus, Boogie Nights, Samsara, and
Ocean’s Eleven.

4.5 Hardware specifications
All computing and building processes have been performed
on an Ubuntu Windows subsystem. This subsystem was in-
stalled on a Windows HP laptop with an Intel i7 core with
2.20GHz, 16 GB RAM, of which 15.8 GB usable. The syn-
thesised data was stored on a 1TB external HDD.

4.6 Execution
After the example programs and parameters were modified,
Audioneex was built in static mode, with program setting ID3
and with examples enabled. This was done for every value
taken for k. After this, the different fingerprint databases were
generated by running the fingerprinting programs per config-
uration on the original movie data set. Finally, the identifying
programs were run on the fingerprint databases belonging to
the selected k value. From this, the output was parsed and
combined, resulting in a count of FN, FP, and TP values per
noise category, per k and per matching algorithm. The execu-
tion time of each configuration was recorded.

5 Results
We will present the results of the research in the following
structure: First, the performances in terms of precision and
recall of the MSCALE and XSCALE matching types are dis-
cussed. This will be done with respect to the categories and
the values of parameter k. Then, the effects of choosing a dif-
ferent value for the fingerprinting k than for the identifying k
will be discussed. After this, the results of the search speed
and scalability experiment on the best-performing configura-
tion will be shown. Finally, we will compare the performance

4



of the base configuration with the performance of the selected
best configuration on actual movie data.

In figures 2, 3, 4 and 5, the performance of MSCALE and
XSCALE are displayed in terms of the fingerprinting and
identifying k, which is set to the same value. The differ-
ent performances are set out against the different noise cat-
egories, pitch shifts and tempo changes.

k=4 and k=5 form two configurations that have lower per-
formance than the other values of k. The recall and precision
values of the other values for k do not differ more than 0.1.
Since k=6, 7, and 8 are relatively clustered together and gen-
erally form a higher trend than k=4 and 5, we will perform
the analysis on interesting points on k=6, 7 and 8.

In the AD category, Audioneex has a high precision value,
but a recall value between 0.5 and 0.6. MSCALE performs
better in terms of precision in this category. The AS and NR
categories have a low value for precision for both MSCALE
and XSCALE while in the meantime they have a recall value
of over 0.8. Deviating values for precision and recall can
be spotted for the NWR category. The precision values fall
just below 0.4 for MSCALE and just exceed 0.4 for XS-
CALE. Additionally, the recall values fall just below 0.5 for
MSCALE and just exceed 0.6 for XSCALE. More deviat-
ing values are found at the SMS and TG noise categories,
where the precision values for both matching types align with
the noise categories around them, but where the recall values
drop significantly. Finally, one notices the precision and re-
call values for pitch shifts in the MSCALE matching type
drop to a near-zero value. In the meantime, the pitch shifts
precision values for XSCALE do not fall below 0.65.

In Table 2, we have displayed the results of the average re-
call and precision values over all noise categories, pitch shifts,
and tempo changes. When we considered these results, we
noticed an upwards trend in the precision values and a down-
wards trend in the recall values, as the value for k increased.
Therefore, we decided to run additional tests with higher val-
ues for k. The results of these additional tests are displayed in
Figure 6. To properly show the trend, we decided to omit the

Figure 2: The precision of MSCALE over all modification and ma-
nipulation effects, displayed per selected value of k

values 4 and 5 for k, as these lie far from the values starting at
6. The identified trend continued up to k=10 and started to go
backward at k=11. The tradeoff between recall and precision
makes it difficult to choose a value for k that has the highest
overall performance. But since we are interested in a higher
probability that a match, when given, is correct, we opted for
the fingerprinting program where the value of k is set to 10.

To study the effects of the fingerprinting and identifying
k being different values, we ran the fingerprinting program
where the value of k is set to 10 on the provided database.
We then chose five identifying programs, where the values
of k were set to 8, 9, 10, 11, and 12. Its results are shown
in Table 3. The score difference between the configurations
does not exceed 0.0027 for recall and 0.0022 for precision.
Based on the chosen values, the effects of choosing different
fingerprinting and identifying values for k seem to be mini-
mal. However, in a real-life case, millions of songs might be
queried, where such a small difference might make an impact.

Figure 3: The precision of XSCALE over all modification and ma-
nipulation effects, displayed per selected value of k

Figure 4: The recall of MSCALE over all modification and manipu-
lation effects, displayed per selected value of k

5



Figure 5: The recall of XSCALE over all modification and manipu-
lation effects, displayed per selected value of k

Again, the tradeoff between recall and precision toughens the
choice of the best value for the identifying k. We decided to
opt for a value of 10, again, since we are interested in a higher
probability of a correct match.

We ran the search speed and scalability test on fingerprint-
ing databases generated by the fingerprinting program with
the value of k set to 10 and with the XSCALE matching type.

Recall Precision
k=4 0 0
k=5 0.2069 0.4009
k=6 0.6595 0.7288
k=7 0.6787 0.7407
k=8 0.6783 0.7409

Table 2: Configuration settings with respect to configurable param-
eter k, rounded to four decimals

Figure 6: Performance of k ranged 6-12 in terms of Precision and
Recall, averaged over MSCALE and XSCALE. Precision is sub-
tracted by 0.05 for visualization purposes

The identifying program with the same settings as the finger-
printing program was used. The results of the test have been
displayed in Figure 7. The search speed per query increases
by about 50 ms when the size of the fingerprint database is in-
creased from 98 to 196 songs. When we add 784 songs to this
database, the average query time only increases by about 21
ms. This would imply there is no static increment in average
query time per song added to the database.

For the final test, the programs with the values of the finger-
printing and identifying k both set to 10 were selected. The
test was run on both the MSCALE and XSCALE matching
types. The results are shown in Table 4. The selected config-
uration has only improved on the original XSCALE config-
uration by one true positive with a difference of 1 false neg-
ative. On the MSCALE configuration, it has improved on 3
true positives with a difference of 1 false positive and 2 false
negatives.

Recall Precision
k=8 0.6771 0.7418
k=9 0.6760 0.7424

k=10 0.6761 0.7437
k=11 0.6762 0.7427
k=12 0.6744 0.7415

Table 3: Configuration settings with respect to indexing parameter
k=10, rounded to four decimals

Figure 7: Search speed of Audioneex in ms per fingerprint database
size

FP FN TP
Original XSCALE 11 89 14

New XSCALE 11 88 15
Original MSCALE 9 98 7

New MSCALE 8 97 10

Table 4: Final results in terms of FP, FN and TP for the base and
selected best configurations of Audioneex

6



6 Responsible Research
In this paper, we have tried to highlight the methods of eval-
uation as clearly as possible. Especially with the amount of
possible future work, as mentioned in section 8, it is impor-
tant to be able to run more experiments on Audioneex in a
similar fashion. We will talk about several limitations that
did present themselves in this research and what we did to
mitigate their effects.

6.1 Reproducibility
The samples that were used as noise can be found online6 and
used publicly, as they are licensed under either the Attribution
License, Attribution Non-Commercial License, or Creative
Commons 0 License. The synthesized data, however, is
not, as the movie soundtracks on which this data is based
is copyrighted. This complicates the reproducibility of the
research. In order to remedy this, a list has been published
on the benchmark paper’s GitLab page7 of all noise samples
and movie tracks used to generate the data. Additionally,
all scripts and modified source codes that have been used in
order to generate, fingerprint, or identify the data have been
published on the research’s GitLab page8. If one were to
reproduce the research, one could use the aforementioned
scripts and programs. Next to this, the music from the used
data set might contain different or modified versions of the
songs mentioned in the lists, however. This could present
different results in possible reproduced research.

6.2 Synthetic data limitations
Next to possible reproducibility issues, we decided to use
synthetic data as a substitution for actual movie data, as the
framework performed poorly on the latter. This has nega-
tive consequences on the reliability of the research. To miti-
gate this, we have labeled six movies manually, from which
a list of noises that occur during music in movies has been
established. Different signal-to-noise ratios, pitch shifts, and
tempo changes have been used together with these noises to
synthesize the data. Each song was combined with a single
type of noise, however. Even though this combination was
also combined with different signal-to-noise ratios, it does not
fully represent music in movies. In movies, different noises
can occur in a single sound sample. This also has negative
consequences on the reliability of the research. However, the
solution applied in this research has led to useful insights into
the causes for the poor performance on movie data.

7 Discussion
Although we have attempted to be as extensive as possible in
the evaluation of Audioneex, there are some limitations to the
research. In this section, we will present these limitations and
discuss their impact on the result of the research.

6https://freesound.org/
7https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-

group-5-common
8https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-

group-5-cjwever

The data that has been used has been structurally synthe-
sised based on various audio modifications and manipula-
tions. It does, however, not fully represent music as used in
movies. The modifications and manipulations that were per-
formed only cover a small range of possible alterations that
can be performed when mixing audio for a movie. Addition-
ally, the overlaying of multiple noise categories in a single
sound sample was not considered in this research. Therefore,
the research is not fully representative of research performed
on music taken directly from movies.

Next to this, the range of values for both the fingerprint-
ing and identifying k parameter that was used in this research
covers but a small amount of all possible values for this pa-
rameter. Additionally, next to the parameters considered in
this research, there are many more configurations that can be
considered. The results of this research are therefore limited
to the selected parameters and configurations.

Finally, during the last stages of the research, it was discov-
ered there were some duplicated songs in the database of the
benchmark. Regrettably, there was not enough time left for
this research to remedy this fact. This could have an impact
on the final recall and precision values, as a correct match on
a duplicate song could be classified as incorrect, resulting in
more false positive values.

8 Conclusions and Future Work
In this research, an audio fingerprinting framework called Au-
dioneex has been evaluated in the context of music in movies.

8.1 Conclusion
The main question we strived to answer was How can mu-
sic in movies be identified using Audioneex? From this sub-
question, we attempted to answer how Audioneex performs in
practice on movie data and how parameters can be configured
to improve the framework’s performance. To answer these
questions, different evaluation criteria were used to evaluate
Audioneex’ performance: Robustness, Reliability and Search
speed and scalability. The framework was tested on 114
songs taken from different movies, but only correctly iden-
tified up to 14 songs. Because of this poor performance, we
performed the configurations of different parameters and their
evaluations on synthesized data. This enables research to ap-
proach possible issues in movie music individually.

To attempt to answer the second subquestion, two different
configurable parameters have been identified within the Au-
dioneex framework. These have been altered and combined,
from which different configurations emerged. These config-
urations were individually tested in terms of the criteria, of
which the best performing configuration with respect to the
selected parameters and their selected ranges was selected.
The performance of this configuration was compared to the
performance of the base configuration of Audioneex on a data
set of songs taken directly from movies. Based on the results,
the selected configuration improved the performance of the
Audioneex framework by 1 match for the XSCALE match-
ing algorithm and by 3 matches for the MSCALE matching
algorithm.

7



8.2 Future work
Since this research was very compact and limited, much fu-
ture work is possible. First of all, more parameter combina-
tions and configurations could be explored in order to deter-
mine the optimal configuration of Audioneex when consider-
ing movie music. One way this could be done is by consider-
ing different parameters and evaluating their combination on
the global performance of the platform on the data set. An-
other way is to look at a specific noise category that performs
badly and considering the effect of a specific parameter on the
performance within that specific category. This way, combi-
nations of parameters that improve on different categories can
be established.

Additionally, the effects of the clustering of information
as done by the framework are worth investigating. As this
clustering results in information loss, it might have an impact
on the performance of Audioneex. This can be considered
research on the tradeoff between the fingerprint size and the
performance in terms of the established benchmark.

Next to this, other noise categories or signal manipulations
can be considered when generating the data set. This allows
the researcher to explore the different strengths and weak-
nesses of the platform in a larger range, thereby possibly iden-
tifying problems for movie music indexing.

Furthermore, research on the combination of different
noise categories in one sound sample can be conducted. This
simulates the actual mixing and mastering that happens more
closely.

Finally, research can be performed on an extended range of
signal-to-noise ratios, pitch shifts, and tempo changes. This
allows for an in-depth evaluation of the effect of these sound
manipulations on the performance of Audioneex or an audio
fingerprinting framework in general.

9 Acknowledgements
I would like to thank J. Kim and C. Liem for pointing me in
the right directions of research. Additionally, I would like to
thank the research group, C. Hildebrand, T. Huisman, R. Nair
and N. Struharová, for the collaborative work.

References
[1] I. Shakra, G. Frederico, and A. El Saddik. Music index-

ing and retrieval. In 2004 IEEE Symposium on Virtual
Environments, Human-Computer Interfaces and Mea-
surement Systems, 2004. (VCIMS)., pages 83–87, 2004.

[2] P. Cano and E. Batlle. A review of audio fingerprinting.
Journal of VLSI Signal Processing, 41:271–284, 11 2005.

[3] P. Dunker and M. Gruhne. Audio-visual fingerprinting
and cross-modal aggregation: Components and applica-
tions. In 2008 IEEE International Symposium on Con-
sumer Electronics, pages 1–4, 2008.

[4] A. Wang. The shazam music recognition service. Com-
munications of the ACM, 49(8):44–48, 2006.

[5] C.W.R. Hildebrand, T. Huisman, R.K. Nair,
N. Struharová, and C.J. Wever. Establishing a benchmark
for audio fingerprinting frameworks in the context of

music identification in movies. https://bit.ly/3wYz9ZF,
2021.

[6] C.J.C. Burges, J.C. Platt, and S. Jana. Distortion discrimi-
nant analysis for audio fingerprinting. IEEE Transactions
on Speech and Audio Processing, 11(3):165–174, 2003.

[7] S. Baluja and M. Covell. Audio fingerprinting: Com-
bining computer vision data stream processing. In 2007
IEEE International Conference on Acoustics, Speech and
Signal Processing - ICASSP ’07, volume 2, pages II–
213–II–216, 2007.

[8] A. Gramaglia. A binary auditory words model for au-
dio content identification. https://github.com/a-gram/
audioneex, 2014.

[9] R. Zabih and J. Woodfill. Non-parametric local trans-
forms for computing visual correspondence. In J. Ek-
lundh, editor, Computer Vision — ECCV ’94, pages 151–
158, Berlin, Heidelberg, 1994. Springer Berlin Heidel-
berg.

A Table of noise categories

Category Code Description

Ambient AD
Ambient Dining: recording of sounds
that can be heard in a restaurant set-
ting

AS
Ambient Street: recording of sounds
that can be heard standing in a city,
besides a road

Nature
NR Nature Rain
NT Nature Thunder

NWR Nature Water River: the sound of wa-
ter flowing in a river

Speech

SCH Speech Cheering: Sound of people
cheering

SFS Speech, Female Shouting
SFT Speech, Female Talking
SFW Speech, Female Whispering
SMS Speech, Male Shouting
SMT Speech, Male Talking
SMW Speech, Male Whispering

Terrain TG Terrain Gravel: Sound of walking
over a gravel surface

TW Terrain Wood: Sound of wood creak-
ing

Table 5: Description of noise categories and their codes

8

https://bit.ly/3wYz9ZF
https://github.com/a-gram/audioneex
https://github.com/a-gram/audioneex

	Introduction
	Research
	Method of research
	Structure

	Related Works
	Algorithm Analysis
	Fingerprinting
	Identifying

	Methodology
	Established benchmark
	Performance analysis
	Setup
	Parameter modification
	Hardware specifications
	Execution

	Results
	Responsible Research
	Reproducibility
	Synthetic data limitations

	Discussion
	Conclusions and Future Work
	Conclusion
	Future work

	Acknowledgements
	Table of noise categories

