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ABSTRACT

Cell-free DNA (cfDNA) are DNA fragments originat-
ing from dying cells that are detectable in bodily
fluids, such as the plasma. Accelerated cell death,
for example caused by disease, induces an elevated
concentration of cfDNA. As a result, determining the
cell type origins of cfDNA molecules can provide in-
formation about an individual’s health. In this work,
we aim to increase the sensitivity of methylation-
based cell type deconvolution by adapting an ex-
isting method, CelFiE, which uses the methylation
beta values of individual CpG sites to estimate cell
type proportions. Our new method, CelFEER, instead
differentiates cell types by the average methylation
values within individual reads. We additionally im-
proved the originally reported performance of CelFiE
by using a new approach for finding marker regions
that are differentially methylated between cell types.
We show that CelFEER estimates cell type propor-
tions with a higher correlation (r = 0.94 + 0.04) than
CelFiE (r=0.86 £ 0.09) on simulated mixtures of cell
types. Moreover, we show that the cell type propor-
tion estimated by CelFEER can differentiate between
ALS patients and healthy controls, between preg-
nant women in their first and third trimester, and be-
tween pregnant women with and without gestational
diabetes.

INTRODUCTION

As cells die, short DNA fragments are released into the
bloodstream, which are collectively called cell-free DNA
(cfDNA). The cfDNA in plasma is mostly composed of
DNA molecules originating from blood cells (1). However,
cells in diseased tissues die more rapidly, causing diseased
tissues to release cfDNA at a faster rate. The discovery of

traces of such disease-derived cell types in cfDNA provides
a minimally invasive alternative for tissue biopsies, and is
thus frequently referred to as a liquid biopsy (2). Commonly
researched applications of liquid biopsies are prenatal test-
ing, organ transplant monitoring, and tumor discovery and
monitoring (3). In all of these applications, however, we
know the cell type of interest in advance. Cell type deconvo-
lution, on the other hand, aims to give the full composition
of the cell types of circulating cfDNA. Example use cases in
which this type of analysis is especially desirable is finding
tumor locations in patients with a cancer of unknown pri-
mary (4) and detecting treatment side-effects. Additionally,
characterizing changes in cell type proportions is helpful in
understanding disease development and progression (5).

One method for characterizing the cell type origins of
cfDNA is the analysis of methylation signatures. Methyla-
tion occurs when a methyl-group is added to the fifth car-
bon of cytosines (SmC), often with the purpose of silenc-
ing gene transcription (6). This process happens mostly in
the context of CpG sites, and usually over regions span-
ning multiple CpG sites (2). Adjacent CpG sites have been
found to correlate highly in methylation status (7). Be-
cause the silencing of gene transcription often happens in a
cell type-specific manner, these methylation signatures have
been found to reveal the cell type origins of cfDNA (3).

Traditionally, cell type deconvolution methods calculate
the average methylation of all sequencing reads per CpG
site, and use these averages as model input (8-10). These
averages are often referred to as B values. Although these
methods usually do take the correlation between nearby
CpG sites into account by averaging over the B values in a
region, the value at each individual CpG site is still assumed
to be independent.

In a similar problem setting, namely tumor fraction esti-
mation, Li ez al. devised an approach to better incorporate
the correlation between sites (11). Their method, named
CancerDetector, calculates the average methylation per in-
dividual sequencing read instead of the average methylation
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per CpG site. They showed that this method outperforms
a similar previous method that uses B values (9), having
higher sensitivity and specificity (11). Figure 1B illustrates
how rare cell types can be more sensitively detected using
read averages than using 8 values (11). In this figure, the
tumor-derived read makes up 25% of the cfDNA, whereas
such rare cell types are far less prevalent in biological data.
Since it is essential that our method can deconvolve lowly
abundant cell types, B values might not be appropriate.

A read-based approach has been adopted in multiple
other tumor fraction estimation methods, such as DISMIR
(12) and EpiClass (13). Even though the effectiveness of this
approach has been shown for tumor fraction estimation, it
has not yet been used in the related task of cell type decon-
volution. The only study that has performed cell type de-
convolution by assigning each individual read to the most
probable cell type did not use read averages nor compared
to methods using beta values (14).

We hypothesize that read averages can increase the sen-
sitivity of methylation-based cell type deconvolution meth-
ods. In order to evaluate the effects of using read averages
without being affected by other model decisions, we decided
to adapt an existing method, CelFiE (CELI Free DNA Es-
timation via expectation-maximization) by Caggiano et al.
(8). CelFiE has the advantages that it is able to estimate
missing cell types and that it can estimate cell type propor-
tions of cfDNA with a low read coverage. Caggiano et al.
demonstrated possible clinical applications of CelFiE by
showing its ability to differentiate between pregnant and
non-pregnant women by their proportion of placenta de-
rived cfDNA, as well as between ALS patients and healthy
individuals by their proportion of skeletal muscle cfDNA.
In their work, Caggiano et al. used whole genome bisul-
fite sequencing (WGBS) of reference cell type DNA and in-
put cfDNA. Since WGBS data covers the entire genome,
it has the benefit that it can be used for cell type-specific
biomarker discovery by comparing the methylation in all
CpG sites (15).

Next to the use of read averages, we find that the selec-
tion of appropriate cell type markers is of crucial impor-
tance for the model performance. Using the entire genome
as model input is not only computationally infeasible, but it
will also likely have a negative impact on performance when
CpG sites that are not informative of the cell type origin are
included. By redefining the cell type informative markers,
we improved CelFiE and were able to achieve better results
than those reported in the original publication. The new set
of markers is found using regions of 500 bp instead of single
CpG sites, and only includes hypomethylated markers.

In this research, we adapted CelFiE to work at the res-
olution of single reads by changing the input to the av-
erage methylation value of single reads and by chang-
ing the underlying distributional assumptions accordingly.
The complete workflow of the resulting method, named
CelFEER (CELI Free DNA Estimation via Expectation-
maximization on a Read resolution), is depicted in Fig-
ure 1A. We compared CelFEER to CelFiE on generated
data and on simulated cell type mixtures composed of real
WGBS data. We further applied CelFEER on the cfDNA
of four ALS patients and four controls, and found that
CelFEER detects a significant difference in the propor-

tion of skeletal muscle cfDNA. In addition, we compared
CelFEER’s decomposition of the cfDNA of eight preg-
nant women in their first trimester to that of eight preg-
nant women in their third trimester, and found a signifi-
cant increase in placenta cfDNA. Comparing the cfDNA of
eight healthy pregnant women to the cfDNA of seven preg-
nant women with gestational diabetes, we found that the lat-
ter group has a significantly higher proportion of placenta.
Taken together, our experiments indicate that read averages
can indeed more sensitively detect rare cell types. The source
code for CelFEER is available at https://github.com/pi-zz-
a/CelFEER

MATERIALS AND METHODS
CelFiE overview

As CelFEER is an adaptation of CelFiE, understand-
ing this original method is essential for understanding
CelFEER. CelFiE uses an expectation-maximization (EM)
algorithm to learn the parameters of a Bayesian model of
the cell type proportions of cfDNA mixtures. It does this
by learning these proportions simultaneously with the av-
erage methylation percentage of each cell type at each CpG
site. The methylation percentages correspond to the fraction
of reads that are methylated at a specific CpG site, and are
initialized by transforming the reference data into fractions.
The methylation percentages are estimated because the ref-
erence cell type data is assumed to be imperfect and incom-
plete. Therefore, CelFiE aims to learn the true methylation
percentages from both the cfDNA input and the reference
cell type data. The reference data consists of the methyla-
tion counts of 7 cell types, indexed by ¢, at M CpG sites,
indexed by m. More precisely, it takes the form of two 7" x
M matrices: Y and DY, where Y;,, and D} are the num-
ber of methylated and total reads, respectively, at CpG site
m in reference cell type 7. The reference data are assumed to
be drawn from a binomial distribution for each CpG site,
where the number of trials equals the reference read depth
and the probabilities the true methylation percentage in the
cell type of origin.

CelFiE learns the cell type proportions of multiple in-
dividuals simultaneously, allowing the method to infer in-
formation from the methylation values of other individuals.
The cfDNA data from N individuals indexed by 7 is given
in two N x M matrices, X and D¥. X,,, and DX are the
number of methylated and total reads, respectively, at CpG
site m for individual n. An example of how these matrices
are formatted is given in Figure 1C. Each x,,, refers to the
methylation value of a specific read ¢ in individual » and can
thus be either 0 or 1. These methylation values are assumed
to be drawn from a Bernoulli distribution governed by the
methylation percentage in the cell type of origin. DX con-
sists of the sum of all x,,,. (across reads) while X, is the
sum of all x,,,,. (across reads) that are equal to 1.

CelFiE estimates two parameters: o and 3, where « is
the final output of the model. a,, is the fraction of cfDNA
in person n that originated from cell type ¢z, and B, is
the true unknown methylation percentage of cell type ¢ at
position m.

CelFiE models the input cfDNA as a mixture of different
cell types. Whether this input originates from a given (or
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Figure 1. (A) Workflow of cell type deconvolution with CelFEER. Sequenced and aligned cfDNA fragments are intersected with cell type marker regions
in the genome that are found using reference cell type data. The reference cell data and the cfDNA input data are used as model input for CelFEER,
which subsequently outputs the estimated cell type proportions in the cfDNA. (B) Toy example illustrating how a tumor-derived read (in orange) can be
distinguished from other reads more easily by comparing read averages (i) instead of CpG site averages (8). Values in red are differential between the
cancer and normal sample. (C) Formatting of the input for CelFiE (bottom left) and CelFEER (top right). On the top left, three partially methylated reads
aligning to a 500 bp marker are depicted. For CelFiE, the input is given in two numbers, one equalling the sum of methylated reads at each CpG site and
the other equalling the sum of the total amount of reads at each CpG site. For CelFEER, the read averages (7) are first rounded to the closest value in {0,
0.25,0.5,0.75, 1}, then one-hot encoded and summed to obtain the input. The reference data is formatted in the same way. (D) Underlying mechanism of
CelFEER for three individuals and three cell types. On the left side of the figure, the reference and input data are depicted. On the right side, the estimated
methylation percentages (top) and estimated cell type proportions (bottom) are depicted. The center part illustrates the posterior distribution of the latent
variable z, which indicates what cell type each separate read is derived from.
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unknown) cell type is modeled using a latent variable z,
where z;,. = 1 when Xx,,. originates from cell type ¢, and 0
otherwise. The objective is thus to describe the joint distri-
bution P(X, z, Yla, B). For the complete mathematical de-
scription of the model and its underlying assumptions, we
refer to the supplementary and the original publication (8).

The model iteratively relates the input to probable cell
types in the expectation step, and calculates the parame-
ters that make the input and reference data most likely in
the maximization step. More mathematically, in the expec-
tation step the posterior distribution p of z given the input
data x and parameters o and { is calculated. These param-
eters are then updated by the a and B values that maximize
the expectation of the joint likelihood under the calculated
posterior.

Note that this formulation allows CelFie to estimate the
proportion of an unknown cell type by adding an additional
cell type in the reference set whose reference methylation
values are all initially set to 0. Based on the input cfDNA
data, the model can then estimate the proportion of the
added cell type, and use this proportion information to up-
date the corresponding reference methylation values during
the maximization step.

Read-based approach

CelFEER uses essentially the same model as CelFiE but
with read averages as input. This changes the underlying
distributions of the model, while the overall structure of
the algorithm remains the same. The algorithm is visualized
in Figure 1D. In CelFEER, the single counts per CpG site
are replaced by five counts per 500 bp region. Each count
Xumi € Xy for individual n mapping to region m equals the
number of reads with a discretized read average i, where i
€ {0, 0.25, 0.5, 0.75, 1}. A read average is calculated by
dividing the number of methylated CpG sites by the total
number of CpG sites on a read, where only reads with three
or more CpG sites are used. This heuristic is adopted from
previous methods (11,12). The read average is then rounded
to the closest value i. E.g. a read ¢ from individual » map-
ping to region m with one out of three CpG sites methylated
(and therefore a read average of 1/3) would be represented
as X,me = {0, 1,0, 0, 0}. Hence each read is effectively one-
hot encoded. Summing all one-hot encoded reads that fall
into the same 500 bp region results in the five counts which
are used as input to the model. This process is depicted in
Figure 1C.

The reference data has the same composition as the in-
put data, but instead of a set of counts per individual per
site, the reference data contains a set of counts per cell type
per site. Since the reference data has a different format in
CelFEER compared to CelFiE, the B values take on a dif-
ferent form as well. B,,,,; is now the proportion of reads orig-
inating from cell type ¢ and mapping to region m that have
a read average i. Adapting CelFie’s unknown cell type es-
timation strategy to read averages, the methylation values
for an unknown cell type are set to {0, 0, 0, 0, 0} in the
reference data that is passed to CeIFEER. This way, the es-
timated methylation percentages for an unknown cell type
are initialized to {0.2, 0.2, 0.2, 0.2, 0.2}.

As in CelFiE, the model aims to describe the joint distri-
bution of the input X, the reference ¥, and the latent vari-
able z, which are all assumed to be independent. In order to
describe the full data likelihood, we first split it into three
parts: P(X, z, Yo, ,3) = Ij(X|z, B) P(z|la) P(Y)B).

The first part, P(X]z, B), describes the likelihood of ob-
serving the read averages given that we know what cell type
each read originates from and how the read averages of each
cell type are distributed across the 500 bp windows. In this
likelihood we look at each read ¢ individually, and not yet at
the total counts of all reads in a region. The probability for a
read c¢ at region m to have the value X, can be described as a
categorical distribution where each category corresponds to
a possible read average and B, is the probability of orig-
inating from cell type ¢ and belonging to category i. This
holds for every individual n:

s id 7T Az i
Xumel Bims Znime ™~ l_[ IB[;:;?“ el (1)
i

The different cell types, individuals, reads and regions are
all assumed to be independent. The log-likelihood of the
first part can hence be calculated as follows:

log P(j(lz, /§) = Z log P(Xume| Znimes /élm)

n,t,m,c

= Z Zntme (Z )Acnmci IOg Bmti) (2)
n,t,m,c i
The second part of the full likelihood describes how likely
it is that a read ¢ originates from each cell type ¢. The prob-
ability of observing a specific cell type in the cfDNA is gov-
erned by the cell type proportions. This probability can be
described using a Bernoulli distribution:

id Zntme

1
anmc|ant ~ anr ’ (3)

which makes the second part of the log-likelihood:
10g P(Z|O[) = Z 10g P(Zntm("a) = Z Zntme loganl (4)

n,t,m,c n,t,m,c
The final term is the only term that does not depend on
the latent variables z. The reference data is assumed to be
multinomially sampled with probabilities §;,,; and a num-
ber of trials equal to the reference read depth, which can be
obtained by summing over all read average counts:

o A~ did (Z jItml‘)! 5 Yini
Ym m ~ ! A ,,:,;rl” 5
il = S Uﬁ, (5)
which makes the third part of the full data likelihood equal
to:

toz P(118) = n 1083 T = 3 lorCTii)+ 3 Tt oz i ) (6)

Because of the presence of the latent variables z, there is
no closed form solution for maximizing the log-likelihood
(16) . Instead, we maximize the expected value of the log-
likelihood under the posterior distribution of these latent
variables using the EM algorithm. The posterior distribu-
tion of the latent variable z,,, is calculated by applying the
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where the distribution of P(%,.|8) follows from the fact
that each read originates from only one cell type ¢, thus sum-
ming over all cell types gives the full data distribution of the
reads.

Since the read averages are one-hot encoded, there will be
five possible values for the posterior p, ;.. Following from
this fact, we can remove the read index ¢ and can start look-
ing at the total sum of reads that have either of the five pos-
sible read averages. For each read ¢ where X,ci = 1, Prime
will be equal to:

= ﬁntmc(a7 3)7 (7)

At Bimi
Z[ i Bimi

For the expectation step in the EM algorithm, we need
to define the expectation of the latent variable z over the
full data likelihood at iteration j. Let o) and BY equal the
parameters estimated at iteration j, and p¥) := p(a®, V).
The expectation, also called the Q function, is derived in
the supplementary and is defined as follows:

= pnrmi(av B) (8)

Qj(a, B) :=E_; i s log P(%, z, Va'), B)
= Z ((pi,jf?n[&nmi + i/[ml)IOg ﬁf,jn)/) + Z p,gjlzy,y%nmi 10g D‘Sljt)

n,t,m,i n,t,m,i

+ n Z [log(z i,tmi)! - Z log( i/tmi!)i| (9)

tm

Finally « and A are updated by maximizing O, B),
resulting in the following update equations. For the full
derivation, see the supplementary.

IS
Zm,i Pntmi Xnmi

Gt = < 10
" Zm,k,i Pnkmi Xnmi ( )
Bl‘)‘ni — 2;1(pntmijcnmi + 3/1”11') (11)

Z,L,‘(pntmi )}\Cnmi + i/tmi)

Each run of CelFEER performs the optimization
10 times independently, because EM is not guaranteed to
converge to a global optimum. The log-likelihood is com-
pared for each restart and CelFEER returns the output
from the restart with the highest log-likelihood. In all sim-
ulations, we run CelFEER 50 times to capture the variance
of the model output.

Marker selection

The markers define which CpG sites will be used as in-
put to the model. The methylation values of CpG sites at

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 5

marker locations should be consistently different for differ-
ent cell types, such that the methylation values at these sites
can be used to distinguish between cell types. The mark-
ers are found using an adaptation of the method used by
Caggiano et al. The complete process of adapting the mark-
ers is described in the supplementary. The original method
by Caggiano et al. (8) works as follows: All CpG sites are
compared by measuring the distance between the methy-
lation percentage of one cell type to the median methy-
lation percentage of all cell types. The 100 markers with
the largest distance are then selected as markers. Conse-
quently, the total amount of markers found equals (maxi-
mally) 100 times the number of cell types. The markers have
to satisfy three requirements in the original method; the first
is that a marker is only allowed to be a marker of one cell
type. If the same CpG site is in the top 100 of two or more
cell types, that site is not used as a marker. The second re-
quirement is that each cell type should have at least one read
at a marker location. The last requirement enforces that the
median read depth of all cell types at a marker position
equals at least 15.

This last requirement, however, still allows the cell type
for which the CpG site is a marker to have a read depth less
than 15, as long as the median read depth of all cell types
is sufficient. A CpG site could be a marker for a cell type
as long as it is covered by at least one read in that cell type.
To remove the possibility of getting this type of marker, we
introduced an extra check to ensure this cell type has a read
depth at least as large as the median read depth thresh-
old. Besides, we included one more requirement to ensure
marker uniqueness. Instead of comparing only the top 100
markers of each cell type, we compared the top 150 markers
of each cell type. After this comparison, again only the top
100 markers are used. This extra step prevents the situation
where a marker is in the top 101 of one cell type and in the
top 99 of another, which could lead to the inclusion of less
differential markers.

The original method should, in theory, be able to find
both hypo- and hypermethylated markers. In practice, it
finds almost solely hypomethylated markers. Comparing
each cell type’s methylation percentage to the median
methylation percentage can make markers less distinct,
as is shown in Supplementary Figure Slc. Therefore, we
adapted Caggiano et al.’s method (8) to compare the methy-
lation percentage of each cell type to the minimum methy-
lation percentage of all other cell types (illustrated in Sup-
plementary Figure S1d). We found that hypomethylated
markers are best at differentiating between cell types (Sup-
plementary Supplementary Figure S10c—e, Supplementary
Figure S11).

Originally, CelFiE uses as input, and as reference data,
the methylation values at the marker CpG sites summed
with the methylation values of CpG sites in the +£250 bp
surrounding the marker sites. We improved CelFiE by first
summing the methylation values at CpG sites into 500 bp
windows which are subsequently used to find marker re-
gions (Supplementary Figure S10a-c). Otherwise, mark-
ers on regions are found using the exact same approach
as markers found on single CpG sites. The difference be-
tween finding markers on single CpG sites and on regions is
shown in Supplementary Figures Sla and b. As there is no
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Figure 2. Illustration of the method for determining the distance between
two cell types using read averages. First, the average of all read averages is
determined for each cell type. These are then compared to find the distance
between cell types.
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requirement for the amount of CpG sites in a region and
only for the minimum read coverage of a region, the amount
of CpG sites per marker can differ. Because summing the
CpG sites into 500 bp windows substantially increased the
read coverage at potential marker regions, we increased
the read depth threshold to 150. To find the value for this
threshold, we tried a range of increasing values and com-
pared the resulting markers by their distance between cell
types.

Finding the markers using the read average data largely
follows the same approach. First, each chromosome is split
into 500 bp windows into which the reads are mapped. For
each cell type, the read averages are averaged over all reads
that map to the same window. The CelFEER markers are
found by comparing these averages. This process is illus-
trated in Figure 2. For the read averages, we again optimized
the read depth threshold and observed that the best mark-
ers were found using a read depth threshold of 20. The large
difference with the read depth threshold for the CelFiE in-
put (after summing in 500 bp windows) can be explained
by the large difference in the scale of the input of CelFiE
and CelFEER. This difference in scale is due to the fact
that all CpG sites on a read contribute to a single value in
CelFEER, and to multiple values in CelFiE.

Since the approach to summarize read averages into bins
is slightly different from the approach used to bin the
CpG count data, we bin the CpG count data in the same
manner as the read averages when comparing CelFiE and
CelFEER.

Simulations with artificial data

In order to validate if CelFEER works under the model as-
sumptions, simulations with artificial data were set up as
follows, such that he input and reference data are generated
according to the distributions assumed by the model. The
simulations use the same parameters as originally used by
Caggiano et al. in their artificial simulations. In each ran-
dom restart, « is randomly initialized by drawing from a
uniform distribution and normalizing to ensure the values

sum to one. B, is initialized by taking ———

> Y
We also ran simulations where one orjtwo cell types are
considered unknown, i.e. they are not included in the refer-
ence. In these cases, we created the true cell type proportions
and true cell type methylation as before, but masked the un-

known cell type by setting its reference methylation values
to 0.

Simulations on WGBS data

To further evaluate the method, we simulated cfDNA data
by mixing WGBS data of different cell types. The cell type
data was obtained from ENCODE (17) and Blueprint (18),
and is composed of T-cell CD4, monocyte, macrophage,
memory B cell, neutrophil, adipose, pancreas, small intes-
tine, stomach and tibial nerve data. The sample identifiers
of the used data can be found in Supplementary Table S1.
The data is a mixture of paired-end and single-end reads,
and consists of the same datasets used by Caggiano et al.
For each cell type, one sample was used to compose the
reference matrix and one to simulate a cfDNA mixture.
Both sex chromosomes were removed, to make the refer-
ence matrix applicable to both sexes and to ensure that ran-
dom methylation due to X chromosome inactivation is not
seen as relevant. Furthermore, all SNPs in dbSNP (19) were
removed.

To ensure that each dataset contained an equal amount
of reads before creating a mixture, the total read coverage
of each cell type was normalized by dividing by the total
amount of reads of all cell types and multiplying with the
average amount of reads. Next, the methylation values of
each cell type were multiplied with the desired proportion
for that cell type. These proportions were always ensured
to add up to one by dividing each cell type’s proportion by
the sum of all cell types’ proportions. In the original publi-
cation (8), WGBS mixtures were created in a similar man-
ner, with the difference that we corrected for differences in
read depth among the different cell types before downsam-
pling the reads. The mixtures of read averages were created
similarly. First, all read counts were normalized such that
each cell type occurred in equal quantities before multiply-
ing the input with the desired proportions. For both meth-
ods the reference data was not normalized. During parame-
ter convergence, the only equation where the reference data
is used is Equation (11), where it is transformed to a propor-
tion. The absolute counts of the reference data only matter
in their proportion to the input data in Equation (11). It
does, however, make sense to not normalize the reference
data here since it is logical that reference data with a higher
coverage is more reliable and should therefore weigh more
in the calculation of B.

To test the behavior of CelFEER on data partially cor-
rupted by noise, we performed an additional simulation
using seven different tissues downloaded from ENCODE
(Supplementary Table S1, all tissues except skeletal mus-
cle are used). On the test data, we simulated noise by in-
dependently flipping the status of each CpG site of each
read with probability p, where p takes the values 0 (no noise
added), ﬁ’ ﬁ, 5—'0, 41—0, 31—0 %, and % (10% of CpG sites
are flipped). For each value of p, we repeated this 50 times
and calculated the mean correlation across these 50 runs.

Comparison to other methods

We benchmarked CelFEER against two other cell type
decomposition methods on simulated data: (i) a simple
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non-negative least squares regression, similar to the ap-
proach by Moss et al. (10), and (ii) the method used by
Houseman et al. (20) that achieved the lowest tissue decom-
position error in the systematic evaluation by Jeong et al.
(21). Houseman’s method (or Houseman for short) uses ar-
ray data, so we converted the methylated and unmethylated
counts used for the CelFiE input to beta-values. Since the
least squares regression and Houseman essentially both use
beta-values, like CelFiE does, we used CelFiE’s marker re-
gions as marker regions for all three methods. Houseman
was designed to work on single CpG sites, so we used all
CpG sites overlapping with these marker regions as input
for Houseman.

RESULTS

Simulations using generated data

To test whether CelFEER works as expected, we followed
Caggiano et al. in generating data to simulate cfDNA input
and cell type DNA reference data. Using generated data,
they showed that CelFiE (i) estimates proportions corre-
lated to the true cell type proportions, (ii) is able to detect
small differences between two groups of individuals and (iii)
is able to estimate the proportions of unknown cell types
(i.e. cell types that are present in the input data, but not in
the reference).

The results of these simulations are not an accurate reflec-
tion of the model performance, as the simulations for nei-
ther CelFiE nor CelFEER model any correlation between
sites. As a result, the input of adjacent sites is not summed
together as is done for WGBS data, even though Caggiano
et al. have shown that the original method does not return
sensible results on WGBS data without summing adjacent
sites. The simulations do serve as a way of investigating
whether CelFEER has the same properties as CelFiE.

CelFEER estimates of generated data correlate to true pro-
portions. As a first evaluation of the read-based method,
the performance of CelFEER is compared to the perfor-
mance of CelFiE on generated data. The simulations follow
the approach of (8), meaning that 50 replicates were run,
each with 25 cell types, 6000 CpG sites and 1 individual.
The read depth at each CpG site was drawn from a Poisson
distribution centred around 10.

To compare the performance, we measured the Pearson’s
correlation between the estimated and true cell type propor-
tions. CelFEER performed slightly worse than CelFiE, with
a mean Pearson’s correlation » = 0.84 4+ 0.05 compared to
r=0.87 4 0.07 for CelFiE (Figure 3). The result of CelFiE
found by us is, however, not as good as the result reported in
(8), where equivalent simulations result in » = 0.96 + 0.01.

CelFEER and CelFiE do not detect a significant difference
between two groups.  Even in individuals with cfDNA orig-
inating from aberrant cell types, most of the cfDNA is
usually derived from hematopoietic origins (10). In other
words, the actual amount of cfDNA from an aberrant cell
type can be very small. Therefore, it is important to be able
to differentiate between a group that does not have this cell
type and a group that has only a very small amount of it.
To this end, we simulated a cell type that appeared in 1% (a

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 7

>

CelFiE

0.04
L
[ +
Oﬂzé 4 * +
.t o,
+ L]
% i Ploey baetr |

12345678 910111213141516 1718 19202122232425

cell types
B CelFEER

Estimated proportions
T}
—al— -
—i—

Estimated proportions

123456 78 91011121314 151617 1819202122 232425

cell types

Figure 3. Simulations on generated data for one individual. Each boxplot
displays the estimated proportion of a cell type for replicate model runs.
The red dots indicate the true cell type proportions for 25 cell types.

proportion of 0.01) of the cfDNA of five individuals (group
A) and 0% of the cfDNA of five other individuals (group B).
Ten cell types were used in total on an input of 1000 CpG
sites. The remaining nine cell types had a proportion drawn
from a uniform distribution between 0.5 and 1, which were
then normalized such that all proportions summed to one.

Supplementary Figure S2 shows the estimated propor-
tion of the rare cell type for both groups, using both CelFiE
and CelFEER. Averaged over 50 replicates, CelFiE esti-
mated a proportion of 0.03 £ 0.01 in group A and 0.025
=+ 0.007 in group B, while CelFEER estimated proportions
0f0.031 +0.01 and 0.026 £ 0.008 for the two groups respec-
tively. A two-sample t-test done for each individual showed
no significant difference between the average proportions
estimated by both methods in neither groups (P > 0.1 for
all individuals). Moreover, the proportion of the rare cell
type is highly overestimated in both groups.

CelFEER estimates proportions of unknown cell types.  One
of the advantages of CelFiE over previous deconvolution
methods is its ability to infer cell type information from the
methylation states of other individuals. This way it can es-
timate the cell type proportions of cell types that are not
present in the reference data. As in the original paper, we
generated simulated cfDNA for 1000 CpG sites, 10 cell
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types and 10 individuals at a read depth of 10. In the ref-
erence data, we set the methylation states of the last cell
type to 0 at each CpG site. The true proportion of this
unknown cell type was drawn from a normal distribution
centred around 0.2 with a standard deviation of 0.1, and
clipped if smaller than 0 or larger than 1. All other cell
type proportions were drawn from a uniform distribution
between 0 and 1, and together with the unknown cell type
the proportions were made to sum to 1. This was done for
each individual separately.

We measured the root mean squared error (RMSE) of
the estimated proportion of the missing cell type. Aver-
aged over all individuals, CeIFEER resulted in an RMSE
of 0.0009, and CelFiE in an RMSE of 0.0010. This shows
that CelFEER is also capable of estimating proportions of
unknown cell types in simulated data.

Results of simulations using WGBS data

Since there are no ground truth cell type proportions avail-
able for real cfDNA data, we simulated mixtures of cfDNA
by mixing WGBS data of different cell types at known
proportions. To this end, we used the same data used by
Caggiano et al. However, we were limited to using seven
different cell types because of the availability of read data
at the time of testing.

Comparison between CelFiE and CelFEER. To compare
the performance of CelFEER to the performance of
CelFiE, we again simulated cfDNA mixtures by artificially
mixing WGBS data of different cell types. Again we fol-
lowed the same approach as CelFiE to create the true cell
type proportions for 100 individuals. The marker regions of
both models were found using their reference data and were
therefore different for the two models, since one set of re-
gions was found by comparing CpG site averages (CelFiE)
and the other by comparing read averages of different cell
types (CelFEER).

Supplementary Figure S3 shows the results of 50 replicate
runs for a randomly selected individual. Without unknown
cell types in the reference data, CelFEER results in a corre-
lation of = 0.94 4 0.04 while CelFiE results in a correlation
of r =0.86 £ 0.09, which is higher than the performance re-
ported in the original CelFiE publication (8). This increase
in performance arises from our improved method for find-
ing marker regions (Supplementary Figure S6). In short, we
only use hypomethylated regions and differentiate between
regions by using the total methylation over a 500bp win-
dow (Supplementary Section S4). Next to CelFiE, the de-
convolution method of Houseman et al. (20) also benefited
from using our improved set of markers (Supplementary
Table S6).

We find that the difference in correlation between
CelFEER and CelFiE is significant (z-test, #(9998) = 58.11,
P < 0.001). To examine whether this would go at the expense
of runtime, we measured the time it takes each method
to run one replicate. On our system, CelFEER requires
~1.1 times the time needed by CelFiE.

Since one of the assets of CelFiE is its ability to infer the
proportions of unknown cell types, we expected CelFEER
to outperform CelFiE on this aspect as well. Similar to the

Table 1. Pearson’s correlation (r) between true and estimated cell type
proportions (a estimates) and between reference methylation and esti-
mated methylation values (3 estimates) of a simulated mixture of seven
different cell types

Unknowns Parameter CelFiE r CelFEER r
0 a 0.86 + 0.09 0.94 + 0.04
B 9.98¢ — 1 + 0.03¢ — 1 0.93 + 0.03
1 a 0.60 + 0.19 0.48 + 0.25
B 092 +£0 0.89 £ 0.11
2 a 0.30 + 0.34 0.19 + 0.29
B 0.85 + 0.25 0.77 + 0.26

original experiments in (8), we masked T cells in the refer-
ence data by setting all T cell reference methylation values
to 0. CelFEER highly overestimates the missing cell type
proportion and therefore estimates proportions that are less
correlated to the true cell type proportions than CelFiE
does, although CelFiE also overestimates considerably (see
Table 1 and Supplementary Figure S3). When small intes-
tine cells are masked as well, the correlation between the es-
timated and true cell type proportions decreases even more.

In addition to comparing the estimated cell type propor-
tions and their correlation to the true proportions, we in-
vestigated the estimated cell type methylation values. We
measured the correlation between the estimated cell type
methylation percentages and the methylation percentages
obtained by normalizing the methylation values of the ref-
erence data to sum to one. It is remarkable how this corre-
lation is consistently higher for CelFiE (Table 1). This im-
plies that the methylation percentages estimated by CelFiE
diverge only very little from the reference methylation. This
probably means that CelFEER takes the input of other indi-
viduals more into account when estimating the methylation
values, and therefore indirectly when estimating the cell type
proportions.

Another advantage of CelFiE over previous methods is
that it works with low coverage input data. A higher read
coverage means higher sequencing costs, and it is therefore
desirable that CelFEER performs sufficiently on low cover-
age data as well. To test this, we normalized the read cov-
erage of each cell type to equal the total amount of input
regions multiplied with a constant, n, before mixing the cell
types. This way, each cell type covered each region with n
reads on average. For each n € {2, 5, 10, 50} the average
correlation over 50 replicates and 100 individuals was mea-
sured. The cell type proportions were generated in the same
manner as before, and no unknowns were estimated. The
relation between the correlation and the coverage is shown
in Figure 4. We can conclude that for a stable performance,
the coverage should be 10 or higher. Interestingly, the cor-
relation between the estimated and true cell type propor-
tions increases a little for CelFiE when n = 5. It is possi-
ble that lowering the coverage acts as a noise reduction on
the CelFiE input. Even on the lowest coverage, CelFEER
outperforms CelFiE, showing that CelFEER is a suitable
method for low coverage data.

CelFEER is robust to noisy input. Since WGBS of cfDNA
is inherently noisy, we evaluated the behavior of CelFEER
on noisy data by creating simulated cfDNA cell type
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Figure 4. Relation between the input coverage and the correlation between
the estimated and true cell type proportions. The full range of the correla-
tions of 100 individuals and 50 replicates is highlighted.

mixtures where the methylation status of CpG sites in reads
was randomly flipped with probability p. We used CelFEER
to estimate cell type proportions of these mixtures and cal-
culated the correlation between the true and estimated pro-
portions. The results, shown in Supplementary Table S2,
show that CelFEER can still accurately recover cell type
proportions for values of p below 1/30. Its robustness makes
CelFEER suitable for noisy data, such as data from cfDNA
profiling.

CelFEER outperforms other beta-value-based methods on
simulated data. ~ After showing that the read-average-based
method CelFEER outperforms its beta-value-based alter-
native CelFiE, we were interested in comparing CelFEER
to other beta-value-based methods. To this end, we com-
pared CelFEER to Houseman (20) and to a non-negative
least squares regression implemented by Caggiano et al. (8)
to resemble the approach by Moss et al (10). Using the
same conditions as for comparing CelFEER to CelFiE (i.e.
the same seven tissues and the same randomly drawn tis-
sue proportions, Table 1), we find that CelFEER outper-
formed all methods in terms of correlation between the true
and predicted proportions. Specifically, CelFEER achieved
a correlation of 0.94 + 0.04, Houseman 0.69 + 0.19 and
the least squares method 0.73 4 0.16 (Supplementary Table
S5). Supplementary Figure S9 depicts the proportions for a
randomly chosen individual, also showing deteriorated per-
formances of the least squares regression and Houseman
approaches.

Markers found on read averages are different from markers
found on count input.  Finally we were interested in whether
the markers found using read averages differ from the mark-
ers found using CpG site averages. We hypothesised that
CelFEER works better with markers found on the read av-
erages of the reference data, on the grounds that CelFEER
differentiates cell types by their read averages. Additionally,
as reasoned in the introduction, read averages should be
more sensitive to differences in methylation status between
cell types. We again performed the same experiments, using
a simulated mixture of seven different cell types.
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We firstly checked the overlap in markers found using
both methods. Of all 700 detected markers found by each
method, 130 markers were found by both. Each of the seven
cell types has markers that are found by both methods.
There are no regions that are a marker for one cell type in
one method and a marker for another cell type in the other
method.

Using the markers found by CelFiE, CelFEER per-
formed similarly with a correlation of r = 0.94 £ 0.04
(Supplementary Figure S4). The correlation between the
cell type proportions estimated by CelFiE using CelFEER’s
markers is ¥ = 0.69 £+ 0.21, indicating that the markers
found by CelFEER are not suitable for the input of CelFiE.
Averaged over all cell types, the difference in methylation
percentage between cell types at CelFiE’s marker locations
is 0.65 for both the reference and input data, where the ref-
erence data showed slightly less variation with a standard
deviation of 0.19 compared to 0.20 for the input data. For
CelFEER, this difference is 0.66 4 0.20 for the input and
0.64 £ 0.22 for the reference. Supplementary Figure S5 does
show that for some cell types the variation in the distance
from the median is substantially larger for the CelFEER
markers. In addition, restricting the marker selection to only
CpG islands or methylation haplotype blocks (22) lowered
the performance (Supplementary Material S4, Supplemen-
tary Tables S3 and S4)

CelFEER is applicable on real datasets

Caggiano et al. showed that CelFiE is able to differenti-
ate between Amyotrophic Lateral Sclerosis (ALS) patients
and a control group by the estimated proportion of skele-
tal muscle derived cfDNA. Although it is interesting to see
if CelFEER is also able to distinguish between the ALS
and the control group, it is hard to evaluate the method
based on its cell type proportion estimates since there are
no ground truth cell type proportions available. Moreover,
while Caggiano et al. used 28 case and 25 control samples,
we only used four case and four control samples. The refer-
ence data consists of all 19 cell types given in Supplementary
Table S1.

We firstly fully decomposed the cfDNA, thus estimating
the proportions of each of the 19 cell types present in the
reference. The five cell types with the highest proportions
estimated by CelFEER were, in both groups, the following:
neutrophil, monocyte, erythroblast, spleen and eosinophil.
CelFiE estimated similar proportions, but instead of spleen
it estimated adipose to be the fourth highest in proportion.
In their own work (8), however, neither spleen nor adipose,
but macrophage cells are in this top five. Still, these results
mostly correspond to the findings of Moss et al. (10). The
full decomposition can be seen in Supplementary Figure S7.

Next, we specifically examined the skeletal muscle cell
proportions in both groups. CelFiE estimated an average
proportion of 5.5e—3 £ 3.1e—3 in the ALS case group, and
1.5e—3 + 1.1e—3 in the control group. A two-sample 7-test
did not indicate a significant difference between the two
groups (t(6) = 2.09, P = 0.08). CelFEER, on the contrary,
did find a significant difference, with an average proportion
of 1.2e—3 £ 5.4e—4 for the ALS case group and 7.7e—5 +
le—4 for the control group (Figure 5A) (¢-test, #(6) = 3.54,
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Figure 5. Results of the decomposition of real cfDNA data. (A) Estimated proportions of skeletal muscle cfDNA in ALS patients (n = 4) and a control
group (n = 4). (B) Estimated proportions of placenta cfDNA in healthy pregnant women (7 = 8) in their first and third trimester. (C) Estimated proportions
of placenta cfDNA in healthy pregnant women (n = 8) and pregnant women with GD (n = 7) in the first trimester of their pregnancies.

P =0.01). Clearly, CelFEER is able to detect small fractions
of rare cell types in cfDNA.

In addition, we applied CelFEER on a dataset of preg-
nant women along different stages of pregnancy, and with
or without gestational diabetes (GD) (14). We used the same
reference data as for the ALS dataset, but with the inclu-
sion of placenta tissue DNA (as listed in Supplementary Ta-
ble S1). We then decomposed the cfDNA of eight pregnant
women in their first trimester, and eight pregnant women in
their third trimester. The full cell type decomposition can
be seen in Supplementary Figure S§8. We found a signifi-
cant difference between the proportions of placenta cfDNA
(Figure 5B) between the first and the third trimester (z-test,
t(14) = 4.7, P = 0.0003).

Next, we looked at the difference in placenta cfDNA be-
tween healthy individuals and individuals with GD. Del
Vecchio et al. (14) showed that ¢cfDNA in individuals with
GD contains a higher proportion of placenta compared to
healthy individuals. When comparing the cfDNA of eight
healthy individuals in the first trimester to seven individu-
als with GD in the first trimester (Figure 5C), we find that
women with GD have a significantly higher proportion of
placenta cfDNA (¢-test, #(13) = 3.4, P = 0.004). Our find-
ings agree with the decomposition of del Vecchio et al. (14).
In addition, in accordance with the results of (14), we found
that the single obese pregnant individual in our dataset had
a low proportion of placenta cfDNA (0.2%).

Finally, we measured the computational needs of
CelFEER on this real-life ¢fDNA dataset of pregnant
women. For estimating the proportions of 20 cell types in
16 individuals, CeIFEER runs on a single-core machine us-
ing 160MB of RAM in less than 5 min.

DISCUSSION

The analysis of ¢cfDNA has some attractive properties, such
as the possibility to detect and monitor disease without un-
dertaking invasive biopsies (2). By retrieving the cell types
of origin of cfDNA, it is possible to obtain a complete
overview of all cells that shed cfDNA, and even of the
amount of cfDNA each cell type yields. An inquiry in the
cell type proportions can indicate the presence of aberrant

cell types, such as tumor cells, in the cfDNA. Yet, detec-
tion of aberrant cell types can be difficult, especially in
early stages of disease. Recent methods use the methyla-
tion states at CpG sites that cause a differential gene expres-
sion in different cell types. In this research, we adapted one
such method, CelFiE (8), to, instead, use differential methy-
lation averages of individual reads. The intuition behind
this approach is that the methylation averages of individ-
ual reads differentiate more than CpG site averages, since
aberrant reads are almost undetectable when averaged with
healthy reads. This new method, named CelFEER, uses
an expectation-maximization algorithm and a reference cell
type dataset to estimate the true cell type proportions of
cfDNA mixtures. We showed that CelFEER performs as ex-
pected on simulated data, and outperforms CelFiE as well
as two other methods that use beta values on cfDNA sim-
ulated using mixtures of WGBS data. Moreover, it can re-
cover biologically meaningful patterns on real cfDNA data,
as demonstrated by experiments using a dataset containing
ALS patients as well as a dataset of pregnant women. Be-
sides, CelFEER runs efficiently on a modern laptop.

The performance of a deconvolution method is highly re-
liant on how well input regions are able to differentiate be-
tween cell types. In pursuit of improving the performance of
CelFiE, we improved the original method for finding mark-
ers by applying the following changes: (i) we determined
differentiation power of markers based on 500 bp regions
instead of single CpG sites, (ii) we focused on hypomethy-
lated regions and (iii) we applied stricter rules to marker re-
gions. We showed that the resulting set of marker regions
improves the performance of CelFiE as well as the array-
based method by Houseman ez al. (20). Note that to find
marker regions for CelFEER, we devised a method that
largely follows the same approach as CelFiE but instead
uses the read averages of the reference data.

Read averages are formulated in a way that one read av-
erage, i.e. one single value, summarizes multiple CpG sites.
For this reason, the range of the input is much lower for
CelFEER than for CelFiE. In addition, CelFEER filters out
reads covering less than three CpG sites, which decreases
the range even more. It may be interesting to investigate
whether allowing for reads with a lower CpG site coverage
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gives improvements to the model. Low read quality is one
of the disadvantages of working with WGBS data, as the
bisulfite conversion is known to be detrimental to the DNA
(23). Another way for compensating for the smaller range
would be to increase the amount of samples used in the ref-
erence dataset. Currently, each reference cell type consists
of the DNA of a single individual.

If the reference data does not include all of the cell types
found in the cfDNA, the proportions of the cell types that
are included will be overestimated. Since actual cfDNA is
likely to contain cell types that are absent from the reference
data (8), it is useful to estimate proportions of unknown cell
types. However, CelFEER currently greatly overestimates
the proportions of unknown cell types. It may be possi-
ble to improve this by changing the input for unknown cell
types, as we presently employ CelFiE’s method of setting
unknown cell types to 0, which may not work for CelFEER.
In relation to that, we may need to change the initial values
for the estimated methylation percentages for unknown cell
types.

Despite the improvements made to the selected marker
regions, there is potential for more distinct markers, in par-
ticular because the method for finding markers was opti-
mized for CpG count data and then translated almost ex-
actly to read average data. Read averages may, however, re-
quire a different approach for finding markers, such as the
switching reads defined by Li et al. (12). An adequate set of
differential regions not only improves model performance
but also allows for targeted sequencing of these regions, for
example using RRBS, and can thus reduce the sequencing
cost (24).

We chose to discretize the read averages into five bins in-
stead of treating them as continuous values. This substan-
tially speeds up the method, because it means that we only
need to estimate the distribution over five possible read aver-
ages instead of all possible read averages. Moreover, binning
ensures we have more evidence for each of the five distribu-
tions to be estimated. Although the input size of CelFEER
is larger than the input size of CelFiE (read averages are
described by five counts instead of the two counts used by
CelFiE), it suffers only from a minor increase in runtime.
Like CelFiE, CelFEER is an efficient method that scales lin-
early in the size of the input and reference. Even so, it could
be beneficial to consider CelFEER’s performance when us-
ing more or less counts.

In conclusion, with CeIFEER, we showed that a cell type
deconvolution method can more sensitively estimate cell
type proportions when using read averages instead of CpG
site averages, even at a low input read coverage.

DATA AVAILABILITY

The raw WGBS reads of the different cell types used in
this article are freely available on the ENCODE project
at https://www.encodeproject.org/ and on request to the
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