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Abstract

Developing navigational algorithms for Micro Air Vehicles (MAVs) poses a constant challenging trade-
off between performance, reliability, adaptability and efficiency. To tackle these challenges, one might
want to look at and take inspiration from insects. Insects are skillful navigators which can guide them-
selves reliably through cluttered environments over long distances, while using very little energy. This
thesis looks at the current state of insect-inspired local visual guidance methods and evaluates to what
extent they are applicable for long-ranged visual guidance onboard MAVs. For this purpose, a novel
dataset containing omnidirectional event vision, frame-based vision, depth frames, Inertial Measure-
ment Unit (IMU) readings, and centimeter-accurate Global Navigation Satellite Systems (GNSS) posi-
tioning over kilometer long stretches in and around the TUDelft campus was collected. The analysis
demonstrates that current scene familiarity models are not suited for long-ranged navigation, at least
not in their current state.
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1
Introduction

Micro Air Vehicles (MAVs) show promising use for applications in hard-to-reach or dangerous envi-
ronments such as disaster relieve (Delmerico et al., 2019). Being able to autonomously and reliably nav-
igate through such environments poses an important challenge towards the deployability of these sys-
tems. Often, one cannot rely on external aid such as GNSS or traditional methods like dead-reckoning
systems become inaccurate or impractical. Many insect species are able to tackle these challenges and
are highly efficient at it. It is therefore of interest to study how insects are able to perform these tasks
and how they can be implemented onboard human-made systems such as MAVs.

Vision is an ideal candidate as part of a navigation solution, as it provides a rich and highly dimensional
source of information about the environment. Furthermore, vision sensors have interesting properties
such as low power consumption, low weight, and compactness, which makes them an excellent candi-
date for use on MAVs. Vision-based navigation solutions have evidently evolved much during the past
decades. Traditional visual guidance methods like visual(-inertial) odometry — often part of a Simul-
taneous Localization and Mapping (SLAM) framework — depend on extracting hand-crafted features
from the environment (Forster et al., 2014; Mur-Artal and Tardos, 2017; Engel et al., 2014). Recently,
learning based image processing with (deep) convolutional neural networks has shown superior per-
formance over hand-crafted feature extractors (Krizhevsky et al., 2012) and has subsequently found
its way in guidance applications ranging from optical flow (Hur and Roth, 2020) and depth estima-
tion (Zhao et al., 2020) for augmenting traditional guidance pipelines to end-to-end learning of guid-
ance policies (M. Müller et al., 2019). However, local navigation methods based on visual odometry,
suffer from drift in their estimates unless not accounted for in computationally expensive techniques
such as loop closure detection or global bundle adjustment. This seriously limits their applicability on
MAVs where endurance and autonomy are of importance.

Another approach is to take inspiration from nature, where insects have already solved the naviga-
tion problem of navigating through cluttered, unknown environments. They do this in a very energy-
efficient manner, which is a result of the manner in which they perceive and neurologically process vi-
sual information. Insects have compound eyeswith relatively low resolution but which cover an almost
panoramic field of view. Brightness changes in the environment asynchronously activate light-sensitive
neurons in the compound eyes, this information is eventually encoded in temporally spaced voltage
spikes (events) through the optic lobes (underlying networks of interconnected neurons) (Ibbotson
et al., 1991; Bausenwein et al., 1992; Sommer and Rüdiger Wehner, 1975) and are further processed
in the protocerebrum (Paulk et al., 2009; Menzel and Martin Giurfa, 2001). The combination of this
sparse panoramic input and processing visual information as events in a spike-based manner allows
visual information to be processed in a highly efficient manner (Tavanaei et al., 2019).

The attractive properties of processing visual information in an asynchronous, spike-based manner
have inspired researchers to develop artificial (neuromorphic) counterparts like event cameras, Spiking
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2 Chapter 1. Introduction

Neural Networks (SNNs) and neuromorphic computer chips such as Intel’s Loihi (Davies et al., 2018)
or IBM’s TrueNorth (Akopyan et al., 2015). Event-based vision takes it inspiration from nature and
works by asynchronously measuring brightness changes for each individual pixel in the form of events,
opposed to capturing images in frames as conventional frame-based cameras do. Consequently, event-
based vision sensors have a couple of advantages over conventional cameras (Gallego, Delbruck, et al.,
2019): high temporal resolution (order of µs), low latency (order of µs), high dynamic range (140
dB vs. 60 dB of conventional cameras) and low power consumption (order of 10mW ). Their sparse
and event-based output lend them very well for subsequent processing with SNNs. SNNs work best
when combined with dedicated neuromorphic hardware. Together they have the potential to achieve
similar, possibly better, performance than traditional artificial neural networks at a fraction of their
power requirements (Pfeiffer and Pfeil, 2018).

The same approach can be applied to distill visual navigation techniques. Over the years, various differ-
ent models of insect visual navigation have been developed, ranging from pure matching of retinotopic
features as proposed in the original snapshot model of Cartwright and T. S. Collett (1983) to holistic
encoding of route memory in a model of the insect’s mushroom bodies (Ardin et al., 2016). These
models however are primarily focused on replicating biological observations and their neural imple-
mentations. The approach in this research differs from the one taken by biomimetic work, in the sense
that it does not try to mimic or model insects’ navigational behavior, but takes inspiration from them to
fulfill real-world challenges. Insect-inspired visual navigation methods often limit themselves to simu-
lation (Dalen et al., 2018; Dijk, 2017; J. Müller et al., 2018) or do not take advantages of neuromorphic
of hardware (Knight et al., 2019; Denuelle and Srinivasan, 2016). It is in our interest to adapt/develop
methods that take advantage of the aforementioned aspects and make an effort towards bringing these
capabilities to MAVs.

Motivation and ResearchQuestion

This thesis aims to evaluate the performance of state-of-the-art neural event-based visual insect-inspired
navigation models for route following over large distances (>100 meters). The motivation behind this
can be split up in three parts: 1. Insect-inspired guidance methods based on the Snapshot model have
thus far seen little deployment on MAV hardware, partly due to their limited capabilities w.r.t. regular
methods 2. Event-based vision combined with SNNs on neuromorphic hardware has the potential for
very efficient computation which could bring visual route guidance to very small (insect-scale Karásek
et al. (2018)) platforms 3. Highly efficient visual guidance for MAV in e.g. search-and-rescue mission
could free up valuable computational resources to allow other vital tasks to be preformed 4. It is of in-
terest to see what the current limitations of such insect-inspired models are in terms of their capability
to cover large distances. This can be summarized in the main research objective of this thesis:

Evaluating current insect-inspired, neural-based, visual navigation
methods with event-based vision over long distances for application on-
board micro air vehicles in outdoor environments.

From which the central question arises:

How well do current insect-inspired neural event-based visual naviga-
tion methods perform over long (>100 meters) distances?

These are distilled into the following sub-questions:
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• Given amodel, what are the limitationswith respect to the amount of route information
that can be stored, in other words, how big of an area can it represent?

• Which factors govern the performance of neural event-based visual navigation meth-
ods?

• Which datasets exist that would allow for such comparative evaluations?

Structure of This Work

The work that is conferred in this thesis consists of four parts. The scientific paper, presented in Part I,
contains the main contributions of this thesis.

Part II takes an in-depth look at the relevant literature covering local vision-based guidance, what we
can learn from insects, event-based vision, and neural-based guidance methods. First, in Chapter 3, a
literature study on local vision-based mapless guidance methods with a focus on insect-inspired nav-
igation is presented. In Chapter 4 an overview is given of insect physiology and behavior related to
visual navigation. The basics of event-based vision are discussed in Chapter 5. And finally, Neural-
based visual guidance methodologies are presented in Chapter 6. The findings of the literature study
are then summarized in Chapter 7.

Subsequently, a number of preliminary experiments investigating the performance of two recent neural
familiarity-based insect navigation models is presented in Part III. Chapter 8 lays out the methodology
that has been followed through the preliminary experiments and introduces the evaluated models.
Chapter 9 evaluates the two introduced models in terms of their efficacy to discern ‘familiarity’ in
real life scenes under varying conditions. These findings are summarized in Chapter 10, from which
conclusions are drawn connecting them towards the scientific paper as presented in Part I.

Part IV are the Appendices, which present a detailed account of the implementation of L. Zhu et al.
(2020)’s MB model which has been evaluated in Part I.





Part I

Scientific Paper
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A novel multi-vision sensor dataset for

insect-inspired outdoor autonomous navigation

Jan K.N. Verheyen, Julien Dupeyroux, and Guido C.H.E. de Croon

Micro Air Vehicle Laboratory, Department of Control and Simulation
Faculty of Aerospace Engineering, Delft University of Technology

2629HS Delft, The Netherlands
g.c.h.e.decroon@tudelft.nl

Abstract. Insects have — over millions of years of evolution — perfected
many of the systems that roboticists aim to achieve; they can swiftly and
robustly navigate through different environments under various conditions
while at the same time being highly energy efficient. To reach this level of
performance and efficiency one might want to look at and take inspiration
from how these insects achieve their feats. Currently, no dataset exists
that allows bio-inspired navigation models to be evaluated over long real-
life routes. We present a novel dataset containing omnidirectional event
vision, frame-based vision, depth frames, inertial measurement (IMU)
readings, and centimeter-accurate GNSS positioning over kilometer long
stretches in and around the TUDelft campus. The dataset is used to
evaluate familiarity-based insect-inspired neural navigation models on
their performance over longer sequences. It demonstrates that current
scene familiarity models are not suited for long-ranged navigation, at
least not in their current form.

Keywords: Long-range navigation · Neuromorphic systems · Event-
based Camera · RGB Camera · GPS · GNSS

1 Introduction

To date, some insect-inspired aerial robots have been developed [10, 20] which
mimic the flight capabilities of insects and while basic navigating capabilities
have already been shown on board such limited platforms [30], their navigational
performance falls short compared to their biological counterparts. Recent neural
insect-inspired navigational models [2, 3, 11,39] show promising results over short
distances, but lack the capacity for long-ranged navigation. One of the major hur-
dles holding back high-performance navigation onboard robots is energy-efficient
visual processing. Insects’ visual system is event-based, where photosensitive cells
react independently from each other to changes in light intensity and subsequently
generate spikes that propagate through the visual system to be processed in their
miniature brains. Event cameras are neuromorphic vision sensors that mimic that
process. Here, pixels take the role of the photosensitive cells and generate events
asynchronously. Visual information is thus captured in a stream of events opposed
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to synchronous frames as taken by traditional cameras. This allows neuromorphic
cameras to operate at very high temporal resolution and low latency (in the
order of microseconds), very high dynamic range (140dB compared to 60dB of
standard cameras), high pixel bandwidth (in the order of kHz), and low power
consumption (order of mW) [15]. Processing such information requires novel
methods to be developed. Techniques for frame-based visual data generally make
use of convolutional neural networks (CNNs) and some approaches have focused
on bringing these methods to event-based data [28]. Other more biologically plau-
sible methods involve the use of spiking neural networks (SNNs) since they are
biologically more similar to networks of neurons found in animal nervous systems
than regular artificial neural networks (ANNs). Implemented on neuromorphic
processors such as Intel’s Loihi and IBM’s Truenorth, SNNs can deliver highly
powerful computing at a fraction of the power budget of traditional hardware
(CPUs, GPUs), making them promising candidates for implementation on robots.
Recent neural insect-inspired navigation methods such as [22] show promising
results for implementing different aspects of those methods for visual navigation
to real-life challenges.

However, matching insects’ capability to efficiently navigate over long distances
remains a challenge. Datasets form an important part of training and evaluating
such methods. Currently, there are several event-based vision datasets focusing
on navigation, covering applications in visual odometry, depth reconstruction,
and SLAM but little focusing on insect-inspired navigation. Images, events,
optic flow, 3D camera motion, and scene depth in static scenes using a mobile
robotic platform are provided in [4]. A large automotive dataset containing
over 250000 human-labeled box annotations of cars and pedestrians is presented
by [34]. The dataset provided by [38] includes synchronized stereo event data,
augmented with grayscale images, and inertial measurement unit (IMU) readings.
Ground truth pose and depth images are provided through a combination of
a LiDAR system, IMU, indoor and outdoor motion capture, and GPS. The
DDD20 [18] dataset consists of an extensive automotive dataset with events,
frames, and vehicle human control data collected from 4000 kilometers of mixed
highway and urban driving. However, most insects have compound eyes that
cover an almost panoramic FOV and this plays an important role in insects’
navigational dexterity [16]. Additionally, insects fuse various sensory inputs from
their environment together during navigation [14], making datasets that combine
sensors valuable sources for training and evaluating such methods. None of the
datasets above provide event data captured through an omnidirectional lens
enhanced with additional sensors over long distances.

This paper presents two main contributions. First, a dataset containing omni-
directional event camera and IMU data, forward-facing high-resolution footage,
and centimeter-level accurate GPS data along with a software package to load,
process and manipulate the dataset. The dataset, including the software package,
will be made available at https://github.com/tudelft/NavDataset. Secondly,
an evaluation of three different familiarity-based insect-inspired navigation models
from the literature [2, 3, 39] with respect to their performance in long-ranged
navigation is presented.
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2 The biological principles in insect navigation

2.1 Visual Perception

Insect’s compound eyes see in a lower resolution than human eyes but can be
arranged to cover an almost panoramic visual field and due to their simpler
nature have faster processing times. Compound eyes consist of small individual
hexagonally-shaped photoreceptive units, called ommatidia, which are arranged
to form a faceted surface. Each such ommatidium receives light only from a small
angle (1◦ up to ±20◦ [24] depending on its location on the eye and species) in
the visual field, constricting the visual acuity of the insect’s visual system. When
excited by photons, these photoreceptive cells generate electric signals encoding
the amount of light it absorbs, which downstream neurons turn into spikes that
are passed through to the underlying optic lobes [29].

2.2 Insect Navigation Models

Insects are adept navigators capable of maneuvering through cluttered envi-
ronments and memorizing long routes, e.g. bees have been shown to retrace
routes several kilometers in length [12]. As a result, biologists have looked at
modeling insects’ navigational capabilities to figure out how they realize these
feats as well as to better understand their behavior. Cartwright and Collett’s [9]
seminal snapshot model presented some of the first work concerning honeybee
navigation. It hypothesized that honeybees store a single retinotopic snapshot of
the place that they later want to navigate back to. Other methods include the
Average Landmark Vector (ALV) model [23], image warping [13], and rotationally
invariant panoramic methods that utilize Fourier-transformed [33] images or
other frequency-domain-based methods [32].

The area surrounding the stored snapshot from which agents can successfully
return is categorized as the catchment area. The extent of the catchment area thus
changes depending on various factors such as the deployed navigation technique
and the complexity and texture of the environment [37]. In general, the root mean
square difference between the stored panoramic snapshot and another panoramic
snapshot (also called the image difference) changes smoothly in natural scenes
in correlation with the distance from the stored snapshot, where it terminates
in a sharp minimum [37]. This laid down the theoretical basis for so-called
Descent in Image Difference (DID) methods, which follow the declining gradient
in image difference towards the stored snapshot, demonstrated in a (still small)
5.5× 8.25 environment [26]. Later methods looked at more biologically plausible
implementations for processing the visual data through the implementation of
ANNs. In the scene familiarity model [3], a route is learned through training a
2-layer feedforward network to memorize snapshots along the route. An SNN-
based scene familiarity model, modeled after the mushroom bodies of ants was
later formulated by [2].
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2.3 Neuromorphic Processing

Event-based Vision Sensors Event cameras are vision sensors that take
inspiration from the working principle of the biological retina. Each pixel reacts
asynchronously to changes in light intensity. The sensor logs the pixel’s location,
time (in microsecond resolution), and polarity (‘ON’ or ‘OFF’), and sends it over
a digital bus in an Address-event Representation (AER) format [15]. Because
event cameras only react to small changes in light intensity at individual pixels,
visual information is more efficiently conveyed compared to frame-based cameras.

Spiking Neural Networks Analogous to their biological counterparts, artificial
neurons in SNNs generate a spike (action potential) if their membrane potential
reaches a certain threshold after receiving a series of excitatory spikes from
upstream neurons over their synaptic connections. After firing, the neuron lowers
its internal voltage to a resting state. For a short time (the so-called refractory
period) the neuron will not react to any incoming signals anymore. Various
computational models of biological neurons exist to replicate this behavior. The
most used neuronal models in artificial spiking neural networks nowadays are
the Leaky Integrate-and-Fire (LIF) [31], Spike Response Model (SRM) [21],
and the Izhikevich [19] model. The LIF neuron model in Eq. 1 shows how
presynaptic spikes sj(t) arriving from neurons in layer l− 1 increase (or decrease)
— depending on weight matrix Wi,j , denoting its synaptic connectivity — the
neuron’s membrane potential vi(t) (scaled with the time constant λv) after
which it decays to its resting potential vrest if no more signals arrive. If enough
excitatory presynaptic spikes arrive in short succession, the membrane potential
will reach a certain internal threshold after which the neuron spikes (si(t)), resets
its membrane potential, and enters a refractory period. Inhibiting presynaptic
spikes have the opposite effect and will lower the membrane potential.

λv

dvi(t)

dt
= −(vi(t)− vrest) +

nl−1

∑

j=1

(

Wi,js
l−1

j (t− τd)
)

(1)

Information in SNNs can be encoded in several different manners including
position, temporal, rate coding, and subsequent combinations thereof. Learning
in SNNs thus takes place in these domains, traditionally with much focus on
a mechanism called Spike-Timing-Dependent Plasticity (STDP) [8]. STDP is
a (biological) form of Hebbian learning that changes the synaptic strength of
neuron connections dependent on their relative spike timing. Learning through
backpropagation — the backbone of modern machine learning in ANNs — is
not (directly) possible due to the discontinuous nature of spikes. However, a
great number of efforts over recent years have shown that back propagation-like
algorithms could be successfully applied to SNNs, using a wide range of tricks
(surrogate gradient [36], rate-based networks [25], and learning spike times [6]
among others).
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3 Dataset Design

The following section presents the utilized sensors and how the dataset was
collected. The dataset was collected in both rural and urban environments in
and around the TUDelft campus. It mainly consists of events and IMU readings
captured by a DAVIS240 event camera and video from a GoPro Hero 8 Black
along with RTK GNSS positioning data. Video was collected in HEVC encoded
MP4 and ROS bag files for the rest. The dataset also provides the same raw
data in HDF5 containers. Section 3.1 gives an overview of the dataset collection
platform and the acquisition environment. A Python3 package will be made
available for converting the bag and HDF5 files to and from various formats, as
well as performing the data (pre)processing as elaborated upon in Section 3.2.

3.1 Sensors and Data Acquisition

Table 1: Dataset collected data

Sensor Characteristics Container

DAVIS240 240× 180 pixel DVS bag/HDF5
AER

GoPro Hero 8 Black 1920× 1080 pixel mp4 (HEVC)
60 Hz

Ublox ZED-F9P GNSS module NavPVT bag/HDF5
5 Hz
Position Accuracy 1.3 cm CEP

Intel Realsense d435i 720× 1280 pixel depth bag
30 Hz
16UC1

Sensors Table 1 provides an overview of the sensors with their characteristics.
The complete logistical overview of the dataset acquisition platform can be seen
in Fig. 1A and B. The dataset junction box forms the housing holding the various
sensors as well as the Intel Up board computation platform. The Intel Up board
runs ROS and is responsible for collecting and time synchronizing the data from
the various sensors which are connected over USB2/3 buses. The GNSS antenna
was mounted at the back of the bike to minimize interference from the USB3
controllers. A mobile phone with cellular was connected to the Intel Up board
by connecting to the phone’s wifi hotspot. This allowed for running commands
on the Intel Up board over ssh as well as provided the Intel Up board with
internet access. This was needed for RTK GNSS positioning; RTCM messages
were sent to the ublox ZED-F9P GNSS receiver by connecting to the EUREF-IP
network ntrip server allowing for up to centimeter-accurate positioning. The
DAVIS240 camera was mounted to an omnidirectional catadioptric lens to achieve
omnidirectional vision. The GoPro camera was manually operated, thus a small
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gap exists between its timing and the rest of the sensors; this has been manually
compensated for in the post-processing of the data. An external portable SSD
was utilized to offload the collected data after every single run as the internal
storage of the Intel Up board was limited. The dataset box was then mounted to
a bike (Fig. 1B).

Sequences The dataset consists of in total 12 routes traversed by bike from
and to the start point, Fig. 2 gives an overview of the recorded routes. The runs
cover both rural and urban environments in and around the TUDelft (Delft, The
Netherlands) campus.

B

C

Intel Up Board - Ubuntu 16.04
Intel® Atom™ Quad Core 1.92 GHz x5-z8350

NTRIP network
(www.euref-ip.net)

Tallysman TW7972
GNSS antenna

DAVIS240
event camera

GoPro Hero8
Black

Intel Realsense
d435i

Ublox ZED-F9P
GNSS module

Smartphone

cellular network

GNSS signals

11.4V DC
power supply

Wireless LAN

SMA

USB

USB

USB
USB Samsung T7

portable SSD

Dataset Box

Tallysman TW7972
GNSS antenna

11.4V DC power supply

PVC housing

Intel Up board

Intel Realsense d435i

GoPro 8 Hero Black

DAVIS240 +
omnidirectional catadioptric lense

Ublox ZED-F9P GNSS module

A

Samsung T7 portable SSD

Fig. 1: Dataset acquisition hardware. A shows an overview of the various sensors
mounted on the dataset box. B shows the full setup — the dataset box mounted
on a bike to cover the long distances. C shows the data flow diagram between
the sensors and the central computers.

3.2 Data Processing

Central to this dataset is the data provided by the DAVIS240 equipped with the
omnidirectional catadioptric lens. As can be seen in Fig. 3, the omnidirectional
lens projects its light on a circular region on the DAVIS240 sensor. In Fig. 3A
the direction of the view with respect to the bike’s heading is annotated. The
approximate location of the capture can be seen in Fig. 3B. This circular projection
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can easily be masked as it stays fixed with respect to the sensor, subsequent
unwrapping results in the view presented by Fig. 3C. These procedures along
with a few denoising methods are also included in the software package released
alongside the dataset.

2 km

N

➤➤

N

start point

1 2 3

sample 3

sample 2
RTCM

base station

sample 1

route 1a/b

route 2a/b

route 3a/b

route 4a/b

route 5a/b

route 6a/b

Fig. 2: Map of the routes covered by the dataset. Route ‘a’ indicates runs away
from the start point, ‘b’ towards the start point. The routes cover both rural and
urban environments as presented by samples 1–3.

4 Experimental study: Evaluating Familiarity-Based

Neural Insect Navigation Models

4.1 Introduction

The following section presents the use of the dataset to investigate a few recent
neural insect-inspired navigational models. The experiments compare three neural
insect navigation models in terms of their performance for long-ranged navigation,
namely [3]’s scene familiarity neural network, [2]’s Mushroom Body model,
and [39]’s Mushroom Body model. The aforementioned models have been mostly
tested in either simulated environments [2, 3] or over very short distances in a
controlled environment [39]. This dataset provides an interesting testing ground
to evaluate these methods in real-life conditions with visual data inspired by the
way insects perceive their environment. The inclusion of frame-based video allows
for comparison between frame-based [2, 3] and event-based [39] methods. We are
specifically interested in how these methods hold up over longer distances.

4.2 Neural Familiarity-Based Insect Navigation Models

Baddeley et al.’s Scene Familiarity Model The (frame-based) scene famil-
iarity model of [3] consists of an input layer with the same dimensions as the
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Fig. 3: Example of the omnidirectional events captured by the DAVIS240 and
subsequent preprocessing. A shows an accumulated event frame as captured by
the omnidirectional system, the two concentric circles show the boundaries of the
visible field. B shows a frame from the GoPro footage, the left snapshot coincides
with the camera position in the frame. C shows the event stream after masking
and unwrapping the events.

number of pixels in the acquired images, which is fully connected by feedforward
connections to a novelty layer which consists of tanh activation functions. The
information about the input presented by the novelty layer is maximized through
weight adaptation following the Information-Maximization (infomax) principle [5].
The infomax principle adjusts the weights of the network in such a way as to
maximize the information about the input that the novelty layer presents. This
is performed by following the gradient of mutual information; in [3] the natural
gradient is utilized to save computation time. By maximization of information
through weight adaptation, the output of the novelty layer units is decorrelated,
effectively reducing the network’s output for sequences that have already been
seen. ‘Familiar’ frames can be discerned after a single training run.

Mushroom Body Models The MBs are relatively large structures in the
insect brain that consist of large parallel arrangements of neurons, called Kenyon
Cells (KCs), which are sampled by a relatively small amount of extrinsic neurons,
also called Mushroom Body Output Neurons (MBONs). The mushroom bodies
are known to play an important role in olfactory learning [17]. More recently,
the mushroom bodies’ role in visual learning has been investigated, revealing
direct neural connections between the medulla and mushroom bodies [35]. Recent
research has shown that MBs are necessary for learned visual navigation [7].

Ardin et al.’s Mushroom Body Model The (frame-based) SNN MB model
presented by [2] consists of 360 visual projection neurons (vPNs) that are sparsely
connected to 20000 Kenyon cells which connect to a single MBON. Each such
vPN can thus activate only a handful of KCs, representing a sparse encoding of
information. Learning is performed by lowering the synaptic weights (Long-Term
Depression (LTD)) between the KCs and the MBON through STDP. As a result,
after training, the MBON’s spike rate is lower for familiar views opposed to
novel ones. Only LTD is applied, in effect permanently weakening the neurons
connection. This limits the model’s capacity to memorize long sequences to the
amount of depletable weights.
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Zhu et al.’s Mushroom Body Model The model presented by [39] (event-
based) adapts Ardin et al.’s [2] model based on the finding that 60% of the input
synapses of KCs come from other KCs. Instead of performing learning on the
weights connecting the KCs to the MBON; when a KC spikes, it inhibits its
connection to downstream KCs that spike at a later time based on an STDP rule.
The KCs are split up into two groups of 5000 neurons to speed up learning; each
solely acting within its group. Additionally, an anterior paired lateral (APL) [1]
neuron is included that inhibits the activity of the KC layer.

4.3 Setup

The aforementioned neural networks were trained on sequences of 8, 16, 24, and
32 seconds from a 32-second section of route 1a (see Fig. 2). The respective
networks were trained to ‘memorize’ that stretch of the route. Ensuing runs
would result in a lower response from the network for already seen sequences,
compared to unseen sequences. During the validation run, the same sequence
was injected with unfamiliar sequences over stretches of 4 seconds and presented
to the networks. The injected parts were sampled from sections of other routes
in the dataset. For the event-based networks, the injected sequences were closely
matched to the event rate of the original sequence, to maintain similar levels of
activity in the network’s layers. The frame-based models were presented with
28× 8 pixel greyscale histogram equalized frames flattened to a 1D array. Input
from the DAVIS240 sensor was max-pooled to 32× 7 pixels before passing it to
the network.

4.4 Results

The results of the experiment can be seen in Fig. 4. Inspired by [39]’s novelty
index, we apply a performance index P

P =

∑

sunfamiliar −
∑

sfamiliar

stotal

(2)

with s the response of the network, to evaluate the model’s performance over
increasingly longer test sequences, visualized in Fig. 4D. The Infomax scene
familiarity [3] model’s performance index decreased overall, while Ardin et al.’s [2]
stabilized, but both these frame-based models maintain an adequate performance
level to still separate familiar from unfamiliar views. This is in stark contrast with
Zhu et al’s [39] event-based model, which has depleted its ‘memory’ after about
16 seconds of learning. This deteriorating performance over longer distances is a
result of the limited capacity of the networks, as synaptic connections’ weights
are depleted during training. This could be improved upon by a number of
factors. First, the networks were trained with a constant learning rate, this could
be tuned for longer distances, although at the cost of lower performance in
general. Secondly, one could lower the number of presented frames from 60Hz
to lower rates based on some metric of the input data. Further increases in
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Fig. 4: Insect navigation models response to 8-, 16-, 24-, and 32-second sequences
of a section of route 1a. A Infomax neural network [3] (frame-based). B Ardin et
al.’s [2] MB model (frame-based). C Zhu et al.’s [39] MB model (event-based).
D Performance index P (Eq. 2)

the network’s size by increasing the amount of KCs remains an option as well,
although its computational increase would severely limit the number of deployable
robotic platforms. The frame-based method’s more stable performance could be a
consequence of them having more control over their input through well-established
techniques such as normalization, which are less developed for event-based vision.
Investigating intrinsically modulating mechanisms such as [27]’s adaptive LIF
neuron could perhaps provide more fundamental solutions for this. Furthermore,
it is known that insects perform a number of preprocessing steps (including
elementary motion detection such as optic flow) in their optic lobes [29] as well as
have mechanisms present that adjust the learning and forgetting of ‘unnecessary’
information [14], worth investigating.

5 Conclusion

The current insect-inspired visual navigation methods still come short compared to
their biological counterparts, especially regarding navigating over long distances.
This work aims to provide a valuable tool with which further development of
neural insect-inspired long-range navigation methods can be accelerated.
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2
Motivation and Scope

The goal of the literature study is to explore and get a broader understanding of the relevant literature
that covers the scope of this thesis. Towards this purpose, the following motivation and goals had been
initially set at the start of the literature study, which evidently changed over the course of this thesis
(see Chapter 1).

The ultimate goal of this thesis was to theorize/adapt a novel neural event-based visual insect-inspired
navigation model for route following and evaluate its performance for long-ranged (more than 100
meters) navigation. From which the central question arises:

How can a neural-based, insect-inspired guidance model, relying on
event-based vision, be developed to achieve parsimonious visual guid-
ance over long distances (> 100m) onboard a micro air vehicle?

As the method will concern itself with one-shot learning of previously traversed routes, it will be of in-
terest which learning architectures lend themselves for such purpose. Another requirement is that the
method is able to run onboard a MAV in realtime for it to be usable, this computational parsimonious-
ness is of importance. Finally, when a method has been developed it would be of interest to investigate
its capabilities in route following, and subsequently investigate how large of an area it can ‘represent’.
These are distilled into the following sub-questions:

• Which neural network architecture, interfacing with event-based vision, combined
with a guidance policy allows for one-shot learning of visual routes in novel natural
scenes?

• What are the minimum network requirements for achieving this, and can this be run
in realtime on board a micro air vehicle?

• Given the neural model, what are the limitations with respect to the amount of route
information that can be stored, in other words, how big of an area can it represent?

Towards the purpose of answering these questions, a study comprising relevant and state-of-the-art
literature is therefore presented in the following chapters. Chapter 3 presents an overview of local
vision-based mapless guidance methods with a focus on insect-inspired navigation. Chapter 4 dives
into insect physiology and behavior related to visual navigation. Event vision basics and processing
methods are covered in Chapter 5. Finally, Chapter 6 presents neural-based visual guidance methods.
The findings of the literature study are then summarized in Chapter 7.
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3
Local Vision-Based Guidance

In this Chapter, navigation methods focusing on MAV monocular visual(-inertial) navigation without
the need for prior maps of the environment will be reviewed. Map-building-based (SLAM) navigation
will be briefly discussed in Section 3.1. Mapless navigation models, including insect-inspired models,
will be reviewed in Section 3.2. Finally, studies on the catchment area of visual snapshots will be re-
viewed in Section 3.2.3.

3.1. Visual(-Inertial) Odometry and SLAM

SLAMhas steadily become the de facto technology for navigation in unknown/cluttered environments
where one can not rely on GPS data. Early SLAMmethods were filter-based (e.g. Kalman filter), where
localization and mapping are done simultaneously. A filter estimates the camera pose along with the
state of all the landmarks that are detected in its environment. This clearly becomes a problem when
covering larger areas or when tracking a lot of features at the same time. Therefore, the introduction of
keyframe-based methods was made. Keyframe-based methods separate the task of SLAM up in two
parts:

1. Camera pose estimation is performed on every frame and uses a subset of the map.
2. A map of the environment is maintained but only updated on keyframes. Keyframes are tagged

based on criteria like: significant change of pose measurements, detection of a certain amount of
previously unseen features, time elapsed, …Themap is updated using techniques like pose graph
optimization and local/global bundle adjustment.

Many of the latest SLAM methods are keyframe-based. One can generally split SLAM methods into
indirect and direct methods, and methods that form a hybrid between the two (Younes et al., 2017;
Huang, 2019). Indirect methods extract and track features from the environment while direct methods
act directly on raw pixel values.

3.1.1. Indirect Methods

Indirect or feature-based methods are more robust and mature than the direct methods. They make
use of features. Feature detectors try to find features in a scene that are invariant to illumination and
viewpoint changes and can deal with noise and motion blur. Commonly used feature extractors in-
clude but are not limited to the Harris detector, Shi-Tomasi corners, Difference of Gaussian, Features
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from Accelerated Segment Test (FAST), Adaptive and Generic corner detection based on the Accel-
erated Segment Test (AGAST) and Optimal Accelerated Segment Test (OAST). Trade-offs have to be
made between robustness, computational cost and speed—here typically, not all can be met and de-
pending on the platform and utilization different methods have to be used. After the extraction of
features in a scene, different feature descriptors are utilized, of which Binary Robust independent El-
ementary Features (BRIEF), Speeded Up Robust Features (SURF), Scale-Invariant Feature Transform
(SIFT) and Oriented FAST and Rotated Brief (ORB) are some of the most commonly used. They again
have differences in speed and robustness to changes in rotation and scale (Krig and Krig, 2014). A
major overhead in the real-time applicability of feature-based SLAM is the detection and extraction of
features. An advantage of indirect methods is that they are more robust to larger baseline movements
in between frames. Themain difficulty nowadays lays in finding the right trade-off between robustness,
computational efficiency and speed for the right application.

3.1.2. Direct Methods

Direct methods act directly on individual pixels of frames. Dense methods utilize all the pixel in the
frame whereas semi-dense methods only use those pixels for which a significant image brightness gra-
dient exists. Theywork byminimizing the intensity error between camera frames and utilizes as a basis
the brightness consistency constraint:

J(x, y, t) = I(x+ u(x, y), y + v(x, y), t+ 1) (3.1)

where x and y are the coordinates of the pixel on the image and u and v are the displacement functions
that signify the movement of a pixel (x, y) from image I to J and t is time. The brightness consistency
constraint assumes that any object in a scene will not see a significant change of illumination when seen
from a different point of view. The main advantage of using direct methods is that they can also track
movement even in low-textured environments and are able to deal with motion blur—cases in which
indirect methods struggle to find features. However, for the brightness consistency constraint to hold,
a good state initialization and high frame rate are required and measures have to be taken to overcome
changes in scene illumination. Furthermore, the calculation of the photometric error for each individual
pixel is expensive and real-time computation has only recently become plausible due to advancements
in parallel processing and the introduction of semi-dense inverse depth filtering (Younes et al., 2017).

3.2. Mapless Navigation

When close enough to a goal location, one can visually navigate to that location by comparing an image,
or a holistic representation of the image taken at that location, with the current view and relating that to
a direction of travel. This can be utilized for homing to a single location, but also multiple snapshot can
be used to stitch a route together, which is then visually followed. Or, as proposed by (Baddeley et al.,
2012), one could simply follow the most familiar route. Following (Möller and Vardy, 2006), mapless
navigation methods that solely rely on monocular visual intensity information can be divided into two
categories: correspondence and holistic methods.

3.2.1. Correspondence Methods

Correspondence methods try to match regions in the stored snapshot with the current view by com-
puting a vector that would match the transformation of a region from the current view to a matched
region in the stored snapshot. Multiple regions can be matched to give an estimate for the direction
one should navigate to, to end up at the goal location. Correspondence methods can be subdivided
into (Möller and Vardy, 2006):
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• differential flow methods, e.g. (Vardy and Moller, 2005)
• matching methods

– without feature preselection, e.g. block, intensity and gradient matching ((Argyros et al.,
2005))

– with feature preselection, e.g. Cartwright and T. S. Collett (1983)’s original snapshot model

Differential flow methods use Taylor approximations of the intensity or gradient correspondence func-
tions between frames to compute the direction of travel. The original snapshot model of bee naviga-
tion proposed by Cartwright and T. S. Collett (1983), uses pre-programmed matches with dark and
bright regions in the (controlled) environment to compute a desired homing vector. Other methods
with feature preselection use e.g. edges, blobs …to determine a guidance direction. Methods without
feature preselection match single pixels or blocks of pixels between frames, and originate from optic
flow methods. Correspondence methods have been successfully used in applications ranging from
mobile cleaning robots (Vardy and Moller, 2005) to visual road navigation (Pink et al., 2009). Many
early models of insect-inspired visual navigation are essentially correspondence methods, where con-
trolled experiments were set up to serve as a test bed for the model of insect navigation in question.
Correspondence methods have not recently seen much development in applications for direct visual
guidance. Visually extracted features are however extensively used in SLAM methods as discussed in
Section 3.2.

The Snapshot Model

The seminal work presented by Cartwright and T. S. Collett (1983) has formed the basis for much of the
research in insect navigation models. In their experiments, they trained bees to navigate to a certain
location in a room designated by one or more landmarks which were then subsequently moved to
observe their behavior. Based on the reaction of the bees a couple of hypotheses were put forward and
tested for plausibility in the snapshot model, namely:

• Bees search in the expected location of the food
• Bees learn the apparent size of a single landmark
• Bees see edges
• Bees notice horizontal and vertical extents

Cartwright and Collett’s Snapshot Model extracts predefined features (edges) from the projected land-
marks on the retina and matches them with the closest ones stored in the snapshot. The guidance vec-
tors that minimize the mismatch of these edges, are used to guide the agent to move in that direction
as to finally match the retinal view with the snapshot and end up in the right position. However, this
method only worked robustly when an external compass would orient the view in the same direction
as the original snapshot and required filtering out distant landmarks.

3.2.2. Holistic Methods

In contrast to correspondence methods, holistic methods make use of holistic representations of an
image and do not work on matched regions between images. Holistic methods can be subdivided
into (Möller and Vardy, 2006):

• image warping methods (Franz et al., 1998; Möller, Krzykawski, et al., 2010; Möller, 2012)
• parametermethods, e.g.AverageLandmarkVector (ALV) (Lambrinos et al., 1998), Fourier-amplitude

model (W. Stürzl and Mallot, 2006) and scene familiarity (Baddeley et al., 2012)
• descend in image distance methods (Möller and Vardy, 2006)
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Figure 3.1: Landmark feature matching in the original
Snapshot Model. Edges on the snapshot are matched to the

closest ones present on the retina. Vectors point in the direction
that would minimize the difference in bearing of the edges.

Vectors are summed to compute a heading. Retrieved
from Cartwright and T. S. Collett (1983).

Many insect-inspired guidance models find themselves in the group of parameter methods. Parameter
methods reduce images to a parametric description. This parametric description can then be used to
derive a guidance vector.

The Average Landmark Model

TheALVmodel as proposed in (Lambrinos et al., 1998) and later demonstrated in Dimitrios Lambrinos
et al. (2000) starts from the notion that it is not necessary to physically store a snapshot as proposed
in (Cartwright and T. S. Collett, 1983), but rather that the representation of a vector that is the summa-
tion of all vectors pointing to landmarks (the ALV) suffices to perform successful visual homing. Only
the ALV at the home location is stored and ALVs at other locations can be computed and compared
to the original ALV and subsequently a homing vector can be computed minimizing the difference in
ALVs. The ALV model requires the extraction of features (e.g. edges, corners, …) as a representation
for landmarks and additionally an external compass to keep track of the original direction of the ALV.
The external compass required for ALV navigation can be provided by polarized skylight (R. Wehner
and Räber, 1979; Labhart and Meyer, 1999; Zeil, W. A. Ribi, et al., 2014; Dupeyroux et al., 2019). This
methodology was later applied on a gantry robot in (Smith et al., 2007). Opposed to using a single
ALV at the goal location, several ALVs were ‘linked’ together to form a network of connected ALVs:
Linked Local Navigation (LLN). New ALVs were stored when the number of perceived landmarks
changed compared to the previous time-step. The environment was a small 3 m x 2 m x 2 m volume
with black/dark-gray cardboard tubes scattered over the area, which allowed for simple extraction of
landmarks. The LLN framework showed better performance over larger distances than (Dimitrios
Lambrinos et al., 2000) and allowed for the construction of indirect routes to the goal. These methods
operated in a fairly simple environment with predetermined features however.

Image Warping Methods

Image warping methods try to transform the current image through a simulated transformation in
such a way as to resemble the image at the goal location. The transformation that best resembles (e.g.
euclidean distance of pixel values) the stored image is used for the computation of the guidance ma-
neuver. The original image warping method was introduced by (Franz et al., 1998), which used a 1D
representation of panoramic images to derive a guidance vector. The main assumption that allowed for
the cultivation of this method is that all landmarks are at the same distance from the snapshot location.
Nonetheless, this methodology performed well even in environments that violated this assumption.
This methodology was subsequently used as a basis for further developments in visual homing and
was later extended to 2D imagery byMöller, Krzykawski, et al. (2010) which allowed to account for the
difference in elevation height of landmarks on the retina when moving through the scene. In (Möller,
Krzykawski, et al., 2010), instead of assuming all landmarks to be at an equal distance from the snap-
shot, it is assumed that all pixels within a single columns are at the same distance. Additionally, the
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addition of compass cues to accelerate the search and coarse-to-fine search with dilation was investi-
gated for increased performance. The authors noted that the method is computationally cheap enough
for application on domestic cleaning robots. Extending this methodology for application in 3D navi-
gation is limited, as computational requirements will be considerably higher. As with many methods
based on the original snapshot theory, imagewarping suffers from occlusion of landmarks and changes
in illumination. This method is unlikely to be used by insects, as mental warping of images requires
considerable computation power and is unlikely to be present in the simple brain of insects, therefore
a biologically plausible method was proposed in (Möller, 2012) using visual prediction. Möller (2012)
takes inspiration from the observation that ants collect multiple snapshots in different orientations at
the nest location and assumes that they derive a homing direction by predicting how the current view
would change under a certain translatory movement. This predicted view is compared with all stored
snapshots, for which the best matching heading is found in each snapshot, and subsequently the head-
ing direction is chosen as the best matched heading over all snapshots. The image distortion prediction
is performed by a predictor network with only local connections to sustain biological plausibility. This
model reaches very good performance in textured indoor environments but fails in environments with
easily discernible landmarks.

Rotation Invariant Panoramic Guidance

Another methodology is to use rotation invariant representations for images, eliminating the need for
an external compass reference. In W. Stürzl and Mallot (2006), the model from (Franz et al., 1998)
is transformed into Fourier space. Both use an omnidirectional 1D strip of grayscale values. Phase
components of the Fourier transformed 1D strip were subsequently used to estimate the difference in
rotation between the goal snapshot and the current view. Lower frequencies components were useful
in more robust, long-ranged homing but lacked precision compared to the use of higher frequency
components. They therefore proposed a coarse-to-fine strategy, where only low frequency components
were used initially, and higher frequency components were added when homing failed. In Stone et al.
(2018), Zenrikemomentswere used to describe andmatch skyline segmented images, an important cue
for insect navigation (Differt and Möller, 2015), of the goal location and the current view. Panoramic
snapshots of the skyline were wrapped to form a stitched-together image of the skyline as shown in
Figure 3.2.

A larger catchment area was observed when using frequency and Zenrike moment encoded images
compared to pure retinotopic matching (image difference) and showed robustness to the orientation
inwhich the snapshotswere taken. Zenrikemoments and Fourier-based transforms of panoramic snap-
shots still suffer when variance in roll and pitch is present when capturing snapshots.

The Scene Familiarity Model

The work by Baddeley et al. (2012) presented a shift in insect-inspired models of visual guidance and
propose a scene familiarity model for desert ant route navigation. The scene familiarity hypothesis
stems from the notion that views that were previously seen on route are more familiar than other views
and by following a scanning routine and subsequently moving in the direction that seems most famil-
iar, successful route-following and homing can be achieved. The familiarity of a route is determined
by pixel-wise comparison of all the scenes in memory with the current view; later an artificial neural
network (Infomax) was trained to perform familiarity discrimination. The scene familiarity model pro-
vides a proof-of-concept that an Artificial Neural Network can learn multiple independent routes with-
out the need for odometry, compass cues or dividing the route into multiple waypoints after a single
training run. The Infomax model for discriminating familiarity is depicted in Figure 3.3. The Infomax
model of (Baddeley et al., 2012) consists of an input layer with the same dimension as the amount of
pixels in the acquired images, which is fully connected by feedforward connections with a novelty layer
which consists of tanh() activation functions. The amount of novelty functions in the novelty layer can
be chosen arbitrarily, although studies of visual pathways in honeybees suggest that routes are sparsely
encoded from a small number of neurons in the antennal lobes to a large amount of KenyonCells (KCs)
in the MBs, which are thought to play a role in visual route memory (see Section 4.2). Weights are
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Figure 3.2: Fourier descriptors used for description of the skyline, retrieved from Stone
et al. (2018). (a) Segmented skyline as a closed shape. (b) Image coordinates of the

shape of the edge as a function of x and y. (c) Frequency components of the functions in
(b). (d) Reconstructed sky shape using the first 10 Fourier descriptors.

Figure 3.3: The Infomax neural network,
retrieved from Baddeley et al. (2012).

initialized over the interval [−0.5, 0.5] and normalized to a distribution with mean 0 and standard devi-
ation 1. The network is subsequently trained using the Information-Maximization (Infomax) approach
presented in (Bell and Sejnowski, 1995). The Infomax principle adjusts the weights of the network in
such a way as to maximize the information about the input that the novelty layer presents. This is
performed by following the gradient of mutual information; in Baddeley et al. (2012) the natural gradi-
ent is utilized to save computation time. By maximization of information through weight adaptation,
the output of the novelty layer units are decorrelated. After a single pass of all the collected views a
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measure of familiarity can already be discerned. The M novelty unit inputs hi are computed as:

hi =

N∑
j=1

wijxj (3.2)

where wij are the weights of the feedforward connections, xj the j th input and N the number of
input units. The output of the novelty units, yi is subsequently computed by:

yi = tanh(hi) (3.3)

The following learning rule is applied for weight adaptation:

∆wij =
η

N
(wij − (yi + hi)

N∑
k=1

hkwkj) (3.4)

where η is the learning rate. The output of the Infomax network is computed by:

d(x) =

M∑
i=1

|hi| (3.5)

Depending on the application, a threshold can be set on the value for d(x) to discriminate between new
and familiar views. In (Baddeley et al., 2012), the most familiar view is used, and thus no threshold
had to be set.

Using a Model of the Mushroom Bodies to Encode Route Memory

Although realistic ant-like behavior was observed in the work by Baddeley et al. (2012) and a biolog-
ically plausible learning rule for Infomax was derived in Hayakawa et al. (2014), the Infomax neural
network likely does not have physical resemblance to the actual neural processing in the insect brain.
Therefore, Ardin et al. (2016) proposed an insect visual guidance model utilizing the Mushroom Bod-
ies as model for the neural architecture (see Section 4.2), possibly forming the neural substrate for the
Scene Familiarity model of Baddeley et al. (2012). The model was tested in simulation in an ant-like
environment in which an almost panoramic (296×76 degrees) view of 10×36—after inverting the in-
tensity and histogram equalizing the original 19×74 view—is provided as an input to the MB network.
This was performed in such a way as to closely resemble the visual perception field of the ant Melopho-
rus bagoti. The images are subsequently sampled by 360 Visual Projection Neurons (vPNs), after which
each KC of the 20000 KCs receives input from 10 random vPNs. This entails a sparse encoding of visual
stimuli to theMB. The 20000KCs all branch onto a single ExtrinsicNeuron. Using the principle of STDP,
synapses are tagged and their strength is permanently decreased such that previously seen views will
no longer activate the Extrinsic Neuron (EN). The activity of the EN can thus be seen as a sense of
the novelty of a newly presented view. The network presented in (Ardin et al., 2016) used 20000 KCs
and was able to store 375 views before confusion between novel and ‘stored’ images occurred. This
translates to a route of about 37.5 m when taking snapshots every 10 cm. The honeybee, which pos-
sesses about 200000 KCs could potentially store much more using an analogous method. Other ways
to increase capacity would be through (Ardin et al., 2016):

• additional ENs
• more states per synapse
• probabilistic instead of deterministic synapse switching
• preprocessing images

Theoretically and through empirical testing (Ardin et al., 2016), it was determined that for the cur-
rent network architecture an error rate of Perror = 0.01 when ‘storing’ more than 375 images should
be expected. When taking a view at the spike response of the network when storing more images
(Figure 3.5), one can still clearly distinguish, based on the spikes, off-route views from on-route views.
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Figure 3.4: Architecture of the MB model, retrieved from (Ardin et al., 2016). Images are sampled by the (360) vPNs which are
connected to the (20000) KCs to form a sparse encoding. Each KC takes input from 10 different vPNs and only fires when

several vPNs are activated. All KCs branch onto a single EN. Route memory is encoded through anti-Hebbian learning with
STDP. After training, the EN will react little to familiar images.

Figure 3.5: Capacity of the MB model to distinguish familiar and novel views as additional
route information is stored. Retrieved from Ardin et al. (2016)
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Opponent Processes for Visual Guidance

The navigational familiarity-based models as introduced by Baddeley et al. (2012) was adapted by Le
Möel and Wystrach (2020) to also include anti-goal views. This view on ant perception was brought
about as the original scene familiarity model could not explain certain recently observed behaviors in
ants. The major drawback of the familiarity-based models is that recognition of a familiar view re-
lies on a scanning behavior over a range of angles (as a direction of movement can not be computed
directly but is chosen as the most familiar view over the range of head directions), which does not
comply with behavior in ants—which only perform elaborate scanning when confronted with visual
uncertainty (Wystrach, Philippides, et al., 2014)—and additionally introducesmore computation effort
as many different views at a single location have to be evaluated; scene familiarity does not correlate
with directional error. Inspired by the discovery that ants can exhibit both attractive and repulsive
learning (Wystrach, Buehlmann, et al., 2020; Murray, Kócsi, et al., 2020) and that MBs possibly form
the neural substrate for such learning (Felsenberg et al., 2018; Aso et al., 2014), their approach was to
present both goal and anti-goal views. In this way, the current view of an agent does correlate with
directional error and subsequently a single view suffices to derive a direction of travel as seen in Fig-
ure 3.6. Familiarity was computed by calculating the global root-mean-square pixel difference between

Figure 3.6: Scatter plot of the familiarity values against the angular distance between the north facing view and the nest
direction. Angular distance of 0 degree means that the north facing view is pointing towards the nest. Euclidean distance of the

position of the view from the nest is shown in the color map. Retrieved from Le Möel and Wystrach (2020).

the current view and all views in the memory bank and retaining the lowest mismatch value, resulting
in a measure for unfamiliarity. These values were then scaled to the range [0 : 1] and subtracted from
1 to obtain a measure for familiarity. Views are stored in respectively attractive and repulsive memory
banks for which an opponent familiarity value is deducted in the following manner:

opponent familiarity = attractive familiarity− repulsive familiarity (3.6)

and the turn amplitude of the agent is deducted by:

turn amplitude(deg) = baseline− (gain× opponent familiarity) (3.7)

where the baseline is a fixed parameter that determines the extent of the turn amplitude and the gain
a value to convert the familiarity into a turn amplitude.

Simulations with an ant agent in a reconstructed natural environment showed the model to be robust
to:

• Decoupled memories: attractive and repulsive memories were acquired at different locations.
• Lower resolution eyesight.
• Noisy learning angles: uniform noise of ±90 degree was added to the view direction when ac-

quiring goal and anti-goal views.
• Small learning walks: learning walks in a radius of 10 cm surrounding the nest opposed to a 2 m

radius when ‘walking’ slower.
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• Half as many memories: half the amount of views, because both goal and anti-goal views need
to be stored.

3.2.3. Catchment Area of Panoramic Snapshots

Many methods of visual mapless navigation rely on the fact that the image difference function (calcu-
lated by computing the root-mean-square difference of pixel values) varies smoothly in natural, out-
door scenes, as reported in the seminal paper of Zeil, Hofmann, et al. (2003). Descend in Image Dis-
tance (DID) methods make use of this through descending in the direction that minimizes the image
difference, which leads to homing behavior. Other methods rely on the same principle, but in a differ-
ent manner. The scene familiarity model for example assumes that moving in the direction that seems
most familiar—where there is the least difference between current and goal view—allows for success-
ful route guidance. The performance of these methods varies greatly with the amount of information
that is present in the scene (J. Müller et al., 2018).

Of great interest is the so-called ‘catchment area/volume’: the area/volume surrounding a snapshot
where successful homing to the snapshot location can be achieved by an agent, through DID. In Zeil,
Hofmann, et al. (2003), the question was asked: ‘how different is the visual world when viewed from
neighboring vantage points, and is this difference correlated with, and does it vary smoothly with,
physical distance?’. This was performed by assessing the global image difference functions natural out-
door scenes along the edge of a small forest that included variance in shadow contours and motion of
vegetation due to wind moving overhanging branches. Snapshots were recorded at intervals of 10 cm
inside a 0.7 m unit cube and additionally at 1 m intervals over a 1 × 3 m area to assess the catchment
area of natural scenes, of which the second experiment can be seen in Figure 3.7. From analyzing the

Figure 3.7: Horizontal extent of the image difference function, retrieved from Zeil, Hofmann, et al. (2003)

root mean squared image difference surface, it is seen that in natural scenes, image difference func-
tions appear to be smooth, without pronounced local minima, reaching similar values surrounding the
reference image location. This smoothness of image difference functions depends most likely on the
spatial-frequency distribution, where a broad variance in contrast, object distance and angular size con-
tribute to its smoothness (Zeil, Hofmann, et al., 2003). This is less observed in indoor (artificial) scenes,
making DID and familiarity methods less powerful in these circumstances. Later studies by Murray
and Zeil (2017) confirmed this methodology to work in 3D scenes as well, where the respective catch-
ment volumeswere analyzed. Apart from the finding that the samemethodology extends to 3D scenes,
an increase in catchment volume is seen for snapshot at higher altitudes. Much of the deterioration in
snapshots taken at lower locations is probably a cause of the inherent noise due to higher texture regions
(like grass) near the ground. Wolfgang Stürzl and Zeil (2007) extended the work of (Zeil, Hofmann,
et al., 2003) by evaluating the contribution of depth structure and contrast in the scene to the smooth-
ness of the image difference functions in outdoor scenes. As previously discussed, direct computation
of image difference functions suffers from changes in illumination, dynamic movements in scenes and
features like shadows. It was shown that after contrast normalization, the image difference function
seems to rely almost entirely on the depth structure of the scenes, making it robust to (small) dynamic
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changes in the environment. Dealing with the inherent noise present in natural scenes and in the pro-
cessing of information seems to be crucial for successful navigation (Cheung and Vickerstaff, 2010).
Many insect-inspired visual navigation methods are evaluated in simulation which often lack the rich
texture, color, luminance contrast, depth variance and noise present in natural outdoor scenes (Zeil,
Hofmann, et al., 2003). Furthermore, 3D scenes in simulation that try to accurately capture and model
natural environments, still show deficits in representing those environments (Wolfgang Stürzl, Grixa,
et al., 2015). As a result it is important to perform real-life experiments to evaluate the performance
and applicability of these algorithms.





4
Insect Physiology and Behavior

The physiology and behavior related to visual navigation in insects, specifically in the ant and bee,
will be handled in this Chapter. Insects’ visual perception is covered in Section 4.1. Next, their neu-
roanatomy related to visual processing and navigation is tackled in Section 4.2. In Section 4.3 the basics
of insects’ learning walks and flight will be covered as they play an important part in their navigational
toolkit.

4.1. Insect Visual Perception

The camera-type eyes found in terrestrial vertebrates (Figure 4.1 a) work by focusing light that passes
through the cornea and lens and which, via refraction, is projected on the retina, where an image is
formed. The sharpest, high resolution color vision is generated at the macula lutea—also called the
yellow spot—where there is a large concentration of cone cells, which have a low sensitivity to light
but confer color vision. In the peripheral view, there is a greater abundance of rods, which have higher
sensitivity to light but do not confer color vision and offer a lower resolution due to their relatively
lower concentration on the retina opposed to the macula. This results in a low resolution peripheral
sight, sensitive to motion and low brightness with very sharp vision only in a small area.

The main visual organ of insects is the ‘compound eye’ (Figure 4.1 b) and works quite differently.
A compound eye is composed of numerous ommatidia (see also Section 4.1.3) that are stacked in a
hexagonal pattern. Instead of a single beam of light that is focused on a retina, light enters through
the different facets (part of the ommatidium) that compose the outer edge of the compound eye and
covers different patches along the visual field, which are subsequently combined in the insect brain to
form an image. Alongside their pair of compound eyes, many insects, including ants and bees, also
possess dorsal ocelli. Dorsal ocelli are ‘simple eyes’ in the sense that they do not possess a complex
retina. Ocelli likely play a role in sensing polarized skylight as a compass cue (Berry et al., 2011) and
horizon detection for flight control (Mizunami, 1995), but as their function in visual navigation is less
understood (Zeil, W. A. Ribi, et al., 2014; Kelber and Somanathan, 2019), and are thought to be too
blurry for landmark recognition they will not be covered here any further.

4.1.1. Compound Eyes vs. Camera-type Eyes

Compound vision is more blurry compared to camera-type vision. This is due to the fact that it is
physically difficult to fit a high number of physically separated ommatidia (see Section 4.1.3), ergo
pixels, in compound eyes compared to camera-type eyes, where the amount of rods and cones on the
retina determine the sharpness of vision. E.g. dragonfly—which are thought to have some of the best

37



38 Chapter 4. Insect Physiology and Behavior

vision in insects—have ‘only’ up to 30000 ommatidia per eye, while an average human retina has about
4.6 million cones and 92 million rods.

Compound vision offers a couple advantages over camera-type eyes however, namely:

1. Due to their physical arrangement, compound eyes can cover a field of view of up to almost
360 degrees, this panoramic view, along with low-resolution sight, plays an important role in
facilitating robust visual navigation (Wystrach, Dewar, et al., 2016).

2. Compound eyes in insects posses higher flicker fusion rates (up to 350 Hz (Ruck, 1958)) than
humans (around 30 Hz) resulting in being able to better detect (fast) movement. This higher
flicker rate is achieved due to the dynamics of the ommatidia as well as less visual information
that needs to be processed in the insect brain.

(a) Schematic overview of human eye1 (b) Schematic overview of a part of a compound eye, encircled is
(part of) a single ommatidium, adapted from L. P. Lee and Szema

(2005) (AAAS: Science)
Figure 4.1: Structural difference between camera-type eyes and compound eye types.

4.1.2. Compound Eye Types

There exist roughly three types of compound eyes: the apposition (photopic vision), the optical su-
perposition (scotopic vision) and the neural superposition compound eyes (found in many dipteran
flies) (Cheng et al., 2019). In the apposition compound eye, each ommatidium consists of a single
corneal lens focusing a single beam of light through the rhabdom whereas in the optical superposi-
tion compound eyes, in low-light conditions, this light beam is also received by neighboring rhabdoms
thus increasing overall sensitivity to light. This is achieved through the presence of a crystalline tract.
At night, the neighboring secondary pigment cells move towards the ends of the cell and thus light
can pass through the crystalline tract to the neighboring rhabdoms, resulting in superimposed images
for each ommatidium. In the neural superposition compound eye, there are several rhabdoms (6–9)
in each ommatidium, which receive light from different corneal lenses and each optical nerve subse-
quently collects signals from different rhabdoms (Cheng et al., 2019). Apposition compound eyes are
present in diurnal insects; optical superposition compound eyes are present in nocturnal insects.

In Figure 4.1 b, a fairly regularly structured visual organ can be seen, but because each ommatidium is
practically equivalent to a single pixel and their is natural variation in the properties of these ommatidia,
sensitivity and resolution can vary considerably within a compound eye.

1National Eye Institute, National Institutes of Health. (https://commons.wikimedia.org/wiki/File:Human_eye_
diagram-sagittal_view-NEI.jpg), ‘Human eye diagram-sagittal view-NEI’, marked as public domain, more details on Wiki-
media Commons: https://commons.wikimedia.org/wiki/Template:PD-US

https://commons.wikimedia.org/wiki/File:Human_eye_diagram-sagittal_view-NEI.jpg
https://commons.wikimedia.org/wiki/File:Human_eye_diagram-sagittal_view-NEI.jpg
https://commons.wikimedia.org/wiki/Template:PD-US
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4.1.3. The Ommatidium

Although there exists a great variety in the composition of compound eyes between andwithin different
insect species, the building blocks are mostly the same: up to thousands of patches of ommatidia with
each a corneal lens, crystalline cone and a rhabdom, encapsulated by pigment cells to block light from
entering neighboring ommatidia. The structure of a single ommatidium is visualized in Figure 4.2 a.

(a) Structure of a single ommatidium2 (b) Overview of the retinula cells in the ommatidium of a
bee, each cell is sensitive to a certain part of the visual
spectrum as denoted by G = Green, B = Blue and UV =

Ultraviolet. The arrows indicate the direction of polarization
the photoreceptive cells are sensitivity to. An additional

ninth photoreceptor is located in the center but is not shown
here. Retrieved and adapted from Pye (2018)

Figure 4.2: Overview of the structure of ommatidia in bees.

The ommatidium (of apposition compound eyes) can be separated into two segments:

1. The outer, light-gathering segment, which consists of:
• a cornea
• a crystalline cone

2. The lower, light-sensing segment (rhabdom), which consists of:
• 7–9 retinula cells
• microvilli (dendrites of the retinula cells) that form the rhabdomeres and converge to form

the rhabdom
3. Each ommatidium is surrounded by pigment cells, which block light from passing to neighboring

ommatidia, thus restricting the viewof each ommatidium to a certain angle in the viewfield. (The
secondary pigment cells canmove towards the cell ends during the night in optical superposition
vision.)

The light-gathering segment collects and focuses incoming light which then passes through the rhab-
dom underneath. The rhabdom consists of a number of rhabdomeres (7–9) that are made up of a
large number of parallel microvilli, which are dendrites of the surrounding retinula cells. These mi-
crovilli are sensitive to light in different spectra—in e.g. bees: Ultraviolet (UV), blue and green—but
also different polarizations (in line with their orientation), as visualized in Figure 4.2 b. Early studies
conveyed the idea that the ommatidia in the main part of the compound eyes contain identical sets of
spectral receptors, but with the advent of the sequencing of the honey bee genome and the availability

2Retrieved from http://www.bio.miami.edu/dana/360/360F19_11c.html which was adapted from https://cronodon.
com/BioTech/Insect_Vision.html

http://www.bio.miami.edu/dana/360/360F19_11c.html
https://cronodon.com/BioTech/Insect_Vision.html
https://cronodon.com/BioTech/Insect_Vision.html
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of newmolecular tools that allowedmore detailed analyses, this changed to a more heterogenous view
of the compound eye (Avarguès-Weber et al., 2012). Mainly three different types of ommatidia were
identified, all of them having six green receptors:

1. type I: 44% of ommatidia; 1 additional UV and blue receptor
2. type II: 46% of ommatidia; 2 additional UV receptors
3. type III: 10% of ommatidia; 2 additional blue receptors

An additional ninth receptor recedes at the base of the ommatidia but its spectral sensitivity is uncer-
tain (Wakakuwa et al., 2005). The prevalence of green sensitive photoreceptors is due to them playing
a role in both chromatic as well as achromatic visual pathways (M. Giurfa et al., 1996; Martin Giurfa
et al., 1997). Green sensitive photoreceptors also exhibit faster response time compared to blue and UV
photoreceptors (Skorupski and Chittka, 2010), indicating their role in fast achromatic vision. Blue and
UV photoreceptors are in less of an abundance. Most hymenopteran insects have developed a region
with a prevalence of type II ommatidia where UV receptors are solely orientated perpendicularly to
each other, and thus is specialized in detecting polarized light. This region is present in the most dor-
sal part of their compound eyes, the so-called Dorsal Rim Area (DRA), and plays an important role in
polarization vision that is used as part of a skylight compass (Zeil, W. A. Ribi, et al., 2014; Labhart and
Meyer, 1999; Wehner, 2003). The type III ommatidia (and thus blue receptors) are in higher concentra-
tion in the anterior ventral region, where it is thought to play a role in the detection of ventral targets
that contrast with the blue photoreceptors (Lehrer, 1999). Blue and UV photoreceptors seem to project
only and directly to the medulla while the green photoreceptors project only to the lamina (Dyer et al.,
2011).

4.2. Insect Neuroanatomy

The visual information that is captured by the compound eyes passes through several structures along
its path through the insect brain. Visual information in the form of electro-chemical signals generated
by light passing through the retinal cells, is passed through the basement membrane by the retinula
cells’ axons which form the optic nerve. Each of those signals pass through the optic lobes (the lamina,
medulla and lobula) and subsequently to the protocerebrum (the visual center). Mainly two regions
in the protocerebrum and their visual pathways have been identified that play an important role in
navigation, namely the Central Complex (CX) and the MB. Where the MBs have been identified as
forming the neural substrate for associative learning (Aso et al., 2014). The understanding of the neural
circuitry of insectsmostly stems from research on the fruit flyDrosophilaMelanogaster andhoneybeeApis
Mellifera. Neural structures like the optic lobes, CX and MB are present in all insects but are sometimes
theorized to play different roles depending on species and specialization, e.g. the potential role of the
Mushroom Bodies in navigation in hymenoptera like ants and bees, opposed to a presumably more
primary olfactory role in the fruitfly (Fahrbach, 2006). Universal visual processing structures in the
insect visual systemwill be discussed in general while more focus will be given to the neuropils related
to visual navigation in ants and bees, namely the Mushroom Bodies.

4.2.1. Optic Lobes

The optic lobes (the lamina, medulla and lobula) are responsible for the pre-processing of visual signals
in the insect brain and are the first stops along the way to the protocerebrum.

The first layer where visual information is processed is the lamina (denoted by LA in Figure 4.3). Not
all axons of the retinula cells in the ommatidia pass their signals to the lamina, e.g. in the honeybee,
solely the green photoreceptors (R2,R3,R4,R6 and R7) are connected to the monopolar neurons of the
lamina (Sommer and Rüdiger Wehner, 1975). It is theorized that the lamina’s main function is to pro-
vide better visual contrast and elementary motion detection. Monopolar cells in the lamina (Lamina
Monopolar Cells (LMCs)) are observed to have an excitatory response to signals that are in the center of



4.2. Insect Neuroanatomy 41

Figure 4.3: Two of the main pathways in the brain of the desert ant Cataglyphis. Retrieved from Rössler (2019).

their receptive field (the receptive field being the volume surrounding the neuronwhere a stimulus gen-
erates an influence on the neuron’s spiking rate) while stimuli that are in the periphery of the receptive
field invoke inhibitory signals. This mechanism is known as lateral inhibition (Zettler and Järvilehto,
1972) and has as effect that the insect visual system will respond less to global illumination changes
andmore to visual patterns that excite the center of the receptive field of themonopolar cells of the lam-
ina. The lamina neuropil is made up of optical cartridges that receive input from the ommatidia’s—the
ones are positioned directly atop the cartridges—nine photoreceptor axons in addition to axons of four
different LMCs. Between cartridges there exist tangential, centrifugal and horizontal connections. The
retinotopic organization is thus preserved, as the spatial configuration of cartridges and the overlying
ommatidia is constant throughout the lamina (Avarguès-Weber et al., 2012).

Projections from the lamina are subsequently sent to the second layer, the medulla, (Strausfeld, 1976)
(denoted by ME in Figure 4.3). In Apis Mellifera the three remaining axons (R1, R2 and R9) from the
ommatidia bypass the lamina and also connect to the medulla where cells are organized in columns.
The medulla is thought to play a role in color vision (Bausenwein et al., 1992) but also in motion de-
tection (Ibbotson et al., 1991). The medulla consists of eight different laminated layers (W. Ribi and
Scheel, 1981), orthogonal to the columns. Between these columns many more horizontal connections
exist than in the lamina. Furthermore, neurons in the medulla show opponent excitation or inhibi-
tion to different photoreceptor-type inputs. These so-called color-opponent neurons can thus generate
inhibitory or excitatory responses depending on the combination of inputs from the three different
types of photoreceptors (Hertel and Maronde, 1987). This opponent process is thought to represent
the neural substrate for color vision (Avarguès-Weber et al., 2012).

The third and final optic lobe layer is the Lobula (denoted by LO in Figure 4.3). Again, color-opponent
neurons seem to be present in this layer (Hertel and Maronde, 1987). Additionally, spatially sensitive
opponent neurons are present in the lobula that have the same kind of opponent excitation-inhibition
response as in color-opponent neurons, but react differently depending on where the signal comes
from or in which direction the signal is propagated (Hertel and Maronde, 1987; Avarguès-Weber et al.,
2012).

Signals from the optic lobes are subsequently passed mainly to the calyxes of the mushroom bodies
and the central complex (Ehmer and Gronenberg, 2004).

4.2.2. Central Complex

The Central Complex seems to be responsible for the integration of many different (pre-processed)
signals (coming from e.g. the optic lobes), in order to keep track of the insect’s body state and perform
path integration (Hoinville and Rüdiger Wehner, 2018). This information is used to send signals to
the legs and or wings for positioning itself in the world (Webb and Wystrach, 2016). The CX is also
thought to play a role in the detection of polarized skylight for use in a celestial skylight compass as a
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visual pathway from the DRA to the CX exists (Paulk et al., 2009). The CX has not been connected to
visual navigation however, although a study proposes the integration of signals from the MB (which is
known to play a role in visual navigation) in the CX which is then translated to locomotion control (X.
Sun et al., 2019).

4.2.3. Mushroom Body

Mushroom Bodies on the other hand, possess a more parallel structure which would suite them well
for parallel processing and memory storage and presumably play an important role in olfactory and
storing/learning visual memories (Menzel, 2014; Webb and Wystrach, 2016; Hoinville and Rüdiger
Wehner, 2018). Themushroombody consists of a large amount of Kenyon cells (KCs; intrinsic neurons).
The dendrites of the KCs form the calyx, and their axons run through the pedunculus which then split
into two structures, called the α and β lobes (Heisenberg, 2003; Ardin et al., 2016). Panoramic images
from the compound eyes travel through the optic lobes to the MB where these signals are sampled
by Projection Neurons (PNs) and subsequently are sent to KCs in the calyx. Multiple PNs output to
single KCs, which only react to certain combinations of inputs. The about 200000 KCs in the bee MB
project to only a few Mushroom Body Output Neurons (MBONs), thus presenting a sparse encoding
of visual data. This sparse coding allows the MBs to store many different representations of olfactory
cues but presumably also visual scenes and has inspired methods that implement SNNs based on the
MB architecture coupled with biologically plausible learning (e.g. Hebbian learning like STDP) as a
model for ant visual navigation (Le Möel and Wystrach, 2020; Ardin et al., 2016).

4.3. Learning Walks and Flights

Learning walks and flights are an important part of the navigational behavior in ants and bees, and
are typical of hymenopteran central foragers (Zeil and Fleischmann, 2019). The two form a close re-
lationship with each other, as systematic exploration of an area can help tremendously in returning
to the nest form distant locations. Bees and ants are observed to exploit features like depth structure,
prominent landmarks and color among possibly other cues to aid in recognition of the environment.

4.3.1. The First Walks and Flights

Learning walks and flights constitute the first navigational act of hymenopteran central foragers when
leaving the nest. When Cataglyphis ants transition to a foraging role they spend the first 2–3 days tak-
ing exploratory walks around the nest in which they map the surroundings of the nest. The first walk
remains very close to the nest, such that they can rely on their Path Integration (PI) system, and subse-
quent walks venture further and cover different compass directions around the nest (Thomas S. Collett
and Zeil, 2018). The same kind of behavior is observed across different central-foraging species. The
first exploratory flights of the bee Apis mellifera, the wasp Ammophila Campestris and the ant Cataglyphis
Bicolor can be seen in Figure 4.4 a.

Typical during such exploratory walks/flights are saccadic movements that expand outwards of the
nest location in increasingly bigger arcs/circles (Thomas S. Collett and Zeil, 2018). During these learn-
ing walks/flights the insect will look regularly back at the direction of the nest, even at locations where
the nest is not directly visible. Cerceris wasps tend to fixate their view to the nest at the end of such
arcs and in between keep the nest centered between about 45 and 60 degrees of the field of view on
either side of its pair of compound eyes (Zeil, 2012) (Figure 4.4 b). Similar behavior is seen in ants
but variability exists between species. Another influencing factor is the environment in which the nest
is located, specifically the depth structure—which is shown to be influential on the smoothness of the
catchment area (Wolfgang Stürzl and Zeil, 2007), see Section 3.2.3—is of concern, where bumblebees
and ground-nesting wasps will orient their arcs opposite the direction of prominent landmarks close
to the nest (Thomas S. Collett and Zeil, 2018). The way that the surroundings of the nest are learned is
also reflected in how they return, as shown in thewaspCerceris: theywill return in roughly the same di-
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(a) Learning walks/flights of different insect species. (b) Saccadic learning walk of the wasp
Vespula vulgaris.

Figure 4.4: Insect learning walks/flights. (a) Learning walks/flights of A the bee Apis Mellifera, B the wasp Ammophila
Campestris and C the ant Cataglyphis Bicolor. In red: first learning walk/flight, in green: second walk/flight and in blue: the third

walk/flight. Adapted from Thomas S. Collett and Zeil (2018). (b) Saccadic learning path of the wasp Vespula vulgaris;
top-down view, retrieved from Thomas S. Collett and Zeil (2018).

rection as how the views were originally acquired. This shows the close relationship between learning
walks/flights and the subsequent foraging trips that follow.

4.3.2. Lifelong Learning

After getting to know the immediate surroundings of the nest, hymenopteran central foragerswill leave
for (long) foraging trips; getting increasingly better at finding their way to and from feeding grounds
the more experienced they are (Zeil and Fleischmann, 2019). The same techniques of the first learning
walks are employed throughout the rest of their foraging lives, but are triggered depending on circum-
stances. For example Myrmecia croslandi ants have been observed to explore the neighborhood of the
nest opposite the direction they depart to for foraging trips, presumably to make sure that they can
return to the nest when overshooting the nest upon return, which occurs regularly (Jayatilaka et al.,
2018). Learning happens continuously for the rest of their foraging life, where returning to the nest
from different directions provides learning insects with validating results or triggers learning behav-
ior when having difficulties to home. Foraging insects are triggered to perform additional learning
maneuvers upon having difficulties or failing to home to their nest. Considerably more time (about
four times more) is spent by the bumblebee Bombus terrestris exploring the nest than when arriving at a
newly discovered flower, even when the surroundings are the same (Robert et al., 2018). This is quite
logical, as getting safely back to the nest is probably of higher importance than being able to return to
a single flower; this also shows that insects can exhibit remarkably quick (one-shot) learning of new
visual scenes.





5
Event-Based Vision

In disaster-relieve areas, there is often no prior map and the scene can change dynamically or go from
light to dark quickly. These are areas in which an event-based camera can excel over conventional
cameras. First, the working principles of event-based vision sensors will be depicted in Section 5.1.
Its advantages and challenges compared to frame-based vision will be discussed. In Section 5.2 event
representations and how to process individual events are discussed. Much of the following Sections
are based on the excellent review on event-based vision of Gallego, Delbruck, et al. (2019).

5.1. Working Principles of Event-Based Vision Sensors

Event cameras capture brightness changes asynchronously for each individual pixel. Event cameras
output a timestamped stream of events with information about the location of the brightness change
and its sign (Gallego, Delbruck, et al., 2019). The sensor’s pixels act on the log intensity of the change
in brightness, as set by a change threshold. Each individual pixel captures the log intensity of the latest
event and send a new event when there is a change in brightness that is bigger than the threshold.
There are a few different event-based vision sensors on the market. Namely, the Dynamics Vision

Figure 5.1: Schematic of the operation of DVS pixel, converting brightness
changes into events. Adapted from (Gallego, Delbruck, et al., 2019).

Sensor (DVS) (Lichtsteiner et al., 2008), the Asynchronous Time Based Image Sensor (ATIS) (Posch et
al., 2011) and the Dynamic and Active Pixel Vision Sensor (DAVIS) (Brandli et al., 2014) are the most
commonly used. The DVS camera is based on a frame-based silicon retina design and only outputs
brightness changes in the formof ‘ON’ and ‘OFF’ events. TheATIS sensor additionally outputs absolute
brightness levels, but has more difficulties in dark, dynamic scenes as the pixels can get saturated. The
DAVIS sensor combines an active pixel sensor with a DVS in the same pixel. The main advantages of
event cameras are summarized:
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1. High temporal resolution (order of µs). Every brightness change is detected very fast and times-
tamped with a 1 MHz clock. As such, the camera does not suffer from motion blur.

2. Low latency (order of sub-millisecond). Pixel events are transmitted almost immediately after
the time the change in brightness is detected.

3. High dynamic range (> 120 dB vs. 60 dB of conventional cameras). Ability to be deployed in
very dimly lit and very bright scenes, making it excellent for outdoor use throughout the day or
in environments where there is little control of the lighting.

4. Low power consumption (order of 10) mW. Due to event-based cameras only acting on bright-
ness changes, any redundant (static) information is discarded. This does not only influence sen-
sor power consumption, but also the processing of visual information as only necessary data is
passed.

Event-based vision compels to take a different approach to visual processing as there is a fundamental
difference between the data output of event cameras compared to frame cameras. This has an effect
that traditional theories can not be applied, and need to be adjusted/reimagined. Quite importantly,
event cameras suffer from the same inherent noise of photons and non-ideal circuitry that is found in
all vision sensors. Due to the novel nature of event cameras, this is more pronounced, as the process
of quantizing temporal contrast is not yet fully understood and in order to overcome this difference,
different methods will have to developed.

5.1.1. Event Generation Model

Events are represented as incremental pixel brightness changes that are represented by their position,
time and polarity:

ek
.
= (xk, tk, pk) (5.1)

where tk is the time at which the event occurred, pk ∈ {−1, 1} the polarity of the event (‘ON’, ‘OFF’),
and xk the position of the pixel:

xk
.
= (xk, yk)

T (5.2)
Event cameras react on the log of the photocurrent:

L
.
= log I (5.3)

An event occurs when the change of the log intensity reaches a certain threshold±C, which can be set
by the user using the pixel bias current (Lichtsteiner et al., 2008):

∆L(xk, tk)
.
= L(xk, tk)− L(xk, tk −∆tk) = pkC (5.4)

Typical values for C are between 10% − 50% illumination change (Lichtsteiner et al., 2008; Son et al.,
2017). A trade-off has to be made between sensitivity of the sensor and the amount of noise that will
result because of the increase in sensitivity.

For small increments in time∆tk, the increment in brightness change can be approximated by a Taylor’s
expansion, such that any event portrays information about its temporal derivative:

∆L(xk, tk) ≈
∂L

∂t
(xk, tk)∆tk = pkC (5.5)

This interpretation can be utilized to give physical meaning to the otherwise binary ‘ON’ and ‘OFF’
events.

Under constant lighting conditions, one can proof, by linearizing Equation 5.4 and constant brightness
assumption that:

∆L ≈ −∇L · v∆t (5.6)
Meaning, if the motion is parallel to the edge, no events are generated (v · ∇L = 0). When the motion
is perpendicular to the edge (v · ∇L has its maximum value), the highest rate of events is generated.
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The above derivations are an idealized model for when events are generated. Due to sensor noise,
which is influenced by the design and the operating conditions, and influence of the illumination of
the scene the process behaves in a stochastic fashion. Several approaches exist for taking into account
the stochastic nature of the DVS sensor output(Gallego, Delbruck, et al., 2019):

• Contrast sensitivity C can be approximated by a normal distribution centered around the mean
value of C with a standard deviation σ of typically 2–4% (Lichtsteiner et al., 2008).

• One can take into account the image gradient of the scene, as most events are created by this
image gradient (Censi and Scaramuzza, 2014).

• Understanding of the temporal behavior of event data is preliminary. Most noise filtering assume
that real events are more spatially correlated than noise as they occur due to real objects (Czech
and Orchard, 2016).

5.2. How To Process Events

Event cameras have high temporal resolution and low latency. One can take two different approaches
to act on events: the state of the system is updated immediately when an event occurs (taking advan-
tage of the aforementioned properties), or processing grouped events over a certain time span. One
event in itself can not provide enough information though, and as such it is important to also capture in-
formation about past events. Furthermore, another differentiation can be made between model-based
and model-free approaches. Additionally, one can differentiate between types of objective/loss func-
tions: geometric- or temporal- or photometric-based. In the following sections, focus is given on rep-
resentations and methods that directly work on the interesting properties of event-based vision over
frame-based vision, namely its low latency and sparse representation (Gallego, Delbruck, et al., 2019).

5.2.1. Event Representation

Events can be represented in different manners depending on the designated use case and available
techniques. Themost straightforwardmethod is to process individual events as they arrive, othermeth-
ods focus on grouping events based on their spatiotemporal information:

• Individual Events: each event ek .
= (xk, tk, pk) is used in event-by-event processing. This is

mostly performed asynchronously on probabilistic filters and Spiking Neural Networks. The fil-
ters or network keep or get additional information from past events which is combined with the
current input to generate a new output.

• Packet Events: in an event packet, events E .
= {ek}Ne

k=1 are grouped according to their spatiotem-
poral proximity. Here it is important to select the right value for Ne depending on the speed of
the motion of the image.

• Event frame or 2D histogram: here all events in the same spatio-temporal neighborhood are
accumulated over time and displayed as a regular 2D image. This loses a lot of the advantages of
event-based vision but has the advantage of being compatible with conventional computer vision
algorithms and allows for easy interpretation of the data.

• Time Surface (TS): a TS is similar to the event frame in the sense that it maps the event camera
output to a 2Dmap. Each pixel is expressed as an intensity value, wheremore recent event activity
correlates with a higher intensity value. They are great for showing the rich temporal information
captured by the event cameras. Only temporal information is portrayed by TS.

• Voxel Grid: voxels to represent events in 3D space-time. Each voxel portrays a pixel’s loca-
tion over a certain time-frame. This preserves temporal information better with respect to event
frames.

• 3D point set: where proximate spatio-temporal events are grouped per voxels in Voxel grids, the
3D point set preserves information of individual events, (xk, tk, pk ∈ R3). Plane fitting can be
used to derive optic flow.
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• Points sets on image plane: of use when tracking edges.
• Motion-compensated event image: the motion of an edge can be estimated by warping events

to a reference time and maximizing their alignment which produces a sharp image. Motion-
compensated event images have applications in feature tracking, as motion-invariant edges are
revealed.

5.2.2. Event Processing

In general, there is no single processing step that encapsulates all the necessary action required for pro-
cessing event data. That is, data is mostly pre-processed to representations that suite their application.
E.g. images are reconstructed from event cameras that are then fed to traditional high-performance
computer vision algorithms. However, this defeats the purpose of event based vision in a sense, as
the high temporal resolution and sparsity of visual data is lost. Other approaches transform event
data to the aforementioned representation (Section 5.2.1), perform feature extraction, which are then
fed to Artificial Neural Networks (ANNs). Deep Neural Networks (DNNs) can also be exploited to
directly extract features and process data. One-by-one processing of events can be performed with
SNNs (on neuromorphic hardware). Filters play an important role in one-by-one event processing too,
where the state can be updated based on single events in continuous time (Gallego, Delbruck, et al.,
2019). Filters allow to seamlessly fuse additional data from other sensors (sensor fusion) for better and
more robust results. Deterministic filters find their applicationmore in performing operations on event
data to prepare them for further processing steps. They have been used for but not limited to use in
noise reduction, brightness filtering, image reconstruction and feature extraction. Probabilistic filters
like Kalman and particle filters have been used mostly for pose tracking, SLAM and Visual (Inertial)
Odometry. ANNs are used in a wider range of topics and can be used for end-to-end learning. Parts
of the network (mostly related to feature extraction) can be trained in an unsupervised fashion which
are then fed to supervised classifiers which need labeled data.



6
Neural-Based Visual Guidance

This Chapter will focus on the use of neural networks for monocular visual guidance and its imple-
mentations in simulation and/or robots. Both frame-based and event-basedmethods will be discussed.
Mainly three different neural-based visual guidance approaches can be distinguished with each its
(dis)advantages. Section 6.1 discusses neural-based visual odometry. Section 6.2, handles neural-
based route-following, including path-following and visual homing schemes.

6.1. Neural-based Visual Odometry

Traditional feature-based visual odometry relies on tracking and matching salient features between
consecutive frames using feature descriptors. The camera pose and environment structure are roughly
recovered through epipolar geometry, and later fine-tuned through minimization of the reprojection
error. Direct visual odometry methods do not rely on tracking and matching features but estimate
pose and structure directly through matching image intensity values with the local intensity gradient.
Monocular Visual Odometry (VO) methods however suffer from not having a direct estimate of the
depth structure of the scene. Early methods required initialization from a known position e.g. at a
fixed distance from a plane. Longuet-higgins (1981) solved this by algebraically eliminating depth
from the initialization problem, however this results in an unknown scale for translation and scene
structure. The scale can be recovered by assuming the scene to be planar (use of Homography matrix),
non-planar (use of Essential matrix) and iteratively estimating these matrices through matching new
features. A third method was introduced by initializing the scene with random, high variance depth
values, that subsequently converges after iterative matching; this method is not guaranteed to converge
however (Younes et al., 2017).

6.1.1. Deep Learning for Monocular Depth Estimation

As a way to overcome the depth ambiguity problem, deep learning based monocular depth estimation
methods have been proposed in recent years (see Figure 6.1). Deep learning methods based on convo-
lutional, recurrent, auto-encoder or generative adversarial networks show promising results in estimat-
ing the depth structure from a sequence of or a single monocular image and are thoroughly reviewed
in (Zhao et al., 2020). Neural-based depth estimation can be generally split up into supervised, un-
supervised and semi-supervised methods, using—in general—respectively, known dense depth maps,
geometric constraints between frames and stereo-imagery (Zhao et al., 2020).
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Figure 6.1: Unsupervised deep learning based monocular depth estimation, retrieved from Casser et al. (2019).

Supervised Learning of Depth

Deep learning based depth estimation was first introduced by (Eigen et al., 2014). Eigen et al. (2014)
trained their network on accurate ground truth depth information and used a simple loss defined as the
difference between the predicted and the real depthmap and employed a coarse- and fine-scale network
to first predict coarse depth and later refine these resultswith the fine-scale network. Ensuing, due to its
success in image classification, ResNet (He et al., 2016) networks were introduced in estimating image
depth (Laina et al., 2016). Many models since then have utilized pre-trained network architectures like
but not limited to ResNet (He et al., 2016), MobileNet (Howard et al., 2017) and VGG (Simonyan and
Zisserman, 2014) which are often pre-trained on datasets like ImageNet (Deng et al., 2009).

Semi-supervised Learning of Depth

Semi-supervised methods like (Laidlow et al., 2019; Amiri et al., 2019), utilize mostly stereo imagery—
(Kuznietsov et al., 2017) augment this additionally with sparse LiDAR data. An inverse depth map
is computed from the left (or right) image, from this inverse depth map the other image is predicted
through reverse image warping and the reconstruction error is used as for the learning update. Addi-
tional consistency constraints are added to constrain the consistency of the disparity between the left
and right frame (Garg et al., 2016; Godard et al., 2017). Many other methods like the addition of se-
mantics (Ramirez et al., 2018) are added but not handled further here; for a comprehensive overview
one is advised to look at (Zhao et al., 2020).

Unsupervised Learning of Depth

Collecting large datasets with detailed ground truth dense depth maps or calibrated stereo imagery
poses more effort and with the better availability of monocular image streams, unsupervised methods
have gained increasing interest from the research community. Unsupervised methods like (Yin and
Shi, 2018; Ye et al., 2018; A. Z. Zhu et al., 2019; Feng and Gu, 2019; Casser et al., 2019; Chen et al., 2019)
however suffer from the same scale ambiguity and inconsistency of traditional monocular VOmethods,
and show generally worse performance than (semi-)supervised methods. Often, ego-motion (Feng
and Gu, 2019) and optical flow are learned (Yin and Shi, 2018; Ye et al., 2018; A. Z. Zhu et al., 2019;
Casser et al., 2019; Chen et al., 2019) in parallel in order to be able to separate rigid and non-rigid parts
from the scene. Furthermore Casser et al. (2019) propose an approach that discerns dynamic objects
from the scene to get better results and does not make use of optical flow.

Deployability to Novel Scenes

Deep monocular depth estimation algorithms are mostly trained on large datasets like KITTI (Geiger
et al., 2012), NYUDepth (Silberman et al., 2012), Cityscapes (Cordts et al., 2016) andMake3D (Saxena
et al., 2008) and show excellent performance when tested on these datasets themselves, but exhibit se-
vere performance degradationwhen deployed in other domains if no adaptation is performed. Transfer
learning to different domains has gained traction recently to facilitate deployment ‘in the wild’. Chen
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et al. (2019) for example take advantage of the fact that self-supervised learning eliminates the asym-
metry between training and testing and perform online optimization to learn the new structural con-
straints (image intensity, flow, camera motion and depth). They propose online optimization through
the fine-tuning of parameter weights of the original model (PFT) or through output fine-tuning (OFT)
which only optimizes the output without recomputing all the network weights and instead uses a self-
supervised loss function, achieving an order of magnitude speed-up compared to PFT.

Real-time Computation on Embedded devices

Deployability on embedded systems still remains a challenge for many of the proposed methods as
they rely on deep neural networks with millions of parameters. Recently, efforts have been put for-
ward to be able to run those systems on embedded devices like phones and drones. Wofk et al. (2019)
propose a method based on MobileNet, which is optimized to run on mobile devices. MobileNet de-
composes traditional n ×m ×m convolutional layers into n m ×m and a 1 × 1 pointwise layer such
that each convolutional layer convolves with a single channel; resulting in considerable loss in latency
(increased inference speed) (Wofk et al., 2019). Furthermore, a decoder network consisting of 5 convo-
lutional neural networks is deployed to increase output resolution and perform dense depth prediction.
The samemethodology asMobileNet is deployed, depth-wise decomposition, and nearest-neighbor in-
terpolation is performed after convolution to lower the resolution of feature maps (Wofk et al., 2019).
Additionally, feedforward connections from the encoder are added to layers in the decoder to helpwith
the reconstruction of features that might have gotten lost due to the compression to lower resolution by
the encoder. Finally, network pruning with NetAdapt (T.-J. Yang et al., 2018) is performed to identify
and remove superfluous feature channels. NetAdapt removes features until a certain performance-
complexity tradeoff has been reached. This allows the network to run at 178 fps on an NVIDIA Jetson
TX2 GPU and at 27 fps on its CPU, unlocking real-time onboard processing capabilities for micro aerial
vehicles. Aleotti et al. (2020) explore the use of existing estimators to be able to run on smartphones
(iPhone XS). Along with the study presented in (Peluso et al., 2019), to the author’s knowledge, these
are some of the only limited publicly available examples of deep learning based monocular depth esti-
mation methods that are able to run on low-power embedded systems.

6.1.2. Deep Learning for Optical Flow Estimation

Optical flow estimation plays an important role in visual navigation and is widely used for obstacle
avoidance, autonomous landing maneuvers and as part of visual odometry and SLAM pipelines. Clas-
sical methods for optical flow estimation are energy-based. That is, energy is minimized with respect
to a brightness constancy term between temporally matching pixels and a spatial smoothing term to
prioritize pixels to move in similar directions:

argmin
u

E(u) = argmin
u

∫ (
(Ixu+ Iyv + It)

2
+ α2(∥∇u∥2 + ∥∇v∥2)

)
dx dy (6.1)

withE the energy reward function, u, v optical flow components in respectively the x and y direction,
Ix, Iy the image brightness of a pixel at position (x, y) and α a scaling factor (smoothing term). This
methodologywas introduced by (Horn and Schunck, 1981) and later energy-based optical flowmodels
have adapted the energy model to achieve better results. Concurrently with the surge in deep learning
for depth estimation, deep learning for optical flow estimation gained popularity as well, often being
implemented alongside each other to complement their respective weaknesses. For example, having
knowledge about the depth of a scene helps with separating fore- and background, which helps in
determining optic flownear the border of occluding objects, where traditional optical flowmethods lack
performance. Deep learning methods for optical flow have been comprehensively reviewed in (Hur
and Roth, 2020).

Deep CNNs as Feature Extractors

Early methods focused on using Convolutional Neural Networks (CNNs) purely as feature extrac-
tors and descriptors which were then fed to classical energy-based methods for extracting optical flow.
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Thesemethods achieved better results than the state-of-the art classical energy-basedmethods as CNNs
are able to extract better feature descriptors than the handcrafted ones. The networks mostly utilized
a Siamese architecture (two identical parallel networks), where a single image is fed to each of the net-
works. The feature vector that each network outputs is compared and matched. Mostly positive (with
ground truth optical flow) and negative samples are used in a supervised manner for training, where
the L2 loss is computed to both minimize distance between positive samples and maximize distance
between negative samples (Hur and Roth, 2020).

Supervised Learning of Optical Flow

At the same time, end-to-end learning approacheswere explored to estimate optical flow. The first deep
learning end-to-end optical flow architecture, FlowNet, was proposed by Dosovitskiy et al. (2015), and
set the stage for subsequent further developments and fine-tuning of deep learning based optic flow
estimators. Dosovitskiy et al. (2015) deployed two networks, FlowNetS and FlowNetC, both with the
typical encoder-decoder architecture, as seen in Figure 6.2. FlowNetS uses concatenated image pair in-

Figure 6.2: FlowNet, uses an encoder-decoder
architecture to first compress information and later refine

it, retrieved from Dosovitskiy et al. (2015)

puts to output optical flow directly, while FlowNetC uses each image separately and extracts features
which are then used to construct a cost volume. FlowNet is trained in a supervised way and because of
limitations in acquiring accurate ground truth optical flow in natural scenes, the authors pre-trained
their network on a synthetic dataset. Due to the supervised way of training, this did not generalize
well to real life datasets and achieved subpar performance compared to classical energy based networks.
Furthermore, the networkwas quite large (over 70million parameters) and thus inference rate remains
slow for use on embedded devices. The network proposed by (Ranjan and Black, 2017), deployed a
spatial pyramid network (SPyNet) which only required 1.2 million parameters while achieving better
performance than FlowNet. The pyramidal structure recursively refines the estimation of the optical
flow and thus naturally deals with the computation of optical flow for larger displacement, its archi-
tecture can be seen in Figure 6.3. Later, FlowNet2 (Ilg et al., 2017) was proposed, which stacked mul-

Figure 6.3: The pyramidal structure of SPyNet. SPyNet computes residual optical flow at each level, the residual flow of higher
levels is passed down to lower levels where the results are refined. Retrieved from Ranjan and Black (2017)

tiple (modified) FlowNet architectures to refine the optical flow output and achieved a 50% increase
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in performance over FlowNet and now achieved comparable performance to state-of-the-art energy-
based methods. Later supervised methods like PWC-Net (D. Sun et al., 2018) and LiteFlow (Hui et al.,
2018) further reduced model size, inference time and increased performance. Further improvements

Figure 6.4: PWC-Net utilizes a parallel pyramidal structure to retrieve image features of
two images. The second image is warped with the optical flow computed at the previous
pyramid level. Next, a cost volume is computed by comparing the first image features to
the second. Afterwards, the optical flow is estimated by comparing image features of the
first layer, the cost volume and the upsampled flow of the previous pyramid level. An
optional context network is added for further refinement. Retrieved from D. Sun et al.

(2018)

were mainly achieved through variations on existing model architectures like PWC-Net: e.g. iterative
residual refinement (Hur and Roth, 2019) and the introduction of a 4D volumetric output represen-
tation (G. Yang and Ramanan, 2019). The current state-of-the-art is presented by Bar-Haim and Wolf
(2020) (ScopeFlow), which uses the network architecture of PWC-Net as its backbone and focuses on
better training techniques. By augmenting scoping sampling with larger scopes (crops and zoom-out)
and more careful selection of where to crop alongside relaxation of regularization and augmentation
during the training process increased results considerably.

Unsupervised Learning of Optical Flow

The main drawback of supervised optical flow estimation methods is that they need extensive high
quality datasets with labeled data for training. As real life ground truth data datasets for dense optical
flow are difficult to obtain, artificial datasets are used for initial training. Methods that use artificial
scenes for training should take caution when transitioning to real life deployment, and many methods
have indeed been introduced to deal with this, mostly through regularization techniques such as affine
transformations, like scoping (Bar-Haim andWolf, 2020), to includemoremotion patterns. Subsequent
fine-tuning on the testing data set helps with performance. Unsupervised learning provides another
approach to dealing with the scarcity of labeled optical flow datasets.

The difficulty in unsupervised learning lays more in the design of the loss function compared to su-
pervised methods. Ahmadi and Patras (2016) introduced the first unsupervised deep convolutional
neural network for estimating optical flow and achieved similar performance to FlowNet. They used
the brightness constancy equation underlying the classic optical flowmethods as a loss function. Other
methods also included the smoothness constraint on the loss function (Jason et al., 2016; Ren et al.,
2017). Later methods explored taking occlusions into account through calculating both forward and
backward motion and using the disocclusion mask of the backwards flow as an occlusion mask for the
forward flow (Janai et al., 2018). P. Liu et al. (2019) present the current state-of-the-art in unsupervised
learning of optical flow, called SelFlow. SelFlow, utilizes a student-teacher network where the teacher
network tries to provide better information on pixels in occluded regions. The teacher network output
is superpixelized and noise is added to random super pixels as to mimic the effects of occlusion by that
super pixel on neighboring pixels. The student network then can be trained to predict optical flow in
occluded regions as the ground truth optical flow in the ‘occluded’ superpixels are known.
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6.1.3. Neural Event-based Vision for Visual Odometry

Event-based vision algorithms are still in their early stages due to the recency of the availability of event
based vision sensors to the wider research community. The remarkable characteristics (low latency,
high dynamic range, non-redundant data and low power consumption) of event-based vision sensors
have also attracted research into applications for visual odometry. Early worksmostly focused on using
methods that are known to work very well on traditional frame-based cameras (e.g. convolutional neu-
ral networks) and adapted event representations to fit these traditional methods, however often losing
the very advantages of event-based vision in the process. Ye et al. (2018) present the first fully event-
based deep learning pipeline for odometry estimation. They do not make use of intensity images as
a supervisory signal and instead use photoconsistency assumptions on the event data itself. They use
event images as representation for event data however and lose valuable temporal information in the
process. A. Zhu et al. (2018) present the first event-based unsupervised optical flow estimator. They
make use of the traditional encoder-decoder architecture to extract optical flow estimates. The network
is self-supervised by photoconsistency assumptions from regular intensity images. In follow-up work,
A. Z. Zhu et al. (2019) make use of a different event representation to retain more temporal resolution
by discretizing the time domain, which they call the discretized event volume. Furthermore, theymake
use of the motion compensation technique through contrast maximization introduced by (Gallego, Re-
becq, et al., 2018). However, they use stereo imagery, making it less applicable to this project’s use case.
Mitrokhin et al. (2019) focused on the segmentation and pose estimation of dynamic objects. In order
to achieve this, depth, optical flow and egomotion are estimated simultaneously. A shallow neural net-
work was developed to perform the same task with similar performance, but failing to produce reliable
motion estimates.

SNNsnaturally lend themselves to processing event data, being able to dealwith its sparse event (spike)
inputs. Combined with neuromorphic hardware, this has the potential to achieve very low power, low
latency visual navigation. Full 6-DOF odometry/SLAM using event-based vision and neuromorphic
hardware has not yet been demonstrated and poses an interesting challenge for the foreseeable fu-
ture. For now, early methods combining event-based vision with SNNs focus on solving sub-problems
like optical flow estimation (Paredes-Valles et al., 2019; C. Lee et al., 2020), constraint pose estima-
tion (Gehrig et al., 2020) or constrained navigation (Kaiser et al., 2016; Kreiser et al., 2018). Application
are still limited to specific cases, e.g. divergence-based landing of aMAV (Hagenaars et al., 2020), which
shows great potential however as control commands from only a single spiking neuron are shown to
be able to perform safe landings.

6.1.4. End-to-end learning of Monocular Visual Odometry

The previously discussed methods have subsequently been used in neural visual odometry pipelines,
where depth and optical flow are used collaboratively to augment results for egomotion estimation.
Yin and Shi (2018) propose the first unsupervised end-to-end visual odometry model, GeoNet, that
estimates depth, optical flow and camera pose while being able to handle non-rigidity and occlusions.
GeoNet consists of three neural networks: DepthNet, PoseNet and ResFlowNet. The DepthNet and
PoseNet are used to reconstruct the rigid structure of the scene which is then fed to the ResFlowNet
which computes both forward and backward optical flow. For an overview of the GeoNet architecture,
see Figure 6.5. As the network shows capabilities to learn high level features in the scenes, state-of-
the-art performance is reached but this also has as a result that this method generalizes less well to
novel scenes. Chen et al. (2019) make use of self-supervised learning in their Geometric Learning
Net (GLNet). Chen et al. (2019) use loss functions that capture the photometric constraints as a way
of self-supervising the network. Additionally, camera intrinsics are estimated with a neural network
which allows their method to generalize better to uncalibrated cameras. The combination of optimizing
the network output, subject to the geometric and photometric constraints can be seen as a proxy for
global bundle adjustment and increases results considerably. They propose two methods for transfer
learning: one through finetuning the full network and one where only the output of the network is
optimized through using the gradient of the output loss. Feng and Gu (2019) (SGANVO) breaks from
the tradition of using encoder-decoder type network architectures andmakes use of stacked generative
adversarial networks. Stacked networks have been shown to increase accuracy in predicting optical
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Figure 6.5: Overview of GeoNet structure. GeoNet consists of a rigid structure reconstructor that constructs a depth map and
recovers the pose of the camera and a non-rigid localizer for localizing dynamic objects. A consistency check applied to the
bidirectional flow is performed to deal with occlusions and non-Lambertian surfaces. Retrieved from (Yin and Shi, 2018).

flow (Ilg et al., 2017) while retaining similar structure and is here used to compute depth and ego-
motion in the lowest layer from spatial features in higher layers. The addition of recurrent connections
allows the architecture to capture dynamic phenomena in image sequences. SGANVO is able to achieve
comparable results to state-of-the-art methods (slightly worse than GLNet (Feng and Gu, 2019)).

Other methods try to directly derive visual odometry from visual information, without making use of
intermediate estimation like scene depth or optical flow. The first neural based method was proposed
in Mohanty et al. (2016), which used ground truth poses from the KITTI dataset to regress odometry
directly from images. They deployed two parallel AlexNet-like architectures; their output was concate-
nated to generate fully connected layers. Li et al. (2018) deploy an unsupervised learning scheme to
recover both scaled depth estimates and odometry that is trained using supervisory stereo images (Fig-
ure 6.6). During inference, only monocular image sequences are provided. The projective photometric

Figure 6.6: Overview of the UnDeepVO architecture. UnDeepVO recovers a
depth map from stereo imagery for scale recovery. In parallel, the camera

pose is estimated. Retrieved from Li et al. (2018)

error left-right stereo image pairs are used as a photometric loss. Additionally, poses are estimated
for both stereo image pairs, which should result in the same estimated pose and can thus be used as
a loss. A photometric loss between consecutive frames was applied with an additional 3D geometric
registration loss, which uses the depth information from the depth estimation network to derive a loss
between consecutive frames. This method has the advantage of not needing labeled ground truth data
but still shows degraded performance when deployed in novel scenes as stereo imagery is required to
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recover the scale and depth estimation in their model.

6.2. Neural-based Route Following

Neural-based route following is split up into three distinct categories. The first one (Section 6.2.1) con-
cerns itselfwith following tracks. Track-followingdiscerns itself fromother route-followingmethods by
having priorly known features/objects in the environment that can be tracked as to successfully follow
a route. Path following (Section 6.2.2), in contrast, also attempts to follow a route by tracking features
but these features are often difficult to classify, e.g. following a trail through the woods. Finally, insect-
inspired methods (Section 6.2.3) are presented that present a more generic route-following, solely rely-
ing on views (also called snapshots) perceived during a previous run, which do not allow for specific
route-dependent features to be tracked.

6.2.1. Track Following

Fueled by competitions like the IROS Autonomous Drone Race (Moon et al., 2017) and the AlphaPilot
Innovation Challenge, methods for autonomous drone racing has seen much development. In these
drone races, a drone has to autonomously navigate as quickly as possible through a sequence of gates.
Many of the algorithms have thus focused on detecting and locating these gates (Figure 6.7), where
its pose is estimated and a local control law (VIO) is utilized to navigate through the center of the
gates. Neural-based approaches (Kaufmann et al., 2018; Jung et al., 2018; Loquercio, Kaufmann, et al.,

Figure 6.7: Typical drone racing setup: a drone needs to navigate through
(dynamically moving) gates on a track. Retrieved from Kaufmann et al.

(2018)

2020) have shown promising results towards this cause. Jung et al. (2018) propose a deep learning
model, based on Single-Shot Detection (SSD) (W. Liu et al., 2016). They adapted the SSD model by
using AlexNet as a backbone and removing redundant layers to achieve realtime computation on an
NVIDIA TX2 board. They combined the gate detection algorithm with a line-of-sight control law to
navigate through the centers of the gates. One limitation was that constant line-of-sight of the next
gate was required to successfully navigate. Kaufmann et al. (2018) solved this by implementing an
extended Kalman filter to estimate gate poses. The estimated poses of the gates are used in a receding-
horizon trajectory planner for navigation. The convolutional neural network is based on the DroNet
architecture (Loquercio, Maqueda, et al., 2018) to realize realtime inference. Because gate poses are
estimated by the EKF andwaypoints are generated for each gate, the dronedoes not require line-of-sight
with the next gate and can handle displacements of the gates, as long as a single demonstration flight
can be carried out. Loquercio, Kaufmann, et al. (2020) employ a similar setup as (Kaufmann et al., 2018)
and train their model in simulation such that it is able to transfer to the real world without adaptation.
To achieve this zero-shot sim-to-real transfer, extensive domain randomization was performed during
simulation, with changes in illumination, texture of the background and the appearance of the gates to
pass through. They make use of an expert policy in simulation that follows a minimum-snap trajectory
through the gates and outputs ground truth normalized image coordinate reference directions and a
desired speed. To deal with deviation from the trajectory that could arise during real-world flight, a
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variation on DAgger (Ross et al., 2011) is used, which recovers the drone using the expert policy, when
deviating too far from the reference trajectory. After the drone can reliably complete the trajectory, the
margin where the expert policy is used for recovery is increased. This allowed the drone to behave
more robustly when following the trajectory. To deal with dynamic movement of gates, the network
was trained simultaneously on multiple static variations of the same track layout.

6.2.2. Path Following

The work presented by Giusti et al. (2016) focuses on following an inconspicuous forest trail through
the mountains. Many previous methods had focused on navigating along more clearly defined paths
like paved roads, or assessed general traversability. They train a deep convolutional neural network on
over 17000 image frames that were collected during approximately 7 km of hiking trails with varying
weather and illumination conditions (not during twilight to avoid motion blur). Images along the
trail were collected by three cameras mounted on the head of a hiker, with one of the cameras looking
forward in the direction of walking and the other two pointing 30 degrees to the left and right. The
images collected in the centerwere labelled for learning as ‘go forward’, while the otherwere labelled as
‘go left/right’ for respectively the right/left pointing cameras. The network thus learns tomapperceived
views to discrete actions that keep the drone along the trail. The network consists of successive pairs
of convolutional layers followed by max-pooling layers followed by a fully connected layer to the three
layers, with each a softmax activation function. The whole model ran fully onboard at 15 fps on a
custom-designeddronewith anOdroid-U3 computer that runs both the deep neuralmodel and a visual
odometry pipeline. The proposed methods showed human-level classification performance and was
able to navigate along several hundred meters of previously unseen forest trails, but failed however at
parts of the trail with little space on either side. Smolyanskiy et al. (2017) based their work on (Giusti et
al., 2016), but introduced three additional classes that denote lateral shifts: shift left, centered and shift
right. This learns the drone to fly near the center of the trail, resulting in less issue with narrow trails
as reported by (Giusti et al., 2016). Furthermore, they introduced a new network architecture, TrailNet
(see Figure 6.8), based on ResNet-18, but without batch normalization, and using shifted ReLU instead
of regular ReLU.

Figure 6.8: TrailNet Architecture, based on ResNet-18. Smolyanskiy et al. (2017) replace the regular ReLUs with shifted ReLUs
and do not use batch normalization. Low resolution images of the forrest trail are used to train the network to discern which

orientation or lateral offset is necessary to stay on the trail. Retrieved from Smolyanskiy et al. (2017).

Additionally, an object detection model was implemented alongside with a visual odometry pipeline
that computes a semi-dense depth map for obstacle detection and avoidance. Their model was over-
fitted and produced very high confidence values for the different classes, this had as a result that the
drone switched betweenmovement classes too late. Therefore, an extra entropy award termwas added
to the loss function, which consists of the aforementioned entropy award, a cross-entropy loss and a
side swap penalty. All modules were run in realtime on a Jetson TX1 at 30 Hz, allowing for reliable
autonomous navigation on more than 1 km of forest trails.

6.2.3. Neural Insect-Inspired Navigation

(J. Müller et al., 2018) utilized Ardin et al. (2016)’s Mushroom BodyModel for evaluating route follow-
ing performance in three different simulated environments and extended the model to accommodate
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behavioral context as an input. The addition of behavioral context as input was accomplished through
the addition of an array of activations (context-dependent projection neurons (cPNs)) in parallel to
the visual input, that constituted 30% of the total network input. These cPNs represented a categorical
internal state of the honeybee (outbound/inbound flights) and were used to give the agent the (biolog-
ically plausible) capacity to distinguish between ambiguous routes. An overview of their architecture
is given in Figure 6.9. The agent was tested in simulation in three different environments: a flat world

Figure 6.9: J. Müller et al. (2018)’s neural model, which is based on (Ardin et al., 2016)’s MB circuit. cPNs are added to provide
context to the network such that it can discern ambiguous routes. Retrieved from J. Müller et al. (2018).

and a low (LD) and high (HD) density environment with trees, bushes and rocks scattered over the
3D environment. A series of experiments was performed that compared navigational performance in
the flat world for respectively a straight route and a detour, a series of differently shaped routes in the
LD and HD environments and finally an experiment to evaluate the performance of the addition of the
cPNs in discriminating between two routes that share a part of their path. J. Müller et al. (2018) note
that the model performed best in the LD (uncluttered) environment. In uncluttered environments,
relatively more information about the environment can be encoded in the KCs. In a feature-deprived
environment however, e.g. the flat world, almost everything looks familiar and performance worsens
again. Additionally, results indicate that travelling along extended landmarks (rivers, roads, …) im-
proves guidance performance but when not many additional features in the environment are present
this could result in the agent getting stuck to the extended landmark. The addition of context cues
(through the cPNs) allows the agent to discriminate between different routes that share a part of their
path.

Knight et al. (2019) implemented the Infomax neural network of (Baddeley et al., 2012) on a custom
robotic platform equipped with a Jetson TX1 computer, showing that their model could also be im-
plemented in real natural scenes in realtime. The neural scene familiarity model showed more robust
performance compared to using a ‘Perfect Memory’ (move in the direction of the minimum of Rota-
tional Image Difference function) in some cases. The experiments were conducted over small distances
however and required scanning in multiple direction. Additionally, the model took 500 ms to run on
the CPU of the Jetson TX1, which would not be suitable for MAV navigation, unless operating at slow
speeds.

Nowak and Stewart (2019) propose a spiking neural model for desert ant visual navigation. The route
is split into multiple segments, where the agent navigates between waypoints by means of the average
landmark vector model and utilizes local vector navigation when leaving a waypoint. Their model
assumes that knowledge about the average landmark vector at each waypoint is already present and
uses the spiking net’s output as an indicator for steering to a waypoint and signalling when a waypoint
has been left. Furthermore, despite that computations are performed by a spiking net, there is little
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resemblance to known neural structures in the desert ant’s brain (they do use a model of the basal
ganglia, which appears to play a prominent role in vertebrate navigation along a habitual route) and
rely on careful gain selection to balance out the attraction of the ALVmodel and the local steering vector.
However, it shows that spiking nets can be successfully deployed to perform view-based navigation
tasks.





7
Literature Synthesis

This Chapter provides a synthesis of the literature study that has been carried out. The goal of this
studywas to give an overview of and review insect(-inspired) vision-based navigationmodels for route
following. The literature study focused on several aspects. First, local vision-based guidance models
that do not rely on global navigation satellite systems nor pre-made maps were discussed, with the
goal to give an overview of the relevant techniques that are employed. Also, the catchment area of
snapshots was discussed, which serves as an important factor in evaluating snapshot-based navigation
methods. Next, insect physiology and behavior of ants were presented which gave insight into how
insect capture and process visual information relevant to their navigational capabilities. Navigational
behavior, specifically learning walks/flights, where discussed as they form an intrinsic part of insects’
navigational strategies and facilitate their navigational performance. Additionally, basic principles of
event-based vision and how to represent and process them were discussed. Finally, recent develop-
ments in neural-based visual navigationmethodswere discussed. These neural-based implementations
showpromising results in various navigational applications, and have started to outperform traditional
methods with comparable computational requirements and the promise of even more parsimonious
methods through neuromorphic computing. The use of (spiking) neural networks for insect-inspired
visual navigation on robotic platforms was shown to be often limited to simulation or small navigation
tasks.

7.1. Local Vision-Based Guidance

Navigation in GNSS-denied environments or without a prior map requires local navigation strategies.
Local vision-based guidance methods can be generally split up into map-building (SLAM), and map-
less navigation. SLAM simultaneously constructs a map of the environment and navigates through
it by estimating the camera pose and matching and tracking features in the environment. Keyframe-
based methods have become the most popular in state-of-the-art SLAM architectures (Younes et al.,
2017; Huang, 2019), which either act directly on the individual pixels of frames (direct methods (Engel
et al., 2014; Caruso et al., 2015)) or indirect methods (Mur-Artal, Montiel, et al., 2015; Leutenegger
et al., 2015; Qin et al., 2018) which use features descriptors (BRIEF, SURF, SIFT, ORB) to match distinct
features between keyframes. The requirements of constant pose estimation and successful matching
of features requires considerable computational resources and can fail in challenging environments
with fast motion, low texture and changes in illumination. Furthermore, it is debated whether insects
retain metric/topological internal maps or solely rely on a more parsimonious implementation such
as merely matching geometric memories to directions of travel (Cheung, M. Collett, et al., 2014; Webb,
2019), although literature seems to indicate the latter (Rüdiger Wehner, 2008).

Mapless navigation methods do not build or make use of metric/topological maps but instead relate
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the current experienced view, or a holistic representation of it, to a view experienced at the goal location
(also called snapshot) and subsequently derive a direction of travel. Following (Möller andVardy, 2006),
monocular vision-basedmethods can be divided into correspondence andholisticmethods. Correspon-
dence methods, analogous to (in)direct methods, compute the vector that would match the transfor-
mation of matched regions in a stored snapshot to regions in the current view. The original snapshot
model of bee navigation (Cartwright and T. S. Collett, 1983) belongs to this group andmatches edges of
dark regions on a panoramic 1-dimensional snapshot to derive a travel direction. Other correspondence
methods like differential flow methods (Vardy and Moller, 2005) and methods without feature selec-
tion found their way to applications in mobile cleaning robots (Vardy and Moller, 2005) and visual
road navigation (Pink et al., 2009). Holistic methods like image warping (Franz et al., 1998; Möller,
Krzykawski, et al., 2010; Möller, 2012), parameter methods (Lambrinos et al., 1998; Baddeley et al.,
2012; W. Stürzl and Mallot, 2006) and descent in image distance methods (Möller and Vardy, 2006) act
on a holistic representation of the image. The main advantage of this is that visual information is rep-
resented in a more parsimonious manner, which allows for relatively simple deduction of navigational
strategies. The power lays in the way that this visual information is captured. The average landmark
model (Lambrinos et al., 1998) for example only captures the average of all the vectors pointing to land-
marks at the snapshot location and thus only knowledge about the average landmark vector at other
positions and a strategy for minimizing this difference is needed. Imagewarpingworks well in the case
of 1D visual strips (Franz et al., 1998), but gets computationally very intense for 3D scenes and requires
dedicated methods for taking advantage of the image warping methodology (Möller, Krzykawski, et
al., 2010; Möller, 2012). Rotation invariant methods using Fourier transformed (for 1D panoramas) im-
ages and Zenrike moments (for 2D segmented sky panoramas) were also explored as other methods
require an external compass for view alignment. Then the scene familiarity (Baddeley et al., 2012) and
its neuromorphic implementation by Ardin et al. (2016) showed that a strategy that involves moving
in the most familiar direction can result in successful route following. Although their implementations
are different (Ardin et al. (2016) use an Infomax net to decorrelate outputs and Ardin et al. (2016)
a sparse encoding of information) they rely on the same underlying principle. An extension on this
notion was presented by (Le Möel and Wystrach, 2020) that uses both goal and anti-goal views as an
effort to eliminate the required scanning behavior of Ardin et al. (2016) and Baddeley et al. (2012). In
this way a current view, when compared to the two attractive and repulsive memory banks, correlates
with directional error.

Work by Zeil, Hofmann, et al. (2003) showed that image difference functions (the root-mean-square
difference of pixel values) varies smoothly in natural, outdoor scenes. By descending in the direction
of minimal image difference, one can navigate towards a snapshot. In this case the image difference
function serves as a proxy for the visual information that is present in the scene, which all mapless guid-
ance methods inadvertently use. This proxy is thus interesting as a way of capturing the information
content that is present in scenes for navigation. A key parameter is the so-called Catchment Area/Vol-
ume, denoting the area/volume where an agent can successfully return to the snapshot through DID.
From analyzing the root mean squared image difference surface, it is seen that in natural scenes, image
difference functions appear to be smooth, without pronounced local minima, reaching similar values
surrounding the reference image location. This smoothness of image difference functions depends
most likely on the spatial-frequency distribution, where a broad variance in contrast, object distance
and angular size contribute to its smoothness (Zeil, Hofmann, et al., 2003). Many insect-inspired vi-
sual navigationmethods are evaluated in simulationwhich often lack the rich texture, color, luminance
contrast, depth variance and noise present in natural outdoor scenes (Zeil, Hofmann, et al., 2003). Fur-
thermore, 3D scenes in simulation that try to accurately capture and model natural environments, still
show deficits in representing those environments (Wolfgang Stürzl, Grixa, et al., 2015). Therefore, it
is important to perform real-life experiments to evaluate the performance and applicability of these
algorithms.

7.2. Insect-Inspired Perception, Processing and Behavior

The main visual organ of insects is the ‘compound eye’, which consists of numerous patches (omma-
tidia) that are stacked in a hexagonal pattern. Each of those ommatidia has a single corneal lens that
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focuses light on the underlying light-sensitive retinula cells. These retinula cells react asynchronously
to luminance changes in a spike-basedmanner, where each cell is sensitive to a certainwavelength (Leb-
hardt and Desplan, 2017) and polarization of light (Zeil, W. A. Ribi, et al., 2014). Specialized regions
such as the DRA focus on specific functions (polarization vision in the case of the DRA). The relatively
low resolution view, that is a result of the physical spacing of the ommatidia, combined with a field of
view of up to almost 360 degrees plays an important role in facilitating robust visual navigation (Wys-
trach, Dewar, et al., 2016). Furthermore, compound eyes possess a very high flicker fusion rate (350
Hz) (Ruck, 1958) as result of the sparse input to the insect brain, which allows them to react very
quickly to visual scene changes.

Processing of visual information happens largely in the optic lobes and protocerebrum. The optic
lobes (lamina, medulla, lobula) are responsible for pre-processing (contrast enhancement (Zettler and
Järvilehto, 1972), color vision (Bausenwein et al., 1992), motion detection (Ibbotson et al., 1991)) of
visual signals before they pass to the protocerebrum. The Central Complex has been associated with
the integration of different visual signals for navigation (Hoinville and Rüdiger Wehner, 2018), where
it presumably combines path integration, polarization vision and signals from the MBs (X. Sun et al.,
2019) to orient itself in the environment (Webb and Wystrach, 2016). The MBs form a parallel struc-
ture of neurons (Kenyon Cells) that are thought to be involved in associative learning (Aso et al., 2014)
and connected to olfactory learning in houseflies (Szyszka et al., 2005). This is also thought to form the
neural substrate for visual encoding of route memories (Ardin et al., 2016), due to its parallel structure.

The attractive properties of processing visual information in an asynchronous, spike-basedmanner can
be captured through its artificial (neuromorphic) counterparts like event cameras, SNNs and neuro-
morphic computer chips such as Intel’s Loihi or IBM’s TrueNorth. Event cameras, like compound and
camera-type eyes, capture brightness changes asynchronously and on a per-pixel basis. Collecting vi-
sual information in this manner requires the development of novel techniques to represent and process
events. Inspiration in terms of (pre-)processing this data can be taken from their neurological imple-
mentation in insects. Their artificial counterpart, SNNs, are subsequently a natural fit for processing
the sparse and event-based output of event cameras; combined with dedicated hardware they possess
the capability to achieve similar, possibly better, performance than traditional artificial neural networks
at a fraction of their power requirements (Pfeiffer and Pfeil, 2018).

Navigation strategies also play an important role in the successfulness of guidance methods. A tech-
nique commonly deployed by insects is the use of learning walks and flights. Central-place foraging
insects are typically seen to leave the nest in a series of saccadic movements that expand outwards of
the nest in increasingly bigger arcs/circles while regularly looking back at the nest (Thomas S. Collett
and Zeil, 2018). Insects are also seen to orient these arcs/circles depending on landmarks close to the
nest (Thomas S. Collett and Zeil, 2018). Acquisition of visual memories is not only limited to the early
stages but extend itself throughout the life of the insects. Foraging insects are triggered to perform addi-
tional learning maneuvers upon having difficulties or failing to home to their nest. Another technique
is to explore the neighborhood of the nest opposite the direction of departure, presumably to make
sure that they can return to the nest when overshooting the nest (Jayatilaka et al., 2018). Navigational
behavior and performance seems to be closely integrated with each other, and therefore it would be of
interest to investigate its applicability to MAV navigation.

7.3. Neural-Based Visual Guidance

The use of ANNs for estimating depth, optical flow and odometry have recently overtaken traditional
methods in terms of performance. Mainly deep convolutional neural networks based on architectures
like ResNet (He et al., 2016), VGG (Simonyan and Zisserman, 2014) and MobileNet (Howard et al.,
2017) are deployed. Deep learning based methods showed its capability of learning depth information
from scenes and resolving the depth ambiguity problem, which traditional Visual Odometry meth-
ods suffered from. Early methods focused on using supervised learning with labeled data (Eigen et
al., 2014). Due to the difficulties in obtaining high quality ground truth depth estimates, methods
shifted to semi-supervised (Amiri et al., 2019), and later unsupervised methods (Casser et al., 2019).
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Early methods of determining optical flow mostly focused on replacing parts of traditional methods
(e.g. feature extraction) that could then be fed to traditional pipelines (Güney and Geiger, 2017). This
was later replaced with direct estimates for optical flow. Analogous to depth estimation, these meth-
ods made use of supervised learning in early stages (Dosovitskiy et al., 2015) and later unsupervised
learning (Ahmadi and Patras, 2016). In order to improve performance, often egomotion and optical
flow are learned simultaneously (A. Z. Zhu et al., 2019; Yin and Shi, 2018; Chen et al., 2019). Other
methods focus on directly estimating visual odometry (Mohanty et al., 2016; Li et al., 2018). Although
better performance was achieved over traditional methods, they still often lack performance in novel
scenes. In order to cope with this, many methods first train on artificial datasets and later transition
to real world datasets like KITTI (Geiger et al., 2012). For deployment to novel scenes, Chen et al.
(2019) propose online optimization through fine-tuning of parameter weights of their original model
(PFT) or through output fine-tuning (OFT) which only optimizes the output without recomputing
all the network weights. Furthermore, methods often require powerful hardware, although models
have been proposed that are able to run reliably on embedded devices (Wofk et al., 2019; Aleotti et
al., 2020; Peluso et al., 2019). These are often achieved through extensive optimization and network
pruning. Full 6-DOF odometry/SLAM using event-based vision and neuromorphic hardware has not
yet been demonstrated and poses an interesting challenge for the foreseeable future. For now, early
methods combining event-based vision with SNNs focus on solving sub-problems like optical flow es-
timation (Paredes-Valles et al., 2019; C. Lee et al., 2020), constraint pose estimation (Gehrig et al., 2020)
or constrained navigation (Kaiser et al., 2016; Kreiser et al., 2018).

Neural-based methods have also found their way in route following. Traditional VO pipelines are com-
bined with the tracking of gate poses in (Kaufmann et al., 2018; Jung et al., 2018; Loquercio, Kaufmann,
et al., 2020) for drone racing. Giusti et al. (2016) and Smolyanskiy et al. (2017) present a model for fol-
lowing an inconspicuous forest trail over great distances, where essentially the perception of the trail
was mapped to discrete actions that would steer the drone to remain on track. Neural-based insect-
inspiredmethods remainmostly limited to simulation (J. Müller et al., 2018; Nowak and Stewart, 2019),
except Knight et al. (2019) who implemented their scene familiarity model on land-based robot and
reported real world performance over limited distances.

The advent of event-based vision promises computationally sparse bio-inspired methods for insect-
inspired visual guidance, but these have been only applied in limited cases. Insect-inspired navigation
models that have been implemented on robotic hardware have also often limited themselves to fairly
short ranges. The development of a real world event camera dataset that allows for the comparison of
different insect-inspired approaches in terms of performance, robustness and parsimoniousness over
long distances followed by an evaluation between neural-based insect-inspired methods seems crucial
towards bridging this gap. Part III will implement and evaluate these networks on smaller datasets in
order to better understand their workings and limitations and provide a basis for their further testing
on the large dataset.
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8
Methodology

Much research in using (spiking) neural networks for insect-inspired visual guidance are limited to
implementations in simulation (Baddeley et al., 2012; Ardin et al., 2016; J. Müller et al., 2018; Le Möel
and Wystrach, 2020). However, real life natural scenes are considerably different from simulation (see
Section 3.2.3) and thus it is of interest how these models behave in natural scenes. Knight et al. (2019)
show that this methodology works in natural scenes, but limit themselves to cover relatively small
distances. These preliminary experiments intent to provide a better understanding of recent neural
insect-inspired scene-familiarity based navigation models such that they can be evaluated on the real
life dataset as presented in Part I.

First, the outline of the experiments are given in Section 8.1. In Section 8.2, the software and tools used
for constructing and running the (spiking) neural networks are discussed. An overview of the datasets
that have been used in the preliminary experiments are detailed in Section 8.3. In Section 8.4, the im-
age processing that is performed before the frames are passed to the neural networks is described. Sec-
tion 8.5 introduces two recent insect-inspired familiarity-based neural navigationmodels which will be
used for further evaluations. Chapter 9 presents a preliminary evaluation of the models introduced in
Section 8.5 in terms of their performance for long-ranged navigation. A report of the preliminary exper-
iments and a discussion of their results and implication towards this thesis are presented in Chapter 10.

8.1. Outline

As there exists limited research comparing neural familiarity-based insect-inspired visual guidance
models for MAVs, this preliminary research focuses on evaluating the neural networks proposed by
Baddeley et al. (2012) and Ardin et al. (2016) on vision data from real life natural scenes. Of special
concern is how well these models perform in natural scenes, and which learning strategy and network
configuration should be deployed to optimize the use of resources while retaining adequate perfor-
mance. Of special concern are the speed, capacity and accuracy of the networks as these elements are
vital towards their applicability onboard limited platform such as aMAV. The effect of parameters such
as image resolution, image aspect ratio and learning rate will be explored.

8.2. (Spiking) Neural Network Frameworks

To run the three neural (spiking) models, two different frameworks are used. PyTorch1 is used for
the non-spiking neural network due to its highly modular and dynamic design, accelerated computing

1https://github.com/pytorch/pytorch
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and CUDA support and rich resources in terms of libraries and tools. For simulating the (spiking)
mushroom body models, an adaptation2 of Bas Buller’s SNN simulator framework PySNN3 (which is
build upon PyTorch) is used to support the simulation of Izhikevich neurons and the learning rule as
presented in Ardin et al. (2016). The PySNN framework allows a user to set up a SNN by defining the
neuron’s dynamics as a pysnn.Neuronmodule and the connection between layers as pysnn.Connection
modules (opposed to the single nn.Module in PyTorch). As PySNN uses PyTorch as basis, the same
workflow for non-spiking and SNN models can be used, while retaining all the advantages of PyTorch.

Listing 8.1: Simulation and learning of a Mushroom Body model in the PySNN framework

1 import torch
2 import models.MBModel as MBModel
3 from pysnn.learning import IzhSTDP
4

5 # simulation setup
6 dt = 1 # timestep in milliseconds
7

8 # configure Mushroom Body model
9 n_in = 360 # number of visual projection neurons

10 n_hidden = 20000 # number of Kenyon Cells
11 n_out = 1 # number of extrinsic neurons
12 MB = MBModel.Network(n_in, n_hidden, n_out) # initiate MB model
13

14 # generate 10 input sequences
15 MB_input = torch.rand(10, n_in)
16

17 # learning setup
18 layers = MB.layer_state_dict()
19 tau_c = 40.0
20 tau_d = 20.0
21 A_plus = A_min = -1.0
22 tau_plus = tau_min = 15.0
23 learning_rule = IzhSTDP(layers, tau_c, tau_d, A_plus, A_min, tau_plus, tau_min)
24

25 # simulate network for 50 milliseconds
26 for input in MB_input:
27 for t in range(int(50 / dt)):
28 BA = 0
29 if t == 40:
30 BA = 0.5
31 MB(input.view(1,1,-1))
32 learning_rule.step(BA)
33 MB.reset_state()

8.3. Event Vision Datasets for Scene Familiarity

Scene-familiarity based insect navigation models are generally trained using a series of views captured
at various points surrounding and pointing towards a ‘home’ location. They are subsequently evalu-
ated by examining their response to a rotation on the spot at an unseen location. The network should
ideally show a clear dip in its response when facing in the direction of the goal. As little such datasets
exist, two (Home and Cyberzoo) datasets were collected and used for the preliminary evaluations re-

2https://github.com/JanVerheyen/PySNN-Izhikevich
3https://github.com/BasBuller/PySNN

https://github.com/JanVerheyen/PySNN-Izhikevich
https://github.com/BasBuller/PySNN


8.3. Event Vision Datasets for Scene Familiarity 69

garding the performance of the Infomax network and theMushroombodymodel. Both datasets consist
of goal, anti-goal and test views. The goal views are directed towards the goal (left chair in the Home
dataset and left pole in Cyberzoo dataset), the anti-goal views are oriented in the opposite direction.
The test footage was recorded by rotating 360 degrees on the spot. The Home dataset was recorded
with an LG V30+ phone and the Cyberzoo dataset was recorded with the onboard camera of a Parrot
bebop 2 drone, along with events from a DAVIS240 sensor.

8.3.1. Home Dataset

The ‘Home’ dataset consists of only video shot by a phone. The Home dataset consists of high dynamic
range (low-brightness inside and external sunlight through the window) and textured (the bookshelf,
etc.) footage. A number of sample views can be seen in Figure 8.1.

(a) Home, Goal (b) Home, Anti-Goal (c) Home, Test
Figure 8.1: Samples of the goal, anti-goal and test views from the Home dataset

8.3.2. Cyberzoo Dataset

A small dataset was collected in the MAVLab Cyberzoo that consists of goal- and antigoal-oriented tra-
jectories in five distinct locations around a central goal post. At three other locations, 360 degree scans
were performed to assess the response (performance) of the networks. An overview of the trajectories
can be seen in Figure 8.2.

Figure 8.2: Cyberzoo experiments setup. Drone position during dataset
acquisition in the Cyberzoo. Time is encoded as color (light red → dark red

= start → stop).

In Figure 8.3 you can see samples of both the Cyberzoo datasets for respectively the goal, anti-goal and
test views. The Cyberzoo dataset was shot in the Cyberzoo of TUDelft’s MAVLab and consists of more
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recurrent texture (artificial grass, black curtain, …).

(a) Cyberzoo, Goal (b) Cyberzoo, Anti-goal (c) Cyberzoo, Test
Figure 8.3: Samples of the goal, anti-goal and test views from the Cyberzoo dataset

8.4. Image Pre-processing

In this section, an overview of the image pre-processing steps that are performed on the datasets is
given. The datasets (Section 8.3) consist of 1080p color videos in ‘.mp4’ format with H.264 encoding.
Each of these videoswere split into individual frames, whichwere subsequently processed as described
in Baddeley et al. (2012) and Ardin et al. (2016) using OpenCV:

1. conversion to gray scale with cv2.cvtColor
2. histogram equalization with cv2.equalizeHist for contrast enhancement
3. resize to desired (lower) resolution with cv2.resize using the cv2.INTER_AREA option
4. normalize pixel brightness values (from [0, 255]) to the range [0, 1]

These images where then saved by storing them as ‘.png’ files. The only additional processing was
performed for the SNN model of the mushroom body (Section 8.5.2). Following Ardin et al. (2016),
image inputs for the mushroom bodymodel are normalized by dividing each pixel value by the square
root of the sum of squares of all pixel values, after which they are scaled by a scaling factor such that
a specified amount of Kenyon Cells are activated given by Equation 8.11. An example image after
preprocessing can be seen in Figure 8.4.

Figure 8.4: Example image from the Cyberzoo after preprocessing (resolution = 84× 21).

8.5. Neural Familiarity-Based Insect-Navigation Models

The following section covers the implementation of Baddeley et al. (2012)’s Infomax scene familiarity
model and Ardin et al. (2016)’s MB model.

8.5.1. Infomax Neural Network

The Infomax neural network already been covered in detail in Section 3.2.2 of Part II. One note can be
made however on the implementation of the weight adaptation which has been slightly modified:

∆wij =
η

N ·M
(wij − (yi + hi)

N∑
k=1

hkwkj) (8.1)
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Note that in this notation the normalization term 1
N in Baddeley et al. (2012)’s work has been replaced

by 1
N ·M . The original term required fine-tuning of the learning rate depending on the number of input

units N and the amount of novelty unit inputs M to guarantee convergent behavior of the learning
step. This novel notation stems from the fact that (yi + hi) contains M elements and (

∑N
k=1 hkwkj) N

elements which requires a factor N ·M for normalization.

8.5.2. Mushroom Body Model — Ardin et al. 2016

Themodel presented by Ardin et al. (2016) makes use of Izhikevich spiking neurons (Izhikevich, 2003)
where changes in the membrane potential v(mV) are modelled by:

Cv̇ = k(v − vrest)(v − vt)− u+ I(t) + [ζ ∼ N(0, σ)] (8.2)
u̇ = a(b(v − vrest)− u) (8.3)

where C is the membrane Capacitance, vr the resting membrane potential, vt a threshold potential,
I the input current, ζ ∼ N(0, σ) Gaussian white noise and a, b, c, d and k are model parameters that
control the characteristics of the neurons. The membrane potential v and recovery current u are reset
if the membrane potential vt is exceeded: {

v ← c

u← u+ d
(8.4)

The input current is modelled by:
I = gS(vrev − v) (8.5)

where g(nS) is the maximal synaptic conductance, vrev = 0 is the reversal potential and S the amount
of active neurotransmitter. S is given by:

Ṡ = − S

τsyn
+ ϕδ(t− tpre) (8.6)

where ϕ is a quantile of the amount of neurotransmitter released after the occurrence of a pre-synaptic
spike, τsyn is the synaptic time constant, tpre the time at which the pre-synaptic spike occurred and δ
the Dirac delta function. During learning, the weights g are altered using a modified three-factor rule:

ġ = cd (8.7)

where c is a synaptic tag which serves as a transient eligibility trace and d is the extracellular concen-
tration of biogenic amine:

ḋ = − d

τd
+BA(t) (8.8)

whereBA(t) is the amount of biogenic amine released at time t, depending on the reinforcement signal
and taud is the time constant of the decay of concentration d. The synaptic tag c is modelled by STDP:

ċ = − c

τc
+ STDP (tpre − tpost)δ[(t− tpre) ∗ (t− tpost)] (8.9)

where δ(t) is the Dirac delta function, tpre the time of a pre-synaptic spike, tpost the time of post-synaptic
spike and τc the time constant for the decay of synaptic tag c. STDP acts as follows on synaptic tag c:

STDP (tpre − tpost) =


A+e

tpre−tpost
τ+ , if tpre − tpost < 0

0 , if tpre − tpost = 0

A−e
tpre−tpost

τ− , if tpre − tpost > 0

(8.10)
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Table 8.1: Neuronal and synaptic parameters of Ardin et al. (2016)’s Mushroom Body model.

Neuron Properties
PN KC MBON unit

neuron number n 360 20000 1 -
resting potential vrest -60. -85. -60. mV
threshold voltage vthresh -40. -25. -40. mV
model parameter a 0.3 0.01 0.3 -
model parameter b -0.2 -0.3 -0.2 -
model parameter c -65. -65. -65. mV
model parameter d 8. 8. 8. mA
model parameter C 100. 4. 100. -
model parameter k 2. 0.035 2. -
noise ξ N(0, 0.05) N(0, 0.05) N(0, 0.05) mA

Synapse properties
input to PN PN to KC KC to EN unit

connectivity one-to-one 10 per KC fc -
synaptic weight g 1. 1. 1. -
neurotransmitter quantile ϕ 50. 0.93 8. -
synaptic time constant τsyn 1.8 3. 8. ms
synaptic tag time constant τc - - 40. ms
biogenic amine time constant τd - - 20. ms

where A± are the magnitudes of synaptic change due to either long-term potentiation and depression
and τ± the time constants. An anti-Hebbian learning rule is applied, ensuring the tag c is always neg-
ative such that the network’s tagged weights quickly decline to zero. In Table 8.1 an overview is given
of the configuration of the parameters of the MB model as presented in Ardin et al. (2016).

Ardin et al. (2016) use 360 visual projection neurons that are sparsely connected to 20000 Kenyon cells
which terminate on a single extrinsic neuron. The main working principle behind this network is the
sparse projection of the visual projection neurons to the Kenyon cells, where especially their ratio is
of importance. Ardin et al. (2016) use a constant scaling factor on image inputs of 5250, in order to
activate about half of the visual projection neurons which in their turn activate about 2% of the Kenyon
cells (see Ardin et al. (2016, Fig. 5)). For different image input sizes, the same ratio should be adhered
to. To make sure that the Kenyon cells’ activity remains the same (≈ 2%) however, the input current
will have to be scaled the right amount. The following empirical relationship for the scaling factor was
found to produce a KC activity of approximately 2%:

Scaling factor = 267.14 ·
√

NPN + 240 (8.11)

with NPN the number of visual projection neurons.

8.5.3. Training

Figure 8.5: Scene familiarity based neural network training procedure. Image 1 is shown, after which the weights are adapted.
Next, image 2 is presented to the network and the weights adapted, and so on.

The Infomax neural network’s weights are adapted according to Equation 8.1 for each image. The
(spiking) MB model is trained by presenting images for 50 milliseconds — this activates the vPNs,
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KCs and MBON and tags KCs that are firing — after 40 milliseconds biogenic amine (Equation 8.8) is
released which reduces the synaptic connection strength between the KCs and the MBON over a time
span of 10 milliseconds. The MB model state is reset, after which the second image is shown, etc.





9
Spiking Neural Networks for

Familiarity-based Guidance in Natural
Scenes

This chapter focuses on evaluating the Infomax andMushroom body neural networks for use in natural
scenes. First, the concept of natural scenes and its relation to and evaluation of the datasets is presented
in Section 9.1. Following, the networkswill be evaluatedwith respect to their aspect ratio and resolution
in Section 9.3 and 9.2 respectively. The learning strategy will be handled in Section 9.4, finally covering
their performance in Section 9.5.

9.1. Information Content of Natural Scenes

The visual systems of vertebrates and insects are adapted to the environment in which they live, which
mostly consists of natural scenes. Natural images can thus be considered of as images with a statistical
structure towhich those visual systems are best adapted to. They can therefore also come from artificial
sources (e.g. simulation, drawings, …) (Dyakova, 2017). Natural scenes (which are natural images)
represent images from nature. These images can be described in order of their statistics: first-order,
which describes images using solely pixel brightness values regardless of their position, and second-
order, which take into account the pixels’ spatial relationship. The RMS-contrast (first-order) gives a
measure for the contrast in an image:

RMS =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)
2 (9.1)

Figure 9.1 shows the RMS-contrast of the frames in datasets ‘Cyberzoo’ and ‘Home’ (Section 8.3). It can
be seen that there is an about 7.5% increase in average RMS frame contrast in the Home dataset over
the Cyberzoo dataset. This result indicates that there is more variability in the Home dataset pixels’
values than in the Cyberzoo dataset, requiring a neural network to need more capacity to store the
visual information present in the scene. To get more insight into the spatial relationship of the datasets,
one has to look at the frequency domain. The 2D Fourier transform of a brightness image is defined as:

F (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f(x, y)e
−πj(ux+vy)

N (9.2)

where f(x, y) is the 2D array of brightness values, u and v are respectively the number of horizontal and
vertical cycles that fit into a single Period of the frame, F (u, v) the Fourier matrix and N the number of
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Figure 9.1: Root-mean-square image contrast of the Home and Cyberzoo datasets. The Home datasets shows overall the most
image contrast (and thus more information).

pixels. One can subsequently compute the amplitude A and the phase ϕ:

A =

√
Re(u, v)

2
+ Im(u, v)

2 (9.3)

ϕ = arctan
(Im(u, v)

Re(u, v)

)
(9.4)

where Re and Im are the real, respectively the imaginary part of the Fourier matrix. The amplitude
spectrum of natural images can be quantified by a single value, the slope constant α of the orientation
averaged amplitude. A higher (lower) alpha value shows there is less (more) fine detail in a scene. On
a log-log scale, a linear relationship exists between the spatial frequency (often expressed in terms of
cycles/image) and the amplitude (Field and Brady, 1997):

A(f) =
c

fα
(9.5)

Typical natural images have a slope constant that lies in between 0.8 and 1.5, peaking around 1–1.2
(Tolhurst et al., 1992). Figure 9.2 shows that the Home dataset has considerably higher amplitudes for
the lower spatial frequencies and similar values for the higher frequencies. This again illustrates the
higher diversity of input from the Home dataset, whichwill require more neural capacity, ergo a bigger
network, to store the information adequately. This shows that for equivalent performance, network

100 101

spatial frequency [cycles/image]

100

101

102

av
er

ag
ed

a
m

p
li
tu

d
e

sp
ec

tr
u

m
[-

] Home dataset

Cyberzoo dataset

Ant environment, Ardin et al. (2016)

Random artificial image
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fα
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Figure 9.2: Orientation averaged amplitude spectrum of the Home and Cyberzoo datasets, the ant environment used in Ardin
et al. (2016), and a random artificial image. An amplitude spectrum with a slope of 1.18 is shown as a reference.

capacity (size) will need to be adjusted to match the information content of the scene. On the other
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hand, one could say that scenes with a lot of visual information require less information to be stored
per view as it is easier to differentiate between different views within this scene. Highly repetitive (low
visual information content) sceneswould then requiremore information to be stored as each individual
view is not that much different from another view. Finding how much visual information is required
to differentiate (in a practicable manner) between views within a scene and how much capacity is
needed to store all these views is crucial for the success of this project. As a next step, the extent to
which horizontal visual information contributes to navigational performance is evaluated, in a search
to minimize the amount of vertical visual information needed for differentiating between views within
a scene.

9.2. Aspect Ratio

Many insects primarily rely on path integration for estimating the distance to their nest. It is thus
hypothesized that the visual system is mainly used for orientation/directionality in navigation (is also
used for other purposes: e.g. wasps are known to use the location of visual landmarks for pinpointing
the nest location (Thomas S. Collett andZeil, 2018)). Insects have a very highfield of view (some almost
360 degrees) with more ommatidia (= ‘pixels’) covering the horizontal than the vertical extent of their
view. The above observations have led to the hypothesis that insects mainly rely on visual information
in the horizontal field of view for guidance to aid in finding the right direction/orientation; which is
shown to work well in e.g. Franz et al. (1998) and W. Stürzl and Mallot (2006). This makes sense as
visual information w.r.t. orientation is mainly found in the horizontal extent of pictures. If less pixels in
the vertical direction are required for successful navigation, this would benefit the success of deploying
the algorithms onboard MAVs as a smaller network would be required.

The Home and Cyberzoo datasets are thus analyzed to investigate the influence of the horizontal field
of view on navigation performance. This is done by changing the aspect ratio of the original dataset.
Both datasets were captured in a standard 16:9 aspect ratio. Aspect ratios ranging from 16:9 to 48:1were
analyzed. Starting from a resolution of 48 × 27 (AR = 16:9), the video aspect ratio is modified to 2:1,
3:1, 4.8:1, …(see legend Figure 9.3) with accompanying video resolution 48× 24, 16, 12, …. Hence, the
same amount of horizontal pixels is used and the same amount of vertical information, but this vertical
information is compressed into fewer pixels. Each frame in the ‘test’ dataset is evaluated using the
globalminimal sum square errormethod. Themethodworks as follows: 1.Adatabase ismade of all the
‘goal’ images 2. Each image in the ‘test’ dataset is evaluated in terms of pixel-wise sum square difference
(‘test’ database consists of a rotation on the spot, see Section 8.3) 3. The image in the ‘goal’ database
with the lowest sum of the square of pixel differences is registered 4. The results are normalized to the
interval [0, 1] 5. 1minus this result is what is used as ‘scene familiarity’ measure. This methodwill from
now on be called the ‘perfect memory’ method. Figure 9.3 shows the results of this analysis.
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(c) Home dataset
Figure 9.3: Influence of image aspect ratio on scene familiarity curve for the Home and Cyberzoo dataset.
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It can be seen that, irrespective of the dataset, the aspect ratio of the image does not influence the
shape of the scene familiarity curve considerably for aspect ratios of up to 12:1 (48× 4). This remains
the same for the Home dataset for aspect ratios greater than 12:1. For the Cyberzoo dataset however,
a considerable shift occurs for aspect ratios greater than 12:1. The maximal scene familiarity is not
reached anymore at≈ 190 butmuch later, around the intervals [300, 400] and [600, 800]which illustrates
the degradation of the method in this case. This is likely a result of the more repetitive textures and
layout in the Cyberzoo environment, which requires additional vertical information to differentiate
between frames. The Home dataset on the contrary consists of more varying textures and layout and
thus does not suffer from the same degradation. These experiments show that only little information
is needed in the vertical direction to achieve similar results to using all visual information, very high
aspect ratios however will result in degradation in certain (more repetitive) environments. Aspect
ratios of around 10:1 seem to work well for these environments, with similar results expected for other
natural scenes.

9.3. Resolution

The influence of image resolution on navigational information content is another important factor. Ide-
ally, image input resolution should be as small as possible to save computational cost. Figure 9.4 shows
the influence of image resolution on the shape of the scene familiarity response for the Infomax and
Mushroom body model networks trained on the Home dataset with 50 images.
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(b) Infomax scene familiarity
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(c) Mushroom Body scene familiarity
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(d) Perfect memory scene familiarity
Figure 9.4: Comparison of model performance with respect to image resolution. 50 images with an aspect ratio of 4 were used

for training. ‘Home’ dataset.

The results indicate that the Infomax and perfect memory methods do not suffer much from lower in-
put image resolution. The Mushroom Body model however sees some degradation w.r.t. performance
for lower input image resolutions. Although the shape of the response remains mostly similar, the
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maxima and minima of the response are not the same. Especially around the ‘true’ maximum (frame
260), the lower resolution model returns multiple other maxima. This has probably mostly to do with
the fact that the lower resolution and thus smaller sized (e.g. image input 8× 2 results in a MB model
with 16 vPNs, 889 KCs and 1 EN) MB model can store less visual ‘memories’, as illustrated in Ardin
et al. (2016, Fig. 5). Using more than 50 training images would make the resolution of 8 × 2 inopera-
ble. Depending on the application, a larger network would thus be needed. Larger networks require
more computational power however which would limit the navigational speed of the MAV, making it
ultimately inoperable too. In general the following chain of events is linked together: navigation up-
date speed ⇄ process speed ⇄ network size ⇄ storage capacity ⇄ navigation distance. This makes
the amount of views that needs to be ‘stored’ in the network for reliable performance a very important
factor. This is investigated in the following section.

9.4. Learning Strategy

Learning walks form an essential part of insects’ navigational strategy and capabilities (Section 4.3).
Crucial in learning a route representation is howmany views are needed in order to achieve an accurate
estimate forwhich direction to take at a newly presented viewaway from the goal. Baddeley et al. (2012)
train on views that are spaced apart 2 cm for the learningwalks and 4 cm for the outbound routes. Ardin
et al. (2016) uses views that are distanced 10 cm apart for learning and Le Möel and Wystrach (2020)
use 25 views along a nest-centered spiral of length 0.5, 2 and 8 meters. However, intuitively, it appears
that fewer views could be needed to ‘memorize’ a route as work from Denuelle and Srinivasan (2016)
shows. Much of this discrepancy has to do with scale: small obstacles on the ground are irrelevant for
navigating drones but form sizeable landmarks for e.g. ants which have to navigate in between them,
requiring less spacing between snapshots. In order to investigate the amount of views that would be
necessary to achieve a sense of directionality, the Infomax network was trained on the same dataset but
with a varying amount of frames. Results for varying the amount of training images, n, in the Cyberzoo
dataset for n = 200, n = 50, n = 10 and n = 1 images are shown in Figure 9.5.

At first glance, Figure 9.5 shows that for different amounts of training images, a similar scene familiarity
curve is achieved. Only 1 image actually suffices1 to find the most familiar frame pointing to the goal
location (frame 190), although it also shows for n = 10 that crucial information can be missed by
different spacing of the training views as it misses the most familiar view. A similar story can be seen
for the mushroom body model in Figure 9.6. Here the response for n = 200 and n = 1 are compared.
Again, a single view suffices if taken at the correct position.

Figure 9.7 shows that when extended for a range of resolutions and different datasets, one can see that
there is no real advantage in using more images than necessary. One can also see that for very low
resolutions there is indeed a certain degradation in performance, but not much more performance is
gained with resolutions greater than 24× 6.

9.5. Learning the Goal Location

To assess whether the network can not only ‘memorize’ a sequence of data, but asses the ‘familiarity’
of a scene, 360◦ scans at two different locations in the vicinity of the goal-oriented runs (scan 0 and 1 in
Figure 8.2)were performed to assess this capability. Figure 9.8 shows the normalized difference in spike
rate between the network before learning and after learning. While the goal location can be retrieved
from the graphs presented in Figure 9.8, it doesn’t show a convincingly large difference compared to
the output at other time intervals. Its implications will be discussed in Section 10.1.

1The room in which the Cyberzoo dataset was collected spans an area of about 5 by 5 meter, resulting in a spacing of about 5
m between images.
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(b) Training with n = 200 images
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(c) Training with n = 50 images
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(d) Training with n = 10 images
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(e) Training with n = 1 image
Figure 9.5: Influence of the amount of training images on Infomax scene familiarity shape and performance. Shown are the

response of the neural network before training, after training and the ground truth response as found with the ‘perfect
memory’ method. Image frames are of resolution 40× 10.
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(b) Training with 200 images
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(c) Training with 1 image
Figure 9.6: Influence of the amount of training images on Mushroom Body scene familiarity shape and performance. Shown

are the response of the neural network before training, after training and the ground truth response computed with the‘perfect
memory’ method. Image frames are of resolution 24× 6.
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Figure 9.7: RMS error of the Infomax response compared to the ‘ground truth’ global minimal distance method, depending on
the image resolution for different amounts of training images. E.g. home, 1 is dataset ‘Home’ using 1 image for training.

(a) Normalized spike difference for scan 0 trained on goal 0 data
with white background

(b) Normalized spike difference for scan 1 trained on goal 2 & 3
data with white background

(c) Normalized spike difference for scan 0 trained on goal 0 data
with textured background

(d) Normalized spike difference for scan 1 trained on goal 2 & 3
data with textured background

Figure 9.8: Normalized spike rate difference of the MB model compared to orientation towards the goal post for the Cyberzoo
dataset with for white (a and c) and textured (b and d) background panels.





10
Discussion of the Preliminary Experiments

The preliminary experiments presented in Chapters 8 and 9 have covered a series of tests that evaluate
two recent neural insect-inspired familiarity-based navigation models. This chapter serves to draw a
couple of conclusions towards the feasibility of this thesis as presented in Chapter 1.

Section 10.1 discusses the influence of parameters such as image aspect ratio and resolution, learning
strategy on network performance, as well as the correlation between network output and the view’s
deviation from the home location. Section 10.2 goes into the implications of the presented results and
its effect on the work presented in Part I.

10.1. Influence of Visual Input on Network Performance

Recent insect-inspired visual guidance models (Baddeley et al., 2012; Ardin et al., 2016) show that
small neural networks can discriminate familiar from non-familiar views as part of a so-called scene
familiarity model (Sections 3.2.2). To optimize their efficiency, optimal use should be made of the
visual input of the scenes they try to ‘memorize’. Parameters such as input resolution and the amount
of vertical versus horizontal information (Aspect Ratio) play an important role.

Insects have compound eyes that span a large horizontal (sometimes up to almost 360 degrees) field
of view. It makes sense to think that visual navigation information that is important with respect to
orienting oneself should be mostly present in the horizontal field of view and to a lesser extent in the
vertical field of view. Section 9.2 confirms this notion by showing that images with an aspect ratio of up
to 10:1 (meaning 10 timesmore pixels in the horizontal than the vertical direction) still produce reliable
results. Image input resolution directly impacts the size of the networks and hence its computational
requirements (see Sections 8.5.1 and 8.5.2). Section 9.3 indicates that the input resolution of the network
is not as much of a concern as is the resulting network’s size. The smallest size networks struggle to
memorize more than about 50 scenes before degrading their performance.

Section 9.4 shows that careful consideration should be taken in selecting training views. Simply having
a constant distance between ‘snapshots’ seems to not be enough to take full advantage of the network’s
capacity. Views can remain quasi the same over long distances, or change drastically over only a few
meters, requiring respectively less or more snapshots to be taken. A metric for the difference in ‘famil-
iarity’ between locations could determine when to best take a snapshot that is used to memorize the
route, see e.g. (Denuelle and Srinivasan, 2016).

Section 9.5 shows that differentiating between sequences of familiar and unfamiliar views is a consider-
ably more difficult task than giving a measure of familiarity of an unseen view towards a goal location
(the goal location being the area where the sequence of training views was directed towards). This
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can be attributed to several factors. 1 Scene structure of the Cyberzoo experiment: visual references
change dramatically in cluttered environments, requiring more exploring around the goal location for
robust navigation. 2Antigoal views often had the white/textured panels as a primary reference. These
‘landmarks’ are close and change a lot with movement. Having more distant visual landmarks would
be beneficial. 3 Use of a small Field of View (FOV): the standard camera onboard the Bebop Parrot 2
drone was used, with a relatively small FOV. A small FOV, high resolution, image is useful in matching
and pinpointing specific features but is less useful for extracting general scene information. A larger
FOV presents more contextual information that is present in the scene and will increase performance,
especially for finding the right direction.

10.2. Implications of the Preliminary Experiments

Thepreliminary experiments indicate that themodels presented in Baddeley et al. (2012) andArind2016
can indeeddiscern familiar fromunfamiliar frameswithin a single sequence. Recovering a goal location
from a new unseen view remains a challenge however and probably requires amore dedicated learning
strategy for reliably learning that goal location. Experiments covering the effect of the input view’s res-
olution and aspect ratio give promising results for utilizing very high aspect ratio, low resolution (ergo
omnidirectional) views. Furthermore, it indicates that the network’s performance is predominantly
limited by its size rather than the dimensions of its input. This thesis focuses on evaluating over how
long of a distance such models can provide valuable navigational information. Evaluating such meth-
ods over long distances requires the appropriate dataset. Ideally one which includes low resolution
omnidirectional vision (close to the insect’s actual visual perception) in natural scenes combined with
accurate positioning and pose information for evaluating the navigational performance. Furthermore,
this thesis has as additional goal to use event-based vision. As no such datasets exist, it was chosen to
develop a novel dataset, which is presented in Part I.
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A
Mushroom Body Model — Le Zhu et al.

2020

This chapter covers the MB model presented by L. Zhu et al. (2020) and as discussed in Part I. L. Zhu
et al. (2020) adapt the model presented in Ardin et al. (2016) based on the finding that 60% of the
input synapses of KCs come from other KCs. Instead of learning on the weights connecting the KCs
to the MBON, when a KC spikes, it will inhibit its connection to downstream KCs that spike at a later
time based on the STDP rule as defined in Figure A.1 (b). The KCs are split up in two groups of
5000 neurons for learning; each solely acting within its group. Additionally, an Anterior Paired Lateral
(APL) (Amin et al., 2020) neuron is included that inhibits the activity of the KC layer. This model is
visualized in Figure A.1 (a).

(a) Schematic overview of the MB model (b) The STDP learning rule.
Figure A.1: L. Zhu et al. (2020)’s MB model and STDP update rule.

L. Zhu et al. (2020) utilize different modified versions of the Leaky Integrate-and-Fire (LIF) neuron.
Let i indicate a post-synaptic neuron from layer l with neurons 0, 1, 2, . . . , nl and j a pre-synaptic
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neuron from layer l − 1 with neurons 0, 1, 2, . . . , nl−1

τv
dvi(t)

dt
= −(vi(t)− vrest) + αii(t) (A.1)

ii(t) =

nl−1∑
j=1

(
Wi,js

l−1
j (t− τd)

)
(A.2)

with vi the membrane potential of neuron i, τv the time constant of the membrane potential, vrest the
resting potential and ii(t) the forcing function. The forcing function depends on the synaptic efficacy,
‘weight’Wi,j , of the pre-synaptic connections and the pre-synaptic spike train sl−1

j (t−τd)with delay τd
which captures the time for the electrochemical signal to pass through its synaptic connections. L. Zhu
et al. (2020) use slight modifications of this model for the different neurons in their model of the MB.

The PNs follow the LIF notation but have an additional adaptive thresholdwhich varies in the following
sense:

τthresh
dvthresh(t)

dt
= −(vthresh(t)− vrest + 1) (A.3)

The time constant τthresh is tuned such that the PNs spike at about 4 Hzwhile at rest (no input received).
When a PN resets, its threshold gets updated:

vthresh = vthresh + 20 (A.4)

The KCs as well as the APL neuron use the regular formulation of the LIF neuron. The MBON is also
an adaptation of the LIF model and its membrane potential is described by:

τv
dvi(t)

dt
= −(dvi(t)− vrest) + Ii(t) (A.5)

dIi(t)

dt
= −Ii(t)

τi
(A.6)

where Ii(t) is the neuron’s internal current.

When the MBON fires its membrane potential is reset and its current set to 0 mA. An overview of the
neuronal and synaptic parameters can be found in Table A.1.
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Table A.1: Neuronal and synaptic parameters of L. Zhu et al. (2020)’s Mushroom Body model.

Neuron Properties
PN KC MBON APL unit

neuron number n 210 2× 5000 1 1 -
resting potential vrest -60 -60 -55 -60 mV
threshold voltage vthresh -40 -45 15 -45 mV
reset potential vreset -45 -50 -50 -50 mV
voltage scaling factor αv 80 20 - 20 -
voltage time constant τv 11.5 11.5 20 11.5 ms
trace scaling factor αt 80 23 20 23 -
trace time constant τt 11.5 23 20 23 ms
threshold scaling factor αthresh 20 - - - -
threshold time constant τthresh 250÷ ln(21) - - - ms
current scaling factor αi - - -10 - -
current time constant τi - - 20 - ms

Synapse properties
input to PN PN to KC KC to EN EN to APL APL to KC unit

connectivity one-to-one 10 per KC fc fc fc -
synaptic weight 1 1 1 1 -0.05 -
synaptic delay (optional) 0 0 0 0 0 ms
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