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Abstract
Globally, it is estimated by the UN that 2% - 5% of
the annual GDP is lost to money laundering. Cur-
rent anti-money laundering efforts are hindered by
both the lack of trust between financial institutions
internationally and the presence of local privacy
regulations like GDPR. This makes it unfeasible to
share plain transaction data between financial insti-
tutions internationally. Secure multiparty computa-
tion is a cryptographic technique that enables a set
of parties to interact and compute a joint function of
their private inputs while revealing nothing but the
output. Thus, MPC has the potential to facilitate
greater collaboration between financial institutions
and governmental organisations internationally and
upscale anti-money laundering efforts securely. In
this paper we aim to explore how MPC could be
used to improve current anti-money laundering de-
tection techniques. This is done by providing an
overview of existing work in the field and propos-
ing a new architecture that could be used to flag
suspicious transaction. This architecture presents
accounts and transactions as a social network and
uses betweenness centrality to identify high-risk
accounts. We outline how existing protocols can be
used to build such a model and what further prop-
erties are to be considered to build even more so-
phisticated protocols.

1 Introduction
Money laundering is the concealment of the origins of ille-
gally obtained money, typically utilizing transfers involving
foreign banks or legitimate businesses [3]. It convention-
ally consists of 3 stages: placement, layering and integration.
During placement dirty money is introduced to the financial
system. With layering money is transferred through multiple
bank accounts in various jurisdictions to disguise its origins.
Finally, during integration, it enters the formal economy by
being spent on purchases or invested into legitimate assets.

Investigating the layering process is only possible by a
wide international collaboration between financial institu-
tions and governmental organisations. This is because in-
dividually they lack the complete picture of the transaction

history without helping each other. However, several factors
prevent collaboration. These include lack of trust between
financial institutions, the obligation to comply with local pri-
vacy legislation like GDPR, damage to the reputability of the
organisation as well as potential lawsuits in case of a data
breach.

Anti-money laundering (AML) efforts help not only to
eliminate illegal funds from our financial institutions but to
expose the underlying crimes which result in the obtainment
of these funds too. Such illegal activities often include but are
not limited to drug offences, human trafficking, fraud, gam-
bling, corruption and terrorism. Globally, it is estimated by
the UN that 2% - 5% of GDP is lost to money laundering [1].
Financial institutions are not doing enough to combat these
serious violations effectively. In the Netherlands alone bank
giant, ABN AMRO was fined EUR 480 million [5] in 2021
and ING was fined EUR 775 million [4] 2018 for failing to
combat money laundering effectively in particular being un-
able to unusual transaction patterns.

Current methods to identify suspicious accounts include
manual auditing, data mining and machine learning. Tradi-
tional investigative techniques like manual auditing are time-
consuming and not scaleable, but until recently there existed
few alternatives because of the complex nature of money
laundering. Recently, data mining techniques like cluster-
ing, neural networks [6], using genetic algorithms and heuris-
tics [7] have been introduced. Machine learning methods, like
statistical sequential features [8] have been proposed, but a
model is ever only as good as its input, so this technique has
a limited impact in detecting layering. For both data mining
and machine learning methods to become more effective the
challenge of fragmented data ownership across many banks
and jurisdictions have to be overcome.

The biggest challenges in sharing this data are a lack
of trust between institutions as well as privacy regulations.
Firstly, financial institutions might be discouraged from shar-
ing data by the possibility of losing competitive advantage
compared to other banks leading to financial losses. The sec-
ond and more prominent challenge is the issue of privacy.
Transaction data contains sensitive personal information, thus
is protected by privacy regulations like GDPR for the Euro-
pean Union that describes how personal data from the EU has
to be processed and stored. Non-compliance to these regula-
tions can result in fines reaching tens of millions of euros [9].
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This introduces a further issue with sharing data across many
jurisdictions: ensuring that the process is compliant with data
protection legislation from all countries. Moreover, sharing
data introduces an additional risk of losing customer trust and
potentially facing costly lawsuits if the security of the shared
data is ever compromised.

Multiparty Computation (MPC) has the potential to offer a
solution to the above-mentioned challenges. MPC is a cryp-
tography technique that ensures the protection of the involved
parties from each other, rather than from an outside adversary.
This is achieved by enabling a set of parties to interact and
compute a joint function of their private inputs while reveal-
ing nothing but the output [2]. Although research in this field
has been going on since the 1970s, it only became efficient
enough recently to be used for real-world applications [2].
As of now, MPC has been already implemented for multiple
use-cases and is used in real life, such as trying to detect tax
fraud [10] in Estonia.

Currently, five Dutch banks Rabobank, ING, ABN AMRO,
Triodos Bank, de Volksbank already share data for anti-
money laundering under a project called TMNL [11] that
does not use MPC. However, this is only possible due to
the strong trust between these financial institutions and the
regulatory alignment, as all of these banks fall under the
same jurisdiction. With the use of multiparty computation,
this effort could be further developed into a global collabora-
tion between banks to combat money laundering. MPC, as a
privacy-preserving technology has been described as an im-
portant tool to enable secure data processing in the Schrems II
ruling [13] where EU legislators encouraged the use of MPC
as a privacy-enhancing technique.

In this paper, we aim to discover what techniques are cur-
rently used to combat money laundering. Currently, exist-
ing methods that are outlined above are limited by poor data
quality due to the lack of collaboration between banks. To
enable upscale anti-money laundering efforts, an opportunity
for banks to share data and collaborate should be created.
We explore how MPC can be used to further these efforts.
This is done by outlining an architecture that could be used
to identify suspicious bank account holders by enabling col-
laboration between banks internationally. Hence, we hope to
answer the following question as part of our research: How
can multiparty computation be leveraged to combat money
laundering by enabling the analysis of data sets from multiple
sources? With this, we hope to contribute by inspiring other
researchers, financial institutions and governments to foster
closer collaboration to enable anti-money laundering. This is
done by proposing to view transactions as a distributed social
network and use social network analysis metrics combined
with MPC, especially betweenness centrality to identify high-
risk accounts.

The remainder of this paper is structured as the following:
in the background section anti-money laundering techniques
and current MPC use-cases are outlined. In the methodology,
the methods of this research are detailed to aid reproducibil-
ity. Later in the design section, a new architecture is proposed
to use MPC for anti-money laundering. The implications of
this architecture are detailed in the discussion session. Af-
terwards, in the responsible research section, the implications

and limitations of this research are outlined. Finally, in con-
clusion, and future works possible next steps for validation
and implementation are discussed.

2 Background
This section aims to summarise currently used anti-money
laundering methods as well as a more detailed overview of
multiparty computation with an emphasis on methods that
have the potential to be used for anti-money laundering.

2.1 Anti-Money Laundering Techniques
AML efforts can take various forms which can be classified
into the identification, detection, avoidance and surveillance
of money laundering activities [14]. Most current solutions
on the market are statistically based on the number of trans-
actions, the amount transferred, mean, standard deviation and
thresholds [15]. However, these methods are not suitable to
deal with the ever-increasing complexity of ML for example
in the case of investment activities that involve completely
different characteristics [16]. These statistical methods also
produce a large number of false positives and require many
man-hours to manually investigate [17]. Data mining (DM)
techniques can be effective to reduce the false positivity rate,
allow better prioritisation of suspicious transactions and re-
duce pressure on man-power [17]. Some of the techniques in-
volve: using Bayesian inference to rank ML suspicious trans-
actions, using consolidation and link analysis to determine
subgroups and central mules, as well as inter and intro group
transaction patterns, deploying regression and case-based rea-
soning and using support vector machine (SVM), do deal with
data of many nationalities [17]. Data mining methods are
however limited to the incomplete data, that financial institu-
tions have access to.

2.2 Multiparty Computation
Multiparty computation first proposed by Yao [19] is a cryp-
tographic technique. It enables a set of n input parties
p1, p2, ...pn with a private set of inputs x1, x2, ...xn to com-
pute the output of a function f on the aggregate of the in-
puts calculating f(x1, x2, ...xn) without revealing anything
but the output [18]. This is done as a way to preserve certain
security properties [2]:

• Privacy: Besides their own inputs parties should learn
nothing but the output of the specified function .

• Correctness: No malicious party should be able to influ-
ence the output to deviate from the specified function.

• Independence of Inputs: Corrupted parties should
choose their input independent of honest parties.

• Guaranteed Output Delivery: Honest parties should not
be prevented to receive the output of the computation by
dishonest parties.

• Fairness: Corrupted parties should only receive the out-
put of the computation if and only if honest parties re-
ceive it too.

The process of computing the output involves three parties:
input parties that provide the input, computing parties that



carry out the computation to calculate the output of function f
and output parties that receive the output. These roles might
be fulfilled by the same set or a different set of parties. For
example, input parties might also be the output parties, but it
is also possible that input parties are different from the output
parties.

Fundamental work in MPC [19–22] since the 80s proved
the possibility to securely compute the output of any function
in various models. Yao developed the garbled circuits proto-
col, which can be utilized in order to compute any discrete
function that can be represented as a fixed-size circuit [19].
These general models are however often inefficient and tai-
lored solutions towards specific use-cases can be more op-
timal. Specific protocols have been developed such as Pri-
vate Set Intersection that allows the efficient computation of
the intersection of two sets [23] or Shamir Secret Sharing
that utilises secret sharing by dividing the secret into a num-
ber of shares [24]. Implementations for specific use-cases
are also wide-ranging and deployed projects include Danish
sugar beets auction, Estonian student graduation rates, wage
inequality in Boston and key management all of which are
detailed in this [25] very comprehensive paper.

2.3 Using Secure PageRank For AML
In collaboration with ABN AMRO, TNO and Rabobank work
on privacy-friendly data analysis for anti-money laundering is
already being developed. [26] This collaboration has yielded
a model detailed in these [27, 28] papers, which uses multi-
party computation to calculate the secure PageRank collab-
oratively. Originally, PageRank has been used by Google to
estimate the importance of a page by calculating the number
and quality of links that lead to a certain page. Calculating
the PageRank value of a bank account can be a good indicator
to discover potentially fraudulent accounts. However, it has
been proven [27], that PageRank values that are calculated
based on the network of multiple banks are more accurate
than those calculated merely based on one bank’s fragmented
data. Thus, the collaboration to calculate these values more
collaboratively with the help of additively homomorphic en-
cryption can be valuable [27]. This project is still in progress,
although no further work has been published yet. During our
interview with one of the authors of this paper, it has been re-
vealed that in the next step of the project another architecture
will be researched, where trust flows within the network of
bank accounts.

2.4 Rosetta by Roseman Labs
Some MPC engines supporting anti-money laundering have
been already implemented. In the Netherlands, Roseman labs
have such a solution named Rosetta [29]. Rosetta currently
applying MPC for pseudonymization and then processing the
pseudonymized transaction data. This means that a trans-
action id from bank A and bank B are pseudonymized with
different keys in two different places resulting in two differ-
ent pseudonyms. Then a central authority can derive a single
pseudonym by applying an MPC algorithm to a large number
of transactions. For further information, a more detailed prod-
uct sheet describing Rosetta is available by Roseman Labs on
request.

2.5 Secure Privacy-Preserving Graph Algorithms
This paper explores the potential of representing bank ac-
counts and transactions on a graph. Thus, it is important to
understand what work has been already conducted to enable
the efficient use of Multiparty Computation on graph algo-
rithms. Although real-world applications are yet to be ex-
plored, this [30] paper proposes and proves the shortest path
and the maximum flow problems can be securely solved us-
ing MPC. They explore a secure version of Bellman-Ford and
Dijkstra for the shortest path and Edmonds-Karp and Push-
Relabel for the maximum flow algorithm. These algorithms
all build upon the secure arithmetic black-box functionality
of Damgård and Nielsen [31] which involves assuming a se-
cure implementation of addition and multiplication as well as
comparison.

Another solution involves a secure MPC protocol for k-
nearest neighbor search detailed in this [32] paper. This algo-
rithm has linear computation and communication complexity
and is based on a two-party computation model. This model
can also be adapted to solve other data mining tasks securely,
such as classification and outlier detection [32].

2.6 Secure Distributed Social Networks
More specifically to graphs, account holders and their trans-
actions can be well understood using social networks. There
has been already a considerable amount of work done [33,41]
to create MPC protocols that allow securely constructing so-
cial networks from distributed sources. In the first paper,
a general MPC protocol for a distributedly held isomorphic
graph network was proposed with unweighted edges. In the
second paper, a similar protocol was proposed that is also se-
cure against the malicious adversarial model tolerating less
than n/3 corrupt parties.

3 Methodology
Firstly, a literature review was conducted by reading research
papers on multiparty computation like [2]. After the basics
and the scope of this cryptographic technique were under-
stood, a possible application for the industry was explored.

3.1 Literature Review
The purpose of this study was to provide an overview of the
current state of the use of MPC for AML in the financial in-
dustry as well as to propose a new use case for using MPC
for AML. The best fit to gather and validate this information
was a combination of literature study and expert interviews.

We first identified combating corruption as a valuable use-
case to research as with combating corruption usually there
comes lack of trust and lack of collaboration between various
entities to combat it. We felt MPC might the right tool to com-
bat these issues. We further narrowed down our use-case by
researching financial crime in general and later money laun-
dering more specifically. We identified different techniques,
such as data mining, artificial intelligence and social network
analysis. Then, we examined if any work using MPC for
AML has been already carried out. Since we concluded that
such work, although very limited and recent already exist,
we examined the work that has been done. Based on this



research it was concluded that social network analysis has
not yet been utilised using MPC for AML. Thus we focused
on papers that use secure social network analysis using MPC
and papers that use social network analysis for a single, non-
distributed graph.

3.2 Expert Interviews
In the second stage of the project expert opinion was seeked
out. Below, a list conducted interviews can be seen in Table
1. We conducted 6 interviews with experts in the financial
sector, 5 of whom were also experts in multiparty compu-
tation. Some interviewees worked at big dutch banks, like
Rabobank, ABN AMRO and some were authors of published
papers on the topics. We used these interviews to better un-
derstand how MPC is currently used in the financial indus-
try and what are the biggest challenges that companies face.
We furthermore used these interviews to validate our design
ideas. We would like to express our deepest gratitude to all of
them for contributing their expertise and time to this project.

Affiliation Expertise Date
Rabobank AML 03/05/2021
Rabobank MPC 07/05/2021

ABN AMRO MPC, AML 21/05/2021
Rabobank MPC, AML 25/05/2021

Roseman Labs MPC, AML 10/06/2021
Roseman Labs MPC, AML 16/06/2021

Table 1: List of expert interviews, their affiliations and area of ex-
pertise.

4 Design
This section discusses the proposed architecture that facili-
tates the collaboration of multiple financial institutions and
possibly other governmental parties to collaborate to upscale
AML efforts.

4.1 Requirements
The proposed architecture has to adhere to the following re-
quirements:

• Security: It has to be ensured that no additional data can
be recovered from the computation and that the output
can not be used to derive additional information to pre-
vent the leakage of sensitive personal data.

• Performance: As derived from an interview, for the ar-
chitecture to be efficient, updating all values should be
possible within a matter of days or a few weeks maxi-
mum. If this requirement is not fulfilled the architecture
might not be of any practical use to further AML efforts.

• Scalability: It should be possible to accommodate both
networks with many nodes and vertices and preferably
both the collaboration of many financial institutions in
order to calculate more accurate results.

4.2 Stakeholder Analysis
Main stakeholders in this framework include financial insti-
tutions, government institutions and individuals and organi-
sations who hold a bank account. These stakeholders all have
different priorities and interests.

Financial institutions want to accurately identify cases of
money laundering both to maintain customer trust and to
comply with regulations and avoid fines. They also want to
maintain client trust and avoid potential lawsuits so the pri-
vacy of their client’s data is of uttermost importance. Figure 1
shows how banks might share data securely by only exchang-
ing secret shares of the data. Governmental institutions want
to ensure that money laundering is either prevented or quickly
and effectively detected by financial institutions. They also
want to ensure that the privacy regulations are upheld. Fi-
nally, bank account holders want to ensure that their sensitive
personal data is not compromised.

Figure 1: Overview of parties that share data, including three banks
as input, computing and output parties.

4.3 Overview of Proposed Solution
In this paper, a secure distributed social network analysis for
money laundering is proposed. Previous work in using so-
cial network analysis [34] proved that representing accounts
and transactions as a social network enables the application of
several metrics that are significantly correlated with high-risk
accounts. One such metric is degree centrality which dele-
gates an importance score to each node depending on the total
number of links held by that node. It has been concluded [34],
that having more central nodes are associated with risky pro-
files. betweenness centrality is a centrality measure that allo-
cates a score based on the number of times that a node is in
the shortest path between two nodes. Let σv(s, t) ∈ 0, 1 be
the number of shortest paths from vertex s to vertex t running
through vertex v. Betweenness centrality [36] is defined as

CB(v) =

∑
s,t∈V

s6=t,s6=v,t6=v
σv(s, t)

(|V | − 1)(|V | − 2)
(1)

A high betweenness centrality score has been also iden-
tified as being correlated with risky profiles [34]. Typically



a high betweenness centrality score indicates a gatekeeper
functionality between two criminal organisations. [35].

In this paper, we focus on creating a secure distributed so-
cial network for transaction data and evaluating the risk fac-
tor of accounts in this network using betweenness centrality.
Betweenness centrality is a good measure to identify money
mules and proxies [34, 36]. A high score indicates that an in-
dividual account has high influence and authority in a cluster
of the network. An example of betweenness centrality values
of a small network can be seen in Figure 3.

This has been previous done in this study [34] that has anal-
ysed real-world data of Italian financial institutions over a pe-
riod of 19 months. However, as far as we are aware analy-
sis for anti-money laundering has never been carried out in
a distributed, secure manner using MPC. This paper aims to
propose an architecture that enables such a framework thus
enabling the collaboration between multiple financial insti-
tutions to potentially determine betweenness centrality more
accurately.

4.4 Data Pre-Processing
Various financial institutions might store their data in differ-
ent formats and might record different properties of a trans-
action. For the purpose of this architecture, we assume, that
all financial institutions store the following properties of a
transaction: source account, destination account, timestamp,
amount. Institutions that do not store this data are not able to
participate in this collaboration. Furthermore, it is essential,
that all data is standardised so that when the social network
is being calculated there are no issues such as using differ-
ent currencies or timestamp format emerges. To prevent data
leakage as well as allow space-efficient storage, the transac-
tion data is stored in an edge list format, meaning each trans-
action represents an edge. This is compatible with the secure
Brandes algorithm discussed below.

4.5 A Two-Party Architecture: Collaboration
Between Two Banks

Brandes algorithm is the most efficient algorithm for comput-
ing betweenness centrality in social network analysis. It has
a time complexityO(|V ||E|+ |V |2log|V |) andO(|V |+ |E|)
space complexity, where V and E are the number of vertices
and edges in a graph, respectively [38]. Today, many other
efficient versions of Brandes [39] and other algorithms [40]
have been developed to enable efficient computation in large
networks. In this architecture we are using a secure version
of Brandes algorithm to compute betweenness centrality in
the combined network of multiple banks, hence enabling the
better identification of high-risk nodes.

Some of the existing research into using MPC for social
network analysis are detailed in these [37, 41–43] papers. In
2018 a secure version of the Brandes algorithm was pro-
posed [37] for unweighted networks using multiparty com-
putation. This protocol works in a semi-honest adversar-
ial model in a two-party setting. Meaning that this proto-
col is assumed to be run by two non-colluding parties who
do not deviate from the protocol. With this protocol, if
more than two financial institutions wish to combine their
network, all financial institutions need to provide shares of

their data to two other representative parties. When the
data is received these two parties together compute the out-
put for the rest of the parties. Its performance was eval-
uated in by implementing it in the Obliv-C framework for
secure computation. Performance was benchmarked using
various ORAM schemes. Using the Circuit ORAM and the
Square-Root ORAM schemes, the complexity of the proto-
col is O(|V ||E|log3|E|) and O(|V ||E|1.5log1.5|E|) primi-
tive operations respectively [37].

As previously discussed the input of this algorithm is in an
edge list format with each transaction representing an edge.
The centrality value of each node is computed in stages. The
exact protocol can be found in Figure 2 of this [37] paper.
The output of this protocol is the list of betweenness central-
ity scores associated with each node. In the paper [37], the
security and correctness properties of the protocol are also
proved. Computing betweenness centrality jointly can lead
to a more accurate score. This is demonstrated in Figure 3
where betweenness centrality scores are calculated by each
bank independently and Figure 3 where this is done jointly.

Figure 2: Two banks computing betweenness centrality of their
graphs separately.

Figure 3: Two banks computing betweenness centrality of their
graphs collaboratively using MPC.

4.6 A Multi-Party Architecture: Collaboration
Between Many Banks

An alternative protocol was proposed in this [44] paper. Here,
both betweenness centrality and closeness centrality are cal-
culated as the output for n ≥ 2 parties. Let (v, t) be the



length of the shortest path from vertex v to vertex t in graph
G. Closeness centrality [36] is defined as

CC(v) =

∑
t∈V
v 6=t
|V | − 1

δ(v, t)
(2)

However, using closeness centrality to detect high-risk ac-
count involved in money laundering has lead to contradic-
tory results. An analysis of real-world data found that there
is no significant correlation between the closeness centrality
score and the risk of accounts [34]. However, another study
concluded that there exists a correlation and a high closeness
centrality score is associated with leadership in a criminal or-
ganisation [35]. Thus, more work has to be done to evaluate if
closeness centrality is indeed useful in identifying suspicious
bank accounts.

Even if closeness centrality does not prove to be a useful
measure, a modified version of this protocol can be used to
calculate betweenness centrality. This can easily be done by
eliminating step 3.2.2.1 in the protocol [34]. Otherwise, the
protocol can be used in its original form. First, computing
the initial matrix using pseudonyms. Then, computing the
set-union of vertices as described in the paper [34] computing
the shortest-path matrix using the Floyd-Warshall algorithm.
Finally computing closeness centrality and betweenness cen-
trality as described in sections 3.2.2.1 and 3.2.2.2.

For this protocol, the input is the edge list of transaction
data and the output is a list of betweenness centrality and
closeness centrality score associated with each node.

Like the previous protocol, this protocol is secure for the
semi-honest adversarial model as well. However, since it con-
siders a multi-party setting instead of a two-party setting it
could have more wide-ranging use-cases as frequently more
than two banks want to collaborate.

4.7 Alternative Representations and Optimisations
Another alternative is to utilise weighted graphs, instead of
unweighted graphs to calculate betweenness centrality. There
are many options to decide what the weight of an edge might
be: for example, it could be the total number of transactions
between the two account or the total amount of money trans-
ferred between the two bank accounts. This would signifi-
cantly reduce the number of edges in the network which could
lead to quicker computation using the MPC protocol. How-
ever, it introduces an extra step of having to calculate the edge
weight for each participating banks on their own before the
start of the collaborative calculation.

The above-mentioned protocols also use undirected
graphs. It might be interesting to consider using directed
graphs instead so that the direction of the money flow can
be taken into account as well. However, more research needs
to be done to see if this would increase the correlation with
identifying risky bank accounts.

Moreover, the temporal significance of edges could be
taken into account as well. Older edges could be either given
less weight or completely ignored. This could ensure that the
network is not cluttered with old, irrelevant information.

Instead of betweenness centrality as a measure, other mea-
sures might be used as well to extract information from the

combined network. As we previously measured degree cen-
trality might also be an interesting measure to calculate and
has been already proven to be correlated with high-risk ac-
counts. Other measures that might be interesting to explore
include:

• Eigenvector centrality that also measures a node’s influ-
ence, but also takes into account how well-connected the
neighbours of the selected node are.

• clustering coefficient which measures the extent to
which nodes in the network are clustered together.

• structural cohesion that measures the number of mem-
bers, that would disconnect a group if removed.

• propinquity which measures how closely connected
nodes are with other nodes that are geographically close
to them.

Lastly, a completely different approach could be taken as
well. The combined network could be used to propagate trust
through it. For example, each account holder could have a
trust score. If a fraudster is identified, mistrust could flow
through the network to its neighbours and the neighbours’
neighbours. Based on our interviews, this option is already
being investigated by the same team that proposed the se-
cure PageRank algorithm, although nothing has yet been pub-
lished, thus we have chosen not to focus on this architecture.

5 Discussion
In this section, the viability and the wider implications of
the proposed architecture are evaluated. These include dis-
cussing how the proposed architecture might complement ex-
isting AML solutions as well as possible collaboration with
companies that have already acquired a related knowledge
base. Furthermore, an analysis of its viability and security
is provided and an outline of how it might be tested.

5.1 Evaluation of the Proposed Architecture
The first architecture proposed is highly limited when it
comes to scalability as it is a two-party computation model.
However, it still might be used to enable collaboration be-
tween two financial institutions. This can be useful if the
banks are strongly connected and a lot of transactions are
carried out between the two. It also might be used for scenar-
ios, when a specific account is being investigated with a spe-
cific connection, or if a quick analysis is needed and there is
no time to compute values across all the participating banks.
The second approach is more promising as it allows the col-
laboration of many different parties. Evaluating the useful-
ness of jointly calculating betweenness centrality and close-
ness centrality with real-world data is however needed before
any conclusions can be made. Although theoretically, scores
should become more accurate under a joint computation, this
has to be also proven in practice to justify the risk taken to
share sensitive data and the computational power used. Fur-
ther considerations should be made about the ideal size of the
number of collaborating institutions. It might be the case,
that computing a graph too big is not efficient compared to
the improvement in accuracy in the score.



5.2 Complementing Existing AML Methods
During the interviews, it has been clarified, that flagging a
bank account as suspicious from an MPC protocol alone is
not sufficient to justify a full investigation on the account.
This is because MPC does not provide any other data other
than the output of the computation. To justify a full investi-
gation more background data would be needed. This is why
we propose to use this MPC architecture as a complement to
existing AML techniques rather than its own. Complement-
ing existing techniques with this MPC solution would allow
a better prioritisation of which accounts need to be investi-
gated.

5.3 Collaboration with Industry
To test the proposed architecture, real-world data is needed
which can be best acquired by collaborating with the indus-
try. Some companies already involved in AML efforts have
the potential to become a valuable source of collaboration to
implement the proposed architecture or to develop more effi-
cient ones. Knights Analytics [45] is a state of the art com-
pany for graph analysis for AML in the Netherlands. They
specialise in AML detection for graphs within a single bank.
There is a strong case for using MPC to enable combining the
graph analysis results of multiple banks.

Another area for potential collaboration is with Moneyou a
subsidiary of ABN AMRO. They have between 10 and 100
simple rules that are applied to the transaction flow to fil-
ter out suspicious transactions. An example for such a rule
would be: is the cash transaction larger than 1000 euros? A
decision tree using MPC could be built to data enable sharing
across banks. This would be a quick win according to one of
the experts interviewed. It might be however computationally
expensive to run a decision tree, so optimisations have to be
considered.

5.4 Barriers to Adaption
Legislative barriers and lack of understanding of how MPC
protocols work have been mentioned most frequently as the
biggest barriers to adaption by the experts interviewed. These
two issues are strongly intertwined. MPC is a difficult con-
cept to grasp, thus it is hard to persuade management that this
would be a valuable technique to devote resources to. Be-
cause of the high barrier to entry to understand this technol-
ogy it is also challenging to gather political support to change
any legislation that might prevent collaboration between fi-
nancial institutions using MPC. Moreover, it can violate con-
sumer trust if data is shared using MPC as the lack of under-
standing might lead to fearing potential data leaks.

5.5 Viability and Testing
Although a theoretical time and space complexity of the al-
gorithm is provided to establish viability full implementa-
tion and performance benchmarking with real-world data is
needed. This would allow to better evaluate the computa-
tional complexity and accuracy of the proposed architecture.

Experimentation could be done using any open-source
MPC engines, for example, MPyC [46] the MPC engine de-
veloped by the Eindhoven University of Technology. This en-
gine also has support for ORM, so it should be possible to

create a prototype using it by utilising the constant time al-
gorithm that is provided in Figure 2 of this [37] paper. Al-
though there is an ORM module provided, MPyC is a gen-
eral engine, so for optimal performance, an engine that gas
a specialist package optimised for ORM might be chosen in-
stead. Other existing MPC engines that might be considered
include using Sharemind [48], VIFF [49], FairplayMP [50] or
Sepia [51]. During the interview, it was suggested by experts,
that the protocol discussed in the design section looks viable
in terms of complexity. They suggested that benchmarking
might be done with 10 million transactions for a single bank
or to 100 million transactions daily to a country of the size of
the Netherlands to establish the performance of the protocol.

5.6 Security
The architecture proposed works under a semi-honest adver-
sarial model, meaning that even corrupted parties correctly
follow the protocol. This provides a rather weak form of se-
curity and a protocol protecting from malicious adversaries
would provide better security by also protecting against par-
ties who do not follow the protocol and who collude with each
other. However, a semi-honest adversarial might still be suf-
ficient if we assume that banks that share data this way have
no reason to collude with each other, which would mean that
data leakages should be avoided.

As security under a semi-honest adversarial model can not
be guaranteed, the data might not be considered anonymous
thus privacy regulations like GDPR might apply. However,
according to an expert, this should not present a problem, be-
cause applying GDPR, in this case, should be relatively sim-
ple. Even if a privacy impact assessment has to be carried out,
privacy officers should find the protection provided by MPC
in combination with other privacy-preserving steps sufficient.
These techniques might include purpose binding, data min-
imisation, privacy by design, the fact that the data stays with
the owner and that there is no central database where data is
stored.

6 Responsible Research
This section outlines the limitations of this research as well
as ethical and ethical considerations that have to be taken into
account when evaluating this solution.

6.1 Limitations
This investigation has several limitations which have to be
communicated clearly in order to accurately determine its im-
plications. Only a high-level overview of the architecture is
proposed, which is only validated by expert interviews and
rely on protocols that are proposed by very recent papers in
2018 and 2020. This leaves serious gaps in being able to
establish the feasibility of the architecture. Implementation,
experimentation with mock data and with real data as well as
performance benchmarking lacks completely and will have
to be established in the future. Since benchmarking for per-
formance and accuracy lacks, it is impossible to conclude if
this method is feasible in terms of computational complexity
under current technological conditions for practical use. It
is also difficult to validate if this method provides too many
false positives when flagging suspicious accounts.



Based on our expert interviews, it has been established that
under current regulations a solution like MPC would not be
sufficient to justify a full investigation on a suspicious bank
account. This is because full investigations have to be backed
up by data, which MPC protocols can not provide. This
means, that this method has the potential to become more of a
complement to existing AML methods, rather than a method
used on its own.

6.2 Ethical Considerations
There are also several ethical considerations that have to be
made when considering this project. Firstly, since the com-
mercial feasibility of MPC is very recent, many of the studies
quoted in this paper either only provide a theoretical outline
for their solutions or only use dummy data to validate it, but
are not yet commercially used solutions. This means, that
there is a significant risk, that these methods might not be
reliable or feasible in real life, which might compromise the
integrity of this study.

Further studies are also needed to establish the security of
MPC protocols for graph algorithms. Studies suggest [32],
that in some cases it might still be possible to recover un-
wanted data. There also might be a risk of exposing sensitive
information, if a new protocol builds on existing protocols
that might be flowed. Thus, it is not clear if the benefits pro-
vided by this architecture are worth the privacy risks it intro-
duces. Similarly, since no implementation is provided, more
work needs to be done to evaluate if this method is biased
towards certain groups for example infrequent account users,
and to correct for those potential biases.

It also has to be considered that even if more collabora-
tion thanks to MPC is reached between financial institutions
and governmental agencies, some institutions might be still
excluded if they don’t have the financial resources to provide
the necessary computing power that is essential to enable the
calculation of trust values. This would risk the potential of
furthering existing inequalities, where rich nations might be
allowed to luxury to collaborate, while poorer counties are
left on their own devices to try to combat money launder-
ing. If the collaboration is effective in tracking suspicious ac-
counts, it might encourage criminal organisations to take their
business to poorer counties that do not have the means to col-
laboratively combat financial crime, thus further increasing
existing crime rates.

Lastly, interviews have been conducted only with experts
based in the Netherlands which introduces location bias. Fi-
nancial institutions elsewhere might store data differently, use
different analytical techniques or have small scale collabora-
tions with other banks. This study is also limited to consider-
ing legal challenges within the EU’s GDPR framework thus
might fail to consider more stringent local privacy legislation
elsewhere.

6.3 Legal Considerations
There are also several legal considerations that need to be
taken into account when determining the feasibility of us-
ing MPC for AML. Because MPC is a difficult concept to
understand, it might become difficult to rally governmental
and legislative support behind it, thus lifting the barriers that

currently limit its viability. Although MPC is already used
by governments for various purposes, for example, Share-
mind by the Estonian government [48], there is little prece-
dent for using it across many different jurisdictions. Although
MPC might be technically compliant with privacy regulations
like GDPR there are many unknowns and grey areas when it
comes to legal implications.

7 Conclusions and Future Work
In this paper, a privacy-preserving version of calculating
the betweenness centrality of a transaction network was dis-
cussed. Calculating betweenness centrality is an interesting
metric for furthering anti-money laundering as it has been
proven to be positively correlated with high-risk accounts
[34]. The utilised protocol requires an unweighted transac-
tion graph with bank accounts as nodes and transactions as
edges and works under the semi-honest adversarial model. In
the future, it would be beneficial to develop a protocol under
the malicious adversarial model to provide stronger security
guarantees.

In the design section, some alternative ideas are also de-
tailed besides calculating the betweenness centrality of two
unweighted graphs. Firstly, the computation of more than two
graphs is discussed. Then alternatives like using a weighted
graph, a directed graph and considering the temporal signifi-
cance of the edges are proposed. Alternative social network
analysis metrics other than betweenness centrality are also
considered. Lastly, a completely different trust-flow based
model is mentioned.

With this work, we hope to have inspired wider collabora-
tion between financial institutions across the globe to upscale
anti-money laundering efforts by combining their fragmented
data. To our knowledge secure social network analysis with
MPC has never has been used for this purpose and this is the
first time that it is being outlined. The potential for using so-
cial network analysis to better understand customer behaviour
is vast and is in no way limited to betweenness centrality.
We believe that representing data this way would be already
beneficial within a single bank itself to better track transac-
tions. However, with the secure collaboration that MPC al-
lows these efforts could make an even bigger difference by
enabling international collaboration.

AML efforts have been hindered since criminals started to
use layering techniques to wire transfers across many differ-
ent banks and jurisdictions. This model could facilitate a
large scale collaboration to combat financial crime by com-
bining fragmented transaction data on a scale that has never
been done before. If money laundering and other financial
crime detection improve, it will become ever harder for crim-
inals to legitimise their earnings and to fuel terrorist and hu-
man trafficking activities. For the potential to ultimately put
a stop to such crimes, we must do everything we can.
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