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BSTRACT 

ell-free DNA (cfDNA) are DNA fragments originat- 
ng from dying cells that are detectable in bodily 

uids, such as the plasma. Accelerated cell death, 
or example caused by disease, induces an elevated 

oncentration of cfDNA. As a result, determining the 

ell type origins of cfDNA molecules can pr o vide in- 
ormation about an individual’s health. In this work, 
e aim to increase the sensitivity of methylation- 
ased cell type deconvolution by adapting an ex- 

sting method, CelFiE, which uses the methylation 

eta values of individual CpG sites to estimate cell 
ype proportions. Our new method, CelFEER, instead 

ifferentiates cell types by the average methylation 

alues within individual reads. We additionally im- 
r o ved the originally reported performance of CelFiE 

y using a new approach for finding marker regions 

hat are differentially methylated between cell types. 
e show that CelFEER estimates cell type pr opor - 

ions with a higher correlation ( r = 0.94 ± 0.04) than 

elFiE ( r = 0.86 ± 0.09) on simulated mixtures of cell 
ypes. Moreover, we show that the cell type propor- 
ion estimated by CelFEER can differentiate between 

LS patients and health y contr ols, between preg- 
ant women in their first and third trimester, and be- 
ween pregnant women with and without gestational 
iabetes. 

NTRODUCTION 

s cells die, short DNA fragments are released into the 
loodstr eam, which ar e collecti v el y called cell-free DN A 

cfDNA). The cfDNA in plasma is mostly composed of 
NA molecules originating from blood cells ( 1 ). Howe v er, 

ells in diseased tissues die more ra pidl y, causing diseased 

issues to release cfDNA at a faster rate. The discovery of 
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races of such disease-deri v ed cell types in cfDNA provides 
 minimally invasi v e alternati v e for tissue biopsies, and is 
hus fr equently r eferr ed to as a liquid biopsy ( 2 ). Commonly
 esear ched applications of liquid biopsies ar e pr enatal test- 
ng, organ transplant monitoring, and tumor discovery and 

onitoring ( 3 ). In all of these applications, howe v er, we 
now the cell type of interest in advance. Cell type deconvo- 

ution, on the other hand, aims to gi v e the full composition 

f the cell types of circulating cfDNA. Example use cases in 

hich this type of analysis is especially desirable is finding 

umor locations in patients with a cancer of unknown pri- 
ary ( 4 ) and detecting trea tment side-ef fects. Additionally, 

haracterizing changes in cell type proportions is helpful in 

nderstanding disease de v elopment and progression ( 5 ). 
One method for characterizing the cell type origins of 

fDNA is the analysis of methylation signatures. Methyla- 
ion occurs when a methyl-group is added to the fifth car- 
on of cytosines (5mC), often with the purpose of silenc- 

ng gene transcription ( 6 ). This process ha ppens mostl y in 

he context of CpG sites, and usually over regions span- 
ing multiple CpG sites ( 2 ). Adjacent CpG sites have been 

ound to correlate highly in methylation status ( 7 ). Be- 
ause the silencing of gene transcription often happens in a 

ell type-specific manner, these methyla tion signa tures have 
een found to re v eal the cell type origins of cfDNA ( 3 ). 
T raditionally , cell type deconvolution methods calculate 

he average methylation of all sequencing reads per CpG 

ite, and use these averages as model input ( 8–10 ). These 
verages are often referred to as � values. Although these 
ethods usually do take the correlation between nearby 

pG sites into account by averaging over the � values in a 

egion, the value at each individual CpG site is still assumed 

o be independent. 
In a similar problem setting, namely tumor fraction esti- 
ation, Li et al. devised an approach to better incorporate 

he correlation between sites ( 11 ). Their method, named 

ancerDetector, calculates the average methylation per in- 
ividual sequencing read instead of the average methylation 
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per CpG site. They showed that this method outperforms
a similar previous method that uses � values ( 9 ), having
higher sensitivity and specificity ( 11 ). Figure 1 B illustrates
how rare cell types can be more sensiti v ely detected using
read averages than using � values ( 11 ). In this figure, the
tumor-deri v ed read makes up 25% of the cfDNA, whereas
such rare cell types are far less prevalent in biological data.
Since it is essential that our method can deconvolve lowly
abundant cell types, � values might not be appropriate. 

A read-based approach has been adopted in multiple
other tumor fraction estimation methods, such as DISMIR
( 12 ) and EpiClass ( 13 ). Even though the effecti v eness of this
approach has been shown for tumor fraction estimation, it
has not yet been used in the related task of cell type decon-
volution. The only study that has performed cell type de-
convolution by assigning each individual read to the most
probable cell type did not use read averages nor compared
to methods using beta values ( 14 ). 

We hypothesize that read averages can increase the sen-
sitivity of methylation-based cell type deconvolution meth-
ods. In order to evaluate the effects of using read averages
without being affected by other model decisions, we decided
to adapt an existing method, CelFiE (CELl Free DNA Es-
timation via expectation-maximization) by Caggiano et al.
( 8 ). CelFiE has the advantages that it is able to estimate
missing cell types and that it can estimate cell type propor-
tions of cfDNA with a low read covera ge. Ca ggiano et al.
demonstrated possible clinical applications of CelFiE by
showing its ability to dif ferentia te between pregnant and
non-pregnant women by their proportion of placenta de-
ri v ed cfDNA, as well as between ALS patients and healthy
individuals by their proportion of skeletal muscle cfDNA.
In their work, Caggiano et al. used whole genome bisul-
fite sequencing (WGBS) of r efer ence cell type DNA and in-
put cfDNA. Since WGBS data covers the entire genome,
it has the benefit that it can be used for cell type-specific
biomark er disco very by comparing the methylation in all
CpG sites ( 15 ). 

Next to the use of read averages, we find that the selec-
tion of appropriate cell type markers is of crucial impor-
tance for the model performance. Using the entire genome
as model input is not onl y computationall y infeasible, but it
will also likely have a negati v e impact on performance when
CpG sites that are not informati v e of the cell type origin are
included. By redefining the cell type informati v e mar kers,
we improved CelFiE and were able to achie v e better results
than those reported in the original publication. The new set
of markers is found using regions of 500 bp instead of single
CpG sites, and only includes h ypometh ylated markers. 

In this r esear ch, we adapted CelFiE to work at the res-
olution of single reads by changing the input to the av-
erage methylation value of single reads and by chang-
ing the underlying distributional assumptions accordingly.
The complete workflow of the resulting method, named
CelFEER (CELl Free DNA Estimation via Expectation-
maximization on a Read resolution), is depicted in Fig-
ure 1 A. We compared CelFEER to CelFiE on generated
data and on simulated cell type mixtures composed of real
WGBS data. We further applied CelFEER on the cfDNA
of four ALS patients and four controls, and found that
CelFEER detects a significant difference in the propor-
tion of skeletal m uscle cfDN A. In addition, we compared
CelFEER’s decomposition of the cfDNA of eight preg-
nant women in their first trimester to that of eight preg-
nant women in their third trimester, and found a signifi-
cant increase in placenta cfDNA. Comparing the cfDNA of
eight healthy pregnant women to the cfDNA of se v en preg-
nant women with gestational diabetes, we found that the lat-
ter group has a significantly higher proportion of placenta.
Taken together, our experiments indicate that read averages
can indeed more sensiti v ely detect rare cell types. The source
code for CelFEER is available at https://github.com/pi-zz- 
a/CelFEER 

MATERIALS AND METHODS 

CelFiE ov ervie w 

As CelFEER is an adaptation of CelFiE, understand-
ing this original method is essential for understanding
CelFEER. CelFiE uses an expecta tion-maximiza tion (EM)
algorithm to learn the parameters of a Bayesian model of
the cell type proportions of cfDNA mixtures. It does this
by learning these proportions sim ultaneousl y with the av-
era ge methylation percenta ge of each cell type at each CpG
site. The methylation percentages correspond to the fraction
of reads that are methyla ted a t a specific CpG site, and are
initialized by transforming the r efer ence data into fractions.
The methylation percentages are estimated because the ref-
erence cell type data is assumed to be imperfect and incom-
plete. Ther efor e, CelFiE aims to learn the true methylation
percentages from both the cfDNA input and the reference
cell type data. The r efer ence data consists of the methyla-
tion counts of T cell types, indexed by t , at M CpG sites,
index ed by m . Mor e pr ecisely, it tak es the form of tw o T ×
M matrices: Y and D 

Y , where Y tm 

and D 

Y 
tm 

are the num-
ber of methylated and total r eads, r especti v ely, at CpG site
m in r efer ence cell type t . The r efer ence data ar e assumed to
be drawn from a binomial distribution for each CpG site,
where the number of trials equals the r efer ence r ead depth
and the probabilities the true methylation percentage in the
cell type of origin. 

CelFiE learns the cell type proportions of multiple in-
dividuals sim ultaneousl y, allowing the method to infer in-
formation from the methylation values of other individuals.
The cfDNA data from N indi viduals inde xed by n is gi v en
in two N × M matrices, X and D 

X . X nm 

and D 

X 

nm 

are the
number of methylated and total r eads, r especti v ely, at CpG
site m for individual n . An example of how these matrices
are formatted is gi v en in Figure 1 C. Each x nmc refers to the
methylation value of a specific read c in individual n and can
thus be either 0 or 1. These methylation values are assumed
to be drawn from a Bernoulli distribution governed by the
methylation percentage in the cell type of origin. D 

X 

nm 

con-
sists of the sum of all x nmc (across reads) while X nm 

is the
sum of all x nmc (across reads) that are equal to 1. 

CelFiE estimates two parameters: � and �, where � is
the final output of the model. �nt is the fraction of cfDNA
in person n tha t origina ted from cell type t , and �tm 

is
the true unknown methylation percentage of cell type t at
position m . 

CelFiE models the input cfDNA as a mixture of different
cell types. Whether this input originates from a gi v en (or

https://github.com/pi-zz-a/CelFEER
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Figure 1. ( A ) Workflow of cell type deconvolution with CelFEER. Sequenced and aligned cfDNA fragments are intersected with cell type marker regions 
in the genome that are found using r efer ence cell type data. The r efer ence cell data and the cfDNA input data are used as model input for CelFEER, 
w hich subsequentl y outputs the estimated cell type proportions in the cfDNA. ( B ) Toy example illustrating how a tumor-deri v ed read (in orange) can be 
distinguished from other reads more easily by comparing read averages ( ̄r ) instead of CpG site averages ( �). Values in red are differential between the 
cancer and nor mal sample. ( C ) For matting of the input for CelFiE (bottom left) and CelFEER (top right). On the top left, three partially methylated reads 
aligning to a 500 bp marker are depicted. For CelFiE, the input is gi v en in two numbers, one equalling the sum of methylated reads at each CpG site and 
the other equalling the sum of the total amount of reads at each CpG site. For CelFEER, the read averages ( ̄r ) are first rounded to the closest value in { 0, 
0.25, 0.5, 0.75, 1 } , then one-hot encoded and summed to obtain the input. The r efer ence data is formatted in the same way. ( D ) Underlying mechanism of 
CelFEER for three individuals and three cell types. On the left side of the figure, the reference and input data are depicted. On the right side, the estimated 
methylation percentages (top) and estimated cell type proportions (bottom) are depicted. The center part illustrates the posterior distribution of the latent 
variable z , which indicates what cell type each separate read is deri v ed from. 
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unknown) cell type is modeled using a latent variable z ,
where z tmc = 1 when x mc originates from cell type t , and 0
otherwise. The objecti v e is thus to describe the joint distri-
bution P ( X , z , Y | �, �). For the complete ma thema tical de-
scription of the model and its underlying assumptions, we
refer to the supplementary and the original publication ( 8 ).

The model iterati v ely relates the input to probable cell
types in the expectation step, and calculates the parame-
ters that make the input and r efer ence data most likely in
the maximization step. More mathematically, in the expec-
tation step the posterior distribution ˜ p of z gi v en the input
data x and parameters � and � is calculated. These param-
eters are then updated by the � and � values that maximize
the expectation of the joint likelihood under the calculated
posterior. 

Note that this formulation allows CelFie to estimate the
proportion of an unknown cell type by adding an additional
cell type in the r efer ence set whose r efer ence methylation
values are all initially set to 0. Based on the input cfDNA
data, the model can then estimate the proportion of the
added cell type, and use this proportion information to up-
date the corresponding reference methylation values during
the maximization step. 

Read-based approach 

CelFEER uses essentially the same model as CelFiE but
with read averages as input. This changes the underlying
distributions of the model, while the overall structure of
the algorithm remains the same. The algorithm is visualized
in Figure 1 D. In CelFEER, the single counts per CpG site
ar e r eplaced by fiv e counts per 500 bp region. Each count
ˆ x nmi ∈ 

ˆ X nm 

for individual n mapping to region m equals the
number of reads with a discretized read average i , where i
∈ { 0, 0.25, 0.5, 0.75, 1 } . A read average is calculated by
dividing the number of methylated CpG sites by the total
number of CpG sites on a r ead, wher e only r eads with thr ee
or more CpG sites are used. This heuristic is adopted from
previous methods ( 11 , 12 ). The read average is then rounded
to the closest value i . E.g. a read c from individual n map-
ping to region m with one out of three CpG sites methylated
(and ther efor e a r ead average of 1 / 3) would be r epr esented
as ˆ x nmc = { 0 , 1 , 0 , 0 , 0 } . Hence each read is effecti v ely one-
hot encoded. Summing all one-hot encoded reads that fall
into the same 500 bp r egion r esults in the fiv e counts which
are used as input to the model. This process is depicted in
Figure 1 C. 

The r efer ence data has the same composition as the in-
put data, but instead of a set of counts per individual per
site, the r efer ence data contains a set of counts per cell type
per site. Since the r efer ence data has a different format in
CelFEER compared to CelFiE, the � values take on a dif-
ferent form as well. ˆ βtmi is now the proportion of reads orig-
inating from cell type t and mapping to region m that have
a read average i . Adapting CelFie’s unknown cell type es-
tima tion stra tegy to read averages, the methyla tion values
for an unknown cell type are set to { 0, 0, 0, 0, 0 } in the
r efer ence da ta tha t is passed to CelFEER. This way, the es-
tima ted methyla tion percentages for an unknown cell type
are initialized to { 0.2, 0.2, 0.2, 0.2, 0.2 } . 
As in CelFiE, the model aims to describe the joint distri-
bution of the input ˆ X , the r efer ence ˆ Y , and the latent vari-
able z, which are all assumed to be independent. In order to
describe the full data likelihood, we first split it into three
parts: P ( ̂  X , z, ˆ Y | α, ˆ β) = P ( ̂  X | z , ˆ β) P ( z | α) P ( ̂  Y | ̂  β) . 

The first part, P ( ̂  X | z, ˆ β) , describes the likelihood of ob-
serving the read av erages gi v en that we know what cell type
each read originates from and how the read averages of each
cell type are distributed across the 500 bp windows. In this
likelihood we look at each read c individually, and not yet at
the total counts of all reads in a region. The probability for a
read c at region m to have the value ˆ x mc can be described as a
categorical distribution where each category corresponds to
a possible read average and 

ˆ βtmi is the probability of orig-
inating from cell type t and belonging to category i . This
holds for e v ery indi vidual n : 

ˆ x nmc | ̂  βtm 

, z ntmc 
iid ∼

∏ 

i 

ˆ β
z ntmc · ˆ x nmci 
tmi (1)

The different cell types , individuals , reads and regions are
all assumed to be independent. The log-likelihood of the
first part can hence be calculated as follows: 

log P ( ̂  X | z, ˆ β) = 

∑ 

n,t,m,c 

log P ( ̂ x nmc | z ntmc , ˆ βtm 

) 

= 

∑ 

n,t,m,c 

z ntmc 

( ∑ 

i 

ˆ x nmci log ˆ βmti 

) 

(2)

The second part of the full likelihood describes how likely
it is that a read c originates from each cell type t . The prob-
ability of observing a specific cell type in the cfDNA is gov-
erned by the cell type proportions. This probability can be
described using a Bernoulli distribution: 

z ntmc | αnt 
iid ∼ α

z ntmc 
nt , (3)

which makes the second part of the log-likelihood: 

log P ( z| α) = 

∑ 

n,t,m,c 

log P ( z ntmc | α) = 

∑ 

n,t,m,c 

z ntmc log αnt (4)

The final term is the only term that does not depend on
the latent variables z . The r efer ence data is assumed to be
m ultinomiall y sampled with probabilities ˆ βtmi and a num-
ber of trials equal to the r efer ence r ead depth, which can be
obtained by summing over all read average counts: 

ˆ Y tm 

| ̂  βtm 

iid ∼ ( 
∑ 

i 
ˆ Y tmi )! ∏ 

i 
ˆ Y tmi ! 

∏ 

i 

ˆ β
ˆ Y tmi 

tmi (5)

which makes the third part of the full data likelihood equal
to: 

log P ( ̂  Y | ̂  β) = n 
(

log ( 
∑ 

i 

ˆ Y tmi )! −
∑ 

i 

log ( ̂  Y tmi !) + 

∑ 

i 

ˆ Y tmi log ˆ βtmi 

)
(6)

Because of the presence of the latent variables z , there is
no closed form solution for maximizing the log-likelihood
( 16 ) . Instead, we maximize the expected value of the log-
likelihood under the posterior distribution of these latent
variables using the EM algorithm. The posterior distribu-
tion of the latent variable z ntmc is calculated by a ppl ying the
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ayes rule as follows: 

P ( z ntmc = 1 | ̂  x nmc , ˆ β, α) 

= 

P ( ̂  x nmc | z ntmc = 1 , ˆ β) P ( z ntmc = 1 | α) 

P ( ̂  x nmc | ̂  β) 

= 

αnt 
∏ 

i 
ˆ β

ˆ x nmci 
tmi ∑ 

t αnt 
∏ 

i 
ˆ β

ˆ x nmci 
tmi 

= : ˜ p ntmc ( α, ˆ β) , (7) 

here the distribution of P ( ̂  x nmc | ̂  β) follows from the fact 
hat each read originates from only one cell type t , thus sum- 
ing over all cell types gives the full data distribution of the 

eads. 
Since the read averages are one-hot encoded, there will be 

v e possib le values for the posterior ˜ p ntmc . Following from 

his fact, we can remove the read index c and can start look- 
ng at the total sum of reads that have either of the five pos-
ib le read av erages. For each read c where ˆ x nmci = 1 , ˜ p ntmc 
ill be equal to: 

αnt ˆ βtmi ∑ 

t αnt ˆ βtmi 
: = p ntmi ( α, ˆ β) (8) 

For the expectation step in the EM algorithm, we need 

o define the expectation of the latent variable z over the 
ull data likelihood at iteration j . Let �( j ) and �( j ) equal the 
arameters estimated at iteration j , and p 

( j ) : = p ( �( j ) , �( j ) ).
he expectation, also called the Q function, is deri v ed in 

he supplementary and is defined as follows: 

Q j ( α, ˆ β) : = E z| ̂ x ,α( j ) , ̂ β( j ) log P ( ̂ x , z, ˆ Y | α( j ) , ˆ β( j ) ) 

= 

∑ 

n,t,m,i 

(( p ( j ) 
ntmi ̂  x nmi + 

ˆ Y tmi ) log ˆ β
( j ) 
tmi ) + 

∑ 

n,t,m,i 

p ( j ) 
ntmi ̂  x nmi log α( j ) 

nt 

+ n 
∑ 

t,m 

[ 

log ( 
∑ 

i 

ˆ Y tmi )! −
∑ 

i 

log ( ̂  Y tmi !) 

] 

(9) 

Finally � and 

ˆ β are updated by maximizing Q j ( α, ˆ β) , 
esulting in the following update equations. For the full 
erivation, see the supplementary. 

αnt = 

∑ 

m,i p ntmi ̂  x nmi ∑ 

m,k,i p nkmi ̂  x nmi 
(10) 

ˆ βtmi = 

∑ 

n ( p ntmi ̂  x nmi + 

ˆ Y tmi ) ∑ 

n,i ( p ntmi ̂  x nmi + 

ˆ Y tmi ) 
(11) 

Each run of CelFEER performs the optimization 

0 times independently, because EM is not guaranteed to 

onverge to a global optimum. The log-likelihood is com- 
ared for each restart and CelFEER returns the output 
rom the restart with the highest log-likelihood. In all sim- 
lations, we run CelFEER 50 times to capture the variance 
f the model output. 

arker selection 

he markers define which CpG sites will be used as in- 
ut to the model. The methylation values of CpG sites at 
arker locations should be consistently different for differ- 
nt cell types, such that the methylation values at these sites 
an be used to distinguish between cell types. The mark- 
rs are found using an adaptation of the method used by 

aggiano et al. The complete process of adapting the mark- 
rs is described in the supplementary. The original method 

y Caggiano et al. ( 8 ) works as follows: All CpG sites are
ompared by measuring the distance between the methy- 
ation percentage of one cell type to the median methy- 
ation percentage of all cell types. The 100 markers with 

he largest distance are then selected as markers. Conse- 
uently, the total amount of markers found equals (maxi- 
ally) 100 times the number of cell types. The markers have 

o satisfy three requirements in the original method; the first 
s that a marker is only allowed to be a marker of one cell
ype. If the same CpG site is in the top 100 of two or more
ell types, that site is not used as a marker. The second re- 
uirement is that each cell type should have at least one read 

t a marker location. The last r equir ement enfor ces that the 
edian read depth of all cell types at a marker position 

quals at least 15. 
This last r equir ement, howe v er, still allows the cell type 

or which the CpG site is a marker to have a read depth less
han 15, as long as the median read depth of all cell types 
s sufficient. A CpG site could be a marker for a cell type 
s long as it is covered by at least one read in that cell type.
o remove the possibility of getting this type of marker, we 

ntroduced an extra check to ensure this cell type has a read 

epth at least as large as the median read depth thresh- 
ld. Besides, we included one more requirement to ensure 
arker uniqueness. Instead of comparing only the top 100 

arkers of each cell type, we compared the top 150 markers 
f each cell type. After this comparison, again only the top 

00 markers are used. This extra step prevents the situation 

here a marker is in the top 101 of one cell type and in the
op 99 of another, which could lead to the inclusion of less 
ifferential markers. 
The original method should, in theory, be able to find 

oth hypo- and hypermethylated markers. In practice, it 
nds almost solely h ypometh ylated markers. Comparing 

ach cell type’s methylation percentage to the median 

ethylation percentage can mak e mark ers less distinct, 
s is shown in Supplementary Figure S1c. Therefore, we 
dapted Caggiano et al. ’s method ( 8 ) to compare the methy- 
ation percentage of each cell type to the minimum methy- 
ation percentage of all other cell types (illustrated in Sup- 
lementary Figure S1d). We found that h ypometh ylated 

arkers are best a t dif ferentia ting between cell types (Sup- 
lementary Supplementary Figure S10c–e, Supplementary 

igure S11). 
Originally, CelFiE uses as input, and as r efer ence data, 

he methylation values at the marker CpG sites summed 

ith the methylation values of CpG sites in the ±250 bp 

urrounding the marker sites. We improved CelFiE by first 
umming the methylation values at CpG sites into 500 bp 

indows which are subsequently used to find marker re- 
ions (Supplementary Figure S10a-c). Otherwise, mark- 
rs on r egions ar e found using the exact same approach 

s markers found on single CpG sites. The difference be- 
ween finding markers on single CpG sites and on regions is 
hown in Supplementary Figures S1a and b. As there is no 
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Figure 2. Illustration of the method for determining the distance between 
two cell types using read averages. First, the average of all read averages is 
determined for each cell type. These are then compared to find the distance 
between cell types. 
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r equir ement for the amount of CpG sites in a region and
only for the minimum read coverage of a region, the amount
of CpG sites per marker can differ. Because summing the
CpG sites into 500 bp windows substantially increased the
read coverage at potential marker regions, we increased
the read depth threshold to 150. To find the value for this
threshold, we tried a range of increasing values and com-
par ed the r esulting markers by their distance between cell
types. 

Finding the markers using the read average data largely
follows the same approach. First, each chromosome is split
into 500 bp windows into which the r eads ar e mapped. For
each cell type, the r ead averages ar e av eraged ov er all reads
that map to the same window. The CelFEER markers are
found by comparing these averages. This process is illus-
trated in Figure 2 . For the read avera ges, we a gain optimized
the read depth threshold and observed that the best mark-
ers were found using a read depth threshold of 20. The large
difference with the read depth threshold for the CelFiE in-
put (after summing in 500 bp windows) can be explained
by the large difference in the scale of the input of CelFiE
and CelFEER. This difference in scale is due to the fact
that all CpG sites on a read contribute to a single value in
CelFEER, and to multiple values in CelFiE. 

Since the approach to summarize read averages into bins
is slightly different from the approach used to bin the
CpG count data, we bin the CpG count data in the same
manner as the read averages when comparing CelFiE and
CelFEER. 

Simulations with artificial data 

In order to validate if CelFEER works under the model as-
sumptions, simulations with artificial data were set up as
follows, such that he input and r efer ence data ar e generated
according to the distributions assumed by the model. The
simulations use the same parameters as originally used by
Caggiano et al. in their artificial simulations. In each ran-
dom restart, � is randomly initialized by drawing from a
uniform distribution and normalizing to ensure the values

sum to one. �i is initialized by taking 

Y i ∑ 

j Y j 
. 

We also ran simulations where one or two cell types are
considered unknown, i.e. they are not included in the refer-
ence. In these cases, we created the true cell type proportions
and true cell type methylation as before, but masked the un-
known cell type by setting its r efer ence methylation values
to 0. 

Simulations on WGBS data 

To further evaluate the method, we sim ulated cfDN A data
by mixing WGBS data of different cell types. The cell type
data was obtained from ENCODE ( 17 ) and Blueprint ( 18 ),
and is composed of T-cell CD4, monocyte , macrophage ,
memory B cell, neutrophil, adipose , pancreas , small intes-
tine, stomach and tibial nerve data. The sample identifiers
of the used data can be found in Supplementary Table S1.
The data is a mixture of paired-end and single-end reads,
and consists of the same datasets used by Caggiano et al.
For each cell type, one sample was used to compose the
r efer ence matrix and one to simulate a cfDNA mixture.
Both sex chromosomes were removed, to make the refer-
ence matrix applicable to both sexes and to ensure that ran-
dom methylation due to X chromosome inactivation is not
seen as r elevant. Furthermor e, all SNPs in dbSNP ( 19 ) were
removed. 

To ensure that each dataset contained an equal amount
of r eads befor e cr eating a mixtur e, the total r ead coverage
of each cell type was normalized by dividing by the total
amount of reads of all cell types and m ultipl ying with the
average amount of reads. Next, the methylation values of
each cell type were multiplied with the desired proportion
for that cell type. These proportions were always ensured
to add up to one by dividing each cell type’s proportion by
the sum of all cell types’ proportions. In the original publi-
cation ( 8 ), WGBS mixtur es wer e cr eated in a similar man-
ner, with the difference that we corrected for differences in
read depth among the different cell types before downsam-
pling the r eads. The mixtur es of read averages were created
similarly. First, all read counts were normalized such that
each cell type occurred in equal quantities before m ultipl y-
ing the input with the desired proportions. For both meth-
ods the r efer ence data was not normalized. During parame-
ter convergence, the only equation where the reference data
is used is Equation ( 11 ), where it is transformed to a propor-
tion. The absolute counts of the r efer ence data only matter
in their proportion to the input data in Equation ( 11 ). It
does, howe v er, make sense to not normalize the r efer ence
data here since it is logical that r efer ence data with a higher
coverage is more reliable and should therefore weigh more
in the calculation of �. 

To test the behavior of CelFEER on data partially cor-
rupted by noise, we performed an additional simulation
using se v en different tissues downloaded from ENCODE
(Supplementary Table S1, all tissues except skeletal mus-
cle are used). On the test data, we simulated noise by in-
dependently flipping the status of each CpG site of each
read with probability p , where p takes the values 0 (no noise
added), 1 

1000 , 
1 

100 , 
1 
50 , 

1 
40 , 

1 
30 , 

1 
20 , and 

1 
10 (10% of CpG sites

are flipped). For each value of p , we repeated this 50 times
and calculated the mean correlation across these 50 runs. 

Comparison to other methods 

We benchmarked CelFEER against two other cell type
decomposition methods on simula ted da ta: (i) a simple
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Figur e 3. Sim ula tions on genera ted da ta for one individual. Each boxplot 
displays the estimated proportion of a cell type for replicate model runs. 
The red dots indicate the true cell type proportions for 25 cell types. 
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on-negati v e least squares regression, similar to the ap- 
roach by Moss et al. ( 10 ), and (ii) the method used by
ouseman et al. ( 20 ) that achie v ed the lowest tissue decom-

osition error in the systematic evaluation by Jeong et al. 
 21 ). Houseman’s method (or Houseman for short) uses ar- 
ay data, so we converted the methylated and unmethylated 

ounts used for the CelFiE input to beta-values. Since the 
east squares regression and Houseman essentially both use 
eta-values , like CelFiE does , we used CelFiE’s marker re- 
ions as marker regions for all three methods. Houseman 

as designed to work on single CpG sites, so we used all 
pG sites overlapping with these marker regions as input 

or Houseman. 

ESULTS 

imulations using generated data 

o test whether CelFEER works as expected, we followed 

aggiano et al. in genera ting da ta to simula te cfDNA input 
nd cell type DNA r efer ence data. Using generated data, 
hey showed that CelFiE (i) estimates proportions corre- 
ated to the true cell type proportions, (ii) is able to detect 
mall differences between two groups of individuals and (iii) 
s able to estimate the proportions of unknown cell types 
i.e. cell types that ar e pr esent in the input data, but not in
he r efer ence). 

The results of these simulations are not an accurate reflec- 
ion of the model performance, as the simulations for nei- 
her CelFiE nor CelFEER model any correlation between 

ites. As a result, the input of adjacent sites is not summed 

ogether as is done for WGBS data, e v en though Caggiano 

t al. have shown that the original method does not return 

ensible results on WGBS data without summing adjacent 
ites. The simulations do serve as a way of investigating 

hether CelFEER has the same properties as CelFiE. 

elFEER estimates of g ener ated data corr elate to true pr o- 
or tions . As a first evaluation of the read-based method, 
he performance of CelFEER is compared to the perfor- 
ance of CelFiE on genera ted da ta. The simula tions follow 

he approach of ( 8 ), meaning that 50 replicates were run, 
ach with 25 cell types, 6000 CpG sites and 1 individual. 
he read depth at each CpG site was drawn from a Poisson 

istribution centred around 10. 
To compare the performance, we measured the Pearson’s 

orrelation between the estimated and true cell type propor- 
ions. CelFEER performed slightly worse than CelFiE, with 

 mean Pearson’s correlation r = 0.84 ± 0.05 compared to 

 = 0.87 ± 0.07 for CelFiE (Figure 3 ). The result of CelFiE 

ound by us is, howe v er, not as good as the r esult r eported in
 8 ), where equivalent simulations result in r = 0.96 ± 0.01. 

elFEER and CelFiE do not detect a significant difference 
etw een tw o gr oups. Ev en in indi viduals with cfDNA orig-
nating from aberrant cell types, most of the cfDNA is 
sually deri v ed from hematopoietic origins ( 10 ). In other 
ords, the actual amount of cfDNA from an aberrant cell 

ype can be very small. Ther efor e, it is important to be able
o dif ferentia te between a group tha t does not have this cell
ype and a group that has only a very small amount of it.
o this end, we simulated a cell type that appeared in 1% (a 
roportion of 0.01) of the cfDNA of fiv e indi viduals (group 

) and 0% of the cfDNA of fiv e other indi viduals (group B).
en cell types were used in total on an input of 1000 CpG 

ites. The remaining nine cell types had a proportion drawn 

rom a uniform distribution between 0.5 and 1, which were 
hen normalized such that all proportions summed to one. 

Supplementary Figure S2 shows the estimated propor- 
ion of the rare cell type for both groups, using both CelFiE 

nd CelFEER. Averaged over 50 replicates, CelFiE esti- 
ated a proportion of 0.03 ± 0.01 in group A and 0.025 

0.007 in group B, while CelFEER estimated proportions 
f 0.031 ± 0.01 and 0.026 ± 0.008 for the two groups respec- 
i v ely. A two-sample t-test done for each individual showed 

o significant difference between the average proportions 
stimated by both methods in neither groups ( P > 0.1 for 
ll indi viduals). Moreov er, the proportion of the rare cell 
ype is highly overestimated in both groups. 

elFEER estimates pr opor tions of unkno wn cell types. One 
f the advantages of CelFiE ov er pre vious deconvolution 

ethods is its ability to infer cell type information from the 
ethyla tion sta tes of other individuals. This way it can es- 

imate the cell type proportions of cell types that are not 
resent in the reference data. As in the original paper, we 
enera ted simula ted cfDNA for 1000 CpG sites, 10 cell 
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Table 1. Pearson’s correlation ( r ) between true and estimated cell type 
proportions ( � estimates) and between r efer ence methylation and esti- 
ma ted methyla tion values ( � estima tes) of a simula ted mixture of se v en 
different cell types 

Unknowns Parameter CelFiE r CelFEER r 

0 � 0.86 ± 0.09 0.94 ± 0.04 
� 9.98e − 1 ± 0.03e − 1 0.93 ± 0.03 

1 � 0.60 ± 0.19 0.48 ± 0.25 
� 0.92 ± 0 0.89 ± 0.11 

2 � 0.30 ± 0.34 0.19 ± 0.29 
� 0.85 ± 0.25 0.77 ± 0.26 
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types and 10 individuals at a read depth of 10. In the ref-
erence data, we set the methylation states of the last cell
type to 0 at each CpG site. The true proportion of this
unknown cell type was drawn from a normal distribution
centred around 0.2 with a standard deviation of 0.1, and
clipped if smaller than 0 or larger than 1. All other cell
type proportions were drawn from a uniform distribution
between 0 and 1, and together with the unknown cell type
the proportions were made to sum to 1. This was done for
each individual separately. 

We measured the root mean squared error (RMSE) of
the estimated proportion of the missing cell type. Aver-
aged over all individuals, CelFEER resulted in an RMSE
of 0.0009, and CelFiE in an RMSE of 0.0010. This shows
that CelFEER is also capable of estimating proportions of
unknown cell types in simulated data. 

Results of simulations using WGBS data 

Since there are no ground truth cell type proportions avail-
able for real cfDN A data, we sim ulated mixtures of cfDNA
by mixing WGBS data of different cell types at known
proportions. To this end, we used the same data used by
Caggiano et al. Howe v er, we were limited to using se v en
different cell types because of the availability of read data
at the time of testing. 

Comparison between CelFiE and CelFEER. To compare
the performance of CelFEER to the performance of
CelFiE, we again simulated cfDNA mixtures by artificially
mixing WGBS data of different cell types. Again we fol-
lowed the same approach as CelFiE to create the true cell
type proportions for 100 individuals. The marker regions of
both models were found using their reference data and were
ther efor e differ ent for the two models, since one set of re-
gions was found by comparing CpG site averages (CelFiE)
and the other by comparing read averages of different cell
types (CelFEER). 

Supplementary Figure S3 shows the results of 50 replicate
runs for a randomly selected individual. Without unknown
cell types in the r efer ence data, CelFEER r esults in a corr e-
lation of r = 0.94 ± 0.04 while CelFiE results in a correlation
of r = 0.86 ± 0.09, which is higher than the performance re-
ported in the original CelFiE publication ( 8 ). This increase
in performance arises from our improved method for find-
ing marker regions (Supplementary Figure S6). In short, we
only use h ypometh ylated regions and differentiate between
regions by using the total methylation over a 500bp win-
dow (Supplementary Section S4). Next to CelFiE, the de-
convolution method of Houseman et al. ( 20 ) also benefited
from using our improved set of markers (Supplementary
Table S6). 

We find that the difference in correlation between
CelFEER and CelFiE is significant ( t -test, t (9998) = 58.11,
P < 0.001). To examine whether this would go at the expense
of runtime, we measured the time it takes each method
to run one replicate. On our system, CelFEER requires
∼1.1 times the time needed by CelFiE. 

Since one of the assets of CelFiE is its ability to infer the
proportions of unknown cell types, we expected CelFEER
to outperform CelFiE on this aspect as well. Similar to the
original experiments in ( 8 ), we masked T cells in the refer-
ence data by setting all T cell r efer ence methylation values
to 0. CelFEER highly overestimates the missing cell type
proportion and ther efor e estimates proportions that are less
correlated to the true cell type proportions than CelFiE
does, although CelFiE also ov erestimates considerab ly (see
Table 1 and Supplementary Figure S3). When small intes-
tine cells are masked as well, the correlation between the es-
timated and true cell type proportions decreases e v en more.

In addition to comparing the estimated cell type propor-
tions and their correlation to the true proportions, we in-
vestiga ted the estima ted cell type methyla tion values. We
measur ed the corr ela tion between the estima ted cell type
methylation percentages and the methylation percentages
obtained by normalizing the methylation values of the ref-
erence data to sum to one. It is remar kab le how this corre-
lation is consistently higher for CelFiE (Table 1 ). This im-
plies that the methylation percentages estimated by CelFiE
di v erge only very little from the r efer ence methylation. This
probably means that CelFEER takes the input of other indi-
viduals more into account when estimating the methylation
values, and ther efor e indir ectl y w hen estimating the cell type
proportions. 

Another advantage of CelFiE over previous methods is
that it works with low coverage input data. A higher read
coverage means higher sequencing costs, and it is ther efor e
desirable that CelFEER performs sufficiently on low cover-
age data as well. To test this, we normalized the read cov-
erage of each cell type to equal the total amount of input
regions multiplied with a constant, n , before mixing the cell
types. This way, each cell type covered each region with n
reads on average. For each n ∈ { 2, 5, 10, 50 } the average
correlation over 50 replicates and 100 individuals was mea-
sured. The cell type proportions were generated in the same
manner as before, and no unknowns were estimated. The
relation between the correlation and the coverage is shown
in Figure 4 . We can conclude that for a stable performance,
the coverage should be 10 or higher. Interestingly, the cor-
relation between the estimated and true cell type propor-
tions increases a little for CelFiE when n = 5. It is possi-
ble that lowering the coverage acts as a noise reduction on
the CelFiE input. Even on the lowest coverage, CelFEER
outperforms CelFiE, showing that CelFEER is a suitable
method for low coverage data. 

CelFEER is robust to noisy input. Since WGBS of cfDNA
is inherently noisy, we evaluated the behavior of CelFEER
on noisy data by creating sim ulated cfDN A cell type
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Figure 4. Relation between the input coverage and the correlation between 
the estimated and true cell type proportions. The full range of the correla- 
tions of 100 individuals and 50 replicates is highlighted. 
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ixtur es wher e the methyla tion sta tus of CpG sites in reads
as randomly flipped with probability p . We used CelFEER 

o estimate cell type proportions of these mixtures and cal- 
ulated the correlation between the true and estimated pro- 
ortions. The results, shown in Supplementary Table S2, 
how that CelFEER can still accurately recover cell type 
roportions for values of p below 1 / 30. Its robustness makes 
elFEER suitable for noisy data, such as data from cfDNA 

rofiling. 

elFEER outperforms other beta-value-based methods on 

imulated data. After showing that the read-average-based 

ethod CelFEER outperforms its beta-value-based alter- 
ati v e CelFiE, we wer e inter ested in comparing CelFEER 

o other beta-value-based methods. To this end, we com- 
ared CelFEER to Houseman ( 20 ) and to a non-negati v e

east squares regression implemented by Caggiano et al. ( 8 ) 
o resemble the approach by Moss et al. ( 10 ). Using the
ame conditions as for comparing CelFEER to CelFiE (i.e. 
he same se v en tissues and the same randomly drawn tis- 
ue proportions, Table 1 ), we find that CelFEER outper- 
ormed all methods in terms of correlation between the true 
nd predicted proportions. Specifically, CelFEER achie v ed 

 correlation of 0.94 ± 0.04, Houseman 0.69 ± 0.19 and 

he least squares method 0.73 ± 0.16 (Supplementary Table 
5). Supplementary Figure S9 depicts the proportions for a 

andomly chosen individual, also showing deteriorated per- 
ormances of the least squares regression and Houseman 

pproaches. 

ar k ers f ound on r ead aver ag es ar e differ ent fr om mar k ers
ound on count input. Finally we were interested in whether 
he markers found using read averages differ from the mark- 
rs found using CpG site averages. We hypothesised that 
elFEER works better with markers found on the read av- 

rages of the r efer ence data, on the grounds that CelFEER 

if ferentia tes cell types by their read averages. Additionally, 
s reasoned in the introduction, read averages should be 
ore sensiti v e to dif ferences in methyla tion sta tus between

ell types. We again performed the same experiments, using 

 simulated mixture of se v en different cell types. 
We firstly checked the overlap in markers found using 

oth methods. Of all 700 detected markers found by each 

ethod, 130 markers were found by both. Each of the seven 

ell types has markers that are found by both methods. 
her e ar e no r egions that ar e a marker for one cell type in
ne method and a marker for another cell type in the other 
ethod. 
Using the markers found by CelFiE, CelFEER per- 

ormed similarly with a correlation of r = 0.94 ± 0.04 

Supplementary Figure S4). The correlation between the 
ell type proportions estimated by CelFiE using CelFEER’s 
arkers is r = 0.69 ± 0.21, indica ting tha t the markers 

ound by CelFEER are not suitable for the input of CelFiE. 
v eraged ov er all cell types, the difference in methylation 

ercentage between cell types at CelFiE’s marker locations 
s 0.65 for both the r efer ence and input data, where the ref-
rence data showed slightly less variation with a standard 

eviation of 0.19 compared to 0.20 for the input data. For 
elFEER, this difference is 0.66 ± 0.20 for the input and 

.64 ± 0.22 for the r efer ence. Supplementary Figur e S5 does 
how that for some cell types the variation in the distance 
rom the median is substantially larger for the CelFEER 

arkers. In addition, restricting the marker selection to only 

pG islands or methylation haplotype blocks ( 22 ) lowered 

he performance (Supplementary Material S4, Supplemen- 
ary Tables S3 and S4) 

elFEER is applicable on real datasets 

aggiano et al. showed that CelFiE is able to differenti- 
te between Amyotrophic Lateral Sclerosis (ALS) patients 
nd a control group by the estimated proportion of skele- 
al muscle deri v ed cfDNA. Although it is interesting to see 
f CelFEER is also able to distinguish between the ALS 

nd the control group, it is hard to evaluate the method 

ased on its cell type proportion estimates since there are 
o ground truth cell type proportions availab le. Moreov er, 
hile Caggiano et al. used 28 case and 25 control samples, 
e only used four case and four control samples. The refer- 

nce data consists of all 19 cell types gi v en in Supplementary 

able S1. 
We firstly fully decomposed the cfDNA, thus estimating 

he proportions of each of the 19 cell types present in the 
 efer ence. The fiv e cell types with the highest proportions 
stimated by CelFEER were, in both groups, the following: 
eutr ophil, monocyte, erythr oblast, spleen and eosinophil. 
elFiE estimated similar proportions, but instead of spleen 

t estimated adipose to be the fourth highest in proportion. 
n their own work ( 8 ), howe v er, neither spleen nor adipose,
 ut macropha ge cells are in this top fiv e. Still, these results
ostly correspond to the findings of Moss et al. ( 10 ). The 

ull decomposition can be seen in Supplementary Figure S7. 
Ne xt, we specifically e xamined the skeletal muscle cell 

roportions in both groups. CelFiE estimated an average 
roportion of 5.5e −3 ± 3.1e −3 in the ALS case group, and 

.5e −3 ± 1.1e −3 in the control group. A two-sample t -test 
id not indicate a significant difference between the two 

roups (t(6) = 2.09, P = 0.08). CelFEER, on the contrary, 
id find a significant difference, with an average proportion 

f 1.2e −3 ± 5.4e −4 for the ALS case group and 7.7e −5 ±
e −4 for the contr ol gr oup (Figure 5 A) ( t -test, t (6) = 3.54,
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Figure 5. Results of the decomposition of real cfDNA da ta. ( A ) Estima ted proportions of skeletal muscle cfDNA in ALS patients ( n = 4) and a control 
group ( n = 4). ( B ) Estimated proportions of placenta cfDNA in healthy pregnant women ( n = 8) in their first and third trimester. ( C ) Estimated proportions 
of placenta cfDNA in healthy pregnant women ( n = 8) and pregnant women with GD ( n = 7) in the first trimester of their pregnancies. 
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P = 0.01). Clearly, CelFEER is able to detect small fractions
of rare cell types in cfDNA. 

In addition, we applied CelFEER on a dataset of preg-
nant women along different stages of pregnancy, and with
or without gestational diabetes (GD) ( 14 ). We used the same
r efer ence data as for the ALS dataset, but with the inclu-
sion of placenta tissue DNA (as listed in Supplementary Ta-
ble S1). We then decomposed the cfDNA of eight pregnant
women in their first trimester, and eight pregnant women in
their third trimester. The full cell type decomposition can
be seen in Supplementary Figure S8. We found a signifi-
cant difference between the proportions of placenta cfDNA
(Figure 5 B) between the first and the third trimester ( t -test,
t (14) = 4.7, P = 0.0003). 

Next, we looked a t the dif ference in placenta cfDNA be-
tween healthy individuals and individuals with GD. Del
Vecchio et al. ( 14 ) showed that cfDNA in individuals with
GD contains a higher proportion of placenta compared to
healthy individuals. When comparing the cfDNA of eight
healthy individuals in the first trimester to se v en indi vidu-
als with GD in the first trimester (Figure 5 C), we find that
women with GD have a significantly higher proportion of
placenta cfDNA ( t -test, t (13) = 3.4, P = 0.004). Our find-
ings agree with the decomposition of del Vecchio et al. ( 14 ).
In addition, in accordance with the results of ( 14 ), we found
that the single obese pregnant individual in our dataset had
a low proportion of placenta cfDNA (0.2%). 

Finally, we measured the computational needs of
CelFEER on this real-life cfDNA dataset of pregnant
women. For estimating the proportions of 20 cell types in
16 individuals, CelFEER runs on a single-core machine us-
ing 160MB of RAM in less than 5 min. 

DISCUSSION 

The analysis of cfDNA has some attracti v e properties, such
as the possibility to detect and monitor disease without un-
dertaking invasi v e biopsies ( 2 ). By retrie ving the cell types
of origin of cfDNA, it is possible to obtain a complete
ov ervie w of all cells that shed cfDNA, and e v en of the
amount of cfDNA each cell type yields. An inquiry in the
cell type proportions can indicate the presence of aberrant
cell types, such as tumor cells, in the cfDNA. Yet, detec-
tion of aberrant cell types can be difficult, especially in
early stages of disease. Recent methods use the methyla-
tion sta tes a t CpG sites tha t cause a dif fer ential gene expr es-
sion in different cell types. In this research, we adapted one
such method, CelFiE ( 8 ), to, instead, use differential methy-
lation averages of individual reads. The intuition behind
this approach is that the methylation averages of individ-
ual r eads differ entiate mor e than CpG site averages, since
aberrant r eads ar e almost undetectable when averaged with
healthy reads. This new method, named CelFEER, uses
an expecta tion-maximiza tion algorithm and a r efer ence cell
type dataset to estimate the true cell type proportions of
cfDNA mixtures. We showed that CelFEER performs as ex-
pected on simulated data, and outperforms CelFiE as well
as two other methods that use beta values on cfDNA sim-
ulated using mixtures of WGBS data. Moreover, it can re-
cover biolo gicall y meaningful patterns on real cfDNA data,
as demonstrated by experiments using a dataset containing
ALS patients as well as a dataset of pregnant women. Be-
sides, CelFEER runs efficiently on a modern laptop. 

The performance of a deconvolution method is highly re-
liant on how well input regions are able to dif ferentia te be-
tween cell types. In pursuit of improving the performance of
CelFiE, we improved the original method for finding mark-
ers by a ppl ying the following changes: (i) we determined
dif ferentia tion power of markers based on 500 bp regions
instead of single CpG sites, (ii) we focused on h ypometh y-
lated regions and (iii) we applied stricter rules to marker re-
gions. We showed that the resulting set of marker regions
improves the performance of CelFiE as well as the array-
based method by Houseman et al. ( 20 ). Note that to find
marker regions for CelFEER, we devised a method that
lar gely follo ws the same approach as CelFiE but instead
uses the read averages of the reference data. 

Read averages are formulated in a way that one read av-
erage , i.e. one single value , summarizes multiple CpG sites.
For this reason, the range of the input is much lower for
CelFEER than for CelFiE. In addition, CelFEER filters out
reads covering less than three CpG sites, which decreases
the range e v en mor e. It may be inter esting to investigate
whether allowing for reads with a lower CpG site coverage
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i v es improv ements to the model. Low read quality is one 
f the disadvantages of working with WGBS data, as the 
isulfite conversion is known to be detrimental to the DNA 

 23 ). Another way for compensating for the smaller range 
ould be to increase the amount of samples used in the ref- 
r ence dataset. Curr ently, each r efer ence cell type consists 
f the DNA of a single individual. 
If the r efer ence data does not include all of the cell types

ound in the cfDNA, the proportions of the cell types that 
re included will be overestimated. Since actual cfDNA is 
ikely to contain cell types that are absent from the r efer ence
ata ( 8 ), it is useful to estimate proportions of unknown cell 
ypes. Howe v er, CelFEER curr ently gr eatly over estimates 
he proportions of unknown cell types. It may be possi- 
le to improve this by changing the input for unknown cell 
ypes, as we presently employ CelFiE’s method of setting 

nknown cell types to 0, which may not work for CelFEER. 
n relation to that, we may need to change the initial values 
or the estimated methylation percentages for unknown cell 
ypes. 

Despite the improvements made to the selected marker 
 egions, ther e is potential for more distinct markers, in par- 
icular because the method for finding markers was opti- 
ized for CpG count data and then translated almost ex- 

ctly to read average data. Read averages may, however, re- 
uire a different approach for finding markers, such as the 
witching reads defined by Li et al. ( 12 ). An adequate set of
iffer ential r egions not only improves model performance 
ut also allows for targeted sequencing of these regions, for 
xample using RRBS, and can thus reduce the sequencing 

ost ( 24 ). 
We chose to discretize the read averages into five bins in- 

tead of treating them as continuous values. This substan- 
ially speeds up the method, because it means that we only 

eed to estimate the distribution over five possible read aver- 
ges instead of all possible r ead averages. Mor eover, binning 

nsures we have more evidence for each of the fiv e distribu- 
ions to be estimated. Although the input size of CelFEER 

s larger than the input size of CelFiE (read averages are 
escribed by fiv e counts instead of the two counts used by 

elFiE), it suffers only from a minor increase in runtime. 
ike CelFiE, CelFEER is an efficient method that scales lin- 
arly in the size of the input and r efer ence. Even so, it could
e beneficial to consider CelFEER’s performance when us- 

ng more or less counts. 
In conclusion, with CelFEER, we showed that a cell type 

econvolution method can more sensiti v ely estimate cell 
ype proportions when using read averages instead of CpG 

ite averages, even at a low input read coverage. 

A T A A V AILABILITY 

he raw WGBS reads of the different cell types used in 

his article are freely available on the ENCODE project 
t https: // www.encodeproject.org / and on request to the 
lueprint DAC at the Blueprint project at http://dcc. 
lueprint-epigenome.eu/#/home . 
The following identifiers were used from ENCODE: 

NCFF477GKI, ENCFF064GJQ, ENCFF500DKA, 
NCFF122LEF, ENCFF333OHK, ENCFF497YOO, 
NCFF699KTW, ENCFF318AMC, ENCFF847OWL, 
NCFF753ZMQ, ENCFF266NGW, ENCFF550FZT, 
NCFF435SPL, ENCFF843SYR, ENCFF774GXJ. 
From Blueprint, these identifiers were used: S007G7, 

003VO, S00DCS, S01MAPA1, S002S3, S0022I, S00V65, 
003N3, C006G5, C0010K, S00CP651, S007DD, 
00256, S00BJM, S01E03A1, S002R5, S00390, S006XE, 
017RE51, C002CT, C000S5, S00D71. 
The ALS data from Caggiano et al. is freely 

vailable at NCBI GEO under accession number 
SE164600, of which we used the following sam- 

les: SRR13404367, SRR13404368, SRR13404369, 
RR13404370, SRR13404371, SRR13404372, 
RR13404373, SRR13404374. 
The pregnancy data is freely available at NCBI GEO 

nder accession number GSE154348 of which we used the 
amples GSM4669314, GSM4669316, GSM4669319, 
SM4669321, GSM4669324, GSM4669326, 
SM4669329, GSM4669331, GSM4669334, 
SM4669336, GSM4669339, GSM4669341, 
SM4669344, GSM4669346, GSM4669349, 
SM4669351, GSM4669354, GSM4669356, 
SM4669357, GSM4669359, GSM4669363, 
SM4669368, GSM4669372, GSM4669377, 
SM4669382. 
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