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Abstract

Ballistic capture is a transfer method which was first applied in 1990. It allows a spacecraft to ap-

proach a target celestial body and enter a (temporary) orbit around it without requiring manoeu-

vres in between. Ballistic capture is a promising concept, as it is expected to be safer, cheaper, and

more flexible in terms of launch windows than a traditional Hohmann transfer. Currently, a com-

putationally efficient method which simulateneously allows for an inisghtful description of the

dynamics of the ballistic capture problem remains to be found. A potential solution lies within

the field of Lagrangian Coherent Structures (LCS). LCS is defined as a separatrix of regions in a

flow with distinct dynamics. It may be possible that LCS around a planet have some correspon-

dence to results found using stable set manipulation, a classic technique for obtaining capture

trajectories.

In this research three new areas within the field relating LCS to ballistic capture are explored.

Firstly, it has not yet been shown what LCS can be found in an area around a planet, without mak-

ing use of a priori stable set information. Furthermore, it is unclear what the effect is of changing

the integration time in the procedure of extracting LCS. Finally, there has not yet been an analysis

to show how the LCS relate to stable sets with different number of revolutions n.

In this work two algorithms for extracting LCS have been developed. One is based on the sim-

ple but efficient computation of the Finite Time Lyapunov Exponent (FTLE). Another is based

on the more involved Variational Theory. Both algorithms are validated on a toy problem used

frequently in LCS extraction studies, and are then applied to the Elliptic Restricted Three Body

Problem (ERTBP).

It is shown that LCS around a planet yield resemblance with stable set results. The FTLE-based

algorithm is able to quickly and efficiently identify the shape of the stable set. The Weak Stabil-

ity Boundary, however, can not be extracted distinctly. The Variational Theory-based algorithm

yields more distinguishable results for the Weak Stability Boundary. It is shown that large and

constant integration times are beneficial. It is shown that extracted LCS form an approximation

of the average resulting WSB for all stable sets.
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1 | Introduction

1.1 History

Ballistic capture is a transfer method which was first developed in the 1980’s by Edward Belbruno

[2]. The main advantage of a ballistic capture is the fact that the hyperbolic excess velocity when

arriving at the target planet can be reduced greatly when compared to a classical Hohmann trans-

fer. This is achieved by exploiting the natural gravitational forces exerted by bodies in the solar

system on the arriving spacecraft.

In 1990 the Japanese launched a space probe to the Moon. It was to be the first lunar probe

launched to the Moon by a country other than the United States or the Soviet Union. The mis-

sion consisted of two mutually attached spacecraft named Hiten and Hagoromo, which would

be launched into an orbit around the Earth. Hagomoro would then follow a Hohmann transfer

trajectory towards the Moon, while Hiten would stay behind in Earth orbit for communication

purposes ([2], p19).

During the final part of the transfer to the Moon, contact between the ground station and Hago-

moro was lost, and as such it was never known if the spacecraft did in fact get into an orbit around

the Moon.

Because of the national pride and publicity involved in the sucess of the mission, the Japanese

decided to salvage the mission by sending Hiten to the Moon. The main problem in doing so was

that Hiten did not have enough fuel on board to reach the Moon by means of conventional meth-

ods.

During these times, Edward Belbruno was working on the theory of ballistic capture and it was de-

termined by Belbruno and Miller, an engineer working at NASA’s Jet Propulsion Laboratory, that

this theoretical concept could be applied for the first time to allow Hiten to reach the Moon ([2],

p19). The combined gravitational effects of the Earth, the Moon, and the Sun would allow Hiten

to have to spend very little fuel in order to get captured into an orbit around the Moon. Indeed, it

turned out that only 3 kg out of the available 7 kg of fuel would be required to fly the trajectory. A

major difference between this ballistic capture trajectory and a more conventional Hohmann tra-
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jectory is that the former would take 150 days of travel time instead of the 3 days for a Hohmann

transfer ([2], p59). The trajectory was flown and thus the first application of ballistic capture was

a fact [3].

1.2 Context

In order to find ballistic capture orbits, two methods can be applied. The method involving invari-

ant manifolds makes use of the structure of the phase space around collinear equilibrium points

of the circular restricted three-body problem [11, 15]. An elegant advantage of this method is that

it gives insight into the dynamics of the capture. The drawbacks of the method are that it is not

possible to control for the desired orbital elements, and that the method is only applicable for the

circular restricted three body problem [11].

The second method revolves around stable sets, which are sets of initial conditions whose or-

bits satisfy an algorithmic definition of orbital stability [25]. The method relies on sampling the

physical space around the target planet and integrating a large number of orbits. This is an attrac-

tive method as it does not require intricate knowledge of the dynamics around the target planet.

Moreover, the definition of stability used in the method can easily be extended to an n-body vec-

tor field, which allows for the inclusion of fourth-body perturbations and planetary eccentricities

[11]. A drawback lies in the fact that due to the brute-force nature of this approach, it becomes

computationally intensive when compared to the method of invariant manifolds [11].

It is evident that the methods described both have their advantanges and disadvantages, but a

computationally efficient method which simultaneously allows for an insightful description of

the dynamics of the problem is yet to be found.

A novel method to aid in the finding and understanding of ballistic capture trajectories may be

found within the field of fluid mechanics, from which the concept of Lagrangian Coherent Struc-

tures (LCS) originates. LCS is defined as being a separatrix of regions in a flow with different dy-

namics [20]. These differing dynamics may be found around a target planet more quickly rather

than having to brute force through the computational grid, thus allowing the mission designer to

more efficiently design ballistic capture trajectories. Moreover, describing the space around the

target planet through LCS may allow for a more thorough and rich understanding of the dynam-

ics around the target planet and provide new insights in capture behaviour, via the mathematical

formulation of LCS.

Preliminary work on relating LCS to ballistic capture has been done in [18]. The matching with ex-

isting stable set theory was not one-to-one. Explanations for this "poor" matching may be a) due

to repelling LCS being more sensitive to different particle dynamics and b) due to the fact that the
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LCS are computed using a fixed integration time, whilst the integration time of each particle in

the stable set varies due to the satisfaction of the "1-turn condition".

1.3 Objective

The goal of this research is to extend and improve upon previous work done in the application of

LCS to the development and understanding of ballistic capture trajectories. In light of this goal,

the following research objective is defined:

‘The research objective of this thesis is to increase knowledge in the field of computation and under-

standing of ballistic capture trajectories through the application of Lagrangian Coherent Structures

to the physical space around the target planet.’

Following the research objective, the main research question is defined as follows:

‘How can the current body of knowledge regarding ballistic capture trajectory computation and un-

derstanding using Lagrangian Coherent Structures be extended?’

The main research question can be subdivided into sub-questions as follows:

• Without using a priori knowledge of the WSB, do LCS in the 2D search space around a planet

yield WSB?

• How does the Weak Stability Boundary react to a change in integration time, corresponding

to the time needed for a particle according to the stability criterion?

• How do the computed LCS for the system relate to WSB corresponding to stable points de-

fined for different number of revolutions n?

• Can the application of LCS to the computation of Weak Stability Boundaries yield more effi-

cient computation compared to the traditional method of stable set manipulation?

1.4 Structure

The structure of this thesis is as follows: in Chapter 2 a description of the dynamical framework

used throughout this work is provided. Chapters 3 and 4 give an overview of the literature on

the topics of ballistic capture and Lagrangian Coherent Structures, respectively. In Chapter 5 the

methodology for computing Lagrangian Coherent Structures is explained. The algorithms used

3



for the procedure are presented, and validation results on a toy problem are shown. In Chap-

ter 6 an explanation on how the developed software is applied to the astrodynamics problem is

shown. Results are presented, and the proposed research questions are answered. Finally, Chap-

ter 7 presents conclusions and recommendations for future work on the topic.
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2 | Dynamical Framework

As will be shown in subsequent chapters, the classical method of developing stable sets involves

forward and backward propagation of the motion of a particle from a starting point on a specified

grid. In this chapter the dynamical framework under which the integrations are performed will be

presented. The same framework is later used in the process of applying the developed software

to answer the research questions. The content of this chapter is based largely on the content of

Chapter 2 of the earlier performed literature review [16]. Parts that were not deemed necessary

to carry out this work are left out of this chapter, but the reader is referred to [16] for further details.

2.1 Planar Restricted Three Body Problem

The schematic used in the planar restricted three body problem (RTBP) is shown in Figure 2.1. In

this problem three bodies are considered: the large primary (P1), the smaller primary (P2), and

the spacecraft (P3). The two primary bodies of masses m1 > m2 > 0, respectively, move under the

mutual gravity on orbits around their common center of mass. The third body moves under the

gravity of the primaries in their plane of motion. Furthermore, the third body is assumed to have

zero mass, and as such it does not influence the motion of the primaries [24].

Figure 2.1: Rotating coordinate system used for RTBP [24]

If the mass ratio is defined as µ = m2/(m1 +m2), the locations of P1 and P2 can be set to (−µ,0)
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and (1−µ,0) respectively.

Note that the coordinate frame isotropically pulsates as the P1 – P2 distance varies with the mu-

tual position of the two primaries in their orbits. The motion of P3 in the normalized co-rotating

reference frame may be described by the following set of equations [22]:

ẍ −2ẏ = ∂ω

∂x
ÿ +2ẋ = ∂ω

∂y
(2.1)

where ω is given by:

ω(x, y, f ) = Ω(x, y)

1+ep cos f
(2.2)

with ep being the eccentricity of the primaries, and f the true anomaly of the system. Further-

more, the potential function is:

Ω(x, y) = 1

2
(x2 + y2)+ 1−µ

r1
+ µ

r2
+ 1

2
µ(1−µ) (2.3)

where parameters r1 and r2 represent the distances P3 −−P1 and P3 −−P2, respectively, and are

given by:

r 2
1 = (x +µ)2 + y2 r 2

2 = (x +µ−1)2 + y2 (2.4)

The dots shown in (2.1) refer to differentiation with respect to the true anomaly f which plays the

role of time. If we normalize the period of P1 and P2 to 2π, the relation between true anomaly and

time is given by:

d f

dt
= (1+ep cos f )2

(1−e2
p )3/2

(2.5)

In the circular case, we find a specific case of the dynamics provided above. We may set ep = 0

which, from (2.5) yields d f
dt = 0 and subsequently d

d f = d
dt and ω=Ω. The equations of motion are

now simply given by:

ẍ −2ẏ = ∂Ω

∂x
ÿ +2ẋ = ∂Ω

∂y
(2.6)

For both the circular case (ep = 0) and elliptic case (ep 6= 0) we take a closer look at the energetic

considerations. For the circular case, the classic Jacobi integral may be defined:

JC (x, y, ẋ, ẏ) = 2Ω(x, y)− (ẋ2 + ẏ2) (2.7)

which defines the steady manifold of the states of motion for a specified level of C :

JC (C ) = {
(x, y, ẋ, ẏ) ∈R2 | JC (x, y, ẋ, ẏ) =C

}
(2.8)
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The projection of JC (C ) onto the configuration space (x, y) is the so-called Hill’s region, specified

as:

HC (C ) = {
(x, y) ∈R2 |2Ω(x, y) ≥C

}
(2.9)

The motion of the particle P3 is confined to the Hill region of the corresponding Jacobi energy

C . The Hill regions are bounded by the Hill curves (also known as zero-velocity curves) for which

the equal sign in (2.9) holds. The allowed regions are the regions for which the inequality in (2.9)

holds. The forbidden regions are the complement of the allowed regions. A graphical representa-

tion of this phenomenon is shown in Figure 2.2.

Figure 2.2: P1, P2, and exterior regions for three cases of interest. a) Jc ≥C1, b) C2 ≤ JC <C1 c) C3 ≤ JC <C2.
Forbidden regions are shown in grey [12]

For the elliptic case a similar energy analysis can be performed. An integral of motion can be

achieved [22]:

JE (x, y, x ′, y ′, f ) = 2ω− (x ′2 + y ′2)−2ep

∫ f

f0

Ω(x, y)sin f̃

(1+ep cos f̃ )2
d f̃ (2.10)

Similar to the circular case, a manifold can be defined given an energy C :

JE (C , f ) = {
(x, y, x ′, y ′) ∈R4 | JE (x, y, x ′, y ′, f ) =C

}
(2.11)

We may again project this onto the configuration space, which gives rise to the so-called pulsating

Hill’s regions:

HE (C , f ) =
{

(x, y) ∈R2 |2ω(x, y, f )−2ep

∫ f

f0

Ω(x, y)sin f̃

(1+ep cos f̃ )2
d f̃ ≥C

}
(2.12)

Note the dependency of the pulsating Hill’s regions (bounded by the pulsating Hill’s curves) on f .

It follows that in the elliptic restricted three body problem the forbidden and allowed regions of

motion vary according to the mutual motion of P1 and P2. This pulsating behaviour of the Hill
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regions is shown in Figure 2.3.

The ERTBP possesses five so-called equilibrium points, Lk ,k = 1, ...,5. Three of these points (L1,L2,L3)

lie along the x-axis. The remaining two, L4,L5, lie at the vertices of two equilateral traingles with

common base extending from P1 to P2 [25]. In the rotating, scaled frame described earlier these

points have fixed location. Their actual distance from P1 to P2 does vary (pulsate) according to

the mutual motion of the primaries.

Figure 2.3: Pulsating Hill regions assuming moderate eccentricity (e = 0.05) for anomalies left) f0 = 0 and
right) f0 =π [11]

In [8] and [24] a further improvement on the description of the circular dynamics was provided.

Some of the integrated orbits would lead to collisions of P3 with P1 or P2. In this case the inte-

gration of (2.3) would collapse as parameters r1 and r2 would approach 0 and the equations of

motion would become singular. As stated in [24] use was made of a Levi-Civita regularization,

details of which can be found in [22]. A summary is given in [16]. In this work no use is made

of regularized equations of motion. As will be shown later, for the purpose of this work it is not

required to integrate the equations of motion in the "disk" of specified radius around P2. Instead,

intergration is simply stopped when reaching this disk.

2.2 Polar coordinates

In [24] the work in [8] was reexamined with some modifications. One of these modifications was

to use polar coordinates, which would increase the efficiency of the numerical method.

Polar coordinates with respect to P2, (r2,θ2) are used as shown in Figure 2.1. The relation between

these P2-centered polar coordinates and the Cartesian coordinates is given by: [24]

x = 1−µ+ r2 cosθ2 y = r2 sinθ2 (2.13)
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The polar rotating reference system that is used has the first unit vector alligned with the x-axis

and the second perpendicular to it, in direction of increasing θ2. The equations of motion of P3

may now be written as: [24]

r̈2 − r2θ̇
2
2 −2r2θ̇2 = (1−µ)cosθ2

(
1− 1

r 3
1

)
+ r2

(
1− 1−µ

r 3
1

)
− µ

r 2
2

r2θ̈2 +2ṙ2θ̇2 +2ṙ2 = (1−µ)sinθ2

(
1

r 3
1 −1

) (2.14)

where r1 represents the distance from P3 to P1, and is expressed as r1 =
√

r 2
2 +2r2 cosθ2 +1. A sim-

ilar approach can be applied to obtain the equations of motion in the P1-centered polar reference

frame: [24]

r̈1 − r1θ̇
2
1 −2r1θ̇1 =µcosθ1

(
1

r 3
2

−1

)
+ r1

(
1− µ

r 3
2

)
− 1−µ

r 2
1

r1θ̈1 +2ṙ1θ̇1 +2ṙ1 =µsinθ1

(
1− 1

r 3
2

) (2.15)

The integration of trigonometric functions in (2.14) and (2.15) is more computationally intensive

than their non-polar counterparts. However, the reduction in integration time due to Conditions

(3.6) and (3.7) (explained in Chapter 3) greatly reduces the required computation time as shown

in Figure 2.4.

Figure 2.4: Table 1 from [24] displaying numerical efficiency of polar coordinates in comparison with Carte-
sian coordinates. The meaning of W will become clear from Chapter 3.
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3 | Ballistic Capture

This chapter provides the reader with an overview of the research that has been done in the field

of ballistic capture. Similar to the previous chapter, the contents are largely based on the earlier

performed literature review [16].

Before the concept of ballistic capture was known, the conventional method of reaching another

celestial body was based on a Hohmann transfer. In the case of a Hohmann transfer, two burns are

executed at the periapsis and apoapsis of the transfer orbit. A schematic of the Hohmann transfer

is given in Figure 3.1

Figure 3.1: A traditional Hohmann transfer [26]

The Hohmann transfer is still considered to be the simplest method of transferring from one

planet to another. A patched conics approach can be applied where the central attracting body

is changed at the appropriate instance within the transfer. For example, for the Earth-Moon case

the initial part of the transfer is governed by the gravitational attraction of the Earth, and only for
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the very final part of the transfer the Moon is taken as attracting body. The method is simple in

concept, and analytical methods exist to solve for trajectories, but the method inherently involves

hyperbolic approaches upon arrival [23].

The mission goal being to get into an orbit around the target planet, the large difference in arrival

and target velocity must be shed which requires large amounts of ∆V .

During a ballistic capture the spacecraft does not require a thrusting force when arriving at the

target planet to be captured. Instead, the forces required to be captured into an orbit around the

target planet are provided by the gravitational attraction of bodies in the solar system. This is very

attractive as the high-cost maneuvre at arrival can now be omitted.

An important consideration that needs to be taken into account is the fact that this process can

only occur when the spacecraft is under the influence of two bodies. In other words, it can only

occur in an n-body problem with n ≥ 3 [28]. Because no analytical solution exist for these types

of problems, it implies that numerical methods must be applied.

The natural gravitational effect may allow the spacecraft to start revolving around the target planet,

but the same mechanism may also pull the spacecraft out of this unstable orbit. From a practical

perspective, it is therefore necessary to provide some kind of force that would allow the spacecraft

to permanently be captured into a stable orbit around the target. This force may come from the

spacecraft itself. For example, impulsive shots at designated points within the orbit may be used

to lower the orbital altitude. Another option to achieve the same result could be to apply a con-

tinuous low-energy thrust to get into a lower, permanent orbit.

For some mission it may even be possible to make use of aerobraking, which allows for a fur-

ther reduction of insertion costs. If the density of the atmosphere at the relevant altitudes is high

enough, the drag force at the periapsis could be used to lower the apoapsis altitude until a desired

(circular) orbit is reached.

In the case of NASA’s Mars Reconaissance Orbiter, thrusters were used to lower the periapsis of

the orbit to an altitude where aerobraking could be possible. From here, the apoapsis altitude of

the orbit was lowered over the course of 445 Mars-centered orbits 1.

As mentioned in Chapter 1, ballistic capture trajectories can be found by looking for invariant

manifolds in simplified cases, or by making use of stable sets. An elaboration on invariant mani-

folds is beyond the scope of this research, and as such the remainder of this chapter will focus on

the advances that have been made with regards to stable sets.

In Section 3.1 the developments made in finding ballistic capture trajectories in the Circular Re-

1https://web.archive.org/web/20060306221449/http://mars.jpl.nasa.gov/mro/mission/tl_aerobraking.html
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stricted Three Body Problem will be shown. In Section 3.2 the same is done for an extended model,

namely the Elliptic Restricted Three Body Problem. Finally, in Section 3.3 the previous research in

extending the theory to n-bodies and three dimensions is given.

3.1 Planar Circular Restricted Three Body Problem

The first step in the development of stable set theory was in the Planar Circular Restricted Three

Body Problem (CRTBP). It is a first step, because it is a development of a theory for the minimum

amount of bodies (n = 3) in a simplified environment (circular orbit approximation).

Firstly H2 is defined, which is the Kepler energy of P3 with respect to the primary P2:

H2 =
v2

2

2
− µ

r2
(3.1)

where v2 is the speed of P3 relative to the P2-centered inertial reference frame, r2 is the distance

between P3 and P2, and µ is the gravitational parameter. Realizing that the following expression

holds for v2 at initial time:

v2 =
√
µ(1+e)

r2
(3.2)

where e is the eccentricity of the osculating ellipse. (3.1) and (3.2) may now be combined to yield

the following for the Kepler energy H2 at initial time:

H2 = 1

2

µ(e −1)

r2
(3.3)

Consider a radial segment l (θ) departing from the smaller primary P2 and making an angle θ with

the P1P2 line defined as the x-axis. We now take trajectories for P3 starting on l (θ) that satisfy the

following conditions [24]:

• The starting location of P3 on l (θ) is on the periapsis of an ellipse whose eccentricity (e) is

fixed.

• The initial velocity of P3 is directed perpendicular to l (θ).

• The initial Kepler energy H2, as defined in (3.3), is negative (i.e H2 < 0).

The motion of P3 is considered to be stable if it leaves l (θ), makes a complete turn around P2 and

returns to l (θ) at a point with negative Kepler energy without making a complete turn around P1.

If this condition is not satisfied the motion is considered unstable [24].
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Figure 3.2: Schematic used in the definition of stability [24]

The integration of this orbit is done under the framework of the CRTBP. The motion of P3 is stud-

ied in a rotating coordinate system with coordinates x, y . The origin of this coordinate system lies

at the center of mass of P1 and P2 as shown in Figure 2.1.

In [1] it is then claimed that, as the initial conditions are varied along l (θ), there exists a value for

the pericenter distance r∗ for which the following condition holds true:

• if r2 < r∗ the motion is stable.

• if r2 > r∗ the motion is unstable.

This parameter r∗(θ,e) is a smooth function of θ and e, and defines the Weak Stability Boundary

(WSB):

W = {r∗(θ,e) | θ ∈ [0,2π],e ∈ [0,1)} (3.4)

García and Gómez made improvements on this definition in [8], where they made the following

remarks:

• It is not certain that there exists this boundary r∗ which seperates stable and unstable orbits.

The claim was made in [8] that several transitions from stability to instability may exist along

l (θ).

• A maximum time interval must be fixed when integrating the orbits. In [8] this maximum

was taken to be 80 days. If an orbit departs from l and does not return to l before this maxi-

mum time, the orbit is considered unstable.

In [8] the same methodology as [1] was applied to find transition points r∗, but for fixed values of e

and θ, all possible values of r∗ were sought along l for which a change in stability occurs. This then

yields a finite number of points r∗
1 = 0,r∗

2 , ...,r∗
2n such that if r2 ∈ [r∗

1 ,r∗
2 ]∪ [r∗

3 ,r∗
4 ]∪ ...∪ [r∗

2n−1,r∗
2n]
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the motion of P3 is stable and otherwise unstable [8].

It is now possible to extend the definition of the WSB as the boundary ∂W̄ where:

W̄ = {[r∗
2k−1(θ,e),r∗

2k (θ,e)],k = 1, ...,n;θ ∈ [0,2π],e ∈ [0,1)} (3.5)

This theory was then applied to the Earth–Moon systen and yielded the results shown in Figure

3.3.

From the results in Figure 3.3 a number of conclusions may be drawn. It is clear that the structure

of W̄ is different from what was claimed in [1]: for a single value of θ there exist more than one

r∗ at which transition from stable to unstable occurs. Furthermore, the shape of W̄ grows more

complicated for larger eccentricities.
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Figure 3.3: From top to bottom and left to right, stable regions for initial conditions with positive velocity
(counterclockwise motion as defined in Figure 3.2) and eccentricities e = 0.00, 0.30, 0.60 and 0.90. The origin
of the reference system has been set at the small primary P2 [8]

.

Another improvement that was made in [8] was to include freedom in the number of orbits to

define stability, rather than defining it as being the first intersection with l . In this way, W̄n can be

defined, where n denotes the number of revolutions around P2 that make the orbit n-stable. This

was then applied to the Earth–Moon system again, to yield the results shown in Figure 3.4.
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Figure 3.4: Stable regions for initial conditions with positive velocity and e = 0 when the number of inter-
sections with l is equal to n = 3 (left) and n = 6 (right). The origin of the reference system has been set at the
small primary P2 [8]

Comparison between Figures 3.3 and 3.4 shows that increasing the value of n from 1 to 3 yields

significantly less orbits. However, there seems to exist a natural "stable limit" in the number of

orbits as the value of n is increased further from n = 3 to n = 6. As is explained in [24], for fixed

eccentricities it holds true that Wn(e) ⊆Wm(e) for n ≥ m. In [24] it is also evident that branches far

from P2 disappear for ever increasing values of n, whereas closer branches become thinner. An

interesting phenomenon that occurs is that the core of the stable set is conserved in subsequent

sets, which is attributed to the invariant tori surrounding P2 for fixed values of the Jacobi constant

C [6].

In [24], (2.1) is not integrated for a fixed, long time span. Instead, two conditions are introduced.

The first of which is an expression which arises if P3 completes a full turn around P2 at time t∗:

| θ2(t∗)−θ2(t0) |= 2π (3.6)

An analogous expression can be found from the P1-centered polar reference frame if P3 complets

a complete turn about P1. In other words, if P3 performs a primary interchange escape at t∗:

| θ2(t∗)−θ2(t0) |= 2π (3.7)

Using the above conditions the numerical integration can be terminated at t = t∗ if one of the

conditions is satisfied. If Condition (3.6) is satisfied, and if H2(t∗) < 0, the orbit is stable. If Condi-

tion (3.7) is satisfied instead, the spacecraft performs primary interchange escape and the orbit is

16



therefore unstable.

This integration is performed in the polar coordinate system defined in Chapter 2, which com-

bined with the conditions above yielded more efficient computation. The integration time is now

by definition [t0, t∗], and θ1 and θ2 are handled as smooth functions of time.

After having performed the integration and found the stable sets W . In [24] the WSB ∂W is deter-

mined from W by means of a simple yet effective bisection method. In Figure 3.5 an example of a

stable set and its weak stability boundary are provided.

Figure 3.5: a) WSB (black) ∂W1(0.0) and 1-stable set W1(0,0) (gray) b) detailed version displaying grid [24]

One may wonder how the geometry of the stable set, and thus the corresponding WSB, change

for different planet systems. This changing of the planet systems is just a variation of the mass

parameter µ. In [24] this was studied by analyzing both the Sun–Jupiter and Earth–Moon systems.

The resulting sets are shown in Figure 3.6.
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Figure 3.6: W1(0.2) for a) Sun–Jupiter and b) Earth–Moon [24]

An interesting conclusion that can be drawn is that the shape of both sets are remarkably simi-

lar. However, the relative size is different as the mass ratio of the Earth–Moon system is about 12

times larger than that of the Sun–Jupiter system. Finally, there does seem to be some evidence

that a smaller mass ratio leads to a richer trivial set, but this can not be assessed directly [24].

In later work, [21] proposed that backward integrations need be performed in order to find suit-

able solutions. This is due to the fact that the initial conditions found from the stable sets need to

be approached in a natural manner.

In [11] the computation of ballistic trajectories indeed took into account the fact that suitable

solutions need to depart from P2 when integrated backward in time, and must be stable when

integrated forward in time. This was achieved by introducing a complementary set to the stable

set Wn , namely W̄n , which is the set corresponding to all unstable orbits. Then, the capture set C n
−1

is defined as follows:

C n
−1 =Wn ∩ W̄−1 (3.8)

In words: the capture set contains all trajectories which are n-stable when integrated forward in

time, and −1-unstable when integrated backwards in time. They approach P2 and are then stable

after n revolutions around P2. This simple solution allows us to find orbits which do not require

any maneuvring, and their motion is completely determined by natural effects.

An additional benefit of the method of [11] is that the set W̄−1 can be filtered to find mission-

specific desired arrival trajectories. For example, orbits with oscillating energy values may be

filtered out to ensure that strictly unstable orbits are taken. Furthermore, the set can be filtered

based on desired arrival paths that are taken. For example, one may want to approach P2 from a

particular area for scientific purposes, or one may want to avoid certain areas that prove danger-
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ous for the spacecraft.

3.2 Planar Elliptic Restricted Three Body Problem

As mentioned, the CRTBP assumed circular planetary orbits. The next step in the development

of ballistic capture theory was the extension of the theory to the elliptic case, where the assump-

tion of circular orbits is relaxed. This problem is also known as the Elliptic Restricted Three Body

Problem (ERTBP). All work carried out in this research is done under the setting of the ERTBP.

As was mentioned in Chapter 2, the allowed regions for the spacecraft vary with the true anomaly

due to the pulsating behavior of the Hill regions with time. For that reason, it is important to take

a closer look at the true anomaly of P2 and its role in ballistic capture trajectories. This analysis of

relating anomaly to capture behaviour was done in [12], and is summarized below.

A so-called level-function L ( f0, f ) was defined, which is a measure of the present energetic level

of the curves of zero velocity (seperating regions) associated to the present position and velocity

[12]. Due to the pulsating nature in the elliptic case this level-function varies along the trajectory.

After defining the level function at the i th Lagrange point (i.e: Li = Li ( f0, f )) the following was

proposed for i = 1,2:

In the ERTBP, for a given true anomaly f, cases (a), (b), and (c) take place when the following condi-

tions are verified

(a) L ( f0, f ) ≥L1

(b) L2 ≤L ( f0, f ) <L1

(c) L3 ≤L ( f0, f ) <L2

where verification of case (c) also implies verification of case (b). After defining that f = f0 is taken

to be the periapsis point of the osculating ellipse, it is then stated in [12] that an ideal ballistic cap-

ture orbit is one where cases (b) and (c) are verified for f ≤ f0 and case (a) is verified for f > f0.

In this way, the spacecraft approaches P2 when the inner region is accessible, and it is trapped

from f0 onwards inside the region. This attractive feature may be exploited in order to increase

the chances of capture. One must note that these conditions are not necessary nor sufficient to

ensure ballistic capture trajectories. Rather they only provide us with necessary conditions for

ideal orbits.

Using the signs of the first and second derivatives of the level function, it is then found that choos-

ing an initial true anomaly in the first quadrant, i.e: f0 ∈ [0,π/2], is a good choice to generate ideal
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ballistic capture orbits. In this domain, the duration of the backward integration will decrease the

region P2 more quickly than that the P2 region contracts in the forward integration. This allows

having a quick ballistic approach and a long term capture [12].

One must note that it is possible to find orbits which satisfy the condition that case (a) and (b)

are verified before f0, and case (c) is verified after f0, but which do not satisfy the condition

f0 ∈ [0,π/2]. In fact, it may even be possible that quantitatively more orbits are found outisde

the proposed optimal f0 domain. This does, however, not indicate a qualitatively better solution,

as is indicated by Figure 3.7.

It is evident from Figure 3.7 that orbit (a) is much more regular than orbit (b), which even under-

goes a sign change of the angular momentum [12]. In this analysis it was the case that quantita-

tively more orbits were generated outside the optimal domain, but it is clear that the quality of the

solutions inside the optimal f0 domain is superior. It may be noted that in [4] similar results were

obtained, where the preferential region of capture was found to be around perihelion of the target

planet.

Figure 3.7: Two obtained ballistic capture orbits around Jupiter for a) f0 = 0.25π b) f0 = 1.25π [12]

3.3 Extension to n-bodies and three dimensions

The aforementioned work done had proven to be insightful, as it provided qualitative informa-

tion about ballistic capture trajectories. There was, however, still a lack of practical solutions that

would be applicable in the real solar system model where out-of-plane behaviour and fourth body

perturbations are a factor.

In this research work is carried out in the framework of the ERTBP, because the state of the art

research linking Lagrangian Coherent Structures to ballistic capture is still in its infancy. When

further developments in the field are made for three dimensions and n-bodies, the work done
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within the field of three dimensional study of ballistic capture (see for example [19], [28], and

[27]) will be more relevant. For a summary of ballistic capture research in n-bodies and three

dimensions, the reader is referred to Section 3.3 of [16].
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4 | Lagrangian Coherent Structures

This chapter forms the final part of the literature synthesis, and is again based largely on the con-

tents of [16].

The study of flowing fluids has always been an important field of study in engineering. It allows

for analysis of an air flow around an aircraft wing, the prediction of motion of gases in the air and

oil spills in oceans. As such it not only has value in a theoretical framework, but the real-life ap-

plications range widely.

The complex dynamics of these flowing fluids are completely described by the Navier-Stokes

equations. These equations, however, prove to be analytically unsolvable. In fact, they require

numerical analysis which may give rise to a whole new set of complications [13]. Another option

for analysis of these fluids is to simplify the problem to a state which allows us to approximate the

scenario with a reasonable accuracy whilst keeping the degrees of freedom to a minimum.

Attempts have been made to simplify this problem, and an appealing solution is to decompose

the fluid flow into coherent structures, which are "skeletons" within the fluid that seperate regions

with different dynamics.

When the structures are defined in a fixed coordinate system, they are referred to as Eulerian Co-

herent Structures. When they are defined relative to the motion of individual fluid elements, they

are called Lagrangian Coherent Structures.

In this chapter the developments made in the field of Lagrangian Coherent Structures will be stud-

ied. In Section 4.1 some definitions regarding dynamical systems will be given, as these prove

to be essential in understanding Lagrangian Coherent Structures. In Section 4.2 a classification

of Lagrangian Coherent Structures is given. Sections 4.3 and 4.4 serve as a summary of the two

methods with which Lagrangian Coherent Structures can be computed, namely Finite-Time Lya-

punov Exponent and Variational theory, respectively. Finally, Section 4.5 shows how Lagrangian

Coherent Structures have been linked to ballistic capture and stable sets in previous studies.
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4.1 Dynamical Systems

A dynamical system is traditionally defined as a system in which the dependence of a point in ge-

ometrical space on time is given through a function. It is essentially a model which descibes the

evolution of a system with time. Dynamical systems have a wide range of applicability such as in

engineering, biology, physics, and economics.

A fundamental problem in the theory of dynamical systems is to find a solution of a differential

equation for which initial data is provided. This problem is referred to as a Cauchy problem, and

may be defined mathematically as finding the solution x for the differential equation that satisfies

the so-called system equation:

ẋ = f(x) for x ∈S

x(t0) = x0 for x ∈S
(4.1)

Following this notation, we may also define the flow map φt
t0

, which maps the initial position x0

of the trajectory onto its position at time t :

x0 7−→φt
t0

(x0) = x(t ; t0,x0) (4.2)

Using the definition of the flow map, we may now define the variational equation. The variational

equation gives us a mathematical representation of how the behaviour of the state changes if we

were to perturb x0 in some way. It therefore presents us with additional information to the evolv-

ing behaviour of the state given by the state equation.

We define:

Φ :=Φ(t ; t0,x0) = Dx0φ
t
t0

(x0) A(x, t ) = Dx f(x, t ) (4.3)

whereΦ(t ; t0,x0) is the state transition matrix, which allows us to carry over the state from time t0

to t , and A(x, t ) is the Jacobian of the vector field. The variational equation is then defined as:

Φ̇= A(x, t )Φ for x ∈S

Φ(t0; t0,x0) = In for x ∈S
(4.4)

where In is the n-dimensional identity matrix.

It is required to solve both sets of equations (variational equation and system equation) simulta-

neously as the variations react to the differential slopes at each point in the trajectory. Since (4.1)

is n-dimensional, and (4.4) is n2-dimensional, the total system is described by n2 +n equations.
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4.2 Classification of Lagrangian Coherent Structures

As mentioned in the introduction of this chapter, Lagrangian Coherent Structures are defined as

core surfaces around which trajectory patterns form. As had already been defined in [10], three

types of LCSs may be defined:

• Repelling LCS: core structures generating stretching.

• Attracting LCS: centerpieces of folding.

• Shear LCS: outline swirling and jet-type tracer patterns.

Furthermore, it was claimed in [10] that an LCS must always possess the following two properties:

• An LCS should be a material surface. If we define a curve of initial conditions on the x plane

as Γ0, then we may define a deforming material line Γt as later images of Γ0 at time t. This

line spans a two-dimensional surface M (t ) in the (x, t ) space, and is called a material sur-

face. This is displayed graphically in Figure 4.1. The reason that an LCS should be a material

surface is because (a) its dimension should be high enough such that it has visible impact

and may act as a transport barrier and (b) it must move with the flow to allow for an observ-

able evolution of LCS patterns.

Figure 4.1: Γt , which is an evolving material curve, spans out the material surface M (t ) [10]

• An LCS should locally display the strongest attraction, repulsion, or shear in a flow.

For the purpose of this work, only LCSs which are local attractors or repellors are of concern.

These are classicaly defined as Hyperbolic LCS. The geometry behind this definition is shown in

Figure 4.2.
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Figure 4.2: Geometrical representation of attracting and repelling LCS, more generally defined as hyperbolic
LCS [9]

4.3 Finite Time Lyapunov Exponent

In this section the method involving Finite Time Lyapunov Exponents (FTLE) will be explained.

FTLE was the first theory developed to compute Lagrangian Coherent Structures.

In order to ensure consistency in notation, the following dynamical system is used throughout

this section, as used in [9]:

ẋ = v(x, t ) x ∈U t ∈ [α,β] (4.5)

where v(x, t ) is a smooth vector field defined on the n-dimensional, bounded, open domain U

over a time interval [α,β]. The dot indicates differentiation with respect to time t .

According to the definition given of hyperbolic LCS which involves repulsion and attraction, it is

intuitive to explore the maximum local separation rate in (4.5) to define the LCS. This seperation

rate is called the finite-time Lyapunov Exponent.

We now consider a neighboring point close to x, denoted as y = x+δx(t0) where δ indicates a

difference in position. After a time T this difference in position in the flow becomes:

δx(t0 +T ) =φt0+T
t0

(y)−φt0+T
t0

(x) =
dφt0+T

t0
(x)

dx
δx(t0)+O (‖δx(t0)‖2) =Φ ·δx0 +O (‖δx(t0)‖2) (4.6)

which follows from a Taylor series expansion of the flow about point x, andΦ is the earlier defined

state transition matrix. If we neglect the O (‖δx(t0)‖2) term due to δx(t0) being infinitesimal, we

may write the magnitude of the difference in position as:

‖δx(t0 +T )‖ =
√

〈Φ ·δx(t0),Φ ·δx(t0)〉 =
√
δx(t0)T ·ΦTΦ ·δx(t0) (4.7)

We now defineΦTΦ as the Cauchy-Green deformation tensor ∆, which is a function of t0,T, and x.

Recall that the LCS was related to maximum local separation rate. As such, we are interested in

the maximum deformation that occurs between x and y. This occurs when δx(t0) is chosen such
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that it aligns with the eigenvector associated to the maximum eigenvalue of ∆.

The average logarithmic expansion rate (Finite Time Lyapunov Exponent) σT
t0

(x) is now obtained

by taking the natural logarithm of the coefficient of expansion (which is the square root of the

maximum eigenvalue) and dividing by the integration time:

σT
t0

(x) = 1

T
ln

√
λn(∆) = 1

2T
lnλn(∆) (4.8)

where λn is the maximum eigenvalue of ∆ and T is the integration time. The ridges of the ob-

tained FTLE field then corresponding to the hyperbolic LCSs.

In [9] it was found that this definition can not readily be used to find LCSs. The following remarks

were made:

• Observable LCS are not necessarily ridges of the FTLE field, as shown in Figure 4.3.

Figure 4.3: a) Common motivation for the claim that FTLE ridges mark repelling LCS. b) Example of system
with observable repelling LCS at x = 0 but no FTLE ridge c) Example of system with observable repelling LCS
and trough at x = 0 [9]

• Ridges of the FTLE are not necessarily observable LCSs. In fact, these ridges may be indi-

cators of shear or local large stretching where no underlying structure is present. In some

cases the FTLE ridges are in fact very far from any Lagrangian structure.

In order to resolve these inconsistencies, a new theory needed to be developed. This theory is

explained in Section 4.4.

4.4 Variational Theory

In [9] a new theory was proposed that would solve the inconsistencies that arise in the FTLE

method, namely the variational theory.
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Consider an arbitrary point x0 ∈ M (t0). At this point, we define the n − 1 dimensional tangent

space Tx0M (t0) of M (t0) and a 1-dimensional normal space Nx0M (t0) as shown in Figure 4.4.

Figure 4.4: Geometry used in the formulation of variational theory [9]

The earlier defined flow map can be used to propagate the tangent space Tx0M (t0) along the

trajectory as follows (where x0 = x(t0)):

Txt M (t ) =∇φt
t0

(x0)Tx0M (t ) (4.9)

where ∇φt
t0

(x0) represents the linearized flow map.

The unit vector e0 ∈ Tx0M (t0) is also mapped to the point xt in a similar fashion into ∇φt
t0

(x0)e0.

As it turns out, this mapped vector is contained within the space tangent to Mt . However, it is

shown that ∇φt
t0

Nx0M (t ) is not necessarily contained in the normal space Nxt M (t ). As such, the

vector ∇φt
t0

(x0)e0 will be a vector of general orientation as is shown in Figure 4.4.

We define the projection of ∇φt
t0

(x0)e0 onto nt (where nt ∈ Nxt Mt ) as the repulsion rate:

ρt
t0

(x0,n0) = 〈nt ,∇φt
t0

(x0)n0〉 (4.10)

If the value of this projection ρt
t0

(x0,n0) > 1, the normal component grows from t0 to t . Conversely,

a value ρt
t0

(x0,n0) < 1 indicates that the normal component has decreased.

Furthermore, a repulsion ratio is defined, which gives a measure of the ratio between normal and

tangential growth along M (t ) over [t0, t ]:

νt
t0

(x0,n0) = min
‖e0‖=1

e0∈Tx0 M (t0)

〈nt ,∇φt
t0

(x0)n0〉∥∥∥∇φt
t0

(x0)e0

∥∥∥ (4.11)

If νt
t0

(x0,n0) > 1, the normal growth along M (t ) dominates the largest tangential growth over the

time interval [t0, t ]. In such a case M (t ) is a locally dominant repelling structure.
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In a practical application these quantities ρt
t0

and νt
t0

can be computed and estimated as shown

in (4.12) and (4.13) respectively.

ρt
t0

(x0,n0) = 1√
〈n0,

[
∆t

t0
(x0)

]−1
n0〉

νt
t0

(x0,n0) = min
‖e0‖=1

e0∈Tx0 M (t0)

ρt
t0

(x0,n0)√
〈e0,∆t

t0
(x0)e0〉

(4.12)

√
λ1(x0, t0,T ) ≤ ρt0+T

t0
(x0,n0) ≤

√
λn(x0, t0,T√

λ1(x0, t0,T )√
λn(x0, t0,T

≤ νt0+T
t0

(x0,n0) ≤
√
λn(x0, t0,T√
λ1(x0, t0,T

(4.13)

The repulsion rate and repulsion ratio may now be used to give a formal definition of a finite-time

hyperbolic material surface: A material surface M (t ) ∈U is normally repelling over [t0, t0 +T ] if

there exist constants a,b > 0 such that for all points x0 ∈ M (t0) and unit normals n0 ∈ Nx0M (t0)

we have:

ρ
t0+T
t (x0,n0) > 1

ν
t0+T
t (x0,n0) > 1

(4.14)

In a similar fashion the material surface is normally attracting if it is normally repelling over

[t0, t0 +T ] in backward time. If the surface is either repelling or attracting it can be said to be a

hyperbolic material surface.

In order to further define a material surface as an LCS, firstly a definition of a Weak LCS WLCS is

given. For a material surface to be a WLCS it is required that if M (t ) is a repelling WLCS, it must

be pointwise more repelling over [t0, t0+T ] than any other nearby material surface. In mathemat-

ical terms: at any point x0 ∈ M (t0), if we were to perturb M (t0) along its normal n0 ∈ Nx0M (t0),

the obtained values of ρt0+T
t0

(x̂0, n̂0) at the perturbed states must be smaller than ρ
t0+T
t0

(x0,n0). If

the material surface is a repelling WLCS in backward time, the material surface is defined as an

attracting WLCS. The methodology is shown graphically in Figure 4.5.
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Figure 4.5: Geometry used in defining a normally repelling material surface as a repelling WLCS [9]

In specific terms we require the derivative of the repulsion rate field ρ
t0+T
t (x̂0, n̂0) to be zero in

the direction of n0(x0, t0). This does, however, not guarantee a unique core of a coherent trajec-

tory pattern. To further strengthen the definition in order to obtain hyperbolic LCS, we require

a nondegenerate maximum in the normal repulsion rate. A nondegenerate maximum is a local

maximum for ρt0+T
t0

(x0,n0) with a nondegenerate second derivative with respect to changes nor-

mal to M (t0).

At this point, in [9] the sufficient and necessary conditions for weak LCS and LCS are given: con-

sider a compact material surface M (t ) ⊂U over the interval [t0, t0 +T ]. Then M (t ) is a repelling

WLCS over [t0, t0 +T ] if and only if the following three conditions hold for all x0 ∈M (t0):

• λn−1(x0, t0,T ) 6=λn(x0, t0,T ) > 1

• ξn(x0, t0,T ) ⊥ Tx0M (t0)

• 〈∇λn(x0, t0,T ),ξn(x0, t0,T )〉 = 0

Furthermore, M (t ) is a repelling LCS over [t0, t0 +T ] if and only if the following two conditions

hold:

• M (t ) is a repelling WLCS over [t0, t0 +T ]

• The matrix L(x0, t0,T ) is positive definite for all x0 ∈M (t0)

where ξn is the eigenvector corresponding to the largest eigenvalue of ∆(x0), λ is an eigenvalue of

∆, and the matrix L is given by:

L =


∇2∆−1[ξn ,ξn ,ξn ,ξn] 2λn−λ1

λ1λn
〈ξ1,∇ξnξn〉 ... 2λn−λn−1

λn−1λn
〈ξn−1,∇ξnξn〉

2λn−λ1
λ1λn

〈ξ1,∇ξnξn〉 2λn−λ1
λ1λn

... 0
...

...
. . .

...

2λn−λn−1
λn−1λn

〈ξn−1,∇ξnξn〉 0 ... 2λn−λn−1
λn−1λn

 (4.15)

where the first term of the diagonal is given by:
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∇2∆−1[ξn ,ξn ,ξn ,ξn] =− 1

λ2
n

〈
ξn ,∇2λnξn

〉+2
n−1∑
q=1

λn −λq

λqλn

〈
ξq ,∇ξnξn

〉2 (4.16)

One may note that this matrix L does not have any meaning. It only functions as a tool to aid in

the definition of an LCS.

4.5 Relevance to Ballistic Capture

The aim of this section is to provide some information on the applicability of Lagrangian Coher-

ent Structures to the main topic studied for the thesis, which is ballistic capture. In [18] a fruitful

effort was made to combine the two fields and to use Lagrangian Coherent Structures to compute

the boundaries of the stable sets.

In order to do so, the 2D equations of motion of particle P3 in the ERTBP were rewritten:

ẋ = vx

ẏ = vy

v̇x = 2vy + ∂ω
∂x

v̇y =−2vx + ∂ω
∂y

(4.17)

As per Section 4.1, the set of variational equations constitutes of n +n2 = 4+42 = 20 equations.

To formalize the computation procedure, a composition of functions was defined, as shown in

Figure 4.6.

Figure 4.6: Composition of functions used in problem [18]
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In Figure 4.6 subscripts i and f represent initial and final states, respectively. The functions used

are described as follows:

• M is the map which allows us to convert the two-dimensional phase space to a four-dimensional

one. It is given by:

M (ri ,θi ) =



ri = ri

θi = θi

ṙi = ri ep sin f0

1+ep cos f0

θ̇i =
√

µ(1+e)
r 3

i (1+ep cos f0)
−1

(4.18)

• P2C changes the polar form of the initial state to a Cartesian form according to:

P2C (ri ,θi , ṙi , θ̇i ) =



xi = 1−µ+ ri cosθi

yi = ri sinθi

ẋi = ṙi cosθi − ri θ̇i sinθi

ẏi = ṙi sinθi + ri θ̇i cosθi

(4.19)

• φ propagates the orbit according to the equations of motion given in (4.17), repeated below:

ẋ = vx

ẏ = vy

v̇x = 2vy + ∂ω
∂x

v̇y =−2vx + ∂ω
∂y

(4.20)

• C2P is the inverse of P2C, and as such converts the Cartesian reference system back to a

polar one.

C 2P (x f , y f , ẋ f , ẏ f ) =



r f =
√

(x f −1+µ)2 + y2
f

θ f = atan2(yf, (xf −1+µ))

ṙ f = (x f −1+µ)ẋ f +y f ẏ f

r f

θ̇ f = ṙi sinθi + ri θ̇i cosθi

(4.21)

• π converts the four-dimensional final polar state to a two-dimensional one.

π(r f ,θ f , ṙ f , θ̇ f ) =
r f = r f

θ f = θ f

(4.22)
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As shown, ψ is the flow of the complete 2-dimensional dynamical system. This flow may be com-

puted using the chain rule considering each of the individual functions, and its Cauchy-Green

strain tensor is given by ∆=ΨTΨwhereΨ= Dψ
∂r∂θ (ri ,θi ) is the Jacobian of the flow.

The Jacobian of the flow is computed numerically when integrating the variational equations. All

other Jacobians (i.e: Jacobians for each transformation mentioned above) are computed by hand.

For efficiency sake the analytical expressions for the Jacobians are not mentioned here. Instead,

they are provided in Appendix B as accompanying code.

In [18] the necessary and sufficient conditions for an LCS given according to variational theory

given earlier were reformulated for two-dimensional flows according to [7]. The results as shown

in Figure 4.7 were obtained:

Figure 4.7: n-stable sets for the Sun-Mars system [18]
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The plots in Figure 4.7 show the stable sets and the corresponding repelling LCS. It can be seen

that the LCS corresponds to the boundary in the right and left wings, but for the upper and bot-

tom parts the lines do not match. It was concluded that repelling LCS are more sensitive to the

different dynamics of the particles. Another explanation for the "poor" matching is due to the

fact that the LCS are computed using a fixed integration time, whilst the integration time of each

particle in the stable set varies due to the satisfaction of the "1-turn condition".

One may note that in obtaining the results of Figure 4.7 use was made of a priori knowledge of the

WSB. The goal was not necessarily to find LCS in the 2D search space, but rather to see if the WSB

computing using stable sets corresponds to an LCS of the system. This may be seen as a first step

in better understanding the problem, but in order to have practical effect, it is more interesting to

look at which LCS are found in the 2D search space around the planet.
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5 | Computation of Lagrangian Coher-
ent Structures

In the previous chapter, a theoretical background on Lagrangian Coherent Structures was given.

The aim of this chapter is to give an explanation on the methodology used for numerically com-

puting the LCS. Along with the explanations of the procedure, intermediate validation results are

provided for the Double Gyre: a two-dimensional non-linear system often used as a toy problem

in LCS extraction studies.

In Section 5.1 the method for extracting LCS, a description of the algorithm used, and validation

results are provided for the FTLE based method. In Section 5.2 the same is done for the Variational

Theory based method.

5.1 Finite Time Lyapunov Exponent

In this section the methodology for algorithmically computing LCS from the FTLE method, as well

as validation results on the Double Gyre are presented.

The method for computing the Finite Time Lyapunov Exponent (FTLE) directly follows from the

theoretical definition given in Chapter 4. The method relies on first obtaining the Cauchy Green

Strain Tensor ∆ which follows from the Jacobian. The Jacobian can be computed by solving the

set of variational equations: 

ẋ = f(x) for x ∈S

x(t0) = x0 for x ∈S

Φ̇= A(x, t )Φ for x ∈S

Φ(t0; t0,x0) = In for x ∈S

(5.1)

The eigenvalues (λ1,λ2, with λ2 > λ1) and associated eigenvectors (ξ1,ξ2) of Φ are computed nu-

merically. As was described in Chapter 4, the FTLE field values are computed using the largest of

the eigenvalues, λ2. In order to increase computational power, use was made of TU Delft’s "Eu-

doxos" machine. This machine allows for the usage of 14 cores. Since the nature of the method

relies on computing the FTLE value for each point in the specified grid, independent of other grid
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points, the problem is naturally parallelizable. Each point of the grid is sent to one of the cores

and the FTLE value is computed.

The pseudo-algorithm explaning the methodology is given as follows:

Algorithm 1: Pseudo algorithm for computing FTLE Field

1 G0 is the grid of initial conditions;

2 H i is the subset of G0 handled by Eudoxos core i ;

3 t0 and t0 +T are the initial and final integration time, respectively;

4 for x0 ∈Hi do

5 ComputeΦ by solving (5.1) on domain [t0, t0 +T ];

6 Compute Cauchy Green Strain Tensor: ∆ =ΦTΦ;

7 Compute eigenvalues λ1,λ2 and eigenvectors ξ1,ξ2 of ∆ ;

8 Compute FTLE value σT
t0

(x0) = 1
2T lnλ2(∆) ;

9 end

10 Plot σT
t0

(x0) for all x0 ∈G0 ;

For validation purposes, Algorithm 1 was executed for the Double Gyre. The Double Gyre system

is given by the following equations [7]:
ẋ =−Aπsin(π f (x, t ))cos(πy)

ẏ = Aπcos(π f (x, t ))sin(πy)
∂ f

∂x
(x, t )

(5.2)

with

f (x, t ) = a(t )x2 +b(t )x

a(t ) = εsin(ωt ) b(t ) = 1−2a(t )

To allow for validation, the same parameters were used as in [7]: A = 0.1, ε = 0.1 , ω = 2π/10,

t0 = 0, T = 20, with the phase space being [0,2]× [0,1]. The Python implementation of the varia-

tional equations is provided in Appendix A.

The resulting FTLE field for the Double Gyre, as well as a reference result from [7] are shown in

Figure 5.1
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Figure 5.1: FTLE field comparison for Double Gyre. Left: computed with software. Right: Taken from [7]

It is evident from Figure 5.1 that Algorithm 1 works as intented. The resulting FTLE presents a

good match to the results found in [7]. Note the presence of the black rectangle in the validation

results. This represents a region of degenerate points of the variational theory, and will become

clear in the next section. To visually strengthen the intuition that the LCS defined from the FTLE

theory can be seen as ridges of the FTLE field, a 3D plot is shown in Figure 5.2.

Figure 5.2: 3D view of Double Gyre FTLE field

Following the FTLE field theory, the light parts of the self-computed FTLE Field shown in (a) of

Figure 5.1 correspond to the ridges of the field, and therefore the repelling LCS. As was mentioned

earlier, research has shown that FTLE fields do not always yield LCS of the overall system. Re-
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gardless of this fact, the computation of the field is fast and efficient, and can be used as a first

approximation and to provide intuition before proceeding with more complex method. It may

also be noted that computing the field for the 1000×500 grid using 14 cores is quite an efficient

process on the Eudoxos machine, taking only 20 minutes.

5.2 Variational Theory

In this section the methodology for algorithmically extracting LCS using the variational theory is

provided. Moreover, validation results for the toy problem are given.

The method for algorithmically computing LCS from the variational theory is adapted largely from

[7], and is based on the theoretical background of the method explained in Chapter 4.

As mentioned earlier, a number of conditions can be formulated that define a repelling LCS within

the context of the variational theory:

A material line M (t ) evolving over the interval [t0, t0+T ] is a repelling LCS over this interval, if and

only if all the following holds for all initial conditions x0 ∈M (t0):

1. λ1 (x0) 6=λ2 (x0) > 1

2. ξ2 (x0) ,∇2λ2 (x0)ξ2 (x0)〉 < 0

3. ξ2 (x0) ⊥M (t0) ;

4. 〈∇λ2 (x0) ,ξ2 (x0)〉 = 0

where Condition 1 ensures that repulsion is larger than tangential stretch along the LCS, Con-

ditions 3 and 4 guarantee that relative to close material lines the repulsion rate attains a local

extremum, and Condition 2 ensures that this extremum is a local maximum [7].

Note that since checking of these conditions follows from many numerical procedures (numerical

solving of ODE, numerical differentiation, and eigenvalue solving), it is an inherently unstable

pursuit. To allow for more robust numerical implementation, the conditions are reformulated by

making use of the following properties [7]:

• Condition 4 turns out to be a necessary condition with respect to locally normal translations

in the direction of ξ2. This follows from the proof of Theorem 1 in [9]. This is described

mathematically as follows:

d

dε
ρt

t0
(x0 +εξ2,ξ2)|ε=0 =

1

2
√
λ2 (x0)

〈∇λ2 (x0) ,ξ2 (x0)〉 = 0 (5.3)

which does indeed turn out to be the same as Condition 4. Moreover, the repulsion rate

ρt
t0

(x0,ξ2 (x0)) =
√
λ2 (x0), which allows the relaxation of Condition 4 to require that the av-

erage value of λ2 along M (t0) need be the largest among nearby curves normal to the vector

field ξ2(x0).
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• Condition 2 is altered from a strict inequality, to one that allows equality. LCS are therefore

allowed to have finite thickness, but require a uniquely defined local orientation.

• Condition 3 is altered based on the geometry of ξ1 and ξ2. Since these eigenvectors are

already computed when solving the variational equations, the fact that they are orthogonal

means that they can be used to efficiently implement condition 3.

After implementing the changes mentioned above, the necessary conditions (1-4) can be refor-

mulated as follows:

(A) λ1 (x0) 6=λ2 (x0) > 1

(B)
〈
ξ2 (x0) ,∇2λ2 (x0)ξ2 (x0)

〉≤ 0

(C) ξ1 (x0)‖M (t0)

(D) λ2(γ), the average of λ2 over a curve γ, is maximal on

M (t0) among all nearby curves γ satisfying γ‖ξ1 (x0)

Reformulated Condition (C) requires that LCS be tangent to the ξ1(x0) vector field, with ξ1 being

the eigenvector corresponding to the smallest eigenvalue λ1. Following the definition of [7], all

lines tangent to the ξ1(x0) vector field are hereby defined as strainlines. By definition, it is therefore

possible to state that strainlines are smooth trajectories of the following ODE:

r′ = ξ1(r), |ξ1(r)| = 1 (5.4)

This ODE does, however, not yield a set of globally smooth strainlines, which is a requirement for

LCS. The ODE is therefore altered by reformulating the right hand side of (5.4) as follows:

r′(s) = f
(
r(s),r′(s −∆)

)= sign
〈
ξ1(r(s)),r′(s −∆)

〉
α(r(s))ξ1(r(s)) (5.5)

where ∆ is the numerical step size, and the scalar field α(x0) is given by:

α (x0) =
(
λ2 (x0)−λ1 (x0)

λ2 (x0)+λ1 (x0)

)2

This scaling factor vanishes at degenerate points where λ1 =λ2, thus immediately satisfying con-

dition (A). The term signξ1(r(s)) locally reverses the orientation of the vector field ξ1(r) along

the strainline for smooth integration in case discontinuities are present [7]. In practice, this is

achieved by rotating the vector ξ1 to have the same direction as the solution computed in the pre-

vious timestep.

Note that solutions to the reformulated ODE (5.5) are strainlines that satisfy Conditions (A) and

(C). Strainlines resulting from this ODE that also satisfy conditions (B) and (D) can therefore be

classified as repelling LCS. Note that condition (B) has to be satisfied on each point along the
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strainline, including the initial point specified by the user-defined grid. It is therefore computa-

tionally more efficient to first check condition (B) for each point in the grid G0, and initialize ODE

integration only from those points in subset U0 ∈ G0 satistfying condition (B). Comparisons for

this region are shown in Figure 5.3. Note that for our procedure, a similar grid with a total of 500K

points is used as in the reference paper [7]. This is achievable due to the usage of 14 cores on the

Eudoxos machine. This was not possible in previous reproduction studies such as [18], where a

grid of (200×50) was used.

Figure 5.3: Region U0 comparison for Double Gyre. Left: computed with software. Right: taken from [7].
Both computations are done on a 1000×500 grid.

It is evident from Figure 5.3 that the resulting region U0 is very similar to the one from [7], but

some minor differences still exist. This can be attributed to the many numerical approximations

that are performed in the procedure. As was mentioned in [18], the region U0 is the result of

an ODE integration for which tolerance settings and integrator choice can have an effect on the

outcome. Also, the computation of the Hessian is done by central finite differencing. The off-

diagonal terms are computed using (5.6). For the diagonal terms (5.7) is used. 1

Hx y (x, y) ≈ f (x +ε, y +ε)− f (x +ε, y −ε)− f (x −ε, y +ε)+ f (x −ε, y −ε)

4ε2 (5.6)

Hxx (x, y) ≈ f (x +ε, y)−2 f (x, y)+ f (x −ε, y)

ε2 (5.7)

Note the dependancy of the Hessian on the perturbation parameter ε used. Because the step

involving computation of the Hessian is crucial for LCS extraction, choosing a value of ε must be

done carefully. This is especially the case for a highly nonlinear and sensitive problem such as the

double gyre. For the result in Figure 5.3, a perturbation value of ε= 10−5 is used.

To further reduce reduntant computations within the set, the points in region U0 are intersected

1https://v8doc.sas.com/sashtml/ormp/chap5/sect28.htm
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with four horizontal and four vertical lines, resulting in subset L0 ∈U0. For the authors of [7], this

reduces the amount of initial conditions from U0 to L0 by a factor of 96. For our grid settings, a

similar factor of 95 is found. A comparison of the resulting regions L0 is shown in Figure 5.4.

Figure 5.4: Region L0 comparison for Double Gyre. Left: computed with software. Right: taken from [7]

In principle, System (5.5) can be integrated (both forward and backward) from all initial condi-

tions in L0 until each strainline reaches the boundary of the specified domain, or until a fixed

point is found (in which case the integration will naturally stop due to the scaling factor α).

It must be noted that in most cases, strainlines will not fully be classified as LCS. Instead, merely a

part of the strainline will be classified as such. This means that along each point of the strainline

condition (B) needs to be verified to continue the integration process. Due to the numerical sen-

sitivity involved in checking condition (B) (i.e: numerical estimation of the Hessian of the λ2(x0)

scalar field), it may be possible that along the strainline, points are erroneously considered not

to satisfy condition (B). To prevent the algorithm from prematurely terminating the integration, a

pre-set length ` f is defined. This is a distance over which a strainline is allowed to repeatedly fail

in satisfying condition (B), without terminating the integration. In the reference work, as well as

in this work, a value of ` f = 0.2 is used.

Having identified strainlines segments that satisfy conditions (A), (B), and (C), all that remains is

to filter on condition (D), and find the segments that are local maximizers of λ2. Before doing

so, segments are filtered on a minimum length parameter `mi n , to ensure LCS to have sufficient

length.

As was mentioned earlier, the original Condition 4 was reformulated to condition (D) based on the

fact that locally normal translations in the direction of ξ2 can be used in the process of checking

for local λ2 maximizers. Based on this notion, two curves tangent to the strainline segment γ

consisting of x (γ+ and γ−) are constructed as follows, based on [18]:

40



γ+ (t0) := {
x+0 , · · · ,x+final

}
, where x+i = xi +δξ2

γ− (t0) := {
x−0 , · · · ,x−final

}
, where x−i = xi −δξ2

(5.8)

Note that the value of δ is an arbitrary choice, and may require tuning for the problem at hand.

For the Double Gyre example, a value of δ = 0.02 is used. Note that in the reference works no

mention of this value is given. As was done in [18], for each of the three curves the average values

of the λ2 field are calculated as follows:

λ̄2(γ) ≈
∑i= final

i=1 λ2 (xi ) · ‖xi−1 −xi‖∑i= final
i=1 ‖xi−1 −xi‖

(5.9)

which serves as a numerical approximation for the average of the field over a curve.

It is of importance to note that the computation of the λ2 parameter following (5.9) has to be done

with caution. The quality of the approximation used to compute the average λ2 value using (5.9)

is highly dependent on the variation in the λ2-field. If the λ2-field is highly sensitive to small per-

turbations in evaluation points, the resulting average value computed by the approxomation may

not be accurate. More specifically: the difference betweenλ2(xi ) andλ2(xi−1) may be so large that

the numerator in (5.9) is no longer an accurate approximation for the "weighted" value of λ2 on

point xi . This will have an effect on the final filtering of LCS candidates to LCS, and therefore lead

to wrong results. This problem is countered by introducing an interpolation method to increase

the resolution of the strainline. The method is highlighted as follows:

1. Between each pair (xi ,λi ) and (xi+1,λi+1), perform linear interpolation on a grid consisting

of F evenly spaced points between xi and xi+1.

2. Feed new strainline resulting from interpolation, with F more points than the original strain-

line, into the procedure for calculating local λ2 maximizers according to (5.9).

In this method of increasing the resolution of the strainline, the factor F has to be chosen. A

higher value is desirable in terms of accuracy of (5.9), but comes at a considerable cost in terms of

computational time because for each point in the new strainline, consisting of F more points, the

λ2 field is evaluated. This is a time consuming process in which the inner ODE of the variational

equations is solved.

In order to find a suitable value of F a parameter β is defined, which represents the mean per-

centage deviation between the λ2 values of two consecutive points xi and xi+1 on a strainline.

This value β can be seen as a measure for the point-wise sensitivity of a strainline in a λ2 field.

For the Double Gyre, the value of β is plotted against varying values of F . This is done for the 4

strainlines in the Double Gyre system, as shown in Figure 5.5.
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Figure 5.5: Determination of optimal F value for Double Gyre. Left: strainlines used for comparison. Right:
β−F plot

Note that the 4 lines shown in Figure 5.5 are chosen carefully to ensure that they span a sufficient

area of the domain on which the Double Gyre is defined. This is done to make sure that the final

value chosen for F is yields sufficient β values for every strainline, rather than satisfying results

for a small region in the domain.

From Figure 5.5 it can be seen that as expected, increasing values of F in general lead to smaller

values in β. By looking at the curve, it seems that a value of F = 10 seems optimal. This is where

the curves tend to become more flat, and further gains seem marginal. However, when taking

computation time into account, a value of F = 5 is chosen, as it seems to give β values close to 1%

and does not make computing times too excessive. For reference, going from strainlines to LCS

with F = 1 on the 1000×500 grid takes around 1 hour on 14 Eudoxos cores. For a value of F = 5

this computation takes 7 hours. Selecting higher values of F is infeasible for this work. In future

work it may be desirable to look into results for very high values of F , if computational time is less

of a constraint.

Having computed the average value of λ2 for the segment, condition (D) is deemed satisfied if the

average value λ̄2(γ) is larger that of its neighbours λ̄2(γ+) and λ̄2(γ−), and resulting strainlines are

classified as repelling LCS of the system. Resulting longest repelling LCS and the comparison with

[7] for the Double Gyre are shown in Figure 5.6.
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Figure 5.6: Resulting LCS comparison for Double Gyre. Left: Longest LCS computed with software. Right:
taken from [7]

Note that in Figure 5.6 the longest LCS is plotted and compared with the result from [7]. For com-

pleteness sake, a comparison of all LCS is given with the result from [18] in Figure 5.7.

Figure 5.7: Resulting LCS comparison for Double Gyre. Left: All LCS computed with software, 500K initial
conditions. Right: LCS taken from [18], 10K initial conditions

From Figures 5.6 and 5.7 the following can be noted:

• The usage of a finer grid (500K points versus 10K points) leads to more lines being classi-

fied as LCS, which is as expected. It also shows that grid choice is an important parameter

in performing this analysis, as LCS of the system may be missed if insufficient number of

initial conditions are used. This further strengthens the argument for making use of parallel

processing when carrying out LCS extraction using the variational theory.

• In the right plot of Figure 5.7 it can be seen that the strainlines seem unfinished. This has

to do with the fact that a pre-defined maximum length for the strainlines was used in [18].
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In our software, no pre-set length is used as input, and the strainlines are integrated un-

til they reach the boundary of the domain, or integration stops naturally by encountering

degenerate points.

• In [18] no use is made of an interpolation routine to increase resolution of the strainline.

This may, however, not have been necessary as MATLAB’s ODE solver (used in [18]) might

return more values by default. It is not mentioned what the resolution of the strainlines is,

and differences might be attributed to this difference in strainline resolution and therefore

final filtering on condition (D).

• Similar to the strainline resolution, it is unclear what value is used in [18] for δ. This is an

arbitrary parameter defining the neighbourhood of a strainline, and is expected to have a

significant effect on filtering on condition (D).

• The final comparison with the reference work [7] shown in Figure 5.6 shows a close but not

a perfect match. Also, the authors of the paper mention that they found the single strainline

that classifies as LCS, which was not the case using the software developed in this work. In-

terestingly, the longest LCS that is found using the software does match well with the results

in [7].

It can be concluded that while differences in result are present, the overall shape of the LCS seems

similar. Differences may be attributed to numerical noise, and differences in critical parameter

settings. It is therefore recommended that in future work, values for these critical parameters are

documented allowing for more robust comparisons.

The full algorithm for finding LCS based on the variational theory described in [7] is given in Al-

gorithm 2.
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Algorithm 2: Algorithm for extracting LCS based on variational theory

1 G0 is the grid of initial conditions;

2 U0 is the subset of G0 satisfying condition (B);

3 L0 is the subset of U0 intersecting with eight straight lines;

4 H i is the subset of L0 handled by Eudoxos core i ;

5 t0 and t0 +T are the initial and final integration time, respectively;

6 ode is an ode solver which returns the next point x j ;

7 for x0 ∈H i do

8 while L < ` f do

9 ComputeΦ by solving (5.1) on domain [t0, t0 +T ];

10 Compute Cauchy Green Strain Tensor: ∆ =ΦTΦ;

11 Compute eigenvalues λ1,λ2 and eigenvectors ξ1,ξ2 of ∆ ;

12 x j+1 = ode(sign
〈
ξ1(r(s)),r′(s −∆)

〉
α(r(s))ξ1(r(s)));

13 if x j+1 satisfies B then

14 L = 0;

15 else

16 L = L+∥∥x j+1 −x j
∥∥;

17 end

18 end

19 if L > ` f then

20 Too many failures, segment is not LCS;

21 else

22 if L < `mi n then

23 Too short, segment is not LCS;

24 else

25 Interpolate segment with factor F ;

26
γ+ := {

x+0 , · · · ,x+final

}
, where x+i = xi +δξ2

γ− := {
x−0 , · · · ,x−final

}
, where x−i = xi −δξ2

;

27

λ̄2(γ) := int
(
λ2

(
γ (t0)

)
/length

(
γ (t0)

)
λ̄2(γ)+ := int

(
λ2

(
γ+ (t0)

)
/length

(
γ+ (t0)

)
λ̄2(γ)− := int

(
λ2

(
γ− (t0)

)
/length

(
γ− (t0)

) ;

28 if λ̄2(γ) > λ̄2(γ)+ and λ̄2(γ) > λ̄2(γ)− then

29 Segment is an LCS;

30 else

31 Segment does not satisfy (D), and is not an LCS;

32 end

33 end

34 end

35 end 45



6 | Application of LCS software to ERTBP

In the previous chapter two methods for developing the software to extract LCS from a dynamical

system were explained. Furthermore, validation results were provided along the way to ensure

that the software functions correctly. In this chapter, the developed software will be applied to

the Elliptic Restricted Three Body Problem (ERTBP) in order to answer the main questions that

preceded this research:

• Without using a priori knowledge of the WSB, do LCS in the 2D search space around a planet

yield WSB?

• How does the Weak Stability Boundary react to a change in integration time, corresponding

to the time needed for a particle according to the stability criterion?

• How do the computed LCS for the system relate to WSB corresponding to stable points de-

fined for different number of revolutions n?

• Can the application of LCS to the computation of Weak Stability Boundaries yield more effi-

cient computation compared to the traditional method of stable set manipulation?

These questions will be answered mainly by application of the variational theory to the ERTBP,

since it has been shown that this is a more reliable method of extracting LCS. However, for com-

pleteness sake, and to get an initial idea of how LCS in the ERTBP might manifest, some results on

FTLE application are given first.

6.1 Finite Time Lyapunov Exponent application to ERTBP

In this section the FTLE algorithm (Algorithm 1) developed in the previous section is applied to

the ERTBP. The ERTBP configurations used are that of the Sun–Mars system with the following

parameters:
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Table 6.1: ERTBP configuration settings used for the Sun–Mars case

Variable Symbol Value

Sun mass m1 1.989 ·1030 kg
Mars mass m2 6.417 ·1023 kg
Sun–Mars system eccentricity ep 0.093418
P3 orbit eccentricity e 0.90
Initial true anomaly f0 0

The stable set W1 for the corresponding problem is shown in Figure 6.1. Note that this stable set is

generated outside this work, and is obtained from [11].

Figure 6.1: Region W1 for Sun–Mars system with parameters shown in Tabel 6.3

FTLE results for the problem using six values of f f i nal are displyayed in Figure 6.2. Note that in

the procedure, the value of f f i nal is used as T .
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Figure 6.2: FTLE field for ERTBP, using six values of f f i nal on a (1000×1000) grid

From Figure 6.2 it immediately becomes clear how similar the FTLE field looks to the stable set W1.

This is particularly the case for large f f i nal values. The largest change occurs between values of

1.0 and 2.0, after which only small details are changed. It can also be noted that while the general

shape of the field resembles that of W1, small details inside the black region are not displayed.

Computation of each FTLE field using parallel processing on 14 cores takes around 2 hours. We

may conclude that computing FTLE fields proves to be an efficient and reliable way of getting an

idea of the shape of W1, but is not able to capture details inside the WSB. For this, the variational
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theory might be more suitable. This will be explored in the next section.

6.2 Variational Theory application to ERTBP

As was explained earlier, existing work on applying variational theory of LCS to the ERTBP, and

comparing it with the WSB from stable sets was done in [18]. In this section, those ideas are

explored further and an attempt is made to answer the research question posed for this work.

6.2.1 Adaptation to ERTBP

Due to the more complex nature of the ERTBP compared to the Double Gyre, a number of adap-

tations had to be made to the variational LCS extracting software. Two main adaptations are sum-

marized below:

• Usage of different integrator: As was mentioned in Section 4.5, the procedure of integrating

the ERTBP equations of motion consists of a number of sequential coordinate transforma-

tions. These coordinate transformations, combined with the (by nature) more non-linear

behaviour of the ERTBP compared to the Double Gyre, make the problem at hand more dif-

ficult to solve for numerically. To ensure that this is done in a robust way, the inner ODE

(which solves the variational equations) makes use of the LSODA integrator [17]. This inte-

grator switches automatically between the nonstiff Adams method and the stiff BDF method

[5]. It is considered more robust for problems such as the ERTBP with the characteristics de-

scribed above.

• Usage of events to stop integration: In the double-gyre example, strainlines were integrated

until they either reach the boundary of the domain, or reach degenerate points (and the in-

tegration stops naturally). In the ERTBP problem an extra stopping criterion has to be in-

cluded. Because values of r are naturally small (order 10−4), while stepping over the ODE

solver or computing the Hessian, computations may be required at r values which are too

small to handle. For example, terms like r−5 in the variational equations might lead to over-

flow errors. To handle this, the ODE solvers (both for the inner and outer ODE) are stopped

when r values to evaluated are less than 10−5. In future work, it may be desirable to switch

to regularized equations of motion to continue evaluations in the ODE solving process, for

example by making use of Levi Civita regularization [14].

6.2.2 Validation

As a form of validation, before answering the research questions stated above, an effort was made

to reproduce the results obtained by [18] using the developed software. Results of this comparison

are given in Figure 6.3. For these results, use was made of the stable sets computed by the authors

of [11]. The reference dataset used is that of the Sun–Mars system with the following parameters:
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Furthermore, the values for the initial conditions for the comparison figure are given by the fol-

lowing:

Table 6.2: Initial conditions used for verification with stable set and [18]. IC1 and IC2 refer to the right and
left initial conditions, respectively.

Variable Symbol Value

Initial distance IC1-P2 r1 1.882295326
Initial angle IC1 θ1 0
Final integration time IC1 f f i nal 1 2.9332364420
Initial distance IC2-P2 r2 1.882295326
Initial angle IC2 θ2 π

Final integration time IC2 f f i nal 2 2.4847866565

(a) Repelling LCS from software (b) Repelling LCS from [18]

Figure 6.3: Comparison of software and [18] for W1 stable set.

From Figure 6.3 it can be seen that the software-generated repelling LCS is able to follow the edge

of the WSB, but seems to not be able to trace it fully. One thing to note is that in [18] two ’blobs’

were found on the repelling LCS which did not follow the WSB and were considered malfunctions

of the software. In our software, the integration seems to terminate when encountering this re-

gion, thus not giving erroneous results. This may be attributed to the fact that in our software

a stopping criterion of ∆tmi n is specified, which is the minimum step size allowed for the outer

strainline integration to take. When the next step is taken to be smaller than this, it means that

the integrator reaches an area that is highly sensitive and most likely would lead to errors when

continuing the integration. In [18] such controls were not present, which may explain the differ-

ence in results.
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6.2.3 Determination of F for ERTBP

Because the strainlines shown in Figure 6.3 both seem to span different parts of the search space,

both of these strainlines are used to compute the F parameter. This is done in a similar fashion

as was done for the Double Gyre. Because of the more sensitive nature of the λ2 field for the

ERTBP, both mean and median values are computed for the consecutive percentage difference in

λ2 value along the strainlines. This is done for both the regular (interpolated) strainline, and the

interpolated strainline with outliers removed. Results for this analysis are shown in Figure 6.4.
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Figure 6.4: Determination of F parameter for ERTBP. Red and blue correspond to strainlines from IC1 and
IC2, respectively.
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A number of things can be noted from Figure 6.4. Firstly, the λ2 field for the problem is extremely

sensitive. If outliers on the strainlines are not removed, mean consecutive difference values for

extremely high F values such as 150, are still 40% and 200% for strainlines from IC1 and IC2,

respectively. Furthermore, the sensitivity can be seen by the spiky nature of the statistics. When

outliers on the strainlines are removed, the plots still seem to contain some spikes, but it is cer-

tainly less than for the regular strainlines. Increasing the value of F also seems to make the lines

more smooth. The following can be concluded:

• The ERTBP λ2 field is extremely sensitive. Especially when comparing to the Double Gyre

example shown earlier.

• By looking at the figures, one might argue that including an outlier removal strategy for this

problem might be desirable. That is, by removing points with outlying λ2 values on a strain-

line, we may get accurate λ2 comparisons. This is not possible because the outlier removal

(using a modified Z-score with threshold 2.0) removes around 40% of the points on the line.

It is deemed that this would leave too little information on a strainline to be of use. In future

work, it may be desirable to tweak the threshold value of the outlier removing strategy and

balance the number of outliers with accuracy. For this work, no outlier strategy is employed.

• Similar to the case for the Double Gyre, the median and mean differences decrease as F is

increased. This is particularly the case for the outlier removed cases. Because the strainlines

are close together, the areas which provide large outliers might be present for both the orig-

inal strainline and its neighbours. Because we are not interested in the value of λ2 per se,

but rather the sign of the difference between the average λ2 values on the lines, it may not

be necessary to perform interpolation. A further analysis will be done later in this work to

explore this idea. To balance computational time with accuracy, a value of F = 50 will be

chosen for this analysis.

6.2.4 Effect of variation in integration time on repelling LCS

One of the aims of this research was to gain insight into the effect of the integration time param-

eter on the repelling LCS of the system. For clarity purposes, this analysis is done for the same

problem used in the comparison in Figure 6.3.

Varying integration time for entire system

The effect of variation in the integration time parameter on the strainlines originating from the

two initial conditions IC1 (red line) and IC2 (blue line) is shown in Figure 6.5.
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Figure 6.5: Effect of varying integration time on strainlines
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From Figure 6.5 it becomes evident that small integration times lead to no match with the WSB,

and increasing the integration time generally seems to yield a better match. This is, however, not

true for all cases. It can be seen that until an integration time of 2.43, the matching is better as the

value of the integration time is increased. For a value of 2.75, however, integration of both strain-

lines is terminated too quickly, leading to a worse match. For the final value of 5.0, the strainline

matches again with the WSB. This indicates that while in general increasing integration time is a

viable choice, it does not guarantee better matching. Errors arising from numerical solving of the

ODE’s may still lead to too quick termination of the strainline integration procedure. When no

stable set is available to verify the results, this may lead to loss of information causing us to miss

part of the WSB.

This issue may be easy to combat by simply including a sufficient number of initial conditions

when searching for LCS around a planet. While a single initial condition might give a strainline

that is too short, having multiple initial conditions very close to one another might act as a form

of redundancy, allowing some to fail but others to give the qualitative results desired. The as-

sumption here is that initial conditions sufficiently close to each other give qualitatively the same

strainline.

To illustrate this, two "clouds" are formed around the initial conditions IC1 and IC2, each con-

sisting of 25 points. The cloud corresponding to the leftmost initial condition (IC2) is shown in

Figure 6.6. In Figure 6.7 the resulting strainlines for varying integration time are shown, using the

points in these clouds as initial conditions.

Figure 6.6: Cloud of initial conditions around IC2 (green square)

55



Figure 6.7: Strainlines for clouds of 25 initial conditions around IC1 and IC2
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The results in Figure 6.7 confirm the hypothesis. While some inidividual strainlines show early

termination due to failure in the numerical process, using a sufficient number of initial conditions

close together can aid as a counter for this, and ensure that while numerical errors may arise no

information on the shape of the WSB is lost.

Having computed sufficiently large strainlines with clouds as initial conditions for various values

of f f i nal , a further analysis on the selection of F for the ERTBP can be performed. The procedure

is as follows:

1. Choose two cases from Figure 6.7. For this analysis one case is chosen for which strainlines

do not match with the WSB ( f f i nal = 0.82), and one case is chosen for which the strainlines

do match with the WSB ( f f i nal = 4.36).

2. For all lines within these sets (i.e: 50 lines per set), the remaining procedure of converting to

LCS is carried out. This is done for F = 1 and F = 50.

3. Parameters resulting from LCS extraction are saved for each line in each set. More specif-

ically: average values along the strainlines and the corresponding neighbours (λ2, λ+
2 , and

λ−
2 ) are stored.

4. Ratios of λ+
2 and λ−

2 to λ2 are computed and plotted for each strainline in the set. The results

for both sets are shown in Figures 6.8 and 6.9
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Figure 6.8: Analysis to determine importance of F selection for f f i nal = 4.36

Figure 6.8 shows the ratios of average λ2 values between neighbours and the original strainline

for two values of F . The red line represents a ratio value of 1. Figure 6.8 gives a valuable insight

regarding the role of F . In most cases, the red and orange square lie on the same side of the

red line. That means that for both F settings, the result in decision on wether or not a strainline

is classified as LCS is the same. This indicates that while differences in F may yield substantial

differences in the values ofλ2 (which was evident from Figure 6.4 and can be noted from the usage

of the log scale on the y axis in Figure 6.8), the ratio of the average λ2 values for the lines usually

lies on the same side of the red line. It may therefore be concluded that while increasing the value

of F may yield more accurate values of λ2, the ultimate decision is not affected to a great degree.

If we consider computational effort, this decision on what value of F to choose turns into a trivial

one. Computing the λ2 values for the 50 strainlines used in Figure 6.8 with F = 1 took around 40
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minutes. Using a value of F = 50 this computation took 20 hours. It can be concluded that F = 1

is a viable choice for the remainder of this work.

Figure 6.9: Analysis to determine importance of F selection for f f i nal = 0.82

Figure 6.9 shows that for all strainlines, values of the ratios always lie on the same side of the red

line. Thus, in both cases (F = 1 and F = 50) all strainlines are classified as LCS. It is evident from

Figure 6.7 that the LCS do not correspond to the WSB. It may therefore be concluded that proper

care must be taken in determining values of f f i nal . The process of going from strainlines to LCS

does not filter out these lines, and may give deceptive results for the WSB.

Varying integration time pointwise

The results shown in the previous subsection indicate that using a large, contant, integration time

for the entire system may be more desirable than a small value. However, it was also mentioned

59



that this generally comes at a cost of computational effort. For this reason, it might be of interest

to not increase the value of f f i nal for the entire system, but rather to use different values of f f i nal

for each point on the grid. The question that needs to be answered is an obvious one: "How to

determine this f f i nal value for each point?".

Recall that in Figure 6.3 values for f f i nal were taken from the WSB file used as validation data. The

values chosen represented the final returning anomaly of the point in the W1 set. It was also found

that these values gave nearly perfect results for the matching. This indicates that in an ideal case,

an optimal value of f f i nal may be the value that we would find in the stable set for that point. The

problem, however, is twofold:

• Given a stable set, not every point on the grid will have a matching point in the stable set

from which a value of f f i nal can be taken.

• In a practical setting, making use of the stable set is not possible. In fact, the goal is to see if

this theory on relating LCS to WSB may provide an interesting alternative to classical stable

set manipulation. In an ideal case, we therefore find LCS as WSB without having used any

information from the stable sets.

In order to continue, an assumption is made regarding the orbit that a point on the stable set

might follow if it were located in the stable set. The assumption is that a particle originating from

a stable point might follow something close to a Kepler orbit. Using this assumption we construct

the osculating ellipse at (r,θ) with focal point P2 and periapsis distance r . For this osculating el-

lipse, the (a-dimensional) orbital period is calculated as follows:

T = 2π

√
a3

µ
(6.1)

where a is the semi-major axis of the osculating ellipse with eccentricity e, computed with r /(1−e)

and µ is the mass parameter m2/(m1 +m2).

The local value of f f i nal used for the procedure can now be related to the value of T of the oscu-

lating ellipse with the local point as its periapse. Resulting strainlines for various values of locally

varying f f i nal are shown in Figure 6.10.
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Figure 6.10: Effect of varying integration time locally on 2 strainlines for values of T, 2T, and 3T respectively

It can be noted from Figure 6.10 that using the orbital period of the osculating ellipse as the local

f f i nal is not a viable strategy. This indicates that the points in the W1 stable set do not behave

similar to what they would in a Kepler orbit. Instead, increasing the value to 3 times the orbital

period seems to yield better results. In the next subsection results for the whole search space will

be compared.

6.2.5 Search for LCS in 2D-space around planet

As was stated earlier, in the work done in [18] it was confirmed that WSB correspond to repelling

LCS of the system. What remains to be seen is what LCS can be found around a planet without

any a priori knowledge of the WSB. This idea will be explored in this section.

As has been shown earlier, many parameters influence the resulting strainlines and therefore the

final LCS. One has to be aware of the computational effort required in computing LCS. Because

of this constraint, not all parameters can be tweaked independently to each give resulting LCS. To

make this process more efficient, in a first step the strainlines around the planet are calculated for

different configurations. Based on the results of these strainlines, some configurations are chosen

to further extract LCS from.
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Computation of Region U0

The first step in computing strainlines around the planet is the computation of the region U0.

This is done for similar reasons as for the Double Gyre validation problem. Because of the com-

putational effort required in the process of obtaining LCS, reducing the amount of redundant

computations done is desirable. Filtering the initial grid space is therefore an effective approach.

Obtaining region U0 relies on the checking of condition (B). One of the steps involved in checking

this condition is the computation of the Hessian of the λ2 scalar field. As was mentioned earlier,

the value of the perturbation parameter ε in the central differencing procedure must be chosen

carefully. Too large values may miss nuances in the λ2 field, whereas too small values are too lo-

cal and fail to capture the λ2 field all together. In the case of the Double Gyre, the region U0 was

given in the reference paper [7], and a value of ε = 10−5 gave a proper match. For the ERTBP, no

previously computed and verified region U0 exists, and as such a different approach for ε determi-

nation is developed. It is assumed that too small or too large values will give rise to many isolated

points being classified as satisfying (B). Proper values of ε are expected to give rise to "cleaner"

regions, similar to what is displayed in Figure 5.3. Computed regions U0 are therefore compared

on the amount of isolated points, and the ε value corresponding to the least cluttered region is

chosen. Results of this analysis are shown in Figure 6.11.
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Figure 6.11: Region U0 for varying values of ε in central differencing. Computed on (300×300) grid.

From Figure 6.11 it can be noted that a too small value of ε leads to cluttered points, as was ex-

pected. One may also note that choosing values of ε that are too large, seems to also give wrong

results, and a big part of what U0 is expected to be is missed. It has been verified that using values

up to ε= 10−1 decrease region U0 even more and leads to more numerical noise.

It it concluded from Figure 6.11 that a value of ε = 10−5 is a viable choice. There are little to no

isolated points, and the edge where the LCS is expected to be (based on comparison with the sta-

ble sets) is thicker (i.e: contains more points) than for ε = 10−4. This is desirable, as it has been

shown in Section 6.2.4 that having many initial conditions close to each other acts as a form of
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redundancy.

The standard approach would be to now integrate outer ODE (5.5) using all points in U0 as initial

conditions. However, in the remainder of this subsection many configurations for the integration

time are checked. For computational reasons, it is not feasable to do this exercise using all points

in U0 as initial conditions. For that reason, less initial conditions around P2 are constructed which

will serve as starting points for the integration for the remainder of this subsection. These are

shown in Figure 6.12. Note that after having done this exercise and having determined guidelines

for configuration settings, the software will be used for computing LCS in the Earth–Moon system

in Section 6.3. Because only one set of configuration settings will be used for that procedure, the

proper method involving propagation from U0 is used there.

Figure 6.12: Initial conditions used for LCS extraction

Search for strainlines in 2D-space around planet

Firstly, the strainlines around Mars are computed for varying values of f f i nal . The results are

shown in Figure 6.13.
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Figure 6.13: Effect of varying integration time on strainlines

Figure 6.13 indicates that, following the idea gained from the previous section, too small integra-

tion times fail to capture the shape of the WSB. As the integration time is increased, the strainlines

seem to trace the WSB better. Some strainlines do cross into the black area, but the majority of

strainlines seem to curve around the W1 stable set. Note that crossing into the black area might

not be a weakness per se, as it the lines might correspond to WSB of other sets Wn . This will be

explored later in this chapter.

In Figure 6.14 the strainlines are shown if values of t f i nal are varied locally. Results are shown for

65



local f f i nal values of T , 2T , and 3T respectively.

Figure 6.14: Effect of varying pointwise integration time on strainlines

Figure 6.14 confirms what has been shown earlier: larger integration times give more accurate

representations of the WSB. One might also conclude that using varying f f i nal values is not by

definition better. This is hard to assess merely by looking at the strainlines. Conclusions regarding

the choice between constant or variable integration time are given when converting to LCS in the

next section.

Strainlines to LCS in 2D-space around planet

Having computed the strainlines for the system for some configuration settings, the following are

chosen to extract LCS from:

• For constant integration time settings, values of 1.0 and 3.5 are chosen. Judging by the strain-

lines, an f f i nal value of 3.5 seems to trace the WSB the best, and it is to be seen if this holds

true for the LCS as well. The value of 1.0 is chosen for the opposite reason. The strainlines

do not seem to trace the W1 set at all, and it remains to be seen if the process of converting

strainlines to LCS filters out these lines or not.
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• For variable integration time settings all cases (values of T , 2T , and 3T ) are selected. Case

T is chosen for similar reasons as the constant value of f f i nal = 1.0. The other cases seem

to both trace the boundary to a similar degree and neither one seems more promising than

the other by looking at the strainlines. Filtering to LCS may give more information regarding

the effect of changing this integration time from 2T to 3T . Furthermore, comparing these

results to the LCS results obtained with f f i nal = 3.5 will give a strong idea on using fixed

versus variable integration times.

Results for constant, and varying integration times are shown in Figures 6.15 and 6.16 respectively.

Figure 6.15: Strainlines (left) to LCS (right) for fixed integration time for full system

Figure 6.15 shows how strainlines are filtered to LCS for the two cases. It can be seen that in the

case of f f i nal = 1.0 a considerable number of lines are conserved as LCS. This can indicate two

things:

• The procedure to compute LCS is susceptible to errors made in choice of integration time.

Values that are too small lead to wrongly identified LCS which do not trace the WSB.

• The fact that lines are conserved indicates that some other dynamical structure is present

in the problem. This may indicate the boundary of a set other than W1. This will be further

explored in the next section.
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From the bottom row of Figure 6.15 it can be concluded that many of the strainlines in the white

regime are correctly filtered out when converting to LCS. In fact, the remaining lines trace the

boundary well as expected. Note that there does seem to be a "core" of lines crossing the black

region. This may be attributed to numerical errors, or it may indicate a structure of sets other than

W1. This will be further examined in the next section.

Figure 6.16: Strainlines (left) to LCS (right) for varying integration time for full system

The results from Figure 6.16 show that for integration times of 2T and 3T all but two of the strain-

lines in the white region are preserved as LCS. Noticing the shape of these lines this can most
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likely be attributed to noise in the numerical procedure. Comparing Figure 6.16 to Figure 6.15

also shows that using varying integration times is not necessarily better than simply using a fixed

final value. It is also computationally more efficient to use constant integration times, as orbital

periods of initial conditions far from P2 tend to become large, causing f f i nal to be large and thus

making the computation take unnecessarily longer.

6.2.6 LCS comparison with WSB for n revolutions

From the results shown in the previous section it can be concluded that LCS extracted for the

whole system, without making use of a priori knowledge of the stable sets, seem to trace the WSB

of the W1 quite well. However, some extra structures seem to be present in all results. In this

section the earlier extracted LCS are compared with other stable sets for the same system. For this

problem, a total of six sets are avaiable (Wn with n = 1,2, . . . ,6). The sets are displayed in Figure

6.17.
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Figure 6.17: Sets W1 . . .W6 for the Sun–Mars system

From Figure 6.17 it can be concluded that for this marticular system, the largest difference occurs

between W1 (used earlier) and W2. The difference in other sets seem to be small when compared

to W2. For that reason, LCS in this section are computed for W2 only. The earlier computed LCS

laid on top of W2 are shown in Figure 6.18.
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Figure 6.18: Repelling LCS for 5 f f i nal settings around W2

From Figure 6.18 the following can be concluded:

• When integration times are too short ( f f i nal = 1.0, f f i nal = Tor b , and f f i nal = 2Tor b), result-

ing LCS do not correspond to LCS of Wn no matter what value of n is chosen. This allows us

to conclude that proper choice of f f i nal is crucial to ensure results are trustworthy.

• Points where integration of the strainlines stops naturally are not arbitrary. From the results

on the W1 set it seemed that the outer line tracing the stable set was not followed fully due

to numerical errors. When looking at Figure 6.18 it is clear from the results of f f i nal = 3.5
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and f f i nal = 3Tor b that this point where integration stops corresponds to the point where

continuity of the boundary of W2 also stops. This region is highlighted in blue in Figure 6.19.

Figure 6.19: Integration naturally stops in blue area when boundary of W2 stops

• Similar to the results found for W1, choice of f f i nal between constant or varying values in

the domain seems to not yield a difference in accuracy for the majority of the search space.

In fact, it can be concluded that constant integration times might perform slightly better,

because as the strainline resulting from solving the outer ODE goes closer to P2, the value of

the local orbital period of the points on the strainline decreases. As a consequence, the value

of f f i nal for the inner ODE also decreases. As was shown earlier, small f f i nal values tend to

be a bad choice overall, and as such results in this regime close to P2 will by definition be

inaccurate.

• Comparing results of LCS and W1 to those of W2, it seems that the results for W2 give a better

match. This is explained by the fact that the LCS can be seen as an average result describing

the dynamics of the system (for all Wn). It was shown in Figure 6.17 that main differences

between sets were seen between W1 and W2. Sets W3 and onwards seem to not give many

differences with W2, indicating that the average shape of Wn around P2 is most closely re-

sembled by W2. This hypothesis remains to be tested for other planets.

6.3 Test case: Earth–Moon system

In the previous sections the developed software for both the FTLE algorithm and Variational The-

ory was applied to the Sun–Mars system. For this system, the stable sets from other works were

used as comparison data. The aim of this section is to apply both LCS extraction algorithms to the

Earth–Moon system. For this sytem, no stable sets have been computed. As such, this will be an

exercise in the practical utility of applying LCS algorithms as an alternative to traditional stable

set manipulation.

An overview of all settings is given below:
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Table 6.3: ERTBP configuration settings used for the Earth–Moon case

Variable Symbol Value

Earth mass m1 5.972 ·1024 kg
Moon mass m2 7.346 ·1022 kg
Earth–Moon system eccentricity ep 0.0549
P3 orbit eccentricity e 0
Initial true anomaly f0 0

6.3.1 FTLE application to Earth–Moon system

The resulting FTLE field for the Earth–Moon system is shown in Figure 6.20. Use is made of a

final integration time of f f i nal = 3.0, following results shown in previous sections. Larger values

of f f i nal show no increase in result accuracy while increasing computational time.

Figure 6.20: FTLE field for Earth–Moon system computed on 1000×1000 grid

Figure 6.20 indicates the shape of the repelling LCS quite well (light colors). One can note the

presence of three curves between x − 1+µ values of −0.6 and −0.2 approximately. Intuitively,

we do not expect these lines to correspond to the repelling LCS of the system, or the WSB of the

stable sets W of the Earth–Moon system. This can be tested by simulating the orbits of points on

either side of the curves, and comparing the results. This is shown in Figure 6.21. Note that the
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generated orbits go outside the domain for which the FTLE field was generated, which explains

the blank background.

Figure 6.21: 3 pairs of orbits generated on top of FTLE field

From Figure 6.21 it is evident that each pair of orbits with initial conditions on either side of the

three leftmost FTLE ridges stays together and does not diverge. This indicates that these ridges

are the result of numerical noise, and do not correspond to repelling LCS (or WSB) of the system.

It can also be seen that lines corresponding to the highest FTLE field values can be distinguished.

In fact, these regions tend to run through the area we may intuitively expect to correspond to the

WSB. Resulting orbits with initial conditions around these points are shown in Figure 6.22.

Figure 6.22: Orbits generated with initial conditions around highest FTLE regime
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From Figure 6.22 it is clear that while the distinct lines correspond to the highest FTLE values

in the field, the generated orbits do not diverge. These lines do not seem to be repelling LCS of

the system revealing an important conclusion: one cannot simply say that large FTLE field values

have a higher probability of revealing "correct" repelling LCS. Since the lines cross through the

area that intuitively makes up the WSB, it might be the case that only outer edges of the regimes

can be considered potential WSB. This can not be assessed based on the experiments done in this

work, and further study is required.

Orbits with initial conditions around the "outer edge" of the expected WSB are generated to verify

this hypothesis. Results are shown in Figure 6.23.
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Figure 6.23: Orbits generated with initial conditions around expected WSB

It can be concluded from Figure 6.23 that the outer edge of the light region does indeed corre-
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spond to the repelling LCS and WSB of the system. All generated orbits tend to diverge fairly

quickly.

It can be concluded from the FTLE application to the Earth–Moon system that the FTLE field

gives a good insight into the overall shape of the stable set, but can not be used as a replacement

directly. It has been shown that some parts of the FTLE field which correspond to ridges, do not

function as repelling LCS (i.e: separatrices of dynamics). Also, it is shown that highest values of

the FTLE field (largest ridges) are not more likely to be LCS. In fact, the highest distinctive regions

in the Earth–Moon case turn out to not be LCS at all.

It is concluded that FTLE field application to the ERTBP might serve as a good initial experiment

to approximate the stable set, especially considering that the computation time for generating

FTLE fields is relatively low (grid of 1 million points on 14 cores takes around 3 hours). However it

does not guarantee perfect resemblance and has to be used merely as an approximation.

6.3.2 Variational Theory application to Earth–Moon system

For application of the Variational Theory to the Earth–Moon system, firstly the region U0 must be

computed. This is done for varying values of central differencing perturbation parameter ε. The

best region U0 is chosen and serves as the initial condition grid for the remainder of the process.

Furthermore, the associated value of ε is chosen for the remainder of the process involving com-

putation of the Hessian. Following the results from the Sun–Mars case, a fixed value of integration

time of f f i nal = 3.0 is used for this analysis. Results are shown in Figure 6.24.
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Figure 6.24: U0 for varying values of ε

From Figure 6.24 it can be concluded that a viable choice for ε is 10−2. It gives the least amount

of isolated points arising from numerical errors, and has the highest point density in the region

which is expected to contain the LCS, as indicated by the FTLE results from Figure 6.20.

Strainlines computed with initial conditions in U0 corresponding to the ε= 10−2 setting, and re-

sulting Repelling LCS computed with filtering parameter `mi n = 0.8 and neighbourhood defini-

tion parameter δ= 3 ·10−5 are given in Figure 6.25.
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Figure 6.25: Variational theory application to Earth–Moon system. Left: Strainlines. Right: Repelling LCS

It can be noted that the leftmost line which intuitively would not be part of the WSB is also present.

In the FTLE example, three of these lines were present. This indicates that the variational theory

application has a lower false positive rate, but is not robust enough to fully filter out these random

lines. Two pairs orbits are generated to verify that these lines are no seperatrices of dynamics. This

is shown in Figure 6.26.

Figure 6.26: Two pairs of orbits generated from false positive line

From the LCS results of Figure 6.25 it can also be noted that many lines are generated close to-

gether in the top half of the domain. To check if these are the result of numerical noise and the

outer region is the real LCS, or if these lines truly seperate the dynamics in some way, 5 sets of

orbits are generated. Results are shown in Figure 6.27.
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Figure 6.27: Left: Initial conditions for 5 sets of orbits used for analysis. Right: resulting orbits.

From Figure 6.27 it can be concluded that every set of orbits except for set 4 diverges. This is an

indication that the line around which set 4 is generated is the result of numerical noise (similar to

the leftmost line checked in Figure 6.26).

In Figure 6.28 the repelling LCS results from the variational theory are plotted on top of the previ-

ously generated FTLE results.
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Figure 6.28: Variational theory LCS results (red) plotted on top of FTLE field

It can be seen that the regions that were expected to correspond to the WSB in the FTLE case, are

exactly the same as the lines that are obtained from the variational theory. This indicates that the

generated orbits would be the same as Figure 6.23, and no further orbits need to be generated

to verify that the repelling LCS from the variational theory are in fact the WSB. Also note that the

results from the variational theory trace the outer edge of the FTLE field results, which were intu-

itively expected to correspond to the WSB. This is a strong result, as it indicates that the variational

theory is more robust than the FTLE method.

It can be concluded that while the FTLE field computation is faster than the variational theory (3

hours versus 20 hours), the results from the variational theory are more robust. It is shown that

the results are not perfect (i.e: false positives still exist) but in future work this could be combated

by making use of interpolation to further refine LCS extraction, or by lowering tolerances used in

integrating the ODE’s.
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7 | Conclusions & Recommendations

7.1 Conclusions

In the beginning of this literature study the following main research questions for the thesis were

proposed:

• Without using a priori knowledge of the WSB, do LCS in the 2D search space around a planet

yield WSB?

• How does the Weak Stability Boundary react to a change in integration time, corresponding

to the time needed for a particle according to the stability criterion?

• How do the computed LCS for the system relate to WSB corresponding to stable points de-

fined for different number of revolutions n?

• Can the application of LCS to the computation of Weak Stability Boundaries yield more effi-

cient computation compared to the traditional method of stable set manipulation?

Without using a priori knowledge of the WSB, do LCS in the 2D search space around a planet

yield WSB?

Two algorithms for finding LCS in the 2D search space around a planet were developed. The first

of these, making use of the Finite Time Lyapunov Exponent theory, was validated using the Dou-

ble Gyre example often used in LCS literature. After a succesful match with the literature, the

algorithm was applied to the Sun-Mars system within the framework of the ERTBP. It was shown

that the resulting FTLE field proves to yield a strong match with the 1-stable set W1. In particu-

lar, the general shape of the stable set is preserved to a great degree. It was also found that this

matching improves as the value of the integration time f f i nal is increased. While the shape of the

resulting field matches well with W1, it was also shown that details present in W1 are not captured

quite as well.

The second algorithm that was developed is based on the variational theory. Compared to the

FTLE algorithm, it contains much more parameter tuning and numerical approximations than

the FTLE algorithm. It was found that including a natural stopping condition in the integration
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of strainlines gives rise to better results than the state-of-the-art results from [18]. Furthermore, it

was found that interpolation on strainlines to give more accurate results of average λ2 values on

strainlines is not required, as computational time for this procedure becomes a major constraint.

Strainlines around the planet were computed, and it was shown that filtering these strainlines to

LCS removes the vast majority of strainlines not corresponding to the stable set. it was found that,

when one uses sufficiently large values of f f i nal , the resulting LCS without using a priori knowl-

edge of the WSB, are able to trace the boundary of W1.

Finally, it can be concluded that LCS can be used to get an idea of the WSB around the planet.

In particular, the FTLE method shows to be a very efficient, low-cost method for getting initial

results. While the method based on variational theory give good results without a-priori usage of

the stable set, the computation takes considerably longer and more critical parameter tuning for

numerical approximations needs to be done.

How does the Weak Stability Boundary react to a change in integration time, corresponding to

the time needed for a particle according to the stability criterion?

It was found that the time needed for the particle according to the stability criterion is often un-

known, and an assumption was made that the particle follows close to a Kepler trajectory. Using

the period of the osculating ellipse (T ) with the initial location of the particle as periapse, the in-

tegration time was defined. It was found that using the value T for the integration time does not

yield a match with the WSB. However, increasing this value to 2T and 3T provided better results.

This is in line with the results that were found by increasing the integration time for the full system

as a whole, where larger integration times gave rise to better matches.

It was concluded that constant integration times for the full system are a better choice than local

variations. While regions far away from the planet naturally give rise to larger values of T (and dif-

ferences with large, constant values are negligible), regions close to P2 will yield integration times

that are too small. This goes against the general principle of wanting large values in general, and

thus gives inaccurate results in the region close to P2.

How do the computed LCS for the system relate to WSB corresponding to stable points defined

for different number of revolutions n

It was found that for W2 . . .W6 the matching was better than for W1. This was the case because the

edge of W1 is longer than W2, and the repelling LCS seems to stop where the edge of W2 stops. For

the problem at hand, it was shown that sets W2 . . .W6 are very similar. The fact that matching with

W2 was better, may be attributed to the fact that LCS form an average result for all Wn , and for this

particular problem W2 provides a closer approximation to that average than W1.

Can the application of LCS to the computation of Weak Stability Boundaries yield more effi-

cient computation compared to the traditional method of stable set manipulation?
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In this work it is shown that for both algorithms making use of parallel processing is vital. The

problem is inherently parallelizable, and should be exploited as such. It is shown that using the

FTLE field as an approximation for the stable sets is computationally efficient. The variational the-

ory algorithm is much less computationally efficient than the FTLE algorithm, particularly when

interpolations are done. The software is written in a way to maximize efficiency, by storing partial

results that can be reused later. This improves the competitiveness of the method, but in terms of

efficiency it still falls behind the FTLE algorithm.

7.2 Recommendations

While this work has shown that LCS can be found around the planet in an efficient way, and trace

the WSB to a certain degree, a number of recommendations are given to further extend the body

of knowledge on this topic:

• It was shown that since the process of computing strainlines is a numerically sensitive pro-

cess, in some cases strainline integration is terminated too quickly. It was also shown that

this can be countered by including a sufficient amount of initial conditions close to each

other. When no a priori knowledge of the WSB is used, the only way to combat this numer-

ical problem is to initialize a sufficiently fine grid. Because a large area of the space around

P2 does not yield any LCS, using a fine grid for the full space is inefficient.

It is recommended that an iterative process for generating LCS is developed. In this method,

the full procedure for finding LCS using a relatively coarse grid is employed. When LCS are

extracted using this coarse grid, it is recommended to re-run the procedure using initial con-

ditions around the obtained LCS as the new grid. The resulting LCS can then be stacked on

top of the previous LCS, thus effectively having created a finer grid around the promising

regions. It is expected that this might allow more details of the Wn sets to be captured by the

LCS, rather than just the boundary.

• For this thesis, values of f0 have been fixed as f f i nal has been varied. It it interesting to

study how the found LCS (for both FTLE and Variational theory) change as this window of

time (using a fixed ∆ f ) is varied. Changes in LCS might indicate specific times when certain

regions around the planet are more easily accessible and aid in trajectory design.

• In this work some analysis has been done on making use of an interpolation factor F to fur-

ther strengthen the filter from strainlines to LCS. One of the parameters, namely the neigh-

bour definition δ has not been study to that degree. It was found in some experiments that

using a too small value of δ causes neighbours to no longer be seen as the local regime.

Rather, any results on LCS filters are just the result of numerical noise. Using too large val-

ues for δ is also undersirable, as neighbouring strainlines would no longer be considered to
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be in the local regime. It would be interesting to see how this parameter affects the final LCS

extraction for the ERTBP.
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Appendix A: Variational Equations Double
Gyre

If this work is reproduced, use will be made of the variational equations. This appendix contains

the Python code for the variational equations of the Double Gyre.

from math import *
import numpy as np

def doubleGyreVar ( t , x ) :
w = 2* pi /10
A = 0.1
eps = 0.1

wt = w* t
swt = sin ( wt )
a = eps * swt
b = 1−(2*a )
f = a* x [ 0 ] * * 2 + b* x [ 0 ]
spx = sin ( pi * f )
cpx = cos ( pi * f )
spy = sin ( pi * x [ 1 ] )
cpy = cos ( pi * x [ 1 ] )
df = 2*a* x [ 0 ] + b
d2f = 2*a

AA = −pi * cpx * df *cpy
B = pi * spx * spy
C = spy*(−spx * ( df * * 2 ) * pi+cpx * d2f )
D = pi * cpx * df *cpy

dx = pi *A*np . array ([−spx *cpy ,
cpx * spy * df ,
AA* x [2]+B* x [ 3 ] ,
C* x [2]+D* x [ 3 ] ,
AA* x [4]+B* x [ 5 ] ,
C* x [4]+D* x [ 5 ] ] )

return dx
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Appendix B: Variational Equations and Map-
pings ERTBP

In this appendix the Python code for the variational equations, coordinate mappings, inverse co-

ordinate mappings, and Jacobians of coordinate mappings is given. These are used to define the

ERTBP when executing both the FTLE and Variational Theory LCS extraction algorithms.

def M( r , ep , e , f0 , mu) :
r2 = r [ 0 ]
theta2 = r [ 1 ]

r2prime = ( r [ 0 ] * ep*np . sin ( f0 ) ) / ( 1 + ep*np . cos ( f0 ) )
theta2prime = np . sqrt ( ( (mu*(1+ e ) ) / ( r [ 0 ] * * 3 * ( 1 + ep*np . cos ( f0 ) ) ) ) ) − 1
return ( [ r2 , theta2 , r2prime , theta2prime ] )

def P2C( r , mu) :
x2 = 1−mu + r [ 0 ] * np . cos ( r [ 1 ] )
y2 = r [ 0 ] * np . sin ( r [ 1 ] )
x2prime = r [ 2 ] *np . cos ( r [ 1 ] ) − r [ 0 ] * r [ 3 ] *np . sin ( r [ 1 ] )
y2prime = r [ 2 ] *np . sin ( r [ 1 ] ) + r [ 0 ] * r [ 3 ] *np . cos ( r [ 1 ] )
return ( [ x2 , y2 , x2prime , y2prime ] )

def Minv( r ) :
return ( [ r [ 0 ] , r [ 1 ] ] )

def C2P( x ,mu) :
oldX = x [ 0 ]
x [ 0 ] = x[0]−(1−mu)
r = np . sqrt ( x [ 0 ] * *2 + x [ 1 ] * * 2 )
theta = np . arctan2 ( x [ 1 ] , x [ 0 ] ) + 2* pi
rdot = x [ 2 ] *np . cos ( x [ 1 ] ) + x [ 3 ] *np . sin ( x [ 1 ] )
thetadot = (−1*x [ 2 ] *np . sin ( x [ 1 ] ) + x [ 3 ] *np . cos ( x [ 1 ] ) ) / r

x [ 0 ] = oldX
return ( [ r , theta , rdot , thetadot ] )

def ERTBPvar ( f , x , ep , mu) :
xx = x [ 0 ]
yy = x [ 1 ]
vx = x [ 2 ]
vy = x [ 3 ]

87



f r = 1 / (1+ep*np . cos ( f ) )
r1 = np . sqrt ( ( xx+mu) * * 2 + yy **2 )
r2 = np . sqrt ( ( xx+mu−1)**2 + yy **2 )

doxdx = f r * (1−(1−mu) * ( 1 / r1 **3 + ( xx+mu) * (−3/ r1 * * 5 ) *
( xx+mu) ) − mu* ( ( 1 / r2 * * 3 ) + ( ( xx+mu−1)*(−3/ r2 * * 5 ) * ( xx+mu−1 ) ) ) )

doydy = f r * (1−(1−mu) * ( 1 / r1 **3 + yy * (−3/ r1 * * 5 ) * yy ) − mu* ( ( 1 / r2 * * 3 ) +
( yy *(−3/ r2 * * 5 ) * yy ) ) )

doydx = f r * (−1*(1−mu) * yy*(−3/ r1 * * 5 ) * ( xx+mu) − mu* yy*(−3/ r2 * * 5 ) * ( xx+mu−1))
doxdy = f r * (−1*(1−mu) * ( xx+mu)*(−3/ r1 * * 5 ) * yy − mu* ( xx+mu−1)*(−3/ r2 * * 5 ) * yy )

dx = [ vx ,
vy ,
2* vy + f r * ( xx − (1−mu) * ( xx+mu) * 1/( r1 * * 3 ) − mu * ( xx+mu−1) * 1/( r2 * * 3 ) ) ,
−2*vx + f r * ( yy − (1−mu) * yy * 1/( r1 * * 3 ) − mu * yy * 1/( r2 * * 3 ) ) ,
x [ 6 ] ,
x [ 7 ] ,
x [ 4 ] * doxdx + x [ 5 ] * doxdy + 2* x [ 7 ] ,
x [ 4 ] * doydx + x [ 5 ] * doydy − 2* x [ 6 ] ,
x [ 1 0 ] ,
x [ 1 1 ] ,
x [ 8 ] * doxdx + x [ 9 ] * doxdy + 2* x [ 1 1 ] ,
x [ 8 ] * doydx + x [ 9 ] * doydy − 2* x [ 1 0 ] ,
x [ 1 4 ] ,
x [ 1 5 ] ,
x [ 1 2 ] * doxdx + x [ 1 3 ] * doxdy + 2*x [ 1 5 ] ,
x [ 1 2 ] * doydx + x [ 1 3 ] * doydy − 2*x [ 1 4 ] ,
x [ 1 8 ] ,
x [ 1 9 ] ,
x [ 1 6 ] * doxdx + x [ 1 7 ] * doxdy + 2*x [ 1 9 ] ,
x [ 1 6 ] * doydx + x [ 1 7 ] * doydy − 2*x [ 1 8 ] ,
]

return ( dx )

def JacMinv ( r ) :
return ( [ [ 1 , 0 , 0 , 0 ] ,

[ 0 , 1 , 0 , 0 ] ] )

def jacP2C ( r r ) :
r0 = r r [ 0 ]
th0 = r r [ 1 ]
rd0 = r r [ 2 ]
thd0 = r r [ 3 ]
return ( [ [ cos ( th0 ) , −1*r0 * sin ( th0 ) , 0 , 0 ] ,

[ sin ( th0 ) , r0 * cos ( th0 ) , 0 , 0 ] ,
[−1*thd0 * sin ( th0 ) , −rd0 * sin ( th0)−r0 * thd0 * cos ( th0 ) , cos ( th0 ) , −r0 * sin ( th0 ) ] ,
[ thd0 * cos ( th0 ) , rd0 * cos ( th0)−r0 * thd0 * sin ( th0 ) , sin ( th0 ) , r0 * cos ( th0 ) ] ] )

def jacC2P ( r r r ) :
x = r r r [0]−(1−mu)
y = r r r [ 1 ]
xd = r r r [ 2 ]
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yd = r r r [ 3 ]
r = np . sqrt ( x **2+y * * 2 )
return ( [ [ x/ r , y/ r , 0 , 0 ] ,

[−y/ r * *2 , x/ r * *2 , 0 , 0 ] ,
[ ( r *xd − ( x *xd + y *yd ) * x/ r ) / r **2 , ( r *yd − ( x *xd + y *yd ) * y/ r )/ r * *2 ,
x/ r , y/ r ] ,
[ ( r **2 * yd − ( x *yd − xd* y ) * 2 * x )/ r **4 , ( r **2*(−1*xd ) −
( x *yd − xd* y ) * 2*y ) / r * *4 , −1*y/ r * *2 , x/ r **2 ] ] )

def jacM ( r , ep , f0 , e , mu) :
A = np . sqrt ( (mu*(1+ e ) ) / (1+ep* cos ( f0 ) ) )
return ( [ [ 1 , 0 ] ,

[ 0 , 1 ] ,
[ ( ep* sin ( f0 ) ) / (1+ep* cos ( f0 ) ) , 0 ] ,
[−3/2 * A * r [0]**( −5/2) , 0 ] ] )
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