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Abstract
In this thesis a deterministic wave model is used to reconstruct and predict the sea surface motion from
FMCW (Frequency Modulated Continuous Wave) radar data, produced by Radac. The deterministic
model that is used to do this is based on the linear wave theory. The radar is looking horizontally
straight towards the waves in 5 separate beam directions of -40,-20,0, 20 and 40 degrees. Using the
FMCW principle the backscatterd signal is converted into velocity and spatial range information. After
some compensations (current for example) this velocity data can be treated as horizontal component of
the orbital velocity of the wave. By using a least-squares solving approach (the trust-region reflective
algorithm) on these orbital velocities and the expression that holds for them in the linear wave theory
the model can be fitted to the measurements. The result of the least squares solver consists of a set of
parameters for wave amplitude, phase and frequency. With these parameters the deterministic motion
of the sea surface can be computed. This method is tested using artificial data and a generalized one
directional case (using information from 1 beam under assumption of infinitely long-crested waves).
For the experiments with artificial data consisting of waves with 𝐻𝑠 = 2 meters (significant waveheight)
the results are promising. A prediction time of 30 seconds over a range of 150 meters with an average
error of 15 cm in the one directional model (fitted on 10 second data over 384 meters) can be achieved.
For the multi directional model this lies between 20 and 30 seconds with an average error of 25 cm,
depending on the spreading of the waves. Experiments with real data show less impressive results, an
accurate reconstruction of the surface can be given, but the predictive capability is very limited.
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1
Introduction

This thesis is about the reconstruction and prediction of the sea surface based on radar velocity data
coming from a forward looking, phase steered FMCW radar. This data is unique in it’s kind since
this specific measuring technique is only recently implemented in a future commercial product by the
company Radac B.V. from Delft. For this unique data a linear wave model will be constructed to obtain
a deterministic description of the current sea state, whereas statistical descriptions are more common
(but also less accurate). With this deterministic model there is the possibility to not only reconstruct
an entire sea surface but also predict what will happen in the domain at later times.

1.1. Motivation of the thesis
This precise real-time sea description of the sea state which the deterministic wave model provides
can be highly valuable for several sensitive offshore operations. These operations include offshore crew
transfers, float-over installations and helicopter take-offs and landing. With the crew transfers for ex-
ample, people are transported from a vessel to an offshore platform (oil, gas or wind farm). These
need to happen in a safe manner. One of the crucial steps in this process is the moment where a crew
member enters the platform by getting off the boat and onto the platform or vice versa (as seen in
figure 1.2). Casualties could happen in terms of personal injuries or damage to the equipment when
the surface motion is suddenly very big. This limits the factor of operability quite a lot so this should
be prevented. To be certain that this transfer happens in a safe way the wave conditions are checked
before the transit leaves the shore, where a threshold of 1.5 meters significant wave height (the average
height of the highest one-third of all waves measured which is equivalent to the estimate that would be
made by a visual observer at sea) is now taken to determine whether it is safe to do a transfer and travel
there or not. These wave conditions are quite common as can be seen in figure 1.1, where a month of
data is displayed with the significant waveheight near a dutch wind farm. With a precise deterministic
short-term wave prediction this boundary can be pushed, by avoiding the big waves.

1.2. Data
Conventional wave measurements are mostly done by using a wave buoy, pulse radar or X-band radar.
The data that is used for this thesis comes from a phase steered FMCW radar which is quite unique
and is part of the X-band radar-type since it operates at 10 GHz. The difference with the other radars
is that it measures a smaller region with an approximate 10 times higher spatial resolution as compared
to a conventional X-band radar (0.75 meters and 5-10 meters). Thus it is able to capture more details
from the waves. The difference with the pulse radar is that FMCW is considered more accurate since
the signal is continuously send out as opposed to pulse, where a single signal is send out and received.
The FMCW radar from Radac is forwardly looking into the waves over a beam range of 384 meters
and thus faces them almost horizontally in the far grid cells (depending on the mounting height). The
set-up of the radar is that sends out a signal over 5 beams with a total resolution of 50 Hz, this delivers
10 Hz data over the entire spatial grid of the 5 beams. From the back-scattered signal the velocity
and position of the measured object can be extracted. These velocities mainly represent the orbital
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2 1. Introduction

Figure 1.1: Significant waveheight near the Princess Amalia wind farm (Taken from [14])

Figure 1.2: A crew transport vessel positioning itself to a wind turbine (Taken from [16])

motion of the water particles at the sea surface but also captures noise and some other velocities that
are not directly related to the orbital motion. In this thesis the radar itself is in a fixed position, so for
movements of the radar (when placed on a ship) do not have to be accounted for. One of the objectives
of the thesis (before the model can be used) will be to capture the measured phenomena and account
for them as well as possible. With the processed data a model will be used to give a representation of
the surface.

1.3. Models
The sea can be represented in several ways which have been researched for many years. A rough sepa-
ration can be made between models that produce the same outputs given the input (deterministic) and
models that that give different outputs in repeated cases (stochastic). Ocean physics can be described
by both kinds of models. Given the setting of this thesis the focus will lie on the deterministic modeling.
For these deterministic models the analysis of the problem has led to lots of nonlinear wave equations,
which have also been simplified to a linear representation. A recent example of computation with the
nonlinear waves is performed by Simanesew [15] where several representations are used, especially in-
cluding the Modified Non linear Schödinger (MNLS) equation. These showed some promising results
in predicting the surface for long crested waves as opposed to the solution using linear wave theory.
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For matching the model to the data inverse modelling is needed, Simanesew presented least squares
techniques and covariance matrix methods to do this. Use of this linear wave theory is common for a
lot of commercial systems in recent days. An advantage of this representation is that for the link to the
statistical description of the sea it is convenient to use the linear wave theory. These statistical descrip-
tions are set-up by a random phase/amplitude model which can be naturally linked to the linear wave
theory. With this approach several statistical parameters can be extracted from the model, including
the wave spectrum and significant wave height.

Other research in this field has been done by Wijaya [17] using X-band radar data. This research
proposed a model with a dynamic averaging procedure that uses evolved images from past time steps
to reconstruct and predict the surface displacement. By doing so it was able to limit the effects of
shadowing (high waves blocking the signal, leaving holes in the measurements), which has significant
influence due to the nature of the data (having larger time steps and range steps in the data set as
opposed to the FMCW radar data). The idea of averaging solutions will be used in one of the solution
strategies in which a low time resolution is taken.

The deterministic model that will be used in this thesis is based on the linear wave theory. This is done
for both a (generalized) situation in one spatial direction as in a multi directional case in space. To
test this model also artificial data will be used. To generate this also linear wave theory will be used
together with statistical parameters found in the JONSWAP project.

1.4. Objectives
The main goal of this thesis is thus to combine the radar measurements with a deterministic mathe-
matical wave model to give a reconstruction and prediction of the wave surface. To get to this main
goal a number of steps need to be taken to achieve this. These can be grouped as follows.

Main Goals:

• Reconstruct the sea surface by applying linear wave theory

• Predict the sea surface with the parameters found by the reconstruction

Sub Goals:

• Identify the information that is contained by the radar data

• Create an artificial data set which resembles radar data

• Build a deterministic linear wave model in one and multiple directions that can reconstruct the
water surface

• Find the predictive capabilities of this deterministic model

1.5. Thesis structure
The strategy towards these goals is to first describe the mathematical equations that appear in the hy-
drodynamic theory together with the statistical properties of the ocean waves. This is done in chapter
2 to get an understanding on how the water surface can be described and what the relevant parameters
are in this case. The linear wave theory will be derived from the hydrodynamic equations. This will first
be considered for a case where wave travel in one direction and is then extended to multiple directions.
The second part of this chapter is dedicated to the statistical description of the sea state, which is
centered around the random phase/amplitude model. Also some effects of waves in coastal areas is
treated which may be relevant for the data set produced by the radar.

In chapter 3 the data that will be dealt with is presented. First a brief explanation is given of the mea-
suring principle of the FMCW radar. This is followed by some explanation of the effects that are likely
to be captured by the radar signal. These include the water current and shadowing effects. Besides this
real data also an artificial data set is built for the testing of the model.
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After this chapter 4 is dedicated to the description of the mathematical model that is used to recon-
struct and predict with the radar data. The methods that are used include inverse modelling by a least
squares criterion to fit the model to the data.

The results of the modelling methods that are presented in chapter 4 are then discussed in chapter
5 for the one directional and multi directional case. In chapter 6 the most important conclusions are
gathered together with some recommendations for further research.



2
Basic concepts of wave models

In this chapter the basic concepts that are relevant for the research are presented. These involve the
movement (and shape) of the ocean surface, which is essentially the free boundary between water and
atmosphere. There are two ways to describe the state of an ocean. The first way is to apply the available
knowledge about particle movements and interactions by forces of nature. The second way is to observe
the ocean and track the behaviour of it in statistical sense.

This is started by going into the hydrodynamic theory which captures the elementary properties of
water and it’s behaviour when in motion. These are primarily based on the conservation laws that hold
not only for water, but any kind of volume of mass, so this is very broad. This is made more specific for
the ocean by making some assumptions and neglect non linear terms to make the problem linear. Here
the linear wave theory comes up and is discussed further by setting the boundaries of the problem and
solving the system of equations. An important distinguishing here is the splitting of the problem into a
one-directional and a multi-directional situation. The one-directional situation is a simplification of the
multi-directional by assuming that waves travel as infinitely long crests in the other dimension. The
mathematical solution of the water surface and particle velocity can be given for both these dimensions.
This done in sections 2.1 to 2.3.

Besides this hydrodynamic theory a lot of useful information regarding the way in which oceans and
seas behave come from measurements that are done over the years. Based on these researches a lot
of statistical information about characteristics of oceans is gathered. Some of the most important
information that can be gained and applied from this is treated in section 2.4.

2.1. Hydrodynamic theory
In this section the equations that describe the sea state will be derived (based on [4][6][7] and [11]).
These equations are based on the conservation laws to respect the physical conditions. Some assumptions
and idealisations of the ocean water are necessary when considering these conservation laws to make
use of the linear wave theory in a later stage. This is done by neglecting the viscosity frictions and
Coriolis forces, whilst their impact is relatively small compared to other forces. Furthermore it is
assumed that the flow is irrotational (water particles may not rotate around their own axes), the water
is incompressible and has constant density. In the next section The linear wave theory itself will be
treated (for both one and multi directional wave systems).

2.1.1. Conservation of mass
As a starting point the condition that describes the conservation of mass is formulated. So consider a
volume of water 𝑉 in the (𝑥, 𝑦, 𝑧)-space that is bounded by its boundary 𝜕𝑉 . Then the change in time
of the mass enclosed by 𝑉 is equal to the mass that traverses the surface through 𝜕𝑉 . This can be
described by the following equation:

𝜕
𝜕𝑡𝜌𝑤 + 𝜕

𝜕𝑥(𝜌𝑤𝑢) + 𝜕
𝜕𝑦 (𝜌𝑤𝑣) + 𝜕

𝜕𝑧 (𝜌𝑤𝑤) = 0 (2.1)

5



6 2. Basic concepts of wave models

where u = (𝑢, 𝑣, 𝑤) represents the velocity in the 𝑥, 𝑦 and 𝑧-direction resp. and 𝜌𝑤 is the seawater
density. So in a more compact way the equation can be rewritten as:

𝜕
𝜕𝑡𝜌𝑤 + ∇ ⋅ (𝜌𝑤u) = 0 (2.2)

Since it is assumed that the flow of water is incompressible (which is often assumed in ocean modelling),
the following holds: 𝜕𝜌𝑤

𝜕𝑡 = 0. So therefore 2.2 reduces to a simple expression:

∇ ⋅ u = 0 (2.3)

2.1.2. Conservation of momentum
To derive the conservation of momentum equations the second law of Newton is taken as starting point,
this states that the sum of forces acting on a volume equals the mass times the acceleration. This is
written as 𝐹 = 𝑚a. For a volume of ocean water this law can be expressed as follows:

a = 𝐷u

𝐷𝑡 = p + g + c + m (2.4)

where p represents pressure force per unit mass, g represents gravity force per unit mass, c represents
Coriolis force per unit mass and m represents frictional force per unit mass. Furthermore it should
be noticed that the acceleration a of a body is equal to the total derivative of it’s velocity u. The
contributions by c and m can be neglected since these are small in comparison to the others. So
equation 2.4 reduces to:

𝐷u

𝐷𝑡 = p + g (2.5)

This equation 2.5 can be explored further. This is done by interpreting the total derivative 𝐷
𝐷𝑡 , which

gives the following set of equations for the left-hand side of equation 2.5:

⎧{{{
⎨{{{⎩

𝐷𝑢
𝐷𝑡 = 𝜕𝑢

𝜕𝑡 + (u ⋅ ∇)𝑢 = 𝜕𝑢
𝜕𝑡 + 𝑢𝜕𝑢

𝜕𝑥 + 𝑣𝜕𝑢
𝜕𝑦 + 𝑤 𝜕𝑢

𝜕𝑤
𝐷𝑣
𝐷𝑡 = 𝜕𝑣

𝜕𝑡 + (u ⋅ ∇)𝑣 = 𝜕𝑣
𝜕𝑡 + 𝑢 𝜕𝑣

𝜕𝑥 + 𝑣 𝜕𝑣
𝜕𝑦 + 𝑤 𝜕𝑣

𝜕𝑤
𝐷𝑤
𝐷𝑡 = 𝜕𝑤

𝜕𝑡 + (u ⋅ ∇)𝑤 = 𝜕𝑤
𝜕𝑡 + 𝑢𝜕𝑤

𝜕𝑥 + 𝑣𝜕𝑤
𝜕𝑦 + 𝑤𝜕𝑤

𝜕𝑤

(2.6)

This expression can be written more compact as

𝐷u

𝐷𝑡 = 𝜕u
𝜕𝑡 + 1

2∇(u2) + (∇ × u) × u (2.7)

The term rotu = ∇ × u is called vorticity. If it is unequal to zero, the motion is defined as rotational.
As mentioned in the beginning of this chapter it is assumed that the motion is irrotational, so therefore
let rotu = 0. Then equation 2.7 can be expressed as:

𝐷u

𝐷𝑡 = 𝜕u
𝜕𝑡 + 1

2∇(u2) (2.8)

This allows that the velocity u can represented as the gradient of a scalar function, which is the velocity
potential Φ:

u = ∇Φ (2.9)

Now still remains to find an expression for the right hand side term p+g in 2.5. For the pressure force
the following expression holds: p = − 1𝜌𝑤

∇𝑝. For the gravity g it can be assumed that it only works
in the 𝑧-direction, so this gives only a −𝑔 contribution there (where 𝑔 = |g|). So this results in the
following rewriting of 2.5:
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⎧{{{
⎨{{{⎩

𝐷𝑢
𝐷𝑡 = − 1

𝜌𝑤

𝜕𝑝
𝜕𝑥

𝐷𝑣
𝐷𝑡 = − 1

𝜌𝑤

𝜕𝑝
𝜕𝑦

𝐷𝑤
𝐷𝑡 = − 1

𝜌𝑤

𝜕𝑝
𝜕𝑧 − 𝑔

(2.10)

Above equations are called the inviscid Euler equations for incompressible flow. In the compact form
that was used earlier they become:

𝐷u

𝐷𝑡 = −∇ (𝑝
𝜌 + 𝑔𝑧) (2.11)

When the results of the rewriting of 𝐷u
𝐷𝑡 in 2.7 and p+g in 2.11 are put together the following equation

arises:

𝜕u
𝜕𝑡 = −∇ ( 𝑝

𝜌𝑤
+ 𝑔𝑧) − 1

2∇(u2) (2.12)

Using the notation with the potential in 2.9, which is allowed by the earlier stated assumption of
irrotational motion allows to make a further simplification:

𝜕
𝜕𝑡(∇Φ) = −∇ ( 𝑝

𝜌𝑤
+ 𝑔𝑧 − 1

2(∇Φ)2) (2.13)

Above equation can still be seen as a form of the inviscid Euler equations for incompressible flow. By
taking the integral over the spatial domain this equation can be further reduced to:

𝜕Φ
𝜕𝑡 = − 𝑝

𝜌𝑤
− 𝑔𝑧 + 1

2(∇Φ)2 (2.14)

This above equation is better known as the Bernoulli equation for unsteady motion, which thus is valid
for time-dependent flows. This is an alternative version of the classical Bernoulli equation which is only
valid for steady motions, and thus independent of time. Due to the assumption of constant density and
irrotational motion the presented version holds. The linearised Bernoulli equation for unsteady motion
is obtained by (obviously) linearising the result of 2.14:

𝜕Φ
𝜕𝑡 + 𝑝

𝜌𝑤
+ 𝑔𝑧 = 0 (2.15)

2.2. Linear wave theory
In this section the linear wave theory for a single space dimension is derived. Therefore it is assumed
that the waves are periodic with infinitely long crests in the 𝑦-direction. This reduces the wave to be
described by a periodic two-dimensional wave (i.e., there exist only variations in the 𝑥- and 𝑧-directions;
there is no variation in the 𝑦-direction). This will help a lot in simplifying the problem of describing
the sea surface and will be a good starting point to get familiar with some of the basic concepts.

So, starting from the conservation laws that were seen in the previous sections it can be concluded that
by conservation of mass should hold that:

∇u = 0 (2.16)
And by conservation of momentum under the assumptions of irrotational flow and zero contribution
from Coriolis and frictional force as in section 2.1.2. should hold that the velocities have a potential Φ:

u = ∇Φ (2.17)

Combining these two gives the equation that should hold in the whole domain of water:

ΔΦ = 0 (2.18)

To complete the system that needs to be solved the remaining boundaries to be considered are the
water surface and the bottom. These will be derived and described in the following section.
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2.2.1. Determining boundary conditions
For a realistic model it is assumed first that there is no flow of water going through the solid bottom.
So this means that the vertical velocity component equals zero. This can be realized by setting:

𝜕Φ
𝜕𝑧 = 0 at 𝑧 = −𝑑 (2.19)

Another boundary condition arises at the water surface (where 𝑧 = 𝜂(𝑥, 𝑡)), namely that the velocity
of the surface 𝜂 at (𝑥, 𝑡) should match the velocity u of the water at (𝑥, 𝜂, 𝑡) in vertical direction. This
is done by letting:

𝜕Φ
𝜕𝑧 = 𝜕𝜂

𝜕𝑡 at 𝑧 = 𝜂(𝑥, 𝑡) (2.20)

This condition is posed on a varying and yet unknown boundary, so therefore it is helpful to make an
approximation at a boundary that is known, like 𝑧 = 0. Herefore the assumption is made that 𝜂 is
relatively small compared to the depth 𝑑 and that the velocity potential is sufficiently smooth. Then
the term 𝜕Φ

𝜕𝑧 can be approximated by it’s Taylor series at 𝑧 = 0:

𝜕Φ
𝜕𝑧 |𝑧=𝜂(𝑥,𝑡) = 𝜕Φ

𝜕𝑧 |𝑧=0 + 𝜕
𝜕𝑧

𝜕Φ
𝜕𝑡 |𝑧=0𝜂 + ⋯ (2.21)

≈ 𝜕Φ
𝜕𝑧 |𝑧=0 (2.22)

(2.23)

And therefore the boundary condition is set to:

𝜕Φ
𝜕𝑧 = 𝜕𝜂

𝜕𝑡 at 𝑧 = 0 (2.24)

Furthermore, to ensure that the waves in the model are only subject to gravity (so called free waves)
the pressure at the water surface is taken constant, equal to zero. This is called the dynamic surface
boundary condition:

𝑝 = 0 at 𝑧 = 0 (2.25)
The final boundary condition is the one that imposes that the Bernouilli equation for unsteady motion
2.14 should hold on the surface. The linearized version is taken by assumption that the velocities are
relatively small (so the terms of ∇Φ can be discarded). The boundary condition therefore becomes:

𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0 at 𝑧 = 𝜂(𝑥, 𝑡) (2.26)

Which again is defined on the unknown boundary, so by using Taylor expansion as for the vertical
velocity boundary condition the condition can be defined on 𝑧 = 0:

𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0 at 𝑧 = 0 (2.27)

2.2.2. The boundary value problem
When putting together the Laplace equation and the boundary conditions the problem that needs to
be solved looks as follows (also visually presented in 2.1):

⎧{{{{{
⎨{{{{{⎩

∇2Φ = 0, −𝑑 < 𝑧 < 𝜂(𝑥, 𝑡)
𝜕Φ
𝜕𝑧 = 𝜕𝜂

𝜕𝑡 , 𝑧 = 0
𝜕Φ
𝜕𝑧 = 0, 𝑧 = −𝑑

𝑝 = 0, 𝑧 = 0
𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0, 𝑧 = 0

(2.28)
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Figure 2.1: Visual representation of the 1-D linear wave theory equations (taken from [4])

This system has an analytical solution for the surface 𝜂(𝑥, 𝑡) in the following form:

𝜂(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.29)

which is a long-crested harmonic wave travelling in the positive 𝑥-direction. Here 𝑘 = 2𝜋
𝐿 is called the

wave number, 𝜔 = 2𝜋
𝑇 is called the radian or angular frequency and 𝐴 = 𝐻

2 is called the amplitude. See
also figure 2.2

Figure 2.2: An overview of the characterising units a wave mode (taken from [4])

To find an expression for the potential a separation of variables is required:

Φ(𝑥, 𝑧, 𝑡) = 𝐹(𝑥, 𝑡)𝑍(𝑧) (2.30)

This expression should hold for the boundary conditions, so check for: Φ𝑧 = 𝜂𝑡 at 𝑧 = 0:

𝐹(𝑥, 𝑡)𝑍′(0) = −𝜔𝐴 sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.31)

This implies that 𝑍′(0) = 𝜔𝐴 and 𝐹(𝑥, 𝑡) = sin(𝜔𝑡 − 𝑘𝑥 + 𝜓). So the separation of variables becomes:

Φ(𝑥, 𝑦, 𝑡) = 𝑍(𝑧) sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.32)

When this expression 2.32 is substituted into the Laplace equation Φ𝑥𝑥 + Φ𝑧𝑧 = 0 it results in:

− 𝑘2 sin(𝜔𝑡 − 𝑘𝑥 + 𝜓)𝑍(𝑧) + sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) = 0 (2.33)

From which can be concluded that 𝑍(𝑧) should satisfy the following differential equation:

𝑍″ − 𝑘2𝑍 = 0 (2.34)

So 𝑍(𝑧) = 𝑐1𝑒𝑘𝑧 + 𝑐2𝑒−𝑘𝑧, by standard theory of ordinary differential equations. From the boundary at
𝑧 = −𝑑 (where Φ𝑧 = 0) it can then be concluded that the following holds:

𝑍′(−𝑑) = 𝑘𝑐1𝑒−𝑘𝑑 − 𝑘𝑐2𝑒𝑘𝑑 = 0 (2.35)

such that 𝑐1 = 𝑐2𝑒2𝑘𝑑 and thus:
𝑍(𝑧) = 𝑐2(𝑒2𝑘𝑑𝑒𝑘𝑧 + 𝑒−𝑘𝑧) (2.36)
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To solve this expression for the remaining unknown constant 𝑐2 the boundary Φ𝑧 = 𝜂𝑡 at 𝑧 = 0 is
needed again. This now gives:

𝜔𝑎 sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) = [𝑐2𝑘(𝑒2𝑘𝑑 − 1)] sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.37)

Hence:
𝑐2 = 𝜔𝐴

𝑘(2𝑒2𝑘𝑑 − 1) (2.38)

and this gives the expression for 𝑍(𝑧):

𝑍(𝑧) = 𝜔𝐴
𝑘(2𝑒2𝑘𝑑 − 1)(𝑒2𝑘𝑑𝑒𝑘𝑧 + 𝑒−𝑘𝑧) (2.39)

This concludes the derivation of the potential function Φ(𝑥, 𝑦, 𝑡), which thus equals:

Φ(𝑥, 𝑦, 𝑡) = sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) 𝜔𝐴
𝑘(2𝑒2𝑘𝑑 − 1)(𝑒2𝑘𝑑𝑒𝑘𝑧 + 𝑒−𝑘𝑧) (2.40)

Which can be reduced in a nice way using hyperbolic trigonometric functions to obtain:

Φ(𝑥, 𝑡) = 𝜔𝐴
𝑘

cosh[𝑘(𝑑 + 𝑧)]
sinh(𝑘𝑑) sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.41)

Remarkable is that for this derivation none of the dynamic aspects coming from the Bernoulli equation
were necessary. So from this it can be concluded that the potential function Φ holds for forced waves
as well (when the surface wave is harmonic at least).

From the potential function Φ the particle velocities can also be derived by realizing that 𝜕Φ
𝜕𝑥 = 𝑢 and

𝜕Φ
𝜕𝑧 = 𝑤. This gives expressions:

𝑢(𝑥, 𝑡) = −𝜔𝐴cosh[𝑘(𝑑 + 𝑧)]
sinh(𝑘𝑑) cos(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.42)

𝑤(𝑥, 𝑡) = 𝜔𝐴sinh[𝑘(𝑑 + 𝑧)]
sinh(𝑘𝑑) sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.43)

What is remarkable about these velocities is that they describe a closed circular motion for the water
particles. Depending on the depth 𝑑 this motion is circular or elliptic of shape. The smaller the depth,
the bigger the motion in the horizontal plane will be, see also figure 2.3 for this effect.

Figure 2.3: The effects of shallow water conditions on the orbital motion of water particles (taken from [4])

For deep water it holds that 𝑘𝑑 → ∞, meaning that the cosh[𝑘(𝑑+𝑧)]
sinh(𝑘𝑑) term for 𝑢 and sinh[𝑘(𝑑+𝑧)]

sinh(𝑘𝑑) term for
𝑣 will drop from 2.42 and 2.43. This results in:

𝑢(𝑥, 𝑡) = −𝜔𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.44)

𝑤(𝑥, 𝑡) = 𝜔𝐴 sin(𝜔𝑡 − 𝑘𝑥 + 𝜓) (2.45)
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2.2.3. Dispersion relation
A special relation that holds in the linear wave theory is called the dispersion relation. This gives a
relation between the wave number and the radian frequency of the waves. It is derived by imposing the
dynamic boundary condition on the general solution Φ with 𝜂(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜓). This gives
the following, starting from the dynamic boundary condition:

𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0 at 𝑧 = 0 (2.46)

Substituting the known expressions for 𝜕Φ
𝜕𝑡 and 𝜂 gives:

𝜔2𝐴
𝑘

cosh(𝑘𝑑)
sinh(𝑘𝑑) cos(𝜔𝑡 − 𝑘𝑥 + 𝜓) + 𝐴𝑔 cos(𝜔𝑡 − 𝑘𝑥 + 𝜓) = 0 (2.47)

Thus should hold that:
𝜔2

𝑘
cosh(𝑘𝑑)
sinh(𝑘𝑑) = 𝑔 (2.48)

This results in the dispersion relation:

𝜔2 = 𝑔𝑘 sinh(𝑘𝑑)
cosh(𝑘𝑑) = 𝑔𝑘 tanh(𝑘𝑑) (2.49)

Note that this relation is implicit in terms of the wave number, but for cases where the water is very deep
or shallow the dispersion relation can be expressed in explicit way. This can be done since tanh(𝑘𝑑) → 1
for 𝑘𝑑 → ∞ and tanh(𝑘𝑑) → 𝑘𝑑 for 𝑘𝑑 → 0. The dispersion relation is then expressed by 𝜔 = 𝑔𝑘 and
𝜔 = 𝑘√𝑔𝑑 respectively. To put it more intuitively, deep water means that the wave length is relatively
small compared to the water depth and shallow water waves have a relatively large wavelength com-
pared to the water depth. This also effects the orbital motion of the water particles as shown in figure 2.3

To overcome the situation when there is an intermediate depth there are alternative explicit expressions
to denote the relationship between 𝜔 and 𝑘, this was done by Eckhart [2]:

𝑘𝑑 ≈ 𝛼
√arctan(𝛼)

, (2.50)

where 𝛼 = 𝜔2𝑑𝑔 . This term is exact for the limits of deep and shallow water and for all other cases the
error for the wave number 𝑘 is below 5%.

When a constant current is present in the water the linear wave theory will still hold. The waves will
travel in the same manner but faster due to the current. It has a influence on the dispersion relation:

𝜔 = √𝑔𝑘 tanh(𝑘𝑑) + 𝑘𝑈, (2.51)

here 𝑈 represents the current velocity (which in this one dimensional case is in the same direction as
the waves travel)

2.3. Linear wave theory in multiple directions
In this section the linear wave theory is expanded to the multiple direction case with an extra space
dimension (so the assumption of infinitely long crests coming from the 𝑦-direction is discarded and
replaced by any direction in the (𝑥, 𝑦)-space). As a result the equations that were found in the one
directional situation described up until now need an extra entry for the 𝑦-coordinate. Since the conser-
vation laws will still hold the Laplace equation is also still present, but with an extra contribution:

ΔΦ = 𝜕2Φ
𝜕𝑥2 + 𝜕2Φ

𝜕𝑦2 + 𝜕2Φ
𝜕𝑧2 = 0 (2.52)

Also the rest of the derived boundary conditions only need a small modification by replacing the single
𝑥-coordinate into a x = (𝑥, 𝑦)-coordinate. So this leads to the same boundary value problem, but with
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an extra dimension:

⎧{{{{{
⎨{{{{{⎩

∇2Φ = 0, −𝑑 < 𝑧 < 𝜂(𝑥, 𝑦, 𝑡)
𝜕Φ
𝜕𝑧 = 𝜕𝜂

𝜕𝑡 , 𝑧 = 0
𝜕Φ
𝜕𝑧 = 0, 𝑧 = −𝑑

𝑝 = 0, 𝑧 = 0
𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0, 𝑧 = 0

(2.53)

As a consequence of the problem having similar equations it can be concluded that the same solutions
as to the wave equation in one direction will hold. To generalize this for a wave with an extra dimension
the assumption is made that each wave mode is infinitely crested into a particular direction (so not
necessarily into 𝑥-direction, but some direction in (𝑥, 𝑦)-space). Let 𝑠 be the coordinate of the travelling
direction of the wave mode. Then holds:

𝑠 = 𝑥 cos(𝜃) + 𝑦 sin(𝜃) (2.54)

Where 𝜃 represents the angle in the (𝑥, 𝑦)-plane to get to 𝑠. And thus along this travelling direction it
holds:

𝜂(𝑠, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑠 + 𝜓) (2.55)

This gives a general solution:

𝜂(𝑥, 𝑦, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘(𝑥 cos(𝜃) + 𝑦 sin(𝜃)) + 𝜓) (2.56)

When doing the derivation with coordinate 𝑠 for the potential as in last section for the 1-D case the
result becomes:

Φ(𝑥, 𝑦, 𝑡) = 𝜔𝐴
𝑘

cosh[𝑘(𝑑 + 𝑧)]
sinh(𝑘𝑑) sin(𝜔𝑡 − 𝑘(𝑥 cos(𝜃) + 𝑦 sin(𝜃)) + 𝜓) (2.57)

From this potential function the orbital velocities can easily be obtained as before by letting 𝜕Φ
𝜕𝑠 = 𝑢

and 𝜕Φ
𝜕𝑧 . Where the orbital motion is towards 𝑠 with angle 𝜃, which denotes the propagation direction

of the wave mode (instead of 𝑥 or 𝑦):

𝑢(𝑥, 𝑦, 𝑡) = −𝜔𝐴cosh[𝑘(𝑑 + 𝑧)]
sinh(𝑘𝑑) cos(𝜔𝑡 − 𝑘(𝑥 cos(𝜃) + 𝑦 sin(𝜃)) + 𝜓) (2.58)

𝑤(𝑥, 𝑦, 𝑡) = 𝜔𝐴sinh[𝑘(𝑑 + 𝑧)]
sinh(𝑘𝑑) sin(𝜔𝑡 − 𝑘(𝑥 cos(𝜃) + 𝑦 sin(𝜃)) + 𝜓) (2.59)

Alternative descriptions of the wave number can be given by k = (𝑘𝑥, 𝑘𝑦), where:

𝑘𝑥 = 𝑘 cos(𝜃) 𝑘𝑦 = 𝑘 sin(𝜃) (2.60)

Note that in 2.58 and 2.59 the terms for cosh[𝑘(𝑑+𝑧)]
sinh(𝑘𝑑) and sinh[𝑘(𝑑+𝑧)]

sinh(𝑘𝑑) drop when 𝑘𝑑 → ∞ in deep water
conditions, resulting in . For deep water it holds that 𝑘𝑑 → ∞, meaning that the cosh[𝑘(𝑑+𝑧)]

sinh(𝑘𝑑) term for
𝑢 and sinh[𝑘(𝑑+𝑧)]

sinh(𝑘𝑑) term for 𝑣 will drop from 2.42 and 2.43. This results in:

𝑢(𝑥, 𝑦, 𝑡) = −𝜔𝐴 cos(𝜔𝑡 − 𝑘(𝑥 cos(𝜃) + 𝑦 sin(𝜃)) + 𝜓) (2.61)

𝑤(𝑥, 𝑦, 𝑡) = 𝜔𝐴 sin(𝜔𝑡 − 𝑘(𝑥 cos(𝜃) + 𝑦 sin(𝜃)) + 𝜓) (2.62)

When the cosine components of 2.56 are added together they can represent a sea surface. This is
illustrated in figure 2.4.
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Figure 2.4: Representation of a sea surface made up as a superposition of individual long-crested waves

2.3.1. Dispersion relation
The dispersion relation still holds in the same way as with the one-dimensional space when current is
absent:

𝜔2 = 𝑔𝑘 tanh(𝑘𝑑), (2.63)

But with (constant) current it is altered a bit from equation 2.51. This is due to the assumption that
the current U = (𝑈𝑥, 𝑈𝑦) travels along one direction. So the effect of this current on each wave mode
is different depending on the direction of the wave mode (determined by angle 𝜃). This is expressed as
follows:

𝜔 = √𝑔𝑘 tanh(𝑘𝑑) + k ⋅ U, (2.64)

When the wave mode travels in the same direction as the current the dot product equals 𝑘𝑈 as in the
one dimensional case.

2.4. Ocean characteristics
In this section the general aspects of the statistical description of oceanic waters are discussed. These
will give some more insights and limitations to the model parameters for them to be feasible in a prac-
tical sense. Over the years lots of research has been done to understand the motions of oceanic waters
(see also [4]). These have resulted in a detailed description of the statistics that oceans follow. The
aspects that will be treated are the wave spectrum, wave breaking, shoaling and refraction.

2.4.1. Wave spectrum
One of the things that are really useful to characterize an ocean with (and different opposed to the
deterministic approach presented until now) is called the wave spectrum. The aim for this is to statis-
tically describe the state of the sea surface, making an observation of the sea surface a realisation of a
stochastic process. This treatment (as described in [4]) is based on the random-phase/amplitude model,
which states that the ocean surface at any point 𝑥 (in a one-dimensional space for now) is considered
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as a sum of harmonic waves:

𝜂(𝑡) =
𝑁

∑
𝑖=1

𝑎𝑖 cos(2𝜋𝑓𝑖𝑡 + 𝛼𝑖) (2.65)

The underlined terms represent random variables and also 𝑁 should be taken sufficiently large here.
The wave spectrum then relates the frequency to the amplitudes and phases that are present. Since
for most wave records any value between 0 and 2𝜋 is obtained for the phases, this spectrum is often
ignored and assumed to be uniformly distributed. Thus the spectrum will be characterized by the
amplitudes. For this the quantity that is taken, is not the amplitude itself, but the variance of each
wave component 1

2 𝑎2
𝑖 (where the overline means that the average is taken over multiple realizations 𝑀

for this wavemode 𝑖). This is done since it is statistically more meaningful, since the sum of variances
equals the variances of the sum which is not the case when using the amplitudes (and also in the linear
wave theory this variance is proportional to the energy of the waves 𝐸𝑒𝑛𝑒𝑟𝑔𝑦(𝑓) = 𝜌𝑔𝐸𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑓)). The
variance 𝐸 { 1

2 𝑎2
𝑖 } alone is not enough tough, since this only uses discrete frequencies, whilst a real

sea would have all frequencies present. Therefore the density is taken over every frequency interval,
when letting this frequency interval go to zero a continuous spectrum is obtained. The continuous
(one-dimensional) variance density spectrum can be expressed as:

𝐸(𝑓) = lim
∆𝑓→0

1
Δ𝑓

1
2𝑎2 = lim

∆𝑓→0
1

Δ𝑓 𝐸 {1
2𝑎2} (2.66)

The actual distribution of these 𝑎𝑖 is yet undetermined. In the random phase/amplitude model a
Rayleigh distribution is taken for the amplitudes:

𝑝(𝑎𝑖|𝜎) = 𝑎𝑖
𝜎2 exp [− 𝑎2

𝑖
(2𝜎)2 ] , (2.67)

where 𝜎 = √ 𝑝𝑖
2𝐸(𝑎𝑖) as in [4]. For the frequencies a uniform distribution is taken between 0 and 2𝜋. To

get a link with the real wave records it is more useful to base the values of the amplitudes on a observed
spectrum from this. One of the most well-known spectra is called the JONSWAP spectrum [3] (which
is an abbreviation of ‘Joint North Sea Wave Project’), which showed that the waves in the North Sea
(under (near-)idealised conditions) fit the same spectrum. This can be expressed as follows:

𝐸𝐽𝑂𝑁𝑆𝑊𝐴𝑃 (𝑓) = 𝛼𝑔2(2𝜋)−4𝑓−5 exp [−5
4 ( 𝑓

𝑓𝑝𝑒𝑎𝑘
)

−4
] 𝛾

exp[− 1
2 ( 𝑓/𝑓𝑝𝑒𝑎𝑘−1

𝜎 )
2
], (2.68)

with parameters 𝛼 (energy scale parameter), 𝑓𝑝𝑒𝑎𝑘 (frequency scale parameter) and 𝛾, 𝜎 (shape param-
eters). The values of these parameters have been researched and re-calibrated in many studies over the
years, including [cite sources]. Furthermore it should be noticed that the terms left of the 𝛾-term form
what is called the Pierson-Moskowitz spectrum and the 𝛾-term itself is called the peak-enhancement
factor to sharpen the spectral peak that occurs in the Pierson-Moskowitz spectrum. A visualization of
the spectrum is shown in figure 2.5.

Frequency direction spectrum
When the extra space dimension is added to define the spectrum again a large number of propagating
waves is taken. These are represented in the random

𝜂(𝑥, 𝑦, 𝑡) =
𝑁

∑
𝑖=1

𝑀
∑
𝑗=1

𝑎𝑖𝑗 cos(𝜔𝑖𝑡 − 𝑘𝑖𝑥 cos(𝜃𝑗) − 𝑘𝑖𝑦 sin(𝜃𝑗) + 𝛼𝑖𝑗) (2.69)

Due to the dispersion relation the same index can be used for 𝜔 and 𝑘, which makes the random
phase/amplitude model a two dimensional model in terms of frequency and direction. The model
represents a Gaussian process which is stationary in time and homogeneous in 𝑥, 𝑦-space. As in the
case with the single space dimension the variance density spectrum can be derived in a similar way,
resulting in:

𝐸(𝑓, 𝜃) = lim
∆𝑓→0

lim
∆𝜃→0

1
Δ𝑓Δ𝜃𝐸 {1

2𝑎2} (2.70)
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Figure 2.5: Observed spectra in the JONSWAP study, where fetch indicates the distance to the coast (above) and the spectra
normalised with the peak frequency (below) (taken from [4])

This expression can be linked to the one dimensional spectrum by introducing the wave direction
spreading function:

𝐷(𝜃) = 𝐸(𝑓, 𝜃)
𝐸(𝑓) (2.71)

The wave direction spreading function is a function that expresses how the total energy of the earlier
encountered one dimensional spectrum is spreaded out over the extra space dimension. So it also holds
that the integral over the total domain of 𝜃 (from 0 to 2𝜋) of this spreading function equals one to make
sure the total energy remains the same. An illustration of this can be found in figure 2.6.
The best-known and probably most widely used spreading function is defined by the cos2 𝜃-model [13],
which is given by:

𝐷(𝜃) =
⎧{
⎨{⎩

2
𝜋 cos2(𝜃), |𝜃| ≤ 𝜋

2
0, |𝜃| > 𝜋

2
(2.72)

For this model it is important to note that the direction 𝜃 is always taken relative to the mean overall
wave direction.

2.4.2. Wave breaking/white-capping
An other important concept is called white-capping (for deep waters) or wave breaking (for shallow
waters). This is a phenomenon that is difficult to theoretically understand due to highly non-linear
hydrodynamics and also has no precise general definition. This makes it hard to really understand, but
the most reasonable explanation is that it is influenced by wave steepness. This has been theoretically
captured in [12] by stating that the horizontal particle velocity 𝑢 cannot exceed the forward speed of
the wave 𝑐. The formula for this is (where 𝐻𝑚𝑎𝑥 represents the maximum wave height and 𝐿 the wave
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Figure 2.6: The energy directional spectrum

length):
𝐻𝑚𝑎𝑥 ≈ 0.14𝐿 tanh (2𝜋𝑑

𝐿 ) (2.73)

For deep waters (where 𝑑 → 0) the tanh term will drop, so it can be concluded that for these waters
a ratio of 1:7 exists for a feasible wave height compared to wave length. This concept can be used as
an upper bound for the relation between the frequency and the corresponding amplitude in the wave
model.

2.4.3. Shoaling, Refraction
The following effects will appear when waves coming from deep water enter more shallow water. For
the first effect that will take place assume that a wave is travelling straight towards the coast. Then
the effect that will happen is called shoaling. Shoaling is the effect that occurs due to the the dispersion
relation.

𝜔2 = 𝑔𝑘 tanh(𝑘𝑑) (2.74)

Since the wave will progress with the same frequency it had before entering shallow water the phase
speed 𝑐 will also decrease as a consequence of the decrease of the water depth.

𝑐 = √𝑔
𝑘 tanh(𝑘𝑑) (2.75)

When the wave reaches the coast this will mean that the phase speed will go to zero. However the
energy that is contained by the wave should remain equal. As a consequence of this the amplitude of
the wave will rise when the depth of the water becomes smaller. This result is obtained by working out
the energy conservation, which gives as a result:

𝑎𝑠ℎ = √
𝑐𝑔,∞
𝑐𝑔

𝑎∞, (2.76)

where the ∞ index implies the deep water situation, and 𝑐𝑔 denotes the group velocity:

𝑐𝑔 = 1
2 (1 + 2𝑘𝑑

sinh(2𝑘𝑑)) (2.77)

Let the waves now have a direction with an oblique incidence angle towards the coast. A second effect
that is encountered then is called refraction. This is the effect that the wave will change it’s direction
to go perpendicular to the coast due to the decrease in depth and thus decrease in phase speed (due to
shoaling).
It can be explained as follows, since wave crests travel faster in deep water than shallow water a wave
mode will travel over a larger distance in deep water than in shallow water at a given time interval. As
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a consequence of this the wave mode will turn towards the region with shallower water, which is the
coast. This is an universal effect for any kind of wave and also holds in case of an ambient current.
A challenge lies in determining the rate of the directional turning. To determine the angular change
several techniques have been developed, one of them makes use of Snel’s law for a situation with parallel
depth contours. This gives:

sin 𝜃 = 𝑐
𝑐𝑑𝑒𝑒𝑝𝑤𝑎𝑡𝑒𝑟

sin 𝜃𝑑𝑒𝑒𝑝𝑤𝑎𝑡𝑒𝑟 (2.78)

As a result of this it can be concluded that all waves reach the shore at an angle of zero degrees (which
is only theoretical, this not true in general).
What can be concluded for applying the knowledge about shoaling and refraction in a model though is
that for it to work a precise description of bottom topography is needed to find to calculate the impact
it will have.

2.5. Chapter summary
As a conclusion to this chapter the most important concepts for the further proceedings of the thesis
are discussed in this section. With the introduction of the concepts used in linear wave theory a ba-
sis is formed for the solution that will need to be matched with the data. The formulations for the
heave and orbital velocity together with the dispersion relation will mainly be used from this framework.

In the second part of the chapter the statistical description of the ocean is given. This will help limit
the solution space for the parameters used in the linear wave theory, especially to limit the amplitudes
to prevent the event of breaking waves in the model. Also the random/phase amplitude model and
JONSWAP spectrum with the directional spreading will be used for recreating an artificial ocean
surface which is needed when performing a twin experiment.





3
FMCW radar data

The data that will be used to reconstruct the sea surface is coming from a phase steered forward looking
FMCW (which stands for ’Frequency Modulated Continuous Wave’) radar, which is newly manufac-
tured by Radac (for the purpose of wave measuring). In cooperation with TNO this product has been
developed in aim to measure wave characteristics with higher precision then was possible before with
conventional downward looking radars or pulse radars. This makes the data that is available for this
thesis state-of-the-art.

3.1. FMCW measuring principle
With this measuring technique the positions and velocities of the reflections are measured within a
radar bundle. It consists of a part that transmits a signal and one that receives the back-scattered
energy of this signal. This transmitted signal consists of a known stable (sinusoidal or sawtooth-like)
frequency continuous wave that varies in frequency for a period of time. This is done by sending out
waves that start at a prior set minimum frequency and then increase to a set maximum frequency (this
is called a chirp). In some other uses this frequency then also gradually decays back down again in the
same manner. The increase and decrease are then called up- and down chirp and together they form
the chirp. So formally the chirp that is used in the FMCW radar of Radac is only the up-chirp.
Next the transmitted signal is bouncing off the wave surface and returned to the receiving part of the
radar. For a ’frozen’ wave (so without any velocity) the beat frequency 𝑓𝑏 (frequency difference between
the transmitted and received signal at the same time 𝑡) is then computed by doing a (fast-)Fourier
transform on the received signal and then pick the frequency with maximum amplitude. With this
frequency the distance towards the radar can be calculated.

With a propagating wave there is an extra factor that should be taken care of, which is the Doppler
frequency shift. This occurs due to the movement of the wave, which adds an extra frequency contribu-
tion to the returned signal. To deal with this the beat frequency and the Doppler frequency shift need
to be superimposed. From these resulting frequencies the distance and velocity of the object towards
the radar can be obtained. The velocity is obtained for each range cell by taking the velocity with the
maximum reflection strength over the 1024 chirps. It is important to notice that this velocity is in the
direction of the beam going from the surface towards the radar.

3.2. Data set
With this measuring technique a data set is obtained containing the distances to the radar and velocities
towards the radar. The radar was mounted on the Pier in Scheveningen, Netherlands looking straight
into the sea with no interfering objects (see also figure 3.2). Data was recorded during one of the trials
on the 25th of March 2019, this means that it is safe to assume that the recorded data does not contain
any extra movements from the radar itself but only the radar data of it’s wave measurements. So the
data set contains the velocities of the water surface towards the radar. The used radar setting can be
found in table 3.1.

19



20 3. FMCW radar data

Figure 3.1: FMCW measuring principle (taken from [8])

Figure 3.2: Mounting of the FMCW radar on the Pier in Scheveningen (photo’s taken by Filip Saad, Radac)

These velocities contain the orbital velocities 𝑢, but this is not the only information that is contained
in the velocity data. A list of velocities/effects that are contained (and that need to be encountered
for) are:

1. Orbital velocity 𝑢, this is the main component that is measured. Since this is also measured
in the direction of the beam, it needs to be corrected for the angle between the beam and the
horizontal plane. The multiple beam directions that are used require to correct for this azimuth
angle as well. This can be done by choosing a polar grid.

2. Shadowing, this may be present in the data when a beam is not able to reach the through of a
wave or possibly an entire wave because of a big wave in front of it which blocks the beam.

3. Current, as an effect of current the measured velocities will not be centered around a mean of
zero. To effectively deal with the current it’s direction and magnitude needs to estimated and
subtracted from the signal.

4. Wave direction, this might cause the propagation speed of the velocities to be other than
expected. The direction can be included by adjusting the wave numbers 𝑘𝑥, 𝑘𝑦
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Parameter Value Unit
Sample rate 10 MHz

Frequency sweep per chirp 200 MHz
Samples per chirp 1032

Processing blocksize 1024
Bundle width 3.07 degrees

Bundle opening angle 19 degrees
Range resolution 75 cm

Range 384 m
Number of range cells 511

Azimuth beams -40,-20,0,20,40 degrees
Overall scan rate 50 Hz

Scan rate per beam 10 Hz
Mounting height 15 m

Table 3.1: Summary of the parameter settings of the radar

5. Breaking waves, as discussed in the previous chapter waves are able to break when the particle
velocity exceeds the forward wave speed. In that case the radar will measure a relatively high
velocity which is not part of a feasible wave in the linear wave theory

6. Radar noise, these are disturbance that are present due to the processing of the radar itself.
They may cause some unpredictable fluctuations of the values in the data stream.

In the following sections the extra effects that are present in the data set are treated.

3.2.1. Orbital velocity
The set-up of the radar is that it measures in five different directions (-40, -20, 0, 20, 40 degrees) as
seen table 3.1. For each radar scan an output for a fixed number (𝑛) of fixed size (Δ𝑅) range cells is
obtained, let this be given by:

𝑅𝑏 = [1, 2, … , 𝑛]Δ𝑅 (3.1)
This radar beam is narrow in the horizontal plane and wide in the vertical plane. Where it hits the water
surface it has a (mostly small) angle 𝛾 relative to the horizontal plane. This angle can be expressed in
terms of the mounting height (𝐻) and the radius of the beam hitting the water (𝑅𝑤). This becomes:

𝛾 = sin−1 ( 𝐻
𝑅𝑏

) (3.2)

and thus the horizontal radius can be expressed like:

𝑅𝑤 = 𝑅𝑏 cos(𝛾) (3.3)
As a consequence of this the grid will not be equidistant. Furthermore it can be concluded that for the
first grid cells there is no useful measurement as the (real-valued) domain for the inverse sine lies between
-1 and 1. Due to the mounting height of 𝐻 = 12 meters it will cause 𝐻

𝑅𝑏
> 1 for the first 16 entries of 𝑅𝑏.

Besides this compensation for the range coordinates, also there needs to be a compensation for the
model to deal with the data coming from these range cells. For the model the desired input is the
horizontal component of the orbital velocity. For range cells that are located far from the radar in
comparison to the mounting height this holds. For range cells closer to the radar the measured velocity
does not represent the horizontal component of the orbital velocity due to the larger angle between the
radar beam and the horizontal plane. To compensate for this effect the model formula or data needs
to be projected on resp. the radar beam or the horizontal plane. An uncertainty arises here since the
measured data itself is already a projection of the actual velocity onto the beam. For this model it is
useful to transform the data such that is in the horizontal plane. By doing so it can be treated as the
horizontal component of the orbital velocity (𝑢𝑚𝑒𝑎𝑠). So again consider 𝛾, then we can transform the
measured velocity for a particular beam (𝑢𝑏𝑒𝑎𝑚)(where azimuth angle is not yet important) into:

𝑢 = 𝑢𝑏𝑒𝑎𝑚 cos(𝛾) (3.4)
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3.2.2. Shadowing effects
The first effect that is present is called the shadowing effect. Shadowing occurs when a high wave blocks
an area behind it such that the radar beams are not able to reach those areas. The size of shadowed
areas depend on a few factors (or combinations of those). First one is the height of the wave blocking
the radar beam, where a higher wave will block a larger area. Second is the distance of the wave that
shadows an area towards the radar. When the high wave is located at a distance far from the radar
it will block more area behind it. This is due to radar beam making less of an angle with the surface
at distances further away. A third factor is that of the waves that are present behind the wave that
shadows. E.g. if there is a pretty steep and high wave close behind the wave that creates a shadow
the shadowed area is smaller than when the waves behind the wave that creates shadowing are small
in amplitude.
When observing the data set that the radar gives, there is a value for each grid cell, so this would
intuitively imply that there is no shadowing present. But when an inversion is done (by fitting a wave
model to this data) it can be shown that shadowing is present. An example of this is give in figure 3.3,
here it is visible that there are three shadowed areas. Hence, the data that the radar gives for these
areas should not be trusted.

Figure 3.3: Example of the shadowing effect with the radar mounted at 15 meters above the surface. Rays indicating the beams
from the radar where shadowing occurs.

These areas are identified by first finding the local peaks in the computed heave information since the
cells behind those peaks are candidates for the shadowing effect. Then lines are drawn from the radar
position towards each of these peaks. A few of these lines can be seen in figure 3.4.

Figure 3.4: Beams from the radar towards some of the local maxima of the wave surface for shadowing identification

The number of crossings between the line and the surface then suggests whether shadowing is present,
if the number of crossings is equal to one there is no shadowing effect from this wave (as with the red
line in figure 3.4). If the number of crossings is higher than one there is a shadowed area behind this
wave (as with the yellow and purple line in figure 3.4). For the waves where the presence of shadowing
is identified the slope of the corresponding line is increased until the number of crossings becomes two.
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The xgrid values between these two crossings form the shadowed area and is excluded from further
computations.

3.2.3. Current velocity and other effects (due to coastal water)
When one takes a look at the velocities plotted over the spatial grid (see figure 3.5) it should be noticed
that these velocities have a mean value that is higher than zero. If the radar would solely capture the
orbital velocities it is expected that these would be centered around zero. There are multiple reasons
that would explain why this occurs, which also makes it hard to distinguish what the contribution of
one particular effect is.

Figure 3.5: Example of the data coming from the beam with azimuth angle of zero degrees

The shadowing effect that is discussed in the previous subsection could be one of the reasons that
contributes to the higher velocities, since data from a shadowed area is considered false and this infor-
mation is often containing the negative velocities (since these are found in the wave trough). So since
the velocities of these wave troughs are measured inaccurately it is hard to say whether they should
actually be lower (or higher).
Another main contribution for the high mean velocity could be the current of the sea. With current
direction towards the shore higher velocities are obtained by the radar. To estimate the effect the current
has assumptions need to be made. If the area is assumed to have constant depth and the current itself
is constant in space and time the waves will still behave according to the linear wave theory.

3.2.4. Disturbances by the radar itself
The data also has some disturbances that are due to the radar itself and not necessarily coming from
the water surface. This can be seen in figure 3.6. The signal after about 4 minutes shows periodic
behaviour for the mean velocity over the entire grid. This enhances the idea that the current during
this period of time is constant. Therefore the linear wave theory is likely to still be valid in this case.

Figure 3.6: The average of the velocities over the entire spatial range plotted over time with azimuth angle equal to zero
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3.3. Artificial data set
To test the model that will be built also an artificial environment needs to be created. By doing this
the performance of the model can be evaluated in a precise way, whereas the real measurement data
contains some irregularities, making it harder to distinguish whether the errors/faults are a consequence
of the model performance or the data set. So there is a need for this artificial data set, and the more
realistic it is, the better the model can be tuned before facing the real data. To do so a sea is created
which resembles the North Sea, where the real data also comes from. To generate such a sea surface
in a one dimensional case the JONSWAP spectrum [3] is used, which is also discussed in the previous
chapter. When the extra space dimension is taken into account the cos2 𝜃 directional spreading is used.
The waves are then generated by using a superposition of the solutions 2.29 and 2.58 of the linear wave
theory derived in chapter 2. For this artificial data a deep water situation is used.

3.3.1. One directional data
This wave field is generated based on three input parameters: the significant wave height 𝐻𝑠 (recall:
mean of the highest one-third of waves in the wave record), peak period 𝑇𝑝 and a frequency spectrum
of the waves Ω. The code then generates amplitudes, phases and spectral values for the wave field.
The number of wave components is determined by the number of input frequencies in Ω. Combining
the input frequencies, amplitudes and phases into a sum of sine components allows one to recreate a
(one-dimensional) sea surface and the corresponding orbital velocities as in the following equations.
Here the wave numbers 𝑘𝑖 are determined by the dispersion relation.

𝜂(𝑡) =
𝑁

∑
𝑖=1

𝐴𝑖 cos(𝑤𝑖𝑡 − 𝑘𝑖𝑥 + 𝜓𝑖) (3.5)

𝑢(𝑡) =
𝑁

∑
𝑖=1

−𝜔𝑖𝐴𝑖 cos(𝑤𝑖𝑡 − 𝑘𝑖𝑥 + 𝜓𝑖) (3.6)

So this surface elevation and horizontal orbital velocity is in exact agreement with the derived formulas
in the last chapter. This wave field is generated for a spatial grid and time steps equal to the real data.
A realization of this surface can be found in figure 3.7. The realization of the orbital velocities is found
in figure 3.8. These are generated with the parameter settings found in table 3.2.

Parameters Values Unit
𝑇𝑝 (peak period) 6 𝑠

𝐻𝑠 (significant wave height) 2 𝑚
𝜔𝑐 (cut-off frequency) 33𝑇 −1

𝑝 𝐻𝑧
𝜔 (frequency spectrum) linspace(0.1, 𝜔𝑝, 200) 𝐻𝑧

Table 3.2: Summary of the input parameters for an one directional artificial data set

Figure 3.7: Realization of the water surface generated by the JONSWAP spectrum
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Figure 3.8: Realization of the horizontal orbital velocity generated by the JONSWAP spectrum

3.3.2. Multi directional data
For the data set with the extra space dimension also the JONSWAP spectrum is used, but with an
added module to simulate the wave directions according to the cos2 𝜃-model. Then this wave field is
generated based on four instead of three input parameters: the significant wave height 𝐻𝑠 , peak period
𝑇𝑝, frequency spectrum of the waves Ω and directions 𝜃 for which the output needs to be generated
(where the main direction is always with zero angle). The code then generates amplitudes, phases and
spectral values for the wave field for the directions defined by 𝜃. Combining these input frequencies,
amplitudes and phases into a sum of sine components allows one to recreate a sea surface and orbital
velocities as described below.

𝜂(𝑥, 𝑦, 𝑡) =
𝑀

∑
𝑗=1

𝑁
∑
𝑖=1

𝐴𝑖𝑗 cos(𝜔𝑖𝑡 − 𝑘𝑖(𝑥 cos(𝜃𝑗) + 𝑦 sin(𝜃𝑗)) + 𝜓𝑖𝑗) (3.7)

𝑢(𝑥, 𝑦, 𝑡) = −
𝑀

∑
𝑗=1

𝑁
∑
𝑖=1

𝜔𝑖𝐴𝑖𝑗 cos(𝜔𝑖𝑡 − 𝑘𝑖(𝑥 cos(𝜃𝑗) + 𝑦 sin(𝜃𝑗)) + 𝜓𝑖𝑗) (3.8)

Here 𝑀 denotes the number of wave directions that is taken by the user for 𝜃 and 𝑁 denotes the number
of cosine components per wave direction. For the situation to mimic the radar observations this above
equation is not the best representation though. To improve this the switch is made to polar coordinates,
where 𝑥 = 𝑟 cos(𝛾) and 𝑦 = 𝑟 sin(𝛾). This is a more natural choice since the measured data is coming
from a radar at a fixed location where it measures over a 1-D distance range with a certain angle, which
is naturally represented by polar coordinates. Let furthermore:

𝑘𝑥,𝑖𝑗 = 𝑘𝑖 cos(𝜃𝑗) 𝑘𝑦,𝑖𝑗 = 𝑘𝑖 sin(𝜃𝑗) (3.9)

Then the wave field is calculated as follows:

𝜂(𝑟, 𝛾, 𝑡) =
𝑀

∑
𝑗=1

𝑁
∑
𝑖=1

𝐴𝑖𝑗 cos[𝜔𝑖𝑡 + 𝜓𝑖𝑗 − 𝑟(𝑘𝑥,𝑖𝑗 cos(𝛾) + 𝑘𝑦,𝑖𝑗 sin(𝛾))] (3.10)

𝑢(𝑟, 𝛾, 𝑡) =
𝑀

∑
𝑗=1

𝑁
∑
𝑖=1

−𝜔𝑖𝐴𝑖𝑗 cos[𝜔𝑖𝑡 + 𝜓𝑖𝑗 − 𝑟(𝑘𝑥,𝑖𝑗 cos(𝛾) + 𝑘𝑦,𝑖𝑗 sin(𝛾))] (3.11)

This is also done for a spatial grid and time steps equal to the real data. The other parameter settings
can be found in table 3.3. A realization of this moving surface can be found in figure 3.9. This is a
visualisation over a Cartesian grid which is nice to show the behaviour of the entire surface. For the
model use it is more convenient to use the beam directions and make the plots in a dimension lower.
Then the visualisation is used as in figure 3.10.
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Parameters Values Unit
𝑇𝑝 (peak period) 6 𝑠

𝐻𝑠 (significant wave height) 2 𝑚
𝜔𝑐 (cut-off frequency) 33𝑇 −1

𝑝 𝐻𝑧
𝜔 (frequency spectrum) linspace(0.1, 𝜔𝑝, 200) 𝐻𝑧
𝜃 (directional spreading) linspace(− 𝜋

8 , 𝜋
8 , 5) radians

Table 3.3: Summary of the input parameters for the multi directional artificial data set

Figure 3.9: Realisation of an artificial sea surface with directional spreading

Figure 3.10: Realisation of an artificial sea surface with directional spreading in the 5 beam directions

3.3.3. Gaussian white noise
As a next step towards using the model on a real data set some Gaussian white noise is added to the
signal. By doing so an extra challenge is added for the model to solve, in the real data the data also
gets disturbed by multiple effects as discussed earlier this chapter.
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Figure 3.11: Realisation of an artificial sea surface with directional spreading in the 5 beam directions

White noise has the property that the mean of this signal is time independent and equal to zero for all
timesteps, so 𝐸[𝑊(𝑛)] = 0. Furthermore the individual entries are normally distributed and uncorre-
lated.

This was implemented with the use of the MATLAB function awgn. This allows the user to input an
incoming signal and a desired signal-to-noise ratio (SNR), which is the ratio of signal power to noise
power, and produces an output of the original signal with the white noise added to it. A visualization
of this sea in one direction can be found in figure 3.12. The orbital velocities are shown in figure 3.13
for the one directional model.

Figure 3.12: Realization of the water surface generated by the JONSWAP spectrum with Gaussian white noise (SNR 10)

Figure 3.13: Realization of the horizontal orbital velocity generated by the JONSWAP spectrum with Gaussian white noise
(SNR 10)





4
Reconstructing wave characteristics

The goal of this thesis is to able to reconstruct waves (and with that information predict incoming
waves), based on the information the FMCW radar gives us from it’s high frequency measurements
in multiple directions (which are discussed in Chapter 3). The assumption that was made for this is
that the waves can be characterized by using the linear wave theory that was treated in Chapter 2.
This means that the data coming from the radar can be represented as a superposition of individual
long-crested wave components:

𝜂(x, 𝑡) =
𝑛

∑
𝑖=1

𝐴𝑖 cos(𝜔𝑖𝑡 − ki ⋅ x + 𝜓𝑖) (4.1)

and thus that the orbital velocity is represented by a summation of individual components that have
the same parameters as in equation 4.1:

𝑢(x, 𝑡) = −
𝑛

∑
𝑖=1

𝜔𝑖𝐴𝑖 cos(𝜔𝑖𝑡 − ki ⋅ x + 𝜓𝑖) (4.2)

To retrieve these parameters whilst knowing what the result is from the measurements inverse modelling
is used. To do this first the problem is reduced to an one directional situation to test the concepts of
fitting to the data and is later expanded to the multi directional situation. Note that in 4.2 the deep
water representation is taken, which holds for the artificial data by design.

4.1. Inverse modelling
In this section the mathematical methods of the modelling that were needed are discussed. These
methods will be needed to match the mathematical formulation for the ocean waters to the data that
will be available. By the linear wave theory it is assumed that the orbital velocity data coming from
the radar can be represented as in 4.1.
Where the challenge lies in finding the best or ‘true’ parameter values of 𝐴𝑖, 𝜔𝑖,ki and 𝜓𝑖 to fit the sum
of cosine components to the measured 𝑢𝑚𝑒𝑎𝑠. Such problems of finding parameters whilst knowing the
value that the function they appear in should equal is called inverse modelling. The method used to
solve the problem is presented in this section. Besides the inverse modelling also dynamic averaging
was used for the sequential modelling method, this is discussed in section 4.1.2.

4.1.1. Least squares solving algorithms
For this problem of parameter estimation a least squares solving method is one of the suited choices.
Let 𝛽 denote the vector containing the parameters that need to be fitted to the data set, so let 𝛽 =
[𝐴1 … 𝐴𝑛, 𝜔1 … 𝜔𝑛, 𝑘1 … 𝑘𝑛, 𝜓1 … 𝜓𝑛] in this setting. The goal of the methods then is to minimize the
sum of squared residuals 𝑆(𝛽):

𝑆(𝛽) = ||r(𝛽)||22 =
𝑚

∑
𝑗=1

𝑟2
𝑗 (𝛽), (4.3)

29
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where 𝑚 represents the number of measurements the chosen function needs to fit on and where r(𝛽) =
[𝑟1(𝛽), … , 𝑟𝑚(𝛽)] represents the vector containing residuals and where the residuals are given by:

𝑟𝑗(𝛽) = 𝑢𝑚𝑒𝑎𝑠(x𝑗) − 𝑢𝑓𝑖𝑡(x𝑗, 𝛽) (4.4)

The input for x𝑗 could be of various sizes and dimensions (including multiple space dimensions and with
or without the time dimension), depending on the purpose of the fit. As long as there is a measured
value for this x𝑗 this will not give any complications.

In the following two subsections two kinds of least squares solving algorithms are treated. Both of them
are contained in the Matlab curve fitting toolbox, making the execution of how there are implemented
as efficient as it could be.

Levenberg-Marquardt algorithm
The first algorithm is the Levenberg-Marquardt algorithm[9][10]. This can be seen as an improved version
of the basic Gauss-Newton algorithm, combining it with the Gradient Descent method. To understand
the concept of Levenberg-Marquardt a brief explanation of this method is given first. Consider the
problem described in the beginning of section 4.1.1.
The Gauss-Newton method finds an optimal 𝛽∗ by updating it iteratively as follows:

𝛽𝑙+1 = 𝛽𝑙 + (J⊤
𝑢J𝑢)−1J⊤

𝑢r(𝛽𝑙) (4.5)

where J𝑢 stands for the Jacobi matrix of 𝑢𝑓𝑖𝑡, so this means:

(J𝑢)𝑖𝑗 = 𝜕𝑢𝑓𝑖𝑡(x𝑖, 𝛽𝑙)
𝜕𝛽𝑗

(4.6)

For the algorithm it is important that 𝑚 > 3𝑛 to find a (unique) solution, so the number of cosine
terms is limited by the number of grid points that give data to fit on. The algorithm can be stopped
when the difference in improvement becomes to small, so when:

|𝛽𝑙+1 − 𝛽𝑙| < 𝜖

or when a certain amount of iterations has been done. This could be a good option when the time that
is reserved for calculating this optimization is limited.

The Levenberg-Marquardt algorithm is an improved version of the Gauss-Newton method, since this
method uses a weighted step size (which results in faster convergence and makes it handle ill conditioned
problems). This algorithm finds an optimal 𝛽∗ by updating as follows:

𝛽𝑙+1 = 𝛽𝑙 + (J⊤
𝑢J𝑢 + 𝜆𝑙 diag(J⊤

𝑢J𝑢))−1J⊤
𝑢r(𝛽𝑙) (4.7)

where 𝜆 represents the damping parameter. For large values of this 𝜆 this makes sure that:

J⊤
𝑢J𝑢 + 𝜆𝑙 diag(J⊤

𝑢J𝑢) ≈ 𝜇I (4.8)

which as a consequence will make the update term for 𝛽𝑙 similar to the one used in a gradient descent
method. For small values of 𝜆𝑙 the following happens:

J⊤
𝑢J𝑢 + 𝜆𝑙 diag(J⊤

𝑢J𝑢) ≈ J⊤
𝑢J𝑢 (4.9)

which as a consequence will make the update term for 𝛽𝑙 similar to the one used in a Gauss-Newton
method. Also this algorithm combines the abilities of both methods (i.e., convergence from any initial
state as in the case of gradient descent, and the rapid convergence near in the neighborhood of the min-
imum error as in the case of Gauss-Newton method) while avoiding their drawbacks. The disadvantage
of this method however is that it cannot take lower and upper bounds into account for the parameters.
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Trust-Region reflective algorithm
The algorithm that is used eventually is called the trust-region reflective algorithm, which itself can be
seen as an evolution of the Levenberg-Marquardt method (with the possibility of setting bounds for the
parameters). The idea of the Levenberg-Marquardt method is to handle possible ill-condition of J𝑢 by
introducing the damping parameter 𝜆. This can also be seen as preventing that ||𝑑||2 grows too large,
where 𝑑 equals the update term:

𝑑 = (J⊤
𝑢J𝑢 + 𝜆 diag(J⊤

𝑢J𝑢))−1J⊤
𝑢r(𝛽) (4.10)

This 𝑑 is also a solution of the following minimization problem:

min
𝑑∈𝑅

||r(𝛽) + J𝑢𝑑||22 (4.11)

s. t. ||𝑑||2 ≤ Δ𝑙 (4.12)
where Δ𝑙 is a positive scalar. The addition of the constraint 4.12 in this minimization problem makes
that the Levenberg-Marquardt algorithm can be seen as similar to a trust-region algorithm. In every
iteration the algorithm tries to improve within a bounded region from where the algorithm is at the cur-
rent moment (like 4.12 (which will be called the trust region)). However a trust-region algorithm updates
the bound Δ𝑙 per iteration and not 𝜆𝑙, making trust-region algorithms differ from what is treated so far.

The rough idea of the trust-region method goes as follows:

1. First a trust-region subproblem is formulated,

2. after this the trial step 𝑠 is determined by solving this subproblem.

3. The current 𝛽 then gets updated when 𝑆(𝛽 + 𝑠) < 𝑆(𝛽), if this is not the case then 𝛽 remains the
same.

4. The trust region radius Δ is updated

These steps are repeated until convergence of the 2-norm of the gradient of 𝑆(𝛽) is reached. Now the
algorithm will be described in a bit more detail.

So first the subproblem needs to be formulated, this is set up as follows: Consider again the uncon-
strained minimization problem that was originally encountered, so minimize 𝑆(𝛽) (the squared sum
of residuals r(𝛽)). Then at iteration 𝑙 the trail step will be computed by solving this trust-region
subproblem:

min
𝑑∈𝑅

𝜙𝑙(𝑑) = (𝑔𝑙)⊤𝑑 + 1
2𝑑⊤𝐵𝑙𝑑 (4.13)

s. t. ||𝑑||2 ≤ Δ𝑙 (4.14)
Here 𝑔𝑙 = ∇𝑆(𝛽) represents the gradient and 𝐵𝑙 represents the Hessian matrix of 𝑆(𝛽). Furthermore
Δ𝑙 > 0 is called the trust region radius. 𝜙𝑙(𝑑) then represents a quadratic approximation of 𝑆(𝛽). Let
𝑠𝑙 be a solution of this subproblem, then it needs to be decided whether this trial step is acceptable
and if the trust region radius needs to be adjusted. The trial step is accepted when 𝑆(𝛽𝑙 + 𝑠𝑙) < 𝑆(𝛽𝑙),
then the new parameter set becomes 𝛽𝑙+1 = 𝛽𝑙 + 𝑠𝑙; otherwise, the current parameter set 𝛽 remains the
same and Δ𝑙 is shrunk and the trial step computation is repeated.

Solving the trust-region subproblem can be very challenging, and may require multiple factorizations of
the Hessian matrix. This can be computationally expensive, thus an approximation technique is used.
The approximation approach to compute the trial step 𝑠𝑙 is to restrict the trust-region subproblem to
a two-dimensional subspace 𝑆. The 2-dimensional search method is to minimize the objective function
in the subspace 𝑆 spanned by the steepest direction (let this be 𝑠1) and the Newton step (let this be
𝑠2) within the trust region. This 2-dimensional search method was first suggested by Schultz, Schnabel
and Byrd[1].
The philosophy behind this choice of 𝑆 is to force global convergence (via the steepest descent direction
or negative curvature direction) and achieve fast local convergence (via the Newton step, when it exists).
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Both the Levenberg-Marquardt and trust-region reflective algorithm are available in the Matlab lsqcurve-
fit routine. For the trust-region reflective algorithm the condition can be imposed that the parameters
must be within certain bounds. This property will be very useful for the use of the model to exclude
breaking waves from the solution.

4.1.2. Dynamic averaging method
Besides the inverse modelling another useful technique may be to average the solutions over time as
suggested by Wijaya [17]. In that research a pulse radar was used, which has less updates over time,
bigger grid cells and a larger area surrounding the radar itself where no measurements are available
(compared to the FMCW radar data). Here an averaging of the reconstructed sea state was suggested to
compensate for the shadowing and other inaccuracies of the measurements. This was done by evolving
the reconstructions of two previous time steps and average them with the reconstruction of the current
time step (where these time steps are in the range of 2 seconds). The weights that were chosen by
Wijaya were not motivated in depth, though. The 3 evolved reconstructions were weighted equally and
further averaged with an ongoing simulated sea multiplied with a characteristic function. This charac-
teristic function denoted areas where the sea could not be observed, making the radar measurements
useless for that area. This approach proved to be successful and therefore a similar approach for this
problem could be beneficial when considering a model that generates solutions for several time steps
that are further apart. The idea of Wijaya was taken and altered in a way that would suit the model
of this thesis better. This is done by letting the weights depend on the quality of the evolved past
reconstruction.

The averaging that is chosen for this thesis is to also take the two previous fits to measurement 𝑡 −
𝑑𝑡, 𝑡 − 2𝑑𝑡 (to be referred to as 𝑡−1, 𝑡−2) and the current fit to a measurement 𝑡0. The weight 𝑤(𝑡−1)
of solution 𝑢𝑓𝑖𝑡(x, 𝑡, 𝛽−1) with parameter set 𝛽−1 = 𝛽(𝑡−1) will depend on the MSE of that 𝑢𝑓𝑖𝑡 with
𝑢𝑚𝑒𝑎𝑠 at the current time (so evolved over one or two time steps (between the fits)). So this becomes:

𝑤(𝑡−2) = 1
MSE(𝛽−2, 𝑡0)

𝑤(𝑡−1) = 1
MSE(𝛽−1, 𝑡0)

𝑤(𝑡0) = 1
MSE(𝛽0, 𝑡0)

(4.15)

Where the MSE is computed for entries 𝑗 = −2, −1, 0 as:

MSE(𝛽𝑗, 𝑡0) = 1
𝑀

𝑀
∑
𝑖=1

(𝑢𝑓𝑖𝑡(𝑥𝑖, 𝑡0, 𝛽𝑗) − 𝑢𝑚𝑒𝑎𝑠(𝑥𝑖, 𝑡0))2 (4.16)

This gives the averaged solution:

𝑢𝑓𝑖𝑡(x, 𝑡, 𝛽0, 𝛽−1, 𝛽−2) =
0

∑
𝑗=−2

𝑤(𝑡𝑗)
𝑤(𝑡−2) + 𝑤(𝑡−1) + 𝑤(𝑡0)𝑢𝑓𝑖𝑡(x, 𝑡, 𝛽𝑗) (4.17)

This method will be used for the cosine-by-cosine sequential fit for the one directional model that is
presented in the next section that describes the way in which the model used in Matlab works.
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4.2. Fitting waves to measurements
In the last section the mathematical methods were presented to generate a fit to the data. In this
section the structure of the model is discussed for the one direction and multi directional cases.

4.2.1. One directional model
To set-up the one directional model a division into smaller steps is useful. These will be broken down
part-by-part in the following subsections. At first the data will be imported and processed. After this
the precise formulas are set-up and the initial and boundary conditions are imposed. Then the model
can be fitted to the data and afterwards the performance of it can be evaluated.

Data importing and processing
As a first step the measurement data is collected and corrected by some pre processing steps. This can
be done for artificial data and the real measurement data. How this is done in both cases differs due
to the nature of these data sets.

The pre processing for the artificial data is not too complicated as it is known how it is generated,
only the white noise may cause issues in the fitting of wave modes. But it contains no extra hidden
information that needs to be accounted for. For the processing of the real data some additional actions
need to be taken, these are also discussed in chapter 3 in more detail. For the one directional model
the assumption of infinitely long wave crests coming straight towards the radar is made, so the real
data must be limited to information from one of the five (-40,-20,0,20,40 degrees) beams. Therefore the
beam that is most aligned with the wave direction needs to be selected for the best result.
After this selection of the beam the grid over which this beam was obtained is corrected for the angle
that the radar beam has towards the water and the velocities are adjusted as well to not represent
velocities along the beam, but in the horizontal plane.
The next processing step of the real data is to remove the current velocity from the data. As shown in
section 3.2 of chapter 3 it is reasonable to suggest that the current velocity is constant (which means
that linear wave theory will still hold). For every time step the effect of the current is removed by
subtracting the mean velocity over the grid from the measured velocities.

Problem formulation
Now that the data is imported (and corrected) it should be able to get represented by a linear wave
theory model. As stated before it is assumed that this velocity data fits to the horizontal component of
the orbital velocity of the wave. For the one directional model the assumption of infinitely long-crested
waves in the direction of the radar holds. So let our model function be:

𝑢𝑓𝑖𝑡(𝑥, 𝑡, 𝛽) = {− ∑𝑁
𝑖=1 𝜔𝑖𝐴𝑖 cos(𝜔𝑖𝑡 − 𝑘𝑖𝑥 + 𝜓𝑖) if current is absent

− ∑𝑁
𝑖=1 𝜔𝑖𝐴𝑖 cos((𝜔𝑖 − 𝑘𝑖𝑈)𝑡 − 𝑘𝑖𝑥 + 𝜓𝑖) if (constant) current is present

(4.18)

Where 𝛽 is the collection of all parameters. Due to the dispersion relation the wavenumbers 𝑘𝑖 will be
expressed in terms of 𝜔𝑖:

𝑘𝑖 = 𝜔2
𝑖 tanh(𝑘𝑖𝑑)

𝑔 (4.19)

By doing so the amount of parameters that need to be fitted is reduced and by this substitution the
relation is automatically satisfied and does not need to be accounted for separately. Let the measured
data be given by 𝑢𝑚𝑒𝑎𝑠, then the sum of squared residuals 𝑟 = 𝑢𝑚𝑒𝑎𝑠 − 𝑢𝑓𝑖𝑡 becomes:

𝑆(𝛽) =
𝑁

∑
𝑖=1

𝑀
∑
𝑗=1

𝑟𝑖𝑗(𝛽)2 (4.20)

where 𝑗 represents the points in space and time that are used from the measured data. Then this
𝑆(𝛽) can be minimized by applying the inverse modelling methods. For the artificial case the term the
dispersion relation is altered by the deep water, which excludes the tanh-term from the equation.
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min
𝛽

𝑆(𝛽)

s.t. 0 ≤ 𝐴𝑖 ≤ 2𝜋𝑔 tanh(𝑘𝑖𝑑)
7𝛼2

0 ≤ 𝜔𝑖 ≤ 𝛼
0 ≤ 𝜓𝑖 ≤ 2𝜋

(4.21)

In the constraints there is a parameter 𝛼 which links the constraints for the wave amplitude and the wave
frequency. This is done since there is a physical limit for the relation between these two as described
by 2.73.

Fitting strategies in Matlab
To solve the minimization problem a trust-region reflective algorithm is used. The execution of this
algorithm can be done in a few ways, of which some use prior knowledge about the ocean to make
further assumptions and some that give the algorithm some more freedom. These are combined into
two sets of code which are discussed below.

Non-sequential fit
The first approach to solving 4.21 is by fitting the sum of cosine functions as one to the measured
velocities. By doing so the algorithm adjusts all parameters 𝐴𝑖, 𝜔𝑖, 𝜓𝑖 each iteration to find an optimal
fit to the measured velocity data. This approach has the advantage that the fitting algorithm has a lot
of flexibility in adjusting all individual parameters.
This also means that the amount of parameters that should be adjusted becomes quite large (3𝑁),
when a lot of cosine functions are required to give an accurate fit, though. Consequence of this is that
iterations could become very costly in terms of calculation time, since the algorithm needs to work
with high dimensions. To reduce this amount of parameters the choice was made to exclude 𝜔𝑖 as a
parameter in the fit. Instead the angular frequency values are fixed between a minimum and maximum
frequency on a equidistant grid between those values. The number of frequencies is equal to the amount
of cosine components that are used. So:

𝜔 = [𝜔1, … , 𝜔𝑁 ] (4.22)

So only the amplitudes and phases are left to be fitted on the data, which reduces the amount of
parameters in the model to 2𝑁 . A downside of this fixed frequency bins could be that in general all
frequencies occur in the sea and thus that this choice takes away some of the flexibility of the model to
make use of this property.
An important notice is that a higher number of observations compared to the number of parameters is
needed to make a fit. This is necessary to give the model sufficient degrees of freedom and to prevent
it from overfitting. To do so the amount of time and range steps needs to be sufficiently large. Taking
multiple time steps will also help to capture the dynamics of the waves. This gives this method an
advantage over the sequential method that will be discussed next.
As an initial condition for the amplitudes the Rayleigh distribution as in equation 2.67 is taken and the
phases are initially chosen constant.

Cosine-by-cosine sequential fit
A second way to execute the optimization is an alternative to fitting all cosines as one function, namely
by fitting the 𝐴𝑖, 𝜔𝑖, 𝜓𝑖 cosine-by-cosine to the velocity information on a fixed point in time. Once the
algorithm has found an optimal fit for a single cosine to the signal (which is bounded by a certain
number of iterations or improvement ratio), it gets subtracted (using the found values for 𝐴𝑖, 𝜔𝑖, 𝜓𝑖 )
from the measured velocity information. And then it starts the same fitting procedure for the next
cosine. When an optimal fit is found for this cosine again it gets subtracted and so on until the last
cosine is fitted to the original signal minus all the previously fitted cosine functions.

An advantage of this method is that only a small number of parameters is fitted per function, which
makes it easy to solve for the trust region algorithm. Though the number of times this has to be done
can become large and may hit the max iteration bound of the solver. Another advantage of the method
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is that the shadowing effects can be explicitly taken into account when there are historical realizations
of the fitted surface. Based on this information, grid cells that may contain shadowed data can be
excluded from the next fitting procedure. Furthermore there are some downsides to this method, there
is a risk of overfitting to the data or fitting to noise when the number of sines is taken too large. And
the algorithm cannot change parameter values once it is fitted, this gives a limitation in the flexibility
of the procedure. It will be harder to make up for a fitted cosine that was inaccurate. Besides this the
model will generate a fit on the data of only one moment 𝑡 in time. This is compensated by dynami-
cally averaging the solutions from previous time steps where the model has been fitted to the data as
described in section 4.1.2.

Performance metrics
To measure the performance of the fitted function a performance metric is helpful. For this there are
multiple options. The most common measures are the mean absolute errors (MAE) and the mean
squared error (MSE).

MAE(𝛽) = 1
𝑀

𝑀
∑
𝑖=1

|𝑢𝑓𝑖𝑡(x𝑖, 𝛽) − 𝑢𝑚𝑒𝑎𝑠(x𝑖)| (4.23)

MSE(𝛽) = 1
𝑀

𝑀
∑
𝑖=1

(𝑢𝑓𝑖𝑡(x𝑖, 𝛽) − 𝑢𝑚𝑒𝑎𝑠(x𝑖))2 (4.24)

In the notation x𝑖 refers to the points in (𝑥, 𝑡)-space for which the fit is compared to the data. Besides
these traditional measures a normalized averaged prediction error is suggested in [15]:

𝑒𝑟𝑟𝑜𝑟(𝛽) =
√√√
⎷

∑𝑀
𝑖=1(𝑢𝑓𝑖𝑡(x𝑖, 𝛽) − 𝑢𝑚𝑒𝑎𝑠(x𝑖))2

∑𝑀
𝑖=1(𝑢𝑚𝑒𝑎𝑠(x𝑖)2)

(4.25)

This last measure gives the magnitude of the error compared to the measured value. So an error of value
1 states that the discrepancy between measurement and fit has the same magnitude as the measured
value. E.g. if the measured velocity is 0.5, the magnitude of the error is 0.5 and if the measured velocity
is 3, the magnitude of the error is 3. But both are represented by value 1. A value close to 0 states
that the fit and measured velocities are in agreement.

Statistical parameters
Due to the set-up of this model with linear wave theory a nice extra is that the possibility arises to
subtract statistical information from the sea. This is possible since the linear wave theory solution for
the water surface is similar to random phase/amplitude model used to gather sea statistics. The first
statistical information that can be obtained is the (amplitude) spectrum of waves. This is done by
taking the fitted 𝐴𝑖 and plot them against the frequencies 𝜔.
The second statistical parameter that can be obtained is the significant wave height 𝐻𝑠.

𝐻𝑠 ≈ 4√𝑚0 (4.26)

where 𝑚0 represents the zero-th order moment, where the moments 𝑚𝑛 given by:

𝑚𝑛 = ∫
∞

0
𝑓𝑛𝐸(𝑓)𝑑𝑓 (4.27)

and 𝐸(𝑓) can be computed as shown in section 2.4.1:

𝐸(𝑓) = lim
∆𝑓→0

𝐸 (1
2𝑎2) (4.28)
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Figure 4.1: The polar grid representation of the data

4.2.2. Multi directional model
To set-up the multi directional model again a division into smaller steps is made. These will be broken
down part-by-part in the following subsections. At first the data will be imported and processed. After
this the precise formulas are set-up and the initial and boundary conditions are imposed. Then the
model can be fitted to the data and afterwards the performance of it can be evaluated.

Data importing and processing
The importing of this data is similar as to the one directional case. The difference is that the data has
an extra dimension due to the direction angle that is connected to the range bins. Furthermore the pre
processing steps to let the velocities represent their horizontal component (by correcting for the angle
between the radar beam and the surface) can be done as described in chapter 3.
For the multi directional waves one of the first challenges is to find the main wave direction (and a
potential spreading of the waves round this) and to find the direction of the current. The current
direction and magnitude are dealt with first. These can be represented as:

U(𝛾) = 𝑈 cos(𝜉 − 𝛾), (4.29)

where 𝑈 represents the magnitude of the current, 𝜉 the current direction and 𝛾 the beam angle of the
measurement. The direction and magnitude can be found by first averaging over the velocities along the
range dimension. This leaves us with a single velocity per beam and time step. Then another averaging
is done over the time domain, which leaves only a single average velocity per beam. In absence of cur-
rent these values should be zero or at very close to zero. (A non-zero contribution occurs when a wave
is not captured in it’s entirety at the beginning and/or end of the data record). To obtain the current
direction and magnitude the equation 4.29 is fitted to the beam/averaged velocity combinations. For
this the trust-region reflective algorithm is used. The result of this fit gives the estimated magnitude
𝑈𝑓𝑖𝑡 and estimated current direction 𝜉𝑓𝑖𝑡. These values are substituted in 4.29 and then this current
gets subtracted from the velocity measurements for each beam direction.

After the current velocity direction the main wave direction needs to be determined from the data. This
is not a straight forward procedure since the wave modes could come from several directions. But for
a single long crested wave one can realize the following: since the data is naturally represented by a
polar grid (see figure 4.1) a wave will be noticed in a certain grid cell first by the beam that is most in
line with the direction of this wave. Then it will be noticed by the beam that is the next closest to the
wave direction and finally by the beam which direction is the least in agreement with the actual wave
direction. Thus this main direction can be estimated by picking the beam that sees the waves first and
compare this with the other beams. If two beams see a wave at the same time in a grid cell this means
that the wave is coming from the direction angle that is in the middle of the beam angles. To give the
model enough flexibility there will be a few other wave directions allowed that surround this observed
main wave direction for the fitting.
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Problem formulation
The linear wave theory model can now be formulated as the data is processed in a way that only the
orbital motion remains present. This leads to the following (comprehensive) formula:

𝑢𝑓𝑖𝑡(𝑟, 𝛾, 𝑡, 𝛽) = −
𝑀

∑
𝑗=𝑖

𝑁
∑
𝑖=1

(𝜔𝑖 −k𝑖𝑗 ⋅U)𝐴𝑖𝑗 cos(−(𝜔𝑖 −k𝑖𝑗 ⋅U)𝑡−𝑟(𝑘𝑥,𝑖𝑗 cos(𝛾)+𝑘𝑦,𝑖𝑗 sin(𝛾))+𝜓𝑖) (4.30)

Where 𝛽 is the collection of all parameters and k𝑖𝑗 = [𝑘𝑥,𝑖𝑗, 𝑘𝑦,𝑖𝑗] denotes the wave number vector over
the number of sines per direction (𝑁) and the number of wave directions (𝑀) that are allowed. This
means for each angular frequency 𝜔𝑖 there will be 𝑀 wave numbers 𝑘𝑥,𝑖𝑗 and 𝑘𝑦,𝑖𝑗. Their entries are as
follows:

𝑘𝑥,𝑖𝑗 = 𝑘𝑖 cos(𝜃𝑗) 𝑘𝑦,𝑖𝑗 = 𝑘𝑖 sin(𝜃𝑗) (4.31)
Due to the dispersion relation the wave numbers 𝑘𝑖 will again be expressed in terms of 𝜔𝑖:

𝑘𝑖 = 𝜔2
𝑖 tanh(𝑘𝑖𝑑)

𝑔 (4.32)

By doing so the amount of parameters that need to be fitted is reduced and by this substitution the
relation is automatically satisfied and does not need to be accounted for separately. Let the measured
data be given by 𝑢𝑚𝑒𝑎𝑠, then the sum of squared residuals 𝑟 = 𝑢𝑚𝑒𝑎𝑠 − 𝑢𝑓𝑖𝑡 becomes:

𝑆(𝛽) =
𝐿

∑
𝑙=1

𝑁
∑
𝑖=1

𝑀
∑
𝑗=1

𝑟𝑙𝑖𝑗(𝛽)2 (4.33)

where 𝑙 represents the points in space and time that are used from the measured data. Then this 𝑆(𝛽)
can be minimized by applying the inverse modelling methods.

min
𝛽

𝑆(𝛽)

s.t. 0 ≤ 𝐴𝑖 ≤ 2𝜋𝑔 tanh(𝑘𝑖𝑑)
7𝛼2

0 ≤ 𝜔𝑖 ≤ 𝛼
0 ≤ 𝜓𝑖 ≤ 2𝜋

(4.34)

Furthermore the dispersion relation is altered due to deep water (𝑘𝑖𝑑 → ∞), dropping the tanh-term
from the equation.

Fitting strategies in Matlab
To solve the minimization problem a trust-region reflective algorithm is used. The execution of this
algorithm could be done in the two ways with sequential and non-sequential fitting as discussed in the
one directional model. Due to the results found in the one directional case the choice is made to solely
focus on the non-sequential way for the multi directional model.

Non-sequential fit
As with the one directional model this non-sequential method the amount of parameters is reduced by
excluding 𝜔𝑖 as a parameter in the fit. Instead the angular frequency values are fixed between a minimum
and maximum frequency on a equidistant grid between those values. The number of frequencies is equal
to the amount of cosine components that are used per wave direction. So:

𝜔 = [𝜔1, … , 𝜔𝑁 ] (4.35)

Besides these frequencies there is another parameter that needs to be considered. This is the wave
direction, given by 𝜃. As seen in the data processing section this can be derived by checking what
grid cell notices a wave first. This is taken as main wave direction and in total 5 directions are taken
surrounding this beam. So by doing this the wave direction is excluded from the fitting routine. So
again only amplitudes and phases need to be fitted for each of the previous selected wave directions.
This makes the amount of parameters that need to be fitted equal to 𝑁𝑀 .
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Also for this model an important notice is that a higher number of observations compared to the number
of parameters is needed to make a fit. This is necessary to give the model sufficient degrees of freedom
and to prevent it from overfitting. To do so the amount of time and range steps needs to be sufficiently
large. Taking multiple time steps will also help to capture the dynamics of the waves.
As an initial condition for the amplitudes the Rayleigh distribution as in equation 2.67 is taken and the
phases are initially chosen constant.

Performance metrics
For this model the same performance metrics are taken as in the one directional case. This is then done
for the five beam directions that are considered, which thus gives the performance of the fit in each of
the directions.

MAE(𝛽) = 1
𝑀

𝑀
∑
𝑖=1

|𝑢𝑓𝑖𝑡(x𝑖, 𝛽) − 𝑢𝑚𝑒𝑎𝑠(x𝑖)| (4.36)

MSE(𝛽) = 1
𝑀

𝑀
∑
𝑖=1

(𝑢𝑓𝑖𝑡(x𝑖, 𝛽) − 𝑢𝑚𝑒𝑎𝑠(x𝑖))2 (4.37)

In the notation x𝑖 refers to the points in (𝜌, 𝜃, 𝑡)-space for which the fit is compared to the data. Besides
these traditional measures a normalized averaged prediction error is suggested in [15]:

𝑒𝑟𝑟𝑜𝑟(𝛽) =
√√√
⎷

∑𝑀
𝑖=1(𝑢𝑓𝑖𝑡(x𝑖, 𝛽) − 𝑢𝑚𝑒𝑎𝑠(x𝑖))2

∑𝑀
𝑖=1(𝑢𝑚𝑒𝑎𝑠(x𝑖)2)

(4.38)
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Inverse modelling results

In this chapter the modelling results are discussed. First this is done for the model in one direction with
artificial data and real data. Later this is done for the multi directional model, also for artificial and real
data. The results that are presented include visualizations of the fitting routines and the performance
metrics that are defined in chapter 4. Besides this the amplitude spectrum is presented, which consists
of the fitted parameter values 𝐴𝑖 combined with the belonging frequencies (𝑓𝑖 = 𝑤𝑖

2𝜋 ). This chapter only
includes the main results, other results exploring variations in parameter settings can be found in the
appendices A and B.

5.1. One directional model
In this section the results of the reconstruction and prediction of the wave model on the one directional
data are presented. This is first done the artificial case for the non-sequential model and then for the
sequential model.

5.1.1. Artificial data: non-sequential
Data without noise
The summary of the data inputs for the JONSWAP spectrum are found below in table 5.1, these are
also discussed in chapter 3. For the creation of the artificial sea surface an amount of cosine components
equal to 100 is chosen. As a first result a basic case is considered. From this result the effect of several

Parameters Values Unit
𝑇𝑝 (peak period) 6 𝑠

𝐻𝑠 (significant wave height) 2 𝑚
𝜔𝑐 (cut-off frequency) 33𝑇 −1

𝑝 𝐻𝑧
𝜔 (frequency spectrum) linspace(0.1, 𝜔𝑐, 100) 𝐻𝑧

Table 5.1: Summary of the input parameters for the one directional artificial data set

adjustments of algorithm settings can be treated and compared to this basic case. The set-up for the
basic model settings can be found in table 5.2. The motivation behind the chosen frequency spectrum
is that with this choice the model can capture the longest wave length that can be measured as well
as the smallest. This can be readily seen by using the dispersion relation (for deep water) and the
definition for the wave number. The initial set up for the amplitudes and phases which are fitted are
chosen Rayleigh distributed and constant as mentioned in the previous chapter. The lower and upper
bounds for the amplitudes and phases are also mentioned there, for the amplitudes this lies between 0
and the wave breaking criterion shown in 2.73 and resp. 0 and 2𝜋 for the phases.

The results of the fitted function with the least-squares solver gives the results found in figs. 5.1 to 5.2.
In these figs. 5.1 to 5.2 it can be seen that the fitted model performs the best in the first 10 seconds,
which makes perfect sense since it is fitted to the data that was obtained in this period of time. After

39
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Algorithm parameters Values Unit
Number of cosines 100

Time range 10 𝑠
Time stepsize 0.5 𝑠
Spatial range 0 to 384 𝑚

Spatial stepsize 0.75 𝑚
𝜔 (frequency spectrum) linspace(0.5, 5, 100) 𝐻𝑧

Function tolerance 10−6

Maximum iterations 10
Maximum function evaluations 2000

Table 5.2: Summary of the input parameters for the one directional fitted non-sequential model

(a) Non-sequential fit with 100 cosines (b) Amplitude spectrum for a non-sequential fit

Figure 5.1: Results for the basis case: (a): visualisation of the fitted velocity function and computed surface, (b): fitted
amplitudes plotted against the actual amplitudes of the data

(a) 512 range bins (representing 384 meters) (b) 200 range bins (representing 150 meters)

Figure 5.2: Performance metrics for a non-sequential fit with 100 cosines

these 10 seconds the model is faced with new data coming from the boundary on the right which is
flowing into the domain. Here the model starts to struggle with it’s prediction as can be seen in fig. 5.3.
This figure shows that the model cannot actually predict waves it has not measured before. It is quite
capable though to predict the behaviour of the waves it has measured. This is visible in fig. 5.2b. For a
range of 150 meters from the radar location (so 200 bins) the MSE and MAD remain (almost) constant
around 0.1 meters The normalized error stays below 0.24 for a time of 40 seconds, this gives an accurate
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prediction for 30 seconds. A remarkable result is that the error decreases in the 150 meters range during
the first 35 seconds. This can be explained by realizing that the waves that come into this domain have
been in the larger domain of 384 meter for a longer period of time than the waves that are very close
to the observer at time 𝑡 = 0. Hence, the model has fitted better to these waves that are further away
since they are more present in the domain for a longer period of time. This effect is present in more of
the experiments with artificial data.
The fitted amplitudes in figure 5.1b also resembles the actual spectrum of amplitudes quite well. It is
important to note that most of these spectrum plots show spikes since the frequencies are fixed and the
parameters are only fitted for one time record (so taking the 𝐴𝑖 instead of 𝐴𝑖). This is statistically not
a correct thing to do (since the mean is estimated from a single value). Thus it is not entirely correct to
treat this result the same way as a spectrum. If this experiment is repeated numerous times on multiple
time records the combined result will resemble the spectrum more accurately. This can be seen in
figure 5.4, where the peaks are smoothed out due to the averaging of the amplitudes per frequency
bin. With these realizations the significant wave height 𝐻𝑠 (defined in 4.26) can be calculated, this
gives 𝐻𝑠 = 2.19 meters for the amplitudes averaged over 8 time records and 𝐻𝑠 = 2.11 meters for the
amplitudes averaged over 16 time records.

Figure 5.3: Visualisation of the fitted velocity function and computed surface at time 𝑡 = 20𝑠 where new waves enter the
domain

(a) Combined result of 8 fitted amplitudes sets (80 sec-
onds of data)

(b) Combined result of 16 fitted amplitudes sets (160 sec-
onds of data)

Figure 5.4: Amplitude spectrum for multiple non-sequential fits using the averaged fitted amplitudes per frequency against the
actual amplitudes
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Noisy data
When disturbance of Gaussian white noise is added to the signal the same routines are performed
as with the clean data. The results can be found in figs. 5.5a to 5.6b. From these figures it can be
concluded that the addition of the Gaussian white noise does not have a large effect on the results of
the model in the time period that the model is fitted to the data. The prediction horizon of 30 seconds
remains valid in this case but with a slightly higher error than in the clean data case with MSE and
MAD below 0.12 meters and normalized error below 0.3. The amplitude spectrum is a bit less accurate
for this realization, the high amplitudes are likely to cancel each other out at the given domain, but
create a larger error at later stages, which is visible when comparing fig. 5.6a and 5.6b to figures 5.2a
and 5.2b. From these findings it was decided to exclude the noise from further experiments.

(a) Non-sequential fit on disturbed data
(b) Amplitude spectrum for a non-sequential fit on dis-
turbed data

Figure 5.5: Results for data with added white noise: (a): visualisation of the fitted velocity function and computed surface,
(b): fitted amplitudes plotted against the actual amplitudes of the data

(a) 512 range bins (representing 384 meters) (b) 200 range bins (representing 150 meters)

Figure 5.6: Performance metrics for a non-sequential fit on disturbed data with 100 cosines

Changing model settings
In this section the effect of some of the adjustments that are possible are explored. There are several
parameters that can be adjusted, the ones that are explored are the effects on number of cosine terms,
number of measurements and the wave conditions.

Number of cosine terms
The amount of cosines taken into account has a linear effect on the computation time. This can be seen
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in fig. 5.7. For the accuracy and spectrum it can be noticed that the normalized error when using less
than 50 terms is consequently higher than 0.5 and the effect of the fit on the first 10 seconds becomes
harder to notice. For simulations with 50 to 100 terms it is noticeable that the accuracy in the fitted
time region keeps increasing with the number of terms, for the entire range the prediction performance
decreases significantly as seen in the basis case. The full results that show this are available in Appendix
A. An impression of the performance with 50 terms can be found in figure 5.8.

Figure 5.7: Performance of the solver in terms of computation time plotted against the number of cosine terms used to fit the
data

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure 5.8: Performance metrics for a non-sequential fit with 50 cosines
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Number of measurements
Another variation can be done in the amount of measurements that is used to fit the cosine terms on
the data. Variations for this can be done in the spatial and time range. Reducing the amount of grid
cells to fit on leads to a linear decrease in computation time. Also it does not dramatically effect the
performance of the solver in this artificial linear case. For applying these results to real data it should
be noticed that part of the power of the real data lies in the high resolution.
A similar result in terms of computation time and performance is also obtained when limiting the
amount of time steps that are used within these 10 seconds of data.

Figure 5.9: Summary of the solver performance in terms of computation time in relation to the number of bins that are chosen
to fit on

Wave conditions
When changing the wave conditions of the artificial data set to the ones in table 5.3 the solver is tested
again using the same algorithm settings as initially in table 5.2. This gives the results as visualized in
figs. 5.10a to 5.11b. From this it can be seen that the performance remains very accurate for the period
the model is fitted to the data. This is displayed in figure 5.11b, here the MSE and MAD remain below
0.2 meters in the first 32 seconds and the normalized error below 0.22. Thus this gives an accurate
prediction for the first 32 seconds (so 22 seconds after the measurement). The errors grow more quickly
in magnitude afterwards up to 1.2 meters for MSE and MAD as well as 1.2 for the normalized error.

Parameters Values Unit
𝑇𝑝 (peak period) 10 𝑠

𝐻𝑠 (significant wave height) 5 𝑚
𝜔𝑐 (cut-off frequency) 33𝑇 −1

𝑝 𝐻𝑧
𝜔 (frequency spectrum) linspace(0.1, 𝜔𝑝, 100) 𝐻𝑧

Table 5.3: Summary of the adjusted parameters for the one directional artificial data set
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(a) Non-sequential fit with 100 cosines (b) Amplitude spectrum for a non-sequential fit

Figure 5.10: Results for the 𝐻𝑠: 5 𝑚 and 𝑇𝑝: 10 𝑠 case: (a): visualisation of the fitted velocity function and computed
surface, (b): fitted amplitudes plotted against the actual amplitudes of the data

(a) 512 range bins (representing 384 meters) (b) 200 range bins (representing 150 meters)

Figure 5.11: Performance metrics for a non-sequential fit with 100 cosines

5.1.2. Artificial data: sequential
In this subsection the results of the sequential fitting approach are presented. The artificial data set
that was used is the same as with the non-sequential model, it’s parameters are available in table 5.1.
The model parameters can be found in table 5.4. For this model there are some important differences
compared to the non-sequential case. First mayor difference is that the angular frequencies 𝜔 are left as
a parameter to fit. This will have effect on the spectrum acquisition, since there are no fixed frequency
bins anymore. A second mayor difference is that the fit is done sequentially on a certain moment in time
on only that measurement. This is then used to update the reconstruction/prediction by dynamically
averaging with the two previous fits as described in the previous chapter. Lastly, before every fit hap-
pens the heave profile computed with the previous fitted parameters at that specific time is evaluated to
check whether shadowing could be present. If so, these range bins will be excluded from the measured
data for the new fit. An important parameter thus becomes the time that is left between those fits.
Some realizations are done exploring this for various time gaps of 3,5 and 7 seconds. Results of this can
be found in figs. 5.12a to 5.17b.
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Algorithm parameters Values Unit
Number of cosines 100

Time stepsize 3,5 or 7 𝑠
Spatial range 0 to 384 𝑚

Spatial stepsize 0.75 𝑚
Lower bound 𝜔 0.5 𝐻𝑧
Upper bound 𝜔 5 𝐻𝑧

Function tolerance 10−6

Maximum iterations 75

Table 5.4: Summary of the input parameters for the one directional fitted sequential model

The spectra of amplitudes of these fitting procedures match the actual spectrum reasonably well, re-
markable are the small peaks for some higher frequencies around 0.45 𝐻𝑧 in figures 5.12b and 5.14b.
The performance metrics of the sequential model in most cases shows some sharp decreases in value
when the fitted function gets newly averaged with the latest data sample, which is positive. With the
model that updates every 3 seconds it is visible that the new prediction fails to improve the current
result though, this could be happening when a past fitted parameter set still provided a good fit to
the current data, but had to be discarded since it was no longer part of the 3 latest updates. Over the
entire range of 384 meters this sequential model is not able to outperform the non-sequential model for
all 3 cases (regarding the time period it was fitted on). The same holds for the smaller range of 150
meters, but the sequential model does perform better there than it does on the full spatial range. In
terms of predictive capability it is hard to determine the performance since the idea of this sequential
model is to remain precise for all times by constantly updating the result every 3,5 or 7 seconds.

(a) Sequential fit with 100 cosines (b) Amplitude spectrum for a sequential fit

Figure 5.12: Results for the sequential fitting case with a gap of 3 seconds between fitted data: (a): visualisation of the fitted
velocity function and computed surface, (b): fitted combined amplitudes plotted against the actual amplitudes of the data
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(a) 512 range bins (representing 384 meters) (b) 200 range bins (representing 150 meters)

Figure 5.13: Performance metrics for the sequential fit with 100 cosines and a time gap of 3 seconds

(a) Sequential fit with 100 cosines (b) Amplitude spectrum for a sequential fit

Figure 5.14: Results for the sequential fitting case with a gap of 5 seconds between fitted data: (a): visualisation of the fitted
velocity function and computed surface, (b): fitted combined amplitudes plotted against the actual amplitudes of the data

(a) 512 range bins (representing 384 meters) (b) 200 range bins (representing 150 meters)

Figure 5.15: Performance metrics for the sequential fit with 100 cosines and a time gap of 5 seconds
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(a) Sequential fit with 100 cosines (b) Amplitude spectrum for a sequential fit

Figure 5.16: Results for the sequential fitting case with a gap of 7 seconds between fitted data: (a): visualisation of the fitted
velocity function and computed surface, (b): fitted combined amplitudes plotted against the actual amplitudes of the data

(a) 512 range bins (representing 384 meters) (b) 200 range bins (representing 150 meters)

Figure 5.17: Performance metrics for the sequential fit with 100 cosines and a time gap of 7 seconds

5.1.3. Real data

Pre processing

In contrast to the experiments with the artificial data there are some pre processing steps that need to
be done before the model can work with the data set the same way as in the artificial case.
The first step of the pre processing is to correct the velocities for the beam angle with the water surface
so they represent the horizontal component of the velocity.
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After this the beam that is most aligned with the wave direction needs to be selected. To select this one
can realize the following: since the data is naturally represented by a polar grid a wave will be noticed
in a certain grid cell first by the beam that is most in line with the direction of this wave. An example
of this can be seen in figure 5.18a. This figure shows the measured velocities in bin 150, corresponding
with range 112.5m, for the -20, 0 and 20 degrees beam for a period of time. It is visible that the same
waves are measured by these beams with a small time delay between them. The wave is first measured
by the red beam, then the blue beam and latest by the green beam. so it might be assumed that the
wave are mainly coming from a direction surrounding the -20 degrees beam. This idea is supported
by plotting the -40 and 40 degree beams instead of the -20 and 20 degree beams in figure 5.18b. The
40 degree hits the wave at a later moment then the 20 degree beam, supporting the thought that the
wave mode is coming from the negative angle direction. Meanwhile the -40 degree beam notices the
waves later then the -20 degrees beam. Thus from this analysis it can be concluded that the main wave
direction will probably lie around the -20 degree beam direction. Thus this beam will be taken to do
further computations with.

(a) -20,0 and 20 degrees beams (b) -40,0 and 40 degrees beams

Figure 5.18: Measured data from range bin 150 (located at 112,5m from the radar) plotted for a period of 50 seconds

A last pre processing step is to supply an estimate of the depth of the sea along the spatial bins. This
is not straightforward, but the best guess that could be made is by using [5]. This states that the
water depth along the coastal region of the Netherlands within the spatial range of the radar will not
exceed the 10 meter depth mark. The exact sea bed may have sand banks or other irregularities, but
unfortunately these cannot be accounted for. As an input for the model a water depth of 8 meters was
taken. Other parameter values can be found in table 5.5.
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Algorithm parameters Values Unit
Number of cosines 100

Time range 10 𝑠
Time step size 0.5 𝑠
Spatial range 7.73 to 384 𝑚

Spatial step size 0.75 cos(𝛾) 𝑚
Used spatial range bins 20 to 512
𝜔 (frequency spectrum) linspace(0.5, 5, 100) 𝐻𝑧

Water depth 8 𝑚
Function tolerance 10−6

Maximum iterations 15
Maximum function evaluations 2000

Table 5.5: Summary of the input parameters for the one directional fitted model on real data

Fitting to measurements: non-sequential
The results of the non-sequential method of fitting on the real data is presented in figs. 5.19a to 5.20b.
From these results it is visible that the model has some struggles to really accurately fit to the data. In
the first 10 seconds the model is able to resemble the measured data quite good when looking at figure
5.19a. Though this is not explicitly expressed by the performance metrics, this may be due to irregular
behaviour and noise in the data. After the 10 second where the model was fitted the normalized error
does grow pretty rapidly from 0.8 to 1.8 in the range of 150 meters from the radar, but the RMSE and
MAD grow less extreme, which is positive. Also remarkable is the decrease in error after 30 seconds.
This is mainly due to the decrease in magnitude of the measured velocities, as can be seen in figs. 5.21a
to 5.21b. An explanation for the mismatch between the model and the radar data could be the influence
of waves with other directions travelling through the domain, which could cause an unexpected effect on
the wave lengths of the waves that are measured by a single radar beam. This violates the assumption
of infinitely long crests travelling towards the radar (in both current and wave direction), this does not
come as a huge surprise since this would be a very idealised case. What also can be noted from figs. 5.21a
to 5.21b is that the waves fitted by the model travel faster than the data. This could also be explained
by the other wave directions or it could be caused by an alternative current direction/magnitude.
As a conclusion it can be stated that the model is quite able to reconstruct the measured data in the
10 second fitting period, though an accurate prediction cannot be given from this model.

(a) Non-sequential fit with 100 cosines (b) Amplitude spectrum for a non-sequential fit

Figure 5.19: Results for the one directional model on real data: (a): visualisation of the fitted velocity function and computed
surface, (b): fitted amplitudes of the model
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(a) 492 range bins (representing 384 meters) (b) 180 range bins (representing 150 meters)

Figure 5.20: Performance metrics for a non-sequential fit with 100 cosines taken from a starting point in bin 20 (at 7.73 meters
from the radar)

(a) Non-sequential fit with 100 cosines (b) Non-sequential fit with 100 cosines

Figure 5.21: Visualisation of the fitted velocity function and computed surface for the one directional model on real data at:
(a): 15 seconds , (b): 30 seconds

Fitting to measurements: sequential
Besides the non-sequential model, also the sequential model has been used to fit on the real data coming
from the -20 degrees beam. This has been done with the time step of 3 seconds between the fits. The
results of this sequentially fitted model to the real data is presented in figs. 5.22 to 5.24.
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(a) Sequential fit with 100 cosines (b) Sequential fit with 100 cosines

Figure 5.22: Visualisation of the fitted velocity function and computed surface for the sequential one directional model with
time gaps of 3 seconds on real data at: (a): 5 seconds , (b): 15 seconds

Figure 5.23: Amplitude spectrum for a sequential fit with a time gap of 3 seconds between fits

From these plots it is visible that every newly fitted set of parameters has big impact on the solution
performance. The performance metrics show significant decrease up to 0.5 in terms of the normalized
error when a new solution is averaged with the old ones. This also means that during the 3 seconds
in which the data is not fitted to the model the errors grow rapidly. Over the entire time range the
method is able to limit these errors between 0.75 and 0.2 meters in terms of MSE and MAD and
between 1.24 and 0.4 in terms of normalized error in the 150 meters range from the radar. Overall it
should be concluded that this model also does not represent the actual water surface in an accurate
way. Explanations for this are similar to the statements that were given for the non-sequential fitting
method on the real data.
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(a) 492 range bins (representing 384 meters) (b) 180 range bins (representing 150 meters)

Figure 5.24: Performance metrics for a sequential fit with 100 cosines taken from a starting point in bin 20 (at 7.73 meters
from the radar) with time gaps of 3 seconds

5.1.4. Summary of results
In this section the most important findings of the modelling results for the one directional model are
discussed. For the artificial case the non-sequential model is able to capture the behaviour of the sea
very well, with an MAD and RMSE displaying similar behaviour. This means that the magnitude of
the error that is made is not enormously large. For the fitted time period their magnitude lies around
0.1 meters, which grows over time when new waves enter the domain. For the artificial case it can be
concluded that the prediction is accurate for 30 seconds in the domain that spans the first 150 meters
from the radar. Here the MSE and MAD are below 0.15 meters and the normalized error between 0.3
and 0.15.

When applying this non-sequential model to the real data the performance decreases. It is able to
reasonably reconstruct the waves that are measured, but (probably) due to the assumption of the
waves/current travelling in one direction it fails to accurately predict for longer times. So the predictive
capabilities are very limited.

For the sequential model a similar result was obtained. For the artificial data it’s performance is a bit
worse compared to the non-sequential model. On the long term it’s results will be better due to the
frequent amount of re-fitting to the data. This also makes it unfair to compare this aspect with the
non-sequential modeling results since this only used the first 10 seconds of data. In terms of predictive
capabilities this makes it also hard to draw a conclusion since it’s set-up is done in a way that it should
remain accurate the entire time. When looking at figure 5.17 it can be noted that the increase of the
error in 7 seconds is limited on the 150 meters range. For the full range of 384 meters the increase of
error can become large (increase of 20 % in terms of normalized error). This increase of error is also
very visible in the results when the sequential model is fitted on the real data, supporting the earlier
claim of assumptions that do not hold for this case. Based on the experiences and results of this one
directional case the choice was made to solely proceed with the non-sequential model for the multi
directional case. This will be treated next.
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5.2. Multi directional model
In this section the results for the multi directional model are treated. This is first done on the artificial
data and later on the real data. Also this is solely done for non-sequential model (thus leaving out the
sequential model) as discussed in the results for the one directional model.

5.2.1. Artificial data
As for the one directional model first the model is used on artificial data. The summary of the data
inputs for the JONSWAP spectrum are found below in table 5.6, these are also discussed in chapter 3.
For the creation of the artificial sea surface an amount of cosine components equal to 50 in each of the
directions is chosen. This directional distribution is based on the cos2 𝜃-model. As a build-up towards
working with these multiple wave directions they are gradually added to the artificial data.
As a first result a basic case is considered with only 𝑛 = 1 wave direction and also 𝑛 = 2, 3 and 5 wave

Parameters Values Unit
𝑇𝑝 (peak period) 6 𝑠

𝐻𝑠 (significant wave height) 2 𝑚
𝜔𝑐 (cut-off frequency) 33𝑇 −1

𝑝 𝐻𝑧
𝜔 (frequency spectrum) linspace(0.1, 𝜔𝑝, 50) 𝐻𝑧
𝜃 (directional spreading) linspace(− 𝜋

8 , 𝜋
8 , 𝑛) radians

Table 5.6: Summary of the input parameters for the multi directional artificial data set

directions are considered. The set-up for this basic case on the model side is presented in table 5.7.
The chosen frequency spectrum is the same as with the one directional case. This also has the same
reasoning as the explanation given there.

Algorithm parameters Values Unit
Number of cosines per direction 50

Number of directions n
Time range 10 𝑠

Time stepsize 0.5 𝑠
Spatial range 0 to 384 𝑚

Spatial stepsize 0.75 𝑚
𝜔 (frequency spectrum) per direction linspace(0.5, 5, 50) 𝐻𝑧

Function tolerance 10−6

Maximum iterations 10
Maximum function evaluations 2000

Table 5.7: Summary of the input parameters for the multi directional fitted model on artificial data

The results when using the data set (containing only one wave direction at 0 degrees incidence angle)
and applying the basic settings for the fitted function with the least-squares solver gives the results
found in figs. 5.25 to 5.28. From these results it can be concluded that for the 150 range from the radar
the fitted model performs very well, though it is not able to achieve the same accuracy as with the one
directional case. The normalized error remarkably grows very fast during the first 10 seconds when
considering the full range, though this is not the case in the -40 degrees beam. Reasons behind this
phenomenon are not clear. Furthermore it can be stated that the RMSE and MAD of the model show
no remarkable behaviour compared to the normalized error. As a conclusion to the situation with this
one wave direction it can be stated that the model is able to reconstruct and predict the wave surface
for 30 seconds in the 150 meters range (after it was fitted) within a precision range of 15 cm (MAD and
RMSE) and 0.42 in terms of normalized dimensionless error (in the -40 degrees beam).
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Figure 5.25: Velocities along the 5 beams fitted on a long crested sea containing one wave direction

Figure 5.26: Water level along the 5 beams fitted on a long crested sea containing one wave direction
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Figure 5.27: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters from the
radar fitted on a long crested sea containing one wave direction

Figure 5.28: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on a long crested sea containing one wave direction
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Next the case is treated where there are five wave directions in the artificial data (which are also known
and given to the model) between − 𝜋

8 and 𝜋
8 . From figures 5.29 and 5.30 it is visible that the model is

able to capture the general behaviour of the sea surface quite well. This is not clearly visible in terms
of the normalized error in figs. 5.32 to 5.33. For both the 150 meters as the 384 meters range this error
is close to 1 for the time it was fitted on, meaning the average error would equal the magnitude of the
total wave amplitude. The RMSE and MAD do not show an error that is that significantly large. For
the 150 meters domain this remains about 0.3 meters. For a significant waveheight of 2 meters this still
seems quite reasonable. With that in mind a precise prediction could be given for a time period of 20
seconds after the fitted time. Other results for the long crested waves can be found in appendix B.

Figure 5.29: Water level along the 5 beams fitted on a long crested sea containing five wave directions

Figure 5.30: Horizontal orbital velocities along the 5 beams fitted on a long crested sea containing five wave direction
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Figure 5.31: Amplitude spectrum for a non-sequential fit over the five wave directions computed with the directional JONSWAP
spectrum

Figure 5.32: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters fitted on a
long crested sea containing five wave directions
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Figure 5.33: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on a long crested sea containing five wave directions

5.2.2. Real data
Pre processing
To do the experiments with the real data some pre processing steps need to be taken. Besides the
corrections for the beam angle, grid and water depth as in the one directional case, the direction of
the current and waves need to be estimated. This will be done first as a pre processing step. Selecting
the main wave direction has also been done for the real data in the one directional model to choose
the most suited beam. This gave the outcome that the wave direction was likely to be around the -20
degrees beam. This estimate will be taken as an initial point for the following experiments.

Then it remain to estimate the current direction. The velocities are therefore averaged over the range
bins. These averaged velocities per beam are shown in figure 5.34 and the further averaged results over
the time range can be found in table 5.8. These show that the average velocity is highest in the -20
degrees beam, with a slightly smaller velocity in the -40 degrees beam. This means that the current
direction will probably be coming from somewhere between the -20 and -40 degrees incidence angle. For
the first computation the angle of -20 degrees is taken as current direction. The method introduced in
the previous chapter which would use these velocities and their incidence angles to least square fit the
best suited current magnitude and direction did not give satisfactory results when tested in an artificial
environment and was therefore discarded.

beam average velocity
-40 degrees 0.89
-20 degrees 0.92
0 degrees 0.70
20 degrees 0.68
40 degrees 0.55

Table 5.8: The average velocity over the entire grid and time per beam direction
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Figure 5.34: The average velocities of the entire grid over time

Fitting to measurements
As found in last section the input for the wave direction will be surrounding the -20 degrees beam.
To give the model enough flexibility there are also 4 other wave directions for the model to fit with.
These and other model parameters are found in table 5.9. With these parameters the non-sequential

Algorithm parameters Values Unit
Number of cosines per direction 40

Number of directions 5
Wave directions −38, −29, −20, −11, −2 degrees

Time range 5 𝑠
Time stepsize 0.5 𝑠
Spatial range 0 to 384 𝑚

Spatial stepsize 0.75 cos(𝛾) 𝑚
𝜔 (frequency spectrum) per direction linspace(0.5, 5, 40) 𝐻𝑧

Function tolerance 10−6

Maximum iterations 10
Maximum function evaluations 2000

Table 5.9: Summary of the input parameters for the multi directional fitted model on real data

model is fitted to the data. The results of this are displayed in figs. 5.35 to 5.39. The visualization in
figure 5.35 shows that the fitted model resembles the recorded data nicely. Thus this means that the
reconstruction of the waves is quite successful. The performance metrics show a different trend, stating
that the normalized error is almost in the same order of magnitude as the waves themselves in the fitted
period of the first 5 seconds with a value of 0.9. This then increases slowly when new waves enter the
domain. The RMSE and MAD vary a lot when comparing them over the beams, in general they are
about 0.45 meters/second for the 150 meters range. Remarkable is the behaviour of the performance
metrics in the 40 degrees beam, it is unclear as to why this occurs. Thus the predictive capabilities
seem limited.
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Figure 5.35: Velocities along the 5 beams fitted to real velocity data

Figure 5.36: Water level along the 5 beams fitted to real velocity data
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Figure 5.37: Amplitude spectrum for a non-sequential fit over the wave directions fitted to real velocity data

Figure 5.38: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters fitted to
real velocity data



5.2. Multi directional model 63

Figure 5.39: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted to real velocity data

To exclude that the inaccuracies are caused by a wrong estimation of the current and/or wave directions
some experiments have been done with alternative current and wave directions. These can be found in
appendix B. When the results of these experiments are compared to the one presented in this section the
following stands out. When changing the current direction from -20 degrees to +20 degrees incidence
angle, the results are not influenced much. Both performance metrics show similar behaviour.
When the wave directions are centered around a +20 degrees incidence angle instead on the -20 incidence
angle the performance metrics perform worse than in the -20 degrees case. Though this does not hold
for the data coming from the -20 degrees beam remarkably enough.
A last alteration was made by changing the current direction and the main wave direction both from
-20 to +20 degrees. This did not show improvement of the overall result compared to the -20 degrees
case.
This thus rules out the possibility of the error being solely caused by very inaccurate estimation of
current and wave directions.

5.2.3. Summary of results
In this section the most important findings of the modelling results for the multi directional model are
discussed. For the artificial case the non-sequential model is able to capture the behaviour of the sea
very well, with an MAD and RMSE displaying similar behaviour. The best performance is found here
when using a limited amount of wave directions. Thus the more long-crested the waves are, the better
the model can handle them. For artificial data with only one direction the prediction time of 30 seconds
for the 150 meter range from the radar remains valid (as in the one directional case) within a precision
range of 15 cm (MAD and RMSE) and 0.42 in terms of normalized dimensionless error (in the -40
degrees beam). For the data set with two directions this reduces to 20 seconds for the 150 meters range
with a precision range of 25 cm (MAD and RMSE). In terms of the normalized dimensionless error
the performance varies since in some beam directions (the 0 and 20 degrees beam) the quality of the
performance first increases before it decreases which is the case since the waves closest to the radar are
observed for a shorter time. Whilst for the other beams this is not the case. Though all errors remain
within 0.67 in terms of normalized error within these first 30 seconds (thus 20 seconds prediction). For
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a data set with three wave directions the predictive capability decreases to 15 seconds. This is best seen
from the results in the 0 degrees beam.
When applying this non-sequential model to the real data the performance decreases. It is able to
reasonably reconstruct the waves that are measured, but it fails to accurately predict for longer times.
Though this is most likely not due to an inaccurate estimation of wave/current direction as altering
them did not improve the results. The predictive capabilities are very limited.

5.3. Discussion on the results
To conclude this chapter a general discussion of the obtained results with the inverse modelling is done
in this section. Main problems arise when using the real data, in both the one as multi directional
model. The fit that is generated by the models resembles the measured data quite well from a visual
point of view, but this is not readily shown by the performance metrics. These state that the error
made by the model lies around 0.5 meters in mean absolute error and mean squared error, and is higher
than the magnitude of the signal itself for the normalized error. Reasons for these inaccuracies of the
fitted result can be:

1. Water depth estimation, when this is chosen wrongly it will have effect on the propagation speed
of the wave. If the recorded data of the waves progresses faster or slower than the model this
could be one of the causes.

2. Current/Wave direction mismatch, this could also explain inaccuracies in the progress of the model
as compared to the data, a few other combinations of current and wave directions are found in the
appendix B. Though these don’t improve the reconstruction and prediction. Possibly there could
also be refraction in the data, though this can only be really confirmed when the wave directions
are determined precisely. For an incidence angle of 20 degrees the effect of this will also be limited.

3. Choice of frequency bins, it might be possible that the choice of frequency bins is not sufficient.
Alternatives could be to reserve more bins for certain frequencies that are more present in the
data.

4. Noise/quality of the dataset, the recorded data is quite noisy. When this noise is smoothed per
time step the difference is not very big when computing the performance metrics. The same holds
when the noise is smoothed out through time. Thus another reason could be that some data
from the radar is inaccurately and does not contain water motion. It could be useful to therefore
include the received signal strength from the radar to determine what is the high quality data.

5. Linear wave theory is not suited, to build the model the assumptions were made that the sea
behaves according to the linear wave theory. Due to the advantage of the link that can be made
with wave statistics and straightforward way of using it, this seemed a good option. The data
that was used is very likely not suitable to get an exact match with a model using linear wave
theory though. This is due to the shallow coastal water region near the Pier, which likely has
some non linear phenomena taking place there.

For the multi direcional model it is also worth to note that the amount of computation time is very
large now due to the large objects the MATLAB code needs to evaluate. These objects are 4-D matrices
with entries for the number of cosines, spatial range, directional range and time range which uses a lot
of memory. This could be speeded up by supplying the lsqcurvefit routine in MATLAB with a user
defined gradient. This was implemented successfully for the one directional model (which did improve
the calculation time), but not for the multi directional model.
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Conclusions and discussion

As a conclusion to this thesis it is worthwhile to discuss the goals that were set in the introduction and
the outcome that has been delivered in the past chapters. These will be treated one by one. After the
conclusions that are drawn there will be some recommendations for future work.

The first main goal was to reconstruct the sea surface from the radar data by using the linear wave
theory. To get to this goal there were some steps needed in between. The first one of these steps was
to identify the information the information that is contained in the radar data. By studying literature
on the subject and some discussions with experts from Radac and Marin the main components that are
present in the data were identified. These consisted of (as discussed in chapter 3):

• Orbital velocity

• Shadowing

• Current/directionally spreaded waves

• Radar noise

• Breaking waves

Distinguishing which of the above is causing a particular effect in the data set remained hard to say.
But by setting an upper bound for the amplitudes in terms of the frequency in least squares algorithm
helped to prevent the model from creating breaking waves. Determining the actual current direction
and wave directions proved to be hard since the results did not show significant decrease of performance
when the estimated directions were altered.

Besides identifying the phenomena captured by the radar an important task was to create artificial data
that resembles the radar data to have a controlled environment for the model to test. This data was
created with the use of the JONSWAP spectrum and the cos2 𝜃 directional spreading function. This
data helped the development of the model in both one and multiple directions enormously. These mod-
els could reconstruct the waves from the artificial data with high precision very well. Depending on the
input and model parameter settings the water surface could also be predicted from the reconstructed
surface. The time span for which these predictions would hold for a region consisting of the area located
between 150 meters from the radar and the radar are 30 seconds for the one directional model with a
precision of 15 centimeters (for waves that have significant waveheight of 2 meters) and between 20 and
30 seconds (depending on the artificial data) with a precision of 25 centimeters (also with waves that
have significant waveheight of 2 meters) for the multi directional model. Thus for the artificial data it
can be stated that the goal of reconstructing and predicting the sea surface has been reached successfully.

Applying the models to the real data coming from the FMCW radar proved to be more challenging.
For this to work there needed to be several adjustments to deal with the shallow water conditions (by
altering the dispersion relation), current and wave directions and adjusting for the angles for which
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the data was recorded. These alterations made that the model was able to fit and reconstruct the
measured radar data quite well, but predicting was not possible whilst maintaining an error that has
lower magnitude as the waves themselves in terms of the normalized error. As mentioned in the previous
chapter there are multiple reasons as to why this is the case. The most likely reasons will be the quality
of the dataset and that the linear wave theory probably is not the best suited for fitting a model to
this particular data. This is most likely due to the shallow coastal waters and the non linear behaviour
near the Pier. But it is fair to state that the possibilities with the linear wave theory are limited
computation-wise and that most of these possibilities have been explored.

6.1. Recommendations for future work
In this section some recommendations for future work are given. These might improve the performance
of fitting a wave model to the real FMCW radar data. The first recommendation is to determine the
high quality regions of data from the radar images and use these to fit the model on. By doing so the
effect of noise can be reduced, and will also increase the reliability of the data. For this it might be
useful to include the signal strength of the backscatter that the radar receives.
To further improve the performance of the model it is also recommended to find ways to speed up the
computation of fit on the multi directional data. This process could take up to 15 minutes in Matlab,
which is explained by the big amount of storage space that is needed to keep the orbital velocity function
in- and output. This consisted of a large 4-D object containing entries for the amount of cosine terms
besides the time, angular and spatial range. This can be done by supplying the least squares solver with
an user defined gradient, which would not have to be generated by Matlab then. This was succesfully
done for the one directional model, but not for the multi directional model.

Another recommendation is to explore some other non-linear/alternative wave models to fit the data
on. This can be done using Cnoidal theory or possibly the Modified Non-linear Schrodinger equation
(MNLS) that was used by Simanesew [15]. It can be expected that these models are better able to deal
with non-linearities and are thus likely better suited to predict the surface than the linear wave theory
that was used for this thesis for this particular data coming from a system mounted on the Pier.
Since the linear wave model that was used is best suited for deep water waves and more idealised
conditions it would also be recommended to test the model with data that is obtained under these con-
ditions. And maybe even more important, to have a clear understanding of what the precise conditions
are in terms of water depth, current direction and roughly the wave direction(s). This would help with
identifying where the model and/or the radar particularly struggles since there is more information
available of what the outcome should be. So this motivates to use a more controlled set-up of the test
environment to get more results and more detailed information on the performance.



A
One directional model

A.1. Artificial
A.1.1. Variation in number of terms

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.1: Performance metrics for a non-sequential fit with 10 cosines

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.2: Performance metrics for a non-sequential fit with 30 cosines
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(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.3: Performance metrics for a non-sequential fit with 50 cosines

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.4: Performance metrics for a non-sequential fit with 60 cosines

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.5: Performance metrics for a non-sequential fit with 70 cosines
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(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.6: Performance metrics for a non-sequential fit with 80 cosines

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.7: Performance metrics for a non-sequential fit with 90 cosines
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A.1.2. Variation in spatial step size

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.8: Performance metrics for a non-sequential fit with a spatial step size of 2 (1.5 meters) using 256 bins

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.9: Performance metrics for a non-sequential fit with a spatial step size of 4 (3 meters) using 128 bins
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(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.10: Performance metrics for a non-sequential fit with a spatial step size of 8 (6 meters) using 64 bins

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.11: Performance metrics for a non-sequential fit with a spatial step size of 16 (12 meters) using 32 bins

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.12: Performance metrics for a non-sequential fit with a spatial step size of 32 (24 meters) using 16 bins
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A.1.3. Variation in time step size

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.13: Performance metrics for a non-sequential fit with a time step size of 1 (0.1 seconds) using 100 measurements

(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.14: Performance metrics for a non-sequential fit with a time step size of 10 (1 second) using 10 measurements
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(a) 512 range bins (representing 384 meters) (b) Amplitude spectrum

Figure A.15: Performance metrics for a non-sequential fit with a time step size of 20 (2 seconds) using 5 measurements





B
Multi directional model

B.1. Artificial data
B.1.1. Variation in wave directions
For the following results an artificial sea surface with two wave directions coming from − 𝜋

8 and 𝜋
8 radians

incidence angle:

Figure B.1: Velocities along the 5 beams fitted on a long crested sea containing two wave directions
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Figure B.2: Water level along the 5 beams fitted on a long crested sea containing two wave directions

Figure B.3: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters from the
radar fitted on a long crested sea containing two wave directions
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Figure B.4: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on a long crested sea containing two wave directions

For the following results an artificial sea surface with three wave directions coming from − 𝜋
8 , 0 and 𝜋

8
radians incidence angle:

Figure B.5: Velocities along the 5 beams fitted on a long crested sea containing three wave directions
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Figure B.6: Water level along the 5 beams fitted on a long crested sea containing three wave directions

Figure B.7: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters from the
radar fitted on a long crested sea containing three wave directions
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Figure B.8: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on a long crested sea containing three wave directions

B.2. Real data
The results found in figs. B.9 to B.13 are obtained by reducing the timestep between the measured data
to 0.2 seconds instead of 0.5 seconds as in the base case presented in chapter 5.

Figure B.9: Velocities along the 5 beams fitted on 5 second data with 0.2 seconds between measurements
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Figure B.10: Water level along the 5 beams fitted on 5 second data with 0.2 seconds between measurements

Figure B.11: Amplitude spectrum for a non-sequential fit over the wave directions fitted on 5 second data with 0.2 seconds
between measurements



B.2. Real data 81

Figure B.12: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters fitted on
5 second data with 0.2 seconds between measurements

Figure B.13: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on 5 second data with 0.2 seconds between measurements
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B.2.1. Variation in wave and current directions
The following experiment has been done using an alternative wave direction centered around 20 degrees
incidence angle. These are shown in figs. B.14 to B.18

Figure B.14: Velocities along the 5 beams fitted on 5 second data with alternative wave direction

Figure B.15: Velocities along the 5 beams fitted on 5 second data with alternative wave direction
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Figure B.16: Amplitude spectrum for a non-sequential fit over the wave directions fitted on 5 second data with alternative wave
direction

Figure B.17: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters fitted on
5 second data with alternative wave direction
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Figure B.18: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on 5 second data with alternative wave direction

The following experiment has been done with an alternative current direction with 20 degrees incidence
angle. These are shown in figs. B.19 to B.23

Figure B.19: Velocities along the 5 beams fitted on 5 second data with alternative current direction



B.2. Real data 85

Figure B.20: Velocities along the 5 beams fitted on 5 second data with alternative current direction

Figure B.21: Amplitude spectrum for a non-sequential fit over the wave directions fitted on 5 second data with alternative
current direction
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Figure B.22: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters fitted on
5 second data with alternative current direction

Figure B.23: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on 5 second data with alternative current direction
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The following experiment has been done with an alternative current direction with 20 degrees incidence
angle and alternative wave direction centered around 20 degrees. These are shown in figs. B.24 to B.28

Figure B.24: Velocities along the 5 beams fitted on 5 second data with alternative current and wave direction

Figure B.25: Velocities along the 5 beams fitted on 5 second data with alternative current and wave direction
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Figure B.26: Amplitude spectrum for a non-sequential fit over the wave directions fitted on 5 second data with alternative
current and wave direction

Figure B.27: Performance metrics for a non-sequential fit over the wave directions over the full range of 384 meters fitted on
5 second data with alternative current and wave direction
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Figure B.28: Performance metrics for a non-sequential fit over the wave directions over a range of 150 meters from the radar
fitted on 5 second data with alternative current and wave direction
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