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Chapter 1

Introduction

In this thesis we are going to study a function transform that involves a generalization of the
hypergeometric function 2F1(a, b; c; z). This generalization is a part of a family of functions that
we call hyperbolic hypergeometric functions. These functions will be discussed in chapter 2.
The function transform involves Ruijsenaars’ R-function that is defined in [7, (1.30)], which is
why we will call it the Ruijsenaars Function Transform or RFT. The R-function is a particular
case of the more general hyperbolic hypergeometric function that will be defined in section 2.2.
Rλ(x) is an eigenfunction of a second-order difference operator Lω1,ω2

γ for every λ ∈ R. The
main goal of this thesis is to prove that the RFT is a unitary operator and we would like to find
the inverse operator.

This introduction gives a short review of the hypergeometric series and hypergeometric
functions and gives a few properties of the hypergeometric function 2F1(a, b; c; z). Section 1.2

gives an example of a particular type of hypergeometric functions P
(α,β)
n (x), called the Jacobi

polynomials. They form an orthogonal basis for a certain L2-space and are eigenfunctions of
a second-order differential operator D. The corresponding integral transformation is a unitary
operator.

1.1 Hypergeometric functions

Let us first recall the theory of hypergeometric functions. Define the shifted factorial (a)k with
a ∈ C by

(a)k = a(a+ 1) · · · (a+ k − 1), k ∈ Z>0 and (a)0 = 1. (1.1)

A hypergeometric function is the sum of a hypergeometric series, which is defined as follows:
a series

∑
cn is called hypergeometric if the ratio cn+1/cn is a rational function of n. By

factorization this means that

cn+1

cn
=

(n+ a1)(n+ a2) · · · (n+ ap)z

(n+ b1)(n+ b2) · · · (n+ bq)(n+ 1)
, n ∈ Z≥0. (1.2)

Iteration of (1.2) leads to

cn =
(a1)n(a2)n · · · (ap)nzn
(b1)n(b2)n · · · (bq)nn!

c0, n ∈ Z≥0.

Hence
∞∑

n=0

cn = c0

∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
.
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This leads to the definition of the hypergeometric function. The hypergeometric function

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) is defined by means of a hypergeometric series as

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

; z

)
=

∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
. (1.3)

The parameters must surely be such that the denominator factors in the terms of the series are
never zero, so we set b1, b2, . . . , bq ∈ C \Z<0. When at least one of the numerator parameters aj
equals a negative integer, the hypergeometric function is a polynomial in z. In all other cases,
the radius of convergence ρ of the hypergeometric series is given by

ρ =





∞ if p < q + 1
1 if p = q + 1
0 if p > q + 1.

This follows directly from d’Alembert’s ratio test. In fact, we have

lim
n→∞

∣∣∣∣
cn+1

cn

∣∣∣∣ =





0 if p < q + 1
|z| if p = q + 1
∞ if p > q + 1.

In case that p = q+1 the situation that |z| = 1 is of special interest. The hypergeometric series

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) with |z| = 1 converges absolutely if Re
(∑q

i=1 bi −
∑p

j=1 aj

)
>

0. The series converges conditionally if |z| = 1 with z 6= 1 and −1 < Re
(∑q

i=1 bi −
∑p

j=1 aj

)
≤ 0

and the series diverges if Re
(∑q

i=1 bi −
∑p

j=1 aj

)
≤ −1.

Often the most general hypergeometric function pFq is called a generalized hypergeometric
function. By the words ”hypergeometric function”, we refer to the special case

2F1

(
a, b
c

; z

)
=

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
. (1.4)

Many elementary functions have representations as hypergeometric series. An example is

ln(1 + z) =
∞∑

n=0

(−1)n

n+ 1
zn+1 =

∞∑

n=0

(1)n(1)n
(2)n

(−1)nzn+1

n!
= z2F1

(
1, 1
2

;−z
)
,

since (1)n = n! and (2)n = (n+ 1)!. Another example is

0F0

(
−
− ; z

)
=

∞∑

n=0

zn

n!
= ez, z ∈ C. (1.5)

An important role in the theory of hypergeometric functions is played by the gamma function
Γ(z). The gamma function is defined by

Γ(z) =

∫ ∞

0
e−ttz−1dt, Re(z) > 0. (1.6)

An important property of the gamma function is the functional relation

Γ(z + 1)

Γ(z)
= z, Re(z) > 0, (1.7)
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which by iteration implies the following relation between the shifted factorial and the gamma
function

Γ(z + n)

Γ(z)
= (z)n, Re(z) > 0, n ∈ Z≥0. (1.8)

Noting that we have

Γ(1) =

∫ ∞

0
e−tdt = −e−t

∣∣∞
0

= 1,

this leads to

Γ(n+ 1) = n!, n ∈ Z≥0. (1.9)

The functional relation (1.7) can be used to find an analytic continuation for Re(z) ≤ 0 that is
a meromorphic function with simple poles at z ∈ Z≤0.

We also introduce the beta function B(u, v), that is also defined by means of an integral

B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt, Re(u) > 0, Re(v) > 0. (1.10)

This integral is often called the beta integral. From the definition we easily obtain the symmetry

B(u, v) = B(v, u), (1.11)

since by using the substitution t = 1− s, we have

B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt = −

∫ 0

1
(1− s)u−1sv−1ds =

∫ 1

0
sv−1(1− s)u−1ds = B(v, u).

The connection between the beta function and the gamma function is given by the following
theorem.

Theorem 1.1.

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
, Re(u) > 0, Re(v) > 0. (1.12)

Proof. By the definition (1.6) of the gamma function, we have

Γ(u)Γ(v) =

∫ ∞

0
e−ttu−1dt

∫ ∞

0
e−ssv−1ds =

∫ ∞

0

∫ ∞

0
e−(t+s)tu−1sv−1dt ds

Now we apply the change of variables t = xy and s = x(1 − y) to this double integral. Note
that t+ s = x and that 0 < t < ∞ and 0 < s < ∞ imply that 0 < x < ∞ and 0 < y < 1. The
Jacobian of this transformation is

∂(t, s)

∂(x, y)
=

∣∣∣∣
y x

1− y −x

∣∣∣∣ = −xy − x(1− y) = −x.

Since x > 0 we conclude that dt ds =
∣∣∣ ∂(t,s)∂(x,y)

∣∣∣ dx dy = x dx dy. Hence we have

Γ(u)Γ(v) =

∫ 1

0

∫ ∞

0
e−xxu−1yu−1xv−1(1− y)v−1x dx dy

=

∫ ∞

0
e−xxu+v−1dx

∫ 1

0
yu−1(1− y)v−1dy = Γ(u+ v)B(u, v).

This proves the theorem.
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Two examples of identities involving gamma functions are given in the theorem below. These
identities are called the Euler- and Barnes integral representation for the hypergeometric function
and they briefly explain why the gamma function is such an important building block in the
field of hypergeometric functions. We are not going to prove the Barnes integral representation
in detail, but we will give the main idea of this proof.

Theorem 1.2. For Re(c) > Re(b) > 0 we have Euler’s integral representation for the hyperge-
ometric function

2F1

(
a, b
c

; z

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt (1.13)

for all z in the complex plane cut along the real axis from 1 to ∞.

Proof. First suppose that |z| < 1, then the binomial theorem implies that

(1− zt)−a =
∞∑

n=0

(a)n
n!

zntn.

This implies that

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt =

∞∑

n=0

(a)n
n!

zn
∫ 1

0
tn+b−1(1− t)c−b−1dt.

The latter integral is a beta integral which by (1.12) equals

∫ 1

0
tn+b−1(1− t)c−b−1dt = B(n+ b, c− b) =

Γ(n+ b)Γ(c− b)

Γ(n+ c)
.

Now we use the fact that

Γ(n+ b)

Γ(b)
= b(b+ 1)(b+ 2) · · · (b+ n− 1) = (b)n, n ∈ Z≥0

to obtain

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt =

Γ(c)

Γ(b)

∞∑

n=0

Γ(n+ b)

Γ(n+ c)

(a)n
n!

zn

=

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
= 2F1

(
a, b
c

; z

)
,

which proves the theorem for |z| < 1. Since the integral is analytic in the cut plane C \ (1,∞),
the theorem holds in that region as well.

Theorem 1.3. We also have Barnes’ integral representation for the hypergeometric function

2F1

(
a, b
c

; z

)
=

Γ(c)

Γ(a)Γ(b)

1

2πi

∫ i∞

−i∞

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)sds, | arg(−z)| < π. (1.14)

The path of integration is curved, if necessary, to separate the poles s = −a− n and s = −b− n
from the poles s = n with n ∈ Z≥0. Such a contour always exists if a, b /∈ Z≤0.
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Proof. We will only give an idea of the proof. Let C be the closed contour formed by a part of
the curve used in the theorem from −(N + 1

2)i to (N + 1
2)i together with the semicircle of radius

N + 1
2 to the right of the imaginary axis with 0 as center. It can be proved that the integral

is an analytic function for | arg(−z)| < π and converges to zero on the semicircle for N → ∞.
Using Cauchy’s residue theorem implies that the integral tends to the limit of the sums of the
residues at s = n with n ∈ Z≥0. This infinite sum is equal to

Γ(a)Γ(b)

Γ(c)
2F1

(
a, b
c

; z

)
,

which proves the theorem.

1.2 Jacobi polynomials

The Jacobi polynomials are a well-known kind of orthogonal polynomials. A representation of
the Jacobi polynomials is

P (α,β)
n (x) =

(−1)n

2n

n∑

k=0

(−1)k
(
n+ α

k

)(
n+ β

n− k

)
(1− x)n−k(1 + x)k, n ∈ Z≥0. (1.15)

So P
(α,β)
n (x) is a polynomial of degree n. Note that by this representation we have the symmetry

P (α,β)
n (−x) = (−1)nP (β,α)

n (x), n ∈ Z≥0. (1.16)

A hypergeometric representation of P
(α,β)
n (x) is

P (α,β)
n (x) =

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
, n ∈ Z≥0. (1.17)

In view of the symmetry (1.16) we also have another hypergeometric representation, which is

P (α,β)
n (x) = (−1)n

(
n+ β

n

)
2F1

(
−n, n+ α+ β + 1

β + 1
;
1 + x

2

)
, n ∈ Z≥0. (1.18)

The Jacobi polynomials P
(α,β)
n (x) are orthogonal on the interval (−1, 1) with respect to the beta

distribution w(x) = (1− x)α(1 + x)β .

The Jacobi polynomials P
(α,β)
n (x) are solutions of the second-order linear differential equation

(1− x2)y′′(x) + [β − α− (α+ β + 2)x]y′(x) + n(n+ α+ β + 1)y(x) = 0, n ∈ Z≥0. (1.19)

This means that we can define the differential operator D by

D := (1− x2)
d2

dx2
+ [β − α− (α+ β + 2)x]

d

dx
(1.20)

This implies that P
(α,β)
n (x) satisfies the eigenvalue equation

DP (α,β)
n (x) = λnP

(α,β)
n (x), (1.21)

where λn = −n(n+ α+ β + 1). We can define an inner product 〈·, ·〉 by

〈f, g〉 :=
∫ 1

−1
f(x)g(x)w(x)dx (1.22)
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and it can be shown that 〈Df, P (α,β)
n 〉 = 〈f,DP (α,β)

n 〉. It is now easily shown that the Jacobi
polynomials are orthogonal with respect to this inner product. We have the following

λn〈P (α,β)
n , P (α,β)

m 〉 = 〈DP (α,β)
n , P (α,β)

m 〉 = 〈P (α,β)
n , DP (α,β)

m 〉 = λm〈P (α,β)
n , P (α,β)

m 〉. (1.23)

We know that for n 6= m we have that λn 6= λm. Thus, in case that n 6= m we have that

〈P (α,β)
n , P

(α,β)
m 〉 = 0, which means that the Jacobi polynomials are orthogonal with respect to

the inner product. Even more specific, the Jacobi polynomials satisfy the orthogonality relation

∫ 1

−1
P (α,β)
m (x)P (α,β)

n (x)w(x)dx =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!
δmn = Anδmn (1.24)

for α > −1, β > −1, m, n ∈ Z≥0 and the Kronecker delta function which is defined by

δmn :=

{
0, m 6= n
1, m = n

form,n ∈ Z≥0. Together with the orthogonality relation (1.24) it can be shown that
{
P

(α,β)
n

}∞

n=0

is an orthogonal basis of L2 [(−1, 1), w(x)]. This means that we may write every f ∈ L2 [(−1, 1), w(x)]
as

f =
∞∑

n=0

f̂n∥∥∥P (α,β)
n

∥∥∥
2P

(α,β)
n =

∞∑

n=0

A−1
n f̂nP

(α,β)
n , (1.25)

where

f̂n = 〈f, P (α,β)
n 〉 =

∫ 1

−1
f(x)P (α,β)

n (x)w(x)dx. (1.26)

We may view f̂n as a function transform on L2 [(−1, 1), w(x)] to l2(Z≥0) that is similar to the

Ruijsenaars Function Transform (5.34). It can be shown that 〈Df, P (α,β)
n 〉 = 〈f,DP (α,β)

n 〉, so

D̂fn =

∫ 1

−1
(Df) (x)P (α,β)

n (x)w(x)dx

=

∫ 1

−1
f(x)

(
DP (α,β)

n

)
(x)w(x)dx

= λn

∫ 1

−1
f(x)P (α,β)

n (x)w(x)dx

= λnf̂n. (1.27)

This means that the integral transformation (1.26) interchanges the differential operator D by
a multiplication operator.

1.3 Motivation for this thesis

The unitarity of the RFT is already mentioned in another form in [9, Corr. 3.2], but is far from
an objective in that article. This thesis aims to achieve the unitarity of the RFT in another
way. This is inspired by the way unitarity of the Askey-Wilson function transform is achieved
in the article by E. Koelink and J.V. Stokman [1] and the way unitarity of the Wilson function
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transform is achieved in the article by W.G.M. Groenevelt [4]. A fundamental difference in the
development in these articles, as opposed to Ruijsenaars’ methods, is the c-function expansion
they use for the Askey-Wilson function [1, (4.5)] and the Wilson function [4, (4.20)]. These
expansions give an easier way to find asymptotics of these functions then the way Ruijsenaars
[8] finds the asymptotics of the E-function (4.26) that is essentially Ruijsenaars’ R-function.

There are not a lot articles written on hyperbolic hypergeometric functions and we think that
this thesis will be a welcome addition to the work that is done on hyperbolic hypergeometric
functions. The way it is written is also consistent with the articles of Koelink, Stokman and
Groenevelt that were just mentioned.

1.4 Overview of this thesis

In this section we will give a short overview of the different chapters of this thesis and the aspects
of the theory which are presented there.

In Chapter 2 we consider in a uniform way the hyperbolic hypergeometric functions as they
play an important role in this thesis. This discusses the general hyperbolic hypergeometric func-
tion and deals with two important degenerations of this function that are called the hyperbolic
Barnes- and Euler integral. The hyperbolic gamma function is an important building block for
these functions and the Barnes- and Euler integral are important for constructing difference
equations for Ruijsenaars’ R-function.

Chapter 3 studies the construction of contiguous relations for the hyperbolic hypergeometric
function and the hyperbolic Euler integral. The contiguous relation for the hyperbolic Euler inte-
gral is the result of a succesful degeneration of the contiguous relation for the general hyperbolic
hypergeometric function.

Ruijsenaars R-function will be defined in Chapter 4. A few important symmetries in its pa-
rameters will be discussed afterwards. The contiguous relation for the hyperbolic Euler integral
along with its relation (2.48) to the hyperbolic Barnes integral imply four second-order differ-
ence equations of Askey-Wilson type. Section 4.2 defines a related difference operator Lω1,ω2

γ

for which Ruijsenaars’ R-function is an eigenfunction and also discusses the E-function which is
important in Ruijsenaars’ articles [8, 9].

Chapter 5 defines a Hilbert space Hw with an appropriate weight function w(γ;x). The
eigenvalue equation that involves Lω1,ω2

γ and R give rise to equalities for the inner product that
will also be defined in this chapter. For functions f that meet certain conditions we will define
the RFT F as follows

(Ff) (λ) =
∫ ∞

−∞
f(x)Rλ(x)w(γ;x)dx.

The inverse transformation will also be defined and altogether it will be made clear that the
RFT is a unitary operator on Hw.

Finally, in Chapter 6 we will discuss further research for the RFT. When the weight function
w has poles, then we can make a corresponding weight that has a discrete spectrum. We will see
that in this case the operator is also unitary, but it takes some more calculations to get there.
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Chapter 2

Introduction to hyperbolic

hypergeometric functions

Throughout this thesis we fix ω1, ω2 ∈ R≥0 satisfying ω1/ω2 /∈ Q and we write

ω =
ω1 + ω2

2
. (2.1)

We will use a few shorthand notations in this thesis for expressions that occur frequently. A
lot of functions (say f) will depend on ω1 and ω2, so we will write f(z) = f(ω1, ω2; z) or
f(z) = f(z;ω1, ω2) if ω1 and ω2 are at their ’usual’ places. Since the product f(a + b)f(a − b)
frequently occurs in this thesis, we use for this product the shorthand notation f(a± b).

2.1 The hyperbolic gamma function

First, consider the integral

g(ω1, ω2; z) =

∫ ∞

0

(
sin(2yz)

2 sinh(ω1y) sinh(ω2y)
− z

ω1ω2y

)
dy

y
. (2.2)

Because | sin(2yz)| = O
(
e2y|Im(z)|

)
and |2 sinh(ω1y) sinh(ω2y)| = O(e2ωy), we have that

∣∣∣∣
sin(2yz)

2y sinh(ω1y) sinh(ω2y)

∣∣∣∣ = O
(
y−1e2y(|Im(z)|−ω)

)
, (2.3)

∣∣∣∣−
z

ω1ω2y2

∣∣∣∣ = O
(
y−2

)
. (2.4)

Defining the strip

S = {z ∈ C | |Im(z)| < ω} , (2.5)

it is now clear from (2.2),(2.3) and (2.4) that the integral converges absolutely and uniformly on
compact subsets of S. This implies that g(ω1, ω2; z) is analytic in S. Ruijsenaars’ [7] hyperbolic
gamma function is now defined by

G(ω1, ω2; z) = exp(ig(ω1, ω2; z)). (2.6)
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It is obviously analytic and zero-free in S. There exists (it is not obvious, but true) a unique
meromorphic extension of G(ω1, ω2; z) to z ∈ C satisfying

G(ω1, ω2;−z) = 1/G(ω1, ω2; z), (2.7)

G(ω2, ω1; z) = G(ω1, ω2; z), (2.8)

G(ω1, ω2; z) = G(ω1, ω2;−z) (2.9)

G(λω1, λω2;λz) = G(ω1, ω2; z), λ ∈ (0,∞). (2.10)

These properties are easily derived by substitution into the definition of G and elementary
mathematics. The first identity is called the reflection equation. We sometimes us the shorthand
notation G(a1, a2, . . . , an), that stands for the product G(a1)G(a2) · . . . ·G(an). We proceed by
giving a few properties that are important throughout this thesis.

The hyperbolic gamma function G(z) is a generalization of the ’regular’ gamma function
Γ(z) in the following way

lim
v↓0

G(ω1, ω2/v; iω1(1/2− z) + iω2/2v)

(
2πvω1

ω2

) 1

2
−z

=
Γ(z)√
2π
. (2.11)

This limit is due to Ruijsenaars [6, Prop. III.6]. We will make a lot of use of the analytic
difference equations in the next proposition.

Proposition 2.1. The hyperbolic gamma function G(ω1, ω2, z) satisfies the following first order
Analytic Difference Equations (also called A∆E’s)

G(z + iω1/2)

G(z − iω1/2)
= 2 cosh(πz/ω2)

G(z + iω2/2)

G(z − iω2/2)
= 2 cosh(πz/ω1), (2.12)

Proof. Define Γh for 0 < Im(z) < Im(ω1 + ω2) by

Γh(z;ω1, ω2) = exp

(
i

∫ ∞

0

(
2z − ω1 − ω2

2tω1ω2
− sin(t(2z − ω1 − ω2))

2 sin(ω1t) sin(ω2t)

)
dt

t

)
. (2.13)

This function is in fact another way of writing down the hyperbolic gamma function. A careful
look at the integral expression for Γh(z;ω1, ω2) lets us see that it can be related to our definition
of the hyperbolic gamma function via

Γh(z;ω1, ω2) = G(−iω1,−iω2; z − ω1/2− ω2/2).

Note that this implies

G(ω1, ω2; z) = Γh(z + iω; iω1, iω2). (2.14)

We are first going to obtain a difference equation for Γh and afterwards use (2.14) to get to the
difference equations (2.12) for G. We find

Γh(z + ω2)

Γh(z)
= exp

(
i

∫ ∞

0

2z + ω2 − ω1

2t2ω1ω2
− sin(t(2z + ω2 − ω1))

2t sin(ω1t) sin(ω2t)
dt

−i
∫ ∞

0

2z − ω1 − ω2

2t2ω1ω2
− sin(t(2z − ω1 − ω2))

2t sin(ω1t) sin(ω2t)
dt

)

= exp

(
i

∫ ∞

0

1

t2ω1
− sin(t(2z + ω2 − ω1))− sin(t(2z − ω1 − ω2))

2t sin(ω1t) sin(ω2t)
dt

)

= exp

(
i

∫ ∞

0

1

t2ω1
− cos(t(2z − ω1))

t sin(ω1t)
dt

)
, (2.15)
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using the trigonometric identity sin(a)− sin(b) = 2 cos
(
a+b
2

)
sin

(
a−b
2

)
in the final equality. The

integral between brackets is the sum of the integrals

∫ ∞

0

1

t2ω1
− 1

t sin(ω1t)
dt = −i ln(2),

which is a rescaled version of [5, (3.529), no. 2], and

∫ ∞

0

1− cos(t(2z − ω1))

t sin(ω1t)
dt = −i ln(sin(πz/ω1)),

which also follows from [5, (3.529), no. 2]. Together this means that

∫ ∞

0

1

t2ω1
− cos(t(2z − ω1))

t sin(ω1t)
dt = −i ln(2 sin(πz/ω1)).

Continuing with (2.15), this implies

Γh(z + ω2;ω1, ω2) = exp(i · −i ln(2 sin(πz/ω1)))Γh(z;ω1, ω2)

= 2 sin

(
πz

ω1

)
Γh(z). (2.16)

Because we have that Γh(z;ω1, ω2) = Γh(z;ω2, ω1), we can easily see that (2.16) implies that we
also have

Γh(z + ω1;ω1, ω2) = 2 sin

(
πz

ω2

)
Γh(z;ω1, ω2). (2.17)

Taking ω1 → iω1, ω2 → iω2 and afterwards z → z + iω2/2 in (2.17) gives

Γh(z + iω + iω1/2; iω1, iω2) = 2 sin

(
π(z + iω2/2)

iω2

)
Γh(z + iω2/2; iω1, iω2) (2.18)

Using the identities sin(a/i) = sin(−ia) = sinh(a), sinh(b+πi/2) = cosh(b) and (2.14), we have

G(ω1, ω2; z + iω1/2) = 2 cosh(πz/ω2)G(ω1, ω2; z − iω1/2). (2.19)

This is the first relation in (2.12) that we desired. The second one can again be obtained by
using the ω1 ↔ ω2-symmetry of the hyperbolic gamma function.

These A∆E’s are the hyperbolic analogues of the difference equation (1.7) for Γ(z). Note
that these A∆E’s imply the following expression, that we sometimes prove to be more useful

G(z + iω1) = −2i sinh(π(z + iω)/ω2)G(z). (2.20)

Furthermore, G satisfies

G(0) = 1, and G(z) > 0, Im(z) ∈ (−ω, ω), Re(z) = 0. (2.21)

In Chapter 4, we are going to introduce Ruijsenaars’ R-function. This function is defined as an
integral which has an integrand that consists of a product of fifteen G-functions. To analyse the
analyticity properties of R, we naturally need to know the analyticity properties of G.
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Proposition 2.2. The zeros and poles of G(z) are given by

z+kl ≡ iω + ikω1 + ilω2, k, l ∈ Z≥0 (zeros), (2.22)

z−kl ≡ −z+kl k, l ∈ Z≥0 (poles). (2.23)

In particular, for ω1/ω2 /∈ Q all poles and zeros are simple. The pole at z−00 is simple and has
residue

r00 =
i
√
ω1ω2

2π
. (2.24)

More generally, if the quantity

tkl ≡
k∏

m=1

sin(πmω1/ω2)

l∏

n=1

sin(πnω2/ω1) (2.25)

is non-zero, then the pole at z−kl is simple and has residue

rkl = (−1)kl(−1/2)k+lr00/tkl. (2.26)

Conversely, if z−kl is a simple pole, then one has tkl 6= 0.

A short remark is that we already chose ω1/ω2 to be irrational, so throughout this thesis
we can assume that the poles and zeros of the hyperbolic gamma functions are simple. We will
also need to know the asymptotic behaviour of G(z) as Re(z) → ±∞. For our purposes it is
sufficient to know that for any a, b ∈ C we have

lim
Re(z)→∞

G(z − a)

G(z − b)
exp

(
πiz

ω1ω2
(b− a)

)
= exp

(
πi

2ω1ω2
(b2 − a2)

)
(2.27)

where the corresponding o(Re(z))-tail as Re(z) → ∞ can be estimated uniformly. Furthermore,
for periods ω1 and ω2 we have

|G(u+ x)| ≤M exp

(
πIm

(
u

ω1ω2

)
|x|

)
, x ∈ R (2.28)

for some constant M > 0, provided that the line u+ R does not hit a pole of G.

2.2 The hyperbolic hypergeometric function

The hypergeometric integrals that we will consider in this thesis depend meromorphically on a
parameter u ∈ Gc with Gc ⊂ C8 (c ∈ C) the complex hyperplane

Gc =



u = (u1, u2, . . . , u8) ∈ C8 |

8∑

j=1

uj = 2c



 . (2.29)

We now define the integrand of the hyperbolic hypergeometric function Ih(u; z) = Ih(u; z;ω1, ω2)
as

Ih(u; z;ω1, ω2) =
G(iω ± 2z)∏8
j=1G(uj ± z)

(2.30)
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for generic parameters u ∈ G2iω. The hyperbolic hypergeometric function Sh(u) = Sh(u;ω1, ω2)
is now defined as

Sh(u;ω1, ω2) =

∫

C
Ih(u; z;ω1, ω2)dz. (2.31)

The contour C is a deformation of the real line which separates the upward pole sequences of the
integrand from the downward pole sequences. Note that the positively oriented real line can be
chosen as an integration contour in the definition of Sh(u) if u ∈ G2iω satisfies Im(uj − iω) < 0
for j = 1, . . . , 8. The asymptotic behaviour of Ih(u; z) at z = ±∞ is O(exp(−4π|z|ω/ω1ω2)), so
the integral converges absolutely.

The hyperbolic integrals (like Sh) have an underlying symmetrygroup for the parameters
u ∈ G2iω. These so-called Weyl groups are well treated in [3, Section 2]. We give now the
explicit symmetry of Sh(u).

Theorem 2.3. Let v and w be two operations that act on u ∈ G2iω. These are

wu = (u1 + s, . . . , u4 + s, u5 − s, . . . , u8 − s), vu = (iω − u1, . . . , iω − u8) (2.32)

with s = iω − 1
2(u1 + u2 + u3 + u4) =

1
2(u5 + u6 + u7 + u8)− iω. The hyperbolic hypergeometric

function Sh(u) (u ∈ G2iω) is invariant under permutations of (u1, u2, . . . , u8) and it satisfies

Sh(u;ω1, ω2) = Sh(wu;ω1, ω2)
∏

1≤j<k≤4

G(iω − uj − uk;ω1, ω2)

×
∏

5≤j<k≤8

G(iω − uj − uk;ω1, ω2) (2.33)

as meromorphic functions in u ∈ G2iω. The hyperbolic hypergeometric function Sh(u) also
satisfies

Sh(u;ω1, ω2) = Sh(vu;ω1, ω2)
∏

i≤j<k≤8

G(iω − uj − uk;ω1, ω2) (2.34)

as meromorphic functions in u ∈ G2iω.

2.3 The hyperbolic Barnes integral

In this section we degenerate the hyperbolic hypergeometric function Sh(u), u ∈ G2iω along
β = 1

2(ǫ1 + ǫ2 + ǫ7 + ǫ8 − ǫ3 − ǫ4 − ǫ5 − ǫ6), where {ǫj}8j=1 is the standard orthonormal basis of

R8. This means that

u+ rβ =
(
u1 +

r

2
, u2 +

r

2
, u3 −

r

2
, u4 −

r

2
, u5 −

r

2
, u6 −

r

2
, u7 +

r

2
, u8 +

r

2

)
. (2.35)

Concretely, for generic parameters u ∈ G2iω we define Bh(u) = Bh(u;ω1, ω2) by

Bh(u;ω1, ω2) = 2

∫

C

∏6
j=3G(z − uj)∏

j=1,2,7,8G(z + uj)
dz. (2.36)

This integral converges absolutely since the asymptotic behaviour of the integrand at z = ±∞
is exp(−4πω|z|/ω1ω2) due to (2.28). We may take the real line as integration contour if u ∈ G2iω

satisfies Im(uj − iω) < 0 for j = 1, . . . , 8. Note that the hyperbolic Barnes integral is invariant
under permutations of (u1, u2, u7, u8) and of (u4, u4, u5, u6). We call Bh(u) the hyperbolic Barnes
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integral since it is essentially Ruijsenaars’ [7] hyperbolic generalization of the Barnes integral
representation of the Gauss hypergeometric function.

The degeneration of the hyperbolic hypergeometric function Sh to the hyperbolic Barnes
integral Bh is made clear in the next proposition.

Proposition 2.4. For u ∈ G2iω satisfying Im(uj − iω) < 0 for j = 1, . . . , 8 we have

lim
r→∞

Sh(u− rβ) exp

(
2πrω

ω1ω2

)
exp


 πi

2ω1ω2


 ∑

j=1,2,7,8

u2j −
6∑

j=3

u2j




 = Bh(u). (2.37)

Proof. The conditions on the parameters u ∈ G2iω allow us to choose the real line as an inte-
gration contour in the integral expression of Sh(u − rβ), r ∈ R, as well as in the integration
expression of Bh(u). Using that the integrand Ih(u; z) of Sh(u) is even in x, using the reflection
equation for the hyperbolic gamma function (2.7) and by using the substitution x = z + r

2 , we
have

Sh(u− rβ)e
2πrω
ω1ω2 = e

2πrω
ω1ω2

∫ ∞

−∞

G(iω ± 2x)∏
j=1,2,7,8G(uj − r

2 ± x)
∏6

j=3G(uj +
r
2 ± x)

dx

= 2e
2πrω
ω1ω2

∫ ∞

0

G(iω ± 2x)∏
j=1,2,7,8G(uj − r

2 ± x)
∏6

j=3G(uj +
r
2 ± x)

dx

= 2e
2πrω
ω1ω2

∫ ∞

− r
2

∏
j=1,2,7,8G(z + r − uj)

∏6
j=3G(z − uj)G(iω ± (2z + r))

∏
j=1,2,7,8G(uj + z)

∏6
j=3G(uj + r + z)

dz

= 2

∫ ∞

− r
2

k1(2z + r)k2(z + r)L(z)dz,

where

L(z) =

∏6
j=3G(z − uj)∏

j=1,2,7,8G(z + uj)
,

k1(z) =
G(z + iω)

G(z − iω)
e
− 2πωz

ω1ω2 = (1− e−2πz/ω1)(1− e−2πz/ω2),

k2(z) =

∏
j=1,2,7,8G(z − uj)∏6

j=3G(z + uj)
e

4πωz
ω1ω2 .

The second expression of k1 follows by applying both A∆E’s for G in (2.12). The pointwise
limits of k1 and k2 are

lim
z→∞

k1(z) = 1, lim
k→∞

k2(z) = e
πi

2ω1ω2
(
∑

6

j=3
u2

j−
∑

j=1,2,7,8 u
2

j).

Moreover, observe that k1(z) is uniformly bounded by 4 for z ∈ R≥0, and that k2(z) is also
uniformly bounded for z ∈ R≥0 because it is a continuous function on R≥0 which has a finite
limit.

Denote by χ(−r/2,∞)(z) the indicator function on the interval (−r/2,∞). By Lebesgue’s
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theorem of dominated convergence we now conclude that

lim
r→∞

Sh(u− rβ)e
2πrω
ω1ω2 = 2 lim

r→∞

∫ ∞

− r
2

k1(2z + r)k2(z + r)L(z)dz

= 2

∫ ∞

−∞
lim
r→∞

χ(−r/2,∞)(z)k1(2z + r)k2(z + r)L(z)dz

= 2e
πi

2ω1ω2
(
∑

6

j=3
u2

j−
∑

j=1,2,7,8 u
2

j)
∫ ∞

−∞
L(z)dz

= e
πi

2ω1ω2
(
∑

6

j=3
u2

j−
∑

j=1,2,7,8 u
2

j)Bh(u),

which is exactly the result we desired.

In the following corollary we use Proposition 2.3 to degenerate the hyperbolic beta integral
[10, (1.10)], which is

∫

C

G(iω ± 2z)∏6
j=1G(uj ± z)

dz = 2
√
ω1ω2

∏

1≤j<k≤6

G(iω − uj − uk) (2.38)

for generic u1, . . . , u6 ∈ C satisfying the additive balancing condition
∑6

j=1 uj = 4iω.

Corollary 2.5. For generic u ∈ C6 satisfying Im(uj − iω) < 0 for j = 1, . . . , 8 and
∑6

j=1 uj =
4iω we have

∫

C

G(z − u4, z − u5, z − u6)

G(z + u1, z + u2, z + u3)
dz =

√
ω1ω2

3∏

j=1

6∏

k=4

G(iω − uj − uk). (2.39)

Proof. Substitute the parameters u′ = (u1, u2, u4, u5, u6, 0, u3, 0) in Proposition 2.3 with uj ∈ C

satisfying Im(uj − iω) < 0 for j = 1, . . . , 8 and
∑6

j=1 uj = 4iω. Then Bh(u
′) is equal to the

lefthandside of (2.39), multiplied by 2. On the other hand, by proposition 2.3 and (2.38) we
have

Bh(u
′) = lim

r→∞
Sh(u

′ − rβ) exp


2πrω

ω1ω2
+

πi

2ω1ω2




3∑

j=1

u2j −
6∑

j=4

u2j






= 2
√
ω1ω2

3∏

j=1

6∏

k=4

G(iω − uj − uk)

× lim
r→∞

∏
1≤j<k≤3G(iω − uj − uk + r)∏
4≤j<k≤6G(uj + uk − iω + r)

exp


2πrω

ω1ω2
+

πi

2ω1ω2




3∑

j=1

u2j −
6∑

j=4

u2j






= 2
√
ω1ω2

3∏

j=1

6∏

k=4

G(iω − uj − uk) (2.40)

where the last equality follows from a straightforward but tedious computation using the limit
(2.27) for obtaining the last equality.
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2.4 The hyperbolic Euler integral

In this section we degenerate the hyperbolic hypergeometric function Sh(u) (u ∈ G2iω) along
α = ǫ7 − ǫ8. This means that

u+ rη = (u1, . . . , u6, u7 + r, u8 − r). (2.41)

The resulting degenerate integral Eh(u) = Eh(u;ω1, ω2) is called the hyperbolic Euler integral
and is defined by

Eh(u;ω1, ω2) =

∫

C

G(iω ± 2z)∏6
j=1G(uj ± z)

dz, (2.42)

for generic parameters u = (u1, . . . , u6) ∈ C6 satisfying

Im


 1

ω1ω2

6∑

j=1

uj


 >

2ω

ω1ω2
. (2.43)

It follows from the asymptotics (2.27) of the hyperbolic gamma function that the condition on
the parameters ensures the absolute convergence of Eh(u). Observe that Eh(u) reduces to the
hyperbolic beta integral (2.38) when the parameters u ∈ C6 satisfy the balancing condition∑6

j=1 uj = 4iω.
The next proposition shows exactly how the hyperbolic Euler integral is a degeneration of

the hyperbolic hypergeometric function.

Proposition 2.6. For u ∈ G2iω satisfying Im(uj − ω) < 0 for j = 1, . . . , 8,, the parameter
condition (2.43) and Im ((u7 + u8)/ω1ω2) ≥ 0, we have

lim
r→∞

Sh(u− rη−78) exp

(
− πi

ω1ω2
(u7 + u8)(2r − u7 + u8)

)
= Eh(u1, u2, u3, u4, u5, u6). (2.44)

Proof. The assumption Im(uj − ω) < 0 for j = 1, . . . , 8 ensures that the integration contours in
Sh and Eh can be chosen as the positively oriented real line. We denote the integrand of the
Euler integral by

J(z) =
G(iω ± 2z)∏6
j=1G(uj ± z)

,

and we set

H(z) =
G(z − u7)

G(z + u8)
exp

(
− πiz

ω1ω2
(u7 + u8)

)
.

This allows us to write

J(z)H(r + z)H(r − z) =
G(iω ± 2z)∏6
j=1G(uj ± z)

G(r − u7 ± z)

G(r + u8 ± z)
exp

(
− 2πir

ω1ω2
(u7 + u8)

)

=
G(iω ± 2z)

G(u7 − r ± z)G(u8 + r ± z)
∏6

j=1G(uj ± z)

× exp

(
− 2πir

ω1ω2
(u7 + u8)

)

= Ih(u− rη) exp

(
− 2πir

ω1ω2
(u7 + u8)

)
,
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where Ih(u) is the integrand (2.30) of the hyperbolic hypergeometric function Sh(u). Observe
that H is a continuous function on R satisfying

lim
z→∞

H(z) = exp

(
πi

2ω1ω2
(u28 − u27)

)
, (2.45)

lim
z→−∞

H(z) exp

(
2πiz

ω1ω2
(u7 + u8)

)
= lim

z→−∞

G(z − u7)

G(z + u8)
exp

(
πiz

ω1ω2
(u7 + u8)

)

= lim
z→∞

G(z − u8)

G(z + u7)
exp

(
πiz

ω1ω2
(−u7 − u8)

)
, by (2.7)

= exp

(
πi

2ω1ω2
(u27 − u28)

)
(2.46)

where we have used the limit (2.27) in both equations. Moreover, H is uniformly bounded on
R in view of the parameter condition Im ((u7 + u8)/ω1ω2) ≥ 0 on the parameters, and we have

lim
r→∞

H(r + z)H(r − z)

= lim
r→∞

G(r − u7 ± z)

G(r + u8 ± z)
exp

(
− 2πir

ω1ω2
(u7 + u8)

)

= lim
r→∞

G(r − u7 − z)

G(r + u8 − z)
exp

(
− πir

ω1ω2
(u7 + u8)

)
G(r − u7 + z)

G(r + u8 + z)
exp

(
− πir

ω1ω2
(u7 + u8)

)

= exp

(
πi

2ω1ω2
(u28 − u27 − 2z(u8 + u7))

)
exp

(
πi

2ω1ω2
(u28 − u27 + 2z(u8 + u7))

)

= exp

(
πi

ω1ω2
(u28 − u27)

)

for fixed z ∈ R. By Lebesgue’s theorem of dominated convergence we conclude that

lim
r→∞

Sh(u− rη) exp

(
− πi

ω1ω2
(u7 + u8)(2r − u7 + u8)

)

= lim
r→∞

∫

R

J(z)H(r + z)H(r − z)dz

=

∫

R

J(z) lim
r→∞

H(r + z)H(r − z)dz

= Eh(u1, . . . , u6) exp

(
πi

ω1ω2
(u28 − u27)

)
,

which implies the desired asymptotics.

As a corollary of Proposition 2.5 we obtain the hyperbolic integral of Askey-Wilson type.

Corollary 2.7. The hyperbolic Euler integral Eh(u), u ∈ C6 is symmetric in (u1, . . . , u6) and

for generic u = (u1, u2, u3, u4) ∈ C4 satisfying Im
(

1
ω1ω2

∑4
j=1 uj

)
> 2ω

ω1ω2
we have

∫

C

G(iω ± 2z)∏4
j=1G(uj ± z)

dz = 2
√
ω1ω2G(u1 + u2 + u3 + u4 − 3iω)

×
∏

1≤j<k≤4

G(iω − uj − uk). (2.47)
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Proof. The permutation symmetry is trivial by looking at (2.42). For the second part of this
corollary, apply Proposition 2.5 under the additional condition u5 = −u6 on the associated
parameters u ∈ G2iω. Using the reflection equation for the hyperbolic gamma function (2.7),
we see that the righthandside of (2.44) becomes the lefthandside of (2.47). On the other hand,
Sh(u− rη) can be evaluated by the hyperbolic beta integral (2.38), resulting in

∫

C

G(iω ± z)∏4
j=1G(uj ± z)

=

∫

C

G(iω ± z)∏6
j=1G(uj ± z)

∣∣∣∣∣
u5=−u6

= 2
√
ω1ω2G(iω − u7 − u8)

∏

1≤j<k≤4

G(iω − uj − uk)

× lim
r→∞

exp

(
− πi

ω1ω2
(u7 + u8)(2r − u7 + u8)

)

×
4∏

j=1

G(iω − uj − u7 + r)

G(−iω + uj + u8 + r)

= 2
√
ω1ω2G(u1 + u2 + u3 + u4 − 3iω)

∏

1≤j<k≤4

G(iω − uj − uk),

where we used the balancing condition u5 = −u6 in the first equality and the asymptotics (2.27)
of the hyperbolic gamma function to obtain the last equality.

Both the hyperbolic Euler integral Eh (2.42) and the hyperbolic Barnes integral Bh (2.36)
are degenerations of the hyperbolic hypergeometric function Sh (2.31). We can use Propositions
2.3 and 2.5 to relate Bh to Eh. The next theorem states this relation that will prove to be useful
in the following chapter.

Theorem 2.8. We have

Bh(u) = Eh(u2 − s, u7 − s, u8 − s, u3 + s, u4 + s, u6 + s)

×
5∏

j=3

G(iω − u1 − uj)
∏

j=2,7,8

G(iω − u6 − uj) (2.48)

as meromorphic functions in {u ∈ G2iω | Im ((u1 + u6)) < 2ω, Im(uj−ω) < 0) for j = 1, . . . , 6},
where

s =
1

2
(u2 + u6 + u7 + u8)− iω = iω − 1

2
(u1 + u3 + u4 + u5).

Proof. We prove the theorem by analyzing the double integral

1√
ω1ω2

∫

R2

G(iω ± 2z)
∏5

j=3G(x− uj)

G(iω + s+ x± z)G(x+ u1)
∏

j=2,7,8G(uj − s± z)
dzdx

for ω1, ω2 > 0, u ∈ G2iω and s = 1
2(u2 + u6 + u7 + u8)− iω. We impose the additional parameter

restraints
|Im(s)| < ω, Im(u6 + s) < 0

to ensure the absolute convergence of the double integral, and

Im(s) < 0, Im(iω − uj) > 0 (j = 1, 3, 4, 5), Im(iω − uk + s) > 0 (k = 2, 7, 8)

to ensure pole sequence separation by the integration contours. Note that these parameter
restraints imply the parameter condition Im(u1 + u6) < 2ω needed for the hyperbolic Euler
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integral in the righthandside of (2.48) to converge. Integrating the double integral first over x
and using the integral evaluation formula (2.39) of Barnes type, we obtain an expression of the
double integral as a multiple of Eh(u2 − s, u3 + s, u4 + s, u5 + s, u7 − s, u8 − s). Integrating first
over z and using the hyperbolic Askey-Wilson integral (2.47), we obtain an expression of the
double integral as a multiple of Bh(u). The resulting identity is (2.48) for a restricted parameter
domain. Analytic continuation no completes the proof.
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Chapter 3

Contiguous relations

We are going to introduce some notational conventions such that we can write lengthy equations
in a shorter way. We will come across a lot of hyperbolic functions, so we use the following
notational conventions

s(a) = sinh(πa), c(a) = cosh(πa). (3.1)

In this section we write τjk = τ iω1

jk (1 ≤ j 6= k ≤ 8), which acts on u ∈ G2iω by substracting iω1

from uj and adding iω1 to uk, i.e.

τjku = (u1, . . . , uj − iω1, . . . , uk + iω1, . . . , u8). (3.2)

We also write sjk (j 6= k) which acts on u by interchanging uj and uk, i.e.

sjku = sjk(u1, . . . , uj , . . . , uk, . . . , u8)

= (u1, . . . , uk, . . . , uj , . . . , u8) (3.3)

We will encouter a lot of lengthy identities in the remainder of this thesis which contain terms
that are equal up to a permutation of two parameters. For example, we write

f(u1, u2, u3, . . . , u8) + f(u2, u1, u3, . . . , u8) = f(u1, . . . , u8) + (u1 ↔ u2) (3.4)

or

g(x) + g(−x) = g(x) + (x↔ −x), (3.5)

where f and g are usually large expressions.

3.1 Constructing a contiguous relation for Sh

For a start, we are going to prove the following proposition.

Proposition 3.1. For x, y, z, v ∈ C, we have

s(x± v)s(y ± z) + s(x± y)s(z ± v) + s(x± z)s(v ± y) = 0. (3.6)

Proof. First note,

s(a± b) =
1

4

(
eπ(a+b) − e−π(a+b)

)(
eπ(a−b) − e−π(a−b)

)

=
1

4

(
e2πa − e2πb − e−2πb + e−2πa

)

=
1

2
c(2a)− 1

2
c(2b).
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This implies the following deduction

s(x± v)s(y ± z) + s(x± y)s(z ± v) + s(x± z)s(v ± y)

=
1

4
(c(2x)c(2y)− c(2x)c(2z)− c(2v)c(2y) + c(2v)c(2z))

+
1

4
(c(2x)c(2z)− c(2x)c(2v)− c(2y)c(2z) + c(2y)c(2v))

+
1

4
(c(2x)c(2v)− c(2x)c(2y)− c(2z)c(2v) + c(2z)c(2y))

= 0,

where we can just cancel out every term in the last step.

If we substract s(x ± z)s(v ± y), substitute v = u6 − iω, x = u8 + iω, y = u7 − iω and
multiply by −Ih(u) in equation (3.6), we obtain we obtain

−s((u8 + iω ± (u6 − iω))/ω2)s((u7 − iω ± z)/ω2)Ih(u)

+ s((u8 + iω ± (u7 − iω))/ω2)s(u6 − iω ± z)/ω2)Ih(u)

= s((u8 + iω ± z)/ω2)s(u6 − iω ± (u7 − iω))/ω2)Ih(u), (3.7)

where we have also used that s(a± b) = −s(b± a). Now, if we use sinh(a− πi) = − sinh(a), it
is easy to derive that s(uj − iω ± z) = s(uj − iω1 + iω ± z) for j = 6, 7. This turns (3.7) into

s((u8 + iω ± (u7 − iω))/ω2)s((u6 − iω1 + iω ± z)/ω2)Ih(u)

− s((u8 + iω ± (u6 − iω))/ω2)s((u7 − iω1 + iω ± z)/ω2)Ih(u)

= s((u8 + iω ± z)/ω2)s(u6 − iω ± (u7 − iω))/ω2)Ih(u). (3.8)

For constructing a contiguous relation, we need to make at least two differences in the argument
of Ih. Using A∆E (2.20) for G, we compute the following

Ih(u) =
G(iω ± 2z)

G(u6 ± z)G(u8 ± z)
∏8

j=1, j 6=6,8G(uj ± z)

=
s((u8 + iω ± z)/ω2)

s((u6 − iω1 + iω ± z)/ω2)
· G(iω ± 2z)

G(u6 − iω1 ± z)G(u8 + iω1 ± z)
∏8

j=1, j 6=6,8G(uj ± z)

=
s((u8 + iω ± z)/ω2)

s((u6 − iω1 + iω ± z)/ω2)
Ih(τ68u). (3.9)

We also have

Ih(u) =
G(iω ± 2z)

G(u7 ± z)G(u8 ± z)
∏6

j=1G(uj ± z)

=
s((u8 + iω ± z)/ω2)

s((u7 − iω1 + iω ± z)/ω2)
· G(iω ± 2z)

G(u7 − iω1 ± z)G(u8 + iω1 ± z)
∏6

j=1G(uj ± z)

=
s((u8 + iω ± z)/ω2)

s((u7 − iω1 + iω ± z)/ω2)
Ih(τ68s67u). (3.10)

If we now divide by s((u8 + iω± z)/ω2)s((u6 − iω± (u7 − iω))/ω2) in (3.8) and substitute (3.9)
into the first line and (3.10) into the second line, we get the following difference equation when
we integrate over the contour C.

s((u8 + iω ± (u7 − iω))/ω2)

s((u6 − iω ± (u7 − iω))/ω2)
Sh(τ68u) +

s((u8 + iω ± (u6 − iω))/ω2)

s((u7 − iω ± (u6 − iω))/ω2)
Sh(τ78u) = Sh(u), (3.11)
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where we have used that Sh(τ68s67u) = Sh(τ78u) due to the permutation symmetry of Sh(u).
We can obtain a different equation (which does not concern applying symmetry) by substituting
the parameters vu in (3.11). The crux is that τ68vu = vτ86u, so we can subsequently use (2.34).
For the first term this means

s((u8 + iω ± (u7 − iω))/ω2)

s((u6 − iω ± (u7 − iω))/ω2)
Sh(τ68u)

∣∣∣∣
u→vu

=
s((−u7 − u8 + 2iω)/ω2)s((u7 − u8 + 2iω)/ω2)

s((−u6 − u7)/ω2)s((u7 − u6)/ω2)
Sh(vτ86u)

=
s((u7 − u8 + 2iω)/ω2)

s((u7 − u6)/ω2)

5∏

m=1

s((um + u6)/ω2)

s((um + u8 − 2iω)/ω2)

Sh(τ86u)∏
1≤j<k≤8G(iω − uj − uk)

(3.12)

Because we also have τ68s67vu = vτ86s67u, we can obtain the same equality, but with u6 and u7
interchanged. The righthandside of (3.11) is equal to

∏
1≤j<k≤8G(iω − uj − uk)

−1Sh(u), so by

multiplying by
∏5

m=1 s((um + u8 − 2iω)/ω2)
∏

1≤j<k≤8G(iω − uj − uk) we obtain the following
contiguous relation

s((u7 − u8 + 2iω)/ω2)

s((u7 − u6)/ω2)

5∏

j=1

s((uj + u6)/ω2)Sh(τ86u) + (u6 ↔ u7)

=
5∏

j=1

s((uj + u8 − 2iω)/ω2)Sh(u) (3.13)

as meromorphic functions in u ∈ G2iω. Combining these contiguous relations and simplifying we
obtain

A(u)Sh(τ87u)− (u7 ↔ u8) = B(u)Sh(u), u ∈ G2iω (3.14)

where

A(u) = s((2iω − u7 + u8)/ω2)

6∏

j=1

s((uj + u7)/ω2),

B(u) =
s((u8 ± u7)/ω2)s((2iω + u8 − u7)/ω2)s((2iω − u8 + u7)/ω2)

s((2iω + u8 − u6)/ω2)s((2iω + u7 − u6)/ω2)

×
5∏

j=1

s((−2iω + uj + u6)/ω2)

−s((2iω − u8 + u7)/ω2)s((u7 − u6)/ω2)s((−2iω + u6 + u7)/ω2)

s((2iω + u8 − u6)/ω2)

×
5∏

j=1

s((uj + u8)/ω2)

+
s((2iω + u8 − u7)/ω2)s((u8 − u6)/ω2)s((−2iω + u6 + u8)/ω2)

s((2iω + u7 − u6)/ω2)

×
5∏

j=1

s((uj + u7)/ω2).

This leads to the following theorem which is proven in [3, Thm. 4.3].
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Theorem 3.2. We have

A(u) (Sh(τ87u)− Sh(u))− (u7 ↔ u8) = B2(u)Sh(u) (3.15)

as meromorphic functions in u ∈ G2iω, where A(u) is as above and with B2(u) defined by

B2(u) =
s((u7 ± u8)/ω2)s((u7 − u8 ± 2iω)/ω2)

4

×




8∑

j=7

s(2(iω + uj)/ω2)−
6∑

j=1

s(2(iω − uj)/ω2)


 . (3.16)

3.2 A contiguous relation for the hyperbolic Euler integral

What we would like to do now, is to take (3.15) and apply the achieved asymptotic (2.44).
This yields a contiguous relation for the hyperbolic Euler integral, which we will use for later
purposes. Because of the permutation symmetry of Sh(u) , we can write equality (3.15) in the
following way

A(u)(Sh(τ65u)− Sh(u))− (u5 ↔ u6) = B2(s68s57u)Sh(u), (3.17)

where u7 and u8 are interchanged with u5 and u6 respectively. Written out, this means

s((2iω − u5 + u6)/ω2)
8∏

j=1, j 6=5,6

s((uj + u5)/ω2)(Sh(τ65u)− Sh(u))

−s((2iω − u6 + u5)/ω2)
8∏

j=1, j 6=5,6

s((uj + u6)/ω2)(Sh(τ56u)− Sh(u))

=
s((u5 ± u6)/ω2)s((u5 − u6 ± 2iω)/ω2)

4

×




6∑

j=5

s(2(iω + uj)/ω2)−
8∑

j=1, j 6=5,6

s(2(iω − uj)/ω2)


Sh(u),

where s56u = (u1, u2, u3, u4, u6, u5, u7, u8). When we divide by s((u5 − u6 ± 2iω)/ω2) we obtain

∏8
j=1, j 6=5,6 s((uj + u5)/ω2)

s((u5 − u6 + 2iω)/ω2)
(Sh(τ65u)− Sh(u))

−
∏8

j=1, j 6=5,6 s((uj + u6)/ω2)

s((u6 − u5 + 2iω)/ω2)
(Sh(τ56u)− Sh(u))

=
1

4
s((u5 ± u6)/ω2)




8∑

j=1, j 6=5,6

s(2(iω − uj)/ω2)−
6∑

j=5

s(2(iω + uj)/ω2)


Sh(u), (3.18)

The trick to get the lefthandside correct, is to divide by
∏8

j=7 s((uj + u5)/ω2), multiply by

exp(− πi
ω1ω2

(u7+u8)(2r−u7+u8)), substitute u− rη for u and afterwards take the limit r → ∞.
We will look at each term in the equation separately for obvious reasons. The first term on the
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lefthandside equals

∏4
j=1 s((uj + u5)/ω2)

s((u5 − u6 + 2iω)/ω2)
lim
r→∞

[Sh(τ65u− rη)− Sh(u− rη)]

× exp

(
− πi

ω1ω2
(u7 + u8)(2r − u7 + u8)

)

=

∏4
j=1 s((uj + u5)/ω2)

s((u5 − u6 + 2iω)/ω2)
(Eh(τ65u)− Eh(u)). (3.19)

Here we used the degeneration of the hyperbolic hypergeometric function (2.44). The second
term on the lefthandside equals

∏4
j=1 s((uj + u6)/ω2)

s((u6 − u5 + 2iω)/ω2)
lim
r→∞

[Sh(τ56u− rη)− Sh(u− rη)]

× exp

(
− πi

ω1ω2
(u7 + u8)(2r − u7 + u8)

)
s((u7 + u6 − r)/ω2)s((u8 + u6 + r)/ω2)

s((u7 + u5 − r)/ω2)s((u8 + u5 + r)/ω2)

=

∏4
j=1 s((uj + u6)/ω2)

s((u6 − u5 + 2iω)/ω2)
(Eh(τ56u)− Eh(u)) lim

r→∞

s((u7 + u6 − r)/ω2)

s((u7 + u5 − r)/ω2)
· s((u8 + u6 + r)/ω2)

s((u8 + u5 + r)/ω2)

=

∏4
j=1 s((uj + u6)/ω2)

s((u6 − u5 + 2iω)/ω2)
(Eh(τ56u)− Eh(u)) · e

π
ω2

(u5−u6) · e
π
ω2

(u6−u5)

=

∏4
j=1 s((uj + u6)/ω2)

s((u6 − u5 + 2iω)/ω2)
(Eh(τ56u)− Eh(u)) (3.20)

Now, (3.19) and (3.20) together imply that the lefthandside of (3.18) becomes

∏4
j=1 s((uj + u5)/ω2)

s((u5 − u6 + 2iω)/ω2)
(Eh(τ65u)− Eh(u))− (u5 ↔ u6).

The righthandside of (3.18) now equals

lim
r→∞

s((u5 ± u6)/ω2)Sh(u− rη−78)

4s((u7 + u5 − r)/ω2)s((u8 + u5 + r)/ω2)
exp

(
− πi

ω1ω2
(u7 + u8)(2r − u7 + u8)

)

×




4∑

j=1

s(2(iω − uj)/ω2)−
6∑

j=5

s(2(iω + uj)/ω2) + s(2(iω − u7 + r)/ω2) + s(2(iω − u8 − r)/ω2)




=
1

4
s((u5 ± u6)/ω2)Eh(u)× lim

r→∞

s(2(iω − u7 + r)/ω2) + s(2(iω − u8 − r)/ω2)

s((u7 + u5 − r)/ω2)s((u8 + u5 + r)/ω2)
.

We have already assumed finite limits of the expressions above so that we could degener-
ate Sh(u) apart from the limit that is still present in the equation above, i.e. we used that
limr→∞ f(r)g(r) = limr→∞ f(r) limr→∞ g(r) if limr→∞ f(r) and limr→∞ g(r) are finite. The six
terms between large brackets which do not contain u7 or u8 converge to zero because

lim
r→∞

[s((u7 + u5 − r)/ω2)s((u8 + u5 + r)/ω2)]
−1 = 0.

The only hurdle to take for obtaining the contiguous relation for the hyperbolic Euler integral,
is to take the limit

lim
r→∞

1

4

s(2(iω − u7 + r)/ω2) + s(2(iω − u8 − r)/ω2)

s((u7 + u5 − r)/ω2)s((u8 + u5 + r)/ω2)
(3.21)
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To do this, we are first going to look at the following general limit.

lim
r→∞

s(2(a+ r))

s(b− r)s(c+ r)
= 2 lim

r→∞

e2π(a+r) − e−2π(a+r)

(
eπ(b−r) − e−π(b−r)

) (
eπ(c+r) − e−π(c+r)

)

= 2 lim
r→∞

e2π(a+r) − e−2π(a+r)

eπ(b+c) − eπ(b−c−2r) − eπ(c−b+2r) + eπ(−b−c)

= 2 lim
r→∞

1− e−4π(a+r)

eπ(b−2a+c−2r) − eπ(b−2a−c−4r) − eπ(c−2a−b) + eπ(−2a−b−c−2r)

=
2

−eπ(c−2a−b)
= −2e−π(c−2a−b) (3.22)

This also implies

lim
r→∞

s(2(a− r))

s(b− r)s(c+ r)
= − lim

r→∞

s(2((−a) + r))

s(b− r)s(c+ r)
= 2e−π(c+2a−b). (3.23)

The degeneration of Sh to Eh needs u to be in G2iω. This restriction can be turned into the
following equation

u ∈ G2iω ⇒
8∑

j=1

uj = 4iω ⇒ 2iω −
6∑

j=1

uj = u7 + u8 − 2iω. (3.24)

By using (3.22) with a = iω−u7 and (3.23) with a = iω−u8 and letting b = u7+u5, c = u8+u5,
we can now evaluate the limit (3.21)

lim
r→∞

1

4

s(2(iω − u7 + r)/ω2) + s(2(iω − u8 − r)/ω2)

s((u7 + u5 − r)/ω2)s((u8 + u5 + r)/ω2)

=
1

4

(
−2e

− π
ω2

(u7+u8−2iω)
+ 2e

π
ω2

(u7+u8−2iω)
)

= s((u7 + u8 − 2iω)/ω2)

= s


(2iω −

6∑

j=1

uj)/ω2


 . (3.25)

Altogether we have proved the following lemma

Lemma 3.3. We have

∏4
j=1 s((uj + u5)/ω2)

s((u5 − u6 + 2iω)/ω2)
(Eh(τ65u)− Eh(u))− (u5 ↔ u6)

= s((u5 ± u6)/ω2)s


(2iω −

6∑

j=1

uj)/ω2


Eh(u) (3.26)

as meromorphic functions in u ∈ C6.

29



Chapter 4

Ruijsenaars’ R-function

Motivated by the theory of quantum integrable, relativistic particle systems on the line, Ruij-
senaars [7, 8, 9] introduced and studied a function R which is essentially the hyperbolic Barnes
integral Bh(u) with respect to a suitable reparametrization of the parameters u ∈ G2iω. The new
parameters will be denoted by (γ, x, λ) ∈ C6 with γ = (γ0, . . . , γ3) ∈ C4, where x is viewed as the
geometric parameter and λ is viewed as the spectral parameter. We define the dual parameters
γ̂ by

γ̂ =
1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 γ. (4.1)

It is an easy verification that γ 7→ γ̂ defines an involution on the parameters.
We have already established results for the hyperbolic Euler- and hyperbolic Barnes integral,

which we are going to use to derive many of the properties of Ruijsenaars’ R-function. The first
goal of this section is to obtain an integral representation of R in terms of the hyperbolic Euler
integral. Consequently, we are going to use (3.26) to establish difference equations for which R
is a solution.

4.1 Constructing Askey-Wilson difference equations

Set

N(γ) =
3∏

j=1

G(iγ0 + iγj + iω). (4.2)

Ruijsenaars’ [7] function R(γ;x, λ;ω1, ω2) = R(γ;x, λ) is defined by

R(γ;x, λ) =
1√
ω1ω2

∫

C

G(z + iγ0 ± x)G(z + iγ̂0 ± λ)

G(z + iω)G(iγ0 ± x)G(iγ̂0 ± λ)

3∏

j=1

G(iγ0 + iγj + iω)

G(z + iγ0 + iγj + iω)
dz. (4.3)

A good look at this expression reveals that this is the same as

R(γ;x, λ) =
1

2
√
ω1ω2

N(γ)

G(iγ0 ± x, iγ̂0 ± λ)
Bh(u), (4.4)
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where u ∈ G2iω/Cβ1278 (note that for ξ ∈ C we have Bh(u + ξβ1278) = Bh(u) by (2.27) and
Cauchy’s theorem) with

u1 = iω, u2 = iω + iγ0 + iγ1, u3 = −iγ0 + x, u4 = −iγ0 − x,

u5 = −iγ̂0 + λ, u6 = −iγ̂0 − λ, u7 = iω + iγ0 + iγ2, u8 = iω + iγ0 + iγ3. (4.5)

By Proposition 2.2 we can deduce that the poles of R are located at

x = ± (ikω1 + ilω2 − ω − γj) , λ = ± (ikω1 + ilω2 − ω − γ̂j) k, l ∈ Z≥0, j = 0, 1, 2, 3. (4.6)

Note that R(γ;x, λ;ω1, ω2) is invariant under permuting the role of the two periods ω1 and ω2.
We will need the following auxiliary function, which we will call the c-function

c(ω1, ω2; γ; z) =
1

G(2z + iω)

3∏

j=0

G(z − iγj). (4.7)

Note that because of (2.9) we have

c(γ; z) = c(γ;−z). (4.8)

By Proposition 2.2 we can see that the zeros of c(γ; z) are located at

z1kl = iω − ikω1 − ilω2, k, l ∈ Z≥0 (4.9)

z2,jkl = iγj + iω + ikω1 + ilω2, k, l ∈ Z≥0, j = 0, 1, 2, 3. (4.10)

Note that c is invariant under interchangement of ω1 and ω2 and also under any permutation of
(γ0, γ1, γ2, γ3).

Proposition 4.1. R is even in x and λ, i.e.

R(γ;x, λ) = R(γ;−x, λ) = R(γ;x,−λ), (4.11)

and is also self-dual, i.e.

R(γ;x, λ) = R(γ̂;λ, x) (4.12)

Furthermore, for an element σ ∈W (D4), where W (D4) is the Weyl group of type D4 acting on
the parameters γ by permutations and even numbers of sign flips, we have

R(γ;x, λ)

c(γ;x)c(γ̂;λ)N(γ)
=

R(σγ;x, λ)

c(σγ;x)c(σ̂γ;λ)N(σγ)
(4.13)

The first symmetries are all direct consequences of the symmetries of the hyperbolic Barnes
integral Bh and the second symmetries are proved in [8]. We can express R in terms of the
hyperbolic Euler integral Eh by the following theorem.

Theorem 4.2. We have

R(γ;x, λ) =
1

2
√
ω1ω2

∏3
j=1G(iγ0 + iγj + iω, λ− iγ̂j)

G(λ+ iγ̂0)
Eh(υ), (4.14)

where υ ∈ C6 is given by

υj =
iω

2
+ iγj−1 −

iγ̂0
2

+
λ

2
, j = 1, . . . , 4, υ5,6 =

iω

2
± x− iγ̂0

2
− λ

2
. (4.15)
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Proof. Note first that by using the parameters u in (4.5), taking γ → (−γ3, γ1, γ2,−γ0) is the
same as taking u → s18u. This can be seen in the following way. By first interchanging γ0 and
γ3 and then sign-flipping them, we have

u′1 = iω, u′2 = iω − iγ3 + iγ1, u′3 = −iγ3 + x, u′4 = −iγ3 − x,

u′5 = iγ̂3 + λ, u′6 = iγ̂3 − λ, u′7 = iω − iγ3 + iγ2, u′8 = iω − iγ0 − iγ3.

(4.16)

Then u′ + (iγ0 + iγ3)β1278 is the same as

u1 = iω + iγ0 + iγ3, u2 = iω + iγ0 + iγ1, u3 = −iγ0 + x, u4 = −iγ0 − x,

u5 = −iγ̂0 + λ, u6 = −iγ̂0 − λ, u7 = iω + iγ0 + iγ2, u8 = iω,

(4.17)

which is the same as s18u. Let σ0γ = (−γ3, γ1, γ2,−γ0), then σ̂0γ = σ0γ̂. A careful calculation
shows that

c(γ;x)c(γ̂;λ)

c(σ0γ;x)c(σ0γ̂;λ)
=

∏

j=0,3

G(x− iγj)G(λ− iγ̂j)

G(x+ iγj)G(λ+ iγ̂j)
.

Using (4.13), we obtain

R(γ;x, λ) =
c(γ;x)c(γ̂;λ)N(γ)

c(σ0γ;x)c(σ0γ̂;λ)N(σ0γ)
R(σ0γ;x, λ)

=
N(γ)

N(σ0γ)

∏

j=0,3

G(x− iγj)G(λ− iγ̂j)

G(x+ iγj)G(λ+ iγ̂j)

× 1

2
√
ω1ω2

N(σ0γ)G(iγ3 ± x, iγ̂3 ± λ)Bh(s18u)

=
1

2
√
ω1ω2

G(x− iγ0, λ− iγ̂0)

G(x+ iγ0, λ+ iγ̂0)
N(γ)Bh(u), (4.18)

where we have used the reflection equation (2.7) for the hyperbolic gamma function and the
symmetry property for the hyperbolic Barnes integral. The last step will be to use equality
(2.48), which gives the relation between Bh(u) and Eh(u). In the context of theorem 4 we
calculate s

s = iω − 1

2
(u1 + u3 + u4 + u5)

= iω − 1

2
(iω − iγ0 + x− iγ0 − x− iγ̂0 + λ)

=
iω

2
+ iγ0 +

iγ̂0
2

− λ

2
,
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which leads to

u2 − s =
iω

2
+ iγ1 −

iγ̂0
2

+
λ

2
= υ2,

u7 − s =
iω

2
+ iγ2 −

iγ̂0
2

+
λ

2
= υ3,

u8 − s =
iω

2
+ iγ3 −

iγ̂0
2

+
λ

2
= υ4,

u3 + s =
iω

2
+ x+

iγ̂0
2

− λ

2
= υ5,

u4 + s =
iω

2
− x+

iγ̂0
2

− λ

2
= υ6,

u5 + s =
iω

2
+ iγ0 −

iγ̂0
2

+
λ

2
= υ1.

(4.19)

Furthermore, by again using the reflection equation (2.7), we calculate the following

5∏

j=4

G(iω − u1 − uj)
∏

j=2,7,8

G(iω − u6 − uj) =
G(x+ iγ0)

G(x− iγ0, λ− iγ̂0)

3∏

j=1

G(λ− iγ̂j).

Continuing with (4.18), this means that by using the symmetry properties for the hyperbolic
Euler integral (see Corollary 2.6) we have

R(γ;x, λ) =
1

2
√
ω1ω2

G(x− iγ0, λ− iγ̂0)

G(x+ iγ0, λ+ iγ̂0)
N(γ)

× G(x+ iγ0)

G(x− iγ0, λ− iγ̂0)

3∏

j=1

G(λ− iγ̂j)Eh(υ2, υ3, υ4, υ5, υ6, υ1)

=
1

2
√
ω1ω2

∏3
j=1G(iγ0 + iγj + iω, λ− iγ̂j)

G(λ+ iγ̂0)
Eh(υ),

with υ as we desired.

We are now ready to make the final step in this section. We have obtained a contiguous
relation for the hyperbolic Euler integral Eh in Lemma 3.3 and we have also obtained a repre-
sentation of Ruijsenaars’ R-function in terms of Eh in Theorem 4.2. We are going to combine
the contiguous relation (3.26) and equality (4.14) to show that R satisfies the Askey-Wilson
second-order difference equation in the next proposition.

Proposition 4.3. Ruijsenaars’ R-function satisfies the Askey-Wilson second-order difference
equation

A(γ;x;ω1, ω2) (R(γ;x+ iω1, λ)−R(γ;x, λ)) + (x↔ −x) = B(γ;λ;ω1, ω2)R(γ;x, λ), (4.20)

where

A(γ;x;ω1, ω2) =

∏3
j=0 s((iω + x+ iγj)/ω2)

s(2x/ω2)s(2(x+ iω)/ω2)
, (4.21)

B(γ;λ;ω1, ω2) = s((λ− iω − iγ̂0)/ω2)s((λ+ iω + iγ̂0)/ω2). (4.22)
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Proof. We are going to use the contiguous relation (3.26) with the parameters (4.15) where
uj = υj , j = 1, . . . , 6. Careful calculations and using twice that s(−z) = −s(z) give the
following results

∏4
j=1 s((uj + u5)/ω2)

s((u5 − u6 + 2iω)/ω2)
=

∏3
j=0 s((iω + x+ iγj)/ω2)

s(2(x+ iω)/ω2)
,

∏4
j=1 s((uj + u6)/ω2)

s((u6 − u5 + 2iω)/ω2)
=

∏3
j=0 s((iω − x+ iγj)/ω2)

s(2(−x+ iω)/ω2)
,

s((u5 ± u6)/ω2)s


(2iω −

6∑

j=1

uj)/ω2


 = s(2x/ω2)s((λ− iω − iγ̂0)/ω2)s((λ+ iω + iγ̂0)/ω2).

Note that Eh(τ
iω1

65 u) = Eh(u
′), with u′j = uj for j = 1, . . . , 4 and u′5,6 =

iω
2 ± (x+ iω1)− iγ̂0

2 − λ
2

and also Eh(τ
iω1

56 u) = Eh(u
′′), with u′′j = uj for j = 1, . . . , 4 and u′′5,6 =

iω
2 ± (x− iω1)− iγ̂0

2 − λ
2 .

If we multiply both sides of equation (3.26) by

1

2
√
ω1ω2

∏3
j=1G(iγ0 + iγj + iω, λ− iγ̂j)

G(λ+ iγ̂0)
,

which is independent of x, substitute the three expressions above into the equation and after-
wards divide by s(2x/ω2), we obtain

∏3
j=0 s((iω + x+ iγj)/ω2)

s(2x/ω2)s(2(x+ iω)/ω2)
(R(γ;x+ iω1, λ)−R(γ;x, λ))

+

∏3
j=0 s((iω − x+ iγj)/ω2)

s(−2x/ω2)s(2(−x+ iω)/ω2)
(R(γ;x− iω1, λ)−R(γ;−x, λ))

= s((λ− iω − iγ̂0)/ω2)s((λ+ iω + iγ̂0)/ω2)R(γ;x, λ). (4.23)

Note that we have also used that s(2x/ω2) = −s(−2x/ω2) in the second term of (4.23). Using
that R is even in x, finally leaves us with

A(γ;x;ω1, ω2) (R(γ;x+ iω1, λ)−R(γ;x, λ))

+A(γ;−x;ω1, ω2) (R(γ;−x+ iω1, λ)−R(γ;−x, λ)) = B(γ;λ;ω1, ω2)R(γ;x, λ),

which is the desired result.

4.2 An Askey-Wilson difference operator and the E-function
We define the second-order Askey-Wilson (AW) difference operator Lω1,ω2

γ by

Lω1,ω2

γ := A(γ;x;ω1, ω2)(T
x
iω1

− I) +A(γ;−x;ω1, ω2)(T
x
−iω1

− I), (4.24)

where I denotes the identity operator, T is the shift operator (i.e. T x
z f(x) = f(x + z)) and

A(γ;x;ω1, ω2) as in (4.21). Looking at the previous section, we know that R satisfies the
following eigenvalue equation

(
Lω1,ω2

γ f
)
(x) = B(γ;λ;ω1, ω2)f(x), (4.25)

where B(γ;λ;ω1, ω2) as in (4.22). Because R is symmetric in ω1 and ω2 and it is self-dual, i.e.
R(γ;x, λ) = R(γ̂, λ, x) (see (4.11)), we know that it is an eigenvalue solution to four different AW-
difference operators. Those are two operators acting on the geometric variable x: Lω1,ω2

γ ,Lω2,ω1

γ
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(with eigenvalues B(γ;λ;ω1, ω2) and B(γ;λ;ω2, ω1) respectively) and two operators acting on
the spectral parameter λ: Lω1,ω2

γ̂ ,Lω2,ω1

γ̂ (with eigenvalues B(γ̂;x;ω1, ω2) and B(γ̂;x;ω2, ω1)
respectively).

In [8] we can find the following definition for the E-function, where c(γ;x) is the function in
(4.7),

E(ω1, ω2, γ;x, λ) = E(x, λ) ≡ K(γ;λ)

c(γ;x)
R(γ;x, λ), (4.26)

with K(γ;λ) = χ(ω1, ω2, γ) (N(γ)c(γ̂;λ))−1 and where

χ(ω1, ω2, p) ≡ exp

(
2πi

ω1ω2

[
p · p/4− (ω2

1 + ω2
2 + ω1ω2)/8

])
, (4.27)

Because R is a solution to the eigenvalue equation (4.25) above and K is independent of x, the
E-function satisfies the equation

(
M−1

c(γ;x) ◦ L
ω1,ω2

γ ◦Mc(γ;x)E
)
(x, λ) =

(
Lω1,ω2

γ E
)
(x, λ) = B(γ;λ)E(x, λ).

Here, Mc(γ;x) denotes multiplication by c(γ;x).
We see that E(x, λ) is essentially Ruijsenaars’ R-function up to multiplication with c(γ;x)−1.

Ruijsenaars has used this function in [8, 9]. The profit of using E is that it is an analytic function
in C whereas Ruijsenaars R-function is not. It also has a D4-invariance (see Proposition 4.1) on
the parameters γ, i.e.

E(ω1, ω2, σγ;x, λ) = E(ω1, ω2, γ;x, λ), for all σ ∈W (D4), (4.28)

where the D4-symmetry on the parameters of R (4.13) are more complex.
The main reason why E is mentioned in this thesis, is that we are going to use the asymptotics

of this function to say something about the asymptotics for Ruijsenaars’ R-function. We intro-
duce the Bachmann-Landau symbol ∼, which is a relation between two continuous functions.
Let f, g ∈ C(C), then

f ∼ g ⇐⇒ lim
Re(x)→∞

f(x)

g(x)
= 1. (4.29)

Ruijsenaars also obtained a function Eas(γ;x, λ) (see [8, (1.31)]) for which we have E(γ;x, λ) ∼
Eas(γ;x, λ) with

Eas(ω1, ω2, γ;x, λ) = e2πixλ/ω1ω2 − u(ω1, ω2, γ̂;−λ)e−2πixλ/ω1ω2 .

The u-function is defined as u(γ; z) = −c(γ; z)/c(γ;−z).
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Chapter 5

The Ruijsenaars function transform

In the previous chapter we have seen that Ruijsenaars’ function R(γ;x, λ) is a solution to
the second-order difference equation of Askey-Wilson type. This equation implies a difference
operator which yields a function transform that is similar to, say, the Fourier transform. We
will refer to this function transform as the Ruijsenaars Function Transform or RFT, because we
make the transformation by using Ruijsenaars’ R-function. The main goal of this section will
be to show that this transform is unitary. Furthermore, we are going to use a constant

α =
2π

ω1ω2
. (5.1)

5.1 The Hilbert space Hw

This section defines a Hilbert space Hw with an appropriate weight function. We are briefly
going to discuss the analiticity of this weight function. Afterwards we are going to prove Lemma
5.1, which gives an identity that involves the weight function and the function A that is defined
in (4.21).

Let w be the weight function given by

w(γ;x) =
1

c(γ;x)c(γ;−x) , x ∈ R, γ ∈ R4, (5.2)

where c(γ;x) is given by (4.7). The weight w is positive because from (4.8) we obtain w(γ;x) =
|c(γ;x)|−2. It is also obviously an even function for x ∈ R. We assume that the function w has
only simple poles. These poles impose conditions on the parameters γ0, γ1, γ2, γ3 that we will
discuss later on.

Writing the w-function out in a product of hyperbolic gamma functions gives

w(γ;x) =
G(iω ± 2x)∏3

j=0G(−iγj ± x)
.

Recall that the poles of G(x) occur at xkl = −iω − ikω1 − ilω2, k, l ∈ Z≥0, and that it vanishes
at xkl = iω + ikω1 + ilω2, k, l ∈ Z≥0. Note that G(iω + 2x) and G(iω − 2x) have the joint
property that if one has a (simple) pole at x = x0, the other has a zero at x = x0. This means
that there has to be another way to write this product, so we use the A∆E’s (2.12) for the

36



hyperbolic gamma function to obtain

G(−iω + 2x) = G(2x− iω1/2− iω2/2)

=
G(2x+ iω1/2− iω2/2)

2 cosh
(

π
ω2
(2x− iω2/2)

)

=
G(iω + 2x)

4 cosh
(

π
ω2
(2x− iω2/2)

)
cosh

(
π
ω1
(2x+ iω1/2)

) .

So we have that

G(iω ± 2x) =
G(iω + 2x)

G(−iω + 2x)

= 4 cosh

(
π

ω2
(2x− iω2/2)

)
cosh

(
π

ω1
(2x+ iω1/2)

)

= sinh(2πx/ω1) sinh(2πx/ω2),

which is analytic for x ∈ C. From this we deduce that the poles of w(γ;x) occur at

xδkl(γj) = δ (iγj + iω + ikω1 + ilω2) , k, l ∈ Z≥0, j = 0, 1, 2, 3, δ = +,−. (5.3)

One could say that the x+kl(γj) form an upward pole sequence and the x−kl(γj) form a downward
pole sequence. These poles are all simple in case

γ0 6= γ1 6= γ2 6= γ3 and ω1/ω2 ∈ R \Q. (5.4)

We define the measure dw(·) = dw(γ; ·) by
∫
f(x)dw(x) =

1

4π

∫ ∞

−∞
f(x)w(γ;x)dx. (5.5)

We assume from now on that γ0, γ1, γ2, γ3, ω1 and ω2 satisfy the conditions (5.4) with the extra
condition that |γj | < ω for all j = 0, 1, 2, 3, such that the measure dw(·) is a positive measure.
We also define the measure dŵ(·) = dŵ(γ̂; ·) by

∫
f(λ)dŵ(λ) =

1

4π

∫ ∞

−∞
f(λ)ŵ(γ;λ)dλ. (5.6)

For this measure to be positive we must have that |γ̂j | < ω for all j = 0, 1, 2, 3. Altogether this
implies that if we want both measures dw and dŵ to be positive, we must have that γ ∈ P ,
where

P = {p ∈ R4 | p0 6= p1 6= p2 6= p3, max(|p̂0|, . . . , |p̂3|) < ω}. (5.7)

We can easily see that |γj | < ω for all j = 0, 1, 2, 3 if γ ∈ P . We surely see that if |γj | < 1
2ω for

all j = 0, 1, 2, 3, that we have

|γ̂j | <
1

2
(|γ0|+ |γ1|+ |γ2|+ |γ3|) = ω, j = 0, 1, 2, 3.

We assume from now on that γ ∈ P
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We define the Hilbert space Hw = Hw(γ) = L2
e (R, w(γ;x)dx) to be the Hilbert space

consisting of even functions that have finite norm with respect to the inner product 〈·, ·〉Hw

defined by

〈f, g〉Hw
=

∫
f(x)g(x)dw(x). (5.8)

We also define the Hilbert space Hŵ = Hŵ(γ) = L2
e (R, ŵ(γ̂;λ)dλ) to be the Hilbert space

consisting of even functions that have finite norm with respect to the inner product 〈·, ·〉Hŵ

defined by

〈f, g〉Hŵ
=

∫
f(λ)g(λ)dŵ(λ). (5.9)

We conclude this small section with the following lemma which will prove to be useful in the
proof of Proposition 5.2.

Lemma 5.1. For x ∈ R we have the following identity

A(γ;−x− iω1)w(γ;x+ iω1) = A(γ;x)w(γ;x). (5.10)

Proof. Let us first write them down

w(γ;x+ iω1) =
G(iω + 2x+ 2iω1)G(iω − 2x− 2iω1)∏3
j=0G(−iγj + x+ iω1)G(−iγj − x− iω1)

(5.11)

A(γ;−x− iω1) =

∏3
j=0 s((iω − x− iω1 + iγj)/ω2)

s(2(−x− iω1)/ω2)s(2(−x− iω1 + iω)/ω2)
(5.12)

We make use of the A∆E’s (2.12) for the hyperbolic gamma function, but in a slightly different
appearance.

G(x)

G(x− iω1)
= 2 cosh(π(x− iω1/2)/ω2).

For example

1

G(−iγj + x+ iω1)G(−iγj − x− iω1)
=

1

G(−iγj ± x)

cosh
(

π
ω2
(−iγj − x− iω1/2)

)

cosh
(

π
ω2
(−iγj + x+ iω1/2)

) ,

together with

sinh

(
π

ω2
(iω − x− iω1 + iγj)

)
= sinh

(
π

ω2
(−iω1/2 + iω2/2− x+ iγj)

)

= sinh

(
iπ

2
+

π

ω2
(−x+ iγj − iω1/2)

)

= i cosh

(
π

ω2
(iγj − x− iω1/2)

)

= i cosh

(
π

ω2
(−iγj + x+ iω1/2)

)

gives us

s((iω − x− iω1 + iγj)/ω2)

G(−iγj + x+ iω1)G(−iγj − x− iω1)
=

i cosh
(

π
ω2
(−iγj − x− iω1/2)

)

G(−iγj ± x)

=
s((iω + x+ iγj)/ω2)

G(−iγj ± x)
, j = 0, 1, 2, 3. (5.13)

38



With this we can rewrite a large part of the product A(γ;−x− iω1)w(γ;x+ iω1). Now we are
left with rewriting the following fraction

G(iω + 2x+ 2iω1)G(iω − 2x− 2iω)

s(2(−x− iω1)/ω2)s(2(−x− iω1 + iω)/ω2)
=
G(iω + 2x+ 2iω1)G(iω − 2x− 2iω)

s(2(−x− iω1)/ω2)s(2(x+ iω)/ω2)
,

where we have used standard rules for hyperbolic functions to obtain s(2(−x− iω1 + iω)/ω2) =
s(2(x+ iω)/ω2). Using the A∆E’s (2.12) for the hyperbolic gamma function again, we obtain

G(iω + 2x+ 2iω1)G(iω − 2x− 2iω)

= G(iω ± 2x)
cosh

(
π
ω2
(iω + 2x+ 3

2 iω1)
)
cosh

(
π
ω2
(iω + 2x+ iω1/2)

)

cosh
(

π
ω2
(iω − 2x− 3

2 iω1)
)
cosh

(
π
ω2
(iω − 2x− iω1/2)

) ,

which after multiple times of using standard rules for hyperbolic functions becomes

G(iω + 2x+ 2iω1)G(iω − 2x− 2iω) = G(iω ± 2x)
s((−2x− 2iω1)/ω2)s((−2x− iω1)/ω2)

s((−2x− iω1)/ω2)s(−2x/ω2)

= G(iω ± 2x)
s((2x+ 2iω1)/ω2)

s(2x/ω2)
.

Altogether this means that

G(iω + 2x+ 2iω1)G(iω − 2x− 2iω)

s(2(−x− iω1)/ω2)s(2(−x− iω1 + iω)/ω2)
=

G(iω ± 2x)

s(2x/ω2)s(2(x+ iω)/ω2)
. (5.14)

The product of the lefthandsides of (5.13) (for j = 1, 2, 3, 4) and (5.14) is equal to A(γ;−x −
iω1)w(γ;x+ iω1), so

A(γ;−x− iω1)w(γ;x+ iω1) =

∏3
j=0 s((iω + x+ iγj)/ω2)

s(2x/ω2)s(2(x+ iω)/ω2)
· G(iω ± 2x)∏3

j=0G(−iγj ± x)

= A(γ;x)w(γ;x),

which is the result we desired.

5.2 The Wronskian

We are going to define a pairing 〈·, ·〉N , that for N → ∞ gives the inner product 〈·, ·〉H, and an
appropriate wronskian. Proposition 5.5 lets us see how the pairing and the inner product are
connected to eachother through an identity involving both. We will need to calculate some limits
afterwards to finally obtain an expression for the inner product 〈Rλ, Rλ′〉Hw

. This expression
will be given in Proposition 5.7 and the proof involves using the wronskian. Obtaining this
expression is the main goal of this section.

For 0 < N <∞, we define a pairing 〈·, ·〉N by

〈f, g〉N =
1

4π

∫ N

−N
f(x)g(x)w(γ;x)dx. (5.15)

If f and g are real-valued functions inHw, the limitN → ∞ gives the inner product 〈f, g〉Hw
. For

functions f, g that are analytic in the strip S = {z ∈ C | |Im(z)| < ω1}, we define the Wronskian
[f, g] by

[f, g](z) =
1

2π

∫ z

z−iω1

[
f(x+ iω1)g(x)− f(x)g(x+ iω1)

]
A(γ;x)w(γ;x)dx. (5.16)
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Proposition 5.2. Let f, g be analytic in S = {z ∈ C | |Im(z)| < ω1} and even, then z 7→
[f, g](z) is odd in z.

Proof. Let I be the function given by

I(x) =
1

2π
[f(x+ iω1)g(x)− f(x)g(x+ iω1)]A(γ;x)w(γ;x),

then [f, g](z) =
∫ z
z−iω1

I(x)dx. Since f, g, and w are even functions in x, and by (5.10)
A(γ;−x)w(γ;x) = A(γ;x− iω1)w(γ;x− iω1), we have I(−x) = −I(x− iω1). Therefore,

∫ z

z−iω1

I(x)dx = −
∫ −z

−z+iω1

I(−x)dx =

∫ −z

−z+iω1

I(x− iω1)dx = −
∫ −z

−z−iω1

I(x)dx,

which implies that [f, g](z) = −[f, g](−z). We conclude that z 7→ [f, g](z) is odd in z.

Proposition 5.3. For N ≫ 0 and for even analytic functions f and g in the strip S =
{z ∈ C | |Im(z)| < ω1 },

〈Lω1,ω2

γ f, g〉N − 〈f,Lω1,ω2

γ g〉N = [f, g](N). (5.17)

Proof. For even functions f and g, we have

〈f, g〉N =
1

4π

∫ N

−N
f(x)g(x)w(γ;x)dx.

Now, we have by (4.24) and the fact that Lω1,ω2

γ g = Lω1,ω2

γ g that

〈Lω1,ω2

γ f, g〉N − 〈f,Lω1,ω2

γ g〉N

=
1

4π

∫ N

−N
(Lω1,ω2

γ f)(x)g(x)w(γ;x)dx− 1

4π

∫ N

−N
f(x)(Lω1,ω2

γ g)(x)w(γ;x)dx

=
1

4π

∫ N

−N

[
f(x− iω1)g(x)− f(x)g(x− iω1)

]
A(γ;−x)w(γ;x)dx

+
1

4π

∫ N

−N

[
f(x+ iω1)g(x)− f(x)g(x+ iω1)

]
A(γ;x)w(γ;x)dx.

The first integral can be written as

− 1

4π

∫ N−iω1

−N−iω1

[f(x+ iω1)g(x)− f(x)g(x+ iω1)]A(γ;−x− iω1)w(γ;x+ iω1)dx,

Since A(γ;−x− iω1)w(γ;x+ iω1) = A(γ;x)w(γ;x) by Lemma 5.1, we have

〈Lω1,ω2

γ f, g〉N − 〈f,Lω1,ω2

γ g〉N

=
1

4π

(∫ N

−N
−
∫ N−iω1

−N−iω1

)[
f(x+ iω1)g(x)− f(x)g(x+ iω1)

]
A(γ;x)w(γ;x)dx.

Now we make a closed contour by connecting the straight line from −N to N and the straight
line from −N − iω1 to N − iω1 at the end points in a straight line, then the integrand has no
poles inside the closed contour. So, by Cauchy’s theorem,

∫ N

−N
−
∫ N−iω1

−N−iω1

=

∫ N

N−iω1

−
∫ −N

−N−iω1

,
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and from this, we obtain

〈Lω1,ω2

γ f, g〉N − 〈f,Lω1,ω2

γ g〉N =
1

2
[f, g](N)− 1

2
[f, g](−N)

=
1

2
[f, g](N) +

1

2
[f, g](N)

= [f, g](N),

where we have used Proposition 5.2 for the second equality.

Corollary 5.4. If f, g are analytic in the strip S = {z ∈ C | |Im(z)| < ω1 }, f, g ∈ Hw and
Lω1,ω2

γ f,Lω1,ω2

γ g ∈ Hw, we have

〈Lω1,ω2

γ f, g〉Hw
= 〈f,Lω1,ω2

γ g〉Hw
. (5.18)

Proof. The idea of the proof is to look at identity (5.17) and to show that if f, g ∈ Hw, we have
|[f, g](N)| → 0 as N → ∞. Because limN→∞〈f, g〉N = 〈f, g〉Hw

this would imply that we then
have proved this corollary. Let f, g ∈ Hw, then

[f, g](N) =
1

2π

∫ N

N−iω1

{
f(x+ iω1)g(x)− f(x)g(x+ iω1)

}
A(γ;x)w(γ;x)dx

=
1

2π

∫ N

N−iω1

f(x+ iω1)g(x)A(γ;x)w(γ;x)dx

− 1

2π

∫ N

N−iω1

f(x)g(x+ iω1)A(γ;x)w(γ;x)dx.

Note that A(γ;x) has its poles on the imaginary axis and we have the asymptotics (5.25), so it
is a bounded function for all x ∈ CR = {z ∈ C | Re(z) > 0}. Let M = supx∈CR

|A(γ;x)|, then

|[f, g](N)| ≤ M

2π

∣∣∣∣
∫ N

N−iω1

f(x+ iω1)g(x)w(γ;x)dx

∣∣∣∣+
M

2π

∣∣∣∣
∫ N

N−iω1

f(x)g(x+ iω1)w(γ;x)dx

∣∣∣∣

=
M

2π

∫ 0

−ω1

∣∣∣f(N + i(t+ ω1))g(N + it)w(γ;N + it)
∣∣∣ dt

+
M

2π

∫ 0

−ω1

∣∣∣f(N + it)g(N + i(t+ ω1))w(γ;N + it)
∣∣∣ dt

≤ Mω1

2π
ess supx∈[N−iω1,N+iω1]|f(x)g(x)w(γ;x)|

+
Mω1

2π
ess supx∈[N−iω1,N+iω1]|f(x)g(x)w(γ;x)|.

All suprema will vanish asN → ∞, because f, g ∈ Hw. This implies that limN→∞ |[f, g](N)| = 0.
Taking limits in (5.17) gives

lim
N→∞

〈Lω1,ω2

γ f, g〉N − 〈f,Lω1,ω2

γ g〉N = lim
N→∞

[f, g](N) = 0,

which gives
〈Lω1,ω2

γ f, g〉Hw
= 〈f,Lω1,ω2

γ g〉Hw
.

Since the R-functions are eigenfunctions of Lω1,ω2

γ for eigenvalue B(γ;λ), we obtain from
Proposition 5.3 the following result.
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Proposition 5.5. For λ 6= λ′ and R(γ;x, λ) = Rλ(x),

〈Rλ, Rλ′〉N =
[Rλ, Rλ′ ](N)

B(γ;λ)−B(γ;λ′)
=

2[Rλ, Rλ′ ](N)

c(2λ/ω2)− c(2λ′/ω2)
. (5.19)

Remark. We used the definition (4.22) of B and the relation s(λ−a)s(λ+a) = 1
2 [c(2λ)−c(2a)]

to see that

B(γ;λ)−B(γ;λ′) = s((λ− iω − iγ̂0)/ω2)s((λ+ iω + iγ̂0)/ω2)− (λ↔ λ′)

=
1

2
[c(2λ/ω2)− c(2(iω + iγ̂0)/ω2)]− (λ↔ λ′)

=
1

2
[c(2λ/ω2)− c(2λ′/ω2)]

Next we want to let N → ∞ in (5.19), so we need the asymptotic behaviour of the R-function
and of A(γ;x+ iω1y)w(γ;x+ iω1y) for x→ ∞ and −1 ≤ y ≤ 0.

The asymptotics for the weight w are calculated with the help of the asymptotics (2.27) for
the hyperbolic gamma function.

w(γ; z) =
G(iω ± 2z)∏3

j=0G(−iγj ± z)
=

G(2z + iω)

G(2z − iω)

3∏

j=0

G(z + iγj)

G(z − iγj)

∼ exp

(
4πωz

ω1ω2

) 3∏

j=0

exp

(
2πγjz

ω1ω2

)

= eαz(2γ̂0+2ω) (5.20)

A(γ;x) consists only of hyperbolic functions, so it should not be too hard to obtain the
asymptotics for this function. Making use of the limits

lim
x→∞

s(a+ x)

s(b+ x)
= lim

x→∞

s(a+ x)

c(b+ x)
= eπ(a−b), a, b ∈ C

and the identity s(2a) = 2s(a)c(a) for a ∈ C, we have

lim
x→∞

A(γ;x+ iω1y;ω1, ω2)

= lim
x→∞

∏3
j=0 s((iω + x+ iω1y + iγj)/ω2)

s(2(x+ iω1y)/ω2)s(2(x+ iω1y + iω)/ω2)

=
1

4
lim
x→∞

∏3
j=0 s((iω + x+ iω1y + iγj)/ω2)

s((x+ iω1y)/ω2)c((x+ iω1y)/ω2)c((x+ iω1y + iω)/ω2)s((x+ iω1y + iω)/ω2)

=
1

4
e

π
ω2

(iω+iγ0)e
π
ω2

(iω+iγ1)e
πiγ2
ω2 e

πiγ3
ω2

=
1

4
e

π
ω2

(2iω+2iγ̂0).

Note that we have R(γ;x, λ) = c(γ;x)E(γ;x, λ)/K(γ;λ) by (4.26). Therefore we need to look
for the asymptotics of the c-function (4.7). Ruijsenaars proved the following asymptotics for
g(ω1, ω2; z) in [6, Prop. III.4]: Fixing ǫ > 0 and setting ωm = max(ω1, ω2), we have

g(ω1, ω2; z) = − πz2

2ω1ω2
− π(ω2

1 + ω2
2)

24ω1ω2
+O(exp((ǫ− 2π/ωm)z)), Re(z) → ∞, (5.21)
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where g is the integral (2.2). Recall from (2.6) that G(z) = exp(ig(z)), so the asymptotics for
the hyperbolic gamma function are

G(ω1, ω2; z) ∼ exp

(
− 2πi

ω1ω2
[z2/4 + (ω2

1 + ω2
2)/48]

)
. (5.22)

This means that

3∏

j=0

G(z − iγj) ∼ exp


− 2πi

ω1ω2




3∑

j=0

(z − iγj)
2

4
+
ω2
1 + ω2

2

12






= exp


 2πi

ω1ω2


−z2 + izγ̂0 +

3∑

j=0

γ2j /4− (ω2
1 + ω2

2)/12






and

1

G(2z + iω)
∼ exp

(
2πi

ω1ω2
[(2z + iω)2/4 + (ω2

1 + ω2
2)/48]

)

= exp

(
2πi

ω1ω2
[z2 + izω − ω2/4 + (ω2

1 + ω2
2)/48]

)

= exp

(
2πi

ω1ω2
[z2 + izω − (ω2

1 + ω2
2)/24− ω1ω2/8]

)
.

For the asymptotics of the c-function, this means that

c(γ; z) =
1

G(2z + iω)

3∏

j=0

G(z − iγj)

∼ exp

(
2πi

ω1ω2
[γ · γ/4 + (ω2

1 + ω2
2 + ω1ω2)/8 + z(iγ̂0 + iω)]

)

= χ(γ)eiαz(iγ̂0+iω), (5.23)

where χ(γ) is defined by (4.27). We are now ready to calculate the asymptotics of the R-function.

Rλ(γ; z) = K(γ, λ)−1E(γ; z, λ)c(γ; z)

∼ N(γ)c(γ̂;λ)

χ(γ)

(
eiαzλ +

c(γ̂;−λ)
c(γ̂;λ)

e−iαzλ

)
χ(γ)eiαz(iγ̂0+iω)

= N(γ)eiαz(iγ̂0+iω)
(
c(γ̂;λ)eiαzλ + c(γ̂;−λ)e−iαzλ

)
(5.24)

Altogether we have proved the following proposition.

Proposition 5.6. We have the following asymptotics

A(γ; z) ∼ 1

4
eiαω1(γ̂0+ω), (5.25)

w(γ; z) ∼ e2αz(γ̂0+ω), (5.26)

Rλ(γ; z) ∼ N(γ)c(γ̂;λ)eiαz(λ+iγ̂0+iω) +N(γ)c(γ̂;−λ)e−iαz(λ−iγ̂0−iω). (5.27)

The asymptotic behaviour of the the pairing 〈Rλ, Rλ′〉N is crucial for the Ruijsenaars function
transform that we are defining in the next section. The next proposition gives this result.
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Proposition 5.7. For N → ∞, we have

〈Rλ, Rλ′〉N ∼
∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)

ελ+ ξλ′
eiαN(ελ+ξλ′)

(
e−2πελ/ω2 − e−2πξλ′/ω2

)(
1− eαω1(ελ+ξλ′)

)

× N(γ)2

4πiα[c(2λ/ω2)− c(2λ′/ω2)]
(5.28)

Proof. Let Θ(x) be the function given by

Θ(x) = Rλ(x+ iω1)Rλ′(x)−Rλ(x)Rλ′(x+ iω1).

From the asymptotic behaviour (5.27) of Rλ we find for −1 ≤ y ≤ 0 and x→ ∞,

Θ(x+ iω1y) = Rλ(x+ iω1(y + 1))Rλ′(x+ iω1y)−Rλ(x+ iω1y)Rλ′(x+ iω1(y + 1)),

where the second term can be expressed as

Rλ(x+ iω1y)Rλ′(x+ iω1(y + 1))

∼
[
N(γ)c(γ̂;λ)eiα(x+iω1y)(λ+iγ̂0+iω) + (λ↔ −λ)

]

×
[
N(γ)c(γ̂;λ′)eiα(x+iω1(y+1))(λ′+iγ̂0+iω) + (λ′ ↔ −λ′)

]

= N(γ)2e2iα(x+iω1(y+1/2))(iγ̂0+iω)
∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)eiα(x+iω1y)(ελ+ξλ′)−2πξλ′/ω2 .

From this we can see that Θ(x+ iω1y) for x→ ∞ is the following function

N(γ)2e−2α(x+iω1(y+1/2))(γ̂0+ω)
∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)eiα(x+iω1y)(ελ+ξλ′)
(
e−2πελ/ω2 − e−2πξλ′/ω2

)

Using the asymptotic behaviour of A(γ;x+ iω1y)w(γ;x+ iω1y) for x→ ∞ gives

Θ(x+ iω1y)A(γ;x+ iω1y)w(γ;x+ iω1y)

∼ N(γ)2

4
e−2α(x+iω1(y+1/2))(γ̂0+ω)eiαω1(γ̂0+ω)e2α(x+iω1y)(γ̂0+ω)

×
∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)eiα(x+iω1y)(ελ+ξλ′)
(
e−2πελ/ω2 − e−2πξλ′/ω2

)

=
N(γ)2

4

∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)eiα(x+iω1y)(ελ+ξλ′)
(
e−2πελ/ω2 − e−2πξλ′/ω2

)

Note that most of the factors in this expression are independent of y. Recalling the wronskian
(5.16), we calculate by using the substitution x = N + iω1y
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[Rλ, Rλ′ ](N)

=
1

2π

∫ N

N−iω1

Θ(x)A(γ;x)w(γ;x)dx

=
iω1

2π

∫ 0

−1
Θ(N + iω1y)A(γ;N + iω1y)w(γ;N + iω1y)dy

∼ iω1N(γ)2

8π

∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)eiαN(ελ+ξλ′)
(
e−2πελ/ω2 − e−2πξλ′/ω2

)

×
∫ 0

−1
e−αω1y(ελ+ξλ′)dy

=
N(γ)2

8πiα

∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)

ελ+ ξλ′
eiαN(ελ+ξλ′)

(
e−2πελ/ω2 − e−2πξλ′/ω2

)(
1− eαω1(ελ+ξλ′)

)
.

Note that we have used dominated convergence to justify the interchangement of the limit and
the integral. We obtain the desired result by using (5.19), which gives the link between the
Wronskian [Rλ, Rλ′ ](N) and the pairing 〈Rλ, Rλ′〉N .

5.3 The Ruijsenaars function transform

The last steps towards the main goal are taken in this section. The RFT F is defined and we will
determine which conditions the functions f must satisfy in order to have a convergent integral
transformation. We will also find an inverse integral transformation and finally show that the
RFT is a unitary operator in Proposition 5.9. In this section we assume λ, λ′ ∈ R.

Proposition 5.8. Let f be an even and continuous function, satisfying

f(λ) = O
(
|λ|−1−ǫe−α|λ|(γ0+ω−ω1)

)
, |λ| → ∞, ǫ > 0. (5.29)

Then

α

N(γ)2
lim

N→∞

∫ ∞

−∞
f(λ)〈Rλ, Rλ′〉Ndλ =

f(λ′)

w(γ̂;λ′)
. (5.30)

Proof. Proposition 5.7 gives us a representation of 〈Rλ, Rλ′〉N . We multiply both sides with an
arbitrary function f(λ), and we integrate over λ from −∞ to ∞. The function f must satisfy
the condition (5.29) which will be proved at the end of this proof. When using Euler’s formula

eix = cos(x) + i sin(x), x ∈ R

and letting N → ∞ then gives

lim
N→∞

∫ ∞

−∞
f(λ)〈Rλ, Rλ′〉Ndλ

=
N(γ)2

4πiα
lim

N→∞

∫ ∞

−∞
f(λ)

{
ψ1(λ) cos(αN(λ+ λ′)) + ψ2(λ) sin(αN(λ+ λ′))

+ψ3(λ) cos(αN(λ− λ′)) + ψ4(λ)
sin(αN(λ− λ′))

λ− λ′

}
dλ,
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where

ψ1(λ) =
∑

ε∈{−1,1}

ε
c(γ̂; ελ)c(γ̂; ελ′)

λ+ λ′

(
e−2πελ/ω2 − e−2πελ′/ω2

)

c(2λ/ω2)− c(2λ′/ω2)

(
1− eαω1ε(λ+λ′)

)

ψ2(λ) = i
∑

ε∈{−1,1}

c(γ̂; ελ)c(γ̂; ελ′)

λ+ λ′

(
e−2πελ/ω2 − e−2πελ′/ω2

)

c(2λ/ω2)− c(2λ′/ω2)

(
1− eαω1ε(λ+λ′)

)

ψ3(λ) =
∑

ε∈{−1,1}

ε
c(γ̂; ελ)c(γ̂;−ελ′)

λ− λ′

(
e−2πελ/ω2 − e2πελ

′/ω2

)

c(2λ/ω2)− c(2λ′/ω2)

(
1− eαω1ε(λ−λ′)

)

ψ4(λ) = i
∑

ε∈{−1,1}

c(γ̂; ελ)c(γ̂;−ελ′)

(
e−2πελ/ω2 − e2πελ

′/ω2

)

c(2λ/ω2)− c(2λ′/ω2)

(
1− eαω1ε(λ−λ′)

)

From the Riemann-Lebesgue lemma, we find that the terms with ψi, i = 1, 2, 3, vanish, provided
that fψi ∈ L1(−∞,∞). We recognize the term with ψ4 as a Dirichlet integral. Using the well-
known property (see [2, section 9.7]) for Dirichlet integrals

lim
t→∞

1

π

∫ ∞

−∞
g(x)

sin(t(x− y))

x− y
dx = g(y), (5.31)

for a continuous function g ∈ L1(−∞,∞) we obtain

lim
N→∞

∫ ∞

−∞
f(λ)〈Rλ, Rλ′〉Ndλ =

N(γ)2

4πiα
lim

N→∞

∫ ∞

−∞
f(λ)ψ4(λ)

sin(αN(λ− λ′))

λ− λ′
dλ

=
N(γ)2

4πiα
· πf(λ′) lim

λ→λ′

ψ4(λ).

We have to compute the last limit by using L’Hôpital’s rule. If we compute the following

lim
λ→λ′

1− eαω1ε(λ−λ′)

c(2λ/ω2)− c(2λ′/ω2)
= lim

λ→λ′

−αω1εe
αω1ε(λ−λ′)

2π
ω2

sinh(2πλ/ω2)

=
−2π

ω2
ε

2π
ω2

sinh(2πλ′/ω2)

=
−ε

sinh(2πλ′/ω2)
,

then

lim
λ→λ′

ψ4(λ) = 2i
∑

ε∈{−1,1}

c(γ̂; ελ′)c(γ̂;−ελ′)ε sinh(−2πλ′/ω2) · lim
λ→λ′

1− eαω1ε(λ−λ′)

c(2λ/ω2)− c(2λ′/ω2)

= 2i
∑

ε∈{−1,1}

ε2c(γ̂; ελ′)c(γ̂;−ελ′)

= 4ic(γ̂;λ′)c(γ̂;−λ′).

Now, this implies that

lim
N→∞

∫ ∞

−∞
f(λ)〈Rλ, Rλ′〉Ndλ =

N(γ)2

α
f(λ′)c(γ̂;λ′)c(γ̂;−λ′) = N(γ)2

α

f(λ′)

w(γ̂;λ′)
.
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The asymptotic behaviour of ψi, for i = 1, 2, 3, 4, can be obtained by using that we have

c(γ̂;λ) = O
(
e−α|λ|(γ0+ω)

)
, |λ| → ∞

and
[c(2λ/ω2)− c(2λ′/ω2)]

−1 = O
(
e2π|λ|/ω2

)
= O

(
eαω1|λ|

)
, |λ| → ∞

where we have used the asymptotic behaviour of the c-function that we calculated in (5.23).
Then we find, for i = 1, 2, 3, 4,

|ψi(λ)| = O
(
eα|λ|(ω1−γ0−ω)

)
, |λ| → ∞.

So, if f satisfies the conditions in the proposition, then fψi ∈ L1(−∞,∞).

We are now ready to define the RFT, give its inverse and show that it is a unitary operator.
Let us first define the space H0 which contains all functions f that are even and continuous,
and satisfy

f(x) = O
(
|x|−1−ǫe−α|x|(γ̂0+ω+ω1)

)
, |x| → ∞, ǫ > 0. (5.32)

Let Ĥ0 be the space that contains all functions g that are even and continuous, and satisfy

g(λ) = O
(
|λ|−1−ǫe−α|λ|(γ0+ω+ω1)

)
, |λ| → ∞, ǫ > 0. (5.33)

Theorem 5.9. For f ∈ H0 let the Ruijsenaars Function Transform be defined by

(Ff) (λ) = 1√
2ω1ω2N(γ)

∫ ∞

−∞
f(x)Rλ(x)w(γ;x)dx (5.34)

and for f ∈ Ĥ0 let F̂ be given by

(F̂f)(x) = 1√
2ω1ω2N(γ)

∫ ∞

−∞
f(λ)Rλ(x)w(γ̂;λ)dλ. (5.35)

If g ∈ Ĥ0, then (F(F̂g))(λ) = g(λ) and for f ∈ H0 we have (F̂(Ff)(x) = f(x).

Proof. Let us first look at convergence of the RFT. By the asymptotics (5.26) and (5.27), we
have

w(γ;x) = O
(
e2α|x|(γ̂0+ω)

)
and Rλ(x) = O

(
e−α|x|(γ̂0+ω)

)
, |x| → ∞.

This means that when f ∈ H0, that

f(x)Rλ(x)w(x) = O
(
|x|−1−ǫe−α|x|ω1

)
=⇒ f(x)Rλ(x)w(x) ∈ L1(R).

This means that F is well-defined on H0. In the same way we can show that F̂ is well-defined
on Ĥ0. Because Rλ(x) is even in x and λ, we can directly see that (Ff)(x) and (F̂ f̂)(λ) are
even functions in x and λ respectively.
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Let g ∈ Ĥ0 and define f(λ) = w(γ̂;λ)g(λ), then f satisfies the conditions given in Proposition
5.8. Then we have

(F(F̂g))(λ′) =
1√

2ω1ω2N(γ)

∫ ∞

−∞

(
1√

2ω1ω2N(γ)

∫ ∞

−∞
g(λ)Rλ(x)w(γ̂;λ)dλ

)
Rλ′(x)w(γ;x)dx

=
2π

ω1ω2N(γ)2
lim

N→∞

∫ ∞

−∞
f(λ)

(
1

4π

∫ N

−N
Rλ(x)Rλ′(x)w(γ;x)dx

)
dλ

=
α

N(γ)2
lim

N→∞

∫ ∞

−∞
f(λ)〈Rλ, Rλ′〉Ndλ

=
f(λ′)

w(γ̂;λ′)
= g(λ′).

By duality, we obtain (F̂(Ff)(x) = f(x) for f ∈ H0.

Theorem 5.10. Let f, g ∈ H0, then

〈Ff,Fg〉Hŵ
= 〈f, g〉Hw

. (5.36)

Consequently, F extends uniquely to a unitary operator F : Hw → Hŵ.

Proof. We are first going to show for f, g ∈ Ĥ0 that 〈F̂f, F̂g〉Hw
= 〈f, g〉Hŵ

. From Proposition
5.8, we obtain by using Fubini’s theorem

〈F̂f, F̂g〉Hw
= lim

N→∞

1

4π

∫ N

−N
(F̂f)(x)(F̂g)(x)w(γ;x)dx

=
α

4πN(γ)2
lim

N→∞

∫ ∞

−∞

∫ ∞

−∞
f(λ)g(λ′)〈Rλ, Rλ′〉Nw(γ̂;λ)w(γ̂;λ′)dλdλ′

=
1

4π

∫ ∞

−∞
f(λ′)g(λ′)w(γ̂;λ′)dλ′ = 〈f, g〉Hŵ

(5.37)

It is now clear from (5.37) that we have shown that

〈Ff,Fg〉Hŵ
= 〈f, g〉Hw

. (5.38)

For the second part, we have S(R) ⊂ H0 ⊂ Hw ⊂ L2(R), where S(R) is the Schwartz space that
consists of rapidly decreasing functions in the sense that

sup
x∈R

|x|k|f (l)(x)| <∞, k, l ∈ Z≥0.

It is known that S(R) is dense in L2(R), which implies that H0 is dense in Hw. So for every
f ∈ Hw we can find a sequence of functions (fn)

∞
n=0 ⊂ H0 such that ‖fn− f‖Hw

→ 0 as n→ ∞.
This means that (fn)

∞
n=0 is Cauchy:

‖fn − fm‖Hw
→ 0, for m,n→ ∞.

Note that F is a linear operator, so by (5.38)

‖Ffn −Ffm‖Hŵ
= ‖F(fn − fm)‖Hŵ

= ‖fn − fm‖Hw
→ 0. (5.39)

So (Ffn)∞n=0 is Cauchy in Hŵ, hence it converges. We call the limit Ff . This defines uniquely
Ff for any f ∈ Hw.
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A nice property that follows from the symmetry (5.18) is given in the next proposition.
This proposition says that the RFT interchanges the AW-difference operator Lω1,ω2

γ with a
multiplication operator.

Proposition 5.11. Let f ∈ Hw and Mω1,ω2

γ,λ be the operator of multiplication by B(γ;λ;ω1, ω2).
Then we have

FLω1,ω2

γ f = Mω1,ω2

γ,λ Ff. (5.40)

Proof. The Ruijsenaars function transform F (5.34) can be written as Ff = 〈f,Rλ〉Hw
for every

f ∈ H0. Let (fn)
∞
n=0 ⊂ H0 such that ‖fn−f‖Hw

→ 0 as n→ ∞. Thanks to the symmetry (5.18)
and the eigenvalue equation (4.25), we can make the following deduction for every fn ∈ H0

FLω1,ω2

γ fn = 〈Lω1,ω2

γ fn, Rλ〉Hw

= 〈fn,Lω1,ω2

γ Rλ〉Hw

= 〈fn, B(γ;λ)Rλ〉Hw

= Mω1,ω2

γ,λ Ffn. (5.41)

Letting n→ ∞ gives the desired result.

Remark. Note that this Proposition gives the same kind of result as identity (1.27) in the
introduction. Here we have an integral transformation that interchanges a differential operator
with a multiplication operator.
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Chapter 6

Further research: Discrete spectrum

In Chapter 5, we defined the RFT in case |γj | < ω for all j = 0, 1, 2, 3. In case we have
γj < −ω for at least one j = 0, 1, 2, 3, we have the situation that the upward- and downward
pole sequences (5.3) of w(γ;x) will cross the real axis. In this case we need an integration contour
that separates the upward pole sequence from the downward pole sequence. By deforming this
contour to the real axis, we pick up residues of the weight w. So the measure dw has discrete
mass points in this case. This chapter discusses how this can be done.

6.1 The Hilbert space Hw with discrete spectrum

Recall from (5.3) that the poles of the weight function w(γ;x) occur at

xδkl(γj) = δ (iγj + iω + ikω1 + ilω2) , k, l ∈ Z≥0, j = 0, 1, 2, 3, δ = +,−. (6.1)

For j ∈ {0, 1, 2, 3}, we define the set Dj by

Dj =
{
x = x+kl(γj) | k, l ∈ Z≥0, Im

(
x+kl(γj)

)
< 0

}
, (6.2)

and let D = D0∪D1∪D2∪D3. Note that D is an empty set in case γj > −ω for all j = 0, 1, 2, 3
and that it is always a finite set. We also define D̂ = D̂0 ∪ D̂1 ∪ D̂2 ∪ D̂3, where

D̂j =
{
x = x+kl(γ̂j) | k, l ∈ Z≥0, Im

(
x+kl(γ̂j)

)
< 0

}
. (6.3)

We define the measure dw(·) = dw(γ; ·) by
∫ ∞

−∞
f(x)dw(x) =

1

4π

∫ ∞

−∞
f(x)w(γ;x)dx+

i

2

∑

x∈D

f(x)Res
z=x

w(γ; z). (6.4)

In case γj > −ω for all j = 0, 1, 2, 3, the second term on the right-hand side of (6.4) will vanish
beacause we will not have to deform the contour of integration. If x ∈ D0, we have explicitly

Res
z=iγ0+iω+ikω1+ilω2

w(γ; z) =
G(2iγ0 + 3iω + 2ikω1 + 2ilω2)∏3

j=1G(−iγj ± x+kl(γ0))

×2π
∏k

m=1 sin(πmω1/ω2)
∏l

n=1 sin(πnω2/ω1)

i
√
ω1ω2(−1)kl(−1/2)k+l

, (6.5)

where we have used the residues for the hyperbolic gamma function in Proposition 2.2 (2.24)-
(2.26). We want the residues of the measure dw(·) to be positive. Using the difference equations
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for the hyperbolic gamma function (2.12), we can always (for example) write G(2iγ0 + 3iω +
2ikω1 + 2ilω2) as S(ω1, ω2)G(u(ω1, ω2, γ0)). Here we have that S(ω1, ω2) is a multiplication of
hyperbolic functions and u(ω1, ω2, γ0) ∈ i(−ω, ω). In this case we know that G(u(ω1, ω2, γ0)) > 0
because of (2.21). We can force all the arguments of the G-functions in (6.5) to be such that we
have only positive G-functions, but we will be left with a lot of hyperbolic functions to be dealt
with. And we certainly do not have a unique way of carrying out this procedure in case (say)
ω1 is very small compared to ω2. We assume that dw(·) is a positive measure from now on.

We also define the measure dŵ(·) = dw(γ̂; ·) by
∫
f(λ)dŵ(λ) =

1

4π

∫ ∞

−∞
f(λ)w(γ̂;λ)dλ+

i

2

∑

λ∈D̂

f(λ)Res
z=λ

w(γ̂; z), (6.6)

where we also assume that the residues in this expression are positive. We define again the
Hilbert space Hw = Hw(γ) = L2

e (R, w(γ;x)dx) to be the Hilbert space consisting of even
functions that have finite norm with respect to the inner product 〈·, ·〉Hw

defined by

〈f, g〉Hw
=

∫
f(x)g(x)dw(x). (6.7)

In the same way we define the Hilbert spaceHŵ = Hŵ(γ̂) = L2
e (R, w(γ̂;λ)dλ) with inner product

〈·, ·〉Hŵ
defined by

〈f, g〉Hŵ
=

∫
f(λ)g(λ)dŵ(λ). (6.8)

6.2 The Wronskian with discrete spectrum

We naturally have to change the definition of the pairing 〈·, ·〉N . For 0 < N < ∞, we define a
pairing 〈·, ·〉N by

〈f, g〉N =
1

4π

∫ N

−N
f(x)g(x)w(γ;x)dx+

i

2

∑

x∈D

f(x)g(x)Res
z=x

w(γ; z). (6.9)

If f and g are real-valued functions inHw, the limitN → ∞ gives the inner product 〈f, g〉Hw
. For

functions f, g that are analytic in the strip S = {z ∈ C | |Im(z)| < ω1}, we define the Wronskian
[f, g] by

[f, g](z) =
1

2π

∫ z

z−iω1

[
f(x+ iω1)g(x)− f(x)g(x+ iω1)

]
A(γ;x)w(γ;x)dx. (6.10)

Note that the definition of the wronskian has not changed. The proofs of Proposition 5.2 till
Proposition 5.7 remain unchanged in case we define the pairing as in (6.9), except for a slight
change of the integration contour in the proof of Proposition 5.3. This means that all results in
section 5.2 remain unchanged.

6.3 The Ruijsenaars Function Transform with discrete spec-

trum

In this section we define the RFT with the discrete spectrum. The discrete spectrum plays a role
if the upward pole sequences D contain points under the real axis. Otherwise we can continue as
in Section 5.3. The discrete spectrum brings some extra calculations with it, which are carried
out from Section 6.3.2.

51



6.3.1 Continuous spectrum

We assume first that λ, λ′ ∈ R. Everything still remains the same until we reach Theorem 5.9.
We will take it over from here and continue with the new measure.

Let the space H0 be defined as

H0 :=
{
f ∈ Hw, continuous, f(x) = O

(
|x|−1−ǫe−α|x|(γ̂0+ω+ω1)

)
for |x| → ∞

}
. (6.11)

Theorem 6.1. For f ∈ H0 let the Ruijsenaars Function Transform be defined by

(Ff) (λ) = 4π√
2ω1ω2N(γ)

∫
f(x)Rλ(x)dw(x) (6.12)

and for f ∈ Ĥ0 let F̂ be given by

(F̂f)(x) = 4π√
2ω1ω2N(γ)

∫
f(λ)Rλ(x)dŵ(λ). (6.13)

We denote the continuous part of the above integral by Fcf , that is,

(Fcf)(λ) =
1√

2ω1ω2N(γ)

∫ ∞

−∞
f(x)Rλ(x)w(γ;x)dx. (6.14)

If g ∈ Ĥ0, then (F(F̂cg))(λ) = g(λ) and for f ∈ H0 we have (F̂(Ff)(x) = f(x).

Proof. Let g ∈ Ĥ0 and define f(λ) = w(γ̂;λ)g(λ), then f satisfies the conditions given in
Proposition 5.8. Then we have

(F(F̂cg))(λ
′) =

4π√
2ω1ω2N(γ)

∫ (
1√

2ω1ω2N(γ)

∫ ∞

−∞
g(λ)Rλ(x)w(γ̂;λ)dλ

)
Rλ′(x)dw(x)

=
2π

ω1ω2N(γ)2
lim

N→∞

∫ ∞

−∞
f(λ)

(
1

4π

∫ N

−N
Rλ(x)Rλ′(x)w(γ;x)dx

+
i

2

∑

x∈D

Rλ(x)Rλ′(x)Res
z=x

w(γ; z)

)
dλ

=
α

N(γ)2
lim

N→∞

∫ ∞

−∞
f(λ)〈Rλ, Rλ′〉Ndλ

=
f(λ′)

w(γ̂;λ′)
= g(λ′).

By duality, we obtain (F̂(Ff)(x) = f(x) for f ∈ H0.

6.3.2 Discrete spectrum

In this subsection, we assume that λ ∈ D̂ and that the set D̂ (6.3) is not empty, so Im(λ) < 0.
First we show that Rλ is orthogonal to Rλ′ if λ′ 6= λ.

Proposition 6.2. For λ ∈ D̂, λ′ ∈ supp(dŵ), and λ′ 6= λ,

〈Rλ, Rλ′〉Hw
= 0. (6.15)
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Proof. Recall the definition of D̂ at (6.3). From Proposition 5.7 we know that

〈Rλ, Rλ′〉N ∼
∑

ε,ξ∈{−1,1}

c(γ̂; ελ)c(γ̂; ξλ′)

ελ+ ξλ′
eiαN(ελ+ξλ′)

(
e−2πελ/ω2 − e−2πξλ′/ω2

)(
1− eαω1(ελ+ξλ′)

)

× N(γ)2

4πiα[c(2λ/ω2)− c(2λ′/ω2)]
.

From the zeros of the c-function (4.10), we conclude that c(γ̂;λ) = 0 when λ ∈ D̂. So in case
λ ∈ D̂, we have

〈Rλ, Rλ′〉N ∼
∑

ξ∈{−1,1}

c(γ̂;−λ)c(γ̂; ξλ′)
−λ+ ξλ′

eiαN(−λ+ξλ′)
(
e2πλ/ω2 − e−2πξλ′/ω2

)(
1− eαω1(−λ+ξλ′)

)

× N(γ)2

4πiα[c(2λ/ω2)− c(2λ′/ω2)]
. (6.16)

Recall that for λ ∈ D̂, we have λ ∈ iR<0. Then it is clear that for λ′ ∈ R, the right-hand side of
(6.16) tends to zero for N → ∞. In case λ′ ∈ D̂, we have again by (4.10)

〈Rλ, Rλ′〉N ∼ c(γ̂;−λ)c(γ̂;−λ′)
λ+ λ′

e−iαN(λ+λ′)
(
e2πλ

′/ω2 − e2πλ/ω2

)(
1− e−αω1(λ+λ′)

)

× N(γ)2

4πiα[c(2λ/ω2)− c(2λ′/ω2)]
, (6.17)

with Im(λ+ λ′) < 0. So in this case the right-hand side also tends to zero for N → ∞.

It remains to calculate the squared norm of Rλ in case λ ∈ D̂.

Proposition 6.3. For λ ∈ D̂,

〈Rλ, Rλ〉Hw
=
N(γ)2

2πiα

(
Res
λ′=λ

w(γ̂;λ′)

)−1

(6.18)

Proof. We use expression (6.16), where we let λ′ → λ. Then for large N ,

lim
λ′→λ

〈Rλ, Rλ′〉N ∼ N(γ)2c(γ̂;−λ)2
−8πiαλ

e−2iαλN
(
1− e−2αλω1

)
lim
λ′→λ

e2πλ/ω2 − e2πλ
′/ω2

c(2λ/ω2)− c(2λ′/ω2)

+
N(γ)2

2πiα
s(2λ/ω2)c(γ̂;−λ) lim

λ′→λ

c(γ̂;λ′)
(
1− eαω1(λ′−λ)

)

(λ′ − λ)[c(2λ/ω2)− c(2λ′/ω2)]
. (6.19)

By using L’Hôpital’s rule, we are able to find the following limits

lim
λ′→λ

e2πλ/ω2 − e2πλ
′/ω2

c(2λ/ω2)− c(2λ′/ω2)
=

e2πλ/ω2

s(2λ/ω2)
(6.20)

lim
λ′→λ

1− eαω1(λ′−λ)

c(2λ/ω2)− c(2λ′/ω2)
=

1

s(2λ/ω2)
. (6.21)

Considering that (6.20) is independent of N as well as the second term, we can see from (6.19)
that

lim
λ′→λ

〈Rλ, Rλ′〉Hw
=
N(γ)2

2πiα
c(γ̂;−λ) lim

λ′→λ

c(γ̂;λ′)

λ′ − λ
.
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Using that c(γ̂;λ′)/(λ′ − λ) has only simple poles, we can calculate the last limit as follows

lim
λ′→λ

c(γ̂;λ′)

λ′ − λ
=

(
lim
λ′→λ

λ′ − λ

c(γ̂;λ′)

)−1

=

(
Res
λ′=λ

1

c(γ̂;λ′)

)−1

. (6.22)

This finally results in

〈Rλ, Rλ〉Hw
=
N(γ)2

2πiα

(
Res
λ′=λ

w(γ̂;λ′)

)−1

.

6.3.3 The Ruijsenaars Function Transform

Combining Propositions 5.10 and 5.11 with Theorem 5.9 gives the following theorem.

Theorem 6.4. The Ruijsenaars Function Transform F , defined by

(Ff)(λ) = 4π√
2ω1ω2N(γ)

∫
f(x)Rλ(x)dw(x) (6.23)

extends to a unitary operator F : Hw → Hŵ, and its inverse is given by F−1 = F̂ .

Proof. First we show that F ◦ F̂ is the identity operator on H0. The proof for the continuous
part of F̂ is Theorem 5.9. Therefore we just write down the proof for the discrete part of F̂ .
We denote the discrete part of the RFT by Fd, that is,

(Fdf)(λ) =
πi√

2ω1ω2N(γ)

∑

x∈D

f(x)Rλ(x)Res
z=x

w(γ; z). (6.24)

Let g ∈ Ĥ0. Recall that D̂ is a finite set, then we obtain from Propositions 5.10 and 5.11,

(F(F̂dg))(λ
′) =

4π√
2ω1ω2N(γ)

∫ 
 πi√

2ω1ω2N(γ)

∑

λ∈D̂

g(λ)Rλ(x)Res
z=x

w(γ̂; z)


Rλ′(x)dw(x)

=
2πiα

N(γ)2

∑

λ∈D̂

g(λ)Res
z=x

w(γ̂; z)

(∫
Rλ(x)Rλ′(x)dw(x)

)

=
2πiα

N(γ)2

∑

λ∈D̂

g(λ)Res
z=x

w(γ̂; z)〈Rλ, Rλ′〉Hw

=

{
0, λ′ ∈ R,

g(λ′), λ′ ∈ D̂. (6.25)

The interchangement of the integral and the sum is justified by the fact that we take the sum
over a finite set. Combining the above result with Theorem 5.9 and the fact that (F(F̂g))(λ′) =
(F(F̂cg + F̂dg))(λ

′), we obtain the desired result. By duality, we obtain (F̂(Ff))(x) = f(x)
for f ∈ H0. The Plancherel identity can be proved as in Theorem 5.10 and F can be extended
similar as in Theorem 5.10.

The proof of Theorem 5.13 runs along the same lines in case dw and dŵ have discrete mass
points. The proof of Proposition 5.14 remains the same. We see now that the results in this
chapter are the same as in Chapter 5 if we take the discrete spectrum into account.
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