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Predicting 4D Trajectories of Aircraft using Neural
Networks and Gradient Boosting Machines

C. A. Dek∗, J. M. Hoekstra‡, J. Ellerbroek‡
Control and Simulation, Faculty of Aerospace Engineering
Delft University of Technology, Delft, The Netherlands

Abstract—Data-driven trajectory prediction is one of the key
pillars of the future ATM system. Recent research focuses on
using novel data sources and machine learning algorithms to
improve the performance of 4D trajectory prediction, enabling
safer and more efficient routing of aircraft. In this paper a
framework for data sourcing and preparation for such predictors
is presented, as well as a comparison of three of the best
performing prediction algorithms from literature to a baseline
method. Currently such comparisons are lacking, making it hard
to determine which techniques provide the best results. Using an
ADS-B antenna and various online data sources a trajectory set of
40,000 trajectories is built. Two clustering methods are tested and
it is found that clustering trajectories using Density Based Clus-
tering for Applications with Noise (DBSCAN) performs poorly
on our data set of arriving flights. Too many trajectories are
classified as outliers while DBSCAN is not capable of separating
the trajectories in distinct clusters. A clustering method based on
the STARs of the airport is proposed, which performs better in
terms of accuracy and efficiency. Finally, a baseline simulation
using Aircraft Performance Models is compared to a deep neural
network, a Long Short-Term Memory (LSTM) network and to
Gradient Boosting Machines (GBM) for trajectory prediction. It
is found that the latter outperforms the other methods overall,
while it was expected that predictors based on LSTMs would
provide more accurate results. It is concluded that long-term
dependencies in trajectory data, on which LSTMs perform well,
are less important than categorical indicators, on which GBMs
perform better, in trajectory prediction.

Index Terms—4D trajectories, ADS-B, DBSCAN, deep neural
networks, Gradient Boosting Machines, Long Short-Term
Memory networks, machine learning, trajectory clustering, tra-
jectory prediction

I. INTRODUCTION

Data-driven trajectory prediction has been identified as one
of the key pillars for the future Air Traffic Management (ATM)
system by Eurocontrol and is being investigated in the DART
project, as part of SESAR [1]. The incentive for this effort is
the increasing amount of air traffic that is to be handled safely
in a constrained airspace whilst simultaneously increasing
individual flight efficiency.

The predictions aimed for are 4D trajectories, which consist
of points in 3D space over time that together form the
trajectory an aircraft executes. Currently, 4D trajectories are
predicted using aircraft performance models (APMs), which
use aircraft performance parameters (APPs), flight plans and
meteorological conditions as inputs [2]. These APMs provide
fairly accurate results, however do not take external influences

∗MSc student, ‡Supervisor.

into account. Besides, all common procedures in an airspace
have to be known and provided to the APM. Using existing and
novel data types, such as Automatic Dependent Surveillance
- Broadcast (ADS-B) data and route information, patterns can
be found that indicate aircraft and ATC behaviour in a certain
situation, without needing prior knowledge of the airspace.

Past research has focused on identifying these patterns using
various machine learning techniques, ranging from simple
linear regression models to deep recurrent neural networks
[3]. Also, the input parameters to such models have been
evaluated extensively. However, most of these predictors are
not tested against each other or the systems currently in place,
making it difficult to determine which techniques provide the
best results.

The research presented in this article consists of two parts,
namely an investigation into the data sources and data pre-
paration required for such predictors, as well as a comparison
of the best performing predictors from literature set against
a baseline method representative of the current system. The
goal is to identify the best performing predictors along with
the required pre-processing steps.

The structure of this article is as follows. First, an overview
of the related work from literature will be provided in
section II, along with a more in depth literature review of
the machine learning algorithms used in this study. The
methodology of the research is detailed in section III. The
results are presented in section IV, after which a discussion
on these results is provided in section V. Finally, conclusions
drawn from this research are provided in section VI and
recommendations for future research can be found in
section VII.

II. RELATED WORK

As stated in the introduction, the work presented here
consists of two parts. Therefore, first, related work on the
influence of input parameters on predictors is provided to
define the required input to the predictors. Also, an overview
of efforts in the field of trajectory clustering and air traffic flow
identification is presented, which is a second preparation step
that can be used to optimise the performance of the predictors
[4].

Secondly, the prediction phase of the research is supported
by an overview of various prediction methods, starting with
related work using APMs as this will serve as the baseline in

3



the comparison. Next, novel techniques predicting trajectories
using machine learning are detailed and the predictors to be
compared in this research are identified. From section II-E
onwards, the machine learning algorithms used in this research
are described in detail.

A. Relevant input parameters to trajectory predictors

Two major sources of data on aircraft trajectories exist. First
of all, radar data can be used to reconstruct 4D trajectories,
and is used both for predictors based on APMs as well
as for data driven predictors [5], [6], [7], [8]. Secondly,
ADS-B data is often used to reconstruct 4D trajectories [9],
[10], [11], [12]. ADS-B data is broadcasted by commercial
aircraft through Mode-S Extended Squitter (1090 MHz) and
is publicly receivable by everyone with an antenna [13]. ADS-
B data constitutes of a time designator, an aircraft identifier,
altitude, lat / lon position, heading, speed and rate of climb.
Also, ADS-B positions have been proven to be more accurate
than radar positions [14]. Considering that it is openly access-
ible, accurate and comprises of the position data required to
reconstruct the flown trajectories, it is chosen as the main data
source in this research.

To determine which additional parameters have a significant
influence on the results of trajectory prediction, several studies
have been performed using APMs. From these studies it can
be concluded that aircraft intent is a driver for the accuracy
[15], [16], as well as CAS / Mach settings [17]. Additionally,
the importance of aircraft weight has been shown to be one
of the major factors in the quality of a predictor, especially
for the vertical part of the prediction [15], [16], [18]. The
accuracy in the horizontal part of a trajectory is shown
to increase when wind conditions are taken into account
[17] [18]. Similarly, flight duration errors are linked to
the accuracy of the true airspeed [18], for which the wind
conditions are of importance. The temperature of the air,
however, was found not to provide significant advantages
[17]. Although these studies were performed for predictors
based on APMs instead of the data-driven predictors tested
in this research, the influence of wind conditions and the
aircraft weight are considered to have equal importance for
this research and will therefore be used. Aircraft intent data
is expected to be of more importance for predictors using
APMs than for data-driven predictors as the latter can attempt
to forecast the intent and routing themselves. Although it
is noted that it could still be valuable information for any
predictor, it is not included in this research.

B. Clustering methods for air traffic flows

The second step in preparing the data sets for the predictors
is trajectory clustering. Clustering the trajectories in distinct
and similar groups and training algorithms separately on these
specific sets of data enables detecting more detailed patterns
in the trajectory data [19]. Clustering can be based on known
characteristics such as the aircraft type, route or origin of a

flight, or can be done by using unsupervised machine learning
methods that focus on the spatial properties of a trajectory.

Early work in this field focused on finding traffic flows and
routes, which is a task comparable to clustering for predic-
tion. A first attempt in this direction was performed using
partitional, density based and hierarchical clustering [20], from
which it was concluded that density based clustering performs
well, but that the clustering process should be faster. Later,
density based methods were compared to k-means clustering
on sparse data, on which the latter performed better [21].
However, when larger data sets of over 1,000 trajectories are
used, density based methods such as Density Based Spectral
Clustering for Applications with Noise (DBSCAN) are found
to be better than other methods due to the noise inherently
present in trajectory data [22]. Additional spectral clustering
methods are also proposed [23], however it is shown that
density based methods such as DBSCAN perform better [24].
For very large data sets, it is proposed to perform categorisa-
tion using hierarchical clustering to split the trajectories. This
can be based on trajectory properties such as the origin or
destination and it is proposed to subsequently apply DBSCAN
to form clusters within these categories [25].

The research mentioned so far focuses on identifying air
traffic flows. DBSCAN was also applied as clustering method
for trajectory prediction on trajectory sets with a size of 5,000
to 8,500 trajectories [4], [9], [19], where clustering proved
to be an effective method to reduce the size of training sets
for the predictors. From both the research on air traffic flow
identification and clustering before prediction it is concluded
that DBSCAN is both the most commonly used and most
promising method available and will therefore be used in this
study.

However, it should be noted that the methods presented
were developed to find air traffic flows and routes without
any prior knowledge. Most airports around the world have
Standard Arrival Routes (STARs) defined, which are publicly
available and could form the basis of a clustering method as
well. Therefore, it is chosen to compare DBSCAN, which is
able to identify clusters by itself, to a clustering method based
on STARs.

Finally, clustering based on spatial properties requires the
distances between the trajectories. To determine these dis-
tances, several methods have been proposed. A common
distance metric is the Hausdorff distance [26], which is a single
metric based on the maximum distance between two traject-
ories. Also, Symmetrized Segment-Path Distance (SSPD) [27]
is proposed, which determines the overall similarity between
trajectories. It was found that Hausdorff is faster, whereas
SSPD provides more accurate results [28], and it depends on
the trajectory set which one is favourable. Therefore, both will
be tested on the trajectory set.

C. Prediction using aircraft performance models

The current standard for trajectory prediction in ATM is
systems using APMs, which are based on the Total Energy
Model (TEM). The TEM sets the rate of work as performed
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by the forces acting on the aircraft, for example the thrust
forces applied by the engines, equal to the rate of potential
and kinetic energy [29]. These models describing the aircraft’s
motion are combined with flight plan or intent data in order to
predict the trajectory of an aircraft. Its inputs are the aircraft
and engine properties, APPs.

The APPs provide information on each specific aircraft
and are obtained from flight tests and specifications from the
aircraft manufacturer. The most commonly accepted standard
in this field is the Base of Aircraft Data (BADA) [2]. It
comprises of over 160 unique sets of APPs which can be used
to simulate aircraft performance.

Trajectories are predicted by simulating the aircraft over
a filed flight plan. The benefit of this method is that the
behaviour of the aircraft is according to the laws of physics.
The disadvantage is that flight plan data is required in order
to make a prediction while at the same time novel data types
cannot be directly used for the predictions.

Capturing additional features in the input data to improve
the predictions is indirectly possible by tailoring the APPs to
a specific situation. The selection of APPs can be tailored by
adapting the selection criteria such as the Calibrated Airspeed
(CAS) or aircraft weight on specific use cases [30], [31], [32],
[33], [34]. Also, it is proposed to develop new sets of APPs,
tuned to specific situations [8], [35].

However, the focus of this study is on data-driven predictors
without using APMs. Also, these methods have been compared
to the current system by comparing it to the performance of
BADA using various APM implementations and therefore they
are not considered in this study. It is chosen to use BADA
in an air traffic simulator to serve as a baseline, called the
APM, as this is representative of the systems currently in
place at ATC. Also, it provides the opportunity to compare
this research to the work presented above in future research.
Air traffic simulator ’BlueSky’ [36] will be used as it is open
source and capable of using the adapted and novel sets of
APPs mentioned above.

D. Data-driven prediction using machine learning methods

Recently, efforts in the field of trajectory prediction have
focused on predicting without using physical models. These
methods use machine learning algorithms to capture the beha-
viour of aircraft without needing flight plans or aircraft specific
information. Early research used simple neural networks to
predict the vertical part of trajectories [37], to predict air traffic
flow [38] and to predict delay [39]. All of these methods use
historical trajectory data to train a predictor and predict by
providing new trajectory points to this trained predictor. More
detailed methods were developed to predict trajectories in the
descent phase, comparing regression and decision tree methods
such as Support Vector Machines versus Generalized Linear
Models [12] and comparing Ridge Regression versus Gradient
Boosting Machines and simple neural networks [40]. Also, it
is proposed to apply functional regression on the trajectory
prediction problem [6] However, it was concluded that this
method is prone to overfitting, which is when an algorithm

learns the training data so well that the performance on new
data deteriorates, and a high sensitivity to noise and variation
in the input parameters. For the climb phase, linear regression,
simple neural networks and locally weighted linear regression
are compared [5]. From these comparisons between regression,
decision tree and shallow or simple neural networks, it is
concluded that Gradient Boosting Machines, an ensemble
method using decision trees, provides the best fit to trajectory
prediction. Other methods are not found as suitable to capture
the complex patterns of trajectory prediction and are therefore
not considered in this work.

In contrary to simple neural networks, which comprise of
only one to two layers of neurons, deep neural networks,
comprising of more layers are better capable of capturing more
complex relations in the data provided. These networks were
tested on ETA prediction [11] and on trajectory prediction,
where they were compared with Multiple-Linear Regression
[4]. It was concluded that deep neural networks perform better
on the problem at hand. However a comparison with other
well performing methods such as gradient boosting has not
been performed.

Observing that each trajectory essentially is a sequence of
points in time and space, it can be represented by sets of
time series. In order to use the relation between the current
and previous points in a trajectory it is investigated whether
Long Short-Term Memory networks could be used to perform
trajectory prediction [3], [19]. These deep recurrent neural
networks are designed for time series prediction and use an
internal state to propagate information on previous time steps
to the next one [41], which makes them suitable for the
problem at hand [3], [19].

From this literature review, it is concluded that Gradient
Boosting Machines (GBM), deep neural networks, also called
’Multilayer Perceptron’ networks (MLP), and Long Short-
Term Memory (LSTM) networks are the most promising
data-based techniques to apply in this research. Also, no
comparison between these three algorithms and an APM or
other baseline simulation has been performed in literature.

E. Deep Neural Networks

Neural networks [42] consist of layers of neurons, also
called cells, which perform computations on input to obtain
a desired output. Each neuron represents a computational unit
which has a bias and a weight, similar to coefficients in
a regression function. The weighted input and bias of each
neuron is summed and passed through an activation function
such as a sigmoid or tanh. The activation function both
regulates the output of that single neuron, as well as making
it possible to predict non-linear behaviour. The equation for
the output of single neuron xi can be found in eq. (1),

xi = fact

 n∑
j=1

wi,jxj + bi

 (1)

where xj is the output of neuron j from the previous layer,
wi,j is the weight of neuron i on the output of neuron j, bi
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the bias of neuron i and fact the activation function. The
output of a network can be determined by applying equation
eq. (1) recursively. xi is then defined as one of the output
layer neurons of the model and by using eq. (1), each output
of the previous layers xj is determined. After each training
run the error of the output is calculated using a loss function.
Then, the weights of the network are updated accordingly to
improve the prediction, using an optimiser. A neural network
is deep if it consists of multiple layers, which enables a
network to learn more complex relationships from the data.

F. Long Short-Term Memory Neural Networks

LSTMs are recurrent neural networks in which each cell
uses both a new input as well as the output of the previous
cell to provide a new estimate [41]. By propagating the output
of each cell to the next one, a form of internal memory, the
cell state, is present containing information on previous in- and
outputs. This improves its performance when working with se-
quential or time series data with long-term time dependencies
[41].

A schematic of a LSTM cell can be found in fig. 1, in
which the horizontal arrow on the top represents the cell state
Ct, which is received from the previous cell, adapted and then
passed on to the next cell. Furthermore, several computational
units are present in each LSTM cell, that work similar to the
cells of a neural network and are represented by the yellow and
red signs in fig. 1. Each part has its own weight w, bias b and
predefined activation functions σ or tanh. They are defined
as follows:
• Forget gate: Determines which information in cell state
Ct−1 should be kept and discarded based on previous
output ht−1 and input xt with a sigmoid function. It is
represented by the σ on the left in fig. 1 and can be found
in eq. (2).

• Input gate: Determines new candidate values for the cell
state, C̃t, by applying a tanh function on ht−1 and input
xt, eq. (3). It also uses a sigmoid function to determine
which part, it, of C̃t will be used to update Ct. See
eq. (4). After this step, cell state Ct is updated using
eq. (5). This gate is represented by the yellow σ and
tanh functions in the middle of fig. 1.

• Output gate: Consists of a sigmoid function that de-
termines which information from ht−1 and xt should be
passed to the output, and can be found in eq. (6). A tanh
function determines the weight of cell state Ct which
should be passed to the output, as can be seen in eq. (7).

ft = σ (wf · [ht−1, xt] + bf ) (2)

C̃t = tanh (wC · [ht−1, xt] + bC) (3)

it = σ (wi · [ht−1, xt] + bi) (4)

Figure 1. Schematic of a single LSTM cell, where cell state Ct is represented
by the upper most horizontal black arrow, input xt and output ht is shown
and the computational units are represented by the yellow and red boxes.

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

ot = σ (wo [ht−1, xt] + bo) (6)

ht = ot ∗ tanh (Ct)) (7)

G. Gradient Boosting Machines

GBM [43] is an ensemble method which fits consecutive
simple classification and regression trees [44] on training
data, aiming to reduce the errors of the previous tree in each
step. Each decision tree in a GBM is called a weak learner
and is too shallow to capture the whole problem at once.
It uses a loss function to determine the error of each weak
learner and an additive model is used to add an additional
tree after each iteration, while keeping existing trees intact.
The algorithm performs well on classification and regression
problems that rely on categorical indicators as it can efficiently
use information from training examples with similar categories
to find the correct outputs of the trees.

The algorithm is defined as follows [43]. The GBM, GM ,
is initialised by fitting a constant function γ on the desired
output y, and the optimal constant function is found using loss
function L, with n being the number of values to be predicted:

G0(x) = γoptimal = min
( n∑

i

L(yi, γ)
)

(8)

then, a total of M weak learners hm are added consecutively
to this base function to find GM . Each update of the model
is called Gm and is determined using eq. (9):

Gm = Gm−1(x) + γhm(x) (9)

where hm is the weak learner added at step m and is
determined by first computing the residual error of Gm−1,
see eq. (9), and then training hm on rim instead of on yi.
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rim = − ∂L (y,Gm−1(x))

∂Gm−1(x)

∣∣∣∣
x=xi,y=yi

for all i = 1, . . . , n

(10)
Finally, constant function γ in eq. (9) is optimised using

eq. (11) and this procedure is repeated until M weak learners
hm have been fitted on the residuals and therefore GM is
constructed.

γoptimal = min
( n∑

i

L(yi, Gm(xi)
)

(11)

H. Density Based Spectral Clustering for Applications with
Noise

DBSCAN [45] is an unsupervised clustering method and
using two parameters it is able to find arbitrarily shaped
clusters of various sizes within a single data set. These
parameters are defined as follows:
• ε: or minimum distance. Defines how close two tra-

jectories should be to each other in order to be called
neighbours.

• MinPts: The number of neighbours a trajectory should
have in order to be called a core trajectory.

Using these parameters, each trajectory in the data set is
classified to construct clusters. A trajectory can be a core
trajectory, which forms the basis of a cluster and has at least
MinPts neighbours. The second category contains border
trajectories, which are a neighbour to a core trajectory and
are therefore part of a cluster, but do not have enough
neighbours to be core trajectories. Finally, trajectories without
sufficient neighbours and no core trajectories as neighbours
are classified as noise trajectories, which are not a part of any
cluster.

III. METHODOLOGY

The methodology presented here consists of two parts. First
the preparation for trajectory prediction is presented. This
includes data sourcing and processing, as well as trajectory
clustering in order to speed up the predictions. Then, the three
novel predictors are compared with the APM and assessed on
their performance in both spatial and timing accuracy.

It is chosen to predict trajectories for aircraft arriving at
Amsterdam Schiphol Airport (EHAM) as relevant data for
this airport was available. Also, predicting arriving flights
poses a greater challenge due to merging routes, vectoring
and generally more ATC interference as opposed to departing
aircraft.

A. Data sources and preparation
As shown in section II-A, ADS-B, aircraft weight and met-

eorological data are useful for trajectory prediction. However,
aircraft weight data is not available and therefore only the
aircraft type is used. Also, the influence of runway scheduling
on trajectory prediction is investigated. Each step in the data
preparation is shown in fig. 2 and explained in more detail in
the following subsections.

Raw
ADS-B

messages

Decoded
ADS-B

messages

Separate
ADS-B

trajectories

Arriving
EHAM

trajectories

Enriched
Trajectory

Data Points

ERA-5
Meteorological

Data

EHAM
Route
Data

LVNL
Runway

Scheduling

A: Decoder
B: DBSCAN,
outlier filter

C: Filter trajectories
based on aircraft ID

D: Filter based
on landing
requirements

G: Interpolate on
space & time

H: Assign
based on true 

arrival time

F: Couple 
based on dT

General
Trajectory

Information

J: OHE,
Standardize
and pad with
landing points

E: Interpolation

Figure 2. Data processing steps. The white sets on the left are the original
sets from the data sources, the intermediate sets are grey and the resulting
sets are indicated in teal. Red indicates an action on the data.

1) ADS-B data: The ADS-B data is sourced from a receiver
located at TU Delft which has a coverage of over 400 km
in radius [46]. The raw data first had to be decoded into
numerical and categorical data entries, which is done using
software developed by TU Delft [47], step A in fig. 2. Then,
it is clustered into series of data which consist of entries
from one trajectory, step B in fig. 2. The latter is done
using DBSCAN [46], which clusters the data based on the
similarity of the ADS-B messages and removes erroneous
vertices by classifying them as noise points. Also, trajectories
with errors are filtered using two additional methods. First of
all, trajectories with a distance travelled of over 550 km are
filtered out, considering that the range of the antenna is only
400 km and some erroneous trajectories were present in this
range. Also, the aircraft speed is determined by calculating the
distance travelled in each time step. Aircraft that are measured
to fly faster than their maximum cruise speed are also removed
from the data set. Flights arriving at EHAM are identified
based on their ICAO aircraft ID and the location of the last
three data points, which should be equal to the location of
EHAM. These are steps C and D in fig. 2.

The resulting trajectories consist of irregularly spaced
messages in the time domain due to noise and objects
blocking the view of the antenna. To prevent the predictors
from having to learn patterns in the timing, the trajectories
are interpolated to a regular time step, step E in fig. 2.
A time step of 4 seconds is chosen to reduce memory
usage and computational effort in the prediction stage, while
still allowing to use predictions for conflict detection. It is
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assumed that the aircraft have a linear behaviour on this time
scale and therefore the points are interpolated linearly.

2) Route data: Aircraft route data is used to identify
aircraft flying to EHAM, step C in fig. 2, and to source
additional parameters. No large open source data sets exist,
however, all relevant information is published on the website
of each airport daily in order to inform passengers. This
information is obtained by means of web scraping. Amongst
other parameters, the aircraft type is obtained. Additional
features such as airline and origin are also gathered, however
these features have not been proven to provide benefits for
trajectory prediction and are therefore not used in this study.
Also, 49% of the flights are executed by one airline, KLM,
making it unrealistic to assess the influence of this parameter
on the performance of a predictor. The origin is assumed to
have little influence in this research as the direction of the
origin is already taken into account when clustering by means
of the spatial properties of the trajectories. The route data is
coupled to the trajectories by verifying that the time of the
last trajectory points matches with the executed arrival time,
step F in fig. 2.

3) Meteorological data: The meteorological data used in
this study is sourced from the ’ERA-5’ data set [48]. It is
available at a lat / lon grid of 0.25 x 0.25 degrees and at 37
altitudes ranging from ground level to 1 · 105 feet. Only the
data up to 40,000 ft and only 3D wind vectors are used in this
study.

The ADS-B data is enriched with the meteorological
parameters by means of linear interpolation, step G in fig. 2.
For each data point in the ADS-B set, the neighbouring
latitude, longitude and altitude coordinates from the
surrounding two time slots (in hours) of the ERA-5 set are
taken, resulting in a weighted average of 24 values for each
parameter.

4) Runway scheduling data: Runway scheduling at EHAM
is dependent on wind conditions, but also on a set of agree-
ments between the neighbouring towns and the government
to minimise perceived noise. In view of the fact that the last
part of the trajectory is dependent on the runway scheduling,
it is investigated whether this parameter can be of use in the
predictions.

The runway scheduling of EHAM is published on the
website of the Dutch air traffic control (LVNL) in time
intervals of 10 minutes for all runways. Similar to the route
data, it is harvested from this website using webscraping.
When predicting a trajectory, it is assumed that the runway
scheduling at the scheduled time of landing is known. Using
this assumption, the runway scheduling at this scheduled time
of landing is added to the data set, step H in fig. 2, and it
can be used for prediction.

5) Data preparation: An overview of the input parameters
used for prediction can be found in table I. The machine

Table I
OVERVIEW OF THE PARAMETERS USED FOR TRAINING THE MACHINE

LEARNING TRAJECTORY PREDICTORS, WHERE PARAMETERS WITHOUT
UNIT REQUIRE ONE-HOT ENCODING.

ADS-B Additional Parameters

lat/lon [deg] 3D wind vector [m/s]

altitude [ft] runway scheduling [-]

ground speed [m/s] aircraft type [-]

rate of climb [ft/min]

heading [deg]

learning based predictors require formatting of this data.
Categorical data such as the aircraft type has to be converted
to numerical data, which is done using One-Hot Encoding
(OHE) [49]. OHE translates each unique value of a parameter
to a column which can either be 0 or 1, false or true.

Also, most machine learning algorithms expect input data
with zero mean and unit variance. If the data is not scaled
and standardised before training, the algorithms might over-
estimate the importance of parameters with a large absolute
variance, such as altitude, and vice versa. Each parameter in
the data set is scaled and standardised separately and µ and σ
are based on the training set only for this procedure.

Finally, the neural networks are trained with sequences of
an equal amount of time steps, which are trajectories of the
same length. Common practice of sequence padding for ma-
chine learning is adding zeros, interpolation or extrapolation.
Interpolation is not used, to keep the temporal component of
the sequences. Both zero padding and extrapolation lead to
unrealistic behaviour in the predictions, so it is chosen to pad
all sequences to the same length with artificial ’landing’ points
at an altitude and with velocities of zero and the coordinate
location of EHAM. These three steps are represented by step
J in fig. 2.

B. Trajectory clustering

As detailed in section II-B, trajectories are clustered to
increase the efficiency and accuracy of the prediction. Two
methods are tested, DBSCAN and a STAR-based method,
of which the methodology is provided in the following
subsections. Both methods require distances to be calculated
between trajectories, which will be presented in section III-C.
All steps in this section can be found in the experiment
diagram, fig. 3.

1) Clustering using DBSCAN: As explained in section II-H,
DBSCAN requires tuning of ε and MinPts. This is done using
a k-Nearest Neighbours (k-NN) algorithm and a k-distance
plot in this study. The k-NN algorithm determines the number
of neighbours a trajectory has for a range of distances. The
ε should then be tuned to around the point of maximum
curvature in the k-distance plot, which translates to the value
where increasing the ε does not lead to a significant number
of additional neighbours. The value for MinPts can then be
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tuned to obtain the desired outcome by evaluating the results.
The DBSCAN implementation of Python library Scikit-Learn
[50] is used throughout this research.

2) Clustering based on STARs: All aircraft are assigned
to a STAR in normal operations, which is defined in their
flight plan. These flight plans, however, are not publicly
available. Therefore, it is chosen to cluster the trajectories
by calculating the distance of each trajectory to the known
STARs. Trajectories are assigned to the STAR closest to the
flown trajectory, assuming that the aircraft were also scheduled
to use this STAR. The distance calculations for this method are
done in 2D, considering that the STARs do not have overlap
in altitude.

Ten out of the 14 STARs for EHAM are used, as can be
seen in fig. 5b. HELEN 1A and PUTTY 1A are combined
in one cluster as the trajectories have a lot of overlap due to
shortcuts the aircraft are allowed to use in that area. Also,
EELDE 1B, REKKEN 2B and NORKU 2B are not used for
clustering as hardly any trajectories (< 0.1%) in the data set
follow these routes.

C. Distance metrics

The trajectories are clustered based on their spatial
properties, irrespective of time and where possible on
their 3D spatial characteristics. As stated in section II-B,
Hausdorff distances and Symmetrized Segment-Path Distance
are compared in this study. Also, in order to speed up the
distance calculations, the number of points per trajectory is
reduced using the Ramer-Douglas-Peucker algorithm. The
steps described in this section can be seen in fig. 3.

1) Hausdorff distance: The Hausdorff distance is obtained
by calculating the distance between each point on trajectory
A and its respective closest point on trajectory B. The max-
imum value of all distances obtained in this procedure is the
Hausdorff distance. Its equation can be found in eq. (12),
in which a and b are points on trajectories A and B re-
spectively. However, this procedure has to be executed twice
considering that minb∈B

{
d(a, b)

}
is not necessarily equal to

minb∈B
{
d(b, a)

}
. The maximum value of h(A,B) and h(B,A)

is used as the final metric.

h(A,B) = maxa∈A

{
minb∈B

{
d(a, b)

}}
(12)

2) Symmetrized Segment-Path Distance: For SSPD [27],
first the minimum distance between a point on trajectory A
and each segment on B is determined using eq. (13),

Dpt(p
B
i , T

A) = miniA∈[0,...,nA−1]
{
Dps(p

B
i , s

A
iA)
}

(13)

where Dpt is the distance from point p on trajectory B to
trajectory A and Dps is the distance between point p on B
and a segment s on trajectory A. Then, the average of these
minimum distances of all points together forms the segment-
path distance, DSPD using equation eq. (14).

DSPD(TA, TB) =
1

nA

nA∑
iA=1

Dpt(p
A
iA , T

B) (14)

Similar to the Hausdorff distance, this calculation has to be
performed twice in order to make the result symmetric. In
contrary to Hausdorff, the average result is used instead of the
maximum result, using eq. (15).

DSSPD(TA, TB) =
DSPD(TA, TB) +DSPD(TB , TA)

2
(15)

SSPD provides a more global metric of the distance
between two trajectories, in contrary to Hausdorff which
provides a single maximum distance, not taking the rest of
the difference between trajectories into account. SSPD was
developed for comparing car trajectories [27] and its Python
implementation is adapted in order to support 3D distance
calculations for this specific use case on aircraft trajectories.

3) Ramer-Douglas-Peucker algorithm: To speed up the
distance calculations, the number of points a trajectory consists
of is reduced before applying SSPD or Hausdorff. This is
done using the Ramer-Douglas-Peucker algorithm [51], which
identifies the turning points of a trajectory. It keeps the points
that provide the outline of a trajectory while disposing of
points that are irrelevant for the overall pattern, as can be
seen in Algorithm 1.

Algorithm 1 Ramer-Douglas-Peucker
Result: Simplified set of vertices {P0, Pn}
1. Input: set of vertices {P0, Pn}
2. Find vertex Pf with the largest distance to line P0Pn

if distance > ε then
3. Apply algorithm recursively on set of vertices {P0, Pf}
4. Apply algorithm recursively on set of vertices {Pf , Pn}

else
5. Remove Pf

end

where ε is the minimal distance or threshold parameter and
is set at 1 · 10−3 degrees, which translates to 2 nm or 3.7 ·
103 meter at the latitude and longitude of the Netherlands.
This procedure is only used to prepare the data for distance
calculations and is not used for the prediction stage.

D. Aircraft Performance Models

As proposed in section II-C, the baseline simulations use
aircraft performance models and parameters. The open-source
air traffic simulator BlueSky [36] is used for the simulations in
combination with the BADA 3.12 set of aircraft performance
parameters [2]. The initial condition provided to BlueSky
consists of the position, heading and CAS, extracted from the
ADS-B data, and the aircraft type, extracted from the route
data. The ADS-B ground speed is converted to CAS by first
adding the wind vectors, essentially converting the ground
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Table II
OVERVIEW OF THE INPUT PARAMETERS TO BLUESKY, OF WHICH THE

INITIAL CONDITIONS ARE PROVIDED ONCE PER AIRCRAFT, THE
VARIABLES FOR THE ROUTE ARE PROVIDED AS MANY TIMES AS THE

AMOUNT OF WAYPOINTS IN THE ROUTE AND THE WINDFIELDS FOR THE
ENTIRE RANGE OF THE ADS-B ANTENNA

Initial conditions Route Windfields

lat/lon [deg] WPT [-] lat/lon [deg]

alt [ft] SPD [kts] alt [ft]

heading [deg] ALT [ft] wind direction [deg]

CAS [kts] wind magnitude [kts]

speed to TAS, as can be seen in eq. (16). The TAS is then
converted to CAS using a conversion implemented in BlueSky
[36].

~vTAS = ~vgs − ~vwind (16)

Apart from the initial conditions the route has to be
provided, expressed in waypoints including speed and altitude
commands. Considering that no flight plans are available,
this information is deduced from the trajectories. All flights
are headed for EHAM and use a STAR and instrument
approach. These procedures include waypoints, altitudes and
speed requirements and therefore provide all the information
required for the simulation. Trajectories are assigned to a
route using the same approach as described for the STAR-
based clustering, assigning a trajectory to the route closest
to the flown trajectory. However, for the baseline also the
final approach is considered when assigning a route. Again,
the number of vertices per trajectory is reduced using RDP
and the distances between the trajectories and the STARs
are calculated using Hausdorff and SSPD. These steps are
visualised on the left in fig. 3.

On top of the previous, the windfields, as described in
section III-A, are provided to BlueSky and are updated each
hour. An overview of the inputs to BlueSky per aircraft and
simulation is provided in table II. A calculation time step of 1
second is used and the location of the aircraft is logged. These
logged locations form the predicted trajectory which can be
evaluated. Aircraft are assumed to have landed when they have
reached an altitude of less than 500 feet.

E. Machine learning predictors

After clustering the trajectories, each predictor is trained
and tested on each cluster separately. As presented in
section II, the predictors tested in this research are MLPs,
LSTMs and GBMs and these are also shown in fig. 3.
These all require selection and tuning of several parameters
to optimise the results. It is noted that each cluster of
trajectories requires its own tuning process in order to obtain
the best possible result. However, considering that tuning
each algorithm for each cluster requires a great amount of
computational power, the predictors are tuned to perform
well on one cluster and then applied in this configuration
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Figure 3. Experiment set-up. On the left, the steps of the APM are shown and
on the right the novel predictors. Red indicates an action while teal indicates
an in- or output.

on the other clusters as well. Considering that the type
and complexity of the data is comparable over the clusters,
it is assumed that this approach is sufficient in terms of
parameter tuning. Also, the predictors are tuned and tested
at a look-ahead time of 120 seconds, after which the best
performing algorithms are also tested at larger look-ahead
times.

1) Multilayer Perceptron: The MLP is trained by provid-
ing a sequence of points of the trajectory and the desired
output, namely a new sequence of points which represents
the predicted trajectory. The MLP is implemented using the
Python based Keras library [52], in combination with machine
learning platform Tensorflow [53]. Several parameters need to
be chosen of which some can be derived from the nature of the
problem. However, others need to be tuned in order to obtain
the best result. The proposed model architecture can be found
in table III.

Observing that trajectory prediction can be represented by
a regression function, a Mean Squared Error (MSE) is used
as loss function. The optimiser is the algorithm that updates
the weights according to the loss to get the best prediction.
Adaptive Moment estimation (ADAM) is used as it tunes the
learning rate by itself and has low memory requirements. A
tanh activation function is used to enable the network to
capture non-linear behaviour. Also, a dropout layer is used
after each normal layer, which eliminates the 20 % least effect-
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Table III
MODEL ARCHITECTURE OF THE MLP AND LSTM PREDICTORS.

Parameter MLP LSTM

Loss function MSE MSE

Optimizer ADAM ADAM

Activation function tanh tanh, σ

Dropout layer 20 % 20 %

Number of layers 3 1

Number of cells 200 300

Number of epochs 1000 500

Batch size 100 50

ive neurons during the training phase and thereby preventing
overfitting. Finally, the number of layers, cells, epochs and
the batch size were tuned by performing a grid search on the
parameters. The batch size is the number of training samples
that is provided to the network before updating the weights
using the optimiser and the number of epochs is the amount
of times the full set of training data is passed through the
network.

2) Long short-term memory neural networks: Similar to
the MLP, this predictor is implemented using Keras and
Tensorflow and the same parameters need to be set. The
proposed model architecture can be found in table III. The
loss function and optimiser have been chosen with the same
reasoning as for the MLP. The activation functions used in
an LSTM have been specified in section II-F and again a
dropout layer is used to reduce overfitting. Again the number
of layers, cells, epochs and batch size have been tuned using a
grid search. Each cell in an LSTM essentially is a small layer
comprising of several computational units or cells, reducing
the number of layers required to construct an optimal LSTM
network in comparison with a MLP.

3) Gradient Boosting Machines: The XGBRegressor func-
tion of XGBoost [54], a distributed gradient boosting library
with Python API, is used to construct the predictor. Again
some parameters had to be set and tuned, which resulted
in the model architecture as presented in table IV. The loss
function used is similar to the loss function for the other
predictors, using a Root Mean Squared Error (RMSE). The
learning rate, maximum tree depth, number of weak learners,
column sampling and batch size were tuned using a grid
search of the most optimal parameters. A weak learner is a
shallow decision tree, as introduced in section II-G, and its
amount is tuned by checking for overfitting on the test set.
The maximum tree depth is the maximum number of splits
each weak learner can have. The column sampling is set at 80
%, meaning that each tree is fitted using a random sample of
80 % of the parameters, reducing overfitting. The time window
is the number of previous points on the trajectory each training
sample consists of. A prediction is obtained by providing
a new sample of trajectory data to the GBM, which then

Table IV
MODEL ARCHITECTURE OF THE GBM PREDICTOR.

Parameter GBM

Loss function RMSE

Learning rate 0.01

Maximum tree depth 8

Number of weak learners 150

Column sampling 0.8

Time window 10

returns a prediction value. It should be noted that XGBoost
only provides univariate and single-step outputs. Therefore
three separate models are trained for the latitude, longitude
and altitude and each prediction only provides one point of
the predicted trajectory, in comparison with the sequential
predictions of the neural networks.

F. Evaluation of the predictors

Assessing the performance of a predictor is based on its
accuracy in spatial terms, timing and the computational time
it takes to train and predict. Spatial trajectory errors are the
offset in location at a certain point in time, whereas timing
errors are the offset in time at a specific point in space. In this
study, the spatial error is split in the along track, cross track
and vertical error. The timing error is measured at the point
of landing, ETA prediction.

The along track error is determined using the difference
between the distance travelled in the original direction of the
track by the original and by the predicted trajectory. In this
article, the along track error relative to the distance travelled
is used. The cross track error is the perpendicular deviation
from this original trajectory. For these distance calculations,
the Earth is assumed to be flat, as the distances covered are
small. The vertical error is calculated using the difference in
altitude between the true and predicted trajectory.

An aircraft of a predicted trajectory is considered to have
landed if the aircraft has reached EHAM, similar to the
definition in section III-A and the speed of the aircraft is
below the landing speed, for which values of 130 kts and
150 kts are used for ICAO Aircraft Approach Categories C &
D respectively [55].

The results of the APM need to be adapted before evalu-
ating, as one single simulation is performed instead of single
predictions of 120 seconds ahead, resulting in an increasing
look-ahead time and an increasing cumulative error. Therefore,
at each time step the previous error is deducted, resulting in
the error induced over the previous 120 seconds. It is noted
that the cumulative error does influence the results of these
simulations. However, the largest share of the lateral errors
are due to the assigned route being different from the original
trajectory flown and therefore these errors will in any case
continue to persist. The cumulative vertical error does result in
errors that persist in the prediction which otherwise wouldn’t.
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A different altitude will result in small differences in speeds
and therefore distances travelled. However, observing that the
deviation in altitude is low for a major part of the flight, and
the remaining flight time after top of descent is small, this is
assumed not to have a major effect on the results.

The computational time is measured during the training and
the prediction phase. For both Keras as XGBoost the GPU
implementation is used and all predictors are trained on a linux
system using a NVIDIA GeForce GTX 1050 graphics card.

G. Validation

The results of this study are validated in two ways. First
of all, the results of the newly developed predictors are
compared with the APM or baseline simulations which are
representative of currently used systems. Furthermore, the
predictions are evaluated against the original trajectories. To
ensure an unbiased evaluation, each predictor is trained using
2/3 of the data and tested using the remaining 1/3 of the data,
as can be seen in fig. 3. Also, the ADAM optimizer has a
random component and therefore it is chosen to perform these
experiments four times and use the average of these predictions
for evaluation.

IV. RESULTS

A. Data preparation

The data is acquired in the period of 15-10-2019 to 20-
01-2020 and this sourcing and preparation phase resulted in
39,418 historical trajectories combined with meteorological,
route and runway scheduling data. The data is standardised,
scaled and categorical values are One-Hot Encoded for the
machine learning predictors. A clustered visualisation of the
resulting trajectories is shown in fig. 5. 25.9% of the trajector-
ies in the set are executed by a Boeing 737-800, and the rest
of the trajectories is distributed over 40 other aircraft types. A
more extensive analysis of the data is provided in Appendix
A.

B. Trajectory clustering

Each clustering method is tested using both SSPD and
Hausdorff distances. Prior to these distance calculations, ap-
plying the Ramer-Douglas-Peucker algorithm resulted in an
average reduction of 93.65 % in the number of vertices in
the trajectories, speeding up the distance calculations while
keeping the outlines of the trajectories intact.

For the DBSCAN algorithms, first the correct parameters
had to be found. The k-NN search in case of Hausdorff
indicated that an ε of approximately 0.35 should be used and
in the case of SSPD an ε of approximately 0.05. It should
be noted that the distances are standardised and therefore do
not represent a physical distance measure. It is chosen to test
DBSCAN in combination with Hausdorff with an ε in the
range of 0.25 to 0.40 with steps of 0.05 and similarly for SSPD
a range from 0.02 to 0.08 with steps of 0.005 is used. For both
methods, a MinPts value in a range of 5 to 120 in steps of 5
is tested. From these tests, the best results were identified. For
this, a target of 5% outliers and ideal minimum cluster size

Table V
OVERVIEW OF THE CLUSTERING RESULTS USING THE 4 CLUSTERING
METHODS. THE COMPUTATIONAL TIME TO PERFORM THE DISTANCE
CALCULATIONS AND CLUSTERING IS INDEXED AT 100 = DBSCAN -

HAUSDORFF.

DBSCAN STAR

Hausdorff SSPD Hausdorff SSPD

ε/MinPts [-] 0.35 / 45 0.06 / 65 N/A N/A

Number of clusters 6 7 10 10

Number of

outliers
2940, 7.3% 4048, 10.1% 0 0

Comp. effort [-] 100 137.7 0.241 0.332

of 1000 trajectories is used. Also, a visual inspection of the
resulting clusters is performed. The resulting, most optimal,
parameters can be found in table V.

The difference in performance between SSPD and Haus-
dorff is visualised in the comparison of single clusters using
the STAR based method, as can be found in fig. 4. It
is observed that although the Hausdorff method is able to
provide distances that result in clusters from roughly the same
direction, it is not able to capture the details necessary in this
trajectory set. In this case, a large share of the trajectories
following HELEN are assigned to the DENUT cluster. SSPD
is better capable of capturing these details as it provides a more
average distance compared to Hausdorff. The same behaviour
is present in most clusters for both DBSCAN and the STAR
method. It should be noted that this accuracy comes at the
cost of a larger computational effort, as stated in table V. The
same assessment was performed when assigning the routes of
the baseline simulations, resulting in the same conclusion. The
results of assigning these routes are very similar to the results
for clustering the trajectories and can be found in Appendix
B.

The final results of clustering using DBSCAN and STARs in
combination with SSPD can be found in fig. 5 and in table V.
DBSCAN identifies a large share of the trajectories, 10%, as
outliers, while not dividing the trajectories in the East and the
South into separate clusters. Also, it identifies several fairly
small clusters, which would result in less accurate results from
the predictors in the next stage. Splitting the clusters in the
East and the West requires a smaller ε, which would result
in an even larger number of outliers. These would then be
unavailable for training. On the other hand, to increase the
size of the smaller clusters a larger ε or a smaller MinPts
value is required, leading to even larger clusters in the East
and South. When considering the West, it does perform well.

The STAR based method is able to separate clusters located
close to each other and is able to find clusters of reasonable
size with about 400 times less computational effort required.
Also, it does not need to exclude outliers, such that all his-
torical trajectories can be used to train predictors. Therefore,
the STAR-based clustering method in combination with SSPD
is used for the remainder of this study. An overview of
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(a) Using Hausdorff distance metric (b) Using SSPD distance metric

Figure 4. Comparison between the results of SSPD and Hausdorff distance metrics for the STAR-based clustering method. The resulting DENUT cluster is
shown, the black contour indicates the Dutch FIR and the red dot indicates EHAM.

(a) DBSCAN clustering (b) STAR based clustering

Figure 5. Result of clustering using SSPD as distance metric for both DBSCAN and the STAR based clustering approach. The black contour indicates the
Dutch FIR and the red dot indicates EHAM.

the clustering results on a single-cluster level is provided in
Appendix C.

C. Trajectory prediction

The evaluation proposed in section III-F is presented here.
The results of the APM include all trajectories in the cluster
set, where the LSTM, MLP and GBM results include the
results for the test set, which is a random sample of 33%, only.
Also, MLP and LSTM tests have been performed four times,
as stated in section III, therefore the results include those

four tests. These sets are all representative samples of the full
problem. The predictors were tuned for the LAMSO cluster
of the STAR-based clustering method as it is relatively small,
speeding up the tuning process. The results for the experiments
on this cluster are presented here. Additional results for the
other clusters are shown in Appendix D.

1) Along track error: The relative along track error over
the length of the flight per predictor on the LAMSO cluster
can be found in the box plots in fig. 6. A positive along track
error indicates that the aircraft is predict to fly too fast and
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a negative along track error that the aircraft is behind on the
original trajectory.

It is observed that the standard deviation of the APMs
is in the same order of magnitude as the novel predictors
when aircraft are far away from the airport, indicating similar
performance in cruise. However, when approaching the airport
larger differences in performance are observed. Furthermore,
the MLP shows a large variance when the aircraft are further
away from the airport and it does not perform as well as
the LSTM and MLP predictors. The GBM predictor provides
more constant predictions than the LSTM predictor, indicating
that it performs better on the data at hand. In turn the LSTM
predictor outperforms the MLP. Also, both the GBM as the
LSTM predictors show an increase in variance in the last part,
between 800 and 0 seconds to landing. This is approximately
where the STAR ends and the aircraft fly to the final approach.
However, also in this part the GBM predictor outperforms the
others.

2) Cross track error: The cross track error for the exper-
iments on the LAMSO cluster is shown in fig. 7, where no
distinction is made between deviations to the left or the right
of the original path.

A similar pattern as in the along track error is observed,
with the APM having a larger mean cross track deviation and
a larger variance than the novel predictors. Again, the GBM
predictor outperforms the other predictors, while the MLP and
LSTM predictors show similar performance. The cross track
error also shows an increase in variance in the final part of the
flight. Again, this is approximately where, in the Dutch FIR,
the aircraft transition from the STAR to the final approach.

3) Vertical error: The vertical error is expressed in feet
and can be found in fig. 8 for the LAMSO cluster. A positive
vertical error indicates that the aircraft is predicted to fly at too
large an altitude and a negative vertical error that the aircraft
flying lower than the original trajectory. The APM provides
good predictions of the altitude further away from the airport,
in cruise, whereas the LSTM and MLP models have more
difficulty in providing stable predictions in this flight phase.
Interestingly, the novel predictors show only a small increase
in variance when the aircraft approach the airport. The results
of the APM show both a larger variance and a larger median,
indicating that most of the predictions are too high. In the
final phase however, the aircraft are simulated at too low an
altitude.

Both the LSTM and MLP models show close to constant
behaviour over the flights, with a reduction in deviation close
to landing, indicating that the models perform well in the final
approach. The MLP slightly outperforms the LSTM, whereas
the GBM predictor outperforms both. It shows very accurate
behaviour in cruise, while having similar performance during
descent compared to the other predictors.

D. ETA error

The error in the predicted time of arrival for the LAMSO
cluster can be found in fig. 9, where a positive ETA indicates
that the prediction landed earlier than the original trajectory. It

is observed that the APM simulations have a mean prediction
error of zero, whereas the novel predictors have a slightly
positive or negative offset. The variance in ETA prediction
differs per predictor, although it is noted that the LSTM
predictor performs worst and the GBM again shows the best
performance. Overall, the variance in ETA error is larger than
expected for a 120 seconds look-ahead time.

E. Computational time to train and predict

The time to train and predict for each predictor for the
LAMSO cluster is shown in table VI. The training and
prediction time for GBM includes the three separate models
for each parameter (lat, lon, alt). It is observed that the LSTM
model requires about 5 times more time to train, compared to
the other models, whereas the GBM model is fast in training
but slow in prediction. The latter is due to the fact that it
predicts single values instead of multivariate sequential output,
as stated in section III. The data in table VI is indexed
as the exact values will differ significantly over data sets
and hardware, but to provide an indication of the order of
magnitude, the train time for the MLP model is equal to 860
seconds and the prediction time 2 seconds for the LAMSO
cluster.

Table VI
COMPUTATIONAL TIME TO TRAIN AND PREDICT USING THE 3 NOVEL

MODELS FOR THE LAMSO CLUSTER, INDEXED AT 100 = MLP

Predictor Train time [index] Prediction time [index]

MLP 100 100

GBM 87 1385

LSTM 505 109

F. Increased look-ahead time

It is investigated how the performance of the predictors
changes when the look-ahead time is increased. For this
purpose, the along track error is analysed and only the two best
performing predictors so far, LSTM and GBM, are tested. The
result in terms of relative along track error of these tests are
shown in fig. 10. It is observed that also at an increased look-
ahead time, GBM is the best performing algorithm. Also, it
is observed that although the performance deteriorates after
increasing the look-ahead time over 2 minutes, due to the
predictors being tuned for this value, they do not show worse
performance when increasing the look-ahead time further. To
provide an indication of the magnitude of the error for an
increase in look-ahead time, the along track error is presented
in fig. 11. It is observed that the magnitude of the along track
error increases significantly in absolute terms, as expected.

G. Effect of runway scheduling data

The runway scheduling data proposed in section III-A is
used to train the 3 novel predictors. In fig. 12 it is observed
that adding this data improves the cross track error in the
third quarter of the flight. This is approximately the section
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(a) APM, note the different scale of the y-axis compared to the other figures
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(b) MLP
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(c) LSTM
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(d) GBM

Figure 6. Relative along track error of the four prediction methods for the LAMSO cluster and a look-ahead time of 120 seconds. For a range of values for
time to landing, boxplots are shown. The teal line indicates the number of trajectories taken into account in each box plot. The time to landing is measured
from the moment of ADS-B interception by the antenna for each trajectory separately.
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(a) APM
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(b) MLP
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(c) LSTM
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(d) GBM

Figure 7. Cross track error of the four prediction methods for the LAMSO cluster and a look-ahead time of 120 seconds. For a range of values for time to
landing, boxplots are shown. The teal line indicates the number of trajectories taken into account in each box plot. The time to landing is measured from the
moment of ADS-B interception by the antenna for each trajectory separately.
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(a) APM
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(b) MLP
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(c) LSTM
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(d) GBM

Figure 8. Vertical error of the four prediction methods for the LAMSO cluster and a look-ahead time of 120 seconds. For a range of values for time to
landing, boxplots are shown. The teal line indicates the number of trajectories taken into account in each box plot. The time to landing is measured from the
moment of ADS-B interception by the antenna for each trajectory separately.
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Figure 9. ETA error of the four methods for a look-ahead time of 120 seconds
in the LAMSO cluster

of the flight where the aircraft move from the STAR to their
final approach. The improvements are small, with the mean
error in the third quarter decreasing by 5.6 % and the standard
deviation by 3.9 %. In the second and last quarter of the flight
no significant change is observed. In the first quarter, which
is the cruise phase, the performance of the predictor declined
by 8.1 % in terms of mean error and by 6.0 % in terms of
standard deviation. No significant difference is observed in the
along track, vertical and ETA error.

2 min 5 min 10 min 15 min 20 min
20

0

20

Er
ro

r 
[%

]

2 min 5 min 10 min 15 min 20 min
Look-ahead time

20

0

20

Er
ro

r 
[%

]

Figure 10. Relative along track error for an increasing look-ahead time of
the GBM and LSTM predictors on the LAMSO cluster. The plot on the top
represents the error for the GBM, whereas the bottom plot represents the
relative along track error for the LSTM.

V. DISCUSSION

A. Trajectory clustering

It is observed that clustering using DBSCAN does not
perform as expected. It identifies some very large clusters
and some very small ones, while classifying a significant
number of trajectories as outliers and it is computationally
heavy. When tuning the parameters, is was not possible to
find the right balance between the size of the clusters and
the number of outliers. As this trajectory set includes an
evenly spread, large number of trajectories from the East, a
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Figure 11. Along track error for an increasing look-ahead time of the GBM
and LSTM predictors on the LAMSO cluster. The plot on the top represents
the error for the GBM, whereas the bottom plot represents the relative along
track error for the LSTM.
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Figure 12. Cross track error for the LAMSO cluster, predicted using a GBM
model with and without runway scheduling data in the training set. The data
is split in four quarters measured in time to landing, the ranges indicate on
which part of the flight the boxplot applies.

density based approach such as DBSCAN is not sufficient to
capture differences between the sets of trajectories without
classifying a large share of them as noise. In previous research,
the DBSCAN method has proven to be useful to identify air
traffic flows when no knowledge on the airspace is available.
However, when applied as preparation for trajectory prediction
where a minimum amount of trajectories should be classified
as noise, it performs poorly. This is especially the case in an
airspace with a scattered set of trajectories, such as the arriving
aircraft to EHAM.

The STAR based clustering method does require knowledge
on the airspace, however, it outperforms DBSCAN both in ac-
curacy as in computational power required. A visual inspection
of the results allows to see that it is able to distinguish clusters
following routes which are close to each other without having
to exclude a large share of the data set as outliers.

B. Trajectory prediction

The results show the same pattern over the three spatial
metrics. The novel predictors outperform the APM which is
as expected as these are capable of learning more complex
patterns that cannot be captured in the simulations. The APMs
perform reasonable from a timing perspective compared to the
novel predictors.

The LSTM predictor was expected to outperform the other
methods as it is known for its good performance on time series
data. However, it performs better than the normal MLP only
in terms of along track error and in ETA prediction, while it
performs similar in cross track error and altitude prediction.
The GBM model outperforms the LSTM on all metrics,
which is not as expected. This indicates that the LSTM’s
capability of remembering past information to be used for
predictions later on a sequence is not as valuable as expected
for trajectory data. This, in combination with the significantly
larger computational effort required to train LSTM predictors
indicates that it is over-qualified for the problem at hand. The
dependencies of the trajectory data over the long term are not
so strong that it provides valuable information for prediction,
making the main quality of LSTM networks redundant.

Whereas the focus of an LSTM network is on the previous
points on a sequence, a GBM focuses more on information
from other similar and relevant examples it has trained on.
In this case, it is expected that the GBM performs better,
especially in the later stages of the flight, as it is able to use
information from other trajectories that had similar indicators.
These indicators could then for example be the direction of the
wind and runway scheduling, leading to the better performance
in the segment from the STAR to the final approach, as
is observed. Observing that these patters show resemblance
of a classification problem within the regression, the GBM
outperforms the neural networks.

Also, when increasing the look-ahead time of the predic-
tions, the LSTM predictor did not perform better than the
GBM predictor. However, it is observed that the relative error
does not increase significantly, indicating that these techniques
can be used for both short and medium term prediction. The
effect of using runway scheduling data was not significant
over the full length of the trajectory and is only found to be
relevant on the point where the trajectories transit from their
STAR to the final approach of the runways. However, as it
is observed that this is the segment where the performance
of all predictors deteriorates, it can be of use. Not only do
the aircraft disperse from their STAR to the final approach in
this stage, aircraft are also vectored off their normal routes by
ATC to regulate the amount of aircraft on the final approach.
To effectively account for the latter, additional research into
the interaction of trajectory predictions should be performed.

The time to predict using GBMs is significantly larger
as the latitude, longitude and altitude have to be predicted
separately in the implementation used. However the absolute
values are not of such magnitude that this poses a problem for
implementation in real world applications. Finally, it is noted
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that the LSTM model is found to be more resilient to parameter
tuning, resulting in similar performance in a relatively wide
range of settings. The MLP and especially the GBM models
were harder to tune, in which the latter is found to be more
prone to overfitting.

VI. CONCLUSIONS

The goal of this study was to identify the required pre-
paration steps for data-driven trajectory prediction as well as
identifying the best performing machine learning based tra-
jectory prediction algorithm. In the first phase of this research
it is concluded that using raw ADS-B data from an antenna
in combination with various other open source data sets it is
possible to construct a data set for trajectory prediction. The
data sourcing and combining steps of the research have been
set up in such a way that additional parameters can easily be
implemented.

The preparation phase also includes trajectory clustering
to increase efficiency and accuracy in the prediction phase.
Two distance metrics used for clustering were tested and
it is concluded that the Hausdorff distance is not capable
of capturing the details required for this case of clustering
and that the computationally heavier SSPD metric is to be
used. It is concluded that clustering using DBSCAN does
not meet all requirements for clustering prior to trajectory
prediction. It classifies too many trajectories as outliers while
not separating clusters from several major routes in the data
set, which are located in the East and South of the Netherlands.
A STAR-based clustering method, which essentially assigns
each trajectory to a known STAR, is implemented instead.
It outperforms DBSCAN in terms of accuracy, computational
time required and in simplicity.

The second phase of this research encompasses trajectory
prediction and predictors based on Multilayer Perceptrons,
Long Short-Term Memory networks and Gradient Boosting
Machines were tested. Also, a baseline simulation based on
aircraft performance models is implemented for comparison.
It is concluded that as expected, the three novel predictors
outperform the baseline. However, where it was expected that
the LSTM model would perform best, it is concluded that the
LSTM and MLP models perform similarly and that Gradient
Boosting Machines provides the best results on the problem at
hand. This indicates that the LSTMs ability to use information
from the distant past is not required for this case. This, in
combination with the significantly longer time required to train
the LSTM network, leads to the conclusion that LSTMs are
over-qualified for trajectory prediction in terms of sequential
prediction. From its relatively good performance in the flight
phase where aircraft transition between their STAR and the
final approach, it is concluded that the GBM predictor is
more accurate as this phase has resemblance of a classification
problem. The GBM focuses on any similar situation in the
whole training set set rather than focusing on recent points in
the sequence when predicting.

Finally, from the results obtained in this study it is con-
cluded that Gradient Boosting Machines outperform the other

novel predictors and the baseline overall, indicating that it
is the best fit for trajectory prediction on arriving aircraft.
However, further improvements should be investigated to
increase the accuracy if these methods are to be implemented,
especially in the later stages of the flight.

VII. RECOMMENDATIONS

Following this research, several recommendations for future
research can be provided. First of all, in the data preparation
phase it could be investigated whether additional parameters
such as the origin and operator of a flight can be useful
for prediction. Also, the accuracy in vertical terms could be
improved by using the exact aircraft weight at each point on
a trajectory. Furthermore, if a larger data set is used, it could
be investigated to cluster the trajectories within a STAR-based
cluster on their altitude, narrowing down the variance in the
set even further.

Secondly, it is recommended to predict the speeds, both
lateral as well as vertical, directly using the machine learning
predictors. These speeds can already be deduced from the
trajectory data for evaluation, but including it as output would
provide additional features for the machine learning algorithms
to optimise on. Note that these parameters are already included
in this research, but only as input and not as output.

Also, in the prediction phase it is recommended to invest-
igate a predictor which forecasts the pattern or route of a
flight without adding the time component. Here, a conventional
APM can be used to simulate the aircraft through this route.
Doing so could lead to insights in the capabilities of both
types of predictors, as a distinction can then be made between
the patterns and the performance of aircraft. In this case, it is
recommended to investigated a Gradient Boosting Machine to
choose these routes.

Finally, collaborative trajectory prediction, in which predic-
tions of multiple aircraft are determined at the same time,
allowing for interaction between these predictions, should be
investigated. Doing so could result an increase in accuracy in
the later stages of the trajectories, where improvements are
required.
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A
Route data analysis

In this appendix an analysis of the data gathered between 16-10-2019 and 20-01-2020 is presented. A
similar overview is provided in the Preliminary Report, part III, however, additional outlier detection
has been performed for the final result as presented in part I. Seeing as the aircraft type has been shown
to be of importance for the final results, an update of the data analysis is provided here. Next to the
aircraft type, the airline, origin and scheduled time of arrival are also analysed. These are not used
for the final results of this study, however, it is recommended to investigate their effect on trajectory
prediction in further research. All information in this appendix originates from the route data.

First, an overview of the full data set will be provided in section A.1, after which the contents of the
LAMSO cluster only will be shown in section A.2 as the main experiments have been performed on this
cluster.
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24 Route data analysis

A.1 Full trajectory set

The aircraft types of the trajectories in the set are shown in fig. A.1. It is observed that at 25.9% of
the total amount of trajectories, the Boeing 737-800 is the most common aircraft type in the data set.
The rest of the aircraft are distributed over another 40 aircraft types. In fig. A.2 it can be seen that
49% of the aircraft belong to KLM, while the remainder of the trajectories are from aircraft belonging
to a total of 82 other airlines.

The origin of the trajectories is distributed over in total 279 origins present in the full set, of which the
more frequent origins are shown in fig. A.3. Finally, in fig. A.4 it is observed that the majority of the
trajectories are scheduled to arrive during day time with a peak in arrival from 7.00 to 9.00 o’clock and
between 18.00 and 20.00 o’clock.
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Figure A.1: Frequency of occurrence of 41
aircraft types in the full trajectory set.
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Figure A.3: Origin of the trajectories in the full trajectory set, excluding 19,797 trajectories which originate from
other, less frequently occurring departure airports.
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Figure A.4: Distribution of the scheduled arrival time of the trajectories in the full trajectory set.
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A.2 LAMSO cluster

The LAMSO cluster comprises of 1,253 trajectories originating from the West. As shown in fig. A.5,
it has a similar distribution of trajectories over the aircraft types compared to the full set, although
the Boeing 737-800 is less prevalent in this cluster. The airlines in this cluster are mainly UK and
USA-based airlines, which is as expected for this STAR. Its distribution is shown in fig. A.6.

Similar to the airlines, the origins of the trajectories in this set are mainly in the UK and USA, as is
observed in fig. A.7. Finally, the distribution of scheduled time of arrival over the day is similar to the
distribution of the full data set, apart from one large peak in arrivals at 16.00 o’clock, fig. A.8.
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Figure A.5: Frequency of occurrence of 41 aircraft types
in the LAMSO cluster.
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Figure A.7: Origin of the trajectories in the LAMSO cluster.
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B
Route assignment for the baseline

simulations

As explained in the article, part I, the baseline simulations require a route or flight plan as input. To
provide an insight in the quality of these routes four examples of trajectories with their assigned routes
are shown and a qualitative analysis is performed. Each of these examples represents a pattern observed
in a part of the assigned routes. A cause for these patterns and an explanation of why the behaviour is
accepted is provided for each case. The four cases identified are as follows:

1. Direct-to’s and vectoring, small deviations from the routes

2. Following undefined or non-official routes

3. Transition from STAR to final approach is not clearly defined

4. Skipping waypoints on a regular basis

It should be noted that examples with relatively little data are chosen to be able to visually see these
patterns in the trajectory plots. In total 144 combinations of STARs and final approaches were used to
construct the routes for the baseline simulations.

A clear example of vectoring and direct-to’s is observed in the trajectories following the TOPPA STAR
to runway 18R fig. B.1a. Some aircraft are allowed to fly from the border of the FIR directly to the
final approach, skipping several waypoints. Also, a significantly larger number of aircraft are vectored
off the standard route prior to the last turn before entering the final approach. Seeing as this behaviour
would not have been included in any predefined route, it is concluded that this is the maximum level
of accuracy that can be obtained using the information available.

In the second example, fig. B.1b, the trajectories assigned to runway 36R are shown. Here, it is observed
that some aircraft fly via the East of Schiphol airport instead of via the route depicted in the figure.
No standard route is available representative of the route flown. Therefore, the route it is assigned to
is the best fit for these trajectories, although large differences are present.

The third case shows how the transition from the STAR to the final approach is under defined. In
fig. B.2a the trajectories following PUTTY towards runway 18R are shown. It is observed that a
variety of options to transition from the STAR to the final approach is used, some of which fly via the
west of EHAM while others fly over EHAM to approach runway 18R from the northeast. However,
seeing as these patterns are not defined in official routes this behaviour is accepted.
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30 Route assignment for the baseline simulations

The fourth pattern, skipping waypoints on a regular basis, is in the basis the same as direct-to’s
granted to aircraft. However, in both fig. B.2a and fig. B.2b it is observed that nearly all aircraft skip
one waypoint, HSD. To improve the accuracy of the baseline simulations, it could be investigated to
adapt the standard routes to the most common trajectories followed by aircraft, however in this study
only the official routes are used.

Concluding, by means of visual inspection it is observed the approach of assigning routes based on
the minimum distance between a trajectory and the standard routes provides acceptable results. Im-
provements could be investigated to make these routes more accurate, however this level of accuracy is
assumed to be representative of how aircraft are routed in real life.
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(a) TOPPA - 18R, containing 492 trajectories.

(b) TOPPA - 36R, containing 126 trajectories.

Figure B.1: Trajectories assigned to runways 18R and 36R following TOPPA. The black line indicates the route,
the red dot indicates EHAM and the black contour the Dutch FIR.
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(a) PUTTY - 18R, containing 506 trajectories.

(b) PUTTY - 36R, containing 106 trajectories.

Figure B.2: Trajectories assigned to runways 18R and 36R following PUTTY. The black line indicates the route,
the red dot indicates EHAM and the black contour the Dutch FIR.



C
Single cluster results of STAR-based

clustering

This appendix contains the final results of clustering using the STAR-based method on a single-cluster
level. These results can also be found in the overview of all clusters in part I, but are provided here as
they form the basis for the final experiments and results of part I and showing them separately allows
for visual inspection of the quality of the clustering approach.

The number of trajectories per cluster can be found in table C.1. The results for the DENUT cluster,
fig. C.1, have been shown in the scientific paper (part I) as an example. Here it was observed that
the Hausdorff distance metric is not able to capture the details required for this trajectory set as it
clustered trajectories from different routes together. Similar behaviour is observed in the HELEN,
LAMSO, NARSO, REDFA and TOPPA clusters, see figures C.3, C.4, C.6, C.8 and C.10 respectively.

Table C.1: Number of trajectories per cluster, for both distance metrics and using the STAR-based clustering
method.

Cluster Hausdorff SSPD
DENUT 8234 6390
EELDE 4719 5746
HELEN 2031 3734
LAMSO 521 1253
MOLIX 3008 4475
NARSO 1767 1022
NORKU 9239 8665
REDFA 6997 5799
REKKEN 813 1366
TOPPA 2089 968
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34 Single cluster results of STAR-based clustering

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.1: DENUT cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.2: EELDE cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.
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(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.3: HELEN cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.4: LAMSO cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.



36 Single cluster results of STAR-based clustering

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.5: MOLIX cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.6: NARSO cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.
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(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.7: NORKU cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.8: REDFA cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.
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(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.9: REKKEN cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.

(a) Using Hausdorff distance metric. (b) Using SSPD distance metric.

Figure C.10: TOPPA cluster, constructed using SSPD and Hausdorff distance metrics with the STAR-based
clustering method. The black contour indicates the Dutch FIR and the red dot indicates EHAM.



D
Prediction results of all clusters

As explained in part I, the predictors were tuned to perform well on one cluster of trajectories, for
which the LAMSO cluster is used. However, it is assumed that the model architecture as tuned for the
LAMSO cluster is sufficient to provide good results on the other clusters as well. This is assumed as
the type of data and the problem posed is similar, as well as the complexity of the relationships and
patterns in the data. To show the validity of this assumption and to provide an overview of all results
obtained in this study, the results of the rest of the clusters is presented here.

The amount of experiments performed and therefore results obtained in this study is large with ten
clusters and four predictors. Therefore, the results are presented on an experiment basis instead of the
distribution of the error over the time to landing as presented in part I. The three spatial metrics can be
found in section D.1, section D.2 and section D.3. The time error can be found in section D.4. Finally,
an overview of all results by means of the average and standard deviation of the error of all experiments
is presented in section D.5.
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D.1 Relative along track error

The relative along track error per experiment is shown in fig. D.1. It is observed that the relative
performance of the four predictors is the same over all clusters. The GBM predictor outperforms the
others, while the LSTM is second in terms of relative along track accuracy, the MLP is the worst
performer of the novel predictors, while all novel predictors outperform the baseline simulations using
APMs. Also, it is observed that the relative along track error is similar over the clusters.
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Figure D.1: Relative along track error of all experiments. Boxplots are shown for each predictor and cluster
combination. The clusters are in order of increasing size, apart from the LAMSO cluster.
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D.2 Cross track error

The cross track error per experiment is shown in fig. D.2. Again, it is observed that the relative
performance of the four predictors is the same over all clusters. The difference between the performance
of the novel predictors is less distinct, which is also the case in the results presented in part I. However,
it is observed that the cross track error is similar over the clusters.
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Figure D.2: Cross track error of all experiments. Boxplots are shown for each predictor and cluster combination.
The clusters are in order of increasing size, apart from the LAMSO cluster.
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D.3 Altitude error

The vertical or altitude error per experiment is shown in fig. D.3. It is observed that the relative
performance of the four predictors is the same over all clusters. However, the LSTM and MLP predictors
perform similar whereas the GBM predictor outperforms the other predictors, which confirms the results
presented in part I. Finally, it is again observed that the altitude error is similar over the clusters.
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Figure D.3: Altitude error of all experiments. Boxplots are shown for each predictor and cluster combination. The
clusters are in order of increasing size, apart from the LAMSO cluster.
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D.4 Time error

The time error, ETA prediction, per experiment is shown in fig. D.4. It is observed that the MLP
predictor shows worse performance compared to the other novel predictors. Apart from the LAMSO,
NARSO, MOLIX and DENUT clusters, it also performs worse than the baseline simulations.
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Figure D.4: Time error of all experiments. Boxplots are shown for each predictor and cluster combination. The
clusters are in order of increasing size, apart from the LAMSO cluster.
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D.5 Overview of all spatial and temporal evaluation metrics

All results of the experiments are presented in the previous sections. For completeness, in table D.1 the
results of all these experiments are presented by means of the average and standard deviation of each
error.

Overall, it is observed that similar results can be obtained when using the model architecture tuned on
the LAMSO cluster for training and predicting using other clusters. In table D.1 and previous sections
it is observed that the GBM predictor outperforms the others in all experiments on almost all metrics.

However, it is expected that tuning the models for each cluster separately would improve the results of
all predictors, especially in terms of the ETA error. The LSTM predictor is found to be resilient against
parameter tuning in part I, which indicates that it performs well with a relative wide range of parameter
settings. Therefore, it is expected that tuning the LSTM predictor for each cluster separately would
result in less improvements in comparison with the MLP and GBM predictors.
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Table D.1: Overview of the results for all four models on all 10 clusters, showing the mean and standard deviation
of each metric.

along [m] rel. alo. [%] cross [m] vertical [ft] ETA [s]
Cluster Size Pred. Mean StD. Mean StD. Mean StD. Mean StD. Mean StD.
LAMSO 1253 SIM 2184 11922 21 109 4805 7722 -16 1605 -1 33
LAMSO 1253 MLP -543 3694 -1 31 1752 1993 12 751 2 116
LAMSO 1253 LSTM -448 2798 -2 30 1925 2342 11 901 -2 131
LAMSO 1253 GBM -944 1982 -5 19 1186 1714 72 661 -23 111
TOPPA 968 SIM 2261 10175 18 76 5998 7308 -103 1752 -2 53
TOPPA 968 MLP 94 12068 4 76 5011 7634 -224 1703 -35 177
TOPPA 968 LSTM 81 4917 1 31 2808 3385 16 1035 56 98
TOPPA 968 GBM -917 2246 -4 11 1546 1970 39 694 12 159
NARSO 1022 SIM 2186 12522 24 309 4143 6745 157 2210 -32 128
NARSO 1022 MLP 830 7727 6 66 2609 3007 -170 1223 -23 214
NARSO 1022 LSTM 10 5904 2 48 2296 3131 29 1164 -8 167
NARSO 1022 GBM -842 3255 -4 35 1183 1742 60 697 0 96
REKKEN 1366 SIM 1141 10107 14 92 5295 6093 35 1619 -17 109
REKKEN 1366 MLP -523 4613 -1 32 2228 2540 79 932 -32 283
REKKEN 1366 LSTM -236 3768 0 30 2016 2308 48 1033 -19 166
REKKEN 1366 GBM -842 2482 -4 19 1290 1629 26 790 -30 150
HELEN 3734 SIM -59 9471 7 93 5250 5735 -66 1659 -8 47
HELEN 3734 MLP -1303 3336 -6 58 1809 2104 81 714 1 248
HELEN 3734 LSTM -517 2459 -2 51 1776 2307 -9 790 -4 187
HELEN 3734 GBM -856 5079 -4 32 1595 2181 57 661 -36 175
MOLIX 4475 SIM 1462 11029 17 99 4133 6696 9 1652 -7 51
MOLIX 4475 MLP -302 3306 2 43 1635 1972 12 750 -13 168
MOLIX 4475 LSTM -118 2501 0 35 1377 1955 0 771 4 170
MOLIX 4475 GBM -841 1719 -4 55 1137 1613 44 715 -10 111
EELDE 5746 SIM 2744 11516 26 117 5258 6729 -70 1753 -12 103
EELDE 5746 MLP -340 4001 1 63 2096 2419 -6 906 -19 185
EELDE 5746 LSTM -339 3474 0 45 1485 1889 -6 870 -21 173
EELDE 5746 GBM -895 2698 -4 20 1303 1703 52 704 -27 166
REDFA 5799 SIM 1593 29329 20 291 4746 26610 104 1588 1 146
REDFA 5799 MLP -385 3782 -2 47 1778 2271 12 710 27 164
REDFA 5799 LSTM -478 2876 -2 38 1461 2089 -9 809 -48 208
REDFA 5799 GBM -962 2527 -5 27 1198 1713 54 640 -17 86
DENUT 6390 SIM -583 9933 4 106 3825 5311 -49 1608 -10 35
DENUT 6390 MLP 137 3171 1 48 1475 1888 -25 808 7 171
DENUT 6390 LSTM -182 2492 0 54 1277 1739 -11 794 0 159
DENUT 6390 GBM -855 2166 -4 32 1131 1664 46 786 -29 88
NORKU 8665 SIM 3466 25127 30 298 5211 16125 -11 1609 21 65
NORKU 8665 MLP -217 3844 0 50 2163 2148 9 902 20 184
NORKU 8665 LSTM -302 2584 -1 39 1338 1623 13 723 -9 142
NORKU 8665 GBM -897 2579 -4 34 1372 1757 27 787 -5 72
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1
Introduction

For the past century, the amount of people and goods that travel by means of flying has been increasing
steadily. In the Netherlands for example, the main airport of both the country and its capital Amster-
dam, Schiphol Airport (EHAM), has reached its current limit of 500,000 flights annually. This leads
to a full airspace near busy airports where lots of aircraft are landing, taking off and passing at the
same time. Air traffic controllers ensure safety and efficiency by monitoring and guiding the aircraft
through the upper airspace, control areas and terminal control areas. In order to maintain safety, air
traffic controllers (ATCo) can direct aircraft into holding patterns or tell them to slow down if their
airspace becomes to busy or when no landing spot is available. At the same time, they can surpass
the flight plan of an aircraft by providing a direct-to, a shortcut, when enough room is available and
thereby making the flight more efficient.

In order to provide ATCo with accurate predictions of how busy a sector will be in the near future,
trajectories of aircraft are predicted. Currently, this is done using aircraft performance parameters
(APPs), which provide an indication of the typical performance of a specific type of aircraft in a certain
flight phase. Using kinematic and dynamic models, the trajectories of the aircraft are predicted with
these parameters as an input. These trajectories constitute of points in 3D space and time, which
together form a so-called 4D trajectory. Although these predictions serve as a good estimate of a future
position of an aircraft, several major indicators of trajectories, such as weather and other traffic, are
often not taken into account in these models.

Over the past decades, efforts have been made to increase the information available on each flight and
aircraft. All commercial aircraft currently broadcast ’ADS-B’ data, which provides an accurate position
and the speeds of the aircraft. This data can be received by anyone with an antenna and is therefore
openly accessible. Also, increasingly accurate meteorology data, such as temperature and wind speeds,
is becoming openly available.

Using this these two types of data, machine learning models can be trained on the historical flight data
and then applied on current flights. These types of trajectory predictors take more information into
account than the current type of predictors used today by ATCo and can therefore serve as a more
effective tool. This could then in turn lead to more efficient and safe flying of aircraft as collisions
and busy sectors can be identified earlier and with higher accuracy. Also, additional data such as the
origin and destination of a flight can be added, enriching the data sets in order to make the models
even more accurate. Research in this field has focused on either improving the current predictors
using aircraft performance models (APMs) or developing new predictors, both using machine learning
methods. Recent advancements show a potential for individual methods but a comparison of the best
performing algorithms is missing. Also, most studies take different factors into account, limiting the
comparability between them.
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Research Questions

Considering the need for more accurate trajectory predictions for ATC in order to improve safety and
efficiency in busy air spaces and the opportunities arising due to data availability and the available
processing power nowadays, it is proposed to develop several machine learning trajectory prediction
models and compare these to baseline methods using existing APMs and simulators. The research
question will be as follows:

‘Which machine learning algorithm is best suited to
perform trajectory prediction for 4D trajectories of aircraft?’

The suitability of an algorithm can be determined using several measures. Seeing as a 4D trajectory
prediction model is being analysed, a first indication of performance is to measure the time error and
spatial errors. Furthermore, to support ATC the stability of the predictor is of importance, as well as
the speed of the predictor. It should be noted that the stability of machine learning based predictors
has not been investigated in recent literature yet. This implicates the following four sub questions:

1. Which algorithm provides the most accurate predictions in terms of ETA?

2. Which algorithm provides the most accurate predictions in terms of cross- and along-track errors
along the whole trajectory?

3. Which algorithm produces the most stable predictions in terms of change in ETA?

4. Which algorithm is favourable in terms of processing power, assessed both in the learning as in
the prediction phase?

Structure of the report

This report details the work performed in order to analyse which type of machine learning algorithm
is best suited to perform trajectory prediction for 4D trajectories of aircraft. First, an extensive review
of previous and current work in this direction will be presented in chapter 2. Then, the data used in
this study will be shown in chapter 3, where also the processing and an analysis of the data will be
explained. The experiment setup will be presented in chapter 4 with an accompanying planning in
chapter 5. Finally, conclusions will be drawn in chapter 6.



2
Literature Review

In this chapter background information on the topic and relevant recent efforts in the field of trajectory
prediction (TP) will be presented. Following the brief description on trajectory prediction in the
introduction, several different forms of TP will be explained in detail in section 2.1. Then, a more
elaborate introduction to the chosen machine learning algorithms will be given in section 2.2, after
which the inputs and outputs of the to be built models will be introduced in section 2.3. The measures
with which predictors are to be evaluated are presented in section 2.4.

2.1 Trajectory prediction methods

As explained in the introduction, trajectory prediction of aircraft is used to estimate the amount of
traffic in a sector of airspace in a future point in time and to predict collisions of aircraft. In order to do
so, several methods have been developed. The main group of predictors consist of a kinematic model
with as input a set of aircraft performance parameters. These models determine the aircraft states and
how these propagate over time, forming a trajectory. A lot of research has been performed in this field,
which is detailed in subsection 2.1.1. Then, a more recent development entails the same principal, but
with variable APPs as input. This is detailed in subsection 2.1.2. Then, a method in which historical
flight data is used to directly predict trajectories by means of machine learning models is presented in
subsection 2.1.3. A similar method entails first clustering similar trajectories, after which these clusters
serve as a basis to train individual machine learning models. This is presented in section section 2.1.4,
after which the best performing algorithms from previous research are chosen in section section 2.1.6.
The technical details of the algorithms and methods presented in this section will be shown in section
section 2.2.

2.1.1 Conventional trajectory prediction using aircraft performance models

The current standard for trajectory prediction in ATM are systems using APMs, which are based on
the Total Energy Model (TEM). The TEM sets the rate of work as performed by the forces acting
on the aircraft, for example the thrust forces applied by the engines, equal to the rate of potential
and kinetic energy [49]. In BADA [50] as well as in OpenAP [55], this is done using a combination
of kinematic and dynamic aircraft performance models which simulate the behaviour of aircraft under
given circumstances. Kinematic models simulate the motion of an aircraft without considering the
forces acting on the aircraft, while dynamic models for this purpose are generally point-mass models
with forces working on the centre of gravity. These models describing the aircraft’s motion are combined
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with flight plan or intent data in order to predict the trajectory of an aircraft and inputs are the aircraft
and engine properties.

Although these models provide accurate predictions of aircraft behaviour on set trajectories or during
flight phases such as climb and descent, they cannot predict the route an aircraft will fly. Therefore,
they are dependent on flight plan data or similar sources which do not take any circumstances such as
busy sectors and other traffic into account. Flight plans are often only executed in broad lines rather
than to the detail of each waypoint, especially in the final part of a flight, preventing predictors using
APMs to be very accurate on the long term. It should be noted, however, that the current ATM
structure is using these methods and therefore improving the existing methods rather than developing
new ones will simplify updating the models when it comes to implementation of new solutions.

2.1.2 Trajectory Prediction using adjusted aircraft performance models

The APMs detailed in the previous section can also be adjusted to the specific flight at hand. Two
methods have been presented in recent literature. First of all, the way in which APPs, the inputs to the
APMs, are chosen from a database of APPs can be enhanced. These are chosen based on the aircraft
type, flight phase, but also on more specific flight parameters, such as the current mass and the CAS
and Mach numbers. Alligier et al. [1] proposed a least-squares method on the thrust law to estimate
the mass of an aircraft to use this as input to BADA. Later, in [3] and [4] they propose to estimate
the mass and the CAS & Mach numbers using machine learning methods, which are then used as
input to BADA. Hrastovec et al. [31] propose a similar machine learning method, also estimating mass
and speeds. Hadjaz et al. [22] tuned existing APPs using a ’Covariance Matrix Adaptation Evolution
Strategy’, which entails adapting the APPs by minimising the difference between the predicted and true
trajectories. However, the accuracy of the latter deteriorates for predictions of 10 minutes and further
due to over fitting, which is defined as an algorithm being trained so well on the trainin data that its
performance deteriorates on new test data.

A similar strategy is found in research which proposes to estimate new APPs, without having to estimate
inputs to existing APP models first. The advantage of this method is that using historical flight data
more specific sets of APPs can be estimated, tailored to specific routes and circumstances, which leads to
more accurate results. Hrastovec et al. [30] proposes a method using a ’Nearest Neighbours’ algorithm
to predict APPs, and in [29] they add several regression methods in this comparison.

The main advantage of these methods is the compatibility with the current type of ATM and ATC
systems. The new sets of APPs can be used in current predictors without having to change infrastructure
or integration with the current systems. Also, it is a fairly robust method if information is missing, as
APPs from for example BADA and OpenAP can still be used with the existing methods. However, the
disadvantage is that no full route is predicted and flight plans will still be necessary. Also, data used
to determine these new APPs can also be used to perform direct predictions, which is detailed in the
next section.

2.1.3 Trajectory prediction using direct machine learning models

With the increasing amount of data available on flights and the increasing amount of processing power
available, a new solution to trajectory prediction became feasible several years ago. By using historical
flight- and other data to train machine learning models, trajectories can be predicted directly without
having to estimate APPs first and then running a simulation with kinematic and dynamic models. This
method eliminates all conventional physical calculations from the predictions and has proven to work
for specific use cases.

In 1999, Le Fablec et al. [33] proposed to predict the vertical trajectory of aircraft using a neural
network and was one of the first to perform such an attempt. Similarly, Cheng et al. [13] proposed a
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traffic flow predictor using a neural network. Both use a single-layer neural network. This line of work
was also applied on delay prediction, which serves a similar purpose but does not entail the full analysis
needed for trajectory prediction. This was done by Takeichi et al. [56].

Later, Liu et al. [36] and Pang et al. [42] propose an approach using multi-layered recurrent neural
networks. An example of these are ’Long Short Term Memory’ neural networks with convolutional
layers. These are better at predicting time-varying data compared to feedforward neural networks and
with a ’deep’ neural network structure with two embedded convolutional layers, these models outperform
simple shallow neural networks as proposed by the earlier work in [33], [13].

In 2013, another approach was initiated by de Leege et al. [15]. They propose supervised regression
techniques such as ’Support Vector Regression’ and ’Generalized Linear Models’, which are compared to
(simple) neural networks. The regression methods perform similar, but slightly better than the neural
network. Similarly, Hamed et al. [23] and Alligier et al. [5] propose several regression methods which
outperform the more simple neural networks. Especially ’Gradient Boosting Machines’ and ’Multivariate
Locally Weighted Linear Regression’ outperform the other methods. Tastambekov et al. [57] propose
functional regression, in which the data is fitted on a function. However, too many parameters leads to
over fitting and a high sensitivity to noise and variation in the input parameters.

A major benefit of these methods is that any type of data which is indicative of aircraft performance
and traffic flow can be taken into account and used to train the models. However, with the amount
of data increasing both in terms of features and variables as in terms of amount of historical data, the
models will become fairly large. A solution to these problems is presented in the next section.

2.1.4 Trajectory prediction using clustering and direct machine learning models

Similar to the methods presented in the previous section, trajectory prediction models can also be
trained on clustered trajectories. In order to do so, trajectories are clustered using either pre-determined
trajectory characteristics such as origin and destination, or using machine learning methods which are
able to determine the basis for clustering themselves. After clustering the machine learning models are
trained for each specific cluster, which leads to more efficient training and prediction. Each new flight
needs to be assigned to a cluster before the prediction can take place. The machine learning models
applied after clustering can be the same as presented before in the direct method. First, a brief overview
will be given of relevant literature for clustering of trajectories only, after which literature in which the
clustering and prediction combination is tested will be presented.

Clustering of data is a typical purpose for machine learning algorithms and several approaches to cluster-
ing aircraft trajectories have been explored in the past. A first attempt in this direction was performed
by Jesse et al. [32], which provides an overview of three different categories, namely partitional, density
based and hierarchical clustering. They concluded that density based clustering in combination with
fuzzy memberships provides the most accurate results for the dataset at hand, but that the clustering
process has to be faster. In 2010, Rehm et al. [44] presented a hierarchical clustering method for air-
craft trajectories. In 2011, Leiden et al. [34] investigated several density based methods with one day of
traffic data and concluded that for ridge detection and density based spatial clustering for applications
with noise the data was to sparse and k-means clustering proved to be the best performing method in
this case. However, when larger datasets are used, DBSCAN is often found to be better than other
density-based methods. Gariel et al. [21] has shown that DBSCAN works better than k-means due to
the noise which is inherently present in trajectory data and Salaun et al. [48] proposed a categorization
using hierarchical clustering to split the trajectories based on the destinations, but uses DBSCAN to
form clusters within these categories. Then, Enriquez et al. [16] proposed a spectral clustering method
for aircraft trajectories, but Condé et al. [14] have shown that density based methods such as DBSCAN
perform better. From this literature it was concluded that density based algorithms such as DBSCAN
are preferred over distance based clustering methods as the shape of the clusters can be arbitrary. Also,
DBSCAN performs well with noise and in the detection of outliers, which are inherently present in
real traffic data. However, clustering can be a time consuming process, especially as a dataset is large.
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Therefore, it should be investigated whether this behaviour can be mitigated.

Several studies perform dimensionality reduction using Principal Component Analysis (PCA) in order
to speed up the clustering process. Nicol et al. [40] studied the implementation of functional PCA on
aircraft trajectories and it was applied by both Gariel et al. [21] and Salaun et al. [48] before clustering
using DBSCAN and it proved to speed up the clustering process.

With this research on clustering of trajectories in mind, literature using both clustering and trajectory
prediction methods are now presented. Hong et al. [28] uses ’Dynamic Time Warping’ for clustering
and then applies a Multiple-Linear Regression (MLR) model on each cluster for prediction. After, Wang
et al. [59], [60] performed clustering using DBSCAN after PCA. They compared a multi-cells neural
network (MCNN) with the MLR, and concluded that the MCNN performs better. Later, they perform
a clustering method based only on the runway usage and predict using a deep neural network with three
hidden layers [61], however in this research only the ETA is predicted. Similar to Wang et al., Liu et
al. [36] and Verdonk Gallego et al. [58] use PCA and DBSCAN for clustering, where this also proves
to be an effective method.

Barrat et al. [8] apply a different clustering method. First, they extrapolate and shorten trajectories
such that they are all of the same length, after which the similarity of the trajectories is calculated using
the Euclidean norm. This is then used for k-means clustering. Each cluster has a mean trajectory, which
serves as the prediction. New flights are coupled to these clusters using ’Gaussian Mixture Models’,
which assigns a trajectory to a cluster based on a certain probability. However, this method can
introduce errors due to elongating and shortening the trajectories and the number of clusters has to be
determined by hand.

2.1.5 Hybrid trajectory prediction using APMs and direct machine learning

A hybrid version, which has to our knowledge not been proposed before, can consist of direct ma-
chine learning methods to predict the trajectory in a rough spatial manner, while an APM is used to
determine how the aircraft would fly through this ’flight plan’. This would come down to predicting
the waypoints and altitudes, however in more detail to also cover direct-to’s and diversions, and then
executing this ’flight plan’ using physics. The benefit of investigating this type of predictor would be
that the performance of using physics versus historical data to predict the performance of the aircraft
can be compared easily, as a full prediction including the time component will also be available from
the direct machine learning method. Also this method may be easier to implement in the current ATM
system.

2.1.6 Comparison of trajectory prediction methods

The five different lines of work presented in the previous sections can be compared on a scale of ’physics’
to ’black-box approximation’. The conventional trajectory prediction method, using APPs, as intro-
duced in section 2.1.1, is considered the most physical method available and represents the physical
behaviour of aircraft directly. The APPs are determined using knowledge of the aircraft and aircraft
flight envelope testing and some data originates from the aircraft manufacturers itself. Also, the kin-
ematic models used to simulate the trajectories are simplified representations of actual aircraft. The
second method, introduced in section 2.1.2, using adjusted APPs, is considered to be less supported
by physics. This is due to the APPs being derived from historical flight data and other means and
therefore finding the values for the APPs which fit best with the behaviour seen in aircraft. These
values are still used in kinematic models which represent aircraft and they should still lie within the
limits set for aircraft, but the values itself often do not originate from physical equations or tests. Here,
the APPs are determined using a black-box approximation, while the APMs are still physical.
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Then, the third and fourth methods, detailed in sections 2.1.3 and 2.1.4, are methods which are entirely
black-box approximations. No physical quantities or calculations are used in these models and predic-
tions, although they are based on historical flight data which in itself is based on physics. On the scale
from physics to black-box approximation the fifth, hybrid, method would be located in the middle of
the sequence.

For a complete overview on which type of predictor is best suited to perform 4D trajectory predictions,
a comparison should be made between these five methods based on common inputs and outputs. For
the sake of time and to limit the extent of this research, however, it is chosen to develop a baseline
which represents the systems currently in use in the ATM system. The baseline is then compared with a
more advanced method. This baseline entails conventional prediction using an APM such as BADA or
OpenAP, after generating rough flight plans through the Dutch FIR. The more advanced methods will
be based on the fourth method, by first clustering and then training a machine learning model on these
clusters. Finally, both methods can also be compared with the actual flown trajectories. The fourth
method is chosen as it provides the most promising and best performing results in recent literature.

For the advanced method, algorithms have to be chosen to compare. First of all, it is concluded
the density based clustering using DBSCAN, after dimensionality reduction using PCA is expected
to provide the best results. Then, for the machine learning algorithms used in the predictor several
categories can be distinguished. From this literature review it was concluded that among the Decision
Tree models, Gradient Boosting Models outperformed other DT methods, except for Random Forest in
one case. Among the regression methods the simple linear and logistic regression methods, as well as
Support Vector Machines, performed worse than the more sophisticated methods, Multivariate Locally
Weighted Linear Regression (LWLR) being the top performer. Furthermore, it was found that most
methods outperform simple, one-layer neural networks. However, deep neural networks have proven
to perform better. A distinction can be made between deep feedforward networks and deep recurrent
networks. The former often use Multi-layer Perceptrons (MLPs), while for the latter Long Short-term
Memory (LSTM) networks, with or without convolutional layers, provide the best results.

Concluding, it is chosen to compare GBM, LWLR, MLPs and LSTMs as prediction algorithms in the
fourth method, in combination with clustering using PCA and DBSCAN. The technical details of these
algorithms will be introduced in the next section.

2.2 Machine learning algorithm specifications

Most models and algorithms proposed in the previous section use machine learning techniques. These
techniques learn from historical data in order to predict future data. This learning can be done in
various ways and choosing the correct machine learning algorithm depends on the type of data and the
application or goals of the model. In the previous section the best performing algorithms from literature
have been identified and categorised. Here, the specifications of the algorithms will be explained in detail
and compared with other relevant state-of-the art algorithms.

Machine learning methods relevant for this research can be divided in three groups. Namely, relatively
simple regression methods, more advanced regression methods which combine multiple steps and deep
neural networks. All these methods can be applied on similar regression and classification problems,
but differ in approach or structure. The simple regression methods are equations which are fitted on
the data and are detailed in section 2.2.1. Then, some more advanced methods in which multiple simple
regression methods are combined are presented in section 2.2.2. The previously identified algorithms
GBM and LWLR belong to this category. Then, several deep neural networks are introduced. The latter
includes the MLP and LSTM networks introduced in the previous section and these are presented in
section 2.2.3.
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2.2.1 Simple regression methods

Most machine learning methods rely on regression in one way or another. The basis for this is linear
regression, which is therefore detailed shortly. In linear regression a target value (y) is predicted based
on independent or explanatory variables (x). The accuracy of linear regression is assessed using a cost
function and the regression is optimised using for example gradient descent. An example of such a
model can be found in eq. (2.1).

Linear Regression : ŷi =a0 · xi + a1

Cost Function : C = 1
n

·
n∑

i=0
(yi − ŷi)2

Gradient Descent : a0 =a0 − LR · dC

da0
a1 = a1 − LR · dC

da1

(2.1)

In this model LR is the learning rate, which is a parameter that defines how fast an algorithm learns
and therefore has influence both on the convergence of the algorithm as on the overshoot. Every epoch,
which is a run over all historical data, the cost function is calculated and using gradient descent the error
in the cost function is minimised, resulting in a new linear regression equation which approximates the
training data better. Algorithms using the same techniques but different functions include polynomial,
least-squares and logistic regression. Furthermore, algorithms using multiple explanatory variables (x1,
x2, ... , xi) are called Multiple-Linear Regression (MLR) algorithms and operate in a similar way.
Some simple regression methods have been analysed in previous research, often as a baseline for more
advanced methods, by which they were always outperformed. Therefore they are not considered for
further analysis as stand-alone methods. However, they form the basis of the more advanced methods,
which are presented in the next section.

2.2.2 Advanced regression methods

More elaborate methods use simple regression as a basis but perform other actions on the data as well.
Two forms used in previous research are ’Locally Weighted Linear Regression’ (LWLR) and ’Locally
Weighted Polynomial Regression’ (LWPR). These are non-parametric regression methods, meaning
that they do not learn a fixed set of parameters, but define this number themselves iteratively. The
algorithms first define subsets of data using the Eucledian Distance, which is the perpendicular distance,
after which either linear or polynomial regression is applied on each subset. By defining these subsets
these algorithms can handle non-linear data, which is not possible using linear regression. This method
was used by amongst others Hamed et al. [23].

Decision trees

Another set of advanced regression methods are decision trees (DTs), of which GBM are a version. DTs
split the data into smaller groups based on the features of the data until the groups are of such size
that labels can be assigned. They are used to classify and to perform regression, in which case they are
called classification or regression trees [12]. The layout of a decision tree is presented in fig. 2.1. The
internal nodes represent attributes or features, while the leafs represent the outcomes of the algorithm.
The branches represent the rules and decisions leading from the input to the output. DTs can be
binary, in which each split results in two new nodes, or multiway, in which each split can result in more
than 3 new nodes. In the latter case, the trees are often more shallow. DTs are prone to overfitting,
which means that the training data is learned so well that a model has problems adapting to new test
data. In DTs this is prevented by means of ’pruning’, which entails the process of removing sections
of the tree that have little predictive power. Algorithms for DTs have large differences due to various
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methods for splitting and pruning. An algorithm used often in the case of trajectory prediction ([60],
[18]) is ’Classification and Regression Trees’ (CART) [12], which generates multiple trees and chooses
the optimal one. Splitting is performed by minimising the least squares deviation. However, DTs have
disadvantages, such as a high variance, meaning a small change in data can lead to very different splits,
overfitting and they look for local optima rather than global optima.

Figure 2.1: Layout of a shallow decision tree. Source:1

A solution to these disadvantages are ensemble methods, which combine multiple DTs to improve the
performance. The first method in this field is Bootstrap Aggregation [11], which creates parallel subsets
of training data and each subset is used to train DTs. The average of all predictions is chosen, leading to
a more robust result. An advanced version on this is Random Forests (RF), which also creates random
subsets of the features used to build the DTs. RF is used in various TP research efforts ([29], [36]) and
often came out as one of the top performers.

A second variation are Gradient Boosting Models (GBM), proposed by Friedman [19]. It is used by
Alligier et al. [3], [4], [5] and Liu et al. [36] and always provided the top results. GBM is a sequential
method which fits consecutive DTs and at every step the errors of the previous tree are reduced. It has
a structure similar to linear regression, with three elements:

• Weak Learner: shallow or short regression trees which are not capable of capturing the whole
problem at once

• Loss Function: a differentiable function that defines the error of the weak learner with respect
to the desired outcome

• Additive Model: a new tree is added after every iteration, improving the past one by using
functional gradient descent: the weak learner DT is parameterized after calculating the loss func-
tion, these parameters are adapted to reduce the loss and these adapted parameters are then used
to build a new tree. Existing trees are not changed.

Even after this procedure, GBMs still tend to overfit and are therefore regulated using constraints
on the number of layers and nodes, weighted updates are applied, in which every new tree has a
weighed contribution to the total outcome. A method proposed by Friedman [20] is ’Stochastic Gradient
Boosting’ and entails creating trees from sub samples of the training set. This reduces the correlation
between the trees in the sequence and thereby reduces the over fitting on the training data.

2.2.3 Deep neural networks

With the top performers in the regression and decision tree domain identified, the next step is to detail
the deep neural networks. As stated in section 2.1, two deep neural networks have been chosen to
perform trajectory prediction with. The first method is a deep feed forward neural network, also called
a deep Multi-Layer Perceptron network (MLP), while the other method is a recurrent neural network, a
LSTM. Deep feed forward neural networks or MLPs are an extension of normal neural networks, which
will be detailed first, after which recurrent neural nets and LSTMs will be presented.
1https://miro.medium.com/max/889/0IS9xKHt83nuERC9P
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Feed forward neural networks

The structure of a neural network is shown in fig. 2.2 and consists of an input layer, hidden layers which
perform calculations and an output layer. Perceptrons are also called neurons, hence the usage of the
different names. The neurons in this neural network are computational units and each neuron operates
in the following manner:

• Inputs: a set of inputs is received from either the input layer or a previous hidden layer.

• Bias: each neuron has a bias, which can be thought of as an extra input.

• Weights: each input and bias is weighted, similar to the coefficients in a regression function.

• Activation or transfer function: The weighted inputs + bias are summed and passed to a
transfer function such as a sigmoid or tanh function, which maps the weighted input to the output.
By using such a transfer function a threshold is applied on the neuron and the strength of the
output is regulated.

• Outputs: each neuron passes an output to each neuron of the next hidden layer or, in case it is
the output layer, to the final result.

Figure 2.2: Structure of an artificial neural network including the input, hidden and output layers. Source: [10]

MLPs or deep feedforward neural networks are an extension to most neural networks used in previous
trajectory prediction research, which usually have one to three layers. Extra hidden layers make these
networks deep and extends their predicitive capability as higher order features can be captured in the
larger hierarchical structure these deep networks represent. However, adaptions to these networks can
provide them with different capabilities. When, instead of feed forward networks in which information is
only propagated from one layer to the next, information is also led back to previous layers the networks
are called recurrent neural networks (RNNs). First, an introduction to these RNNs will be given, after
which LSTMs are introduced, which have proven to be some of the best performing algorithms in past
research.

Recurrent neural networks

RNNs are similar to feed forward neural nets, but have ’internal memory’ by means of hidden states and
feedback loops [46]. A hidden state vector is passed from one node to the other containing information
on previous inputs, calculations and outputs, essentially causing that the same input to a node can lead
to a different output if the past inputs to the preciding series of nodes is different. Often in RNNs every
layer represents a time step or step in a sequence. This way, time series data is better represented, as
information in for example two time steps prior to the current step can be very relevant for the next
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step. However, as a weight is applied on every step, the historical information vanishes quickly over
time. This problem is called ’gradient vanishing’, leading to short term memory.

This problem is solved by using Long Short-Term Memory neural networks [26], an adaption of RNNs
which are better at ’remembering’ past data on the long term, solving the problem of gradient vanishing.
It does so by propagating the previous state through each cell and only adapting this state where
necessary instead of applying a weight on the cell state as a whole. This is done by a series of operations
which are grouped in ’gates’, which are defined as follows. An overview of a LSTM cell can be found
in fig. 2.3.

• Forget gate: This part of the cell determines which details of the previous state should be
discarded, and is represented by the first sigmoid function on the left of the figure.

• Input gate: Determines which information from the inputs should be passed to the ’memory’
and which weight should be assigned to this information. The second sigmoid function makes the
decision on which information to pass, while the tanh function assigns a weight to this information.

• Output gate: This gate provides an output from the system and determines on which information
the next cell should base their decisions. It does so by means of a sigmoid function, the right-most
sigmoid function in the figure, to determine the information from the previous cell and the inputs.
The tanh function again determines the weight assigned to this information.

• Cell state: The cell state is represented by the black arrow on top of the cell. It propagates
information from all previous cells through the network, and at every cell or timestep this inform-
ation is adapted by the forget gate if the information is not deemed relevant, and new information
is added by the input gate.

It can be noted that each gate is essentialy a small neural network on its own. The structure of the
network, with cells in sequence able to remember past information, makes it a suitable algorithm to
perform time series prediction with. Also, the tanh function regulates the output of the LSTM. Many
variations on the LSTM neural network exist, allowing for example multivariate inputs or multi-step
outputs. Seeing as the problem of 4D trajectory prediction requires a multitude of variables as input
and multiple steps ahead as prediction, this is the type of network that has to be implemented for the
predictor.

Figure 2.3: Structure of a LSTM neural network, detailing the state vector which is propagated and on top and the
inputs and previous states which are used to adapt the state vector via various operations on the bottom. Source: 2

2.2.4 Dimensionality reduction

Before applying a clustering method, it can be beneficial to perform dimensionality reduction to the
input data of the clustering method. First of all, data for machine learning has to be processed in such
2www.tensorflow.com
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a way that it can be handled by the algorithms. This will be further explained in chapter 3, but after
this pre-processing a number of dimensions will remain. Every dimension or feature in this data can be
indicative for the predictor, but having too much data and features available increases the chances of
for example overfitting. Therefore, reducing the amount of features or dimensions present in the data
increases the predictive performance of the models, and increases the computational efficiency. Two
main forms of dimensionality reduction exist:

• Feature selection: the most relevant subset of features from the original set of features is
selected, reducing the size of the set.

• Feature extraction: from the original set of features the most relevant information is derived,
which is then used to construct a new set of features.

One of the state-of-the-art methods is principal component analysis (PCA), which is a feature extraction
method. Its goal is to capture the most relevant information and map this onto a feature space which
is lower in dimension than the original one. Principle components stand for orthogonal axes, which in
the case of PCA should point in the direction of maximum variance, of which a simple example can
be found in fig. 2.4. It identifies patterns in data based on the correlation between features by means
of constructing a covariance matrix, of which the eigenvectors and eigenvalues are then used to rank
the features. The top ranking features are then used to construct a projection matrix, which is used
to transform the input data to a new feature space. Using PCA, clustering can be faster and more
effective and this is introduced in the next section.

Figure 2.4: Principle Component Analysis (PCA) tries to map the original features of a dataset onto a new set of
features, indicated by the orthogonal axes PC1 and PC2. Source: 3

2.2.5 Clustering

After dimensionality reduction the trajectories can be clustered. As indicated in section 2.1, the tra-
jectories will be clustered using Density Based Spatial Clustering for Applications with Noise as it
outperformed comparable algorithms for aircraft trajectories. It was developed by Ester el al. [17] and
is based on two parameters:

• Eucledian Distance, ϵ : this parameter determines how close data entries should be to each
other to be defined as part of a cluster. The distance is measured in terms of the Eucledian
Distance. If ϵ is chosen too small, most data will defined as outliers, while if it is too large, the
clusters will become very large and will overlap. A K-distance graph can help in determining the
value for ϵ.

3https://www.statistixl.com/features/principal-components/
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• MinPoints, µ : this parameter defines the minimum number of data entries to call something a
cluster or dense region. The value for µ should be at least larger than the number of dimensions
in the dataset. Also, the larger the dataset, the larger the value for µ should be.

The algorithm defines each data entry as a ’core point’, ’border point’ or a ’noise point’. Core points
are those that have at least µ data entries within their ϵ perimeter. Border points are those that don’t
have that many data entries within their ϵ perimeter, but are within ϵ distance of a core point. The
core and border points together form clusters. Noise points are those that don’t have either µ points
or a core point in their ϵ perimeter and are therefore defined as outliers.

The latter provides the main advantage of this algorithm, which is its robustness against outliers.
Also, the number of clusters present in the data is determined by the algorithm, in contrary with
other common clustering methods such as k-means clustering. Furthermore, DBSCAN is able to find
clusters of arbitrary shape. Also, the clustering method is relatively stable in comparison with k-means
clustering, in which each data entry of a cluster has influence on it’s centroid and therefore on the shape
of the entire cluster. Disadvantages are that the parameters of the algorithm are not optimised through
a set number of steps and that performance can deteriorate if the clusters have a non-uniform density.

With all algorithms for the predictors defined and the techniques behind them explained, the pre-
requesits of the predictions, namely the input data, can be investigated. This will be presented in the
next section.

2.3 Input data

In this section, the inputs and prerequisites for trajectory prediction will be presented. These consist
of several data sources that together form a basis to learn a machine learning model on. First, an
analysis will be performed of literature in which the influence of several types of data on the quality of a
trajectory predictor are described in section 2.3.1. Then, these types of data are further described and
their sources chosen in subsections 2.3.2 to 2.3.5, along with an analysis of the data used in previous
trajectory prediction research. Finally, the amount of data required is analysed in section 2.3.6.

2.3.1 Background information

In order to predict trajectories based on historical, flown trajectories, data is required that is an accurate
representation of the trajectory. However, the reasons why the flight was executed as described in this
trajectory is also important for future prediction. Understanding why an aircraft has a delay, was
redirected such that the flight path was elongated or was able to ’cut corners’ by means of a direct-to
from ATC are of vital importance in predicting future trajectories. Without these supporting facts and
figures all predicted flights will roughly look the same, resulting in errors in the prediction.

First of all, several assessments of the influence of input data on trajectory predictors have been per-
formed in literature. Mondoloni et al. [51] [38] have shown the importance of turn dynamics, aircraft
weight, aircraft intent, aircraft performance and interim level-flight sections for trajectory prediction
using APMs. Similarly, Rudnyk et al. [45] have shown that wind, vertical speed intent and CAS/mach
speed settings are the main sources of errors in trajectory prediction and also analysed the effects of
the bank angle, air temperatures and interim level-flight sections on trajectory prediction using APMs.
Weitz et al. [62] have shown that in general, vertical errors originate from errors in aircraft weight,
horizontal errors are due to wind conditions and flight duration errors are due to the true airspeed,
which is again linked to amongst others the wind conditions.

From these sources, it can be concluded that for trajectory prediction using APMs an accurate rep-
resentation of the aircraft weight, meteorological conditions, speed settings, aircraft performance and
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aircraft intent or flight plans is necessary. When performing trajectory prediction without using APMs,
speed settings and aircraft performance parameters become less important, as well as aircraft intent.
This is due to the fact that the machine learning models should provide a representation of the to be
flown flight path instead of this being an input to the predictor. Also, seeing as aircraft weight is an
input for APMs but are no direct input to other types of prediction, the aircraft weight can also be
represented and approximated by other means of information. Data indicative of the aircraft weight
can be for example the type of aircraft, the operator, origin or destination, day of the week and the
percentage of the trajectory already executed. The factors affecting the aircraft weight can be used in
the prediction without having to estimate a number for each aircraft. Seeing as EHAM is an airport
with six runways at different angles, the ETA and final part of the trajectory will probably be depend-
ent on the runway availability. Therefore, the influence of the runway availability on the quality of the
predictor will be assessed in this study as well.

The representation of the flown trajectories will be presented in section 2.3.2, after which the route data
containing the origin or destination of a flight will be detailed in section 2.3.3. Then, the meteorological
data will be further explored in section 2.3.4. The runway availability will be investigated in section 2.3.5.
Finally, it is of importance to know the the amount of historical data necessary to make reliable
predictions. This will be presented in section 2.3.6.

2.3.2 ADS-B data

The most important input to the to be built trajectory predictor are the historical flight trajectories.
These form a basis for the machine learning models to learn on and form the reference with which
predicted trajectories are evaluated. These historical trajectories are generated based on aircraft position
data, which can be harvested by means of radar data or using data which is being broadcast by all
commercial aircraft by means of Automatic Dependent Surveillance - Broadcast (ADS-B) data. All
sources from section 2.1 are using (a processed form of) ADS-B or radar data in their research. ADS-B
data is downlinked by aircraft through Mode-S Extended Squitter (1090 MHz) and is openly receivable
by everyone with an antenna [53]. Also, ADS-B data is accessible through many online sources which
gather the data from contributors all around the world4. The data is constituted of in total 112 bits,
which together transfer the following information: aircraft identifier (ICAO address), aircraft position
(lat/lon, altitude) and aircraft velocity (heading, ground speed and roc). The decoding and processing
of ADS-B data is covered in section 3.3. For this research, ADS-B data received by an antenna at the
faculty of Aerospace Engineering at TU Delft will be used, which has a coverage extending well over
the Dutch FIR, see fig. 2.5, and is openly accessible. Due to the location of this receiver only partial
trajectories with Amsterdam Schiphol Airport (EHAM) as destination will be used in this research.

From the aircraft position data flown trajectories can be extracted which form the basis of the direct
trajectory predictor. Then, the aircraft velocity data is used as supporting data for the predictor and
can be used to check the accuracy of a predictor. Some research uses Enhanced Mode-S data, which
can also include additional information on roll angles, true airspeed, mach numbers, magnetic headings
and other more advanced types of aircraft state data [53]. However, as this data is not openly accessible
it is not considered as input to this study.

2.3.3 Aircraft route data

Other important indicators of a trajectory are the origin or destination (O/D) of a flight, which operator
is executing the flight and which aircraft type executes the flight. When it is for example known where
a flight originates from, a typical trajectory can be assigned to such a flight. In order to assign an
O/D or operator to trajectories, route data is necessary. However, seeing as data on which operator
flies which aircraft to which destination is commercially sensitive information, no open data source was

4www.flightradar24.com, www.flightaware.com, amongst other sources
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Figure 2.5: Coverage of the ADS-B antenna at TU Delft. The different shades of grey indicate the ADS-B data
density. Common flight routes are distinguished by darker shades of grey. Image from Sun et al. [52]

available. The website of Schiphol Airport does publish all flights arriving and departing at the airport
daily. Along with the origin and destination, the operator, aircraft type, planned and executed time
of arrival / departure, the callsign and the aircraft registration are posted. It is chosen to to harvest
this data daily using a web scraping algorithm. Seeing as EHAM is the only airport considered in this
study and this source contains all required information, it is deemed sufficient for this purpose. Also,
it provides us with additional information which might be indicative of a trajectory, namely the delay
of the flights.

2.3.4 Meteorological Data

As stated in section 2.3.1 meteorological data is of importance to the accuracy of trajectory predictors.
The most important factor are the wind conditions, after with the air temperature has the most influ-
ence. These wind conditions consist of both the magnitude and direction of the wind in a 3D frame.
For the purpose of aircraft trajectory prediction a data source is needed which has coverage over a large
area and up to high altitudes. In previous research, several data sources have been used.

Data from the National Oceanic and Atmospheric Administration (NOAA) of the US government,
specifically ’Global Forecast System’ data5 is the most commonly used source for meteorological data
in the aircraft trajectory prediction literature assessed in section 2.1. It provides global coverage on a
0.5 x 0.5 deg grid and is updated every 3 hours. It is used by amongst others Hernández et al. [25],
de Leege et al. [15] and in the DART research [18]. Other frequently used sources from the NOAA
are ’Rapid Update Cycle’, now replaced by ’Rapid Refresh’. These are amongst others used by Ayhan
et al. [7], [6] and Lymperopoulos et al. [37]. However, these sources only cover North-America and
are therefore not suitable for this research. The meteorological dataset with the highest gloabl spatial
resolution currently available is ECMWF ERA-5 6. It is the successor of ECMWF ERA-interim which
has been used by for example Zhang et al. [63]. The ERA-5 data has a spatial resolution of 0.25 x 0.25
deg over 137 levels of altitude and provides an hourly update of the meteorological conditions. This
being the source with the highest time- and spatial resolution, it is chosen as the source of meteorological
data to use in this research.

5https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
6https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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2.3.5 Runway usage Amsterdam Schiphol Airport

Most research in literature performs trajectory prediction on specific routes. However, for this research
the goal is to predict a trajectory for all incoming flights at EHAM. With six runways and strict rules
on which runway can be open under which meteorological circumstances, while also taking into account
the impact on the surrounding neighbourhoods it is not trivial which runways are in use for landing
at time of arrival for predicting the trajectory. Especially for the last part of the flight it is expected
that this has a major influence as aircraft will have to approach the airport from another direction if
the usage of the runways flip, leading to large errors both in spatial terms as in timing. The runway
availability is regulated by the Dutch ATC, the LVNL, and is posted online for each time slot of five
minutes 7. This data can be used for training the machine learning models. When predicting new flights,
a prediction of the runway availability has to be available. Commercial solutions for this purpose exist,
however this is out of the scope of this research. As the predictor will be tested using historical data
in this research, the true availability is available. Although this will be slightly more accurate than the
predicted availability, the difference in these will not be large as the runway availability does not change
often during a day. The latter can be concluded from analysing the harvested data.

2.3.6 Amount of historical data required

In order to be able to accurately predict trajectories the data set containing the historical trajectories
has to be large enough. To determine the required size of the data set, former research is analysed. It
can be concluded that two types of research exist. First of all, there are predictors which are trained
on a specific part of a route, such as one approach route or only one climb phase section, or which
are trained on a specific aircraft at a specific airport. These predictors are typically trained with 500
to 10,000 historical trajectories [22], [7], [6], [15], [57], [35] and [25]. On the other hand, predictors
that predict trajectories for larger parts of airspace and for multiple or all aircraft types they come
across use far larger data sets, often consisting of 40,000 to 100,000 trajectories [30], [31], [29], [59], [58].
Considering the size of the airspace in which the trajectories will be predicted, the Dutch FIR, and if
no limits will be set for the routes and aircraft types for which trajectories will be predicted, a large
data set of at least 40,000 historical trajectories will be required for this research.

2.4 Analysing trajectory predictions

When performing trajectory prediction, several approaches can be taken with different goals in mind.
Some research only use it for the prediction of delay, in order to ensure efficient handling at the des-
tination airport. Others use trajectory prediction for climb prediction, or to predict the descent length.
With these approaches, different measures of performance are used, such as time-only, vertical cross-
track deviation or along-track deviations.

Ryan et al. [47], Mondoloni et al. [39] and Paglione et al. [41] identified frameworks for assessing the
quality of a trajectory predictor, of which the most important factor is the accuracy of the prediction.
The metrics to assess accuracy will be detailed in section 2.4.1. Another important factor is the speed of
a trajectory predictor, which is detailed in section 2.4.2. Finally, the stability of a predictor is considered
to be important for the purpose of ATC and is described in section 2.4.3. In section 2.4.4 the quality
assessment chosen for this research will be presented.

7https://www.lvnl.nl/omgeving/baangebruik
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2.4.1 Metrics of accuracy

Two main categories of errors in 4D trajectories can be identified, spatial and time errors [47]. Spatial
trajectory errors are the offset in location at a certain point in time, whereas time errors are the offset
in time at a specific point in space. Time errors are often defined at a key location in a trajectory, such
as the top-of-descent or landing: ETA prediction, which is done by de Leege et al. [15], Wang et al.
[59] and Hernandéz et al. [25].

Spatial trajectory errors can be measured at any point in time. The horizontal error consists of the along-
track and cross-track error and is basically a vector decomposition. Along-track errors are the difference
in location found along the trajectory, while cross-track errors are the errors found perpendicular to
the trajectory. Tastambekov et al. [57] and Hernandéz et al. [25] use such accuracy measures. Most
research, however, focuses on only the altitude component of the spatial errors, often by predicting the
flight level during the climb phase of the trajectory, such as Alligier et al. [2], [3], [4], Hadjaz et al. [22],
as well as Tastambekov et al. [57] and Hernandéz et al. [25].

Another metric used in trajectory prediction is the error in velocity at a certain point in space or a
certain point in time. Hrastovec et al. [30], [31] as well as Lin et al. [35] determine the difference
in lateral speed and ROC in order to assess the quality of the predictor. This method is useful when
analysing aircraft performances and for the very first and last flight phases. However, when using the
prediction to support ATC in their decision making processes, this metric is not as much of use as the
spatial and time errors. Also, errors in velocity result in errors in spatial and time metrics, and are
therefore already captures by these metrics.

Finally, the total (ground-) distance covered can also be used as a metric. Alligier et al. [5] use the
ground distance of the descent length from cruise to a set final altitude. This method is helpful in
predicting when an aircraft will start its landing procedures but does not indicate the trajectory it will
follow and the velocities it will have in order to determine at which time an aircraft is where.

2.4.2 Speed of the predictor

The speed of the predictor is an important indicator of performance for the predictor. A predictor
which provides very accurate results but requires too much processing power will result in a useless
tool. The processing power can be measured at two steps in the prediction process. First, when the
prediction model is built, it should be noted how much time the model takes to learn from historical
data. Then, when new data is fed to the model, it should be determined how much time it takes to
predict a new trajectory. These two metrics determine the speed of the predictor and are of importance
for the implementation of any tool resulting from this type of research.

2.4.3 Stability of predictions

As introduced by Mondoloni et al. [39], the stability of a trajectory prediction is determined by the
changes in the predicted trajectory over time. Although this metric has been proposed in several
frameworks for assessing the quality of predictors, no recent literature assessed the stability. It is of
importance as a prediction which changes significantly over time is not of use to ATC. Part of this
is captured by the accuracy metrics, but if a prediction constantly changes within the limits of this
accuracy, it can still deteriorate the usefulness for decision making. It can be measured by considering
a prediction to be the the baseline and determining the cross track errors of a new prediction with
respect to this baseline. This, however, would be a computational burden as for each update cycle all
these along and cross track errors would have to be determined. More efficient would be to determine
the change in ETA between predictions as this can change the sequence of arriving aircraft, which
information is of direct use to ATC.



66 Literature Review

2.4.4 Chosen quality assessment

In this study the goal is to perform research that will in the end provide enhanced information to ATCo,
to support them in their decision making. For this purpose first of all ETA prediction is important.
Whether the ETA is determined at landing or at a certain point in a trajectory, such as for example
a limiting sector in the airspace, it is important to know for an ATCo which aircraft will be in his
sector at which time, ahead of time. This way, the ATCo can ensure safe and efficient guidance without
too many deviations to solve near-future problems encountered only a few minutes before they occur.
Together with ETA prediction, the route flown by an aircraft is important to ATC. Therefore it should
be known what the spatial error is. Therefore, both the horizontal as the vertical error will be measured
over the whole trajectory.

Next to accuracy measures, the speed of the predictor will be determined using the two methods
described in section 2.4.2: during the learning/training and during the prediction/testing phase of the
predictor. Also, the stability of the predictor will be analysed by the change in ETA between predictions.
This analysis was not found in research and is therefore assumed not to have been performed before in
aircraft trajectory prediction.

In this study only deterministic trajectory prediction is considered. This form of trajectory prediction
does not take uncertainties in the prediction into account by showing multiple possible trajectories.
Only the most accurate prediction is used and this prediction is assumed to be true. For use cases
such as conflict detection, multiple possible predictions can be made in order to detect possible conflicts
and anticipate on these. However, in this study only the most probable prediction is needed and will
therefore be the only one taken into account in the quality assessment.
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The data presented in chapter 2 will be used to perform the trajectory prediction with. In order to
use this data for the baseline simulations or for the to be developed machine learning predictors, the
data has to be in a format these algorithms and systems can handle. Therefore, it is investigated in
which form the data is received, what the desired format of each data type is and how this can be
achieved. Also, this chapter presents how the data from various sources can be combined in order to
build enriched data sets on which the predictors can train. First, the required data format for the
machine learning algorithms will be presented in section 3.2. The handling of the core of the data used
in this study, ADS-B data, will be detailed in section 3.3, after which the meteorological data will be
dealt with in section 3.4. Then, the route data will be presented in section 3.5. Finally, the runway
availability will be presented in section 3.6, after which the coupling of the various data sources will be
detailed in section 3.7. An overview of the outlier detection and removal will be given in section 3.8.
Concluding, the resulting data structure is shown in section 3.9 and an analysis and overview of the
resulting data in section 3.10.

3.1 Required formatting for BlueSky simulations

The baseline simulation using APPs will be executed in BlueSky and it should be investigated how the
input data for these simulations should be formatted. BlueSky requires an aircraft to be defined based
on the aircraft type and current position, speed and heading. Then, waypoints can be added along
with a desired altitude and speed, which are then used to simulate the trajectory. Therefore, for each
trajectory the parameters and their format as stated in table 3.1 are required.

In order to obtain these parameters, several steps have to be taken. First of all, the initial conditions
such as aircraft type and position can be extracted from the available ADS-B and route data. The
required waypoints, however, are not readily available. In order to obtain these, it is chosen to assign
waypoints based on the executed, true trajectory. Based on the location of the incoming flight, a STAR
is assigned. The planned waypoints for an aircraft originating from the north-west of EHAM would
then be TOPPA, SUGOL and SPL and from the east for example NORKU, ROBIS, ARTIP, SPL. Also,
based on the STAR, a target FL and SPD is provided at either SUGOL, RIVER or ARTIP. Seeing as
no information is available on the runway used for landing in such a system, SPL is used as the terminal
waypoint for each trajectory, with FL 10 and a speed of 150 kts. This method is representative of the
flight plans used currently by ATC to predict trajectories and is therefore used to compare with the
methods introduced in this study.

67
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Table 3.1: Parameters required for the baseline simulations

Parameter Unit Example
ACID - TID
Aircraft type - A320
LAT deg 54.964743
LON deg 2.871752
ALT FL FL250
SPD kts 300
HDG deg 170
WPT # 1 - TOPPA
ALT # 1 FL FL150
SPD # 1 kts 220
. . . . . . . . .
WPT # x - EHAM
ALT # x FL FL10
SPD # x kts 150

3.2 Required data formatting for machine learning algorithms

In section 2.1, several machine learning algorithms have been introduced. In this study, these algorithms
will be used to perform calculations on input data in order to provide predictions of future time steps.
These calculations will have to be performed on numerical data, however a lot of text-based parameters
are present in the input data. Therefore, these parameters have to be transformed into numerical data,
which can be performed using One-Hot Encoding. This will be presented in section 3.2.1.

The same calculations performed on numerical data are sensitive to the size of a value. If, for example,
the average value for the ground speed is around 200 kts while the average value for longitude is 2
degrees, the algorithms tend to rely more on the value for the ground speed rather than on the value
for longitude, simply because its value is higher. This behaviour is suppressed by means of scaling and
standardising the numerical values of the parameters, which is further detailed in section 3.2.2.

3.2.1 One-Hot Encoding

Text-based data present in the input data essentially is categorical data. The ’Airline’ of a trajectory can
be seen as a categorical parameter with hundreds of categories and the same holds for the ’Origin’, which
is a category consisting of all airports Schiphol is connected to. In order to transform this categorical
data into numerical data, One-Hot Encoding can be used [24]. This method converts categorical data
into numerical data by assigning a new parameter to each category while these new parameters can
only have a value of 0 or 1 (binary). It is called One-Hot Encoding as only one value in a vector is ’hot’
or ’true’ after encoding.

An example of One-Hot Encoding is the category ’gender’, which can, for example, have three values:
’female’, ’male’ or ’other’. If a subject is male, in One-Hot Encoding this translates to the following
vector: [0, 1, 0]. A common mistake is to categorise by only translating the categories into numbers,
such that : [’female’, ’male’, ’other’] = [0, 1, 2]. This would imply that ’other’ is better or higher than
’male’ as its value is higher, while it is simply another category. Finally, decision trees, which are the
basis for GBM, are able to handle categorical data as they can split the branches based on this data.
However, they can also handle data sets which are encoded, so the same format will be used for all
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algorithms. A disadvantage of One-Hot Encoding is when new categories, such as for example a new
origin or new airline is found in the test data. In such a case, no category can be assigned and therefore
no prediction can be performed. This should be mitigated by ensuring the training set is large enough
to capture all categories present in the data.

3.2.2 Scaling and Standardising

As explained, numerical data has to be scaled and standardised before using it to train the machine
learning models on. Seeing as the algorithms expect standard normally distributed data, which is a
Gaussian distribution with zero mean and unit variance, a standard score is calculated for each value
of each parameter. This calculation is presented in eq. (3.1) and relies on µ, the mean of the series of
values for each parameter and σ, the standard deviation of this same series. This scaling is performed
for each parameter separately, where µ and σ are based on the training set only. The test set is then
transformed to this standard score using the same values for µ and σ.

z = x − µ

σ
(3.1)

3.3 ADS-B data processing

As introduced in section 2.3.2, the ADS-B data used for this study is received by an antenna at the
faculty of Aerospace Engineering at TU Delft. Here, the raw ADS-B data is stored and made available
to students and researchers. This raw data consists of messages of 112 bits which contain information
on the position and velocities of the aircraft [53]. Using software developed by Sun et al. [52] this raw
data is decoded to a format consisting of the parameters as shown in table 3.2. The callsign is often
not broadcast and seeing as it encompasses the same information as the ICAO ID for this research, it
is omitted and not taken into account for the remainder of this research.

Table 3.2: Parameters available in decoded ADS-B data

Parameter Unit
Timestamp -
ICAO ID -
Latitude deg
Longitude deg
Altitude ft
Ground speed kts
Rate of Climb ft/min
Track deg
Callsign -

A series of subsequent ADS-B messages from the same aircraft can in turn be converted to a trajectory.
In order to determine which ADS-B message belongs to which trajectory, Sun et al. [54] also developed
software which is able to construct these trajectories. It uses DBSCAN to cluster points into trajectories
based on both location and position as well as time. The latter is of importance to split the trajectories
of an aircraft which executes several flights during a day in the Dutch FIR from each other. Using this
software trajectories are reconstructed which run from the range of the ADS-B receiver up to an airport
in the Netherlands as well as to the border of the range of the antenna again.

In order to provide regular trajectory prediction updates, these trajectories need to consist of densely
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and regularly spaced points. The data received by the antenna is irregularly spaced, however, which has
to do with the changing velocity which the aircraft have with respect to the antenna location, the settings
of the transmitter of the aircraft, as well as with the distance of the aircraft to the antenna. The latter
causes some messages to be discarded as they are incomplete or have errors due to the long distance
travelled and can therefore contain noise. The former two reasons cause slight offsets in the spacing of
the messages. In order to solve this problem, the data is interpolated after extracting the trajectories.
Seeing as ADS-B messages are broadcast with an interval of less than a second, the behaviour of the
aircraft is assumed to be linear for these small timesteps. Therefore, linear interpolation is used.

3.4 Meteorological data processing

The meteorological data sourced from the ECMWF, ERA-5, consists of files containing the temperature
and u, v, w velocities for 37 altitudes on a 0.25 x 0.25 deg grid over the whole earth. The altitudes
at which this data is available can be found in table 3.3. The altitudes specified in this source is the
barometric altitude expressed in hPa. Seeing as 1 hPa = 1 Pmb, or millibar, this can be translated into
an altitude in feet which is compatible with the ADS-B position data. The equation for this translation
is sourced from the NOAA 1 and is presented in eq. (3.2) and the resulting altitudes in table 3.3.

hft =
(

1 −
( Pmb

1013.25
)0.190284

)
· 145366.45 (3.2)

Table 3.3: Pressure altitudes at which the meteorological data is available, including conversion to feet

hbaro,hP a hft hbaro,hP a hft

1 106415 400 23564
2 100923 450 20804
3 97359 500 18281
5 92458 550 15955
7 88959 600 13795
10 84998 650 11776
20 76487 700 9878
30 70962 750 8088
50 63367 775 7229
70 57945 800 6392
100 51806 825 5576
125 47748 850 4779
150 44302 875 4002
175 41293 900 3242
200 38615 925 2499
225 36195 950 1772
250 33985 975 1061
300 30053 1000 364
350 26620 - -

It can be noted that these data sets cover a large range of altitudes than required for our models. First
of all, the aircraft considered will in general not fly over 40,000 ft. Therefore, it is chosen to only extract
the data between 150 and 1000 hPa. Furthermore, the data sets cover the entire globe. After an analysis
1https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf
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of the origin and positions of the ADS-B messages it is chosen to extract data on longitudes 357.00
up to 12.75 and latitudes from 47.00 up to 56.75. Both in altitude as in horizontal spacing a margin
has been taken into account in order to ensure all trajectories can be fitted with meteorological data.
The meteorological parameters available can be found in table 3.4. All values for these parameters are
scaled and standardised using the methods described in section 3.2.2.

Table 3.4: Meteorological parameters available with units from ERA-5

Parameter Unit
Temperature K
u wind velocity m/s
v wind velocity m/s
w wind velocity Pa/s

3.5 Route data processing

As stated in section 2.3.3, aircraft route data is not openly available. Therefore, it is chosen to harvest
this data from the website of Amsterdam Schiphol Airport2, by means of webscraping. Every flight
arriving or departing at the airport is published on the website, along with additional information and
parameters of the flight. These parameters can be found in table 3.5. It is chosen to first harvest this
data as it is only available for one day, and then investigate which parameters enhance the predictive
capabilities of the models by performing tests with and without these parameters. Some parameters
are interchangeable and/or are expected to provide better results than other parameters. An example
of this would be that it is expected that the Aircraft Type provides better predictive capabilities than
Aircraft Manufacturer and seeing as the latter is indirectly included in the Aircraft Type it makes the
former parameter redundant. Therefore, it is chosen not to use the Aircraft Manufacturer parameter
for the remainder of this study.

The planned arrival time will, along with the true arrival time and timing parameters, be used to train
the prediction models. However, the latter two will be used for validation, while the first one will be an
input parameter for the predictors. The true arrival time can then be compared with the ETA provided
by the prediction model. It can be investigated whether the ETA predicted in the previous time step
should serve as an input to the prediction of the next time step. This way, it can be investigated
whether delay has an influence on the behaviour of the pilots and ATC, such as an extra shortcut or
direct-to or higher velocities.

3.6 Runway usage EHAM processing

The availability of runways at Amsterdam Schiphol Airport is published on the website of the Dutch
ATC3 on a 5-minute time scale. It is harvested by means of webscraping and an example of the resulting
data can be found in table 3.6. This parameter has not been tested before in literature and therefore its
predictive capabilities should be investigated thoroughly. Seeing as each airport has a different layout
the predictive value of this parameter can not be generalized to any airspace. Also, seeing as the LVNL
schedules the runway availability not only based on the time of the day and the wind conditions but also
based on rules limiting the nuisance for the surrounding areas, the results for this part of the research
may be very specific to Schiphol Airport. It is expected that at most airports the wind conditions
and time of the day provide a fairly good approximation of the runway availability and both of these
parameters are usually already taken into account in the predictors.

2https://www.schiphol.nl/en/arrivals/
3https://www.lvnl.nl/omgeving/baangebruik
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Table 3.5: Parameters harvested from the website of Amsterdam Schiphol Airport

Parameter Example
Year 2019
Month 11
Day 11
Airline KLM
Aircraft Registration ID PHBHD
Aircraft Manufacturer Boeing
Aircraft Type 787-9 Dreamliner
Origin Mumbai
Flight Number KL878
Planned Arrival Time 07:25
True Arrival Time 08:35
Timing Delayed

Table 3.6: Layout of the runway availability data harvested from the LVNL website

Time Kaag Buitenveldert Oost Aalsmeer Zwanenburg Polderbaan
09:35 take-off closed closed closed closed landing
09:40 take-off closed closed closed closed landing
09:45 take-off closed closed closed closed landing
09:50 take-off closed closed closed closed landing
09:55 take-off closed closed closed closed landing
10:00 take-off closed closed closed closed landing
10:05 take-off closed closed closed closed landing
10:10 take-off landing closed closed closed closed
10:15 take-off landing closed closed closed closed
10:20 take-off landing closed closed closed closed
10:25 take-off landing closed closed closed closed
10:30 take-off landing closed closed closed closed
10:35 take-off landing closed closed closed closed
10:40 take-off landing closed closed closed closed
10:45 take-off landing closed closed closed closed
10:50 take-off landing closed closed closed closed
10:55 take-off landing closed closed closed closed
11:00 take-off landing closed closed closed closed

3.7 Coupling of data sources

With the required data format presented and the input sources defined, the last step is to enrich the
ADS-B data, which essentially is the trajectory data, with the additional data presented in the previous
sections. In order to couple the various sources, commonalities have to be found between the data sets.
Enriching the ADS-B data is presented on a per-type basis and is not per se sequential: meteorological
data can be added while not adding route data and vice-versa in order to test the predictive value of
each source. The combinations will be presented in chapter 4.
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3.7.1 ADS-B and meteorological data

In order to enrich the ADS-B data with meteorological data, several assumptions have to be made. The
meteorological data is rather sparse and therefore it is chosen to interpolate this for each individual
trajectory point. It is assumed that the parameters have a linear behaviour between the available points,
so the parameters are interpolated linearly. The interpolation is performed both in time as in 3D space,
so 24 = 16 data points are considered for each parameter of each time step and weights are assigned
according to the proximity of the aircraft to each available data point.

3.7.2 ADS-B and route data

In order to couple the ADS-B to the route data several steps have to be taken. First of all, the ADS-B
data contains the ICAO address of the aircraft, whereas the route data contains the registration ID
(REGID) of the aircraft. To couple these, the World Aircraft DB of J. Sun 4 is used, which contains
both the ICAO address as the REGID for nearly all aircraft. The entries for aircraft missing in this
dataset were extracted from Flightradar245 manually. This allows for filtering the available trajectories
to only the trajectories of aircraft visiting EHAM. However, most aircraft execute multiple flights a
day to and from EHAM or other airports which are in range of the ADS-B antenna. Therefore, the
database will contain multiple possible partners for each route entry. In order to assign the correct
trajectory to each route, a common feature should be found on which to base such a decision on. In
this case, it is unknown whether a trajectory represents a departing or an arriving flight (although this
is deducible by looking at the data). However, it is known at which altitude, lat/lon location and time
the trajectory ends. If this altitude is low and the lat/lon location corresponds roughly to the location
of EHAM, it can be said that an aircraft is arriving. Then, if the timestamp of the last time step of
the trajectory corresponds to the landing time of the route of the same REGID, a trajectory can be
coupled to this route. A problem arises when solving this problem, which is that the data available is
slightly noisy. Due to objects blocking the ADS-B messages from aircraft close to the ground aircraft,
the time delta between the true landing time and the last timestamp from the trajectory can become
large. Therefore, a relatively large maximum time delta of 20 minutes is chosen. All values chosen as
criteria for this coupling procedure are defined as follows:

• LAT range: [52.219, 52.441]

• LON range: [4.533, 4.971]

• Altitude: Max: 3000 ft

• Time delta: Max: 20 minutes

3.7.3 ADS-B and runway data

As a first test, the runway availability at the planned arrival time from the route data will be incor-
porated in the enriched data sets. This does mean, however, that the runway availability can only be
added to the ADS-B data when it is already enriched with route data. Furthermore, seeing as some
aircraft will arrive earlier or later than planned, in a later stage the runway availability at the ETA can
be used to improve the predictive performance. This would also eliminate the dependency on the route
data for coupling, however, it would result in an iterative process as the runway availability will have
an influence on the ETA and vice versa.

4https://junzis.com/adb/, accessed on 20-10-2019
5https://www.flightradar24.com, accessed on 01-11-2019
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3.8 Outlier detection and removal

When working with real-life data sets noise is inherently present and this has to be accounted for. An
example of noise in our data sets could be incorrect data points in the trajectories from the ADS-B
data, originating from erroneous decoding and interference of the ADS-B signal through the air. On a
higher level, noise could be a very a-typical flight due to unconventional circumstances which causes an
entire flight to be an outlier.

In the various steps from the raw data towards the final data set outlier detection and removal is already
present. The raw ADS-B data is formed into trajectories by means of DBSCAN, which clusters the
data points belonging to the same trajectory. DBSCAN performs outlier detection and removal on
these single data points and is also applied on the trajectories as a whole, eliminating trajectories which
are outliers. Also, by performing the coupling between the routes and the trajectories using the four
delimiters (LAT range, LON range, maximum altitude and maximum time delta) outliers in both the
route data set and trajectory data set are removed. Seeing as the ERA-5 meteorological data set is
sourced from the ECMWF and has been re-analysed before publishing, it is considered to be accurate
and without significant noise. Finally, when applying DBSCAN for clustering during the experiments,
additional outliers are removed.

3.9 Data processing overview and structure

This section presents an overview of the data processing and combining. Then, the resulting data
structure will be presented. The data sources presented in the previous sections are to be combined
into a data set on which the machine learning algorithms can learn. The flow from input data to these
data sets is visualised in fig. 3.1.

The parameters available in the final data sets can be divided into parameters which differ for every
single point in a trajectory and parameters which contain information on the trajectory as a whole. For
computation and storage efficiency, these data sets are separated, so as not to store information on a
trajectory as a whole for every single data point. The parameters available on every single data entry
are shown in table 3.7, and the parameters on each trajectory as a whole in table 3.8. This represents
all parameters available in this study. How these parameters will be used will be further explained in
chapter 4.

Table 3.7: Data available at every data point of the trajectory

Parameter Unit Source
Trajectory ID - Generated
Timestamp - ADS-B
Time - ADS-B
Altitude ft ADS-B
Latitude deg ADS-B
Longitude deg ADS-B
Ground speed kts ADS-B
Track deg ADS-B
Rate of Climb ft/min ADS-B
Temperature Kelvin ECMWF - ERA5
u, v wind velocities m/s ECMWF - ERA5
Vertical air velocity Pa/s ECMWF - ERA5
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Figure 3.1: Data processing flow from data source to the final data sets. Orange depicts input data, diamonds
depict actions on the data, blue represents final data sets and the red bar represents 3 available actions on the data

which can be combined in any way desired.

Table 3.8: Data available on every single trajectory as a whole

Parameter Unit Source
Trajectory ID - Generated
A/C REGID - Schiphol
A/C Model - Schiphol
Operator - Schiphol
Flightno - Schiphol
Weekday - Schiphol
Timing of the flight - Schiphol
Planned Arrival time - Schiphol
Final Arrival time - Schiphol
Delay - Schiphol
Origin / Destination - Schiphol
Runway Availability at ETA - LVNL
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Table 3.9: Number of trajectories available after each data processing step, over the period of 15-10-2019 to
20-01-2020

Step in data processing and coupling Number of trajectories Success Rate
Extracted trajectories for all ICAOs visting EHAM 217000 -
Routes extracted from EHAM website 54500 -
Arriving trajectories extracted from ADS-B Data 48645 89.3%
Coupled trajectory-route pairs 41760 85.8%
Overall coupling rate - 76.6%

3.10 Data Analysis

Between 15-10-2019 and 20-01-2020, a period of approximately 3 months, all data sources presented
before have been used in order to construct a data set with the structure as presented in section 3.9.
It consists of about 41,700 arriving flights and in this section an overview of the trajectories available
is presented. It should be noted that the numbers presented in the remainder of this section do not
represent all arrivals at EHAM over the specified period, as the trajectories are already filtered and
outliers are removed. The number of trajectories available after each processing step can be found
in table 3.9. The trajectories omitted from the database are not considered as they are removed by
either the DBSCAN algorithm forming the trajectories or by the limits set for an arriving aircraft in
section 3.7.2. The roughly 25% of the total which is omitted are therefore considered to be outliers.

Now, the remaining trajectories are analysed. First of all, the aircraft types present in the data are
shown in fig. 3.2. Here, it can be seen that several aircraft types dominate the airport. These aircraft
types are also expected to yield the best results seeing as the main share of historical data, on which
the predictors are trained, will also originate from these aircraft. From the first experiments it should
be concluded whether or not the aircraft types that arrive at EHAM less frequently can be predicted
as the performance of the predictor may be too low for these.
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Figure 3.2: Total number of arriving trajectories available per a/c type from 15-10-2019 to 20-01-2020

Secondly, the operator or airline of each trajectory was counted, resulting in fig. 3.3. Here, it can be
seen that the flag carrier of the Netherlands, KLM, has a large presence. The influence of the oper-
ator on the performance of a predictor is to be investigated, but it is expected that the predictions for
KLM will yield the best results seeing as the largest share of historical data is available for this operator.



3.10 Data Analysis 77

0 5000 10000 15000 20000
Number of trajectories

        KLM        
        Transavia        

        easyJet        
        easyJet Europe        
        Delta Air Lines        
        British Airways        

        Air France        
        Lufthansa        

        TUI fly        
        Scandinavian Airlines        

        LEVEL        
        Vueling        

        Aer Lingus        
        Turkish Airlines        

Others

Ai
rli

ne

Figure 3.3: Total number of arriving trajectories available per operator from 15-10-2019 to 20-01-2020

The trajectories per day of the week are more evenly spread, as can be seen in fig. 3.4. Whether
the parameter ’weekday’ has influence on the performance of a predictor is yet to be tested during
the experiments. However, it is not expected that the performance will be better for a trajectory on
Monday versus one on Sunday as the amount of historical data available is comparable.
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Figure 3.4: Total number of arriving trajectories available per day of the week from 15-10-2019 to 20-01-2020

Furthermore, the origins of the trajectories are determined. From this, it can be concluded that these
are spread over a large number of airports, with the top 15 origins accounting for 600 to 1200 trajectories
each and the other origins accounting for another 30,050 trajectories. It is expected that, if the origin
is of influence to the predictor as a parameter, origins with a larger number of trajectories available will
perform better in the predictors than origins with a significantly lower number of trajectories in the
historical database.
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Figure 3.5: Number of arriving trajectories available per origin from 15-10-2019 to 20-01-2020 for the top 15 origins



4
Experiment Setup

In this chapter the next phase of this study will be outlined. During this phase the experiments will
be carried out which will in turn answer the research questions presented in the introduction. First, an
introduction will be given to the baseline experiment in section 4.1, after which the main experiment
phase will be presented in section 4.2. The evaluation of these experiments is detailed in section 4.3
and the validation procedures in section 4.4. Finally, the resources required for the experiments are
presented in section 4.5 and the limitations of this approach in section 4.6.

4.1 Baseline experiment

The baseline simulations are carried out using BlueSky. This simulation only has to be performed once
as only one source of input data is required and only one method will be tested. In order to obtain the
baseline, the experiment consists of three steps, which are defined as follows. This process is also shown
in fig. 4.1

1. Provide aircraft specifications and waypoints to BlueSky

2. Perform simulation from entry point to EHAM

3. Log trajectory from the simulation

The first step entails initialising the simulation by providing the details required for the simulation. The
second step is the simulation of the flight and the last step is logging the executed 4D trajectory. The
simulations for each trajectory can be performed simultaneously and do not depend on for example the
time of the day as no interaction between aircraft is taken into account. According to the processing
power required and available the trajectories will be split in a number of batches for this baseline
experiment.

4.2 Main experiment

The final goal of the main experiments is to provide trajectory predictions from each selected predictor
and being able to evaluate them on the stated terms. Multiple experiments will be carried out, each
on different data sets consisting of a specific combination of data sources and using a unique split of
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Figure 4.1: Schematic overview of the baseline experiment

training and testing data. However, regardless of the input data, each experiment will consist of 6
phases which are defined as follows. A schematic overview can be found in fig. 4.2.

1. Training the PCA model

2. Training the DBSCAN model

3. Training a predictor (LWLR,GBM,MLP,LSTM) on each cluster

4. Perform PCA on test data using the trained PCA model

5. Assigning the test data to a cluster using the trained DBSCAN model

6. Predict new trajectories using the trained predictor

During steps 1 and 2, first the PCA and DBSCAN algorithms will be trained for the specific data set
at hand using the training set, after which the trained algorithms are applied on the testing set in steps
4 and 5. This is necessary as the PCA algorithm needs to learn which ’categories’ are available and
thus where to map new data on. Similarly, the DBSCAN algorithm needs to define which clusters are
available based on the training set, after which it can assign a new trajectory to an existing cluster from
the testing set. Steps 1 and 2 have to be performed only once once during each experiment, while steps
4 and 5 are performed at each timestep in the prediction. It is of importance, especially during the
first few timesteps of a trajectory, to re-evaluate the cluster a trajectory belongs to during the flight.
The clustering will be based on the eucledian distances between the 3D spatial trajectories, not taking
other parameters into account. DBSCAN does not offer a standard way to assign new trajectories to
a cluster, especially seeing as in our case in the beginning of a trajectory only a short part of this
trajectory is available. It is chosen to assign the trajectories using a k-Nearest Neighbours search,
identifying the training trajectories closest to the to be tested trajectory and assigning it to the closest
training trajectory. Seeing as this can differ over time, as trajectories move away or towards eachother,
this should be repeated every timestep.

Then, each predictor is trained in step 3 on the training data once per experiment and is used to perform
the trajectory prediction at each timestep. An overview of how these predictions are evaluated will be
given in the next section.

This process details the procedures of each single experiment. However, multiple experiments are to be
executed in order to assess the performance of each predictor, each set of input data parameters and
also to validate the results obtained using these combinations. Therefore, each predictor is validated
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Figure 4.2: Schematic overview of one single experiment

as described in section 4.4, resulting in a set of experiments. The influence of the input parameters
on the predictions are to be investigated before performing the main experiment. Therefore, using one
predictor, this is tested by performing the experiments using specific sets of input parameters. These
combinations can be found in table 4.1 and the rationale is as follows. First, the performance of the
ADS-B position parameters only is tested, after which each parameter is added once in order to test the
predictive performance individually. Then, combinations of parameters are made which are assumed to
have a correlation between them. For example, the wind and runway availability are expected to have
a similar influence on the routing of the aircraft, as the wind is the main indicator of which runways are
open and closed. After performing these tests, it is decided whether or not a parameter is redundant
and then the remainder of the experiments are conducted using one set of input parameters, which at
most can contain all the previously mentioned parameters. It would be optimal to perform tests using
each combination of input parameters, however if the parameters mentioned in conditions 2 to 9 are
to be combined in each possible way, 28 = 256 experiment conditions would arise. Testing all these is
not feasible in the time available and therefore the usefulness of each parameter is only tested using
the experiments stated in the table. Also, previous research has focused entirely on the influence of the
input data on the predictions and this is not the main goal of this research. After this analysis each
predictor is tested using the same set of input parameters in order to be able to compare them properly.

4.3 Experiment evaluation

In order to answer the research questions posed in chapter 1, several metrics are taken into account.
Therefore, each experiment is evaluated to base future conclusions on. In section 2.4 it is described
which quality assessments are to be used and why. First of all, the speed of the predictor is measured
in two ways. During each experiment, the time to train each model is noted. This includes the PCA,
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Table 4.1: Input parameters for each experiment evaluating the influence of the input parameters on the prediction
performance

Experiment condition # Input parameters
1 ADS-B position only
2 ADS-B position and ADS-B speeds
3 ADS-B position and Temperature & Winds
4 ADS-B position and Runway availability
5 ADS-B position and Origin
6 ADS-B position and a/c type
7 ADS-B position and Airline
8 ADS-B position and Day of week
9 ADS-B position and Time of the day (planned arrival time)
10 ADS-B position and Temperature, Winds and Runway availability
11 ADS-B position and a/c type & Airline
12 ADS-B position and a/c type & Origin
13 ADS-B position and ADS-B speeds and a/c type
14 ADS-B position and Origin and Day of the week
15 ADS-B position and Origin and Time of the day

Table 4.2: Evaluation metrics of the main experiment

Metric Unit Evaluation moment
Absolute horizontal error m Every timestep
Absolute altitude error m Every timestep
ETA error sec Every timestep
Stability of the predictor sec Every timestep
Computation time training phase sec Training phase
Computation time predicting phase sec Every timestep

DBSCAN and predictor models. Then, the time is noted to perform the predictions using each individual
predictor. By standardising these values these will be independent from the hardware used and relative
to each other.

The stability of the predictor is tested by comparing the prediction at each time step with the previous
prediction in terms of ETA. This results in a delta time which can later be used to assess the stability.
Also, the stability is tested by considering the time delta between 10 predictions as if the time delta is
small each time, but in the same direction, this can lead to a large offset over a longer period of time.
The accuracy of the predictors is assessed by comparing the 4D trajectory at each time step both with
the baseline prediction as with the true trajectories from the database. In order to assess at which
look-ahead time the predictors provide meaningful predictions, this is also assessed at each time step.
The accuracy is also evaluated in a temporal manner, meaning that the predicted arrival time will be
compared with the true arrival time. An overview of these metrics can be found in table 4.2

4.4 Validation

In order to ensure the predictors are tested in a correct way and to compare them amongst each other,
the results of the prediction should be validated. A straightforward method often applied in the field
of machine learning is a so-called hold-out procedure in which a part of the data set is not used for
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training the data in order for the model to be tested on unseen data afterwards. A common split is 70%
training data and 30% testing data. However, it cannot be said with certainty that the training set is
a representative sample of the full data set if split this way. Also, it will only provide a point estimate
of the accuracy.

To overcome these disadvantages, cross validation can be used. This entails partitioning the data into K
parts and then performing K tests in which each part is the testing test once and part of the training set
K-1 times. Performing validation this way provides a more representative outcome and it provides an
accuracy distribution instead of a point estimate [9]. This allows for providing a confidence interval of
the accuracy. Finally, seeing as we will be comparing multiple models and multiple sets of parameters,
these should also be tuned and the choices validated [9]. For this purpose, nested cross validation will be
used. This entails the process described before, with another cross validation one layer deeper at each
step. This process is shown in fig. 4.3. Finally, seeing as the predicted trajectories are validated against
the true flown trajectories extracted from the ADS-B data, they can be considered fully validated after
this procedure.

Figure 4.3: Schematic of nested cross validation, showing the cross validation on the first level, with unique testing
sets for each run and the nested deeper layer1

4.5 Resources

The experiments described above will have to be conducted using software. For the baseline experiments,
python-based BlueSky is used, which is openly accessible and developed at the TU Delft. For the main
experiments to be conducted also python (3.x) will be used, extended with amongst others the pandas
package for data handling and the scikit-learn package for machine learning purposes [43].

BlueSky is a tool for air traffic simulations [27], which is able to simulate the behaviour of aircraft
and can execute flight plans using commercial (BADA) or open source (OpenAP) aircraft performance
parameters as an input. Simulating the flights in such a simulator is a close approximation of current
trajectory prediction methods, as the latter perform the same trajectory calculations using aircraft
performance models as the simulator. Therefore, it is chosen to use the simulator results to serve as a
baseline representing the current methods used by ATC. For each batch of aircraft, a traffic file is loaded
which contains the required information, which are the aircraft type, location, altitude, velocities, the
1https://sebastianraschka.com/faq/docs/evaluate-a-model.html
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waypoints and destination. Using these inputs, BlueSky will simulate the trajectory of the aircraft using
the APMs, which will then be logged, resulting in a series of points in time and 3D space, representing
the flown trajectory. These simulations will serve as a baseline to compare the other predictions with.

Due to the amount of combinations of data available, the four different machine learning predictors to
be tested and the nested cross validation procedure, testing the machine learning predictors will be the
most time consuming part of the study. This should be kept in mind and as soon as the first experiments
are conducted it should be re-evaluated whether this amount of experiments is feasible in the remaining
time available. However, due to the nature of the experiments, which are computer-based, this is not
expected to be a problem for this research. The simulations can run simultaneously and no major
adaptions to the models have to be performed to test the different combinations of input data.

4.6 Limitations

The main limitation of this experiment approach is that no real-life tests involving air traffic controllers
are used while their interaction with a predictor may influence the performance of a predictor. For
example, if ATC would adapt their planning behaviour based on the information provided by the
enhanced predictor, the predictions in turn would be less accurate. However, as this is a first step in
the developments of these tools, testing with ATC interaction should be considered after these tests
have proven to be a success. Similarly, no interaction between predicted trajectories is present in these
experiments, whereas if two 4D trajectories cross, it can be expected that these trajectories will change
due to ATC intervention. This is, however, considered out of the scope of this research.

Another limitation is that no true flight plan data is available and that therefore the baseline predictions
using BADA may not be as accurate as available to ATC in existing systems. Therefore, the simulations
using BlueSky may not be an accurate representation of current ATC systems. This approach does
provide opportunities to test additional machine learning based predictors and additional types of
input data. However the time available to perform this study is limited and it is therefore chosen to
test only the aforementioned methods and inputs, limiting the scope of the research. The planning of
the next phase of this study is presented in the next chapter.



5
Planning

In order to provide answers to the research questions posed in chapter 1 the experiments have to be
executed in time. Therefore, a thorough planning including all steps required to obtain the results is
made. First, the main steps to be taken are identified in the first section, after which a brief planning
is proposed in section 5.2.

5.1 Steps to be taken

Currently, the data processing has been developed and every day new data is added to the database.
Although the input data is not complete yet, experiments can already be performed using the data avail-
able. Therefore, the next steps to be taken are the development of all models used in the experiments
and introduced in section 2.2. The order in which this has to be done is of importance.

First of all, the PCA and DBSCAN models have to be implemented using the python packages available
as these are a prerequisite to each experiment. Then, it is chosen to first develop one predictor such
that a first experiment can be conducted. This way, the methodology can be tested and it can be
re-evaluated whether this is the correct approach for the remainder of the study. Then, while the first
predictor is being tested, the other predictors can be coded and developed, after which these can also
be used in experiments. It is chosen to first implement MLP as a predictor seeing as it is a proven
algorithm for trajectory prediction (section 2.2). Also, the first experiment will be executed with a
relatively easy data set. An overview of the steps to be taken can be found in the following list:

1. Implement PCA & DBSCAN algorithms

2. Implement first predictor: MLP

3. Conduct ’pilot’ experiment using a dataset enriched with meteorological and O/D data only

4. Evaluate and adapt methodology

5. Implement all predictors

6. Conduct all experiments

At the same time, the baseline method can be developed. Although the pilot experiment can be validated
using the true flown trajectories, a comparison with the baseline method can help in evaluating the
methodology. The steps to be taken to obtain the baseline are as follows:
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1. Obtain input for BlueSky simulations

2. Conduct a test baseline experiment

3. Evaluate and adapt methodology

4. Conduct full baseline experiment

5.2 Timeline

The steps presented in the previous section have to be planned well in order to obtain the results by the
end of this study. For this purpose, several milestones have been planned, which are defined as follows.
After these milestones all results are collected which need to be documented and presented.

1. PCA & DBSCAN implemented: 01/03/2020

2. Input ready for baseline simulations: 01/03/2020

3. MLP implemented: 09/03/2020

4. ’Pilot’ experiments, both baseline and MLP conducted: 12/03/2020

5. All predictors implemented: 30/03/2020

6. All experiments conducted: 20/04/2020



6
Conclusions

This report details the literature study into the field of 4D trajectory prediction for aircraft using various
techniques and the prerequisites for such predictors. It is concluded that in order to advance the field
of 4D trajectory prediction, various machine learning methods should be tested. These tests are to
be evaluated based on the accuracy, speed and stability compared to existing systems and the true
flown trajectories. The baseline method representing the currently existing systems is chosen to be a
simulation in BlueSky using the standard aircraft performance models and parameters and generated
flight plan data as no source is available for the latter.

For the new predictors it is chosen to use a combination of clustering the aircraft trajectories and
then predict them using another algorithm. For clustering it is concluded to use the density based
DBSCAN method as it performs well for data containing outliers and has a proven track record in
recent literature. In order to speed up the clustering process, the data is first processed using Principal
Component Analysis, which reduces the dimensions of the data.

The predictors will be based on four different machine learning methods. It is concluded that Locally
Weighted Linear Regression has proven to be the best performing regression algorithm, while Gradient
Boosting Machines is the most promising Decision Trees algorithm. In the field of neural networks it
is concluded to compare deep feed forward neural networks with recurrent neural networks as this has
not been done before. For the latter, Long Short-Term Memory neural networks are found to be the
most suitable option from literature.

The main input data required for this study was found to be ADS-B data to represent the trajectories.
These trajectories are then enriched using meteorological data, route data and runway availability in
order to enhance the performance of the predictors. In the experiments, the influence of each parameter
is to be tested. For the current sourcing period from 15-10-2019 to 20-01-2020 about 41,700 trajectories
were found and processed, after outlier detection. These were coupled to the route data based on the
final location and time of each trajectory, resulting in a set of data large enough and coupled to all data
sources and which is ready to perform experiments with.

The experiments are to be conducted in the next phase of this study and it is proposed to first implement
and fully execute the experiments for one predictor in order to assess the performance and speed of the
experiment set-up. Based on this assessment, it can be chosen to execute the full experiment plan or
to reduce the number of experiments if time will become a constraint.

To conclude, the preparations for the experiments in this study have been conducted, including a
literature study, data sourcing, data preparation and processing and data coupling. A plan has been
developed which can be used to conduct the experiments and the evaluation and validation strategy is
defined. The next step is to conduct the experiments in order to answer the research questions.
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