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ABSTRACT

The problem of finding the closed-loop optimal controller is formulated in an H2-optimal control framework. This
provides a natural way to account for the fact that in many AO systems the wavefront phase cannot be measured
directly. Given a multi-variable disturbance model of both wavefront slopes and wavefront phases,3 this provides
a general procedure to compute the closed-loop controller. If the wavefront sensor and deformable mirror are
static and the only dynamics in the system is a unit-sample delay between measurement and correction, an
analytical expression for the optimal controller can be derived. This results in a control approach, in which both
identification and computation of the optimal controller are exclusively based on standard matrix operations.
No Riccati equation needs to be solved to compute the optimal controller. The proposed H2-control approach
is numerically validated on open-loop wavefront sensor data and its performance is compared with the common
approach. Also the sensitivity to measurement noise is considered.
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1. INTRODUCTION

The control strategy used in the current generation of AO system is generally not able to take full advantage
of the spatio-temporal correlation in the wavefront disturbance. In the common AO control approach1, 2 the
temporal correlation in the wavefront distortion is often neglected. Furthermore, the common control law is
based on the open-loop hypothesis which assumes that the spatial wavefront statistics do not change under
closed-loop operation. It is to be expected that a lot can be gained by using a rigorous control strategy that is
able to account for both the dynamics of the wavefront, the AO system components and the modified statistics
due to closed loop behavior. The performance of an AO control system is usually limited by the presence of
measurement noise and the time delay between measurement and correction. By including the temporal aspect
it is possible to anticipate on future distortions and reduce the effect of the time delay. Also the sensitivity to
measurement noise may be reduced by including the spatio-temporal correlation. Photons from different time
instants and different wavefront sensor (WFS) channels may all contribute to improve the wavefront estimate at
a certain position in the aperture plane. This may possibly contribute to a reduction of the residual phase error
or an increase of the required magnitude of the guide star.

In this paper we present a control strategy that is able to take full advantage of the spatio-temporal correlation
of the wavefront. The AO control problem is analyzed from a control perspective where each WFS sensor
channel is conceived as a separate input to the controller. The AO control problem is interpreted as a multi-
variable discrete-time disturbance rejection problem. With the objective of minimizing the mean square residual
wavefront error, the problem will be formulated in a H2-optimal control framework. In contrast to the common
approach wavefront reconstruction is not seen as an isolated problem, but it forms as an integral part of the
problem. The H2-optimal control framework provides an attractive way to deal with the discrepancy between
the the closed-loop WFS signal that is measured and the residual wavefront that is minimized. In fact, part of
the wavefront reconstruction has already been performed in the identification of the disturbance model, which
forms the starting point in the computation of the closed-loop controller. The procedure used to identify a
spatio-temporal disturbance model from open-loop WFS measurements is described in the companion paper.3
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The remainder of this paper is organized as follows. Section 2 provides an accurate description of the
considered AO control problem and introduces a projection to deal with the fact that part of the wavefront
cannot be reconstructed from the WFS measurements. Section 3 first describes a general strategy to determine
the optimal controller that minimizes the mean square residual phase error. The strategy consists of formulating
the AO problem as a H2-optimal control problem for which there exists a standard solution. Subsequently, we
elaborate the specific case of a quasi-static AO system where the WFS and DM are assumed to be static and
only dynamics in the system is a unit-sample delay between measurement and correction. This results in an
analytical expression for the closed-loop optimal controller. Section presents a numerical validation study, in
which the performance of the proposed control approach is compared with the common AO control law. Also
the effect of measuring noise will be analyzed in detail. The paper concludes with a short discussion in Section 5.

2. PROBLEM FORMULATION

To explain the central control problem in this paper, consider the block-scheme in Figure 1. It provides a
schematic representation of the functional relation between the main components of a classical AO system.
Light with an atmospherically distorted phase profile φ(·) enters the system and is reflected from a deformable
mirror (DM), which is able to introduce a phase correction φdm. Part of the compensated light, with residual
phase error ε = φ − φdm, is directed to a wavefront sensor (WFS). The WFS signal s(·) forms the input to the
controller C̃(z), which is responsible for determining the actuator commands u(·). The effect of measurement
noise is represented by an additive noise term η at the output of the WFS. A common objective of such an AO
system is to maximize the Strehl ratio, which is defined as the on-axis intensity of a point source relative to that
of the diffraction limit. Through the Marechal4 approximation, this is equivalent to minimizing the mean square
residual phase error. The AO control problem can hence be defined as the problem of finding the closed-loop
controller C̃(z) that minimizes the mean square residual phase error for the prevalent turbulence conditions.

φ

sφdm

ε

η

u
H̃(z) C̃(z) G̃(z)

Deformable Mirror WaveFront slope SensorControl System

Figure 1. Schematic representation of the adaptive optics control problem

The above problem formulation is still too general and needs to be refined in order to arrive at a well-posed
control problem. In this paper we will assume that the phase distortion profile over the aperture can represented
by a finite-dimensional vector signal. This implies that at each time instant k, the uncorrected wavefront
distortion φ(·), the phase profile introduced by the DM φdm

k (·) and the residual wavefront error ε(·) can be
specified by the finite-dimensional vectors φk ∈ R

mp , φdm
k ∈ R

mp and εk ∈ R
mp . Whether the vector signal φk

provides a zonal or model description of the wavefront is irrelevant as long as the squared 2-norm ‖φ‖2
2 = φT

k φk

provides an accurate estimate of the mean square phase over the aperture and the basis or sampling grid for
describing the residual phase distortion and the phase introduced by the mirror is the same. Furthermore it is
assumed that WFS can be described as the cascade of a static matrix multiplication that describes the optical
transformation from phase εk to wavefront slope measurements sk, a linear time invariant (LTI) system that
accounts for any dynamics of the WFS camera and acquisition hardware and an additive white noise ηk term
that models the measurement noise, i.e.

sk = G̃(z)εk + ηk, (1)

where G̃(z) = GḠ(z) and z represents the z-transform parameter. An important complication in the AO control
problem is that the WFS is not able to directly measure the residual phase εk ∈ R

mp . Instead of measuring
the phase, it usually provides a measure of the local slope of the wavefront from which it is not possible to
reconstruct the entire wavefront. As the controller is not able to actively influence the unobservable part of the
wavefront, the unobservable modes have to be excluded in order to arrive at a well-posed control problem. From
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equation (1) it is clear that only the part of the wavefront that is in the column space of G can be observed.
With U1 and V T

1 the left and right non-singular vectors of G, it is therefore useful to introduce the alternative
signals yk � UT

1 sk ∈ R
mr and εk � V T

1 Ḡ(z)εk ∈ R
mr (see also3). By pre-multiplying equation (1), this leads to

the reduced WFS model
yk = Σ1εk + UT

1 ηk, (2)

where Σ1 is composed of the non-zero values of G and yk takes over the task of the WFS measurement signal.
When the wavefront dynamics can be neglected, i.e. G̃(z) = G, the signal εk can be interpreted as a reduced
representation of observable part of the wavefront. In all other cases, εk will be colored by the WFS dynamics.
Even when the WFS dynamics are explicitly known it is usually not sensible to compensate for it as it will increase
the sensitivity to measurement noise. Also the DM is assumed to be described by an LTI system. The transfer
function H(z) = V T

1 H̃(z) should provide a mapping from actuator inputs uk to the reduced DM phase profile,
which in accordance with the observable part of the residual wavefront εk is defined as ψdm

k � V T
1 Ḡ(z)φdm

k .
Likewise, the reduced counter parts of the uncorrected wavefront φk and the corresponding open-loop WFS
signal are defined as ψk � V T

1 Ḡ(z)φk and rk � Σ1ψk +UT
1 ηk. The reduced representation of the observable part

of the residual wavefront is defined as εk � ψk − ψdm
k .

Optimizing the AO system performance to the prevalent turbulence conditions requires an accurate descrip-
tion of the statistical properties of the uncorrected wavefront and the corresponding WFS signal. In this paper
we assume that the observable part of the uncorrected wavefront ψk and the measured reduced WFS signal
rk can be modeled as the output of a stable LTI filter with a zero-mean white noise input vk ∈ R

mr . More
specifically, we will assume that the atmospheric disturbance is described by the following state space model:

S :

⎧
⎨

⎩

xk+1 = Axk + Kvk

rk = Σ1C xk + vk

ψk = C xk + ek

, E
⎛

⎝

⎡

⎣
vk

ek

I

⎤

⎦
[
vT

l eT
l

]

⎞

⎠ =

⎡

⎣
Rv RT

ev

Rev Re

0 0

⎤

⎦ δkl. (3)

where ek is another zero-mean white noise signal which is likely to be correlated with vk. The description
of the open-loop WFS rk provided by the atmospheric disturbance model S includes the contribution due to
measurement noise UT

1 η. The motivation for this particular model structure and the problem of how to identify
such disturbance model form open loop WFS data are considered in a companion paper.3 For a given disturbance
model S(z), the control problem can now be formalized as the problem of finding the controller C(z) = C̃(z)UT

1

that minimizes the following cost-function:

J = E (εT
k εk

)
+ ρ E (uT

k uk

)
, (4)

where ρ ∈ R, ρ > 0 is a regularization parameter, which makes a trade off between the expected mean square
residual phase error E(εT

k εk) and the expected amount of control effort E(uT
k uk). By increasing ρ it is possible to

reduce the amount of energy dissipated by the DM and make to controller more robust to model uncertainties.
In the limit that ρ goes to zero, minimizing cost-function (4) is equivalent to the classical criterion of minimizing
the expected means square residual phase.

3. OPTIMAL CONTROL FOR AO

In this section we present a general recipe for determining the optimal controller that minimizes cost-function (4).
It will be shown that the AO control problem can be conveniently expressed as an H2-optimal control problem.
This implies that standard H2-optimal control theory can be used to compute the optimal controller. After
summarizing the general solution to the H2-optimal control problem, we will briefly consider the specific case
of a quasi-static AO system were the WFS and DM are assumed to be static and the only dynamics in the
system is a unit-sample delay between measurement and correction. It will be shown that under the simplifying
assumption of quasi-static operation it is possible to derive an analytical expression for the optimal closed-loop
controller. Apart from being attractive from a computational point of view, the analytical solution is useful as
it provides some additional insight in the relation with the common AO control approach.
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3.1. The H2-optimal control framework

In this subsection we will briefly consider the standard H2-optimal control problem and its solution. The starting
point of the H2-optimal control framework is the definition of the so-called generalized plant. Figure 2 provides a
schematic representation of a such generalized plant. The generalized plant framework makes a clear distinction

wk zk

uk

P (z)

C(z)

yk

Pzw Pzu

Pyw Pyu

Figure 2. Block-diagram of closed-loop generalized plant representation

between exogenous zero-mean white noise inputs wk and controller inputs uk on the one hand and measurement
outputs yk and performance outputs zk on the other hand. As common in most H2-optimal control literature,
the zero-mean white noise input is assumed to have unit covariance, i.e. E(wT

k wk) = I. Like the atmospheric
disturbance model S, the generalized plant P will be represented in state-space form. For notational convenience
the state update equation and the output equations will be combined to arrive at the following compact matrix
description: ⎡

⎣
ξk+1

zk

yk

⎤

⎦ =

⎡

⎣
A Bv Bu

Cz Dzw Dzu

Cy Dyw 0

⎤

⎦

⎡

⎣
ξk

wk

uk

⎤

⎦ , (5)

where the state of the generalized plant is denoted by ξk. To facilitate the discussion, it is useful to partition
the generalized plant P in the same way as the input and output signals. As already indicated in Figure 2,
the input-output relation is described in terms of four open-loop transfer functions, which will be denoted as
Pzw(z), Pzu(z), Pyw(z) and Pyu(z). The subscripts in this notation refer to the corresponding partitioning of the
input and output signals.

Given a generalized plant P , H2-optimal controller synthesis deals with the problem of finding the causal
controller C(z) that minimizes the influence of the zero-mean white noise input wk on the performance output zk.
The influence of the white noise input on zk is quantified by the H2-norm of the closed-loop transfer function from
wk to zk. Let the closed-loop transfer function from wk to zk be denoted as P cl

zw(z) � Pzw+PzuC(I−PyuC)−1Pyw,
then the H2-norm of P cl

zw(z) is defined as:

‖P cl
zw(z)‖2

H2
�
√

1
2π

Tr
∫ π

−π

P cl
zw(ejω)P cl

zw(ejω)∗dω,

where ·∗ denotes the complex conjugate transpose and Tr is the trace operator. Using the above definitions, the
H2-optimal control problem can be formalized as:

C(z) = arg min
C(z)

‖P cl
zw(z)‖2

H2
. (6)

The following Lemma provides a solution to the H2-optimal control problem. The H2-optimal controller is given
in state-space form.

Lemma 3.1 (State-space solution to discrete-time H2-optimization problem
5, 6

). Consider the
generalized plant P with state-space representation (5), and assume that

1. the pair (A,Bu) is stabilizable and the pair (A, Cy) is detectable;
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2. DT
zuDzu > 0 and DywDT

yw > 0;

3. the matrices [A− λI Bu

Cz Dzu

]

,

[A− λI Bv

Cy Dyw

]

have full rank for all λ ∈ C such that |λ| = 1.

Under these conditions, there exist unique X = XT ≥ 0 and Y = Y T ≥ 0 such that the following pair of Riccati
equations are satisfied

X = AXAT − (AXCT
y + BvDT

yw)(CyXCT
y + DywDT

yw)−1(·)T + BvBT
v (7)

Y = AT Y A− (AT Y Bu+ CT
z Dzu)(BT

u Y Bu + DT
zuDzu)−1(·)T + CT

zCz. (8)

With X =XT≥ 0 and Y =Y T≥ 0 the solution to equations (7)-(8), define the matrices

F � (BT
u Y Bu + DT

zuDzu)−1(BT
u Y A + DT

ywCz) (9)

F0 � (BT
u Y Bu + DT

zuDzu)−1(BT
u Y Bv + DT

zuDzw) (10)

L � (AXCT
y + BvDT

yw)(CyXCT
y + DywDT

yw)−1 (11)

L0 � (FXCT
y + F0DT

yw)(CyXCT
y + DywDT

yw)−1. (12)

Then, the optimal controller C(z) in state space form, which minimizes the H2-optimal control problem (6), is
given by [

ξ̂(k+1|k)

uk

]

=
[ A + BuL0Cy − BuF − LCy BuL0 − L

F − L0Cy −L0

] [
ξ̂(k|k−1)

yk

]

(13)

where ξ̂(k|k−1) represents the estimate of ξk given the measurements yi, i ≤ k − 1.

3.2. The AO problem in the H2-optimal controller framework

An important aspect in the AO control problem is that there is a difference between the closed-loop WFS signal
yk that is measured and the observable part of the residual wavefront εk that we try to minimize. The H2-
optimal control framework provides an attractive way to deal with this discrepancy between measurement and
control objective. The AO system considered in this paper can be easily extended to fit in the generalized plant
framework. By moving the system boundaries and considering the atmospheric disturbance model as a part of
the AO system, it is possible to replace the exogenous input ψk by the zero-mean white noise signal vk. As
the zero-mean white noise signal vk has a covariance matrix Rv different from identity, the system obtained by
joining the atmospheric disturbance model and the standard AO system still doesn’t fit in the generalized plant
framework. For Rv > 0, this problem can easily be solved by defining a new system input wk which is related to
vk as vk = R

1/2
v wk. The generalized plant provides a complete description of the interaction between AO system

components and the atmospheric disturbance model.

In order to express the original AO control problem in the H2 framework, it is still necessary to choose an
appropriate performance output zk. The performance output zk should be chosen in such way that it is consistent
with the AO control objective. This can be achieved by choosing the performance output as zk =[ εT

k

√
ρuT

k ]T .
For this particular choice, the squared 2-norm of the performance output ‖zk‖2

2 = zT
k zk becomes equal to the

outcome of the cost-function (4) and the AO control problem reduces to the problem of finding the controller C(z)
that minimizes the mean square performance output zk. The block-diagram in Figure 2 provides a schematic
representation of the obtained generalized plant, with white noise input vk, control input uk, measurement output
yk and performance outputs εk and

√
ρuk.

To obtain a better insight in the structure of the generalized plant P depicted in Figure 2, it may be useful
to consider the relation between the input and output signals. The relation between the inputs and outputs may
be derived from the models and definitions introduced in Section 2. By substituting the relations εk = ψk −ψdm

k
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ψk

ψdm
k

C(z)

uk

yk

εk

√
ρuk

wk

Σ1

H(z)
√

ρI

rk

rdm
k

S(z)

Figure 3. Block-diagram of a closed-loop AO system in generalized plant representation

and ψdm
k = H(z)uk in the reduced WFS senor model (1) and by applying the definition of rk, we obtain the

following expressions for the observable part of the residual phase εk and the corresponding WFS signal yk:

yk = rk − Σ1H(z)uk

εk = ψk − H(z)uk
. (14)

With the open-loop WFS signal rk and the observable part of the uncorrected wavefront distortion profile ψk

being described by the atmospheric disturbance model (3), these equations fully explain the structure of the
block-scheme in Figure 2. Furthermore, given the state-space realizations of the DM model H(z), the WFS
model G(z) and the atmospheric disturbance model S(z), the relations in equation (14) enable us to derive a
state-space realization (5) of the generalized plant.

By introducing the generalized plant we have transformed to AO control problem to the problem of finding
the controller that minimizes the mean square performance output zk of a system of which the only exogenous
input wk is a zero-mean white noise signal. Since wk is a white noise process with covariance matrix I, the
mean square value of the performance output zk can also be written in terms of the H2-norm of the closed-loop
transfer function P cl

zw(z). By using Parseval’s theorem the mean square error of the signal zk can be expressed
as E (zT

k zk

)
= ‖P cl

zw(z)‖2
H2

. From this it is clear, that the AO control problem is equivalent to the standard H2-
optimal feedback problem (6). In other words, a general strategy for computing the optimal AO controller for a
given DM, WFS and atmospheric disturbance model, is to determine the generalized plant P via equation (1)
and applying Lemma 3.1.

It may seem that the alternative formulation of the AO control problem does not account for the presence of
measurement noise on the WFS slope measurement data, however the opposite is true. As already pointed out
in Section 2, the contribution due to measurement noise is included in the description of open-loop WFS signal
rk by the atmospheric disturbance model. Just as in the problem of identifying the atmospheric disturbance
model from open-loop WFS data, the controller is not able to make a distinction between the contribution due
to the observable part of the residual wavefront distortion and the measurement noise. From a theoretical point
of view it does make no difference whether the measurement noise is included in the atmospheric disturbance
model or is modeled separately.

3.3. The H2-optimal AO controller in the quasi-static case

In the previous subsections we considered a general strategy to approach the AO control problem. In this
subsection we will focus on what we call a quasi-static AO system. With a quasi-static AO system we refer
to an AO system in which the DM and WFS can be considered to be static with a unit-sample delay in the
loop of Figure 3. Under these conditions and the specific model structure for the atmospheric disturbance
model (3), it is possible to derive an analytical expression for the optimal closed-loop controller. Having an
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analytical solution is attractive from a computational point of view as it avoids the need to solve the Riccati
equations in Lemma 3.1. It also provides more insight in the relation with the common AO control approach,
than the numerical solution. As the classical approach neglects all dynamics, i.e. the dynamics of the DM, WFS
and atmosphere, the quasi-static case can be considered as a first order extension to the common AO control
approach in which the atmosphere dynamics are included. In contrast to the common AO control approach, the
quasi-static controller exploits the spatio-temporal correlation in the wavefront.

The assumption that the DM and WFS are static, implies that they can be described by a static matrix
multiplication. Neglecting the dynamic behavior of the DM is quite realistic because in most astronomical AO
systems the characteristic time of the DM is short compared to the sampling period.7 On the other hand, the
WFS usually acts as a broadband low-pass filter. Since the atmospheric disturbance has little contribution in
the high frequency region, the dynamics introduced by the WFS can be neglected. Even though we neglect the
dynamic behavior of the DM and WFS, it is important to consider the unavoidable one-sample delay between
the moment of measuring a wavefront distortion and applying the correction. Incorporating this delay is also
necessary to avoid an algebraic loop. Without loss of generality it is possible that the one sample delay introduced
by the AO correction link is included in the DM model. Incorporating the delay in the DM model reduces the
DM and WFS transfer functions H(z) and G̃(z) to:

H(z) = Hz−1 and G̃(z) = G (i.e. Ḡ(z) = I), (15)

Starting from the above models for the WFS and DM it is possible to derive an explicit state-space representation
of the generalized plant P . By substituting the quasi-static DM mirror model in equation (14) and using the
state-space representation of the atmospheric disturbance model S to eliminate the signals rk and ψ, we obtain
the following expression for the generalized plant:

⎡

⎢
⎢
⎣

ξk+1

εk√
ρuk

yk

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 I

0 A KR
1/2
v 0

−H C R
1/2
e 0

0 0 0
√

ρI

−Σ1H Σ1C R
1/2
v 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
ξk

vk

uk

⎤

⎦ , (16)

where the state vector ξk is obtained by stacking a delay version of the input uk−1 and the state xk of the
atmospheric disturbance model, i.e. ξk =

[
uT

k−1 xT
k

]T . To derive an analytical solution for the closed-loop
optimal AO controller in the quasi-static case, Lemma 3.1 will be applied to the above generalized plant (16).
Before applying the lemma, we will first proof that the necessary conditions are fulfilled. Stability of the
atmospheric disturbance model (3) implies that the first condition of Lemma 3.1, on the stabilizability and
detectability of the pairs (A,Bu) and (A, Cy), is satisfied. Furthermore, it can be easily checked that if ρ > 0
and R1/2 > 0, also the second condition is fulfilled. Since the matrix R1/2 is the square root of a covariance
matrix, failure of the condition R1/2 > 0 can only be due to a linear dependence between the channels of the
zero-mean white noise disturbance signal vk. When the atmospheric turbulence model is obtained by black-box
identification from open-loop WFS data,3 contaminated with measurement noise, this is very unlikely. In the
unlikely event that nevertheless the condition R1/2 > 0 is not satisfied, it is always possible to find a projection
that removes the linear dependence between the signals vk which results in a disturbance model of reduced order.
The condition of ρ being larger than zero is required to ensure that the term DT

zuDzu is positive definite. Even
though the regularization parameter ρ has to be chosen larger than zero in order to satisfy the second condition
of Lemma 3.1, this condition can be potentially relaxed for the quasi-static case. When the matrix H has full
column rank, the contribution of the control effort in cost-function (4) can be neglected by considering the limit
in which ρ is going to zero. The third condition in Lemma 3.1 is equivalent to the requirement that the transfer
functions Pzu(z) and Pyv(z) do not have zeros on the unit circle {z ∈ C| |z| = 1}. From Figure 3 and the
state-space realization of the atmospheric disturbance model S, it is clear that the transfer functions Pzu(z) and
Pyv(z) can be expressed as:

Pzu(z) =
[−z−1H√

ρI

]

, Pyv(z) = R1/2
v + Σ1C(zI − A)−1KR1/2

v . (17)
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From these equations it is clear that for ρ �= 0 and R1/2 > 0 both transfer functions have no zeros on the unit
circle. This implies that condition 3 of Lemma 3.1 is automatically satisfied whenever the second condition
holds. With the generalized plant P satisfying all three conditions, the closed-loop optimal controller for the
quasi-static case can be determined by applying Lemma 3.1. This results in the following main theorem:

Theorem 3.2 (Analytical solution to quasi-static AO control design problem). Consider the
quasi-static AO system with generalized plant (16) and assume that R

1/2
v > 0. When the matrix H has full column

rank or ρ > 0, then the H2-optimal causal closed-loop controller C(z) that is minimizing cost-function (6) has a
state-space representation

[
x̂(k+1|k)

uk

]

=

[
Ã + K(Σ1H)H†

ρC K

H†
ρC
(
Ã + K(Σ1H)H†

ρC
)

H†
ρCK

] [
x̂(k|k−1)

yk

]

(18)

where the matrices Ã, C̃ and H†
ρ are defined as Ã � A − KΣ1C, C̃ � Σ1C and H†

ρ � (HTH +ρI)−1HT ,
respectively. Furthermore, x̂(k|k−1) provides an optimal estimate of the state xk of the atmospheric disturbance
model (3) on the basis of the past closed-loop WFS measurements yi, i < k − 1.

Proof. The proof of the theorem is included in Appendix A

3.4. Relation with common AO control approach

The common AO control approach consists of a cascade of a static matrix multiplication and a series of parallel
single-input single-output (SISO) feedback loops, which act as a temporal controller. Given a new WFS mea-
surement, the static part is concerned with the problem of finding the deformable mirror (DM) actuator input
that would provide the best fit to the wavefront, while parallel feedback loops are responsible for stability and
closed-loop performance. The problem of determining the required static matrix multiplication is usually solved
by considering maximum likelihood or maximum a posteriori techniques, under the simplifying assumption of
open-loop operation. It is important to note that the WFS measures the residual and not the open-loop wave-
front. The signal obtained after the static Reconstruction provides only an estimate of the correction that has to
be applied to the actuator commands. To deal with this shortcoming the parallel feedback loops have to posses
integrating action. In this paper we compare the performance of the H2-optimal controller with the following
common AO control law:

uk = (H̃T H̃)−1H̃T

︸ ︷︷ ︸
F

(G̃T G̃ + σ2
nC−1

φ ))−1G̃T

︸ ︷︷ ︸
E

β

1 − αz−1
sk, (19)

where σ2
n is the variance of the measurement noise, Cφ is the spatial covariance matrix of the uncorrected

wavefront and α and β are control parameters, which are usually determined on the basis of heuristic tuning
rules. The matrices H̃ and G̃ are the static counterparts of the DM and WFS model H̃(z) and G̃(z) in the
unreduced control problem of Figure 1. According to the separation principle the static matrix multiplication
falls apart in a fitting operator F and estimation operator E. The operator E estimates the wavefront from the
WFS measurements, while F provides a mapping of the estimated phase to the actuator inputs.

The H2-optimal controller in Theorem 3.2 has the special property that its state x̂(k|k−1) provides an estimate
of the state of the atmospheric disturbance model (3). This can be used to arrive at a nice physical interpretation.
To this end, note that state-update and output equation differ only in the pre-multiplicative factor H†

ρC. The
output signal generated by optimal controller can therefore be expressed as uk = H†

ρCx̂(k+1|k). Since x̂(k+1|k)

provides an estimate of the state of the atmospheric disturbance model, it follows from equation (3) that Cx̂(k+1|k)

can be interpreted as an estimate of the observable part of the open-loop wavefront distortion ψk+1. By optimality
of the state estimate x̂(k+1|k), ψ̂(k+1|k) � Cx̂(k+1|k) is the optimal estimate of ψk+1 on the basis of the past closed-
loop WFS measurements yi, i ≤ k. On the other hand we recall that the matrix H†

ρ can be seen as a regularized
version of the pseudo-inverse of H and has the same function as the fitting operator F in the common control
law (19). From this it is clear that the H2-optimal controller consists, just as the common control approach,
of a succession of two operations, i.e. a one-step-ahead predictor which is concerned with the estimation of the
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observable part of the uncorrected wavefront ψk and a linear operator H†
ρ which has the same function as the

fitting operator F in equation (19). An important advantage with respect to the common control approach
however, is that the H2-optimal controller is able to take full advantage of the spatio-temporal correlation in the
wavefront and considers the wavefront estimation problem in a closed-loop setting. Furthermore, interpreting
the closed-loop optimal controller as the cascade of a one-step-ahead predictor and a linear fitting problem
demonstrates the close relation with predictive control.

4. VALIDATION STUDY

4.1. Closed-loop simulations on breadboard data

The proposed H2-optimal control approach has been validated for the quasi-static case on the basis of open-loop
WFS data obtained from an AO test bench. The breadboard setup has a turbulence simulator that consists of a
circular plan parallel glass plate rotated by a driving stage. On one side of the glass plate, distortions are etched
such that the resulting wavefront has a spatial Kolmogorov spectrum with a D/r0 = 5, where D is the diameter
of the telescope and r0 denotes the Fried parameter. This results in a single frozen layer disturbance. The setup
uses a Shack-Hartmann WFS and an electrostatic DM with 37 actuators provided by OKO technologies. The
simulations are performed on the basis of N = 104 samples obtained with a sampling frequency of f = 25Hz.
The rotational speed of the glass plate results in a Greenwood frequency of fG = 0.95Hz. Since the temporal
error scales as σT ∼ (fG/f)5/3, the temporal error remains the same if the sample frequency and Greenwood
frequency are multiplied by the same factor. An AO system with for example a sample frequency of f = 296Hz
has therefore an equivalent Greenwood frequency of fG = 11.25Hz.

In the simulation experiments, the performance of quasi-static H2-optimal controller is compared with the
common control law (19). The control parameter β has been tuned to optimize the closed-loop performance,
which resulted in β = 0.997. The covariance matrix Cφ has been computed for a Kolmogorov spatial spectrum
where the r0 corresponds to the disturbance pattern etched on the glass plate. The variance of the measurement
noise σ2

n has been estimated by recording the WFS measurements without the glass plate in place. Two scenarios
will be elaborated. The first scenario comprises a closed-loop simulation with an ideal DM. An ideal DM is a
mirror of which the influence matrix H can be inverted such that it can fully compensate the observable part of
the wavefront. In the second scenario the influence matrix has been obtained experimentally from the DM in the
AO setup. In all experiments the atmospheric disturbance model of order n = 256, is obtained from open-loop
WFS measurements by using the identification method presented in the companion paper,3 where the block-
Hankel size is q = 20. The control effort weighting in cost-function (4) is neglected by choosing ρ = 0. To focus
on the temporal dynamics of the controller, the performance is evaluated by considering the normalized averaged
power spectrum Pω of the observable part of the residual phase error. The power spectrum is normalized on the
time averaged mean square value of the uncorrected wavefront ψk, which leads to the following definition:

Pω = N

∑mr

j=1 Φε
ω(j)

∑mr

j=1

∑N
k=1 ψ2

k(j)
, (20)

where Φε
ω(j) is the power spectrum of the j-th component of the observable part of the residual wavefront denoted

as εk(j) = ψk(j) − ψdm
k (j) evaluated at the frequency ω. To have a quantitative measure of the total reduction

in mean square residual phase the following performance criterion is introduced:

J1 =

∑mr

j=1

∑N
k=1(ψk(j) − ψdm

k (j))2
∑mr

j=1

∑N
k=1 ψ2

k(j)
. (21)

Also the simulation experiments are performed on the basis of open-loop WFS data. Figures 4 and 5 show the
normalized averaged power spectra Pω of the residual wavefront obtained in closed-loop simulations with the ideal
and true DM. For the ideal mirror, the averaged residual power spectrum obtained with the optimal controller
is approximately white. This means that, at least on average, there is no temporal correlation in the residue
that can be used to further improve the performance of the controller. The residue obtained with the common
AO control law on the other hand has a strong coloring. The normalized reductions obtained for the ideal DM
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are J1 = 0.0041 for the common control approach and J1 = 0.0012 for the optimal control approach. This is a
reduction of 71%. The corresponding values obtained with the true DM are J1 = 0.0225 and J1 = 0.0194, which
results in a reduction of 14%. The simulations show that the true DM severely limits the performance. Although
there is still a reasonable reduction, these values are smaller than expected from the simulations performed in
the companion paper. This is mainly caused by a 5 times lower wind-speed. This implies that the temporal
error in the current simulations is approximately 55/3 ≈ 15 smaller.
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Figure 4. (Ideal DM) Normalized averaged
power spectrum Pω of the observable part of the
residual wavefront εk for closed-loop simulations
with an ideal DM.

Figure 5. (Breadboard DM) Normalized aver-
aged power spectrum Pω of the observable part of
the residual wavefront εk for closed-loop simulations
with the breadboard DM.

4.2. Sensitivity study of closed-loop performance to WFS measurement noise
In this subsection we investigate the influence of measurement noise on the performance of the closed-loop
controller. The objective is to find out if the H2-controller can be used to reduce the signal to noise ratio (SNR)
requirement to achieve a specified performance J1, which enables the use of a fainter guide star. The first step
in the simulation procedure is to estimate the SNR of the unreduced open-loop WFS signal sk obtained from
the breadboard. The SNR obtained from 1500 samples undistorted WFS measurements is 27dB. The observed
measurement noise is due to a combination of photon noise, CCD readout noise, background noise and residual
turbulence in the lab. To generate open-loop WFS signals with different SNRs, zero-mean white noise1, 8 is
added to each of the channels of the WFS measurements sk, i.e.: s̃k = sk + ηr

k + ηa
k , where s̃k is the generated

noise contaminated WFS signal, ηr
k the noise on the measured data and ηa

k is artificially added white noise. The
variance of the noise sequence ηa

k(j) added to the j-th component of the WFS signal sk(j) is such that the this
channel has a specified SNR given by:

SNR(j) = 10 log10

( ∑N
k=1 s2

k(j)
∑N

k=1(η
r
k(j) + ηa

k(j))2

)

.

The presented H2-optimal control approach tries to minimize the observable part of the reconstructed residual
wavefront εk, which includes the effect of measurement noise. As long as the noise is white, the presented
approach will be optimal because white noise cannot be predicted. When the measurement noise is colored
however, the measurement noise will interfere with the estimate of the reconstructed wavefront which results
in a discrepancy between the desired and actual control objective. This can only be avoided by using separate
models of the atmospheric disturbance and the contribution due to the WFS measurement noise. Because it is
not possible to make a distinction between measurement noise and the contribution due to the residual wavefront
distortion, these models can not be obtained from measurement data only.
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In the simulation we use a different noise realization of the identification of the disturbance model and the
evaluation of the closed-loop performance. For each SNR, the experiment is repeated 5 times of which the
averaged reduction in mean square residual phase J1 is depicted in Figures 6 and 7. Figure 6 corresponds to
the performance simulated with the ideal DM ,while Figure 7 shows the performance for the true DM. Since the
SNR is expressed in dBs, both axes in the figures are on a logarithmic scale. The figures show that for low SNRs
there is an exponential relation between the reduction J1 and the SNR. In the simulations, the cost-function J1

is normalized on the mean square uncorrected phase ψk without being contaminated by measurement noise. For
high SNR the reduction in mean square error deviates from this trend. In the simulations with the ideal DM
this deviation is explained by the contribution of the real measurement noise on the open-loop WFS signal sk.
Since the SNR of the open-loop WFS measurement signal is in the order of 27dB, it is not possible to generate
input signals with SNRs better that 27dB. A least squares fit of the logarithm of the normalized cost-function
J1 to the SNRs in the range from -5 to 15 dB in Figure 6, gives rise to the following exponential relations:

J1 = 0.367 · 10−0.0872 SNR (common), J1 = 0.281 · 10−0.0939 SNR (optimal) (22)

The above relation is depicted by the solid and dashed lines in Figures 6 and Figure 7. From this it is clear that
for low SNRs, the performance in the simulations with the true DM follow the same exponential trend. In the
simulations with no-ideal DM, the fitting error becomes the limiting factor for signal to noise ratios higher that
approximately 17dB. The gain in performance obtained by optimal controller decreases for decreasing values of
the SNR. This is understandable since the measurement noise contains no information for prediction. In analyzing
the performance, it is important to note that the comparison is not entirely fair as the common controller (19)
uses prior information on the signal to noise ratio. The variance of the open loop noise σ2

n is used in the common
controller (19). In the presented simulations the variance of the measurement noise is precisely known. In
practice this parameter has to be estimated from the data. The H2-optimal control approach described in this
paper doesn’t need this information.
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Figure 6. (Ideal DM) Averaged mean square
residual phase error J1 as a function of the SNR.
The mean square phase error is normalized on the
mean square value of the (noise-free) uncorrected
wavefront φk.

Figure 7. (Breadboard DM) Averaged mean
square residual phase error as a function of the
SNR. The mean square phase error is normalized
on the mean square value of the (noise-free) uncor-
rected wavefront φk.

Under the assumption that the WFS is photon noise limited, the fitted exponential relation (22) between
SNRs and the reduction in mean square residual phase, can be exploited to relate a specified performance level
J1 to the difference in upper-bound on the magnitude of the guide stars required for both controllers. For a
photon limited WFS the SNR (in this case expressed as a ratio of mean square errors and not in dBs) of the
measurement signal sk is proportional to the nph, where nph is the number of photons per sub-aperture1, 2 per

Proc. of SPIE Vol. 5903  59030A-11

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms



sensor integration time. By using the definition of the magnitude scale the ratio of photons required by both
controllers for specified performance level J1 can be expressed as a magnitude difference:

∆m = −2.5 log10

(
nopt

ph

nint
ph

)

= 0.22 − 0.21 log10(J1), (23)

where nopt is the number of photons per sub-aperture per sensor integration time required by the optimal control
approach and nint the equivalent for the common approach. The relation shows that the limiting magnitude,
i.e. magnitude from which AO is effective in reducing the wavefront distortion (J1 < 1), differs 0.22 for both
methods. When the required reduction is 0.01 the magnitude difference is becomes 0.66.The corresponding lower
bounds on the required SNRs are 17.9dB for the integral controller and 15.4dB for the optimal controller.

5. CONCLUSIONS

In this paper we have formulated the AO control problem in a H2-optimal control framework. Given a linear
time invariant (LTI) description of the deformable mirror (DM) H(z), the wavefront sensor (WFS) G(z) and an
atmospheric disturbance model S(z), in which the uncorrected wavefront and the open-loop wavefront signal are
described as filtered white noise, H2-optimal control theory provides a standard tool to compute the closed-loop
optimal control. By using an appropriate disturbance model it is possible to account for the spatio-temporal
correlation in the wavefront. The specific case of a quasi-static AO system, where the WFS and DM are assumed
to be static and only dynamics in the system is a unit-sample delay between measurement and correction, has
been elaborated in detail. The closed-loop optimal controller is expressed in terms of an analytical solution,
which provides a nice physical interpretation. It shows that the closed-loop optimal controller can be interpreted
as an one-step ahead predictor of the uncorrected wavefront distortion followed by a static projection of the
estimated wavefront on the actuator space.

The solution for a quasi-static AO system has been demonstrated by means of numerical validation experi-
ments on open-loop WFS data. In these experiments the performance is compared with the common AO control
approach. The validation experiments show that the optimal control results in a performance improvement. For
an ideal DM, the mean square residual phase error has been reduced by more than 71%. By including the true
DM in the simulations the gain in performance reduces to 14%. In this case the DM fitting error is clearly
the limiting factor. This demonstrates the relevance of solid budgeting of error contribution of the different
components of the AO system. If the temporal error and measurement noise limit the performance, optimal
control is able to reduce the overall error significantly.

The influence of measurement noise on the closed-loop performance has been investigated. The sensitivity
study shows that it is possible to trade the gain in performance achieved by H2-optimal controller against a
reduction in signal to noise ratio (SNR) which enables the use of a fainter guide star. The experimentally
determined relation between performance and SNR, has been used to relate a specified performance level to the
difference in guide star magnitude needed by the optimal control and common control approach. Even though
the relation only holds for the considered simulation conditions it shows that the gain in magnitude increases with
the required performance level. In the simulations, the gain in performance is modest with the gain expected
from the simulations in the companion paper.3 This is caused by the relative small temporal error, which in this
paper is approximately 15 times smaller due to the lower wind-speed. This underlines once again the importance
of investigating the conditions under which optimal control is most effective.
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APPENDIX: PROOF OF THEOREM

Consider the discrete-time algebraic Riccati equation (7). By substituting the state-space realization of the
generalized plant (16) and partitioning the matrix X in accordance with the partitioning of the state-transfer
matrix A, the Riccati equation can be expressed as

[
X11 X12

X21 X22

]

=
[
0 0
0 AX22A

T+KRvKT+ V Z−1V T

]

,

where V and Z are functions of X defined as V (X) � −AX21(Σ1H)T +AX22(Σ1C)T +KRv and Z(X) �
CyXCT

y +Rv. From the above equation it is clear that the matrices X11,X12 and X22 are all zero. When these
matrices are substituted in the functions V (X) and Z(X), the above equation reduces to a lower dimensional
Riccati equation in the unknown X22. The solution to the Riccati equation (7) is therefore given by:

X =
[
X11 X12

X21 X22

]

=
[
0 0
0 X̄

]

where X̄ � X22 satisfies the reduced Riccati equation

X̄ = AX̄AT+
[
AX̄(Σ1C)T + KRv

](
(Σ1C)X̄(Σ1C)T + Rv)−1

[ · ]T + KRvKT (24)

and [ · ]T is used as a shorthand to denote the transpose of the first term between square brackets. Let us now
consider the second Riccati equation (8). Following the same approach of substituting the generalized plant P
and partitioning the matrix Y , the Riccati equation can be written as

Y =
[
Y11 Y12

Y21 Y22

]

=
[

HTH −HTC
−CTH ∗

]

(25)

where the asterisk denotes a sub-matrix that depends on the unknown Y but does not influence the matrices
F, F0, L and L0. Equation (25) specifies therefore the relevant part of the matrix Y . Substituting the obtained
relations for X and Y into definition (9) to (12), yields the following expressions for F, F0, L and L0

F = − [0 H†
ρCA

]
F0 = −H†

ρCKR1/2
v

L =
[

0
K̄

]

L0 = −H†
ρCK̄

Proc. of SPIE Vol. 5903  59030A-13

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms



where K̄ �
(
AX̄(Σ1C)T + KRv

)(
(Σ1C)X̄(Σ1C)T + Rv

)−1 and H†
ρ is defined as in Theorem 3.2. It is important

to note that the matrix K̄ is precisely the Kalman gain corresponding to the Riccati equation (24). Since the
atmospheric disturbance model provides a minimum phase representation of the open-loop WFS measurement
signal rk, this implies that K̄ = K. The derived expressions for F, F0, L and L0 give rise to the following
state-space realization of the closed-loop optimal controller C(z)

⎡

⎣
uk

x̂(k+1|k)

uk

⎤

⎦ =

⎡

⎣
H†

ρCK(Σ1H) H†
ρC(A − K(Σ1C)) −H†

ρCK
K(Σ1H) A − K(Σ1C) −K

−H†
ρCK(Σ1H) −H†

ρC(A − K(Σ1C)) H†
ρCK

⎤

⎦

⎡

⎣
uk−1

x̂(k|k−1)

yk

⎤

⎦ . (26)

The above state-space realization is of order nu + n, but the order of the optimal controller can be reduced by
considering the Kalman decomposition,9 which disentangles the system in a controllable and an autonomous
part. The following similarity transformation of the state provides such a decomposition

[
uk−1

xk

]

(= ξk) −→ T−1

[
uk−1

xk

]

, where T =
[−I H†

ρC
0 −I

]

.

Since the uncontrollable part of the state-space representation has no influence on the input-output behavior of
the controller, it can be removed without changing the overall control performance. In this way we obtain the
state-space realization of the H2-optimal controller as given in Theorem 3.2. Another result of Lemma 3.1 is
that the state in the state-space equations (26) provide an optimal estimate of the state ξk = [uT

k−1 xT
k ]T of the

generalized plant. By applying the similarity transformation ξk → T−1ξk and removing the autonomous part of
the state, it is clear that the state x(k|k−1) of the controller C(z) in Theorem 3.2 state provides an estimate of
the state of the atmospheric disturbance model (3), given the closed-loop measurements yi, i < k − 1.
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