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Abstract In this extended abstract, we show the supervised learning approach to 
predicting passenger load of trams, based on historical passenger load patterns. We 
look at two different cases: predicting long-term passenger load of any given day and 
time, and predicting short-term passenger load at a particular public transport vehicle. 
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1 Introduction 
For many Public Transport (PT) users, overcrowding in PT vehicles has a major 
decreasing effect on the comfort experience (Li & Hensher, 2013). However, most 
online routing applications still not take comfort regarding to crowdedness into 
account, but provide recommendations based on shortest distance, shortest travel-
time, or number of interchanges (Campigotto et al. 2017). 
Being able to include certain information on crowdedness, requires knowledge about 
the current and future level of passenger load. Increasing amount and complexity of 
data describing public transport services allows us to better explore the detection 
methods and analysis of different phenomena of PT operations. Some countries or 
operators provide the possibility to use Smart Card (SC) data for occupancy 
prediction (van Oort et al. 2015). However, SC data is not available in real time (van 
Oort et al. 2016), which makes it hard to incorporate it into real time recommendation 
models. In this paper, we show that it is possible to predict the passenger load via 
supervised learning, eliminating the need for fare collection data beyond the set 
needed for training.  
 



 
 

 

2 Data sources   
Our study concerns three datasets. Static GTFS data provides information about the 
transportation network geographical structure, stops, routes, and schedules. 
Furthermore, we employ two dynamic data sources: Automatic Vehicle Location, 
AVL (Hickman, 2004) and Automated Fare Collection, AFC (van Oort et al. 2016) 
data. AVL contains actual times of arrival/departure of vehicles, headways, delays, 
etc. Delays can be represented as a negative value, which implies the arrival is ahead 
on schedule. AFC includes the tap-in / tap-out times of personalized smart cards and 
the exact vehicles in which these transactions happened. Since in the Netherlands, the 
smart card (OV-chipkaart) is extremely prevalent over other types of payment, the 
tap-in and tap-out times of the smart cards can be used to estimate the passenger load 
of a vehicle. Luo et al. (2018) describe, how the load profiles were computed for this 
dataset. 
 
 
3 Classification of passenger load 
 
3.1 Case study: The Hague Public Transport Network 
 
For this study, we used the public transport network of The Hague, the Netherlands, 
which consists of 12 tram lines and 8 bus lines. The dataset covers the period of the 
month March of 2015.  
 
3.2 Data preparation 
 
We prepared the dataset by eliminating rows with missing data as well as rows where 
the AVL departure time was before the AVL arrival time. Outliers in passenger load 
and AVL arrival / departure delay are filtered, where an outlier is defined to differ 
thrice the standard deviation or more from the variable mean over the whole month. 
The day of the week (as an integer, Monday being 0, extracted from the date) is added, 
as well as the AVL departure delay at the previous stop of the current trip 
(avlPreStopDepartureDelay), and AVL departure delay at the current stop of the 
previous trip (preTripAvlDepartureDelay). All features are independently 
standardized to a standard normal distribution with zero mean and unit variance. 
Finally, we retain the following features: The date, day of week, the stop number in 
the stop-sequence, direction-ID, GTFS arrival time to second precision, GTFS trip-
ID, stop-ID, the GTFS trip-ID of the previous trip that addressed this stop, 
preTripAvlDepartureDelay and avlPreStopDepartureDelay. 
 
Considering tram line 3, cleaning approximately delete 10% of the data, leaving us 
with around 375 thousand stop records of March 2015. 
 



 
 

 

The dataset contains 31 days, of which 22 working days. We considered working days 
and weekend days separately due to distinctly defined different passenger load 
patterns, as shown in Figure 1.  

Fig. 1 Passenger load pattern of line 3: seat capacity 86, occupancy threshold 63. Red 

dots represent load above the threshold, blue dots – below the threshold. (a) March 1st, 

Sunday, direction 0, (b) March 1st, Sunday, direction 1, (c) March 3, Tuesday, direction 

0 (d) March 3, Tuesday, direction 1. 
 
Therefore, the dataset is divided into two sets: data_weekend and data_week. For 
calibration of the predictors’ parameters and the evaluation of the predictors 
performance, both datasets are split into a training set (data_week: first 17 wee-days, 
data_weekend: first 7 weekend-days) and a test set (data_week: last 5 week-days, 
data_weekend: last 2 weekend-days). 
 
3.3 Methodology 
 
Time step. Passenger load patterns are quite stable over time, see, for example, Figure 
1. Barring the cases of severe disruptions, we can observe very similar passenger load 
patterns on same lines and same days of the week. This allows us to use supervised 
classification for passenger load prediction. We distinguish two prediction target 
stages, each employing a different set of features:  
 



 
 

 

1. Long term prediction: predicting the load of any given day - with a feature 
set consisting only of static GFTS data. 
Features = [day, sequence, gtfsArrival, gtfsTripID, preTripID, stopID] 
 

2. Short term, next stop prediction: Predicting the load of the current stop of 
the next trip – with static features as well as the AVL departure delay for the 
considered stop of the previous trip and the departure delay of the current 
trip at the previous stop. 
Features = [day, sequence, gtfsArrival, gtfsTripID, preTripID, stopID, 
preTripAvlDepartureDelay, avlPreStopDepartureDelay] 

 

Fig. 2 (a) Passenger load distribution of direction 1 of line 3, seat capacity of 86, March 

2015 (weekdays). (b) Number of observations within each passenger load class. Class 

0 is low passenger load (max. 20% seat occupancy); 1 is medium load (between 20-

70% seat occupancy); 2 is high load (more than 70% seat occupancy). (c) Number of 

observations within each passenger load class. Up till 50% seat occupancy, load is 

grouped per 5 passengers, between 50-100% seat occupancy, load is grouped per 10 

passengers. 

 

Class definition. The passenger load is manually labelled into classes, which are 
defined in two different ways. First, the class choice is based on the capacity of the 
considered vehicle. I.e., the load is defined to be low if a maximum of 20% of the 
seats is occupied; medium if between 20-70% of the seats is occupied; high if more 
than 70% of the seats is occupied.  



 
 

 

The downside to this definition is that it results in an unbalanced training set, as high 
passenger loads occur less often than low or medium ones, see, for example, Figure 
2 for the distribution of the load of line 3. Moreover, when considering only three 
classes, small mistakes have a large impact. To confront the balance problem and 
explore whether the classification can be more robust, we decompose the larger 
classes (in terms of occurrence) into smaller classes. The second class composition is 
as follows: Up till 50% seat occupancy, we grouped the load per 5 passengers, 
between 50-100% seat occupancy, the load is grouped per 10 passengers. For line 3 
(86 seat capacity), this results in 13 classes (Figure 2c): [0,5), [5,10),…, 
[35,40),[40,50),…[70,86), [86,200). In the full article we will present a more detailed 
strategy to deal with the unbalanced data set, including oversampling the under-
represented classes. 
We refer to (Yap et al. 2017) for an overview of the seat capacity and standing 
surface per vehicle type. 
 
Classifiers. For predicting the passenger load, we compare four classifiers: A random 
forest classification (RFC) model (Breiman et al. 2001), gradient boosting classifier 
(GBC) (Friedman et al. 1999, Hastie et al. 2001), multi-layer perceptron (MLP) 
classifier (Chaudhuri et al. 2000, Gardner et al. 1998) and a k-nearest neighbours 
(KNN) classifier (Aha et al. 1991, Weinberger et al. 2009). In the full article we will 
cover (the motivation for) the different classifiers, the (tuned) parameter values and 
time performance. 
 
Metrics. For each dataset and classifier, performance measures will be calculated. 
The overall average percentage score for each classifier will be calculated by 
averaging accuracy and F1-measure 𝐹1 =

2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)⁄ , with S𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑡𝑝 (𝑡𝑝 + 𝑓𝑛)⁄  , and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝). 
For the second class partition (per 5-10 passengers), we consider a prediction to be a 
true positive if the distance to the true label is less than 2. This yields a relaxed 
interpretation of the average accuracy function: 
 

𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦ො) =  
1

𝑛௦௔௠௣௟௘௦

෍ 𝑓(𝑦௜ , 𝑦పෝ)

௡ೞೌ೘೛೗೐ೞିଵ

௜ୀ଴

, 

 

Where   𝑓(𝑦, 𝑦ො) = ൜
0 𝑖𝑓 |𝑦 − 𝑦ො| ≥ 2
1 𝑖𝑓 |𝑦 − 𝑦ො| < 2

. 

 
 
 
 
 
 



 
 

 

4 Discussion/Preliminary results 
 
Tuning of the machine learning parameters and other ways to pre-process the data 
(e.g., using different imputers to fill the missing data with meaningful values instead 
of removing a data point) will be further explored in the full paper.  

Fig. 3 (a) Visualization of the passenger load pattern of line 3, direction 0, March 26, Thursday. 

Colours represent the load values: dark blue [0,17), yellow [17,60), red [60,105]. (b) RFC 

prediction. 

 
Nevertheless, the classifiers achieved results as can be seen in Table 1-4. For line 3, 
Random Forest Classifier seems to render the most compelling predictions. 
Furthermore, AVL information about previous stop and trip only seems to have little 
contribution in the predictive value of the algorithms. 
 
Table 1 Short-term 3-class prediction, line 3, data_week. Acc.: Accuracy, F1: F1-measure, 

Avg.: Average score in %, MeanE.: Mean error. Measures >80% are marked in bold. 

Classifier Acc. F1 Avg. MeanE. 

RFC 83 83 83 0.2 
GBC 78 77 78 0.2 
MLP 81 81 81 0.2 
KNN 77 77 77 0.2 

 

Table 2 Long-term 3-class prediction, line 3, data_week. Acc.: Accuracy, F1: F1-measure, 

Avg.: Average score in %, MeanE.: Mean error. Measures >80% are marked in bold. 

Classifier Acc. F1 Avg. MeanE. 

RFC 81 81 81 0.2 
GBC 78 76 77 0.2 
MLP 80 79 80 0.2 
KNN 81 80 81 0.2 

 
 
 



 
 

 

Table 3 Short-term 13-class prediction, line 3, data_week. Rel.Acc.: Relaxed accuracy, Pr: 

Precision, Rec.: Recall, F1: F1-score, Kappa: Cohen’s Kappa score, Avg.: Average score in %, 

MeanE.: Mean error (Non-relaxed). Measures >70% are marked in bold. 

Classifier Rel.Acc. F1 Avg. MeanE. 

RFC 74 74 74 1.1 
GBC 66 64 65 1.4 
MLP 71 71 71 1.2 
KNN 60 59 60 1.6 

 

Table 4 Long-term 13-class prediction, line 3, data_week. Rel.Acc.: Relaxed accuracy, Pr: 

Precision, Rec.: Recall, F1: F1-score, Kappa: Cohen’s Kappa score, Avg.: Average score in %, 

MeanE.: Mean error (Non-relaxed). Measures >70% are marked in bold. 

Classifier Rel.Acc. F1 Avg. MeanE. 

RFC 72 71 72 1.2 
GBC 66 64 65 1.4 
MLP 67 66 67 1.3 
KNN 67 66 67 1.3 

 
It can be hypothesized that more data, with improved pre-processing and tuning of 
the models’ parameters, renders more accurate predictions. In addition, more data can 
give a better insight in the correlation between passenger load and AVL data, like the 
exact departure delay at the previous stop or at the same stop measured from the 
previous trip. With this approach one can also look into the influence of the delay of 
other (alternative) lines on the load of one line. 
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