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Abstract
The generation of entanglement between remote matter qubits has developed into a key capability
for fundamental investigations as well as for emerging quantum technologies. In the single-photon,
protocol entanglement is heralded by generation of qubit-photon entangled states and subsequent
detection of a single photon behind a beam splitter. In this work we perform a detailed theoretical
and experimental investigation of this protocol and its various sources of infidelity. We develop an
extensive theoretical model and subsequently tailor it to our experimental setting, based on
nitrogen-vacancy centers in diamond. Experimentally, we verify the model by generating remote
states for varying phase and amplitudes of the initial qubit superposition states and varying optical
phase difference of the photons arriving at the beam splitter. We show that a static frequency offset
between the optical transitions of the qubits leads to an entangled state phase that depends on the
photon detection time. We find that the implementation of a Charge-Resonance check on the
nitrogen-vacancy center yields transform-limited linewidths. Moreover, we measure the
probability of double optical excitation, a significant source of infidelity, as a function of the power
of the excitation pulse. Finally, we find that imperfect optical excitation can lead to a detection-
arm-dependent entangled state fidelity and rate. The conclusion presented here are not specific to
the nitrogen-vacancy centers used to carry out the experiments, and are therefore readily
applicable to other qubit platforms.

1. Introduction

Entanglement between different nodes will be an essential element of future quantum networks. Entangled
states will serve as a key ingredient for many applications, such as secure communication, distributed
quantum computation and advanced quantum network protocols [1–7]. Remote entanglement between
distant nodes can be generated using different protocols. One of these protocols, the single-photon protocol
based on emitted photons encoded in number states [8, 9], is especially suited to establish entanglement
between distant stationary qubits with high generation rates in the presence of significant photon loss. Since
a single photon has to travel only half of the distance between the emitters, the total photon loss is reduced
compared to direct photon transmission or to two-photon entangling protocols [10]. The single-photon
protocol has been implemented on various qubit platforms, such as electron and hole spins in quantum dots,
nitrogen-vacancy centers in diamond and atomic ensembles in rare-earth-ion doped crystals [11–14].

The single-photon protocol works as follows. Two remote qubits are each prepared in the superposition
state

√
α|0⟩+

√
1−α|1⟩. State-selective excitation of |0⟩, the so-called bright state, creates a qubit-photon

entangled state. Interference of the photon states on a balanced beam splitter erases the which-path
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information. Detection of a single photon projects the two remote qubits into an entangled state
|Ψ⟩= 1√

2
(|01⟩+ |10⟩), up to a single qubit phase correction. However, in the presence of photon loss we

cannot discriminate between the emission of a single photon and the case in which both qubits were in the
bright state, |00⟩, and emitted each one photon but one photon was lost. The latter events falsely herald
entanglement and reduce the average fidelity. In the high photon-loss regime, given the detection of one
photon, the probability that both qubits are in the bright state is given by the initial population in |0⟩, α.
Hence, the average heralded density matrix is (1−α)|Ψ⟩⟨Ψ|+α|00⟩⟨00|, with a fidelity of F= 1−α with
respect to the maximally entangled state.

Apart from this infidelity intrinsic to the protocol, other sources of error can degrade the heralded state.
In this paper we provide a detailed theoretical and experimental study of error sources and characteristics
associated with the single-photon protocol. In contrast to earlier work [15], we focus on the full light–matter
interaction and single-photon interference to obtain an analytical solution.

The paper is structured as follows. In section 2 we describe the single-photon entanglement protocol
step-by-step for a general experimental setting and we develop a model describing the effect of experimental
imperfections. We introduce our experimental system, the nitrogen-vacancy (NV) center in diamond, in
section 3 and we tailor the model to our system in section 4. Afterwards, we discuss the effect of various
parameters on the heralded state; the bright state population (section 5), the phase of the entangled state
(section 6), photon indistinguishability (section 7), double optical excitation (section 8) and non-excited
bright state population (section 9). Several of these experimental parameters are interrelated and in
section 10 we discuss fidelity and rate optimization of the heralded state. We present our conclusions in
section 11.

This work contributes to a better understanding of the effect of general experimental imperfections and
its platform-independent insights can be used to improve entanglement generation on various systems, such
as other solid state defects and quantum dots [16–24].

2. The single-photon entanglement protocol

In this section we provide a step-by-step description of the single-photon protocol and derive the resulting
two-qubit state. Figure 1(a) shows an example of the energy levels used by the protocol, in this work we
employ a L-scheme for the optical excitation. We would like to emphasize that the protocol can also be
executed with a Lambda (or Raman) excitation scheme. In that case, the optical excitation induces the qubit
to flip [8]. Here we develop our model based on the L-scheme, as depicted in figure 1(a). We label two levels
|0⟩ and |1⟩ as our qubit subspace, and we can coherently drive the transition between them to create any
superposition state. Furthermore, the |0⟩ ground state is connected to an optically excited state |e⟩, allowing
for state-selective excitation and qubit-photon entanglement. Figure 1(b) shows a general experimental
layout, the two qubits can be individually excited and the emitted photons are led to a beam splitter. The
output ports of the beam splitter are connected to two photon detectors.

Throughout this section, we describe various unitaries acting on the individual qubits and photons, and
we finally discuss a photon detection event heralding the two-qubit state. Figure 1(c) summarizes the
protocol in the form of a gate circuit diagram. |0⟩A and |0⟩B represent the (stationary) qubits at the start of
the protocol. |0⟩γ,A/B describe the photon modes and |0⟩γ,r,A/B the photon modes of any lost photons, both
equal to the vacuum state at the start of the protocol as there are no photons yet. Figure 2 provides an
overview of the different timing definitions and schematically shows the single-photon entanglement
protocol at different points in time.

We work in the rotating frame of both qubits and we start with qubits A and B initialized in the |0⟩
ground state

|Ψ0⟩A ⊗ |Ψ0⟩B = |0⟩A ⊗ |0⟩B. (1)

Next we create a superposition state on each of the qubits using the unitary

U αi,ϑi
1 : |0⟩ →

√
αi|0⟩+

√
1−αie

−iϑi |1⟩. (2)

In unitary Uαi,ϑi
1 , αi denotes the population in |0⟩, i.e. the bright state, and ϑi represents the phase of the

superposition state. Subscript i denotes either of the two emitters used in the protocol, A or B.
To create the qubit-photon entangled states, we expose the emitter to excitation light. At time t= 0, a

short optical pulse is being created, see figure 2(a). At time texc,i, qubit i will be state-selectively excited by this
optical excitation pulse (figure 2(b)). In this derivation we assume the optical excitation to be instantaneous.
Subsequent decay to the ground state will result in the emission of a photon (figure 2(c)) and the photonic
state can be written as a superposition of different photon modes ζ i with different emission times tem,i

2
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Figure 1. Simplified level structure, generalized experimental layout and overview of unitary operations. (a) L-scheme level
structure for the single-photon entanglement protocol. Two ground states define the qubit subspace |0⟩ and |1⟩, and we can drive
the transition between them. Furthermore, |0⟩ is optically connected to an excited state |e⟩. (b) In a generalized experimental
layout, excitation pulses are sent to qubits A and B and the emitted photons are led to a beam splitter. The output ports C and D
of the beam splitter are connected to two single photon detectors. (c) Gate circuit diagram describing the single-photon
entanglement protocol. Stationary qubits A and B are initialized into the |0⟩i state, where the subscript i denotes qubit A or B.
Since there are no photons yet at the start of the protocol, all photon modes are described by the vacuum state, |0⟩γ,i. The same
holds for the photon modes indicating lost photons, |0⟩γ,ri. Throughout the protocol, several unitaries U act on the qubits and
the photon states, and finally a state between the stationary qubits is heralded by a joint measurement of the photonic states. In
the main text, we describe the different unitaries and the resulting heralded state.

ˆ ∞

texc,i

ce,iζi(x, t, texc,i, tem,i)dtem,i =

ˆ
ce,iϵ⃗iEi(texc,i, tem,i)e

−i(ωi(t−tem,i)−ki(x−L1,i)+ϕl,i+π/2+ωi(tem,i−texc,i))dtem,i

=

ˆ
ce,iϵ⃗iEi(texc,i, tem,i)e

−i(ωi(t−texc,i)−ki(x−L1,i)+ϕl,i+π/2)dtem,i.

(3)

In equation (3), |ce,i|2 is the probability to transfer the population to the excited state |e⟩, ϵ⃗i denotes the
polarization of the emitted photon, ωi is the transition frequency |0⟩ → |e⟩ with the corresponding wave
number ki, ϕl,i +π/2 is the phase of the excitation laser imprinted on the photon by means of the Rabi drive,
Ei(texc,i, tem,i) is the temporal envelope and x and t as the spatial and time coordinates respectively. For
spontaneous decay, this envelope can be modeled as

Ei(texc,i, tem,i) =
H(tem,i − texc,i)e−(texc,i−tem,i)/2τ

√
τ

, (4)

with τ the excited state lifetime and H(t) the Heaviside function.
At a later point in the protocol we will describe the detection of a photon at time tem,i +

L2,i
c

(see figure 2(d)), therefore we can already write the photon state as being emitted in that specific mode

ce,iζi(x, t, texc,i, tem,i) = ce,iϵ⃗iEi(texc,i, tem,i)e
−i(ωi(t−texc,i)−ki(x−L1,i)+ϕl,i+π/2). (5)

Additionally, in practice, the excitation laser pulse has a finite duration and therefore re-excitation of the
qubit is possible in case the first decay happens during the optical pulse (we ignore any higher-order
emissions). For this reason we define texc,2,i and tem,2,i as the times at which the re-excitation and second
spontaneous decay occur, with the condition texc,2,i > tem,i. We write the joint photonic mode as
ζii(texc,i, texc,2,i) and define the double excitation probability as |cee,i|2 [25, 26]. Again we assume both photons
to be emitted in specific modes.

3
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Figure 2.Overview of the different time definitions used in the derivation. (a) At t= 0 the excitation pulse is generated at position
x= 0 with phase ϕl,i. (b) At time t= texc,i, the excitation pulse arrives at the emitter and transfers the population from the |0⟩
ground to the excited state |e⟩. (c) At time t= tem,i, the population in the excited state spontaneously decays and a photon is
emitted. (d) Finally, the emitted photon arrives at the detector at position x= L1,i + L2,i and is detected at time

t= tem,i +
L2,i
c

= t ′.

Together with the probability to remain in the ground state |0⟩, |c0,i|2, the unitary describing the
state-selective excitation and emission can be written as

U ci
2 :

{
|0⟩|0⟩γ → |0⟩⊗ (c0,i|0⟩γ + ce,iζiâ

†(tem,i)|0⟩γ + cee,iζiiâ
†(tem,2,i)â

†(tem,i)|0⟩γ),
|1⟩|0⟩γ → |1⟩|0⟩γ ,

(6)

where â† is the photon creation operator. Note that we exclude the possibility for off-resonant excitation of
any transition related to the |1⟩ ground state.

The emitted photons are subject to losses, which we assume to be equal for all the photons associated
with one of the nodes. We use a beam splitter transformation U ηi

3 to model photon loss as

U ηi
3 : â†i |0⟩γ |0⟩γ,r →

√
ηiâ

†
out,i|0⟩γ |0⟩γ,r +

√
1− ηiâ

†
r,i|0⟩γ |0⟩γ,r. (7)

â†r,i creates a photon in the loss mode |0⟩γ,r and â†out,i denotes the photon arriving at the beam splitter. We
omit the out subscript for brevity. In U ηi

3 , |ηi|2 represents the photon detection probability. The (separable)
state in front of the central beam splitter will then be given by

|Ψ3⟩AB =U ηA
3 U cA

2 U αA,ϑA
1 |0⟩A|0⟩γ,A|0⟩γ,rA ⊗U ηB

3 U cB
2 U αB,ϑB

1 |0⟩B|0⟩γ,B|0⟩γ,rB. (8)

Let us now turn to the detection. We assume non-number resolving single photon detectors. Due to
photon loss, double excitation and the presence of noise counts, different detection patterns will look
identical. As a consequence, we will herald an average state, averaged over the different possible detection
patterns. However, we can reject any experimental repetition in which two photons are detected in different
detectors. These events suggest either double excitation or both qubits being in the bright state, deteriorating
the average state compared to the maximally entangled. Furthermore, assuming the presence of modest
photon loss, we consider at most two photons arriving at the beam splitter. We treat all the detection patterns
separately and later on combine the result to obtain the average heralded density matrix. We assume the loss

4
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after the central beam splitter to be symmetric, for this reason we treat any loss after the beam splitter as an
additional contribution to the loss handled by U ηi

3 .

2.1. Single photon
The first detection pattern we consider is the case where one photon is emitted and one photon is detected.
For a detection at time t ′ = tem,A +

L2,A
c = tem,B +

L2,B
c in port C of the beam splitter, we model the detection

by projecting the state onto ⟨0|γ âC(t ′), where âC(t ′) is the photon annihilation operator acting at time t′.
The effect of the beam splitter is mapping the state to a superposition of a photon originating from A or B

⟨0|γ âC(t ′) =
1√
2
⟨0|γ (âA(t ′)+ âB(t

′)) . (9)

Similarly we can define the projector for detecting a photon in port D as

⟨0|γ âD(t ′) =
1√
2
⟨0|γ (âA(t ′)− âB(t

′)) . (10)

For detecting a photon in port C, the corresponding (unnormalized) density matrix is given by

ρ1 = ⟨0|γ âC(t ′)|Ψ3⟩⟨Ψ3|ABâ†C(t
′)|0⟩γ . (11)

2.2. Two photons
Secondly, we deal with the case where two photons are emitted, either both by the same node or by the two
nodes separately, and both photons arrive at the beam splitter. As mentioned above, two-photon events will
be rejected as they suggest both qubits to be in the bright state or double optical excitation. Therefore, we
reject events where two photons are being detected in different ports of the beam splitter. When two photons
leave the beam splitter via the same port, we cannot discriminate a two-photon event from a single photon
event due to the non-number resolving detectors and the first photon will herald a state. In this case, the first
photon will be detected in port C at time t′ and the second photon will be similarly absorbed at (unknown)
time t′′, also in port C. The projector is then given by

⟨0|γ âC(t ′)âC(t ′ ′) =
1

2
⟨0|γ(âA(t ′)+ âB(t

′))(âA(t
′ ′)+ âB(t

′ ′)), (12)

and we obtain

ρ2 = ⟨0|γ âC(t ′)âC(t ′ ′)|Ψ3⟩⟨Ψ3|ABâ†C(t
′ ′)â†C(t

′)|0⟩γ , (13)

again an unnormalized density matrix.

2.3. At least one lost photon
When at least one photon is lost, detection of any remaining photon will falsely herald entanglement. This
cannot lead to coherence between the qubit states and therefore we can project on each detection pattern
separately and sum over the resulting density matrices

ρincoherent =⟨0|γ âC(t ′)ârA(tr)|Ψ3⟩⟨Ψ3|ABâ†rA(tr)â
†
C(t

′)|0⟩γ
+ ⟨0|γ âC(t ′)âC(t ′ ′)ârA(tr)|Ψ3⟩⟨Ψ3|ABâ†rA(tr)â

†
C(t

′ ′)â†C(t
′)|0⟩γ + . . .

(14)

ρincoherent is comprised of all combinations of lost photons and detected photons, single excitation and double
excitation events, where at least one photon is lost and one is detected, but for brevity only two detection
patterns are displayed in equation (14). Since the detection time of the lost photon tr and therefore its
emission time tem,i is unknown, we can integrate over all possible emission times; |

´
ce,iζi(tem,i)dtem,i|2 =

|ce,i|2.

2.4. Noise photon
A detector dark count or stray light will additionally lead to falsely heralded entangled states. We assume the
contribution of such noise counts small compared to actual signal photons and we ignore the (small)
probability of both a signal photon and noise photon arriving at the detector. We distinguish two scenarios:
no photon is emitted, or none of the emitted photons arrived at the beam splitter. The first scenario leads to a
separable state, but the single qubit coherence is not lost, while the latter projects the corresponding qubit

5
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state and its coherence is lost. We can deal with these two scenarios separately. Regarding the first scenario, by
projecting on the vacuum state |0⟩γ , we get the density matrix

ρ0 = |Ψ0⟩⟨Ψ0|A ⊗ |Ψ0⟩⟨Ψ0|B, (15)

with

|Ψ0⟩i = (
√
αic0,i|0⟩+ e−iϑi

√
1−αi|1⟩). (16)

Alternatively, when none of the emitted photons arrive at the beam splitter, we can trace over all the lost
photons to obtain

ρlost = ⟨0|γ ârA(tr)|Ψ3⟩⟨Ψ3|ABâ†rA(tr)|0⟩γ + ⟨0|γ ârA(tr)ârA(t̃r)|Ψ3⟩⟨Ψ3|ABâ†rA(t̃r)â
†
rA(tr)+ . . . (17)

ρlost consists of all combinations of single excitation and double excitation events where all photons are lost,
but for brevity only two detection patterns are displayed in equation (17). We add the two noise
contributions and multiply by the probability for a noise count being detected, pd and construct

ρnoise = pd(ρ0+ ρlost). (18)

Having discussed all the detection patterns we can finally combine all the contributions to extract the
probability to get a detection event in port C

pclick,C = Tr(ρ1)+Tr(ρ2)+Tr(ρincoherent)+Tr(ρnoise). (19)

We add all the density matrices and normalize using the detection probability pclick,C and we obtain an
expression for the average density matrix ρC heralded by a detection in port C

ρC =
1

pclick,C
(ρ1+ ρ2+ ρincoherent+ ρnoise). (20)

In appendix A, we provide the full description of the density matrix.
In the introduction we discussed the expected fidelity in the high loss regime and here we check that our

model matches the intuitive result. We use a shorthand notation for the detected photon modes defined in
equation (5) as ζi(t ′), with t′ (t′′) the detection time of the first (second) photon. In the limit of high photon
loss (η ≪ 1), equal experimental settings (ηA = ηB ≡ η and αA = αB ≡ α), perfect optical excitation pulses
|ce,i|2 = 1, perfectly indistinguishable photons with equal optical phase upon arrival at the beam splitter
ζA(t ′) = ζB(t ′)≡ ζ(t ′) and absence of noise counts pd, we can simplify the results to

pclick,η≪1,C =Tr(ρ1)+Tr(ρincoherent)

=α(1−α)η|ζ(t ′)|2+α2η|ζ(t ′)|2

=αη|ζ(t ′)|2,
(21)

where η|ζ(t ′)|2 can be interpreted as the probability to detect a photon in the detection window. The density
matrix can be written as

ρη≪1,C =
1

pclick,η≪1,C
(ρ1+ ρincoherent),

=
α(1−α)η|ζ(t ′)|2

pclick,η≪1,C
|Ψ⟩⟨Ψ|+ α2η|ζ(t ′)|2

pclick,η≪1,C
|00⟩⟨00|,

=(1−α)|Ψ+⟩⟨Ψ+|+α|00⟩⟨00|,

(22)

with |Ψ+⟩= 1√
2
(|01⟩+ |10⟩), the maximally entangled Bell state, matching our intuitive prediction

presented in section 1. Similarly, a photon detection in port D will give the same result, albeit with the
entangled state |Ψ−⟩= 1√

2
(|01⟩− |10⟩).

6
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3. Experimental setup: NV centers

In this work we use nitrogen-vacancy centers (NV) in bulk diamond as our qubit system. This defect consists
of a substitutional nitrogen-atom with the adjacent lattice site left vacant. In the negative charge state an
additional electron from the environment is trapped and a spin-1 system is formed. We use two ground
states, |0⟩= |ms = 0⟩ and |1⟩= |ms =−1⟩ (or |ms =+1⟩), as our qubit subspace. The |ms = 0⟩ state is
connected to an optically excited state |e⟩= |Ex⟩ 5, and the transition can be selectively addressed at
cryogenic temperatures [27, 28]. Spontaneous decay from the excited state |e⟩ to |0⟩ happens resonantly
≈3% of the time, into the so-called zero-phonon line (ZPL) [29]. In the remaining≈97%, the decay happens
off-resonantly into the phonon-side band (PSB); in this case the emitted photon is accompanied with the
emission of a phonon. Tracing over the (undetected) phonon state erases the spin-photon coherence,
prohibiting PSB photons to be used for entanglement generation. In the optical setup we separate the ZPL
from the PSB photons using a dichroic mirror [30].

In this work, we use the same experimental setups as used in the quantum network of [30, 31]. Using the
notation of [30, 31], we label the nodes Alice (A), Bob (B) and Charlie (C), which are connected in such a
way that we can generate entanglement on two links; Alice-Bob (AB) and Bob-Charlie (BC). The exact
connections are given in [30]. By applying a DC voltage via on-chip electrodes, we tune the optical transitions
of nodes A and C to match the frequency of node B using the DC Stark effect [32]. For each link the nodes
share the excitation laser and the short excitation pulses are generated using an electro-optic modulator
(EOM, Jenoptik) driven by an arbitrary waveform generator (AWG, Zürich Instruments). To provide
additional extinction of the pulse, we make use of an acousto-optic modulator (AOM, Gooch&Housego). We
use microwave (MW) pulses to drive the transition between the qubit states and with I- and Q-modulation
we can generate any superposition. We actively stabilize the optical phases acquired by the excitation pulses
and photons using a combination of heterodyne and homodyne phase detection methods and feedback [30].

To perform a readout on one of the individual qubit, the qubit is rotated to the required basis using an
MW pulse and the NV center is read out by exposure to light resonant with the |0⟩ → |e⟩ transition.
Detection of a photon in the PSB detection path marks a |0⟩ state readout, while absence of photons
corresponds to the |1⟩ state.

The optical transition frequencies of the NV center are sensitive to (laser-induced) changes in the
charge-environment [33–36]. To mitigate this effect we perform a Charge-Resonance (CR) check prior to
every experimental run [28]. During a CR check, we turn on the control lasers to ensure the emitter is on
resonance with the control lasers and in the correct charge state. Only when a number of PSB photons above
a pre-set threshold is detected, an experimental repetition is started.

4. Tailoring the model for NV centers

In section 2 we have considered the single-photon protocol in a general way. Considering our experimental
implementation using NV centers in bulk diamond, we can make several approximations to simplify the
results. Due to the small fraction of resonantly emitted photons (≈3%) and limited overall efficiency of
collection and detection (<15%), we can assume η ≪ 1. By using high-power laser pulses we can assume all
population to be transferred to the optically excited state, c0,i = 0. We set a detection window which starts
after the arrival time of the optical pulse to mitigate counts due to imperfectly rejected laser light reaching
the detectors. As a consequence, during a double excitation event the first photon will never be detected and
we set ηi(1− ηi)|ζii(t ′, tr)|2 = 0. In this way, we can define the parameter pde as the probability that a second
photon is emitted given a photon detection: |cee,iζii(tr, t ′)|2 = pde.

With these assumptions we can simplify equations (19) and (20), and we obtain for the probability to
detect a photon in port C

pclick,NV,C = Tr(ρ1)+Tr(ρincoherent)+Tr(ρnoise). (23)

The heralded density matrix is then given by

ρNV,C =
1

pclick,NV,C
(ρ1+ ρincoherent+ ρnoise)

=
1

pclick,NV,C


a00 0 0 0
0 a11 a12 0
0 a∗12 a22 0
0 0 0 a33

 (24)

5 In one of the experimental setups, node C, we use |Ey⟩ as the excited state.

7



New J. Phys. 25 (2023) 013011 S L N Hermans et al

with the elements

a00 = αAαB

(
1

2
ηA|ce,AζA(t ′)|2+

1

2
ηB|ce,BζB(t ′)|2+

1

2
ηApde+

1

2
ηBpde+ pd

)
, (25)

a11 = αA(1−αB)

(
1

2
ηA|ce,AζA(t ′)|2+

1

2
ηApde+ pd

)
, (26)

a22 = (1−αA)αB

(
1

2
ηB|ce,BζB(t ′)|2+

1

2
ηBpde+ pd

)
, (27)

a12 =
1

2
Me−iϕ, (28)

a33 = pd(1−αA)(1−αB). (29)

In the expression of a12,M is the magnitude of the coherence term

M=
√

αA(1−αA)αB(1−αB)ηAηB × (ϵ⃗A · ϵ⃗B)ce,Ace,BEA(texc,A, tem,A)EB(texc,B, tem,B), (30)

and ϕ represents the phase of the entangled state

ϕ= ϑB −ϑA −ωA(tem,A − texc,A)+ωB(tem,B − texc,B)−ϕl,A +ϕl,B. (31)

In our experimental implementation, the emitters share the excitation laser and the optical paths are
much smaller than the coherence length of the laser. Thus, we can rewrite equation (31). The phase of the
laser is ϕl,A = ϕl,B ≡ ϕl and the frequency of the laser ωl,A = ωl,B ≡ ωl. We introduce a detuning∆i between
the laser and the optical transitions, ωl −ωi =∆i of the emitters (i= A,B). Even though the emitters share
the same excitation pulse, the path lengths of the excitation pulse and single photons do not have to be same
and their difference is given by L1,A + L2,A − L1,B − L2,B = dL. Hence, for a photon detection event at time t′,
the time spent in the excited state can be different for the two emitters, tem,A − texc,A ̸= tem,B − texc,B. We
introduce the variable td,i as the time spent in the excited state, tem,i − texc,i, see figure 3. Note that td,i can also
be viewed as the detection time with respect to the arrival time of the excitation pulse at the beam splitter.
Using these definitions we can write ϕ as

ϕ=ϑB −ϑA −ωAtd,A +ωBtd,B

=ϑB −ϑA −ωl(td,A − td,B)+∆Atd,A −∆Btd,B

=ϑB −ϑA +ωl
dL

c
+∆Atd,A −∆Btd,B

(32)

where ωl
dL
c is the optical phase difference between the paths, c denotes the speed of light. As mentioned in

section 3, we stabilize this phase difference to a setpoint δφ. We can rewrite td,B as a function of td,A;
td,B = td,A +

dL
c and obtain

ϕ=ϑB −ϑA + δφ+∆Atd,A −∆Btd,A −∆B
dL

c
. (33)

The last term in equation (33) can be ignored when either the arrival time difference dL
c or the detuning∆ of

one of the nodes is small. Assuming dL
c ≪ td,A, we can write the entangled state phase as

ϕ= ϑB −ϑA + δφ+∆Atd −∆Btd. (34)

where td is the photon detection time with respect to the (nearly equal) arrival time of the optical pulses to
the detectors.

In the remainder of the paper, we use this model to simulate the fidelity with respect to the maximally
entangled state and the success probability. The simulations include a Monte Carlo simulation to incorporate
the exponential probability distribution of the photon detection times, as well as Gaussian probability
distributions of the noise of the phase stabilization setpoint and frequency detunings [37].
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Figure 3. Photon detection time. The photon detection happens at time t= t ′. We introduce an extra variable, td,i with
i= (A,B), which is defined as the time spent in the excited state tem,i − texc,i. td,i can also be viewed as the photon detection time
with respect to the arrival times of the optical pulses, which occur at texc,i + L2,i/c (with c the speed of light constant). The arrival
time difference between the optical pulses depends on the optical path length difference dL= L1,A + L2,A − L1,B − L2,B, and is
given by dL/c.

5. Bright state population

In this section we study the effect of the bright state population α. First, we will vary α and discuss the effect
on the fidelity of the heralded state in the presence of noise. Second, we will discuss optimal settings for the
individual αi when the detection efficiencies of the nodes are not the same.

In a practical experimental setting, entanglement might be falsely heralded by noise counts. The noise
counts can originate from different sources, such as dark counts of the detector, excitation light leaking into
the detectors or stray light. The effect on the average heralded state depends on the ratio between noise and
signal photons. In figure 4(a) we plot the measured and simulated fidelity with the maximally entangled state
for various settings of α. For high values of α we observe the linear scaling of the fidelity with α, as suggested
by the model for the high-photon loss regime η ≪ 1. For low values of α, the fidelity deviates from the linear
behavior and for sufficiently low α we observe a sharp drop-off, indicating a significant contribution of
falsely heralding noise counts. We note that off-resonant excitation of undesired transitions or errors in the
preparation of the superposition state (unitary U α,ϑ

1 ) can also lead to a sharp drop-off in fidelity for low
values of α. In figure 4(b) we plot the success probability pclick as a function of α, displaying the expected
linear behavior (see equation (21)).

We now turn to the individual detection efficiency η. Generally, the detection efficiency or loss
parameter, η, is not the same for the two nodes due to differences in the individual experimental setups or
unequal fiber loss in the paths from the nodes to the beam splitter. For this reason we would like to find
optimal settings for αA and αB to establish remote entanglement with the highest fidelity for a fixed success
probability pclick. In other words, we want to optimize F(αA,αB) subject to ηAαA + ηBαB = pclick in the
high-loss regime. For simplicity, we assume no errors other than the protocol error (i.e. no noise counts, no
double excitation, perfectly indistinguishable photons), set an entangled state phase of ϕ= 0 and integrate
over all possible detection times such that

´
|ζi(t ′)|2dt ′ = 1. To compute the fidelity we calculate the overlap

with the maximally entangled state

F= ⟨Ψ|ρC|Ψ⟩,

=
1

4pclick,C
(a11+ a22+ 2|a12|),

=
1

4pclick,C
(αAηA(1−αB)+αBηB(1−αA)+ 2

√
αAαB(1−αA)(1−αB)),

(35)

and the success probability per attempt

pclick = a00+ a11+ a22,

=
1

2
(ηAαA + ηBαB).

(36)

To find the optimal settings, we use a Langrangian formalism. The optimal settings are met when the
gradients of the fidelity and success probability are parallel, i.e. when the fidelity is maximal for a fixed
success probability. We can write this condition as

9
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Figure 4. Effect of bright state population. Fidelity with respect to the maximally entangled state (a) and probability to herald a
state (b) as a function of the bright state populations α. The data (circles) is measured on two links of the network of [30], AB and
BC. The x-axis represents the bright state population of setup B in both cases. The bright state population of node A is scaled to
be αA = ηB

ηA
αB, while αC = αB. The solid lines are given by our model, see table B1 for the parameters. (c) In absence of errors

other than the protocol error, we calculate the entangled state fidelity for various settings of (αA,αB) for the case ηB = 2ηA with
ηA = 4× 10−4. The black and white solid lines are isolines for the entangled state fidelity and success probability respectively.
The red solid line indicates the optical settings to obtain the highest fidelity with respect to the maximally entangled state for a
fixed success probability. The red dashed line represents the ηAαA = ηBαB scenario.

(∇pclick)⊥ ·∇F= 0

−ηB
∂F

∂αA
+ ηA

∂F

∂αB
= 0.

(37)

We solve equation (37) numerically for the case ηB = 2ηA, with ηA = 4× 10−4. In figure 4(c) we plot the
entangled state fidelity for different values of αA and αB. The optimal settings are represented by the red solid
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line. For high-fidelity states, the optimal settings are close to αAηA = αBηB (red dashed line). We can
interpret this result as balancing the probability of the photon to originate from either setup. For low-fidelity
states, the optimal settings differ from balancing the detection probabilities. This can be explained with a
simple example; by setting αA = 0 and αB ̸= 0, the detected photon will always originate from setup B and
thus we will measure perfect classical anti-correlations. However any quantum correlations are completely
washed out and we obtain a fidelity F= 0.5, irrespective of the value of αB. On the contrary, if we set both
αA,αB ̸= 0 we do get quantum correlations but the protocol error can now push the fidelity below 0.5.
Hence, for low-fidelity states the optimal settings for αA and αB optimize classical anti-correlation at the
expense of quantum correlations.

6. Phase of the entangled state

In section 4 we discussed the phase of the entangled state ϕ and derived the expression for the phase in the
case where the excitation laser is shared between the emitters, equation (34). Here we experimentally verify
the effect of the different parameters on the entangled state phase, using nodes B and C.

We measure the phase of the entangled state by sweeping the readout basis of node C over the XY-plane
of the Bloch sphere (black arrows in figure 5(a)) while we fix the readout basis of node B to be along the+X
axis (red arrow). In figure 5(b) we plot the correlations of the measured readout outcomes as a function of
the readout basis of node C for states heralded by detecting a photon in port C (turquoise circles) or port D
of the beam splitter (purple circles). To extract the phase we jointly fit the two curves and extract ϕ, the phase
offset with respect to a cosine.

First we vary the phase of the MW pulse that creates the superposition state on setup B, i.e. we change
ϑB, the phase of the initial superposition state. We fit the data with a line with slope 1 and subtract the fitted
offset. The data with the subtracted offset and the fit are are plotted in figure 5(c) and (we) observe the
expected linear dependence.

The next parameter we vary is the setpoint for the optical phase stabilization to change δφ. In figure 5(d)
we plot the measured entangled state phase ϕ (again with a fitted offset subtracted) for different setpoints of
the stabilization (circles) together with the fit with a fixed slope 1 (solid line). We use the phase stabilization
architecture of [30]. In this architecture, the optical phase difference δφ is governed by a linear combination
of the setpoints of the three individual interferometers. This enables us to stabilize to values of δφ further
away from 0, but ultimately the non-linear sinusoidal phase signals hinder effective stabilization. In the
shaded regime of figure 5(d), the slopes of the individual phase signals are below 0.9 and we assume this
regime to be insufficiently linear for effective stabilization.

The third parameter we modify is the frequency difference between the emitters of each setups. We
change the frequency of the excitation laser and shift the resonance condition of one of the emitters to the
new frequency using the DC Stark effect (we apply a DC voltage via on-chip electrodes), while leaving the
other emitter at its original emission frequency (thus introducing a detuning to the excitation laser). As
derived in equation (34), a frequency difference results in a shift of the entangled state phase depending on
the detection time of the photon. This dependence of phase on the photon detection time has also been
observed in [38, 39]. In figure 5(e) we plot the measured entangled state phase as a function of the detection
time of the photon (in bins of 4 ns) for various frequency offsets between the emitters. The time axis is with
respect to the highest intensity point of the excitation pulse. We perform a combined fit of the data with fixed
slopes given by our model. In a quantum jump picture, the fitted crossing of the lines can be interpreted as
the average point in time where the excitation from |0⟩ to |e⟩ occurs, and thus the starting point of the time
spent in the excited state. For large frequency detunings (comparable to the inverse of the pulse width), the
effective averaging over different excitation times could also lead to a decrease of the average fidelity, however
we expect this contribution to be small for our pulse width (2 ns). The observed dependence of the entangled
state phase on the photon detection time is consistent with our model.

7. Photon distinguishability

The next aspect we study is the photon distinguishability. For the case of indistinguishable photons, the
which-path information is completely erased by the beam splitter. In turn, any distinguishability of the
photons will therefore affect their interference and hence alter the average heralded density matrix, see
section 2. A difference in arrival time or temporal shape of the photons will result in different probabilities to
detect a photon originating from either node at a certain point in time (section 5). We note that different
spatial modes of the photons will have a similar effect, but since, in our case, the photons are interfered on a
fiber-coupled beam splitter this effect can be neglected.
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Figure 5. Entangled state phase. (a) We determine the entangled state phase by measuring along the+X axis on setup B (red
arrow), while sweeping the measurement axis of setup C over the equator plane of the Bloch sphere (black arrows). In this way we
obtain oscillating correlations between the measurement outcomes, as shown in (b), for states heralded by detector C (turquoise
circles) and D (purple circles). We jointly fit the data for the two detectors to extract ϕ, the phase offset with respect to a cosine.
(c) The entangled state phase ϕ as a function of the phase of the microwave (MW) pulse we use to create the initial superposition
state (see equation (2)). Here we fix ϑC = 0 and sweep ϑB. Due to a small difference of the stabilized path compared to the path of
the excitation pulses and the single photons, there is a nonzero phase offset [30]. We fit the measured phase values with a line with
slope 1 and subtract the fitted offset. The solid line shows the fit with the subtracted offset. (d) The entangled state phase as a
function of the optical phase stabilization setpoint. Again we account for the phase offset due to path difference and show the fit
with the subtracted offset (solid line). (e) The entangled state phase as function of the detection time of the photon for different
frequency offsets∆f between the setups. The photon detection times are binned in bins of 4 ns, and the x value represents the
middle of the bin. The time scale is with respect to the highest intensity point of the optical pulse. The solid lines are a joint fit to
the data with the zero point crossing x0 as the only free parameter. The fit gives x0= (0.8± 0.3) ns. The error bars of the data
plotted in (C), (D) and (E) are smaller than the symbol size.

Distinguishability in polarization or frequency will act on the off-diagonal terms of the density matrix. A
difference in polarization decreases the magnitude of the off-diagonal term, see equation (30). We work with
a fiber-based beam splitter consisting of polarization maintaining (PM) fibers. We align the polarization to
the slow or fast axis better than 20 dB, therefore we can assume the polarization mismatch to be small. As
discussed in the previous section, a fixed frequency offset causes the entangled state phase to be dependent
on the detection time of the photon. In figure 5(e), we introduced a fixed frequency difference throughout
the entire duration of the experiment. However, even if the average frequency offset is zero, if the frequency
difference varies in each experimental run, an entangled state with a different phase will be heralded in each
repetition. While averaging over many repetitions would still yield a constant phase, the fidelity with respect
to the target state will be decreased, with lower fidelity for later detection times.

In section 3 we discussed the CR check as a way to ensure the NV centers are on resonance with the
excitation laser and to eliminate any frequency difference between the emitters. Here we assess the
performance of the CR check by measuring the spectral linewidth of the NV after passing the CR check. We
turn on an additional laser with a variable frequency and count the emitted photons. We perform this
procedure many times before moving to a different frequency setpoint of the additional laser. We scan over a
range of± 30 MHz around the frequency of the excitation laser, see figure 6(a). We fit the measured counts
N with a Lorentzian shape

N=
a

π

2γ

4f 2+ γ2
+A (38)

and extract γ, the full-width at half-maximum (FWHM). In equation (38), a represents a scaling factor and
A an offset. Non-zero laser power induces broadening of the linewidth [40], so we repeat this measurement
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Figure 6. Transform limited spectral linewidth. (a) After passing a Charge-Resonance (CR) check, see section 3, we expose the
emitter to a laser pulse with a variable frequency and count the emitted photons. We fit the result with a Lorentzian pulse shape
(solid lines) and repeat the measurements for different powers of the applied laser pulse. (b) Extracted linewidths (colored circles)
from panel (A) as function of optical power. We fit the curve given by equation (39) to extract the natural linewidth (solid gray
line). The dashed gray line shows the expected transform-limited linewidth. (c) Histogram of phonon-side band photon (PSB)
counts. We use the region between the dashed lines to extract the excited state lifetime and compute the expected linewidth in
panel (B). (d) Fidelity with respect to the maximally entangled state as a function of the detection time of the heralding photon.
We measure the entangled state fidelity for both the AB (red circles) and the BC (black triangles) links of [30]. The detection time
is binned in bins of 1 ns and the x value represents the start of the bin. The x axis is the detection time with respect to the highest
intensity point of the optical pulse. Using a Monte-Carlo simulation, we model the entangled state fidelity for a frequency
difference between the emitted photons given by a Gaussian distribution, for different values of the full-width half-maximum of
the distribution.

for different powers of the scanning laser. In figure 6(b) we plot the extracted linewidth for the different
optical powers of the additional laser and fit the measured linewidths as a function of the optical power P
with the expression

γ =
√
γ20 + b · P (39)

to find the natural linewidth γ0. In equation (39), b is the scaling factor relating the externally calibrated
applied power to the optical Rabi-frequency. We find γ0 = (12.4± 0.8)MHz and b= (690± 40)
MHz2 nW−1.

We compare the observed natural linewidth with the expected linewidth extracted from an excited-state
lifetime measurement on the same NV center. We apply an optical π-pulse to the NV center and record the
detection times of the photons, see figure 6(c). We fit the regime between the dashed lines, for which the
influence of the pulse and dark counts is negligible, with an exponential decay and we find a lifetime
τ = (12.43± 0.02) ns. The corresponding lifetime limited linewidth is γ0,l = (12.81± 0.02)MHz. We thus
conclude that implementing a CR check can yield transform-limited linewidths within measurement
accuracy and thus allows access to (near-)perfectly coherent photons.

Having addressed the spectral properties of a single NV center, we now move to the photon
distinguishability of two emitters and its effect on the entangled state fidelity. We measure the fidelity of
generated entangled states between setups A and B as well as between setups B and C. In figure 6(d), we show
the measured fidelity (binned) versus the detection time of the photon. We observe a drop in fidelity for later
detection times of the photon. Since the signal-to-noise ratio is approximately constant over the entire
detection window, the observed drop in fidelity may be attributed to a varying frequency mismatch of the
emitters.

We use the Monte–Carlo simulation to predict how large the frequency mismatch would have to be to
explain the measured behavior. We pick a random frequency difference from a Gaussian distribution,
calculate the resulting entangled state phase and compute the fidelity to the target state (with target phase).
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By averaging over many repetitions and repeating for different widths of the Gaussian distribution, we obtain
the entangled state fidelity as a function of detection time and FWHMs of the frequency distribution (solid
lines in figure 6(d)). The measured entanglement data appears to be consistent with a fluctuating frequency
mismatch with standard deviation of≈13 MHz between the emitters. Interestingly, we observe a
quantitatively similar dependence for the link between Alice and Bob and for the link between Bob and
Charlie. Note that this≈13 MHz standard deviation of the frequency mismatch is inconsistent with the
observed lifetime limited linewidth and the accuracy of the wavemeter to which the lasers are locked
(<2 MHz). Future work should focus on confirming the nature of this noise and its source.

8. Double optical excitation

In sections 2 and 4 we have briefly discussed double optical excitation. During the finite duration of the
excitation pulse, the emitter can get re-excited after emission of a first photon. In the high-photon loss
regime, the probability that both photons arrive at the beam splitter is negligible. Loss of one of the two
photons projects the qubits and result in a lowered fidelity of the heralded state. In our experiment we start
the detection window a few nanoseconds after the highest intensity point of the pulse. We define double
excitation as the probability that one emitter has emitted two photons given a photon detection event in the
heralding window, pde = |ζ(tr, t)|2. Here we extract the double excitation probability for our specific optical
excitation pulse and measure its dependence on the power of the optical pulse.

The double excitation probability depends on the pulse duration with respect to the lifetime of the
excited state, but also on the exact pulse shape and power of the pulse. As mentioned in section 3, we
generate the optical pulse using an AWG, EOM and AOM. The combination of the response times and
output of these three instruments determines the shape of the excitation pulse. In figure 7(a) we plot the
optical pulse intensity and indicate the heralding detection window.

We measure the double excitation probability for different powers of the optical pulse for nodes B and C.
We scale the intensity of the pulse by changing the voltage sent to the AOM to maintain the same pulse shape
for different powers (as opposed to changing the amplitude of the EOM pulse). We measure the emitted
photons using two different detection paths, namely the detection path of the resonant ZPL photons (one of
the detectors after the beam splitter in figure 1(a)), and an additional detection path for the off-resonant PSB
photons [31]. We extract the optical rotation angles θ and the detection efficiency ηp (ηz) from the photon
detection probability in the PSB (ZPL) detector (figure 7(b)), assuming that double excitation is small. The
optical rotation angle θ serves as a measure of how much of the population of the |0⟩ ground state is
transferred to the excited state |e⟩, where 180◦ marks the point where all population has been transferred. For
each power, or rotation angle θ, we measure the number of coincidence events where both detectors (ZPL
and PSB) detected a photon, Ncoin. The ZPL detection window is indicated in figure 7(a) and (we) set the
detection window of the PSB photons to start and end well before and after the pulse.

Since we start the heralding detection window of the ZPL after the optical pulse has (approximately)
ended, re-excitation is not possible during this window, so we can assume that all measured coincidence
events consist of a PSB photon during the optical pulse and a ZPL photon in the detection window. To
compute the double excitation probability pde from the measured number of coincidence events Ncoin, we
can thus reformulate pde as

pde =
P2

P1+ P2
, (40)

where P1 (P2) is the probability of a single (two) photon emission, given a ZPL photon detected in the
window. However, single or two photon emissions have different probabilities to be detected, and we can
define the corresponding detection probabilities as

P ′
2 = ηPηZP2, (41)

P ′
1 =ηZP1. (42)

Here ηZ and ηP are the detection efficiencies of the ZPL and PSB detection paths respectively. Filling in the
definitions of P1 and P2 in equation (40) gives

pde =
P ′
2

ηPP ′
1+ P ′

2

,

=
Ncoin

ηPNall− (ηP − 1)Ncoin
,

(43)
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Figure 7. Double excitation probability. (a) Temporal shape of the excitation pulse. The exact shape is determined by the different
components we use to generate the pulse. The region between the dashed lines is the detection window in which we accept
heralding photons. The inset displays the temporal shape of the pulse on a linear scale. (b), (c) Photon detection probabilities for
off-resonant phonon-side band (PSB) photons (b) and resonant zero-phonon line (ZPL) photons (c). The dashed curves show
expected behavior. In (b) we indicate the voltage applied to the AOM in the top axis. (d) Extracted double excitation probability
pde using equation (43) and simulated curve resulting from our model (gray line).
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in which we have used Ncoin = nP ′
2 and Nall = n(P ′

1+ P ′
2) for n repetitions.

Figure 7(d) shows the extracted double excitation probability pde for different rotation angles θ for the
two emitters (turquoise and blue circles), together with the simulated double excitation probability for our
exact pulse shape using the model from [31]6. There is a clear qualitative agreement between the data and the
simulations. The quantitative difference between the data and simulations could potentially be explained by
measurement errors in the pulse shape displayed in figure 7(a). We note that the simulations are very
sensitive to the exact shape of the pulse, and any measurement artifact such as reflections in the optical path
could broaden the measured pulse shape. Importantly, we find from both the measured data and simulations
that the double optical excitation probability can be mitigated by choosing a smaller rotation angle θ, albeit
at the cost of a lowered entanglement generation rate (which scales with cos2 θ

2 ). In contrast, setting a
θ > 180◦ results both in a lowered entanglement rate and fidelity, and therefore should be avoided.

9. Non-excited bright state population

Up to now we have considered perfect optical pulses, such that c0,i = 0. In this section, we study the case of
c0,i ̸= 0. To isolate the effect of c0,i ̸= 0, we make the following assumptions. We assume high photon loss
(η ≪ 1), no double excitation (|cee,i|2 = 0), perfectly overlapping polarization of the photons (ϵ⃗A · ϵ⃗B = 1), no
frequency difference between the emitters (ωA = ωB), no noise photons (pd = 0), we consider the two setups
to have equal bright state populations and photon losses (αA = αB ≡ α,ηA = ηB ≡ η) and we write the phase
of the entangled state as the optical phase difference in front of the beam splitter ϕ=−δφ. Furthermore, we
define

c0 = cos
θ

2
(44)

ce = sin
θ

2
, (45)

where θ can be considered as the optical excitation rotation angle between the ground and excitation state, as
explained in the previous section.

We rewrite equations (19) and (20) using these assumptions. The probability pclick,C/D to detect a photon
in either port C or D of the beam splitter is now given by

pclick,C/D =αη sin2
θ

2
±α2η cosδφ sin2

θ

2
cos2

θ

2
,

=αη sin2
θ

2

(
1±αcosδφcos2

θ

2

)
,

(46)

where the+(−) sign correspond to a photon detection in port C (port D). Using the corresponding density
matrices ρC,D, we compute the fidelity with the maximally entangled state with a phase ϕT as

FC/D =⟨Ψ|ρC,D|Ψ⟩

=
1

4pclick,C/D
(a11+ a22+ a12e

−iϕT + a∗12e
iϕT)

=
(1−α)

2(1±αcosδφcos2 θ
2 )
(1+ cos(δφ−ϕT)).

(47)

From equations (46) and (47) it is apparent that the fidelity of the heralded entangled state depends on
which detector detects the single photon, the optical phase difference δφ and the optical excitation rotation
angle θ. Surprisingly, for δφ= 0 and θ → 0 the fidelity of the entangled state heralded by one of the detectors
approaches 1, albeit with a small probability to occur. On the contrary, for δφ= 90◦ no difference in
entangled state fidelities and their probabilities to be heralded is expected. This result can be interpreted as
the interference of the different photonic states associated with the |00⟩AB qubit states. Dependent on δφ,
constructive or destructive interference of the â†A|0⟩γ |00⟩AB state with â†B|0⟩γ |00⟩AB causes different heralding
probabilities and consequently different average heralded state fidelities. The fact that the heralded fidelity
can approach 1 for particular detector and settings is explained by the reduction of the protocol error (the
error resulting from both qubits being in the bright state): a low excitation probability makes the probability

6 The numerical model and the exact pulse shape are included in the supporting software and data package [37].
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Figure 8. Fidelity and relative detection probability in case of non-excited bright state population. In the top panels, we measure
the entangled state fidelities as a function of optical excitation rotation angle θ for states heralded by a photon detection in
detectors 1 (circles) and 2 (triangles), and the weighted average (squares) for different values of α ( α= 0.05,0.2,0.4 for the
purple, blue and green data points respectively). In the bottom panels we plot the relative probability to detect the heralding
photon in each detector. We perform these measurements for two different setpoints δφ of the optical phase stabilization (left and
right panels). The x-axis indicates the rotation angle of node B. The rotation angle of node C is approximately equal, but differs
slightly due to small differences in the delivered optical power to the nodes. The dashed and solid lines are the results of the model
(see main text). To include other error sources than the protocol error, we scale the results of the model to the measured average
fidelities.

that two photons were emitted small and destructive interference ensures that if one photon was emitted it is
directed towards the other detector.

We compare these theoretical results with our experimental data in figure 8. We stabilize the
interferometer to different setpoints to obtain δφ= 0.3± 0.9◦ and δφ= 91.3± 1.2◦ (left and right panels).
For different values of α (α= [0.05,0.2,0.4], purple, blue and green data points respectively) we generate
entanglement while varying the optical rotation angle θ. We record the fidelity (top panels) for heralding
signals detected by the two different detectors (triangles and circles) and the mean fidelity (square data
points), and the relative probability to detect a photon on each detector (bottom panels). In the same figure
we plot the theoretical model scaled to the mean measured fidelity to incorporate additional errors (solid,
dashed and dotted lines). Our measured data is in excellent agreement with the theoretical model, we
observe the effect of the lowered excitation power on the fidelity heralded by the different detectors for the
case δφ≈ 0◦ and the absence of this effect for δφ≈ 90◦. Note that the (mean) fidelity for small rotation
angles θ is additionally improved by the reduction of the double excitation errors due to the lowered optical
power, see figure 7(d). However the data displayed here has a too high measurement uncertainty to resolve
this effect (we expect a maximum improvement of the fidelity F by≈ 0.01 for the measured rotation angles).

10. State optimization

Let us now turn again to the optimization of the entanglement generation. The effects discussed in the
previous two sections, double optical excitation and non-excited bright state population, are both related to
the optical power of the excitation pulse. Together with the bright state population (as discussed in
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Figure 9. Entangled state optimization. (a) For a fixed fidelity with respect to the maximally entangled state, we extract the
maximal success probability pclick for different temporal widths of the excitation pulse, by varying α and fixing the optical
rotation angle θ = 180◦ (circles) or by varying α and θ (triangles).Note that for the smallest pulse width (green line) both
optimization nearly overlap. (b), (c) For the optimization where both α and θ are varied (circles in panel (a)), the extracted
optimal settings for the bright state population α (b) and the optical excitation rotation angle θ (c) are shown.

section 5), we have two degrees of freedom in optimizing the entangled state and we would like to find the
optimal settings to produce a state with fixed fidelity with the highest success probability. In this section, we
assume symmetric settings of the experimental setups (αA = αB,ηA = ηB,θA = θB). Furthermore, we assume
no noise counts and perfectly indistinguishable photons.
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In figure 9(a), we plot the maximal success probability versus fidelity of the (numerically simulated)
heralded state for different temporal widths of the excitation pulse (estimated as a Gaussian shaped pulse), in
units of the excited state lifetime τ . The triangular data points represent the case where α is varied, but the
optical power of the excitation pulse is set such that it transfers all population from the ground to the excited
state (rotation angle θ = 180◦). The circular data points show the case where both α and θ are varied.
Figures 9(b) and (c) show the settings for the bright state population α and optical excitation angle θ that
optimize the success probability for fixed fidelity.

We can interpret the strategy for the optimized settings as follows. When the intrinsic protocol error (α)
is the dominating source of infidelity, it is most efficient to choose a smaller α to increase the entangled state
fidelity. Furthermore, the numerical optimization reproduces our conclusion from section 8; reducing
slightly the optical power of the excitation pulse mitigates the effect of double excitation at only a small cost
in success probability. On the contrary, when the double excitation contribution becomes the dominating
error source, lowering the optical power allows the target fidelity to be met while with fixed θ these fidelities
would be impossible to reach, which can be seen from the sudden change of behavior in figures 9(b) and (c).

11. Conclusions and discussion

In conclusion, we have performed a detailed theoretical and experimental investigation of the single-photon
entanglement protocol. We have developed a general model for states heralded using the single-photon
protocol, tailored the model to our experimental setting, NV centers in bulk diamond, and experimentally
verified the effect of several experimental parameters.

We have studied the effect of the bright state population α on the generated entangled state and the
success probability to herald a state. We have demonstrated the entangled state phase dependence on MW
pulse phases ϑ, the optical phase stabilization setpoint δφ and the detection time of the heralding photon
detection in combination with an emission frequency difference between the qubits. We have shown the
observation of transform-limited spectral linewidths, using a CR check to remove any spectral shift.
Nonetheless, our data on remote entanglement is consistent with a residual fluctuating frequency shift
between the emitters, this will be a subject for future work. We have observed a decrease of the double
excitation probability for lowered optical power of the excitation laser pulses. Additionally, we have shown
that reducing the optical laser power can also lead to different heralded state fidelities dependent on which
detector heralded the state. Lastly, we have shown that the optical laser power, together with the initial bright
state population, can be used to optimize the state fidelity and success probability.

While the experiments carried out in this work involved the nitrogen-vacancy center as a qubit platform,
the conclusions presented here are readily applicable to other qubit platforms, such as other solid state
defects and quantum dots. The insights gained in this work will be crucial in improving the entangled state
fidelities using the single-photon entanglement protocol.

Extensions of the single-photon scheme as well as the use of other heralding schemes, for example
entanglement purification [41–44], two-photon entanglement schemes [10] or heralded photon
amplification [45], could potentially improve the fidelity or the heralding rate of the entangled state. The
exact effect on the resulting fidelity and/or heralding rate critically depends on the additional resources and
their errors and may be subject of future work.
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Appendix A. Average heralded density matrix

In this work we derive a general theoretical model for two-qubit states heralded by the single-photon
entanglement protocol. The different steps and the corresponding unitaries are given in the main text. In this
appendix we write the expressions for the resulting density matrices for the different detection patterns.

The average heralded density matrix for a photon detection in port C of the beam splitter is given by

ρC =
1

pclick,C
(ρ1+ ρ2+ ρincoherent+ ρnoise) (A.1)

with the success probability pclick,C

pclick,C =Tr(ρ1)+Tr(ρ2)+Tr(ρincoherent)+Tr(ρnoise). (A.2)

A.1. Single photon
In the case of a single detected photon and no loss, the density matrix is given by

ρ1 = |Ψ4,1⟩⟨Ψ4,1|

=
1

2


a00 a01 a02 0
a∗01 a11 a12 0
a∗02 a∗12 a22 0
0 0 0 0

 (A.3)

with elements

a00 =αAαB(c
2
0,AηB|ζB|2+ c20,BηA|ζA|2+ c0,Ac0,B

√
ηA
√
ηB(ζBζ

∗
A + ζAζ

∗
B )) (A.4)

a01 =αA
√
αB

√
1−αBe

iϑB(c0,A
√
ηBζ

∗
AζB + c0,B

√
ηA|ζA|2) (A.5)

a02 =
√
αA

√
1−αAαBe

iϑA(c0,A
√
ηB|ζB|2+ c0,B

√
ηAζAζ

∗
B ) (A.6)

a11 =αA(1−αB)ηA|ζA|2 (A.7)

a12 =
√
αA

√
1−αA

√
αB

√
1−αB

√
ηA
√
ηBe

−i(ϑB−ϑA)ζAζ
∗
B (A.8)

a22 =(1−αA)αBηB|ζB|2. (A.9)

Here we use a short-hand notation for the photonic modes as defined in equation (5), whereζ i represents the
detected mode at time t′.

A.2. Two photons
When two photons arrive at the beam splitter without any lost photon, we accept an heralding event when
both photons are being detected in port C of the beam splitter because we assume non-number resolving
detectors. The first photon is detected at time t′ and the second photon at time t′′. For these states we obtain
the following density matrix

ρ2 = |Ψ4,2⟩⟨Ψ4,2|

=
1

4


a00 a01 a02 0
a∗01 a11 a12 0
a∗02 a∗12 a22 0
0 0 0 0

 (A.10)
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with elements

a00 = αAαB(c
2
0,Bη

2
A|ζAA|2+ c20,Aη

2
B|ζBB|2+ c0,Ac0,BηAηB(ζAAζ

∗
BB + ζBBζ

∗
AA)

+ ηAηB(|ζA(t ′)ζB(t ′ ′)+ ζA(t
′ ′)ζB(t

′)|2)
+ c0,A

√
ηAηB

√
ηB(ζBBζ

∗
A(t

′)ζ∗B (t
′ ′)+ ζBBζ

∗
A(t

′ ′)ζ∗B (t
′)+ ζA(t

′)ζB(t
′ ′)ζ∗BB + ζA(t

′ ′)ζB(t
′)ζ∗BB)

+ c0,BηA
√
ηA
√
ηB(ζAAζ

∗
A(t

′)ζ∗B (t
′ ′)+ ζAAζ

∗
A(t

′ ′)ζ∗B (t
′)+ ζA(t

′)ζB(t
′ ′)ζ∗AA + ζA(t

′ ′)ζB(t
′)ζ∗AA))

(A.11)

a01 =αA
√
αB

√
1−αBe

iϑB

(c0,AηAηBζ
∗
AAζBB + ηA

√
ηA
√
ηBζ

∗
AA(ζA(t

′)ζB(t
′ ′)+ ζA(t

′ ′)ζB(t
′))+ η2A|ζAA|2)

(A.12)

a02 =
√
αA

√
1−αAαBe

iϑA

(c0,BηAηBζ
∗
BBζAA +

√
ηAηB

√
ηBζ

∗
BB(ζA(t

′)ζB(t
′ ′)+ ζA(t

′ ′)ζB(t
′))+ η2B|ζBB|2)

(A.13)

a11 =αA(1−αB)η
2
A|ζAA|2 (A.14)

a12 =
√
αA

√
1−αA

√
αB

√
1−αBηAηBe

−i(ϑB−ϑA)ζAAζ
∗
BB (A.15)

a22 =(1−αA)αBη
2
B|ζBB|2. (A.16)

Again, here we have used a short hand notation for the photonic modes. The joint modes ζ ii denote the
detected modes at time t′ and t′′.

A.3. Lost photons
We consider all the detection patterns for which at least one photon is being detected in port C of the beam
splitter and at least one photon is lost. We sum over all the individual detection patterns and arrive at

ρincoherent =
∑
i=1,2

|Ψ4,i,r⟩⟨Ψ4,i,r|

=
1

2


a00 0 0 0
0 a11 0 0
0 0 a22 0
0 0 0 0

 (A.17)

with elements

a00 = αAαB(ηA|ζA(t ′)|2((1− ηB)|ζB(tr)|2)+ c2ee,B − η2B|ζBB(t ′ ′, t ′ ′ ′)|2)
+ ηB|ζB(t ′)|2((1− ηA)|ζA(tr)|2)+ c2ee,A − η2A|ζAA(t ′ ′, t ′ ′ ′)|2)
+ ηA(1− ηA)|ζAA(t ′, tr)|2(c20,B + c2e,B + c2ee,B)

+ ηA(1− ηA)|ζAA(tr, t ′)|2(c20,B + c2e,B + c2ee,B)

+ ηB(1− ηB)|ζBB(t ′, tr)|2(c20,A + c2e,A + c2ee,A)

+ ηB(1− ηB)|ζBB(tr, t ′)|2(c20,A + c2e,A + c2ee,A)

+ η2A|ζAA(t ′, t ′ ′)|2(|ζB(tr)|2+ c2ee,B − η2B|ζBB(t ′ ′ ′, t ′ ′ ′ ′)|2)
+ η2B|ζBB(t ′, t ′ ′)|2(|ζA(tr)|2+ c2ee,A − η2A|ζAA(t ′ ′ ′, t ′ ′ ′ ′)|2))

(A.18)

a11 =αA(1−αB)ηA(1− ηA)(|ζAA(t ′, tr)|2+ |ζAA(tr, t ′)|2) (A.19)

a22 =(1−αA)αBηB(1− ηB)(|ζBB(t ′, tr)|2+ |ζBB(tr, t ′)|2). (A.20)
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Here we have used the relations ηi|ζi(t ′)|2+(1− ηi)|ζi(tr)|2 = |ce,i|2 and η2i |ζii(t ′, t ′ ′)|2+(1− ηi)ηi
|ζii(t ′, tr)|2+(1− ηi)ηi|ζii(tr, t ′)|2+(1− ηi)

2|ζii(tr, tr)|2 = |cee,i|2 to simplify the matrix elements.

A.4. Noise counts
In case of a false heralding event by a noise count, the average density matrix consists of two parts ρ0 and ρlost

ρnoise = pd(ρ0+ ρlost) (A.21)

ρ0 corresponds to the situation where no photon is emitted and ρlost where all emitted photons are lost. ρ0 is
given by

ρ0 = |Ψ4,0⟩A⟨Ψ4,0|A ⊗ |Ψ4,0⟩B⟨Ψ4,0|B

=

(
a00 a01
a∗01 a11

)
⊗
(
b00 b01
b∗01 b11

)
(A.22)

with elements

a00 = αAc
2
0,A (A.23)

a01 =
√
αA

√
1−αAc0,Ae

iϑA (A.24)

a11 = (1−αA) (A.25)

and similar elements for bij. ρr represents the density matrix in case all photons are lost

ρlost =
∑

|Ψ4,0,r⟩⟨Ψ4,0,r|

=


a00 0 0 0
0 a11 0 0
0 0 a22 0
0 0 0 0

 ,
(A.26)

with elements

a00 = αAαB(c
2
0,A((1− ηB)|ζB(tr)|2+(1− ηB)

2|ζBB(tr, tr)|2)
+ c20,B((1− ηA)|ζA(tr)|2+(1− ηA)

2|ζAA(tr, tr)|2)
+ (1− ηA)(1− ηB)|ζA(tr)|2|ζB(tr)|2)

(A.27)

a11 = αA(1−αB)((1− ηA)|ζA(tr)|2+(1− ηA)
2|ζAA(tr, tr)|2) (A.28)

a22 = (1−αA)αB((1− ηB)|ζB(tr)|2+(1− ηB)
2|ζBB(tr, tr)|2). (A.29)

Appendix B. Experimental parameters for simulations

In figures 4 and 6 we provide simulations for the average fidelity with respect to the maximally entangled
states using the model developed in section 4. The parameters we use for these simulations are listed in
table B1, both for the AB and BC links.
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Table B1. Table with experimental parameters. The start of the detection window is with respect to the maximum intensity of the optical
pulse and the detection probability for each setup is integrated over the detection window. Furthermore, these experiments used the
same optical pulse as used in [30, 31] and is different from the optical pulse shape indicated in figure 7(a). [30, 31] use a different
arbitrary waveform generator (AWG), the Tektronix 5014, which causes the double excitation probabilities of those specific optical
excitation pulses to be larger.

AB BC

Excited state lifetime 12.4 ns 12.4 ns
Detection window start 4 ns 5 ns
Detection window duration 15 ns 15 ns
Bright state population αA 0.07 —
Bright state population αB 0.05 0.05
Bright state population αC — 0.1
Detection probability ηA

´
E2dt 3.8× 10−4 —

Detection probability ηB
´
E2dt 5.2× 10−4 4.6× 10−4

Detection probability ηC
´
E2dt — 2.8× 10−4

Double excitation probability 0.06 0.08
Noise count rate 10 Hz 30Hz
Phase stability σδφ 30◦ 21◦

FWHM frequency difference∆fFWHM 13MHz 13MHz
Polarization mismatch 8◦ 8◦
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